e1000: Do not truncate TSO TCP header with 82544 workaround
[linux-2.6/linux-loongson.git] / drivers / ata / libata-core.c
blob0d51d13b16bf7b850ac66bd00f4c2abdb3d444f5
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
108 * LOCKING:
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 * LOCKING:
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
208 * LOCKING:
209 * caller.
211 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
213 u8 cmd;
215 int index, fua, lba48, write;
217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
223 index = dev->multi_count ? 0 : 8;
224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
227 index = dev->multi_count ? 0 : 8;
228 } else {
229 tf->protocol = ATA_PROT_DMA;
230 index = 16;
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
238 return -1;
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
246 * LOCKING:
247 * None.
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
253 * RETURNS:
254 * Block address read from @tf.
256 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
258 u64 block = 0;
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
281 return block;
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
293 * LOCKING:
294 * None.
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
299 * RETURNS:
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
304 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
353 tf->hob_nsect = (n_block >> 8) & 0xff;
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
365 tf->nsect = n_block & 0xff;
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
406 return 0;
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
418 * LOCKING:
419 * None.
421 * RETURNS:
422 * Packed xfer_mask.
424 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
443 static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
456 static const struct ata_xfer_ent {
457 int shift, bits;
458 u8 base;
459 } ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
473 * LOCKING:
474 * None.
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
479 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
494 * Return matching xfer_mask for @xfer_mode.
496 * LOCKING:
497 * None.
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
502 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
504 const struct ata_xfer_ent *ent;
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
516 * Return matching xfer_shift for @xfer_mode.
518 * LOCKING:
519 * None.
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
524 static int ata_xfer_mode2shift(unsigned int xfer_mode)
526 const struct ata_xfer_ent *ent;
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
538 * Determine string which represents the highest speed
539 * (highest bit in @modemask).
541 * LOCKING:
542 * None.
544 * RETURNS:
545 * Constant C string representing highest speed listed in
546 * @mode_mask, or the constant C string "<n/a>".
548 static const char *ata_mode_string(unsigned int xfer_mask)
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
556 "PIO5",
557 "PIO6",
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
561 "MWDMA3",
562 "MWDMA4",
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
572 int highbit;
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
577 return "<n/a>";
580 static const char *sata_spd_string(unsigned int spd)
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
592 void ata_dev_disable(struct ata_device *dev)
594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
596 dev->class++;
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
614 * LOCKING:
615 * caller.
618 static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
624 ap->ops->dev_select(ap, device);
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
641 return 0; /* nothing found */
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
658 * LOCKING:
659 * caller.
662 static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
668 ap->ops->dev_select(ap, device);
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
685 return 0; /* nothing found */
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
697 * LOCKING:
698 * caller.
701 static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
717 * LOCKING:
718 * None.
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
725 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 * @r_err: Value of error register on completion
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
763 * LOCKING:
764 * caller.
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
770 static unsigned int
771 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
777 ap->ops->dev_select(ap, device);
779 memset(&tf, 0, sizeof(tf));
781 ap->ops->tf_read(ap, &tf);
782 err = tf.feature;
783 if (r_err)
784 *r_err = err;
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
795 return ATA_DEV_NONE;
797 /* determine if device is ATA or ATAPI */
798 class = ata_dev_classify(&tf);
800 if (class == ATA_DEV_UNKNOWN)
801 return ATA_DEV_NONE;
802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
803 return ATA_DEV_NONE;
804 return class;
808 * ata_id_string - Convert IDENTIFY DEVICE page into string
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
818 * LOCKING:
819 * caller.
822 void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
825 unsigned int c;
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
836 ofs++;
837 len -= 2;
842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
848 * This function is identical to ata_id_string except that it
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
852 * LOCKING:
853 * caller.
855 void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
858 unsigned char *p;
860 WARN_ON(!(len & 1));
862 ata_id_string(id, s, ofs, len - 1);
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
870 static u64 ata_id_n_sectors(const u16 *id)
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * This function performs no actual function.
892 * May be used as the dev_select() entry in ata_port_operations.
894 * LOCKING:
895 * caller.
897 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
909 * ATA channel. Works with both PIO and MMIO.
911 * May be used as the dev_select() entry in ata_port_operations.
913 * LOCKING:
914 * caller.
917 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
919 u8 tmp;
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
931 ata_pause(ap); /* needed; also flushes, for mmio */
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
949 * LOCKING:
950 * caller.
953 void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
956 if (ata_msg_probe(ap))
957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
958 "device %u, wait %u\n", ap->id, device, wait);
960 if (wait)
961 ata_wait_idle(ap);
963 ap->ops->dev_select(ap, device);
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
974 * @id: IDENTIFY DEVICE page to dump
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
979 * LOCKING:
980 * caller.
983 static inline void ata_dump_id(const u16 *id)
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
1007 id[88],
1008 id[93]);
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1018 * FIXME: pre IDE drive timing (do we care ?).
1020 * LOCKING:
1021 * None.
1023 * RETURNS:
1024 * Computed xfermask
1026 static unsigned int ata_id_xfermask(const u16 *id)
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1040 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1056 if (ata_id_is_cfa(id)) {
1058 * Process compact flash extended modes
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
1083 * @fn: workqueue function to be scheduled
1084 * @data: data for @fn to use
1085 * @delay: delay time for workqueue function
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1096 * LOCKING:
1097 * Inherited from caller.
1099 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1100 unsigned long delay)
1102 int rc;
1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1105 return;
1107 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1108 ap->port_task_data = data;
1110 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1112 /* rc == 0 means that another user is using port task */
1113 WARN_ON(rc == 0);
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1123 * LOCKING:
1124 * Kernel thread context (may sleep)
1126 void ata_port_flush_task(struct ata_port *ap)
1128 unsigned long flags;
1130 DPRINTK("ENTER\n");
1132 spin_lock_irqsave(ap->lock, flags);
1133 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1134 spin_unlock_irqrestore(ap->lock, flags);
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq);
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1142 * Cancel and flush.
1144 if (!cancel_delayed_work(&ap->port_task)) {
1145 if (ata_msg_ctl(ap))
1146 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1147 __FUNCTION__);
1148 flush_workqueue(ata_wq);
1151 spin_lock_irqsave(ap->lock, flags);
1152 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1153 spin_unlock_irqrestore(ap->lock, flags);
1155 if (ata_msg_ctl(ap))
1156 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1159 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1161 struct completion *waiting = qc->private_data;
1163 complete(waiting);
1167 * ata_exec_internal_sg - execute libata internal command
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
1170 * @cdb: CDB for packet command
1171 * @dma_dir: Data tranfer direction of the command
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1181 * LOCKING:
1182 * None. Should be called with kernel context, might sleep.
1184 * RETURNS:
1185 * Zero on success, AC_ERR_* mask on failure
1187 unsigned ata_exec_internal_sg(struct ata_device *dev,
1188 struct ata_taskfile *tf, const u8 *cdb,
1189 int dma_dir, struct scatterlist *sg,
1190 unsigned int n_elem)
1192 struct ata_port *ap = dev->ap;
1193 u8 command = tf->command;
1194 struct ata_queued_cmd *qc;
1195 unsigned int tag, preempted_tag;
1196 u32 preempted_sactive, preempted_qc_active;
1197 DECLARE_COMPLETION_ONSTACK(wait);
1198 unsigned long flags;
1199 unsigned int err_mask;
1200 int rc;
1202 spin_lock_irqsave(ap->lock, flags);
1204 /* no internal command while frozen */
1205 if (ap->pflags & ATA_PFLAG_FROZEN) {
1206 spin_unlock_irqrestore(ap->lock, flags);
1207 return AC_ERR_SYSTEM;
1210 /* initialize internal qc */
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1217 if (ap->ops->error_handler)
1218 tag = ATA_TAG_INTERNAL;
1219 else
1220 tag = 0;
1222 if (test_and_set_bit(tag, &ap->qc_allocated))
1223 BUG();
1224 qc = __ata_qc_from_tag(ap, tag);
1226 qc->tag = tag;
1227 qc->scsicmd = NULL;
1228 qc->ap = ap;
1229 qc->dev = dev;
1230 ata_qc_reinit(qc);
1232 preempted_tag = ap->active_tag;
1233 preempted_sactive = ap->sactive;
1234 preempted_qc_active = ap->qc_active;
1235 ap->active_tag = ATA_TAG_POISON;
1236 ap->sactive = 0;
1237 ap->qc_active = 0;
1239 /* prepare & issue qc */
1240 qc->tf = *tf;
1241 if (cdb)
1242 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1243 qc->flags |= ATA_QCFLAG_RESULT_TF;
1244 qc->dma_dir = dma_dir;
1245 if (dma_dir != DMA_NONE) {
1246 unsigned int i, buflen = 0;
1248 for (i = 0; i < n_elem; i++)
1249 buflen += sg[i].length;
1251 ata_sg_init(qc, sg, n_elem);
1252 qc->nsect = buflen / ATA_SECT_SIZE;
1255 qc->private_data = &wait;
1256 qc->complete_fn = ata_qc_complete_internal;
1258 ata_qc_issue(qc);
1260 spin_unlock_irqrestore(ap->lock, flags);
1262 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1264 ata_port_flush_task(ap);
1266 if (!rc) {
1267 spin_lock_irqsave(ap->lock, flags);
1269 /* We're racing with irq here. If we lose, the
1270 * following test prevents us from completing the qc
1271 * twice. If we win, the port is frozen and will be
1272 * cleaned up by ->post_internal_cmd().
1274 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1275 qc->err_mask |= AC_ERR_TIMEOUT;
1277 if (ap->ops->error_handler)
1278 ata_port_freeze(ap);
1279 else
1280 ata_qc_complete(qc);
1282 if (ata_msg_warn(ap))
1283 ata_dev_printk(dev, KERN_WARNING,
1284 "qc timeout (cmd 0x%x)\n", command);
1287 spin_unlock_irqrestore(ap->lock, flags);
1290 /* do post_internal_cmd */
1291 if (ap->ops->post_internal_cmd)
1292 ap->ops->post_internal_cmd(qc);
1294 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING,
1297 "zero err_mask for failed "
1298 "internal command, assuming AC_ERR_OTHER\n");
1299 qc->err_mask |= AC_ERR_OTHER;
1302 /* finish up */
1303 spin_lock_irqsave(ap->lock, flags);
1305 *tf = qc->result_tf;
1306 err_mask = qc->err_mask;
1308 ata_qc_free(qc);
1309 ap->active_tag = preempted_tag;
1310 ap->sactive = preempted_sactive;
1311 ap->qc_active = preempted_qc_active;
1313 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1314 * Until those drivers are fixed, we detect the condition
1315 * here, fail the command with AC_ERR_SYSTEM and reenable the
1316 * port.
1318 * Note that this doesn't change any behavior as internal
1319 * command failure results in disabling the device in the
1320 * higher layer for LLDDs without new reset/EH callbacks.
1322 * Kill the following code as soon as those drivers are fixed.
1324 if (ap->flags & ATA_FLAG_DISABLED) {
1325 err_mask |= AC_ERR_SYSTEM;
1326 ata_port_probe(ap);
1329 spin_unlock_irqrestore(ap->lock, flags);
1331 return err_mask;
1335 * ata_exec_internal - execute libata internal command
1336 * @dev: Device to which the command is sent
1337 * @tf: Taskfile registers for the command and the result
1338 * @cdb: CDB for packet command
1339 * @dma_dir: Data tranfer direction of the command
1340 * @buf: Data buffer of the command
1341 * @buflen: Length of data buffer
1343 * Wrapper around ata_exec_internal_sg() which takes simple
1344 * buffer instead of sg list.
1346 * LOCKING:
1347 * None. Should be called with kernel context, might sleep.
1349 * RETURNS:
1350 * Zero on success, AC_ERR_* mask on failure
1352 unsigned ata_exec_internal(struct ata_device *dev,
1353 struct ata_taskfile *tf, const u8 *cdb,
1354 int dma_dir, void *buf, unsigned int buflen)
1356 struct scatterlist *psg = NULL, sg;
1357 unsigned int n_elem = 0;
1359 if (dma_dir != DMA_NONE) {
1360 WARN_ON(!buf);
1361 sg_init_one(&sg, buf, buflen);
1362 psg = &sg;
1363 n_elem++;
1366 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1370 * ata_do_simple_cmd - execute simple internal command
1371 * @dev: Device to which the command is sent
1372 * @cmd: Opcode to execute
1374 * Execute a 'simple' command, that only consists of the opcode
1375 * 'cmd' itself, without filling any other registers
1377 * LOCKING:
1378 * Kernel thread context (may sleep).
1380 * RETURNS:
1381 * Zero on success, AC_ERR_* mask on failure
1383 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1385 struct ata_taskfile tf;
1387 ata_tf_init(dev, &tf);
1389 tf.command = cmd;
1390 tf.flags |= ATA_TFLAG_DEVICE;
1391 tf.protocol = ATA_PROT_NODATA;
1393 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1397 * ata_pio_need_iordy - check if iordy needed
1398 * @adev: ATA device
1400 * Check if the current speed of the device requires IORDY. Used
1401 * by various controllers for chip configuration.
1404 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1406 int pio;
1407 int speed = adev->pio_mode - XFER_PIO_0;
1409 if (speed < 2)
1410 return 0;
1411 if (speed > 2)
1412 return 1;
1414 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1416 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1417 pio = adev->id[ATA_ID_EIDE_PIO];
1418 /* Is the speed faster than the drive allows non IORDY ? */
1419 if (pio) {
1420 /* This is cycle times not frequency - watch the logic! */
1421 if (pio > 240) /* PIO2 is 240nS per cycle */
1422 return 1;
1423 return 0;
1426 return 0;
1430 * ata_dev_read_id - Read ID data from the specified device
1431 * @dev: target device
1432 * @p_class: pointer to class of the target device (may be changed)
1433 * @flags: ATA_READID_* flags
1434 * @id: buffer to read IDENTIFY data into
1436 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1437 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1438 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1439 * for pre-ATA4 drives.
1441 * LOCKING:
1442 * Kernel thread context (may sleep)
1444 * RETURNS:
1445 * 0 on success, -errno otherwise.
1447 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1448 unsigned int flags, u16 *id)
1450 struct ata_port *ap = dev->ap;
1451 unsigned int class = *p_class;
1452 struct ata_taskfile tf;
1453 unsigned int err_mask = 0;
1454 const char *reason;
1455 int rc;
1457 if (ata_msg_ctl(ap))
1458 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1459 __FUNCTION__, ap->id, dev->devno);
1461 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1463 retry:
1464 ata_tf_init(dev, &tf);
1466 switch (class) {
1467 case ATA_DEV_ATA:
1468 tf.command = ATA_CMD_ID_ATA;
1469 break;
1470 case ATA_DEV_ATAPI:
1471 tf.command = ATA_CMD_ID_ATAPI;
1472 break;
1473 default:
1474 rc = -ENODEV;
1475 reason = "unsupported class";
1476 goto err_out;
1479 tf.protocol = ATA_PROT_PIO;
1480 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1482 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1483 id, sizeof(id[0]) * ATA_ID_WORDS);
1484 if (err_mask) {
1485 if (err_mask & AC_ERR_NODEV_HINT) {
1486 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1487 ap->id, dev->devno);
1488 return -ENOENT;
1491 rc = -EIO;
1492 reason = "I/O error";
1493 goto err_out;
1496 swap_buf_le16(id, ATA_ID_WORDS);
1498 /* sanity check */
1499 rc = -EINVAL;
1500 reason = "device reports illegal type";
1502 if (class == ATA_DEV_ATA) {
1503 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1504 goto err_out;
1505 } else {
1506 if (ata_id_is_ata(id))
1507 goto err_out;
1510 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1512 * The exact sequence expected by certain pre-ATA4 drives is:
1513 * SRST RESET
1514 * IDENTIFY
1515 * INITIALIZE DEVICE PARAMETERS
1516 * anything else..
1517 * Some drives were very specific about that exact sequence.
1519 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1520 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1521 if (err_mask) {
1522 rc = -EIO;
1523 reason = "INIT_DEV_PARAMS failed";
1524 goto err_out;
1527 /* current CHS translation info (id[53-58]) might be
1528 * changed. reread the identify device info.
1530 flags &= ~ATA_READID_POSTRESET;
1531 goto retry;
1535 *p_class = class;
1537 return 0;
1539 err_out:
1540 if (ata_msg_warn(ap))
1541 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1542 "(%s, err_mask=0x%x)\n", reason, err_mask);
1543 return rc;
1546 static inline u8 ata_dev_knobble(struct ata_device *dev)
1548 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1551 static void ata_dev_config_ncq(struct ata_device *dev,
1552 char *desc, size_t desc_sz)
1554 struct ata_port *ap = dev->ap;
1555 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1557 if (!ata_id_has_ncq(dev->id)) {
1558 desc[0] = '\0';
1559 return;
1561 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1562 snprintf(desc, desc_sz, "NCQ (not used)");
1563 return;
1565 if (ap->flags & ATA_FLAG_NCQ) {
1566 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1567 dev->flags |= ATA_DFLAG_NCQ;
1570 if (hdepth >= ddepth)
1571 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1572 else
1573 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1576 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1578 int i;
1580 if (ap->scsi_host) {
1581 unsigned int len = 0;
1583 for (i = 0; i < ATA_MAX_DEVICES; i++)
1584 len = max(len, ap->device[i].cdb_len);
1586 ap->scsi_host->max_cmd_len = len;
1591 * ata_dev_configure - Configure the specified ATA/ATAPI device
1592 * @dev: Target device to configure
1594 * Configure @dev according to @dev->id. Generic and low-level
1595 * driver specific fixups are also applied.
