[ARM] 3358/1: [S3C2410] add missing SPI DMA resources
[linux-2.6/linux-loongson.git] / drivers / scsi / libata-core.c
blob4f91b0dc572bb5b1aea66a6aed56df874808eac8
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 MODULE_AUTHOR("Jeff Garzik");
90 MODULE_DESCRIPTION("Library module for ATA devices");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
94 /**
95 * ata_tf_load_pio - send taskfile registers to host controller
96 * @ap: Port to which output is sent
97 * @tf: ATA taskfile register set
99 * Outputs ATA taskfile to standard ATA host controller.
101 * LOCKING:
102 * Inherited from caller.
105 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
107 struct ata_ioports *ioaddr = &ap->ioaddr;
108 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
110 if (tf->ctl != ap->last_ctl) {
111 outb(tf->ctl, ioaddr->ctl_addr);
112 ap->last_ctl = tf->ctl;
113 ata_wait_idle(ap);
116 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
117 outb(tf->hob_feature, ioaddr->feature_addr);
118 outb(tf->hob_nsect, ioaddr->nsect_addr);
119 outb(tf->hob_lbal, ioaddr->lbal_addr);
120 outb(tf->hob_lbam, ioaddr->lbam_addr);
121 outb(tf->hob_lbah, ioaddr->lbah_addr);
122 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
123 tf->hob_feature,
124 tf->hob_nsect,
125 tf->hob_lbal,
126 tf->hob_lbam,
127 tf->hob_lbah);
130 if (is_addr) {
131 outb(tf->feature, ioaddr->feature_addr);
132 outb(tf->nsect, ioaddr->nsect_addr);
133 outb(tf->lbal, ioaddr->lbal_addr);
134 outb(tf->lbam, ioaddr->lbam_addr);
135 outb(tf->lbah, ioaddr->lbah_addr);
136 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
137 tf->feature,
138 tf->nsect,
139 tf->lbal,
140 tf->lbam,
141 tf->lbah);
144 if (tf->flags & ATA_TFLAG_DEVICE) {
145 outb(tf->device, ioaddr->device_addr);
146 VPRINTK("device 0x%X\n", tf->device);
149 ata_wait_idle(ap);
153 * ata_tf_load_mmio - send taskfile registers to host controller
154 * @ap: Port to which output is sent
155 * @tf: ATA taskfile register set
157 * Outputs ATA taskfile to standard ATA host controller using MMIO.
159 * LOCKING:
160 * Inherited from caller.
163 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
165 struct ata_ioports *ioaddr = &ap->ioaddr;
166 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
168 if (tf->ctl != ap->last_ctl) {
169 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
170 ap->last_ctl = tf->ctl;
171 ata_wait_idle(ap);
174 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
175 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
176 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
177 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
178 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
179 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
180 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
181 tf->hob_feature,
182 tf->hob_nsect,
183 tf->hob_lbal,
184 tf->hob_lbam,
185 tf->hob_lbah);
188 if (is_addr) {
189 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
190 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
191 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
192 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
193 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
194 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
195 tf->feature,
196 tf->nsect,
197 tf->lbal,
198 tf->lbam,
199 tf->lbah);
202 if (tf->flags & ATA_TFLAG_DEVICE) {
203 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
204 VPRINTK("device 0x%X\n", tf->device);
207 ata_wait_idle(ap);
212 * ata_tf_load - send taskfile registers to host controller
213 * @ap: Port to which output is sent
214 * @tf: ATA taskfile register set
216 * Outputs ATA taskfile to standard ATA host controller using MMIO
217 * or PIO as indicated by the ATA_FLAG_MMIO flag.
218 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
219 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
220 * hob_lbal, hob_lbam, and hob_lbah.
222 * This function waits for idle (!BUSY and !DRQ) after writing
223 * registers. If the control register has a new value, this
224 * function also waits for idle after writing control and before
225 * writing the remaining registers.
227 * May be used as the tf_load() entry in ata_port_operations.
229 * LOCKING:
230 * Inherited from caller.
232 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
234 if (ap->flags & ATA_FLAG_MMIO)
235 ata_tf_load_mmio(ap, tf);
236 else
237 ata_tf_load_pio(ap, tf);
241 * ata_exec_command_pio - issue ATA command to host controller
242 * @ap: port to which command is being issued
243 * @tf: ATA taskfile register set
245 * Issues PIO write to ATA command register, with proper
246 * synchronization with interrupt handler / other threads.
248 * LOCKING:
249 * spin_lock_irqsave(host_set lock)
252 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
254 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
256 outb(tf->command, ap->ioaddr.command_addr);
257 ata_pause(ap);
262 * ata_exec_command_mmio - issue ATA command to host controller
263 * @ap: port to which command is being issued
264 * @tf: ATA taskfile register set
266 * Issues MMIO write to ATA command register, with proper
267 * synchronization with interrupt handler / other threads.
269 * LOCKING:
270 * spin_lock_irqsave(host_set lock)
273 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
275 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
277 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
278 ata_pause(ap);
283 * ata_exec_command - issue ATA command to host controller
284 * @ap: port to which command is being issued
285 * @tf: ATA taskfile register set
287 * Issues PIO/MMIO write to ATA command register, with proper
288 * synchronization with interrupt handler / other threads.
290 * LOCKING:
291 * spin_lock_irqsave(host_set lock)
293 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
295 if (ap->flags & ATA_FLAG_MMIO)
296 ata_exec_command_mmio(ap, tf);
297 else
298 ata_exec_command_pio(ap, tf);
302 * ata_tf_to_host - issue ATA taskfile to host controller
303 * @ap: port to which command is being issued
304 * @tf: ATA taskfile register set
306 * Issues ATA taskfile register set to ATA host controller,
307 * with proper synchronization with interrupt handler and
308 * other threads.
310 * LOCKING:
311 * spin_lock_irqsave(host_set lock)
314 static inline void ata_tf_to_host(struct ata_port *ap,
315 const struct ata_taskfile *tf)
317 ap->ops->tf_load(ap, tf);
318 ap->ops->exec_command(ap, tf);
322 * ata_tf_read_pio - input device's ATA taskfile shadow registers
323 * @ap: Port from which input is read
324 * @tf: ATA taskfile register set for storing input
326 * Reads ATA taskfile registers for currently-selected device
327 * into @tf.
329 * LOCKING:
330 * Inherited from caller.
333 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
335 struct ata_ioports *ioaddr = &ap->ioaddr;
337 tf->command = ata_check_status(ap);
338 tf->feature = inb(ioaddr->error_addr);
339 tf->nsect = inb(ioaddr->nsect_addr);
340 tf->lbal = inb(ioaddr->lbal_addr);
341 tf->lbam = inb(ioaddr->lbam_addr);
342 tf->lbah = inb(ioaddr->lbah_addr);
343 tf->device = inb(ioaddr->device_addr);
345 if (tf->flags & ATA_TFLAG_LBA48) {
346 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
347 tf->hob_feature = inb(ioaddr->error_addr);
348 tf->hob_nsect = inb(ioaddr->nsect_addr);
349 tf->hob_lbal = inb(ioaddr->lbal_addr);
350 tf->hob_lbam = inb(ioaddr->lbam_addr);
351 tf->hob_lbah = inb(ioaddr->lbah_addr);
356 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
357 * @ap: Port from which input is read
358 * @tf: ATA taskfile register set for storing input
360 * Reads ATA taskfile registers for currently-selected device
361 * into @tf via MMIO.
363 * LOCKING:
364 * Inherited from caller.
367 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
369 struct ata_ioports *ioaddr = &ap->ioaddr;
371 tf->command = ata_check_status(ap);
372 tf->feature = readb((void __iomem *)ioaddr->error_addr);
373 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
374 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
375 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
376 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
377 tf->device = readb((void __iomem *)ioaddr->device_addr);
379 if (tf->flags & ATA_TFLAG_LBA48) {
380 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
381 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
382 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
383 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
384 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
385 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
391 * ata_tf_read - input device's ATA taskfile shadow registers
392 * @ap: Port from which input is read
393 * @tf: ATA taskfile register set for storing input
395 * Reads ATA taskfile registers for currently-selected device
396 * into @tf.
398 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
399 * is set, also reads the hob registers.
401 * May be used as the tf_read() entry in ata_port_operations.
403 * LOCKING:
404 * Inherited from caller.
406 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
408 if (ap->flags & ATA_FLAG_MMIO)
409 ata_tf_read_mmio(ap, tf);
410 else
411 ata_tf_read_pio(ap, tf);
415 * ata_check_status_pio - Read device status reg & clear interrupt
416 * @ap: port where the device is
418 * Reads ATA taskfile status register for currently-selected device
419 * and return its value. This also clears pending interrupts
420 * from this device
422 * LOCKING:
423 * Inherited from caller.
425 static u8 ata_check_status_pio(struct ata_port *ap)
427 return inb(ap->ioaddr.status_addr);
431 * ata_check_status_mmio - Read device status reg & clear interrupt
432 * @ap: port where the device is
434 * Reads ATA taskfile status register for currently-selected device
435 * via MMIO and return its value. This also clears pending interrupts
436 * from this device
438 * LOCKING:
439 * Inherited from caller.
441 static u8 ata_check_status_mmio(struct ata_port *ap)
443 return readb((void __iomem *) ap->ioaddr.status_addr);
448 * ata_check_status - Read device status reg & clear interrupt
449 * @ap: port where the device is
451 * Reads ATA taskfile status register for currently-selected device
452 * and return its value. This also clears pending interrupts
453 * from this device
455 * May be used as the check_status() entry in ata_port_operations.
457 * LOCKING:
458 * Inherited from caller.
460 u8 ata_check_status(struct ata_port *ap)
462 if (ap->flags & ATA_FLAG_MMIO)
463 return ata_check_status_mmio(ap);
464 return ata_check_status_pio(ap);
469 * ata_altstatus - Read device alternate status reg
470 * @ap: port where the device is
472 * Reads ATA taskfile alternate status register for
473 * currently-selected device and return its value.
475 * Note: may NOT be used as the check_altstatus() entry in
476 * ata_port_operations.
478 * LOCKING:
479 * Inherited from caller.
481 u8 ata_altstatus(struct ata_port *ap)
483 if (ap->ops->check_altstatus)
484 return ap->ops->check_altstatus(ap);
486 if (ap->flags & ATA_FLAG_MMIO)
487 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
488 return inb(ap->ioaddr.altstatus_addr);
493 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
494 * @tf: Taskfile to convert
495 * @fis: Buffer into which data will output
496 * @pmp: Port multiplier port
498 * Converts a standard ATA taskfile to a Serial ATA
499 * FIS structure (Register - Host to Device).
501 * LOCKING:
502 * Inherited from caller.
505 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
507 fis[0] = 0x27; /* Register - Host to Device FIS */
508 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
509 bit 7 indicates Command FIS */
510 fis[2] = tf->command;
511 fis[3] = tf->feature;
513 fis[4] = tf->lbal;
514 fis[5] = tf->lbam;
515 fis[6] = tf->lbah;
516 fis[7] = tf->device;
518 fis[8] = tf->hob_lbal;
519 fis[9] = tf->hob_lbam;
520 fis[10] = tf->hob_lbah;
521 fis[11] = tf->hob_feature;
523 fis[12] = tf->nsect;
524 fis[13] = tf->hob_nsect;
525 fis[14] = 0;
526 fis[15] = tf->ctl;
528 fis[16] = 0;
529 fis[17] = 0;
530 fis[18] = 0;
531 fis[19] = 0;
535 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
536 * @fis: Buffer from which data will be input
537 * @tf: Taskfile to output
539 * Converts a serial ATA FIS structure to a standard ATA taskfile.
541 * LOCKING:
542 * Inherited from caller.
545 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
547 tf->command = fis[2]; /* status */
548 tf->feature = fis[3]; /* error */
550 tf->lbal = fis[4];
551 tf->lbam = fis[5];
552 tf->lbah = fis[6];
553 tf->device = fis[7];
555 tf->hob_lbal = fis[8];
556 tf->hob_lbam = fis[9];
557 tf->hob_lbah = fis[10];
559 tf->nsect = fis[12];
560 tf->hob_nsect = fis[13];
563 static const u8 ata_rw_cmds[] = {
564 /* pio multi */
565 ATA_CMD_READ_MULTI,
566 ATA_CMD_WRITE_MULTI,
567 ATA_CMD_READ_MULTI_EXT,
568 ATA_CMD_WRITE_MULTI_EXT,
572 ATA_CMD_WRITE_MULTI_FUA_EXT,
573 /* pio */
574 ATA_CMD_PIO_READ,
575 ATA_CMD_PIO_WRITE,
576 ATA_CMD_PIO_READ_EXT,
577 ATA_CMD_PIO_WRITE_EXT,
582 /* dma */
583 ATA_CMD_READ,
584 ATA_CMD_WRITE,
585 ATA_CMD_READ_EXT,
586 ATA_CMD_WRITE_EXT,
590 ATA_CMD_WRITE_FUA_EXT
594 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
595 * @qc: command to examine and configure
597 * Examine the device configuration and tf->flags to calculate
598 * the proper read/write commands and protocol to use.