1597 * LOCKING:
1598 * Kernel thread context (may sleep)
1600 * RETURNS:
1601 * 0 on success, -errno otherwise
1603 int ata_dev_configure(struct ata_device *dev)
1605 struct ata_port *ap = dev->ap;
1606 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1607 const u16 *id = dev->id;
1608 unsigned int xfer_mask;
1609 char revbuf[7]; /* XYZ-99\0 */
1610 int rc;
1612 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1613 ata_dev_printk(dev, KERN_INFO,
1614 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1615 __FUNCTION__, ap->id, dev->devno);
1616 return 0;
1619 if (ata_msg_probe(ap))
1620 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1621 __FUNCTION__, ap->id, dev->devno);
1623 /* print device capabilities */
1624 if (ata_msg_probe(ap))
1625 ata_dev_printk(dev, KERN_DEBUG,
1626 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1627 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1628 __FUNCTION__,
1629 id[49], id[82], id[83], id[84],
1630 id[85], id[86], id[87], id[88]);
1632 /* initialize to-be-configured parameters */
1633 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1634 dev->max_sectors = 0;
1635 dev->cdb_len = 0;
1636 dev->n_sectors = 0;
1637 dev->cylinders = 0;
1638 dev->heads = 0;
1639 dev->sectors = 0;
1642 * common ATA, ATAPI feature tests
1645 /* find max transfer mode; for printk only */
1646 xfer_mask = ata_id_xfermask(id);
1648 if (ata_msg_probe(ap))
1649 ata_dump_id(id);
1651 /* ATA-specific feature tests */
1652 if (dev->class == ATA_DEV_ATA) {
1653 if (ata_id_is_cfa(id)) {
1654 if (id[162] & 1) /* CPRM may make this media unusable */
1655 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1656 ap->id, dev->devno);
1657 snprintf(revbuf, 7, "CFA");
1659 else
1660 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1662 dev->n_sectors = ata_id_n_sectors(id);
1664 if (ata_id_has_lba(id)) {
1665 const char *lba_desc;
1666 char ncq_desc[20];
1668 lba_desc = "LBA";
1669 dev->flags |= ATA_DFLAG_LBA;
1670 if (ata_id_has_lba48(id)) {
1671 dev->flags |= ATA_DFLAG_LBA48;
1672 lba_desc = "LBA48";
1674 if (dev->n_sectors >= (1UL << 28) &&
1675 ata_id_has_flush_ext(id))
1676 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1679 /* config NCQ */
1680 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1682 /* print device info to dmesg */
1683 if (ata_msg_drv(ap) && print_info)
1684 ata_dev_printk(dev, KERN_INFO, "%s, "
1685 "max %s, %Lu sectors: %s %s\n",
1686 revbuf,
1687 ata_mode_string(xfer_mask),
1688 (unsigned long long)dev->n_sectors,
1689 lba_desc, ncq_desc);
1690 } else {
1691 /* CHS */
1693 /* Default translation */
1694 dev->cylinders = id[1];
1695 dev->heads = id[3];
1696 dev->sectors = id[6];
1698 if (ata_id_current_chs_valid(id)) {
1699 /* Current CHS translation is valid. */
1700 dev->cylinders = id[54];
1701 dev->heads = id[55];
1702 dev->sectors = id[56];
1705 /* print device info to dmesg */
1706 if (ata_msg_drv(ap) && print_info)
1707 ata_dev_printk(dev, KERN_INFO, "%s, "
1708 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1709 revbuf,
1710 ata_mode_string(xfer_mask),
1711 (unsigned long long)dev->n_sectors,
1712 dev->cylinders, dev->heads,
1713 dev->sectors);
1716 if (dev->id[59] & 0x100) {
1717 dev->multi_count = dev->id[59] & 0xff;
1718 if (ata_msg_drv(ap) && print_info)
1719 ata_dev_printk(dev, KERN_INFO,
1720 "ata%u: dev %u multi count %u\n",
1721 ap->id, dev->devno, dev->multi_count);
1724 dev->cdb_len = 16;
1727 /* ATAPI-specific feature tests */
1728 else if (dev->class == ATA_DEV_ATAPI) {
1729 char *cdb_intr_string = "";
1731 rc = atapi_cdb_len(id);
1732 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1733 if (ata_msg_warn(ap))
1734 ata_dev_printk(dev, KERN_WARNING,
1735 "unsupported CDB len\n");
1736 rc = -EINVAL;
1737 goto err_out_nosup;
1739 dev->cdb_len = (unsigned int) rc;
1741 if (ata_id_cdb_intr(dev->id)) {
1742 dev->flags |= ATA_DFLAG_CDB_INTR;
1743 cdb_intr_string = ", CDB intr";
1746 /* print device info to dmesg */
1747 if (ata_msg_drv(ap) && print_info)
1748 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1749 ata_mode_string(xfer_mask),
1750 cdb_intr_string);
1753 /* determine max_sectors */
1754 dev->max_sectors = ATA_MAX_SECTORS;
1755 if (dev->flags & ATA_DFLAG_LBA48)
1756 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1758 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1759 /* Let the user know. We don't want to disallow opens for
1760 rescue purposes, or in case the vendor is just a blithering
1761 idiot */
1762 if (print_info) {
1763 ata_dev_printk(dev, KERN_WARNING,
1764 "Drive reports diagnostics failure. This may indicate a drive\n");
1765 ata_dev_printk(dev, KERN_WARNING,
1766 "fault or invalid emulation. Contact drive vendor for information.\n");
1770 ata_set_port_max_cmd_len(ap);
1772 /* limit bridge transfers to udma5, 200 sectors */
1773 if (ata_dev_knobble(dev)) {
1774 if (ata_msg_drv(ap) && print_info)
1775 ata_dev_printk(dev, KERN_INFO,
1776 "applying bridge limits\n");
1777 dev->udma_mask &= ATA_UDMA5;
1778 dev->max_sectors = ATA_MAX_SECTORS;
1781 if (ap->ops->dev_config)
1782 ap->ops->dev_config(ap, dev);
1784 if (ata_msg_probe(ap))
1785 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1786 __FUNCTION__, ata_chk_status(ap));
1787 return 0;
1789 err_out_nosup:
1790 if (ata_msg_probe(ap))
1791 ata_dev_printk(dev, KERN_DEBUG,
1792 "%s: EXIT, err\n", __FUNCTION__);
1793 return rc;
1797 * ata_bus_probe - Reset and probe ATA bus
1798 * @ap: Bus to probe
1800 * Master ATA bus probing function. Initiates a hardware-dependent
1801 * bus reset, then attempts to identify any devices found on
1802 * the bus.
1804 * LOCKING:
1805 * PCI/etc. bus probe sem.
1807 * RETURNS:
1808 * Zero on success, negative errno otherwise.
1811 int ata_bus_probe(struct ata_port *ap)
1813 unsigned int classes[ATA_MAX_DEVICES];
1814 int tries[ATA_MAX_DEVICES];
1815 int i, rc, down_xfermask;
1816 struct ata_device *dev;
1818 ata_port_probe(ap);
1820 for (i = 0; i < ATA_MAX_DEVICES; i++)
1821 tries[i] = ATA_PROBE_MAX_TRIES;
1823 retry:
1824 down_xfermask = 0;
1826 /* reset and determine device classes */
1827 ap->ops->phy_reset(ap);
1829 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1830 dev = &ap->device[i];
1832 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1833 dev->class != ATA_DEV_UNKNOWN)
1834 classes[dev->devno] = dev->class;
1835 else
1836 classes[dev->devno] = ATA_DEV_NONE;
1838 dev->class = ATA_DEV_UNKNOWN;
1841 ata_port_probe(ap);
1843 /* after the reset the device state is PIO 0 and the controller
1844 state is undefined. Record the mode */
1846 for (i = 0; i < ATA_MAX_DEVICES; i++)
1847 ap->device[i].pio_mode = XFER_PIO_0;
1849 /* read IDENTIFY page and configure devices */
1850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1851 dev = &ap->device[i];
1853 if (tries[i])
1854 dev->class = classes[i];
1856 if (!ata_dev_enabled(dev))
1857 continue;
1859 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1860 dev->id);
1861 if (rc)
1862 goto fail;
1864 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1865 rc = ata_dev_configure(dev);
1866 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1867 if (rc)
1868 goto fail;
1871 /* configure transfer mode */
1872 rc = ata_set_mode(ap, &dev);
1873 if (rc) {
1874 down_xfermask = 1;
1875 goto fail;
1878 for (i = 0; i < ATA_MAX_DEVICES; i++)
1879 if (ata_dev_enabled(&ap->device[i]))
1880 return 0;
1882 /* no device present, disable port */
1883 ata_port_disable(ap);
1884 ap->ops->port_disable(ap);
1885 return -ENODEV;
1887 fail:
1888 switch (rc) {
1889 case -EINVAL:
1890 case -ENODEV:
1891 tries[dev->devno] = 0;
1892 break;
1893 case -EIO:
1894 sata_down_spd_limit(ap);
1895 /* fall through */
1896 default:
1897 tries[dev->devno]--;
1898 if (down_xfermask &&
1899 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1900 tries[dev->devno] = 0;
1903 if (!tries[dev->devno]) {
1904 ata_down_xfermask_limit(dev, 1);
1905 ata_dev_disable(dev);
1908 goto retry;
1912 * ata_port_probe - Mark port as enabled
1913 * @ap: Port for which we indicate enablement
1915 * Modify @ap data structure such that the system
1916 * thinks that the entire port is enabled.
1918 * LOCKING: host lock, or some other form of
1919 * serialization.
1922 void ata_port_probe(struct ata_port *ap)
1924 ap->flags &= ~ATA_FLAG_DISABLED;
1928 * sata_print_link_status - Print SATA link status
1929 * @ap: SATA port to printk link status about
1931 * This function prints link speed and status of a SATA link.
1933 * LOCKING:
1934 * None.
1936 static void sata_print_link_status(struct ata_port *ap)
1938 u32 sstatus, scontrol, tmp;
1940 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1941 return;
1942 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1944 if (ata_port_online(ap)) {
1945 tmp = (sstatus >> 4) & 0xf;
1946 ata_port_printk(ap, KERN_INFO,
1947 "SATA link up %s (SStatus %X SControl %X)\n",
1948 sata_spd_string(tmp), sstatus, scontrol);
1949 } else {
1950 ata_port_printk(ap, KERN_INFO,
1951 "SATA link down (SStatus %X SControl %X)\n",
1952 sstatus, scontrol);
1957 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1958 * @ap: SATA port associated with target SATA PHY.
1960 * This function issues commands to standard SATA Sxxx
1961 * PHY registers, to wake up the phy (and device), and
1962 * clear any reset condition.
1964 * LOCKING:
1965 * PCI/etc. bus probe sem.
1968 void __sata_phy_reset(struct ata_port *ap)
1970 u32 sstatus;
1971 unsigned long timeout = jiffies + (HZ * 5);
1973 if (ap->flags & ATA_FLAG_SATA_RESET) {
1974 /* issue phy wake/reset */
1975 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1976 /* Couldn't find anything in SATA I/II specs, but
1977 * AHCI-1.1 10.4.2 says at least 1 ms. */
1978 mdelay(1);
1980 /* phy wake/clear reset */
1981 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1983 /* wait for phy to become ready, if necessary */
1984 do {
1985 msleep(200);
1986 sata_scr_read(ap, SCR_STATUS, &sstatus);
1987 if ((sstatus & 0xf) != 1)
1988 break;
1989 } while (time_before(jiffies, timeout));
1991 /* print link status */
1992 sata_print_link_status(ap);
1994 /* TODO: phy layer with polling, timeouts, etc. */
1995 if (!ata_port_offline(ap))
1996 ata_port_probe(ap);
1997 else
1998 ata_port_disable(ap);
2000 if (ap->flags & ATA_FLAG_DISABLED)
2001 return;
2003 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2004 ata_port_disable(ap);
2005 return;
2008 ap->cbl = ATA_CBL_SATA;
2012 * sata_phy_reset - Reset SATA bus.
2013 * @ap: SATA port associated with target SATA PHY.
2015 * This function resets the SATA bus, and then probes
2016 * the bus for devices.
2018 * LOCKING:
2019 * PCI/etc. bus probe sem.
2022 void sata_phy_reset(struct ata_port *ap)
2024 __sata_phy_reset(ap);
2025 if (ap->flags & ATA_FLAG_DISABLED)
2026 return;
2027 ata_bus_reset(ap);
2031 * ata_dev_pair - return other device on cable
2032 * @adev: device
2034 * Obtain the other device on the same cable, or if none is
2035 * present NULL is returned
2038 struct ata_device *ata_dev_pair(struct ata_device *adev)
2040 struct ata_port *ap = adev->ap;
2041 struct ata_device *pair = &ap->device[1 - adev->devno];
2042 if (!ata_dev_enabled(pair))
2043 return NULL;
2044 return pair;
2048 * ata_port_disable - Disable port.
2049 * @ap: Port to be disabled.
2051 * Modify @ap data structure such that the system
2052 * thinks that the entire port is disabled, and should
2053 * never attempt to probe or communicate with devices
2054 * on this port.
2056 * LOCKING: host lock, or some other form of
2057 * serialization.
2060 void ata_port_disable(struct ata_port *ap)
2062 ap->device[0].class = ATA_DEV_NONE;
2063 ap->device[1].class = ATA_DEV_NONE;
2064 ap->flags |= ATA_FLAG_DISABLED;
2068 * sata_down_spd_limit - adjust SATA spd limit downward
2069 * @ap: Port to adjust SATA spd limit for
2071 * Adjust SATA spd limit of @ap downward. Note that this
2072 * function only adjusts the limit. The change must be applied
2073 * using sata_set_spd().
2075 * LOCKING:
2076 * Inherited from caller.
2078 * RETURNS:
2079 * 0 on success, negative errno on failure
2081 int sata_down_spd_limit(struct ata_port *ap)
2083 u32 sstatus, spd, mask;
2084 int rc, highbit;
2086 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2087 if (rc)
2088 return rc;
2090 mask = ap->sata_spd_limit;
2091 if (mask <= 1)
2092 return -EINVAL;
2093 highbit = fls(mask) - 1;
2094 mask &= ~(1 << highbit);
2096 spd = (sstatus >> 4) & 0xf;
2097 if (spd <= 1)
2098 return -EINVAL;
2099 spd--;
2100 mask &= (1 << spd) - 1;
2101 if (!mask)
2102 return -EINVAL;
2104 ap->sata_spd_limit = mask;
2106 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2107 sata_spd_string(fls(mask)));
2109 return 0;
2112 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2114 u32 spd, limit;
2116 if (ap->sata_spd_limit == UINT_MAX)
2117 limit = 0;
2118 else
2119 limit = fls(ap->sata_spd_limit);
2121 spd = (*scontrol >> 4) & 0xf;
2122 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2124 return spd != limit;
2128 * sata_set_spd_needed - is SATA spd configuration needed
2129 * @ap: Port in question
2131 * Test whether the spd limit in SControl matches
2132 * @ap->sata_spd_limit. This function is used to determine
2133 * whether hardreset is necessary to apply SATA spd
2134 * configuration.
2136 * LOCKING:
2137 * Inherited from caller.
2139 * RETURNS:
2140 * 1 if SATA spd configuration is needed, 0 otherwise.
2142 int sata_set_spd_needed(struct ata_port *ap)
2144 u32 scontrol;
2146 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2147 return 0;
2149 return __sata_set_spd_needed(ap, &scontrol);
2153 * sata_set_spd - set SATA spd according to spd limit
2154 * @ap: Port to set SATA spd for
2156 * Set SATA spd of @ap according to sata_spd_limit.
2158 * LOCKING:
2159 * Inherited from caller.
2161 * RETURNS:
2162 * 0 if spd doesn't need to be changed, 1 if spd has been
2163 * changed. Negative errno if SCR registers are inaccessible.
2165 int sata_set_spd(struct ata_port *ap)
2167 u32 scontrol;
2168 int rc;
2170 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2171 return rc;
2173 if (!__sata_set_spd_needed(ap, &scontrol))
2174 return 0;
2176 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2177 return rc;
2179 return 1;
2183 * This mode timing computation functionality is ported over from
2184 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2187 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2188 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2189 * for UDMA6, which is currently supported only by Maxtor drives.
2191 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2194 static const struct ata_timing ata_timing[] = {
2196 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2197 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2198 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2199 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2201 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2202 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2203 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2204 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2205 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2207 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2209 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2210 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2211 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2213 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2214 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2215 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2217 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2218 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2219 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2220 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2222 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2223 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2224 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2226 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2228 { 0xFF }
2231 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2232 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2234 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2236 q->setup = EZ(t->setup * 1000, T);
2237 q->act8b = EZ(t->act8b * 1000, T);
2238 q->rec8b = EZ(t->rec8b * 1000, T);
2239 q->cyc8b = EZ(t->cyc8b * 1000, T);
2240 q->active = EZ(t->active * 1000, T);
2241 q->recover = EZ(t->recover * 1000, T);
2242 q->cycle = EZ(t->cycle * 1000, T);
2243 q->udma = EZ(t->udma * 1000, UT);
2246 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2247 struct ata_timing *m, unsigned int what)
2249 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2250 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2251 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2252 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2253 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2254 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2255 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2256 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2259 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2261 const struct ata_timing *t;
2263 for (t = ata_timing; t->mode != speed; t++)
2264 if (t->mode == 0xFF)
2265 return NULL;
2266 return t;
2269 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2270 struct ata_timing *t, int T, int UT)
2272 const struct ata_timing *s;
2273 struct ata_timing p;
2276 * Find the mode.
2279 if (!(s = ata_timing_find_mode(speed)))
2280 return -EINVAL;
2282 memcpy(t, s, sizeof(*s));
2285 * If the drive is an EIDE drive, it can tell us it needs extended
2286 * PIO/MW_DMA cycle timing.
2289 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2290 memset(&p, 0, sizeof(p));
2291 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2292 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2293 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2294 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2295 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2297 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2301 * Convert the timing to bus clock counts.
2304 ata_timing_quantize(t, t, T, UT);
2307 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2308 * S.M.A.R.T * and some other commands. We have to ensure that the
2309 * DMA cycle timing is slower/equal than the fastest PIO timing.
2312 if (speed > XFER_PIO_6) {
2313 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2314 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2318 * Lengthen active & recovery time so that cycle time is correct.