600 * LOCKING:
601 * caller.
603 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
605 struct ata_taskfile *tf = &qc->tf;
606 struct ata_device *dev = qc->dev;
607 u8 cmd;
609 int index, fua, lba48, write;
611 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
612 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
613 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615 if (dev->flags & ATA_DFLAG_PIO) {
616 tf->protocol = ATA_PROT_PIO;
617 index = dev->multi_count ? 0 : 8;
618 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
619 /* Unable to use DMA due to host limitation */
620 tf->protocol = ATA_PROT_PIO;
621 index = dev->multi_count ? 0 : 8;
622 } else {
623 tf->protocol = ATA_PROT_DMA;
624 index = 16;
627 cmd = ata_rw_cmds[index + fua + lba48 + write];
628 if (cmd) {
629 tf->command = cmd;
630 return 0;
632 return -1;
635 static const char * const xfer_mode_str[] = {
636 "UDMA/16",
637 "UDMA/25",
638 "UDMA/33",
639 "UDMA/44",
640 "UDMA/66",
641 "UDMA/100",
642 "UDMA/133",
643 "UDMA7",
644 "MWDMA0",
645 "MWDMA1",
646 "MWDMA2",
647 "PIO0",
648 "PIO1",
649 "PIO2",
650 "PIO3",
651 "PIO4",
655 * ata_udma_string - convert UDMA bit offset to string
656 * @mask: mask of bits supported; only highest bit counts.
658 * Determine string which represents the highest speed
659 * (highest bit in @udma_mask).
661 * LOCKING:
662 * None.
664 * RETURNS:
665 * Constant C string representing highest speed listed in
666 * @udma_mask, or the constant C string "<n/a>".
669 static const char *ata_mode_string(unsigned int mask)
671 int i;
673 for (i = 7; i >= 0; i--)
674 if (mask & (1 << i))
675 goto out;
676 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
677 if (mask & (1 << i))
678 goto out;
679 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
680 if (mask & (1 << i))
681 goto out;
683 return "<n/a>";
685 out:
686 return xfer_mode_str[i];
690 * ata_pio_devchk - PATA device presence detection
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
694 * This technique was originally described in
695 * Hale Landis's ATADRVR (www.ata-atapi.com), and
696 * later found its way into the ATA/ATAPI spec.
698 * Write a pattern to the ATA shadow registers,
699 * and if a device is present, it will respond by
700 * correctly storing and echoing back the
701 * ATA shadow register contents.
703 * LOCKING:
704 * caller.
707 static unsigned int ata_pio_devchk(struct ata_port *ap,
708 unsigned int device)
710 struct ata_ioports *ioaddr = &ap->ioaddr;
711 u8 nsect, lbal;
713 ap->ops->dev_select(ap, device);
715 outb(0x55, ioaddr->nsect_addr);
716 outb(0xaa, ioaddr->lbal_addr);
718 outb(0xaa, ioaddr->nsect_addr);
719 outb(0x55, ioaddr->lbal_addr);
721 outb(0x55, ioaddr->nsect_addr);
722 outb(0xaa, ioaddr->lbal_addr);
724 nsect = inb(ioaddr->nsect_addr);
725 lbal = inb(ioaddr->lbal_addr);
727 if ((nsect == 0x55) && (lbal == 0xaa))
728 return 1; /* we found a device */
730 return 0; /* nothing found */
734 * ata_mmio_devchk - PATA device presence detection
735 * @ap: ATA channel to examine
736 * @device: Device to examine (starting at zero)
738 * This technique was originally described in
739 * Hale Landis's ATADRVR (www.ata-atapi.com), and
740 * later found its way into the ATA/ATAPI spec.
742 * Write a pattern to the ATA shadow registers,
743 * and if a device is present, it will respond by
744 * correctly storing and echoing back the
745 * ATA shadow register contents.
747 * LOCKING:
748 * caller.
751 static unsigned int ata_mmio_devchk(struct ata_port *ap,
752 unsigned int device)
754 struct ata_ioports *ioaddr = &ap->ioaddr;
755 u8 nsect, lbal;
757 ap->ops->dev_select(ap, device);
759 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
760 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
762 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
763 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
765 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
766 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
768 nsect = readb((void __iomem *) ioaddr->nsect_addr);
769 lbal = readb((void __iomem *) ioaddr->lbal_addr);
771 if ((nsect == 0x55) && (lbal == 0xaa))
772 return 1; /* we found a device */
774 return 0; /* nothing found */
778 * ata_devchk - PATA device presence detection
779 * @ap: ATA channel to examine
780 * @device: Device to examine (starting at zero)
782 * Dispatch ATA device presence detection, depending
783 * on whether we are using PIO or MMIO to talk to the
784 * ATA shadow registers.
786 * LOCKING:
787 * caller.
790 static unsigned int ata_devchk(struct ata_port *ap,
791 unsigned int device)
793 if (ap->flags & ATA_FLAG_MMIO)
794 return ata_mmio_devchk(ap, device);
795 return ata_pio_devchk(ap, device);
799 * ata_dev_classify - determine device type based on ATA-spec signature
800 * @tf: ATA taskfile register set for device to be identified
802 * Determine from taskfile register contents whether a device is
803 * ATA or ATAPI, as per "Signature and persistence" section
804 * of ATA/PI spec (volume 1, sect 5.14).
806 * LOCKING:
807 * None.
809 * RETURNS:
810 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
811 * the event of failure.
814 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
816 /* Apple's open source Darwin code hints that some devices only
817 * put a proper signature into the LBA mid/high registers,
818 * So, we only check those. It's sufficient for uniqueness.
821 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
822 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
823 DPRINTK("found ATA device by sig\n");
824 return ATA_DEV_ATA;
827 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
828 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
829 DPRINTK("found ATAPI device by sig\n");
830 return ATA_DEV_ATAPI;
833 DPRINTK("unknown device\n");
834 return ATA_DEV_UNKNOWN;
838 * ata_dev_try_classify - Parse returned ATA device signature
839 * @ap: ATA channel to examine
840 * @device: Device to examine (starting at zero)
842 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
843 * an ATA/ATAPI-defined set of values is placed in the ATA
844 * shadow registers, indicating the results of device detection
845 * and diagnostics.
847 * Select the ATA device, and read the values from the ATA shadow
848 * registers. Then parse according to the Error register value,
849 * and the spec-defined values examined by ata_dev_classify().
851 * LOCKING:
852 * caller.
855 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
857 struct ata_device *dev = &ap->device[device];
858 struct ata_taskfile tf;
859 unsigned int class;
860 u8 err;
862 ap->ops->dev_select(ap, device);
864 memset(&tf, 0, sizeof(tf));
866 ap->ops->tf_read(ap, &tf);
867 err = tf.feature;
869 dev->class = ATA_DEV_NONE;
871 /* see if device passed diags */
872 if (err == 1)
873 /* do nothing */ ;
874 else if ((device == 0) && (err == 0x81))
875 /* do nothing */ ;
876 else
877 return err;
879 /* determine if device if ATA or ATAPI */
880 class = ata_dev_classify(&tf);
881 if (class == ATA_DEV_UNKNOWN)
882 return err;
883 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
884 return err;
886 dev->class = class;
888 return err;
892 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
893 * @id: IDENTIFY DEVICE results we will examine
894 * @s: string into which data is output
895 * @ofs: offset into identify device page
896 * @len: length of string to return. must be an even number.
898 * The strings in the IDENTIFY DEVICE page are broken up into
899 * 16-bit chunks. Run through the string, and output each
900 * 8-bit chunk linearly, regardless of platform.
902 * LOCKING:
903 * caller.
906 void ata_dev_id_string(const u16 *id, unsigned char *s,
907 unsigned int ofs, unsigned int len)
909 unsigned int c;
911 while (len > 0) {
912 c = id[ofs] >> 8;
913 *s = c;
914 s++;
916 c = id[ofs] & 0xff;
917 *s = c;
918 s++;
920 ofs++;
921 len -= 2;
927 * ata_noop_dev_select - Select device 0/1 on ATA bus
928 * @ap: ATA channel to manipulate
929 * @device: ATA device (numbered from zero) to select
931 * This function performs no actual function.
933 * May be used as the dev_select() entry in ata_port_operations.
935 * LOCKING:
936 * caller.
938 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
944 * ata_std_dev_select - Select device 0/1 on ATA bus
945 * @ap: ATA channel to manipulate
946 * @device: ATA device (numbered from zero) to select
948 * Use the method defined in the ATA specification to
949 * make either device 0, or device 1, active on the
950 * ATA channel. Works with both PIO and MMIO.
952 * May be used as the dev_select() entry in ata_port_operations.
954 * LOCKING:
955 * caller.
958 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
960 u8 tmp;
962 if (device == 0)
963 tmp = ATA_DEVICE_OBS;
964 else
965 tmp = ATA_DEVICE_OBS | ATA_DEV1;
967 if (ap->flags & ATA_FLAG_MMIO) {
968 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
969 } else {
970 outb(tmp, ap->ioaddr.device_addr);
972 ata_pause(ap); /* needed; also flushes, for mmio */
976 * ata_dev_select - Select device 0/1 on ATA bus
977 * @ap: ATA channel to manipulate
978 * @device: ATA device (numbered from zero) to select
979 * @wait: non-zero to wait for Status register BSY bit to clear
980 * @can_sleep: non-zero if context allows sleeping
982 * Use the method defined in the ATA specification to
983 * make either device 0, or device 1, active on the
984 * ATA channel.
986 * This is a high-level version of ata_std_dev_select(),
987 * which additionally provides the services of inserting
988 * the proper pauses and status polling, where needed.
990 * LOCKING:
991 * caller.
994 void ata_dev_select(struct ata_port *ap, unsigned int device,
995 unsigned int wait, unsigned int can_sleep)
997 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
998 ap->id, device, wait);
1000 if (wait)
1001 ata_wait_idle(ap);
1003 ap->ops->dev_select(ap, device);
1005 if (wait) {
1006 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1007 msleep(150);
1008 ata_wait_idle(ap);
1013 * ata_dump_id - IDENTIFY DEVICE info debugging output
1014 * @dev: Device whose IDENTIFY DEVICE page we will dump
1016 * Dump selected 16-bit words from a detected device's
1017 * IDENTIFY PAGE page.
1019 * LOCKING:
1020 * caller.
1023 static inline void ata_dump_id(const struct ata_device *dev)
1025 DPRINTK("49==0x%04x "
1026 "53==0x%04x "
1027 "63==0x%04x "
1028 "64==0x%04x "
1029 "75==0x%04x \n",
1030 dev->id[49],
1031 dev->id[53],
1032 dev->id[63],
1033 dev->id[64],
1034 dev->id[75]);
1035 DPRINTK("80==0x%04x "
1036 "81==0x%04x "
1037 "82==0x%04x "
1038 "83==0x%04x "
1039 "84==0x%04x \n",
1040 dev->id[80],
1041 dev->id[81],
1042 dev->id[82],
1043 dev->id[83],
1044 dev->id[84]);
1045 DPRINTK("88==0x%04x "
1046 "93==0x%04x\n",
1047 dev->id[88],
1048 dev->id[93]);
1052 * Compute the PIO modes available for this device. This is not as
1053 * trivial as it seems if we must consider early devices correctly.
1055 * FIXME: pre IDE drive timing (do we care ?).