2321 if (t->act8b + t->rec8b < t->cyc8b) {
2322 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2323 t->rec8b = t->cyc8b - t->act8b;
2326 if (t->active + t->recover < t->cycle) {
2327 t->active += (t->cycle - (t->active + t->recover)) / 2;
2328 t->recover = t->cycle - t->active;
2331 return 0;
2335 * ata_down_xfermask_limit - adjust dev xfer masks downward
2336 * @dev: Device to adjust xfer masks
2337 * @force_pio0: Force PIO0
2339 * Adjust xfer masks of @dev downward. Note that this function
2340 * does not apply the change. Invoking ata_set_mode() afterwards
2341 * will apply the limit.
2343 * LOCKING:
2344 * Inherited from caller.
2346 * RETURNS:
2347 * 0 on success, negative errno on failure
2349 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2351 unsigned long xfer_mask;
2352 int highbit;
2354 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2355 dev->udma_mask);
2357 if (!xfer_mask)
2358 goto fail;
2359 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2360 if (xfer_mask & ATA_MASK_UDMA)
2361 xfer_mask &= ~ATA_MASK_MWDMA;
2363 highbit = fls(xfer_mask) - 1;
2364 xfer_mask &= ~(1 << highbit);
2365 if (force_pio0)
2366 xfer_mask &= 1 << ATA_SHIFT_PIO;
2367 if (!xfer_mask)
2368 goto fail;
2370 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2371 &dev->udma_mask);
2373 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2374 ata_mode_string(xfer_mask));
2376 return 0;
2378 fail:
2379 return -EINVAL;
2382 static int ata_dev_set_mode(struct ata_device *dev)
2384 struct ata_eh_context *ehc = &dev->ap->eh_context;
2385 unsigned int err_mask;
2386 int rc;
2388 dev->flags &= ~ATA_DFLAG_PIO;
2389 if (dev->xfer_shift == ATA_SHIFT_PIO)
2390 dev->flags |= ATA_DFLAG_PIO;
2392 err_mask = ata_dev_set_xfermode(dev);
2393 if (err_mask) {
2394 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2395 "(err_mask=0x%x)\n", err_mask);
2396 return -EIO;
2399 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2400 rc = ata_dev_revalidate(dev, 0);
2401 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2402 if (rc)
2403 return rc;
2405 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2406 dev->xfer_shift, (int)dev->xfer_mode);
2408 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2409 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2410 return 0;
2414 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2415 * @ap: port on which timings will be programmed
2416 * @r_failed_dev: out paramter for failed device
2418 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2419 * ata_set_mode() fails, pointer to the failing device is
2420 * returned in @r_failed_dev.
2422 * LOCKING:
2423 * PCI/etc. bus probe sem.
2425 * RETURNS:
2426 * 0 on success, negative errno otherwise
2428 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2430 struct ata_device *dev;
2431 int i, rc = 0, used_dma = 0, found = 0;
2433 /* has private set_mode? */
2434 if (ap->ops->set_mode) {
2435 /* FIXME: make ->set_mode handle no device case and
2436 * return error code and failing device on failure.
2438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2439 if (ata_dev_ready(&ap->device[i])) {
2440 ap->ops->set_mode(ap);
2441 break;
2444 return 0;
2447 /* step 1: calculate xfer_mask */
2448 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2449 unsigned int pio_mask, dma_mask;
2451 dev = &ap->device[i];
2453 if (!ata_dev_enabled(dev))
2454 continue;
2456 ata_dev_xfermask(dev);
2458 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2459 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2460 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2461 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2463 found = 1;
2464 if (dev->dma_mode)
2465 used_dma = 1;
2467 if (!found)
2468 goto out;
2470 /* step 2: always set host PIO timings */
2471 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2472 dev = &ap->device[i];
2473 if (!ata_dev_enabled(dev))
2474 continue;
2476 if (!dev->pio_mode) {
2477 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2478 rc = -EINVAL;
2479 goto out;
2482 dev->xfer_mode = dev->pio_mode;
2483 dev->xfer_shift = ATA_SHIFT_PIO;
2484 if (ap->ops->set_piomode)
2485 ap->ops->set_piomode(ap, dev);
2488 /* step 3: set host DMA timings */
2489 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2490 dev = &ap->device[i];
2492 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2493 continue;
2495 dev->xfer_mode = dev->dma_mode;
2496 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2497 if (ap->ops->set_dmamode)
2498 ap->ops->set_dmamode(ap, dev);
2501 /* step 4: update devices' xfer mode */
2502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2503 dev = &ap->device[i];
2505 /* don't udpate suspended devices' xfer mode */
2506 if (!ata_dev_ready(dev))
2507 continue;
2509 rc = ata_dev_set_mode(dev);
2510 if (rc)
2511 goto out;
2514 /* Record simplex status. If we selected DMA then the other
2515 * host channels are not permitted to do so.
2517 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2518 ap->host->simplex_claimed = 1;
2520 /* step5: chip specific finalisation */
2521 if (ap->ops->post_set_mode)
2522 ap->ops->post_set_mode(ap);
2524 out:
2525 if (rc)
2526 *r_failed_dev = dev;
2527 return rc;
2531 * ata_tf_to_host - issue ATA taskfile to host controller
2532 * @ap: port to which command is being issued
2533 * @tf: ATA taskfile register set
2535 * Issues ATA taskfile register set to ATA host controller,
2536 * with proper synchronization with interrupt handler and
2537 * other threads.
2539 * LOCKING:
2540 * spin_lock_irqsave(host lock)
2543 static inline void ata_tf_to_host(struct ata_port *ap,
2544 const struct ata_taskfile *tf)
2546 ap->ops->tf_load(ap, tf);
2547 ap->ops->exec_command(ap, tf);
2551 * ata_busy_sleep - sleep until BSY clears, or timeout
2552 * @ap: port containing status register to be polled
2553 * @tmout_pat: impatience timeout
2554 * @tmout: overall timeout
2556 * Sleep until ATA Status register bit BSY clears,
2557 * or a timeout occurs.
2559 * LOCKING:
2560 * Kernel thread context (may sleep).
2562 * RETURNS:
2563 * 0 on success, -errno otherwise.
2565 int ata_busy_sleep(struct ata_port *ap,
2566 unsigned long tmout_pat, unsigned long tmout)
2568 unsigned long timer_start, timeout;
2569 u8 status;
2571 status = ata_busy_wait(ap, ATA_BUSY, 300);
2572 timer_start = jiffies;
2573 timeout = timer_start + tmout_pat;
2574 while (status != 0xff && (status & ATA_BUSY) &&
2575 time_before(jiffies, timeout)) {
2576 msleep(50);
2577 status = ata_busy_wait(ap, ATA_BUSY, 3);
2580 if (status != 0xff && (status & ATA_BUSY))
2581 ata_port_printk(ap, KERN_WARNING,
2582 "port is slow to respond, please be patient "
2583 "(Status 0x%x)\n", status);
2585 timeout = timer_start + tmout;
2586 while (status != 0xff && (status & ATA_BUSY) &&
2587 time_before(jiffies, timeout)) {
2588 msleep(50);
2589 status = ata_chk_status(ap);
2592 if (status == 0xff)
2593 return -ENODEV;
2595 if (status & ATA_BUSY) {
2596 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2597 "(%lu secs, Status 0x%x)\n",
2598 tmout / HZ, status);
2599 return -EBUSY;
2602 return 0;
2605 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2607 struct ata_ioports *ioaddr = &ap->ioaddr;
2608 unsigned int dev0 = devmask & (1 << 0);
2609 unsigned int dev1 = devmask & (1 << 1);
2610 unsigned long timeout;
2612 /* if device 0 was found in ata_devchk, wait for its
2613 * BSY bit to clear
2615 if (dev0)
2616 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2618 /* if device 1 was found in ata_devchk, wait for
2619 * register access, then wait for BSY to clear
2621 timeout = jiffies + ATA_TMOUT_BOOT;
2622 while (dev1) {
2623 u8 nsect, lbal;
2625 ap->ops->dev_select(ap, 1);
2626 if (ap->flags & ATA_FLAG_MMIO) {
2627 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2628 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2629 } else {
2630 nsect = inb(ioaddr->nsect_addr);
2631 lbal = inb(ioaddr->lbal_addr);
2633 if ((nsect == 1) && (lbal == 1))
2634 break;
2635 if (time_after(jiffies, timeout)) {
2636 dev1 = 0;
2637 break;
2639 msleep(50); /* give drive a breather */
2641 if (dev1)
2642 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2644 /* is all this really necessary? */
2645 ap->ops->dev_select(ap, 0);
2646 if (dev1)
2647 ap->ops->dev_select(ap, 1);
2648 if (dev0)
2649 ap->ops->dev_select(ap, 0);
2652 static unsigned int ata_bus_softreset(struct ata_port *ap,
2653 unsigned int devmask)
2655 struct ata_ioports *ioaddr = &ap->ioaddr;
2657 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2659 /* software reset. causes dev0 to be selected */
2660 if (ap->flags & ATA_FLAG_MMIO) {
2661 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2662 udelay(20); /* FIXME: flush */
2663 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2664 udelay(20); /* FIXME: flush */
2665 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2666 } else {
2667 outb(ap->ctl, ioaddr->ctl_addr);
2668 udelay(10);
2669 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2670 udelay(10);
2671 outb(ap->ctl, ioaddr->ctl_addr);
2674 /* spec mandates ">= 2ms" before checking status.
2675 * We wait 150ms, because that was the magic delay used for
2676 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2677 * between when the ATA command register is written, and then
2678 * status is checked. Because waiting for "a while" before
2679 * checking status is fine, post SRST, we perform this magic
2680 * delay here as well.
2682 * Old drivers/ide uses the 2mS rule and then waits for ready
2684 msleep(150);
2686 /* Before we perform post reset processing we want to see if
2687 * the bus shows 0xFF because the odd clown forgets the D7
2688 * pulldown resistor.
2690 if (ata_check_status(ap) == 0xFF)
2691 return 0;
2693 ata_bus_post_reset(ap, devmask);
2695 return 0;
2699 * ata_bus_reset - reset host port and associated ATA channel
2700 * @ap: port to reset
2702 * This is typically the first time we actually start issuing
2703 * commands to the ATA channel. We wait for BSY to clear, then
2704 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2705 * result. Determine what devices, if any, are on the channel
2706 * by looking at the device 0/1 error register. Look at the signature
2707 * stored in each device's taskfile registers, to determine if
2708 * the device is ATA or ATAPI.
2710 * LOCKING:
2711 * PCI/etc. bus probe sem.
2712 * Obtains host lock.
2714 * SIDE EFFECTS:
2715 * Sets ATA_FLAG_DISABLED if bus reset fails.
2718 void ata_bus_reset(struct ata_port *ap)
2720 struct ata_ioports *ioaddr = &ap->ioaddr;
2721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2722 u8 err;
2723 unsigned int dev0, dev1 = 0, devmask = 0;
2725 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2727 /* determine if device 0/1 are present */
2728 if (ap->flags & ATA_FLAG_SATA_RESET)
2729 dev0 = 1;
2730 else {
2731 dev0 = ata_devchk(ap, 0);
2732 if (slave_possible)
2733 dev1 = ata_devchk(ap, 1);
2736 if (dev0)
2737 devmask |= (1 << 0);
2738 if (dev1)
2739 devmask |= (1 << 1);
2741 /* select device 0 again */
2742 ap->ops->dev_select(ap, 0);
2744 /* issue bus reset */
2745 if (ap->flags & ATA_FLAG_SRST)
2746 if (ata_bus_softreset(ap, devmask))
2747 goto err_out;
2750 * determine by signature whether we have ATA or ATAPI devices
2752 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2753 if ((slave_possible) && (err != 0x81))
2754 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2756 /* re-enable interrupts */
2757 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2758 ata_irq_on(ap);
2760 /* is double-select really necessary? */
2761 if (ap->device[1].class != ATA_DEV_NONE)
2762 ap->ops->dev_select(ap, 1);
2763 if (ap->device[0].class != ATA_DEV_NONE)
2764 ap->ops->dev_select(ap, 0);
2766 /* if no devices were detected, disable this port */
2767 if ((ap->device[0].class == ATA_DEV_NONE) &&
2768 (ap->device[1].class == ATA_DEV_NONE))
2769 goto err_out;
2771 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2772 /* set up device control for ATA_FLAG_SATA_RESET */
2773 if (ap->flags & ATA_FLAG_MMIO)
2774 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2775 else
2776 outb(ap->ctl, ioaddr->ctl_addr);
2779 DPRINTK("EXIT\n");
2780 return;
2782 err_out:
2783 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2784 ap->ops->port_disable(ap);
2786 DPRINTK("EXIT\n");
2790 * sata_phy_debounce - debounce SATA phy status
2791 * @ap: ATA port to debounce SATA phy status for
2792 * @params: timing parameters { interval, duratinon, timeout } in msec
2794 * Make sure SStatus of @ap reaches stable state, determined by
2795 * holding the same value where DET is not 1 for @duration polled
2796 * every @interval, before @timeout. Timeout constraints the
2797 * beginning of the stable state. Because, after hot unplugging,
2798 * DET gets stuck at 1 on some controllers, this functions waits
2799 * until timeout then returns 0 if DET is stable at 1.
2801 * LOCKING:
2802 * Kernel thread context (may sleep)
2804 * RETURNS:
2805 * 0 on success, -errno on failure.
2807 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2809 unsigned long interval_msec = params[0];
2810 unsigned long duration = params[1] * HZ / 1000;
2811 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2812 unsigned long last_jiffies;
2813 u32 last, cur;
2814 int rc;
2816 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2817 return rc;
2818 cur &= 0xf;
2820 last = cur;
2821 last_jiffies = jiffies;
2823 while (1) {
2824 msleep(interval_msec);
2825 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2826 return rc;
2827 cur &= 0xf;
2829 /* DET stable? */
2830 if (cur == last) {
2831 if (cur == 1 && time_before(jiffies, timeout))
2832 continue;
2833 if (time_after(jiffies, last_jiffies + duration))
2834 return 0;
2835 continue;
2838 /* unstable, start over */
2839 last = cur;
2840 last_jiffies = jiffies;
2842 /* check timeout */
2843 if (time_after(jiffies, timeout))
2844 return -EBUSY;
2849 * sata_phy_resume - resume SATA phy
2850 * @ap: ATA port to resume SATA phy for
2851 * @params: timing parameters { interval, duratinon, timeout } in msec
2853 * Resume SATA phy of @ap and debounce it.
2855 * LOCKING:
2856 * Kernel thread context (may sleep)
2858 * RETURNS:
2859 * 0 on success, -errno on failure.
2861 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2863 u32 scontrol;
2864 int rc;
2866 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2867 return rc;
2869 scontrol = (scontrol & 0x0f0) | 0x300;
2871 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2872 return rc;
2874 /* Some PHYs react badly if SStatus is pounded immediately
2875 * after resuming. Delay 200ms before debouncing.
2877 msleep(200);
2879 return sata_phy_debounce(ap, params);
2882 static void ata_wait_spinup(struct ata_port *ap)
2884 struct ata_eh_context *ehc = &ap->eh_context;
2885 unsigned long end, secs;
2886 int rc;
2888 /* first, debounce phy if SATA */
2889 if (ap->cbl == ATA_CBL_SATA) {
2890 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2892 /* if debounced successfully and offline, no need to wait */
2893 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2894 return;
2897 /* okay, let's give the drive time to spin up */
2898 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2899 secs = ((end - jiffies) + HZ - 1) / HZ;
2901 if (time_after(jiffies, end))
2902 return;
2904 if (secs > 5)
2905 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2906 "(%lu secs)\n", secs);
2908 schedule_timeout_uninterruptible(end - jiffies);
2912 * ata_std_prereset - prepare for reset
2913 * @ap: ATA port to be reset
2915 * @ap is about to be reset. Initialize it.
2917 * LOCKING:
2918 * Kernel thread context (may sleep)
2920 * RETURNS:
2921 * 0 on success, -errno otherwise.
2923 int ata_std_prereset(struct ata_port *ap)
2925 struct ata_eh_context *ehc = &ap->eh_context;
2926 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2927 int rc;
2929 /* handle link resume & hotplug spinup */
2930 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2931 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2932 ehc->i.action |= ATA_EH_HARDRESET;
2934 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2935 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2936 ata_wait_spinup(ap);
2938 /* if we're about to do hardreset, nothing more to do */
2939 if (ehc->i.action & ATA_EH_HARDRESET)
2940 return 0;
2942 /* if SATA, resume phy */
2943 if (ap->cbl == ATA_CBL_SATA) {
2944 rc = sata_phy_resume(ap, timing);
2945 if (rc && rc != -EOPNOTSUPP) {
2946 /* phy resume failed */
2947 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2948 "link for reset (errno=%d)\n", rc);
2949 return rc;
2953 /* Wait for !BSY if the controller can wait for the first D2H
2954 * Reg FIS and we don't know that no device is attached.
2956 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2957 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2959 return 0;
2963 * ata_std_softreset - reset host port via ATA SRST
2964 * @ap: port to reset
2965 * @classes: resulting classes of attached devices
2967 * Reset host port using ATA SRST.
2969 * LOCKING:
2970 * Kernel thread context (may sleep)
2972 * RETURNS:
2973 * 0 on success, -errno otherwise.
2975 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2977 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2978 unsigned int devmask = 0, err_mask;
2979 u8 err;
2981 DPRINTK("ENTER\n");
2983 if (ata_port_offline(ap)) {
2984 classes[0] = ATA_DEV_NONE;
2985 goto out;
2988 /* determine if device 0/1 are present */
2989 if (ata_devchk(ap, 0))
2990 devmask |= (1 << 0);
2991 if (slave_possible && ata_devchk(ap, 1))
2992 devmask |= (1 << 1);
2994 /* select device 0 again */
2995 ap->ops->dev_select(ap, 0);
2997 /* issue bus reset */
2998 DPRINTK("about to softreset, devmask=%x\n", devmask);
2999 err_mask = ata_bus_softreset(ap, devmask);
3000 if (err_mask) {
3001 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3002 err_mask);
3003 return -EIO;
3006 /* determine by signature whether we have ATA or ATAPI devices */
3007 classes[0] = ata_dev_try_classify(ap, 0, &err);
3008 if (slave_possible && err != 0x81)
3009 classes[1] = ata_dev_try_classify(ap, 1, &err);
3011 out:
3012 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3013 return 0;
3017 * sata_port_hardreset - reset port via SATA phy reset
3018 * @ap: port to reset
3019 * @timing: timing parameters { interval, duratinon, timeout } in msec
3021 * SATA phy-reset host port using DET bits of SControl register.