1058 static unsigned int ata_pio_modes(const struct ata_device *adev)
1060 u16 modes;
1062 /* Usual case. Word 53 indicates word 64 is valid */
1063 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1064 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1065 modes <<= 3;
1066 modes |= 0x7;
1067 return modes;
1070 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1071 number for the maximum. Turn it into a mask and return it */
1072 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1073 return modes;
1074 /* But wait.. there's more. Design your standards by committee and
1075 you too can get a free iordy field to process. However its the
1076 speeds not the modes that are supported... Note drivers using the
1077 timing API will get this right anyway */
1080 struct ata_exec_internal_arg {
1081 unsigned int err_mask;
1082 struct ata_taskfile *tf;
1083 struct completion *waiting;
1086 int ata_qc_complete_internal(struct ata_queued_cmd *qc)
1088 struct ata_exec_internal_arg *arg = qc->private_data;
1089 struct completion *waiting = arg->waiting;
1091 if (!(qc->err_mask & ~AC_ERR_DEV))
1092 qc->ap->ops->tf_read(qc->ap, arg->tf);
1093 arg->err_mask = qc->err_mask;
1094 arg->waiting = NULL;
1095 complete(waiting);
1097 return 0;
1101 * ata_exec_internal - execute libata internal command
1102 * @ap: Port to which the command is sent
1103 * @dev: Device to which the command is sent
1104 * @tf: Taskfile registers for the command and the result
1105 * @dma_dir: Data tranfer direction of the command
1106 * @buf: Data buffer of the command
1107 * @buflen: Length of data buffer
1109 * Executes libata internal command with timeout. @tf contains
1110 * command on entry and result on return. Timeout and error
1111 * conditions are reported via return value. No recovery action
1112 * is taken after a command times out. It's caller's duty to
1113 * clean up after timeout.
1115 * LOCKING:
1116 * None. Should be called with kernel context, might sleep.
1119 static unsigned
1120 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1121 struct ata_taskfile *tf,
1122 int dma_dir, void *buf, unsigned int buflen)
1124 u8 command = tf->command;
1125 struct ata_queued_cmd *qc;
1126 DECLARE_COMPLETION(wait);
1127 unsigned long flags;
1128 struct ata_exec_internal_arg arg;
1130 spin_lock_irqsave(&ap->host_set->lock, flags);
1132 qc = ata_qc_new_init(ap, dev);
1133 BUG_ON(qc == NULL);
1135 qc->tf = *tf;
1136 qc->dma_dir = dma_dir;
1137 if (dma_dir != DMA_NONE) {
1138 ata_sg_init_one(qc, buf, buflen);
1139 qc->nsect = buflen / ATA_SECT_SIZE;
1142 arg.waiting = &wait;
1143 arg.tf = tf;
1144 qc->private_data = &arg;
1145 qc->complete_fn = ata_qc_complete_internal;
1147 if (ata_qc_issue(qc))
1148 goto issue_fail;
1150 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1152 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1153 spin_lock_irqsave(&ap->host_set->lock, flags);
1155 /* We're racing with irq here. If we lose, the
1156 * following test prevents us from completing the qc
1157 * again. If completion irq occurs after here but
1158 * before the caller cleans up, it will result in a
1159 * spurious interrupt. We can live with that.
1161 if (arg.waiting) {
1162 qc->err_mask = AC_ERR_OTHER;
1163 ata_qc_complete(qc);
1164 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1165 ap->id, command);
1168 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1171 return arg.err_mask;
1173 issue_fail:
1174 ata_qc_free(qc);
1175 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1176 return AC_ERR_OTHER;
1180 * ata_pio_need_iordy - check if iordy needed
1181 * @adev: ATA device
1183 * Check if the current speed of the device requires IORDY. Used
1184 * by various controllers for chip configuration.
1187 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1189 int pio;
1190 int speed = adev->pio_mode - XFER_PIO_0;
1192 if (speed < 2)
1193 return 0;
1194 if (speed > 2)
1195 return 1;
1197 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1199 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1200 pio = adev->id[ATA_ID_EIDE_PIO];
1201 /* Is the speed faster than the drive allows non IORDY ? */
1202 if (pio) {
1203 /* This is cycle times not frequency - watch the logic! */
1204 if (pio > 240) /* PIO2 is 240nS per cycle */
1205 return 1;
1206 return 0;
1209 return 0;
1213 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1214 * @ap: port on which device we wish to probe resides
1215 * @device: device bus address, starting at zero
1217 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1218 * command, and read back the 512-byte device information page.
1219 * The device information page is fed to us via the standard
1220 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1221 * using standard PIO-IN paths)
1223 * After reading the device information page, we use several
1224 * bits of information from it to initialize data structures
1225 * that will be used during the lifetime of the ata_device.
1226 * Other data from the info page is used to disqualify certain
1227 * older ATA devices we do not wish to support.
1229 * LOCKING:
1230 * Inherited from caller. Some functions called by this function
1231 * obtain the host_set lock.
1234 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1236 struct ata_device *dev = &ap->device[device];
1237 unsigned int major_version;
1238 u16 tmp;
1239 unsigned long xfer_modes;
1240 unsigned int using_edd;
1241 struct ata_taskfile tf;
1242 unsigned int err_mask;
1243 int rc;
1245 if (!ata_dev_present(dev)) {
1246 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1247 ap->id, device);
1248 return;
1251 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1252 using_edd = 0;
1253 else
1254 using_edd = 1;
1256 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1258 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1259 dev->class == ATA_DEV_NONE);
1261 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1263 retry:
1264 ata_tf_init(ap, &tf, device);
1266 if (dev->class == ATA_DEV_ATA) {
1267 tf.command = ATA_CMD_ID_ATA;
1268 DPRINTK("do ATA identify\n");
1269 } else {
1270 tf.command = ATA_CMD_ID_ATAPI;
1271 DPRINTK("do ATAPI identify\n");
1274 tf.protocol = ATA_PROT_PIO;
1276 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1277 dev->id, sizeof(dev->id));
1279 if (err_mask) {
1280 if (err_mask & ~AC_ERR_DEV)
1281 goto err_out;
1284 * arg! EDD works for all test cases, but seems to return
1285 * the ATA signature for some ATAPI devices. Until the
1286 * reason for this is found and fixed, we fix up the mess
1287 * here. If IDENTIFY DEVICE returns command aborted
1288 * (as ATAPI devices do), then we issue an
1289 * IDENTIFY PACKET DEVICE.
1291 * ATA software reset (SRST, the default) does not appear
1292 * to have this problem.
1294 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1295 u8 err = tf.feature;
1296 if (err & ATA_ABORTED) {
1297 dev->class = ATA_DEV_ATAPI;
1298 goto retry;
1301 goto err_out;
1304 swap_buf_le16(dev->id, ATA_ID_WORDS);
1306 /* print device capabilities */
1307 printk(KERN_DEBUG "ata%u: dev %u cfg "
1308 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1309 ap->id, device, dev->id[49],
1310 dev->id[82], dev->id[83], dev->id[84],
1311 dev->id[85], dev->id[86], dev->id[87],
1312 dev->id[88]);
1315 * common ATA, ATAPI feature tests
1318 /* we require DMA support (bits 8 of word 49) */
1319 if (!ata_id_has_dma(dev->id)) {
1320 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1321 goto err_out_nosup;
1324 /* quick-n-dirty find max transfer mode; for printk only */
1325 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1326 if (!xfer_modes)
1327 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1328 if (!xfer_modes)
1329 xfer_modes = ata_pio_modes(dev);
1331 ata_dump_id(dev);
1333 /* ATA-specific feature tests */
1334 if (dev->class == ATA_DEV_ATA) {
1335 if (!ata_id_is_ata(dev->id)) /* sanity check */
1336 goto err_out_nosup;
1338 /* get major version */
1339 tmp = dev->id[ATA_ID_MAJOR_VER];
1340 for (major_version = 14; major_version >= 1; major_version--)
1341 if (tmp & (1 << major_version))
1342 break;
1345 * The exact sequence expected by certain pre-ATA4 drives is:
1346 * SRST RESET
1347 * IDENTIFY
1348 * INITIALIZE DEVICE PARAMETERS
1349 * anything else..
1350 * Some drives were very specific about that exact sequence.
1352 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1353 ata_dev_init_params(ap, dev);
1355 /* current CHS translation info (id[53-58]) might be
1356 * changed. reread the identify device info.
1358 ata_dev_reread_id(ap, dev);
1361 if (ata_id_has_lba(dev->id)) {
1362 dev->flags |= ATA_DFLAG_LBA;
1364 if (ata_id_has_lba48(dev->id)) {
1365 dev->flags |= ATA_DFLAG_LBA48;
1366 dev->n_sectors = ata_id_u64(dev->id, 100);
1367 } else {
1368 dev->n_sectors = ata_id_u32(dev->id, 60);
1371 /* print device info to dmesg */
1372 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1373 ap->id, device,
1374 major_version,
1375 ata_mode_string(xfer_modes),
1376 (unsigned long long)dev->n_sectors,
1377 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1378 } else {
1379 /* CHS */
1381 /* Default translation */
1382 dev->cylinders = dev->id[1];
1383 dev->heads = dev->id[3];
1384 dev->sectors = dev->id[6];
1385 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1387 if (ata_id_current_chs_valid(dev->id)) {
1388 /* Current CHS translation is valid. */
1389 dev->cylinders = dev->id[54];
1390 dev->heads = dev->id[55];
1391 dev->sectors = dev->id[56];
1393 dev->n_sectors = ata_id_u32(dev->id, 57);
1396 /* print device info to dmesg */
1397 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1398 ap->id, device,
1399 major_version,
1400 ata_mode_string(xfer_modes),
1401 (unsigned long long)dev->n_sectors,
1402 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1406 ap->host->max_cmd_len = 16;
1409 /* ATAPI-specific feature tests */
1410 else if (dev->class == ATA_DEV_ATAPI) {
1411 if (ata_id_is_ata(dev->id)) /* sanity check */
1412 goto err_out_nosup;
1414 rc = atapi_cdb_len(dev->id);
1415 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1416 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1417 goto err_out_nosup;
1419 ap->cdb_len = (unsigned int) rc;
1420 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1422 /* print device info to dmesg */
1423 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1424 ap->id, device,
1425 ata_mode_string(xfer_modes));
1428 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1429 return;
1431 err_out_nosup:
1432 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1433 ap->id, device);
1434 err_out:
1435 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1436 DPRINTK("EXIT, err\n");
1440 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1442 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1446 * ata_dev_config - Run device specific handlers and check for
1447 * SATA->PATA bridges
1448 * @ap: Bus
1449 * @i: Device
1451 * LOCKING:
1454 void ata_dev_config(struct ata_port *ap, unsigned int i)
1456 /* limit bridge transfers to udma5, 200 sectors */
1457 if (ata_dev_knobble(ap)) {
1458 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1459 ap->id, ap->device->devno);
1460 ap->udma_mask &= ATA_UDMA5;
1461 ap->host->max_sectors = ATA_MAX_SECTORS;
1462 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1463 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1466 if (ap->ops->dev_config)
1467 ap->ops->dev_config(ap, &ap->device[i]);
1471 * ata_bus_probe - Reset and probe ATA bus
1472 * @ap: Bus to probe
1474 * Master ATA bus probing function. Initiates a hardware-dependent
1475 * bus reset, then attempts to identify any devices found on
1476 * the bus.
1478 * LOCKING:
1479 * PCI/etc. bus probe sem.
1481 * RETURNS:
1482 * Zero on success, non-zero on error.
1485 static int ata_bus_probe(struct ata_port *ap)
1487 unsigned int i, found = 0;
1489 ap->ops->phy_reset(ap);
1490 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1491 goto err_out;
1493 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1494 ata_dev_identify(ap, i);
1495 if (ata_dev_present(&ap->device[i])) {
1496 found = 1;
1497 ata_dev_config(ap,i);
1501 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1502 goto err_out_disable;
1504 ata_set_mode(ap);
1505 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1506 goto err_out_disable;
1508 return 0;
1510 err_out_disable:
1511 ap->ops->port_disable(ap);
1512 err_out:
1513 return -1;
1517 * ata_port_probe - Mark port as enabled
1518 * @ap: Port for which we indicate enablement
1520 * Modify @ap data structure such that the system
1521 * thinks that the entire port is enabled.
1523 * LOCKING: host_set lock, or some other form of
1524 * serialization.
1527 void ata_port_probe(struct ata_port *ap)
1529 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1533 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1534 * @ap: SATA port associated with target SATA PHY.
1536 * This function issues commands to standard SATA Sxxx
1537 * PHY registers, to wake up the phy (and device), and
1538 * clear any reset condition.
1540 * LOCKING:
1541 * PCI/etc. bus probe sem.