3023 * LOCKING:
3024 * Kernel thread context (may sleep)
3026 * RETURNS:
3027 * 0 on success, -errno otherwise.
3029 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3031 u32 scontrol;
3032 int rc;
3034 DPRINTK("ENTER\n");
3036 if (sata_set_spd_needed(ap)) {
3037 /* SATA spec says nothing about how to reconfigure
3038 * spd. To be on the safe side, turn off phy during
3039 * reconfiguration. This works for at least ICH7 AHCI
3040 * and Sil3124.
3042 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3043 goto out;
3045 scontrol = (scontrol & 0x0f0) | 0x304;
3047 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3048 goto out;
3050 sata_set_spd(ap);
3053 /* issue phy wake/reset */
3054 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3055 goto out;
3057 scontrol = (scontrol & 0x0f0) | 0x301;
3059 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3060 goto out;
3062 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3063 * 10.4.2 says at least 1 ms.
3065 msleep(1);
3067 /* bring phy back */
3068 rc = sata_phy_resume(ap, timing);
3069 out:
3070 DPRINTK("EXIT, rc=%d\n", rc);
3071 return rc;
3075 * sata_std_hardreset - reset host port via SATA phy reset
3076 * @ap: port to reset
3077 * @class: resulting class of attached device
3079 * SATA phy-reset host port using DET bits of SControl register,
3080 * wait for !BSY and classify the attached device.
3082 * LOCKING:
3083 * Kernel thread context (may sleep)
3085 * RETURNS:
3086 * 0 on success, -errno otherwise.
3088 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3090 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3091 int rc;
3093 DPRINTK("ENTER\n");
3095 /* do hardreset */
3096 rc = sata_port_hardreset(ap, timing);
3097 if (rc) {
3098 ata_port_printk(ap, KERN_ERR,
3099 "COMRESET failed (errno=%d)\n", rc);
3100 return rc;
3103 /* TODO: phy layer with polling, timeouts, etc. */
3104 if (ata_port_offline(ap)) {
3105 *class = ATA_DEV_NONE;
3106 DPRINTK("EXIT, link offline\n");
3107 return 0;
3110 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3111 ata_port_printk(ap, KERN_ERR,
3112 "COMRESET failed (device not ready)\n");
3113 return -EIO;
3116 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3118 *class = ata_dev_try_classify(ap, 0, NULL);
3120 DPRINTK("EXIT, class=%u\n", *class);
3121 return 0;
3125 * ata_std_postreset - standard postreset callback
3126 * @ap: the target ata_port
3127 * @classes: classes of attached devices
3129 * This function is invoked after a successful reset. Note that
3130 * the device might have been reset more than once using
3131 * different reset methods before postreset is invoked.
3133 * LOCKING:
3134 * Kernel thread context (may sleep)
3136 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3138 u32 serror;
3140 DPRINTK("ENTER\n");
3142 /* print link status */
3143 sata_print_link_status(ap);
3145 /* clear SError */
3146 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3147 sata_scr_write(ap, SCR_ERROR, serror);
3149 /* re-enable interrupts */
3150 if (!ap->ops->error_handler) {
3151 /* FIXME: hack. create a hook instead */
3152 if (ap->ioaddr.ctl_addr)
3153 ata_irq_on(ap);
3156 /* is double-select really necessary? */
3157 if (classes[0] != ATA_DEV_NONE)
3158 ap->ops->dev_select(ap, 1);
3159 if (classes[1] != ATA_DEV_NONE)
3160 ap->ops->dev_select(ap, 0);
3162 /* bail out if no device is present */
3163 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3164 DPRINTK("EXIT, no device\n");
3165 return;
3168 /* set up device control */
3169 if (ap->ioaddr.ctl_addr) {
3170 if (ap->flags & ATA_FLAG_MMIO)
3171 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3172 else
3173 outb(ap->ctl, ap->ioaddr.ctl_addr);
3176 DPRINTK("EXIT\n");
3180 * ata_dev_same_device - Determine whether new ID matches configured device
3181 * @dev: device to compare against
3182 * @new_class: class of the new device
3183 * @new_id: IDENTIFY page of the new device
3185 * Compare @new_class and @new_id against @dev and determine
3186 * whether @dev is the device indicated by @new_class and
3187 * @new_id.
3189 * LOCKING:
3190 * None.
3192 * RETURNS:
3193 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3195 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3196 const u16 *new_id)
3198 const u16 *old_id = dev->id;
3199 unsigned char model[2][41], serial[2][21];
3200 u64 new_n_sectors;
3202 if (dev->class != new_class) {
3203 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3204 dev->class, new_class);
3205 return 0;
3208 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3209 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3210 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3211 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3212 new_n_sectors = ata_id_n_sectors(new_id);
3214 if (strcmp(model[0], model[1])) {
3215 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3216 "'%s' != '%s'\n", model[0], model[1]);
3217 return 0;
3220 if (strcmp(serial[0], serial[1])) {
3221 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3222 "'%s' != '%s'\n", serial[0], serial[1]);
3223 return 0;
3226 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3227 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3228 "%llu != %llu\n",
3229 (unsigned long long)dev->n_sectors,
3230 (unsigned long long)new_n_sectors);
3231 return 0;
3234 return 1;
3238 * ata_dev_revalidate - Revalidate ATA device
3239 * @dev: device to revalidate
3240 * @readid_flags: read ID flags
3242 * Re-read IDENTIFY page and make sure @dev is still attached to
3243 * the port.
3245 * LOCKING:
3246 * Kernel thread context (may sleep)
3248 * RETURNS:
3249 * 0 on success, negative errno otherwise
3251 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3253 unsigned int class = dev->class;
3254 u16 *id = (void *)dev->ap->sector_buf;
3255 int rc;
3257 if (!ata_dev_enabled(dev)) {
3258 rc = -ENODEV;
3259 goto fail;
3262 /* read ID data */
3263 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3264 if (rc)
3265 goto fail;
3267 /* is the device still there? */
3268 if (!ata_dev_same_device(dev, class, id)) {
3269 rc = -ENODEV;
3270 goto fail;
3273 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3275 /* configure device according to the new ID */
3276 rc = ata_dev_configure(dev);
3277 if (rc == 0)
3278 return 0;
3280 fail:
3281 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3282 return rc;
3285 struct ata_blacklist_entry {
3286 const char *model_num;
3287 const char *model_rev;
3288 unsigned long horkage;
3291 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3292 /* Devices with DMA related problems under Linux */
3293 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3294 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3295 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3296 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3297 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3298 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3299 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3300 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3301 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3302 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3303 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3304 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3305 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3306 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3307 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3308 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3309 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3310 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3311 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3312 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3313 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3314 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3315 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3316 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3317 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3318 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3319 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3320 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3321 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3322 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3324 /* Devices we expect to fail diagnostics */
3326 /* Devices where NCQ should be avoided */
3327 /* NCQ is slow */
3328 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3330 /* Devices with NCQ limits */
3332 /* End Marker */
3336 static int ata_strim(char *s, size_t len)
3338 len = strnlen(s, len);
3340 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3341 while ((len > 0) && (s[len - 1] == ' ')) {
3342 len--;
3343 s[len] = 0;
3345 return len;
3348 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3350 unsigned char model_num[40];
3351 unsigned char model_rev[16];
3352 unsigned int nlen, rlen;
3353 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3355 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3356 sizeof(model_num));
3357 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3358 sizeof(model_rev));
3359 nlen = ata_strim(model_num, sizeof(model_num));
3360 rlen = ata_strim(model_rev, sizeof(model_rev));
3362 while (ad->model_num) {
3363 if (!strncmp(ad->model_num, model_num, nlen)) {
3364 if (ad->model_rev == NULL)
3365 return ad->horkage;
3366 if (!strncmp(ad->model_rev, model_rev, rlen))
3367 return ad->horkage;
3369 ad++;
3371 return 0;
3374 static int ata_dma_blacklisted(const struct ata_device *dev)
3376 /* We don't support polling DMA.
3377 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3378 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3380 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3381 (dev->flags & ATA_DFLAG_CDB_INTR))
3382 return 1;
3383 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3387 * ata_dev_xfermask - Compute supported xfermask of the given device
3388 * @dev: Device to compute xfermask for
3390 * Compute supported xfermask of @dev and store it in
3391 * dev->*_mask. This function is responsible for applying all
3392 * known limits including host controller limits, device
3393 * blacklist, etc...
3395 * LOCKING:
3396 * None.
3398 static void ata_dev_xfermask(struct ata_device *dev)
3400 struct ata_port *ap = dev->ap;
3401 struct ata_host *host = ap->host;
3402 unsigned long xfer_mask;
3404 /* controller modes available */
3405 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3406 ap->mwdma_mask, ap->udma_mask);
3408 /* Apply cable rule here. Don't apply it early because when
3409 * we handle hot plug the cable type can itself change.
3411 if (ap->cbl == ATA_CBL_PATA40)
3412 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3413 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3414 * host side are checked drive side as well. Cases where we know a
3415 * 40wire cable is used safely for 80 are not checked here.
3417 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3418 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3421 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3422 dev->mwdma_mask, dev->udma_mask);
3423 xfer_mask &= ata_id_xfermask(dev->id);
3426 * CFA Advanced TrueIDE timings are not allowed on a shared
3427 * cable
3429 if (ata_dev_pair(dev)) {
3430 /* No PIO5 or PIO6 */
3431 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3432 /* No MWDMA3 or MWDMA 4 */
3433 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3436 if (ata_dma_blacklisted(dev)) {
3437 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3438 ata_dev_printk(dev, KERN_WARNING,
3439 "device is on DMA blacklist, disabling DMA\n");
3442 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3443 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3444 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3445 "other device, disabling DMA\n");
3448 if (ap->ops->mode_filter)
3449 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3451 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3452 &dev->mwdma_mask, &dev->udma_mask);
3456 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3457 * @dev: Device to which command will be sent
3459 * Issue SET FEATURES - XFER MODE command to device @dev
3460 * on port @ap.
3462 * LOCKING:
3463 * PCI/etc. bus probe sem.
3465 * RETURNS:
3466 * 0 on success, AC_ERR_* mask otherwise.
3469 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3471 struct ata_taskfile tf;
3472 unsigned int err_mask;
3474 /* set up set-features taskfile */
3475 DPRINTK("set features - xfer mode\n");
3477 ata_tf_init(dev, &tf);
3478 tf.command = ATA_CMD_SET_FEATURES;
3479 tf.feature = SETFEATURES_XFER;
3480 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3481 tf.protocol = ATA_PROT_NODATA;
3482 tf.nsect = dev->xfer_mode;
3484 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3486 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3487 return err_mask;
3491 * ata_dev_init_params - Issue INIT DEV PARAMS command
3492 * @dev: Device to which command will be sent
3493 * @heads: Number of heads (taskfile parameter)
3494 * @sectors: Number of sectors (taskfile parameter)
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3499 * RETURNS:
3500 * 0 on success, AC_ERR_* mask otherwise.
3502 static unsigned int ata_dev_init_params(struct ata_device *dev,
3503 u16 heads, u16 sectors)
3505 struct ata_taskfile tf;
3506 unsigned int err_mask;
3508 /* Number of sectors per track 1-255. Number of heads 1-16 */
3509 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3510 return AC_ERR_INVALID;
3512 /* set up init dev params taskfile */
3513 DPRINTK("init dev params \n");
3515 ata_tf_init(dev, &tf);
3516 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3517 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3518 tf.protocol = ATA_PROT_NODATA;
3519 tf.nsect = sectors;
3520 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3522 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3524 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3525 return err_mask;
3529 * ata_sg_clean - Unmap DMA memory associated with command
3530 * @qc: Command containing DMA memory to be released
3532 * Unmap all mapped DMA memory associated with this command.
3534 * LOCKING:
3535 * spin_lock_irqsave(host lock)
3537 void ata_sg_clean(struct ata_queued_cmd *qc)
3539 struct ata_port *ap = qc->ap;
3540 struct scatterlist *sg = qc->__sg;
3541 int dir = qc->dma_dir;
3542 void *pad_buf = NULL;
3544 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3545 WARN_ON(sg == NULL);
3547 if (qc->flags & ATA_QCFLAG_SINGLE)
3548 WARN_ON(qc->n_elem > 1);
3550 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3552 /* if we padded the buffer out to 32-bit bound, and data
3553 * xfer direction is from-device, we must copy from the
3554 * pad buffer back into the supplied buffer
3556 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3557 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3559 if (qc->flags & ATA_QCFLAG_SG) {
3560 if (qc->n_elem)
3561 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3562 /* restore last sg */
3563 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3564 if (pad_buf) {
3565 struct scatterlist *psg = &qc->pad_sgent;
3566 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3567 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3568 kunmap_atomic(addr, KM_IRQ0);
3570 } else {
3571 if (qc->n_elem)
3572 dma_unmap_single(ap->dev,
3573 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3574 dir);
3575 /* restore sg */
3576 sg->length += qc->pad_len;
3577 if (pad_buf)
3578 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3579 pad_buf, qc->pad_len);
3582 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3583 qc->__sg = NULL;
3587 * ata_fill_sg - Fill PCI IDE PRD table
3588 * @qc: Metadata associated with taskfile to be transferred
3590 * Fill PCI IDE PRD (scatter-gather) table with segments
3591 * associated with the current disk command.
3593 * LOCKING:
3594 * spin_lock_irqsave(host lock)
3597 static void ata_fill_sg(struct ata_queued_cmd *qc)
3599 struct ata_port *ap = qc->ap;
3600 struct scatterlist *sg;
3601 unsigned int idx;
3603 WARN_ON(qc->__sg == NULL);
3604 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3606 idx = 0;
3607 ata_for_each_sg(sg, qc) {
3608 u32 addr, offset;
3609 u32 sg_len, len;
3611 /* determine if physical DMA addr spans 64K boundary.
3612 * Note h/w doesn't support 64-bit, so we unconditionally
3613 * truncate dma_addr_t to u32.
3615 addr = (u32) sg_dma_address(sg);
3616 sg_len = sg_dma_len(sg);
3618 while (sg_len) {
3619 offset = addr & 0xffff;
3620 len = sg_len;
3621 if ((offset + sg_len) > 0x10000)
3622 len = 0x10000 - offset;
3624 ap->prd[idx].addr = cpu_to_le32(addr);
3625 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3626 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3628 idx++;
3629 sg_len -= len;
3630 addr += len;
3634 if (idx)
3635 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3638 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3639 * @qc: Metadata associated with taskfile to check
3641 * Allow low-level driver to filter ATA PACKET commands, returning
3642 * a status indicating whether or not it is OK to use DMA for the
3643 * supplied PACKET command.
3645 * LOCKING:
3646 * spin_lock_irqsave(host lock)
3648 * RETURNS: 0 when ATAPI DMA can be used
3649 * nonzero otherwise
3651 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3653 struct ata_port *ap = qc->ap;
3654 int rc = 0; /* Assume ATAPI DMA is OK by default */
3656 if (ap->ops->check_atapi_dma)
3657 rc = ap->ops->check_atapi_dma(qc);
3659 return rc;
3662 * ata_qc_prep - Prepare taskfile for submission
3663 * @qc: Metadata associated with taskfile to be prepared
3665 * Prepare ATA taskfile for submission.
3667 * LOCKING:
3668 * spin_lock_irqsave(host lock)
3670 void ata_qc_prep(struct ata_queued_cmd *qc)
3672 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3673 return;
3675 ata_fill_sg(qc);
3678 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3681 * ata_sg_init_one - Associate command with memory buffer
3682 * @qc: Command to be associated
3683 * @buf: Memory buffer
3684 * @buflen: Length of memory buffer, in bytes.
3686 * Initialize the data-related elements of queued_cmd @qc
3687 * to point to a single memory buffer, @buf of byte length @buflen.
3689 * LOCKING:
3690 * spin_lock_irqsave(host lock)
3693 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3695 qc->flags |= ATA_QCFLAG_SINGLE;
3697 qc->__sg = &qc->sgent;
3698 qc->n_elem = 1;
3699 qc->orig_n_elem = 1;
3700 qc->buf_virt = buf;
3701 qc->nbytes = buflen;
3703 sg_init_one(&qc->sgent, buf, buflen);
3707 * ata_sg_init - Associate command with scatter-gather table.
3708 * @qc: Command to be associated
3709 * @sg: Scatter-gather table.
3710 * @n_elem: Number of elements in s/g table.
3712 * Initialize the data-related elements of queued_cmd @qc
3713 * to point to a scatter-gather table @sg, containing @n_elem
3714 * elements.
3716 * LOCKING:
3717 * spin_lock_irqsave(host lock)
3720 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3721 unsigned int n_elem)
3723 qc->flags |= ATA_QCFLAG_SG;
3724 qc->__sg = sg;
3725 qc->n_elem = n_elem;
3726 qc->orig_n_elem = n_elem;
3730 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3731 * @qc: Command with memory buffer to be mapped.
3733 * DMA-map the memory buffer associated with queued_cmd @qc.
3735 * LOCKING:
3736 * spin_lock_irqsave(host lock)
3738 * RETURNS:
3739 * Zero on success, negative on error.
3742 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3744 struct ata_port *ap = qc->ap;
3745 int dir = qc->dma_dir;
3746 struct scatterlist *sg = qc->__sg;
3747 dma_addr_t dma_address;
3748 int trim_sg = 0;
3750 /* we must lengthen transfers to end on a 32-bit boundary */
3751 qc->pad_len = sg->length & 3;
3752 if (qc->pad_len) {
3753 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3754 struct scatterlist *psg = &qc->pad_sgent;
3756 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3758 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3760 if (qc->tf.flags & ATA_TFLAG_WRITE)
3761 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3762 qc->pad_len);
3764 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3765 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3766 /* trim sg */
3767 sg->length -= qc->pad_len;
3768 if (sg->length == 0)
3769 trim_sg = 1;
3771 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3772 sg->length, qc->pad_len);
3775 if (trim_sg) {
3776 qc->n_elem--;
3777 goto skip_map;
3780 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3781 sg->length, dir);
3782 if (dma_mapping_error(dma_address)) {
3783 /* restore sg */
3784 sg->length += qc->pad_len;
3785 return -1;
3788 sg_dma_address(sg) = dma_address;
3789 sg_dma_len(sg) = sg->length;
3791 skip_map:
3792 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3793 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3795 return 0;
3799 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3800 * @qc: Command with scatter-gather table to be mapped.