1544 void __sata_phy_reset(struct ata_port *ap)
1546 u32 sstatus;
1547 unsigned long timeout = jiffies + (HZ * 5);
1549 if (ap->flags & ATA_FLAG_SATA_RESET) {
1550 /* issue phy wake/reset */
1551 scr_write_flush(ap, SCR_CONTROL, 0x301);
1552 /* Couldn't find anything in SATA I/II specs, but
1553 * AHCI-1.1 10.4.2 says at least 1 ms. */
1554 mdelay(1);
1556 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1558 /* wait for phy to become ready, if necessary */
1559 do {
1560 msleep(200);
1561 sstatus = scr_read(ap, SCR_STATUS);
1562 if ((sstatus & 0xf) != 1)
1563 break;
1564 } while (time_before(jiffies, timeout));
1566 /* TODO: phy layer with polling, timeouts, etc. */
1567 sstatus = scr_read(ap, SCR_STATUS);
1568 if (sata_dev_present(ap)) {
1569 const char *speed;
1570 u32 tmp;
1572 tmp = (sstatus >> 4) & 0xf;
1573 if (tmp & (1 << 0))
1574 speed = "1.5";
1575 else if (tmp & (1 << 1))
1576 speed = "3.0";
1577 else
1578 speed = "<unknown>";
1579 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1580 ap->id, speed, sstatus);
1581 ata_port_probe(ap);
1582 } else {
1583 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1584 ap->id, sstatus);
1585 ata_port_disable(ap);
1588 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1589 return;
1591 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1592 ata_port_disable(ap);
1593 return;
1596 ap->cbl = ATA_CBL_SATA;
1600 * sata_phy_reset - Reset SATA bus.
1601 * @ap: SATA port associated with target SATA PHY.
1603 * This function resets the SATA bus, and then probes
1604 * the bus for devices.
1606 * LOCKING:
1607 * PCI/etc. bus probe sem.
1610 void sata_phy_reset(struct ata_port *ap)
1612 __sata_phy_reset(ap);
1613 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1614 return;
1615 ata_bus_reset(ap);
1619 * ata_port_disable - Disable port.
1620 * @ap: Port to be disabled.
1622 * Modify @ap data structure such that the system
1623 * thinks that the entire port is disabled, and should
1624 * never attempt to probe or communicate with devices
1625 * on this port.
1627 * LOCKING: host_set lock, or some other form of
1628 * serialization.
1631 void ata_port_disable(struct ata_port *ap)
1633 ap->device[0].class = ATA_DEV_NONE;
1634 ap->device[1].class = ATA_DEV_NONE;
1635 ap->flags |= ATA_FLAG_PORT_DISABLED;
1639 * This mode timing computation functionality is ported over from
1640 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1643 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1644 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1645 * for PIO 5, which is a nonstandard extension and UDMA6, which
1646 * is currently supported only by Maxtor drives.
1649 static const struct ata_timing ata_timing[] = {
1651 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1652 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1653 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1654 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1656 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1657 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1658 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1660 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1662 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1663 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1664 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1666 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1667 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1668 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1670 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1671 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1672 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1674 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1675 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1676 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1678 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1680 { 0xFF }
1683 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1684 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1686 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1688 q->setup = EZ(t->setup * 1000, T);
1689 q->act8b = EZ(t->act8b * 1000, T);
1690 q->rec8b = EZ(t->rec8b * 1000, T);
1691 q->cyc8b = EZ(t->cyc8b * 1000, T);
1692 q->active = EZ(t->active * 1000, T);
1693 q->recover = EZ(t->recover * 1000, T);
1694 q->cycle = EZ(t->cycle * 1000, T);
1695 q->udma = EZ(t->udma * 1000, UT);
1698 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1699 struct ata_timing *m, unsigned int what)
1701 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1702 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1703 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1704 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1705 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1706 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1707 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1708 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1711 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1713 const struct ata_timing *t;
1715 for (t = ata_timing; t->mode != speed; t++)
1716 if (t->mode == 0xFF)
1717 return NULL;
1718 return t;
1721 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1722 struct ata_timing *t, int T, int UT)
1724 const struct ata_timing *s;
1725 struct ata_timing p;
1728 * Find the mode.
1731 if (!(s = ata_timing_find_mode(speed)))
1732 return -EINVAL;
1734 memcpy(t, s, sizeof(*s));
1737 * If the drive is an EIDE drive, it can tell us it needs extended
1738 * PIO/MW_DMA cycle timing.
1741 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1742 memset(&p, 0, sizeof(p));
1743 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1744 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1745 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1746 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1747 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1749 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1753 * Convert the timing to bus clock counts.
1756 ata_timing_quantize(t, t, T, UT);
1759 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1760 * and some other commands. We have to ensure that the DMA cycle timing is
1761 * slower/equal than the fastest PIO timing.
1764 if (speed > XFER_PIO_4) {
1765 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1766 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1770 * Lenghten active & recovery time so that cycle time is correct.
1773 if (t->act8b + t->rec8b < t->cyc8b) {
1774 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1775 t->rec8b = t->cyc8b - t->act8b;
1778 if (t->active + t->recover < t->cycle) {
1779 t->active += (t->cycle - (t->active + t->recover)) / 2;
1780 t->recover = t->cycle - t->active;
1783 return 0;
1786 static const struct {
1787 unsigned int shift;
1788 u8 base;
1789 } xfer_mode_classes[] = {
1790 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1791 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1792 { ATA_SHIFT_PIO, XFER_PIO_0 },
1795 static u8 base_from_shift(unsigned int shift)
1797 int i;
1799 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1800 if (xfer_mode_classes[i].shift == shift)
1801 return xfer_mode_classes[i].base;
1803 return 0xff;
1806 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1808 int ofs, idx;
1809 u8 base;
1811 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1812 return;
1814 if (dev->xfer_shift == ATA_SHIFT_PIO)
1815 dev->flags |= ATA_DFLAG_PIO;
1817 ata_dev_set_xfermode(ap, dev);
1819 base = base_from_shift(dev->xfer_shift);
1820 ofs = dev->xfer_mode - base;
1821 idx = ofs + dev->xfer_shift;
1822 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1824 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1825 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1827 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1828 ap->id, dev->devno, xfer_mode_str[idx]);
1831 static int ata_host_set_pio(struct ata_port *ap)
1833 unsigned int mask;
1834 int x, i;
1835 u8 base, xfer_mode;
1837 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1838 x = fgb(mask);
1839 if (x < 0) {
1840 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1841 return -1;
1844 base = base_from_shift(ATA_SHIFT_PIO);
1845 xfer_mode = base + x;
1847 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1848 (int)base, (int)xfer_mode, mask, x);
1850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1851 struct ata_device *dev = &ap->device[i];
1852 if (ata_dev_present(dev)) {
1853 dev->pio_mode = xfer_mode;
1854 dev->xfer_mode = xfer_mode;
1855 dev->xfer_shift = ATA_SHIFT_PIO;
1856 if (ap->ops->set_piomode)
1857 ap->ops->set_piomode(ap, dev);
1861 return 0;
1864 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1865 unsigned int xfer_shift)
1867 int i;
1869 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1870 struct ata_device *dev = &ap->device[i];
1871 if (ata_dev_present(dev)) {
1872 dev->dma_mode = xfer_mode;
1873 dev->xfer_mode = xfer_mode;
1874 dev->xfer_shift = xfer_shift;
1875 if (ap->ops->set_dmamode)
1876 ap->ops->set_dmamode(ap, dev);
1882 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1883 * @ap: port on which timings will be programmed
1885 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1887 * LOCKING:
1888 * PCI/etc. bus probe sem.