3802 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3804 * LOCKING:
3805 * spin_lock_irqsave(host lock)
3807 * RETURNS:
3808 * Zero on success, negative on error.
3812 static int ata_sg_setup(struct ata_queued_cmd *qc)
3814 struct ata_port *ap = qc->ap;
3815 struct scatterlist *sg = qc->__sg;
3816 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3817 int n_elem, pre_n_elem, dir, trim_sg = 0;
3819 VPRINTK("ENTER, ata%u\n", ap->id);
3820 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3822 /* we must lengthen transfers to end on a 32-bit boundary */
3823 qc->pad_len = lsg->length & 3;
3824 if (qc->pad_len) {
3825 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3826 struct scatterlist *psg = &qc->pad_sgent;
3827 unsigned int offset;
3829 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3831 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3834 * psg->page/offset are used to copy to-be-written
3835 * data in this function or read data in ata_sg_clean.
3837 offset = lsg->offset + lsg->length - qc->pad_len;
3838 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3839 psg->offset = offset_in_page(offset);
3841 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3842 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3843 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3844 kunmap_atomic(addr, KM_IRQ0);
3847 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3848 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3849 /* trim last sg */
3850 lsg->length -= qc->pad_len;
3851 if (lsg->length == 0)
3852 trim_sg = 1;
3854 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3855 qc->n_elem - 1, lsg->length, qc->pad_len);
3858 pre_n_elem = qc->n_elem;
3859 if (trim_sg && pre_n_elem)
3860 pre_n_elem--;
3862 if (!pre_n_elem) {
3863 n_elem = 0;
3864 goto skip_map;
3867 dir = qc->dma_dir;
3868 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3869 if (n_elem < 1) {
3870 /* restore last sg */
3871 lsg->length += qc->pad_len;
3872 return -1;
3875 DPRINTK("%d sg elements mapped\n", n_elem);
3877 skip_map:
3878 qc->n_elem = n_elem;
3880 return 0;
3884 * swap_buf_le16 - swap halves of 16-bit words in place
3885 * @buf: Buffer to swap
3886 * @buf_words: Number of 16-bit words in buffer.
3888 * Swap halves of 16-bit words if needed to convert from
3889 * little-endian byte order to native cpu byte order, or
3890 * vice-versa.
3892 * LOCKING:
3893 * Inherited from caller.
3895 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3897 #ifdef __BIG_ENDIAN
3898 unsigned int i;
3900 for (i = 0; i < buf_words; i++)
3901 buf[i] = le16_to_cpu(buf[i]);
3902 #endif /* __BIG_ENDIAN */
3906 * ata_mmio_data_xfer - Transfer data by MMIO
3907 * @adev: device for this I/O
3908 * @buf: data buffer
3909 * @buflen: buffer length
3910 * @write_data: read/write
3912 * Transfer data from/to the device data register by MMIO.
3914 * LOCKING:
3915 * Inherited from caller.
3918 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3919 unsigned int buflen, int write_data)
3921 struct ata_port *ap = adev->ap;
3922 unsigned int i;
3923 unsigned int words = buflen >> 1;
3924 u16 *buf16 = (u16 *) buf;
3925 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3927 /* Transfer multiple of 2 bytes */
3928 if (write_data) {
3929 for (i = 0; i < words; i++)
3930 writew(le16_to_cpu(buf16[i]), mmio);
3931 } else {
3932 for (i = 0; i < words; i++)
3933 buf16[i] = cpu_to_le16(readw(mmio));
3936 /* Transfer trailing 1 byte, if any. */
3937 if (unlikely(buflen & 0x01)) {
3938 u16 align_buf[1] = { 0 };
3939 unsigned char *trailing_buf = buf + buflen - 1;
3941 if (write_data) {
3942 memcpy(align_buf, trailing_buf, 1);
3943 writew(le16_to_cpu(align_buf[0]), mmio);
3944 } else {
3945 align_buf[0] = cpu_to_le16(readw(mmio));
3946 memcpy(trailing_buf, align_buf, 1);
3952 * ata_pio_data_xfer - Transfer data by PIO
3953 * @adev: device to target
3954 * @buf: data buffer
3955 * @buflen: buffer length
3956 * @write_data: read/write
3958 * Transfer data from/to the device data register by PIO.
3960 * LOCKING:
3961 * Inherited from caller.
3964 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3965 unsigned int buflen, int write_data)
3967 struct ata_port *ap = adev->ap;
3968 unsigned int words = buflen >> 1;
3970 /* Transfer multiple of 2 bytes */
3971 if (write_data)
3972 outsw(ap->ioaddr.data_addr, buf, words);
3973 else
3974 insw(ap->ioaddr.data_addr, buf, words);
3976 /* Transfer trailing 1 byte, if any. */
3977 if (unlikely(buflen & 0x01)) {
3978 u16 align_buf[1] = { 0 };
3979 unsigned char *trailing_buf = buf + buflen - 1;
3981 if (write_data) {
3982 memcpy(align_buf, trailing_buf, 1);
3983 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3984 } else {
3985 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3986 memcpy(trailing_buf, align_buf, 1);
3992 * ata_pio_data_xfer_noirq - Transfer data by PIO
3993 * @adev: device to target
3994 * @buf: data buffer
3995 * @buflen: buffer length
3996 * @write_data: read/write
3998 * Transfer data from/to the device data register by PIO. Do the
3999 * transfer with interrupts disabled.
4001 * LOCKING:
4002 * Inherited from caller.
4005 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4006 unsigned int buflen, int write_data)
4008 unsigned long flags;
4009 local_irq_save(flags);
4010 ata_pio_data_xfer(adev, buf, buflen, write_data);
4011 local_irq_restore(flags);
4016 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4017 * @qc: Command on going
4019 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4021 * LOCKING:
4022 * Inherited from caller.
4025 static void ata_pio_sector(struct ata_queued_cmd *qc)
4027 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4028 struct scatterlist *sg = qc->__sg;
4029 struct ata_port *ap = qc->ap;
4030 struct page *page;
4031 unsigned int offset;
4032 unsigned char *buf;
4034 if (qc->cursect == (qc->nsect - 1))
4035 ap->hsm_task_state = HSM_ST_LAST;
4037 page = sg[qc->cursg].page;
4038 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4040 /* get the current page and offset */
4041 page = nth_page(page, (offset >> PAGE_SHIFT));
4042 offset %= PAGE_SIZE;
4044 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4046 if (PageHighMem(page)) {
4047 unsigned long flags;
4049 /* FIXME: use a bounce buffer */
4050 local_irq_save(flags);
4051 buf = kmap_atomic(page, KM_IRQ0);
4053 /* do the actual data transfer */
4054 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4056 kunmap_atomic(buf, KM_IRQ0);
4057 local_irq_restore(flags);
4058 } else {
4059 buf = page_address(page);
4060 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4063 qc->cursect++;
4064 qc->cursg_ofs++;
4066 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
4067 qc->cursg++;
4068 qc->cursg_ofs = 0;
4073 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4074 * @qc: Command on going
4076 * Transfer one or many ATA_SECT_SIZE of data from/to the
4077 * ATA device for the DRQ request.
4079 * LOCKING:
4080 * Inherited from caller.
4083 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4085 if (is_multi_taskfile(&qc->tf)) {
4086 /* READ/WRITE MULTIPLE */
4087 unsigned int nsect;
4089 WARN_ON(qc->dev->multi_count == 0);
4091 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4092 while (nsect--)
4093 ata_pio_sector(qc);
4094 } else
4095 ata_pio_sector(qc);
4099 * atapi_send_cdb - Write CDB bytes to hardware
4100 * @ap: Port to which ATAPI device is attached.
4101 * @qc: Taskfile currently active
4103 * When device has indicated its readiness to accept
4104 * a CDB, this function is called. Send the CDB.
4106 * LOCKING:
4107 * caller.
4110 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4112 /* send SCSI cdb */
4113 DPRINTK("send cdb\n");
4114 WARN_ON(qc->dev->cdb_len < 12);
4116 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4117 ata_altstatus(ap); /* flush */
4119 switch (qc->tf.protocol) {
4120 case ATA_PROT_ATAPI:
4121 ap->hsm_task_state = HSM_ST;
4122 break;
4123 case ATA_PROT_ATAPI_NODATA:
4124 ap->hsm_task_state = HSM_ST_LAST;
4125 break;
4126 case ATA_PROT_ATAPI_DMA:
4127 ap->hsm_task_state = HSM_ST_LAST;
4128 /* initiate bmdma */
4129 ap->ops->bmdma_start(qc);
4130 break;
4135 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4136 * @qc: Command on going
4137 * @bytes: number of bytes
4139 * Transfer Transfer data from/to the ATAPI device.
4141 * LOCKING:
4142 * Inherited from caller.
4146 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4148 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4149 struct scatterlist *sg = qc->__sg;
4150 struct ata_port *ap = qc->ap;
4151 struct page *page;
4152 unsigned char *buf;
4153 unsigned int offset, count;
4155 if (qc->curbytes + bytes >= qc->nbytes)
4156 ap->hsm_task_state = HSM_ST_LAST;
4158 next_sg:
4159 if (unlikely(qc->cursg >= qc->n_elem)) {
4161 * The end of qc->sg is reached and the device expects
4162 * more data to transfer. In order not to overrun qc->sg
4163 * and fulfill length specified in the byte count register,
4164 * - for read case, discard trailing data from the device
4165 * - for write case, padding zero data to the device
4167 u16 pad_buf[1] = { 0 };
4168 unsigned int words = bytes >> 1;
4169 unsigned int i;
4171 if (words) /* warning if bytes > 1 */
4172 ata_dev_printk(qc->dev, KERN_WARNING,
4173 "%u bytes trailing data\n", bytes);
4175 for (i = 0; i < words; i++)
4176 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4178 ap->hsm_task_state = HSM_ST_LAST;
4179 return;
4182 sg = &qc->__sg[qc->cursg];
4184 page = sg->page;
4185 offset = sg->offset + qc->cursg_ofs;
4187 /* get the current page and offset */
4188 page = nth_page(page, (offset >> PAGE_SHIFT));
4189 offset %= PAGE_SIZE;
4191 /* don't overrun current sg */
4192 count = min(sg->length - qc->cursg_ofs, bytes);
4194 /* don't cross page boundaries */
4195 count = min(count, (unsigned int)PAGE_SIZE - offset);
4197 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4199 if (PageHighMem(page)) {
4200 unsigned long flags;
4202 /* FIXME: use bounce buffer */
4203 local_irq_save(flags);
4204 buf = kmap_atomic(page, KM_IRQ0);
4206 /* do the actual data transfer */
4207 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4209 kunmap_atomic(buf, KM_IRQ0);
4210 local_irq_restore(flags);
4211 } else {
4212 buf = page_address(page);
4213 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4216 bytes -= count;
4217 qc->curbytes += count;
4218 qc->cursg_ofs += count;
4220 if (qc->cursg_ofs == sg->length) {
4221 qc->cursg++;
4222 qc->cursg_ofs = 0;
4225 if (bytes)
4226 goto next_sg;
4230 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4231 * @qc: Command on going
4233 * Transfer Transfer data from/to the ATAPI device.
4235 * LOCKING:
4236 * Inherited from caller.
4239 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4241 struct ata_port *ap = qc->ap;
4242 struct ata_device *dev = qc->dev;
4243 unsigned int ireason, bc_lo, bc_hi, bytes;
4244 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4246 /* Abuse qc->result_tf for temp storage of intermediate TF
4247 * here to save some kernel stack usage.
4248 * For normal completion, qc->result_tf is not relevant. For
4249 * error, qc->result_tf is later overwritten by ata_qc_complete().
4250 * So, the correctness of qc->result_tf is not affected.
4252 ap->ops->tf_read(ap, &qc->result_tf);
4253 ireason = qc->result_tf.nsect;
4254 bc_lo = qc->result_tf.lbam;
4255 bc_hi = qc->result_tf.lbah;
4256 bytes = (bc_hi << 8) | bc_lo;
4258 /* shall be cleared to zero, indicating xfer of data */
4259 if (ireason & (1 << 0))
4260 goto err_out;
4262 /* make sure transfer direction matches expected */
4263 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4264 if (do_write != i_write)
4265 goto err_out;
4267 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4269 __atapi_pio_bytes(qc, bytes);
4271 return;
4273 err_out:
4274 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4275 qc->err_mask |= AC_ERR_HSM;
4276 ap->hsm_task_state = HSM_ST_ERR;
4280 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4281 * @ap: the target ata_port
4282 * @qc: qc on going
4284 * RETURNS:
4285 * 1 if ok in workqueue, 0 otherwise.
4288 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4290 if (qc->tf.flags & ATA_TFLAG_POLLING)
4291 return 1;
4293 if (ap->hsm_task_state == HSM_ST_FIRST) {
4294 if (qc->tf.protocol == ATA_PROT_PIO &&
4295 (qc->tf.flags & ATA_TFLAG_WRITE))
4296 return 1;
4298 if (is_atapi_taskfile(&qc->tf) &&
4299 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4300 return 1;
4303 return 0;
4307 * ata_hsm_qc_complete - finish a qc running on standard HSM
4308 * @qc: Command to complete
4309 * @in_wq: 1 if called from workqueue, 0 otherwise
4311 * Finish @qc which is running on standard HSM.
4313 * LOCKING:
4314 * If @in_wq is zero, spin_lock_irqsave(host lock).
4315 * Otherwise, none on entry and grabs host lock.
4317 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4319 struct ata_port *ap = qc->ap;
4320 unsigned long flags;
4322 if (ap->ops->error_handler) {
4323 if (in_wq) {
4324 spin_lock_irqsave(ap->lock, flags);
4326 /* EH might have kicked in while host lock is
4327 * released.
4329 qc = ata_qc_from_tag(ap, qc->tag);
4330 if (qc) {
4331 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4332 ata_irq_on(ap);
4333 ata_qc_complete(qc);
4334 } else
4335 ata_port_freeze(ap);
4338 spin_unlock_irqrestore(ap->lock, flags);
4339 } else {
4340 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4341 ata_qc_complete(qc);
4342 else
4343 ata_port_freeze(ap);
4345 } else {
4346 if (in_wq) {
4347 spin_lock_irqsave(ap->lock, flags);
4348 ata_irq_on(ap);
4349 ata_qc_complete(qc);
4350 spin_unlock_irqrestore(ap->lock, flags);
4351 } else
4352 ata_qc_complete(qc);
4355 ata_altstatus(ap); /* flush */
4359 * ata_hsm_move - move the HSM to the next state.
4360 * @ap: the target ata_port
4361 * @qc: qc on going
4362 * @status: current device status
4363 * @in_wq: 1 if called from workqueue, 0 otherwise
4365 * RETURNS:
4366 * 1 when poll next status needed, 0 otherwise.
4368 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4369 u8 status, int in_wq)
4371 unsigned long flags = 0;
4372 int poll_next;
4374 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4376 /* Make sure ata_qc_issue_prot() does not throw things
4377 * like DMA polling into the workqueue. Notice that
4378 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4380 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4382 fsm_start:
4383 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4384 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4386 switch (ap->hsm_task_state) {
4387 case HSM_ST_FIRST:
4388 /* Send first data block or PACKET CDB */
4390 /* If polling, we will stay in the work queue after
4391 * sending the data. Otherwise, interrupt handler
4392 * takes over after sending the data.
4394 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4396 /* check device status */
4397 if (unlikely((status & ATA_DRQ) == 0)) {
4398 /* handle BSY=0, DRQ=0 as error */
4399 if (likely(status & (ATA_ERR | ATA_DF)))
4400 /* device stops HSM for abort/error */
4401 qc->err_mask |= AC_ERR_DEV;
4402 else
4403 /* HSM violation. Let EH handle this */
4404 qc->err_mask |= AC_ERR_HSM;
4406 ap->hsm_task_state = HSM_ST_ERR;
4407 goto fsm_start;
4410 /* Device should not ask for data transfer (DRQ=1)
4411 * when it finds something wrong.
4412 * We ignore DRQ here and stop the HSM by
4413 * changing hsm_task_state to HSM_ST_ERR and
4414 * let the EH abort the command or reset the device.
4416 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4417 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4418 ap->id, status);
4419 qc->err_mask |= AC_ERR_HSM;
4420 ap->hsm_task_state = HSM_ST_ERR;
4421 goto fsm_start;
4424 /* Send the CDB (atapi) or the first data block (ata pio out).
4425 * During the state transition, interrupt handler shouldn't
4426 * be invoked before the data transfer is complete and
4427 * hsm_task_state is changed. Hence, the following locking.
4429 if (in_wq)
4430 spin_lock_irqsave(ap->lock, flags);
4432 if (qc->tf.protocol == ATA_PROT_PIO) {
4433 /* PIO data out protocol.
4434 * send first data block.
4437 /* ata_pio_sectors() might change the state
4438 * to HSM_ST_LAST. so, the state is changed here
4439 * before ata_pio_sectors().
4441 ap->hsm_task_state = HSM_ST;
4442 ata_pio_sectors(qc);
4443 ata_altstatus(ap); /* flush */
4444 } else
4445 /* send CDB */
4446 atapi_send_cdb(ap, qc);
4448 if (in_wq)
4449 spin_unlock_irqrestore(ap->lock, flags);
4451 /* if polling, ata_pio_task() handles the rest.
4452 * otherwise, interrupt handler takes over from here.
4454 break;
4456 case HSM_ST:
4457 /* complete command or read/write the data register */
4458 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4459 /* ATAPI PIO protocol */
4460 if ((status & ATA_DRQ) == 0) {
4461 /* No more data to transfer or device error.
4462 * Device error will be tagged in HSM_ST_LAST.
4464 ap->hsm_task_state = HSM_ST_LAST;
4465 goto fsm_start;
4468 /* Device should not ask for data transfer (DRQ=1)
4469 * when it finds something wrong.
4470 * We ignore DRQ here and stop the HSM by
4471 * changing hsm_task_state to HSM_ST_ERR and
4472 * let the EH abort the command or reset the device.
4474 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4475 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4476 ap->id, status);
4477 qc->err_mask |= AC_ERR_HSM;
4478 ap->hsm_task_state = HSM_ST_ERR;
4479 goto fsm_start;
4482 atapi_pio_bytes(qc);
4484 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4485 /* bad ireason reported by device */
4486 goto fsm_start;
4488 } else {
4489 /* ATA PIO protocol */
4490 if (unlikely((status & ATA_DRQ) == 0)) {
4491 /* handle BSY=0, DRQ=0 as error */
4492 if (likely(status & (ATA_ERR | ATA_DF)))
4493 /* device stops HSM for abort/error */
4494 qc->err_mask |= AC_ERR_DEV;
4495 else
4496 /* HSM violation. Let EH handle this.
4497 * Phantom devices also trigger this
4498 * condition. Mark hint.
4500 qc->err_mask |= AC_ERR_HSM |
4501 AC_ERR_NODEV_HINT;
4503 ap->hsm_task_state = HSM_ST_ERR;
4504 goto fsm_start;
4507 /* For PIO reads, some devices may ask for
4508 * data transfer (DRQ=1) alone with ERR=1.
4509 * We respect DRQ here and transfer one
4510 * block of junk data before changing the
4511 * hsm_task_state to HSM_ST_ERR.
4513 * For PIO writes, ERR=1 DRQ=1 doesn't make
4514 * sense since the data block has been
4515 * transferred to the device.
4517 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4518 /* data might be corrputed */
4519 qc->err_mask |= AC_ERR_DEV;
4521 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4522 ata_pio_sectors(qc);
4523 ata_altstatus(ap);
4524 status = ata_wait_idle(ap);
4527 if (status & (ATA_BUSY | ATA_DRQ))
4528 qc->err_mask |= AC_ERR_HSM;
4530 /* ata_pio_sectors() might change the
4531 * state to HSM_ST_LAST. so, the state
4532 * is changed after ata_pio_sectors().
4534 ap->hsm_task_state = HSM_ST_ERR;
4535 goto fsm_start;
4538 ata_pio_sectors(qc);
4540 if (ap->hsm_task_state == HSM_ST_LAST &&
4541 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4542 /* all data read */
4543 ata_altstatus(ap);
4544 status = ata_wait_idle(ap);
4545 goto fsm_start;
4549 ata_altstatus(ap); /* flush */
4550 poll_next = 1;
4551 break;
4553 case HSM_ST_LAST:
4554 if (unlikely(!ata_ok(status))) {
4555 qc->err_mask |= __ac_err_mask(status);
4556 ap->hsm_task_state = HSM_ST_ERR;
4557 goto fsm_start;
4560 /* no more data to transfer */
4561 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4562 ap->id, qc->dev->devno, status);
4564 WARN_ON(qc->err_mask);
4566 ap->hsm_task_state = HSM_ST_IDLE;
4568 /* complete taskfile transaction */
4569 ata_hsm_qc_complete(qc, in_wq);
4571 poll_next = 0;
4572 break;
4574 case HSM_ST_ERR:
4575 /* make sure qc->err_mask is available to
4576 * know what's wrong and recover
4578 WARN_ON(qc->err_mask == 0);
4580 ap->hsm_task_state = HSM_ST_IDLE;
4582 /* complete taskfile transaction */
4583 ata_hsm_qc_complete(qc, in_wq);
4585 poll_next = 0;
4586 break;
4587 default:
4588 poll_next = 0;
4589 BUG();
4592 return poll_next;
4595 static void ata_pio_task(struct work_struct *work)
4597 struct ata_port *ap =
4598 container_of(work, struct ata_port, port_task.work);
4599 struct ata_queued_cmd *qc = ap->port_task_data;
4600 u8 status;
4601 int poll_next;
4603 fsm_start:
4604 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4607 * This is purely heuristic. This is a fast path.
4608 * Sometimes when we enter, BSY will be cleared in
4609 * a chk-status or two. If not, the drive is probably seeking
4610 * or something. Snooze for a couple msecs, then
4611 * chk-status again. If still busy, queue delayed work.
4613 status = ata_busy_wait(ap, ATA_BUSY, 5);
4614 if (status & ATA_BUSY) {
4615 msleep(2);
4616 status = ata_busy_wait(ap, ATA_BUSY, 10);
4617 if (status & ATA_BUSY) {
4618 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4619 return;
4623 /* move the HSM */
4624 poll_next = ata_hsm_move(ap, qc, status, 1);
4626 /* another command or interrupt handler
4627 * may be running at this point.
4629 if (poll_next)
4630 goto fsm_start;
4634 * ata_qc_new - Request an available ATA command, for queueing
4635 * @ap: Port associated with device @dev
4636 * @dev: Device from whom we request an available command structure
4638 * LOCKING:
4639 * None.
4642 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4644 struct ata_queued_cmd *qc = NULL;
4645 unsigned int i;
4647 /* no command while frozen */
4648 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4649 return NULL;
4651 /* the last tag is reserved for internal command. */
4652 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4653 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4654 qc = __ata_qc_from_tag(ap, i);
4655 break;
4658 if (qc)
4659 qc->tag = i;
4661 return qc;
4665 * ata_qc_new_init - Request an available ATA command, and initialize it
4666 * @dev: Device from whom we request an available command structure
4668 * LOCKING:
4669 * None.
4672 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4674 struct ata_port *ap = dev->ap;
4675 struct ata_queued_cmd *qc;
4677 qc = ata_qc_new(ap);
4678 if (qc) {
4679 qc->scsicmd = NULL;
4680 qc->ap = ap;
4681 qc->dev = dev;
4683 ata_qc_reinit(qc);
4686 return qc;
4690 * ata_qc_free - free unused ata_queued_cmd
4691 * @qc: Command to complete
4693 * Designed to free unused ata_queued_cmd object
4694 * in case something prevents using it.
4696 * LOCKING:
4697 * spin_lock_irqsave(host lock)
4699 void ata_qc_free(struct ata_queued_cmd *qc)
4701 struct ata_port *ap = qc->ap;
4702 unsigned int tag;
4704 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4706 qc->flags = 0;
4707 tag = qc->tag;
4708 if (likely(ata_tag_valid(tag))) {
4709 qc->tag = ATA_TAG_POISON;
4710 clear_bit(tag, &ap->qc_allocated);
4714 void __ata_qc_complete(struct ata_queued_cmd *qc)
4716 struct ata_port *ap = qc->ap;
4718 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4719 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4721 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4722 ata_sg_clean(qc);
4724 /* command should be marked inactive atomically with qc completion */
4725 if (qc->tf.protocol == ATA_PROT_NCQ)
4726 ap->sactive &= ~(1 << qc->tag);
4727 else
4728 ap->active_tag = ATA_TAG_POISON;
4730 /* atapi: mark qc as inactive to prevent the interrupt handler
4731 * from completing the command twice later, before the error handler
4732 * is called. (when rc != 0 and atapi request sense is needed)
4734 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4735 ap->qc_active &= ~(1 << qc->tag);
4737 /* call completion callback */
4738 qc->complete_fn(qc);
4741 static void fill_result_tf(struct ata_queued_cmd *qc)
4743 struct ata_port *ap = qc->ap;
4745 ap->ops->tf_read(ap, &qc->result_tf);
4746 qc->result_tf.flags = qc->tf.flags;
4750 * ata_qc_complete - Complete an active ATA command
4751 * @qc: Command to complete
4752 * @err_mask: ATA Status register contents
4754 * Indicate to the mid and upper layers that an ATA
4755 * command has completed, with either an ok or not-ok status.
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4760 void ata_qc_complete(struct ata_queued_cmd *qc)
4762 struct ata_port *ap = qc->ap;
4764 /* XXX: New EH and old EH use different mechanisms to
4765 * synchronize EH with regular execution path.
4767 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4768 * Normal execution path is responsible for not accessing a
4769 * failed qc. libata core enforces the rule by returning NULL
4770 * from ata_qc_from_tag() for failed qcs.
4772 * Old EH depends on ata_qc_complete() nullifying completion
4773 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4774 * not synchronize with interrupt handler. Only PIO task is
4775 * taken care of.
4777 if (ap->ops->error_handler) {
4778 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4780 if (unlikely(qc->err_mask))
4781 qc->flags |= ATA_QCFLAG_FAILED;
4783 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4784 if (!ata_tag_internal(qc->tag)) {
4785 /* always fill result TF for failed qc */
4786 fill_result_tf(qc);
4787 ata_qc_schedule_eh(qc);
4788 return;
4792 /* read result TF if requested */
4793 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4794 fill_result_tf(qc);
4796 __ata_qc_complete(qc);
4797 } else {
4798 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4799 return;
4801 /* read result TF if failed or requested */
4802 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4803 fill_result_tf(qc);
4805 __ata_qc_complete(qc);
4810 * ata_qc_complete_multiple - Complete multiple qcs successfully
4811 * @ap: port in question
4812 * @qc_active: new qc_active mask
4813 * @finish_qc: LLDD callback invoked before completing a qc
4815 * Complete in-flight commands. This functions is meant to be
4816 * called from low-level driver's interrupt routine to complete
4817 * requests normally. ap->qc_active and @qc_active is compared
4818 * and commands are completed accordingly.
4820 * LOCKING:
4821 * spin_lock_irqsave(host lock)
4823 * RETURNS:
4824 * Number of completed commands on success, -errno otherwise.
4826 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4827 void (*finish_qc)(struct ata_queued_cmd *))
4829 int nr_done = 0;
4830 u32 done_mask;
4831 int i;
4833 done_mask = ap->qc_active ^ qc_active;
4835 if (unlikely(done_mask & qc_active)) {
4836 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4837 "(%08x->%08x)\n", ap->qc_active, qc_active);
4838 return -EINVAL;
4841 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4842 struct ata_queued_cmd *qc;
4844 if (!(done_mask & (1 << i)))
4845 continue;
4847 if ((qc = ata_qc_from_tag(ap, i))) {
4848 if (finish_qc)
4849 finish_qc(qc);
4850 ata_qc_complete(qc);
4851 nr_done++;
4855 return nr_done;
4858 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4860 struct ata_port *ap = qc->ap;
4862 switch (qc->tf.protocol) {
4863 case ATA_PROT_NCQ:
4864 case ATA_PROT_DMA:
4865 case ATA_PROT_ATAPI_DMA:
4866 return 1;
4868 case ATA_PROT_ATAPI:
4869 case ATA_PROT_PIO:
4870 if (ap->flags & ATA_FLAG_PIO_DMA)
4871 return 1;
4873 /* fall through */
4875 default:
4876 return 0;
4879 /* never reached */
4883 * ata_qc_issue - issue taskfile to device
4884 * @qc: command to issue to device
4886 * Prepare an ATA command to submission to device.
4887 * This includes mapping the data into a DMA-able
4888 * area, filling in the S/G table, and finally
4889 * writing the taskfile to hardware, starting the command.
4891 * LOCKING:
4892 * spin_lock_irqsave(host lock)
4894 void ata_qc_issue(struct ata_queued_cmd *qc)
4896 struct ata_port *ap = qc->ap;
4898 /* Make sure only one non-NCQ command is outstanding. The
4899 * check is skipped for old EH because it reuses active qc to
4900 * request ATAPI sense.
4902 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4904 if (qc->tf.protocol == ATA_PROT_NCQ) {
4905 WARN_ON(ap->sactive & (1 << qc->tag));
4906 ap->sactive |= 1 << qc->tag;
4907 } else {
4908 WARN_ON(ap->sactive);
4909 ap->active_tag = qc->tag;
4912 qc->flags |= ATA_QCFLAG_ACTIVE;
4913 ap->qc_active |= 1 << qc->tag;
4915 if (ata_should_dma_map(qc)) {
4916 if (qc->flags & ATA_QCFLAG_SG) {
4917 if (ata_sg_setup(qc))
4918 goto sg_err;
4919 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4920 if (ata_sg_setup_one(qc))
4921 goto sg_err;
4923 } else {
4924 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4927 ap->ops->qc_prep(qc);
4929 qc->err_mask |= ap->ops->qc_issue(qc);
4930 if (unlikely(qc->err_mask))
4931 goto err;
4932 return;
4934 sg_err:
4935 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4936 qc->err_mask |= AC_ERR_SYSTEM;
4937 err:
4938 ata_qc_complete(qc);
4942 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4943 * @qc: command to issue to device
4945 * Using various libata functions and hooks, this function
4946 * starts an ATA command. ATA commands are grouped into
4947 * classes called "protocols", and issuing each type of protocol
4948 * is slightly different.
4950 * May be used as the qc_issue() entry in ata_port_operations.
4952 * LOCKING:
4953 * spin_lock_irqsave(host lock)
4955 * RETURNS:
4956 * Zero on success, AC_ERR_* mask on failure
4959 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4961 struct ata_port *ap = qc->ap;
4963 /* Use polling pio if the LLD doesn't handle
4964 * interrupt driven pio and atapi CDB interrupt.
4966 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4967 switch (qc->tf.protocol) {
4968 case ATA_PROT_PIO:
4969 case ATA_PROT_NODATA:
4970 case ATA_PROT_ATAPI:
4971 case ATA_PROT_ATAPI_NODATA:
4972 qc->tf.flags |= ATA_TFLAG_POLLING;
4973 break;
4974 case ATA_PROT_ATAPI_DMA:
4975 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4976 /* see ata_dma_blacklisted() */
4977 BUG();
4978 break;
4979 default:
4980 break;
4984 /* Some controllers show flaky interrupt behavior after
4985 * setting xfer mode. Use polling instead.
4987 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4988 qc->tf.feature == SETFEATURES_XFER) &&
4989 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4990 qc->tf.flags |= ATA_TFLAG_POLLING;
4992 /* select the device */
4993 ata_dev_select(ap, qc->dev->devno, 1, 0);
4995 /* start the command */
4996 switch (qc->tf.protocol) {
4997 case ATA_PROT_NODATA:
4998 if (qc->tf.flags & ATA_TFLAG_POLLING)
4999 ata_qc_set_polling(qc);
5001 ata_tf_to_host(ap, &qc->tf);
5002 ap->hsm_task_state = HSM_ST_LAST;
5004 if (qc->tf.flags & ATA_TFLAG_POLLING)
5005 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5007 break;
5009 case ATA_PROT_DMA:
5010 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5012 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5013 ap->ops->bmdma_setup(qc); /* set up bmdma */
5014 ap->ops->bmdma_start(qc); /* initiate bmdma */
5015 ap->hsm_task_state = HSM_ST_LAST;
5016 break;
5018 case ATA_PROT_PIO:
5019 if (qc->tf.flags & ATA_TFLAG_POLLING)
5020 ata_qc_set_polling(qc);
5022 ata_tf_to_host(ap, &qc->tf);
5024 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5025 /* PIO data out protocol */
5026 ap->hsm_task_state = HSM_ST_FIRST;
5027 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5029 /* always send first data block using
5030 * the ata_pio_task() codepath.
5032 } else {
5033 /* PIO data in protocol */
5034 ap->hsm_task_state = HSM_ST;
5036 if (qc->tf.flags & ATA_TFLAG_POLLING)
5037 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5039 /* if polling, ata_pio_task() handles the rest.
5040 * otherwise, interrupt handler takes over from here.
5044 break;
5046 case ATA_PROT_ATAPI:
5047 case ATA_PROT_ATAPI_NODATA:
5048 if (qc->tf.flags & ATA_TFLAG_POLLING)
5049 ata_qc_set_polling(qc);
5051 ata_tf_to_host(ap, &qc->tf);
5053 ap->hsm_task_state = HSM_ST_FIRST;
5055 /* send cdb by polling if no cdb interrupt */
5056 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5057 (qc->tf.flags & ATA_TFLAG_POLLING))
5058 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5059 break;
5061 case ATA_PROT_ATAPI_DMA:
5062 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5064 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5065 ap->ops->bmdma_setup(qc); /* set up bmdma */
5066 ap->hsm_task_state = HSM_ST_FIRST;
5068 /* send cdb by polling if no cdb interrupt */
5069 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5070 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5071 break;
5073 default:
5074 WARN_ON(1);
5075 return AC_ERR_SYSTEM;
5078 return 0;
5082 * ata_host_intr - Handle host interrupt for given (port, task)
5083 * @ap: Port on which interrupt arrived (possibly...)
5084 * @qc: Taskfile currently active in engine
5086 * Handle host interrupt for given queued command. Currently,
5087 * only DMA interrupts are handled. All other commands are
5088 * handled via polling with interrupts disabled (nIEN bit).
5090 * LOCKING:
5091 * spin_lock_irqsave(host lock)
5093 * RETURNS:
5094 * One if interrupt was handled, zero if not (shared irq).
5097 inline unsigned int ata_host_intr (struct ata_port *ap,
5098 struct ata_queued_cmd *qc)
5100 struct ata_eh_info *ehi = &ap->eh_info;
5101 u8 status, host_stat = 0;
5103 VPRINTK("ata%u: protocol %d task_state %d\n",
5104 ap->id, qc->tf.protocol, ap->hsm_task_state);
5106 /* Check whether we are expecting interrupt in this state */
5107 switch (ap->hsm_task_state) {
5108 case HSM_ST_FIRST:
5109 /* Some pre-ATAPI-4 devices assert INTRQ
5110 * at this state when ready to receive CDB.
5113 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5114 * The flag was turned on only for atapi devices.
5115 * No need to check is_atapi_taskfile(&qc->tf) again.
5117 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5118 goto idle_irq;
5119 break;
5120 case HSM_ST_LAST:
5121 if (qc->tf.protocol == ATA_PROT_DMA ||
5122 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5123 /* check status of DMA engine */
5124 host_stat = ap->ops->bmdma_status(ap);
5125 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5127 /* if it's not our irq... */
5128 if (!(host_stat & ATA_DMA_INTR))
5129 goto idle_irq;
5131 /* before we do anything else, clear DMA-Start bit */
5132 ap->ops->bmdma_stop(qc);
5134 if (unlikely(host_stat & ATA_DMA_ERR)) {
5135 /* error when transfering data to/from memory */
5136 qc->err_mask |= AC_ERR_HOST_BUS;
5137 ap->hsm_task_state = HSM_ST_ERR;
5140 break;
5141 case HSM_ST:
5142 break;
5143 default:
5144 goto idle_irq;
5147 /* check altstatus */
5148 status = ata_altstatus(ap);
5149 if (status & ATA_BUSY)
5150 goto idle_irq;
5152 /* check main status, clearing INTRQ */
5153 status = ata_chk_status(ap);
5154 if (unlikely(status & ATA_BUSY))
5155 goto idle_irq;
5157 /* ack bmdma irq events */
5158 ap->ops->irq_clear(ap);
5160 ata_hsm_move(ap, qc, status, 0);
5162 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5163 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5164 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5166 return 1; /* irq handled */
5168 idle_irq:
5169 ap->stats.idle_irq++;
5171 #ifdef ATA_IRQ_TRAP
5172 if ((ap->stats.idle_irq % 1000) == 0) {
5173 ata_irq_ack(ap, 0); /* debug trap */
5174 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5175 return 1;
5177 #endif
5178 return 0; /* irq not handled */
5182 * ata_interrupt - Default ATA host interrupt handler
5183 * @irq: irq line (unused)
5184 * @dev_instance: pointer to our ata_host information structure
5186 * Default interrupt handler for PCI IDE devices. Calls
5187 * ata_host_intr() for each port that is not disabled.
5189 * LOCKING:
5190 * Obtains host lock during operation.
5192 * RETURNS:
5193 * IRQ_NONE or IRQ_HANDLED.
5196 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5198 struct ata_host *host = dev_instance;
5199 unsigned int i;
5200 unsigned int handled = 0;
5201 unsigned long flags;
5203 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5204 spin_lock_irqsave(&host->lock, flags);
5206 for (i = 0; i < host->n_ports; i++) {
5207 struct ata_port *ap;
5209 ap = host->ports[i];
5210 if (ap &&
5211 !(ap->flags & ATA_FLAG_DISABLED)) {
5212 struct ata_queued_cmd *qc;
5214 qc = ata_qc_from_tag(ap, ap->active_tag);
5215 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5216 (qc->flags & ATA_QCFLAG_ACTIVE))
5217 handled |= ata_host_intr(ap, qc);
5221 spin_unlock_irqrestore(&host->lock, flags);
5223 return IRQ_RETVAL(handled);
5227 * sata_scr_valid - test whether SCRs are accessible
5228 * @ap: ATA port to test SCR accessibility for
5230 * Test whether SCRs are accessible for @ap.
5232 * LOCKING:
5233 * None.
5235 * RETURNS:
5236 * 1 if SCRs are accessible, 0 otherwise.
5238 int sata_scr_valid(struct ata_port *ap)
5240 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5244 * sata_scr_read - read SCR register of the specified port
5245 * @ap: ATA port to read SCR for
5246 * @reg: SCR to read
5247 * @val: Place to store read value
5249 * Read SCR register @reg of @ap into *@val. This function is
5250 * guaranteed to succeed if the cable type of the port is SATA
5251 * and the port implements ->scr_read.
5253 * LOCKING:
5254 * None.
5256 * RETURNS:
5257 * 0 on success, negative errno on failure.
5259 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5261 if (sata_scr_valid(ap)) {
5262 *val = ap->ops->scr_read(ap, reg);
5263 return 0;
5265 return -EOPNOTSUPP;
5269 * sata_scr_write - write SCR register of the specified port
5270 * @ap: ATA port to write SCR for
5271 * @reg: SCR to write
5272 * @val: value to write
5274 * Write @val to SCR register @reg of @ap. This function is
5275 * guaranteed to succeed if the cable type of the port is SATA
5276 * and the port implements ->scr_read.
5278 * LOCKING:
5279 * None.
5281 * RETURNS:
5282 * 0 on success, negative errno on failure.
5284 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5286 if (sata_scr_valid(ap)) {
5287 ap->ops->scr_write(ap, reg, val);
5288 return 0;
5290 return -EOPNOTSUPP;
5294 * sata_scr_write_flush - write SCR register of the specified port and flush
5295 * @ap: ATA port to write SCR for
5296 * @reg: SCR to write
5297 * @val: value to write
5299 * This function is identical to sata_scr_write() except that this
5300 * function performs flush after writing to the register.
5302 * LOCKING:
5303 * None.
5305 * RETURNS:
5306 * 0 on success, negative errno on failure.
5308 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5310 if (sata_scr_valid(ap)) {
5311 ap->ops->scr_write(ap, reg, val);
5312 ap->ops->scr_read(ap, reg);
5313 return 0;
5315 return -EOPNOTSUPP;
5319 * ata_port_online - test whether the given port is online
5320 * @ap: ATA port to test
5322 * Test whether @ap is online. Note that this function returns 0
5323 * if online status of @ap cannot be obtained, so
5324 * ata_port_online(ap) != !ata_port_offline(ap).
5326 * LOCKING:
5327 * None.
5329 * RETURNS:
5330 * 1 if the port online status is available and online.
5332 int ata_port_online(struct ata_port *ap)
5334 u32 sstatus;
5336 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5337 return 1;
5338 return 0;
5342 * ata_port_offline - test whether the given port is offline
5343 * @ap: ATA port to test
5345 * Test whether @ap is offline. Note that this function returns
5346 * 0 if offline status of @ap cannot be obtained, so
5347 * ata_port_online(ap) != !ata_port_offline(ap).
5349 * LOCKING:
5350 * None.
5352 * RETURNS:
5353 * 1 if the port offline status is available and offline.
5355 int ata_port_offline(struct ata_port *ap)
5357 u32 sstatus;
5359 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5360 return 1;
5361 return 0;
5364 int ata_flush_cache(struct ata_device *dev)
5366 unsigned int err_mask;
5367 u8 cmd;
5369 if (!ata_try_flush_cache(dev))
5370 return 0;
5372 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5373 cmd = ATA_CMD_FLUSH_EXT;
5374 else
5375 cmd = ATA_CMD_FLUSH;
5377 err_mask = ata_do_simple_cmd(dev, cmd);
5378 if (err_mask) {
5379 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5380 return -EIO;
5383 return 0;
5386 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5387 unsigned int action, unsigned int ehi_flags,
5388 int wait)
5390 unsigned long flags;
5391 int i, rc;
5393 for (i = 0; i < host->n_ports; i++) {
5394 struct ata_port *ap = host->ports[i];
5396 /* Previous resume operation might still be in
5397 * progress. Wait for PM_PENDING to clear.
5399 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5400 ata_port_wait_eh(ap);
5401 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5404 /* request PM ops to EH */
5405 spin_lock_irqsave(ap->lock, flags);
5407 ap->pm_mesg = mesg;
5408 if (wait) {
5409 rc = 0;
5410 ap->pm_result = &rc;
5413 ap->pflags |= ATA_PFLAG_PM_PENDING;
5414 ap->eh_info.action |= action;
5415 ap->eh_info.flags |= ehi_flags;
5417 ata_port_schedule_eh(ap);
5419 spin_unlock_irqrestore(ap->lock, flags);
5421 /* wait and check result */
5422 if (wait) {
5423 ata_port_wait_eh(ap);
5424 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5425 if (rc)
5426 return rc;
5430 return 0;
5434 * ata_host_suspend - suspend host
5435 * @host: host to suspend
5436 * @mesg: PM message
5438 * Suspend @host. Actual operation is performed by EH. This
5439 * function requests EH to perform PM operations and waits for EH
5440 * to finish.
5442 * LOCKING:
5443 * Kernel thread context (may sleep).
5445 * RETURNS:
5446 * 0 on success, -errno on failure.
5448 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5450 int i, j, rc;
5452 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5453 if (rc)
5454 goto fail;
5456 /* EH is quiescent now. Fail if we have any ready device.
5457 * This happens if hotplug occurs between completion of device
5458 * suspension and here.
5460 for (i = 0; i < host->n_ports; i++) {
5461 struct ata_port *ap = host->ports[i];
5463 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5464 struct ata_device *dev = &ap->device[j];
5466 if (ata_dev_ready(dev)) {
5467 ata_port_printk(ap, KERN_WARNING,
5468 "suspend failed, device %d "
5469 "still active\n", dev->devno);
5470 rc = -EBUSY;
5471 goto fail;
5476 host->dev->power.power_state = mesg;
5477 return 0;
5479 fail:
5480 ata_host_resume(host);
5481 return rc;
5485 * ata_host_resume - resume host
5486 * @host: host to resume
5488 * Resume @host. Actual operation is performed by EH. This
5489 * function requests EH to perform PM operations and returns.
5490 * Note that all resume operations are performed parallely.
5492 * LOCKING:
5493 * Kernel thread context (may sleep).
5495 void ata_host_resume(struct ata_host *host)
5497 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5498 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5499 host->dev->power.power_state = PMSG_ON;
5503 * ata_port_start - Set port up for dma.
5504 * @ap: Port to initialize
5506 * Called just after data structures for each port are
5507 * initialized. Allocates space for PRD table.
5509 * May be used as the port_start() entry in ata_port_operations.
5511 * LOCKING:
5512 * Inherited from caller.
5515 int ata_port_start (struct ata_port *ap)
5517 struct device *dev = ap->dev;
5518 int rc;
5520 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5521 if (!ap->prd)
5522 return -ENOMEM;
5524 rc = ata_pad_alloc(ap, dev);
5525 if (rc) {
5526 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5527 return rc;
5530 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5532 return 0;
5537 * ata_port_stop - Undo ata_port_start()
5538 * @ap: Port to shut down
5540 * Frees the PRD table.
5542 * May be used as the port_stop() entry in ata_port_operations.
5544 * LOCKING:
5545 * Inherited from caller.
5548 void ata_port_stop (struct ata_port *ap)
5550 struct device *dev = ap->dev;
5552 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5553 ata_pad_free(ap, dev);
5556 void ata_host_stop (struct ata_host *host)
5558 if (host->mmio_base)
5559 iounmap(host->mmio_base);
5563 * ata_dev_init - Initialize an ata_device structure
5564 * @dev: Device structure to initialize
5566 * Initialize @dev in preparation for probing.
5568 * LOCKING:
5569 * Inherited from caller.
5571 void ata_dev_init(struct ata_device *dev)
5573 struct ata_port *ap = dev->ap;
5574 unsigned long flags;
5576 /* SATA spd limit is bound to the first device */
5577 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5579 /* High bits of dev->flags are used to record warm plug
5580 * requests which occur asynchronously. Synchronize using
5581 * host lock.
5583 spin_lock_irqsave(ap->lock, flags);
5584 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5585 spin_unlock_irqrestore(ap->lock, flags);
5587 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5588 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5589 dev->pio_mask = UINT_MAX;
5590 dev->mwdma_mask = UINT_MAX;
5591 dev->udma_mask = UINT_MAX;
5595 * ata_port_init - Initialize an ata_port structure
5596 * @ap: Structure to initialize
5597 * @host: Collection of hosts to which @ap belongs
5598 * @ent: Probe information provided by low-level driver
5599 * @port_no: Port number associated with this ata_port
5601 * Initialize a new ata_port structure.
5603 * LOCKING:
5604 * Inherited from caller.
5606 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5607 const struct ata_probe_ent *ent, unsigned int port_no)
5609 unsigned int i;
5611 ap->lock = &host->lock;
5612 ap->flags = ATA_FLAG_DISABLED;
5613 ap->id = ata_unique_id++;
5614 ap->ctl = ATA_DEVCTL_OBS;
5615 ap->host = host;
5616 ap->dev = ent->dev;
5617 ap->port_no = port_no;
5618 if (port_no == 1 && ent->pinfo2) {
5619 ap->pio_mask = ent->pinfo2->pio_mask;
5620 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5621 ap->udma_mask = ent->pinfo2->udma_mask;
5622 ap->flags |= ent->pinfo2->flags;
5623 ap->ops = ent->pinfo2->port_ops;
5624 } else {
5625 ap->pio_mask = ent->pio_mask;
5626 ap->mwdma_mask = ent->mwdma_mask;
5627 ap->udma_mask = ent->udma_mask;
5628 ap->flags |= ent->port_flags;
5629 ap->ops = ent->port_ops;
5631 ap->hw_sata_spd_limit = UINT_MAX;
5632 ap->active_tag = ATA_TAG_POISON;
5633 ap->last_ctl = 0xFF;
5635 #if defined(ATA_VERBOSE_DEBUG)
5636 /* turn on all debugging levels */
5637 ap->msg_enable = 0x00FF;
5638 #elif defined(ATA_DEBUG)
5639 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5640 #else
5641 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5642 #endif
5644 INIT_DELAYED_WORK(&ap->port_task, NULL);
5645 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5646 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5647 INIT_LIST_HEAD(&ap->eh_done_q);
5648 init_waitqueue_head(&ap->eh_wait_q);
5650 /* set cable type */
5651 ap->cbl = ATA_CBL_NONE;
5652 if (ap->flags & ATA_FLAG_SATA)
5653 ap->cbl = ATA_CBL_SATA;
5655 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5656 struct ata_device *dev = &ap->device[i];
5657 dev->ap = ap;
5658 dev->devno = i;
5659 ata_dev_init(dev);
5662 #ifdef ATA_IRQ_TRAP
5663 ap->stats.unhandled_irq = 1;
5664 ap->stats.idle_irq = 1;
5665 #endif
5667 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5671 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5672 * @ap: ATA port to initialize SCSI host for
5673 * @shost: SCSI host associated with @ap
5675 * Initialize SCSI host @shost associated with ATA port @ap.
5677 * LOCKING:
5678 * Inherited from caller.
5680 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5682 ap->scsi_host = shost;
5684 shost->unique_id = ap->id;
5685 shost->max_id = 16;
5686 shost->max_lun = 1;
5687 shost->max_channel = 1;
5688 shost->max_cmd_len = 12;
5692 * ata_port_add - Attach low-level ATA driver to system
5693 * @ent: Information provided by low-level driver
5694 * @host: Collections of ports to which we add
5695 * @port_no: Port number associated with this host
5697 * Attach low-level ATA driver to system.
5699 * LOCKING:
5700 * PCI/etc. bus probe sem.
5702 * RETURNS:
5703 * New ata_port on success, for NULL on error.
5705 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5706 struct ata_host *host,
5707 unsigned int port_no)
5709 struct Scsi_Host *shost;
5710 struct ata_port *ap;
5712 DPRINTK("ENTER\n");
5714 if (!ent->port_ops->error_handler &&
5715 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5716 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5717 port_no);
5718 return NULL;
5721 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5722 if (!shost)
5723 return NULL;
5725 shost->transportt = &ata_scsi_transport_template;
5727 ap = ata_shost_to_port(shost);
5729 ata_port_init(ap, host, ent, port_no);
5730 ata_port_init_shost(ap, shost);
5732 return ap;
5736 * ata_sas_host_init - Initialize a host struct
5737 * @host: host to initialize
5738 * @dev: device host is attached to
5739 * @flags: host flags
5740 * @ops: port_ops
5742 * LOCKING:
5743 * PCI/etc. bus probe sem.
5747 void ata_host_init(struct ata_host *host, struct device *dev,
5748 unsigned long flags, const struct ata_port_operations *ops)
5750 spin_lock_init(&host->lock);
5751 host->dev = dev;
5752 host->flags = flags;
5753 host->ops = ops;
5757 * ata_device_add - Register hardware device with ATA and SCSI layers
5758 * @ent: Probe information describing hardware device to be registered
5760 * This function processes the information provided in the probe
5761 * information struct @ent, allocates the necessary ATA and SCSI
5762 * host information structures, initializes them, and registers
5763 * everything with requisite kernel subsystems.
5765 * This function requests irqs, probes the ATA bus, and probes
5766 * the SCSI bus.
5768 * LOCKING:
5769 * PCI/etc. bus probe sem.
5771 * RETURNS:
5772 * Number of ports registered. Zero on error (no ports registered).
5774 int ata_device_add(const struct ata_probe_ent *ent)
5776 unsigned int i;
5777 struct device *dev = ent->dev;
5778 struct ata_host *host;
5779 int rc;
5781 DPRINTK("ENTER\n");
5783 if (ent->irq == 0) {
5784 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5785 return 0;
5787 /* alloc a container for our list of ATA ports (buses) */
5788 host = kzalloc(sizeof(struct ata_host) +
5789 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5790 if (!host)
5791 return 0;
5793 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5794 host->n_ports = ent->n_ports;
5795 host->irq = ent->irq;
5796 host->irq2 = ent->irq2;
5797 host->mmio_base = ent->mmio_base;
5798 host->private_data = ent->private_data;
5800 /* register each port bound to this device */
5801 for (i = 0; i < host->n_ports; i++) {
5802 struct ata_port *ap;
5803 unsigned long xfer_mode_mask;
5804 int irq_line = ent->irq;
5806 ap = ata_port_add(ent, host, i);
5807 host->ports[i] = ap;
5808 if (!ap)
5809 goto err_out;
5811 /* dummy? */
5812 if (ent->dummy_port_mask & (1 << i)) {
5813 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5814 ap->ops = &ata_dummy_port_ops;
5815 continue;
5818 /* start port */
5819 rc = ap->ops->port_start(ap);
5820 if (rc) {
5821 host->ports[i] = NULL;
5822 scsi_host_put(ap->scsi_host);
5823 goto err_out;
5826 /* Report the secondary IRQ for second channel legacy */
5827 if (i == 1 && ent->irq2)
5828 irq_line = ent->irq2;
5830 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5831 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5832 (ap->pio_mask << ATA_SHIFT_PIO);
5834 /* print per-port info to dmesg */
5835 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5836 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5837 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5838 ata_mode_string(xfer_mode_mask),
5839 ap->ioaddr.cmd_addr,
5840 ap->ioaddr.ctl_addr,
5841 ap->ioaddr.bmdma_addr,
5842 irq_line);
5844 /* freeze port before requesting IRQ */
5845 ata_eh_freeze_port(ap);
5848 /* obtain irq, that may be shared between channels */
5849 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5850 DRV_NAME, host);
5851 if (rc) {
5852 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5853 ent->irq, rc);
5854 goto err_out;
5857 /* do we have a second IRQ for the other channel, eg legacy mode */
5858 if (ent->irq2) {
5859 /* We will get weird core code crashes later if this is true
5860 so trap it now */
5861 BUG_ON(ent->irq == ent->irq2);
5863 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5864 DRV_NAME, host);
5865 if (rc) {
5866 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5867 ent->irq2, rc);
5868 goto err_out_free_irq;
5872 /* perform each probe synchronously */
5873 DPRINTK("probe begin\n");
5874 for (i = 0; i < host->n_ports; i++) {
5875 struct ata_port *ap = host->ports[i];
5876 u32 scontrol;
5877 int rc;
5879 /* init sata_spd_limit to the current value */
5880 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5881 int spd = (scontrol >> 4) & 0xf;
5882 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5884 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5886 rc = scsi_add_host(ap->scsi_host, dev);
5887 if (rc) {
5888 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5889 /* FIXME: do something useful here */
5890 /* FIXME: handle unconditional calls to
5891 * scsi_scan_host and ata_host_remove, below,
5892 * at the very least
5896 if (ap->ops->error_handler) {
5897 struct ata_eh_info *ehi = &ap->eh_info;
5898 unsigned long flags;
5900 ata_port_probe(ap);
5902 /* kick EH for boot probing */
5903 spin_lock_irqsave(ap->lock, flags);
5905 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5906 ehi->action |= ATA_EH_SOFTRESET;
5907 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5909 ap->pflags |= ATA_PFLAG_LOADING;
5910 ata_port_schedule_eh(ap);
5912 spin_unlock_irqrestore(ap->lock, flags);
5914 /* wait for EH to finish */
5915 ata_port_wait_eh(ap);
5916 } else {
5917 DPRINTK("ata%u: bus probe begin\n", ap->id);
5918 rc = ata_bus_probe(ap);
5919 DPRINTK("ata%u: bus probe end\n", ap->id);
5921 if (rc) {
5922 /* FIXME: do something useful here?
5923 * Current libata behavior will
5924 * tear down everything when
5925 * the module is removed
5926 * or the h/w is unplugged.
5932 /* probes are done, now scan each port's disk(s) */
5933 DPRINTK("host probe begin\n");
5934 for (i = 0; i < host->n_ports; i++) {
5935 struct ata_port *ap = host->ports[i];
5937 ata_scsi_scan_host(ap);
5940 dev_set_drvdata(dev, host);
5942 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5943 return ent->n_ports; /* success */
5945 err_out_free_irq:
5946 free_irq(ent->irq, host);
5947 err_out:
5948 for (i = 0; i < host->n_ports; i++) {
5949 struct ata_port *ap = host->ports[i];
5950 if (ap) {
5951 ap->ops->port_stop(ap);
5952 scsi_host_put(ap->scsi_host);
5956 kfree(host);
5957 VPRINTK("EXIT, returning 0\n");
5958 return 0;
5962 * ata_port_detach - Detach ATA port in prepration of device removal
5963 * @ap: ATA port to be detached
5965 * Detach all ATA devices and the associated SCSI devices of @ap;
5966 * then, remove the associated SCSI host. @ap is guaranteed to
5967 * be quiescent on return from this function.
5969 * LOCKING:
5970 * Kernel thread context (may sleep).
5972 void ata_port_detach(struct ata_port *ap)
5974 unsigned long flags;
5975 int i;
5977 if (!ap->ops->error_handler)
5978 goto skip_eh;
5980 /* tell EH we're leaving & flush EH */
5981 spin_lock_irqsave(ap->lock, flags);
5982 ap->pflags |= ATA_PFLAG_UNLOADING;
5983 spin_unlock_irqrestore(ap->lock, flags);
5985 ata_port_wait_eh(ap);
5987 /* EH is now guaranteed to see UNLOADING, so no new device
5988 * will be attached. Disable all existing devices.
5990 spin_lock_irqsave(ap->lock, flags);
5992 for (i = 0; i < ATA_MAX_DEVICES; i++)
5993 ata_dev_disable(&ap->device[i]);
5995 spin_unlock_irqrestore(ap->lock, flags);
5997 /* Final freeze & EH. All in-flight commands are aborted. EH
5998 * will be skipped and retrials will be terminated with bad
5999 * target.
6001 spin_lock_irqsave(ap->lock, flags);
6002 ata_port_freeze(ap); /* won't be thawed */
6003 spin_unlock_irqrestore(ap->lock, flags);
6005 ata_port_wait_eh(ap);
6007 /* Flush hotplug task. The sequence is similar to
6008 * ata_port_flush_task().
6010 flush_workqueue(ata_aux_wq);
6011 cancel_delayed_work(&ap->hotplug_task);
6012 flush_workqueue(ata_aux_wq);
6014 skip_eh:
6015 /* remove the associated SCSI host */
6016 scsi_remove_host(ap->scsi_host);
6020 * ata_host_remove - PCI layer callback for device removal
6021 * @host: ATA host set that was removed
6023 * Unregister all objects associated with this host set. Free those
6024 * objects.
6026 * LOCKING:
6027 * Inherited from calling layer (may sleep).
6030 void ata_host_remove(struct ata_host *host)
6032 unsigned int i;
6034 for (i = 0; i < host->n_ports; i++)
6035 ata_port_detach(host->ports[i]);
6037 free_irq(host->irq, host);
6038 if (host->irq2)
6039 free_irq(host->irq2, host);
6041 for (i = 0; i < host->n_ports; i++) {
6042 struct ata_port *ap = host->ports[i];
6044 ata_scsi_release(ap->scsi_host);
6046 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6047 struct ata_ioports *ioaddr = &ap->ioaddr;
6049 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6050 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6051 release_region(ATA_PRIMARY_CMD, 8);
6052 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6053 release_region(ATA_SECONDARY_CMD, 8);
6056 scsi_host_put(ap->scsi_host);
6059 if (host->ops->host_stop)
6060 host->ops->host_stop(host);
6062 kfree(host);
6066 * ata_scsi_release - SCSI layer callback hook for host unload
6067 * @shost: libata host to be unloaded
6069 * Performs all duties necessary to shut down a libata port...
6070 * Kill port kthread, disable port, and release resources.
6072 * LOCKING:
6073 * Inherited from SCSI layer.
6075 * RETURNS:
6076 * One.
6079 int ata_scsi_release(struct Scsi_Host *shost)
6081 struct ata_port *ap = ata_shost_to_port(shost);
6083 DPRINTK("ENTER\n");
6085 ap->ops->port_disable(ap);
6086 ap->ops->port_stop(ap);
6088 DPRINTK("EXIT\n");
6089 return 1;
6092 struct ata_probe_ent *
6093 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6095 struct ata_probe_ent *probe_ent;
6097 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6098 if (!probe_ent) {
6099 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6100 kobject_name(&(dev->kobj)));
6101 return NULL;
6104 INIT_LIST_HEAD(&probe_ent->node);
6105 probe_ent->dev = dev;
6107 probe_ent->sht = port->sht;
6108 probe_ent->port_flags = port->flags;
6109 probe_ent->pio_mask = port->pio_mask;
6110 probe_ent->mwdma_mask = port->mwdma_mask;
6111 probe_ent->udma_mask = port->udma_mask;
6112 probe_ent->port_ops = port->port_ops;
6113 probe_ent->private_data = port->private_data;
6115 return probe_ent;
6119 * ata_std_ports - initialize ioaddr with standard port offsets.
6120 * @ioaddr: IO address structure to be initialized
6122 * Utility function which initializes data_addr, error_addr,
6123 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6124 * device_addr, status_addr, and command_addr to standard offsets
6125 * relative to cmd_addr.
6127 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6130 void ata_std_ports(struct ata_ioports *ioaddr)
6132 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6133 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6134 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6135 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6136 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6137 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6138 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6139 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6140 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6141 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6145 #ifdef CONFIG_PCI
6147 void ata_pci_host_stop (struct ata_host *host)
6149 struct pci_dev *pdev = to_pci_dev(host->dev);
6151 pci_iounmap(pdev, host->mmio_base);
6155 * ata_pci_remove_one - PCI layer callback for device removal
6156 * @pdev: PCI device that was removed
6158 * PCI layer indicates to libata via this hook that
6159 * hot-unplug or module unload event has occurred.
6160 * Handle this by unregistering all objects associated
6161 * with this PCI device. Free those objects. Then finally
6162 * release PCI resources and disable device.
6164 * LOCKING:
6165 * Inherited from PCI layer (may sleep).
6168 void ata_pci_remove_one (struct pci_dev *pdev)
6170 struct device *dev = pci_dev_to_dev(pdev);
6171 struct ata_host *host = dev_get_drvdata(dev);
6173 ata_host_remove(host);
6175 pci_release_regions(pdev);
6176 pci_disable_device(pdev);
6177 dev_set_drvdata(dev, NULL);
6180 /* move to PCI subsystem */
6181 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6183 unsigned long tmp = 0;
6185 switch (bits->width) {
6186 case 1: {
6187 u8 tmp8 = 0;
6188 pci_read_config_byte(pdev, bits->reg, &tmp8);
6189 tmp = tmp8;
6190 break;
6192 case 2: {
6193 u16 tmp16 = 0;
6194 pci_read_config_word(pdev, bits->reg, &tmp16);
6195 tmp = tmp16;
6196 break;
6198 case 4: {
6199 u32 tmp32 = 0;
6200 pci_read_config_dword(pdev, bits->reg, &tmp32);
6201 tmp = tmp32;
6202 break;
6205 default:
6206 return -EINVAL;
6209 tmp &= bits->mask;
6211 return (tmp == bits->val) ? 1 : 0;
6214 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6216 pci_save_state(pdev);
6218 if (mesg.event == PM_EVENT_SUSPEND) {
6219 pci_disable_device(pdev);
6220 pci_set_power_state(pdev, PCI_D3hot);
6224 void ata_pci_device_do_resume(struct pci_dev *pdev)
6226 pci_set_power_state(pdev, PCI_D0);
6227 pci_restore_state(pdev);
6228 pci_enable_device(pdev);
6229 pci_set_master(pdev);
6232 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6234 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6235 int rc = 0;
6237 rc = ata_host_suspend(host, mesg);
6238 if (rc)
6239 return rc;
6241 ata_pci_device_do_suspend(pdev, mesg);
6243 return 0;
6246 int ata_pci_device_resume(struct pci_dev *pdev)
6248 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6250 ata_pci_device_do_resume(pdev);
6251 ata_host_resume(host);
6252 return 0;
6254 #endif /* CONFIG_PCI */
6257 static int __init ata_init(void)
6259 ata_probe_timeout *= HZ;
6260 ata_wq = create_workqueue("ata");
6261 if (!ata_wq)
6262 return -ENOMEM;
6264 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6265 if (!ata_aux_wq) {
6266 destroy_workqueue(ata_wq);
6267 return -ENOMEM;
6270 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6271 return 0;
6274 static void __exit ata_exit(void)
6276 destroy_workqueue(ata_wq);
6277 destroy_workqueue(ata_aux_wq);
6280 subsys_initcall(ata_init);
6281 module_exit(ata_exit);
6283 static unsigned long ratelimit_time;
6284 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6286 int ata_ratelimit(void)
6288 int rc;
6289 unsigned long flags;
6291 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6293 if (time_after(jiffies, ratelimit_time)) {
6294 rc = 1;
6295 ratelimit_time = jiffies + (HZ/5);
6296 } else
6297 rc = 0;
6299 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6301 return rc;
6305 * ata_wait_register - wait until register value changes
6306 * @reg: IO-mapped register
6307 * @mask: Mask to apply to read register value
6308 * @val: Wait condition
6309 * @interval_msec: polling interval in milliseconds
6310 * @timeout_msec: timeout in milliseconds
6312 * Waiting for some bits of register to change is a common
6313 * operation for ATA controllers. This function reads 32bit LE
6314 * IO-mapped register @reg and tests for the following condition.
6316 * (*@reg & mask) != val
6318 * If the condition is met, it returns; otherwise, the process is
6319 * repeated after @interval_msec until timeout.
6321 * LOCKING:
6322 * Kernel thread context (may sleep)
6324 * RETURNS:
6325 * The final register value.
6327 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6328 unsigned long interval_msec,
6329 unsigned long timeout_msec)
6331 unsigned long timeout;
6332 u32 tmp;
6334 tmp = ioread32(reg);
6336 /* Calculate timeout _after_ the first read to make sure
6337 * preceding writes reach the controller before starting to
6338 * eat away the timeout.
6340 timeout = jiffies + (timeout_msec * HZ) / 1000;
6342 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6343 msleep(interval_msec);
6344 tmp = ioread32(reg);
6347 return tmp;
6351 * Dummy port_ops
6353 static void ata_dummy_noret(struct ata_port *ap) { }
6354 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6355 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6357 static u8 ata_dummy_check_status(struct ata_port *ap)
6359 return ATA_DRDY;
6362 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6364 return AC_ERR_SYSTEM;
6367 const struct ata_port_operations ata_dummy_port_ops = {
6368 .port_disable = ata_port_disable,
6369 .check_status = ata_dummy_check_status,
6370 .check_altstatus = ata_dummy_check_status,
6371 .dev_select = ata_noop_dev_select,
6372 .qc_prep = ata_noop_qc_prep,
6373 .qc_issue = ata_dummy_qc_issue,
6374 .freeze = ata_dummy_noret,
6375 .thaw = ata_dummy_noret,
6376 .error_handler = ata_dummy_noret,
6377 .post_internal_cmd = ata_dummy_qc_noret,
6378 .irq_clear = ata_dummy_noret,
6379 .port_start = ata_dummy_ret0,
6380 .port_stop = ata_dummy_noret,
6384 * libata is essentially a library of internal helper functions for
6385 * low-level ATA host controller drivers. As such, the API/ABI is
6386 * likely to change as new drivers are added and updated.
6387 * Do not depend on ABI/API stability.
6390 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6391 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6392 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6393 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6394 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6395 EXPORT_SYMBOL_GPL(ata_std_ports);
6396 EXPORT_SYMBOL_GPL(ata_host_init);
6397 EXPORT_SYMBOL_GPL(ata_device_add);
6398 EXPORT_SYMBOL_GPL(ata_port_detach);
6399 EXPORT_SYMBOL_GPL(ata_host_remove);
6400 EXPORT_SYMBOL_GPL(ata_sg_init);
6401 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6402 EXPORT_SYMBOL_GPL(ata_hsm_move);
6403 EXPORT_SYMBOL_GPL(ata_qc_complete);
6404 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6405 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6406 EXPORT_SYMBOL_GPL(ata_tf_load);
6407 EXPORT_SYMBOL_GPL(ata_tf_read);
6408 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6409 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6410 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6411 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6412 EXPORT_SYMBOL_GPL(ata_check_status);
6413 EXPORT_SYMBOL_GPL(ata_altstatus);
6414 EXPORT_SYMBOL_GPL(ata_exec_command);
6415 EXPORT_SYMBOL_GPL(ata_port_start);
6416 EXPORT_SYMBOL_GPL(ata_port_stop);
6417 EXPORT_SYMBOL_GPL(ata_host_stop);
6418 EXPORT_SYMBOL_GPL(ata_interrupt);
6419 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6420 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6421 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6422 EXPORT_SYMBOL_GPL(ata_qc_prep);
6423 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6424 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6425 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6426 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6427 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6428 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6429 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6430 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6431 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6432 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6433 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6434 EXPORT_SYMBOL_GPL(ata_port_probe);
6435 EXPORT_SYMBOL_GPL(sata_set_spd);
6436 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6437 EXPORT_SYMBOL_GPL(sata_phy_resume);
6438 EXPORT_SYMBOL_GPL(sata_phy_reset);
6439 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6440 EXPORT_SYMBOL_GPL(ata_bus_reset);
6441 EXPORT_SYMBOL_GPL(ata_std_prereset);
6442 EXPORT_SYMBOL_GPL(ata_std_softreset);
6443 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6444 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6445 EXPORT_SYMBOL_GPL(ata_std_postreset);
6446 EXPORT_SYMBOL_GPL(ata_dev_classify);
6447 EXPORT_SYMBOL_GPL(ata_dev_pair);
6448 EXPORT_SYMBOL_GPL(ata_port_disable);
6449 EXPORT_SYMBOL_GPL(ata_ratelimit);
6450 EXPORT_SYMBOL_GPL(ata_wait_register);
6451 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6452 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6453 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6454 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6455 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6456 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6457 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6458 EXPORT_SYMBOL_GPL(ata_scsi_release);
6459 EXPORT_SYMBOL_GPL(ata_host_intr);
6460 EXPORT_SYMBOL_GPL(sata_scr_valid);
6461 EXPORT_SYMBOL_GPL(sata_scr_read);
6462 EXPORT_SYMBOL_GPL(sata_scr_write);
6463 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6464 EXPORT_SYMBOL_GPL(ata_port_online);
6465 EXPORT_SYMBOL_GPL(ata_port_offline);
6466 EXPORT_SYMBOL_GPL(ata_host_suspend);
6467 EXPORT_SYMBOL_GPL(ata_host_resume);
6468 EXPORT_SYMBOL_GPL(ata_id_string);
6469 EXPORT_SYMBOL_GPL(ata_id_c_string);
6470 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6471 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6473 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6474 EXPORT_SYMBOL_GPL(ata_timing_compute);
6475 EXPORT_SYMBOL_GPL(ata_timing_merge);
6477 #ifdef CONFIG_PCI
6478 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6479 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6480 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6481 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6482 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6483 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6484 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6485 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6486 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6487 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6488 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6489 #endif /* CONFIG_PCI */
6491 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6492 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6494 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6495 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6496 EXPORT_SYMBOL_GPL(ata_port_abort);
6497 EXPORT_SYMBOL_GPL(ata_port_freeze);
6498 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6499 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6500 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6501 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6502 EXPORT_SYMBOL_GPL(ata_do_eh);