1891 static void ata_set_mode(struct ata_port *ap)
1893 unsigned int xfer_shift;
1894 u8 xfer_mode;
1895 int rc;
1897 /* step 1: always set host PIO timings */
1898 rc = ata_host_set_pio(ap);
1899 if (rc)
1900 goto err_out;
1902 /* step 2: choose the best data xfer mode */
1903 xfer_mode = xfer_shift = 0;
1904 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1905 if (rc)
1906 goto err_out;
1908 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1909 if (xfer_shift != ATA_SHIFT_PIO)
1910 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1912 /* step 4: update devices' xfer mode */
1913 ata_dev_set_mode(ap, &ap->device[0]);
1914 ata_dev_set_mode(ap, &ap->device[1]);
1916 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1917 return;
1919 if (ap->ops->post_set_mode)
1920 ap->ops->post_set_mode(ap);
1922 return;
1924 err_out:
1925 ata_port_disable(ap);
1929 * ata_busy_sleep - sleep until BSY clears, or timeout
1930 * @ap: port containing status register to be polled
1931 * @tmout_pat: impatience timeout
1932 * @tmout: overall timeout
1934 * Sleep until ATA Status register bit BSY clears,
1935 * or a timeout occurs.
1937 * LOCKING: None.
1941 static unsigned int ata_busy_sleep (struct ata_port *ap,
1942 unsigned long tmout_pat,
1943 unsigned long tmout)
1945 unsigned long timer_start, timeout;
1946 u8 status;
1948 status = ata_busy_wait(ap, ATA_BUSY, 300);
1949 timer_start = jiffies;
1950 timeout = timer_start + tmout_pat;
1951 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1952 msleep(50);
1953 status = ata_busy_wait(ap, ATA_BUSY, 3);
1956 if (status & ATA_BUSY)
1957 printk(KERN_WARNING "ata%u is slow to respond, "
1958 "please be patient\n", ap->id);
1960 timeout = timer_start + tmout;
1961 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1962 msleep(50);
1963 status = ata_chk_status(ap);
1966 if (status & ATA_BUSY) {
1967 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1968 ap->id, tmout / HZ);
1969 return 1;
1972 return 0;
1975 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1977 struct ata_ioports *ioaddr = &ap->ioaddr;
1978 unsigned int dev0 = devmask & (1 << 0);
1979 unsigned int dev1 = devmask & (1 << 1);
1980 unsigned long timeout;
1982 /* if device 0 was found in ata_devchk, wait for its
1983 * BSY bit to clear
1985 if (dev0)
1986 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1988 /* if device 1 was found in ata_devchk, wait for
1989 * register access, then wait for BSY to clear
1991 timeout = jiffies + ATA_TMOUT_BOOT;
1992 while (dev1) {
1993 u8 nsect, lbal;
1995 ap->ops->dev_select(ap, 1);
1996 if (ap->flags & ATA_FLAG_MMIO) {
1997 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1998 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1999 } else {
2000 nsect = inb(ioaddr->nsect_addr);
2001 lbal = inb(ioaddr->lbal_addr);
2003 if ((nsect == 1) && (lbal == 1))
2004 break;
2005 if (time_after(jiffies, timeout)) {
2006 dev1 = 0;
2007 break;
2009 msleep(50); /* give drive a breather */
2011 if (dev1)
2012 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2014 /* is all this really necessary? */
2015 ap->ops->dev_select(ap, 0);
2016 if (dev1)
2017 ap->ops->dev_select(ap, 1);
2018 if (dev0)
2019 ap->ops->dev_select(ap, 0);
2023 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2024 * @ap: Port to reset and probe
2026 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2027 * probe the bus. Not often used these days.
2029 * LOCKING:
2030 * PCI/etc. bus probe sem.
2031 * Obtains host_set lock.
2035 static unsigned int ata_bus_edd(struct ata_port *ap)
2037 struct ata_taskfile tf;
2038 unsigned long flags;
2040 /* set up execute-device-diag (bus reset) taskfile */
2041 /* also, take interrupts to a known state (disabled) */
2042 DPRINTK("execute-device-diag\n");
2043 ata_tf_init(ap, &tf, 0);
2044 tf.ctl |= ATA_NIEN;
2045 tf.command = ATA_CMD_EDD;
2046 tf.protocol = ATA_PROT_NODATA;
2048 /* do bus reset */
2049 spin_lock_irqsave(&ap->host_set->lock, flags);
2050 ata_tf_to_host(ap, &tf);
2051 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2053 /* spec says at least 2ms. but who knows with those
2054 * crazy ATAPI devices...
2056 msleep(150);
2058 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2061 static unsigned int ata_bus_softreset(struct ata_port *ap,
2062 unsigned int devmask)
2064 struct ata_ioports *ioaddr = &ap->ioaddr;
2066 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2068 /* software reset. causes dev0 to be selected */
2069 if (ap->flags & ATA_FLAG_MMIO) {
2070 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2071 udelay(20); /* FIXME: flush */
2072 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2073 udelay(20); /* FIXME: flush */
2074 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2075 } else {
2076 outb(ap->ctl, ioaddr->ctl_addr);
2077 udelay(10);
2078 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2079 udelay(10);
2080 outb(ap->ctl, ioaddr->ctl_addr);
2083 /* spec mandates ">= 2ms" before checking status.
2084 * We wait 150ms, because that was the magic delay used for
2085 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2086 * between when the ATA command register is written, and then
2087 * status is checked. Because waiting for "a while" before
2088 * checking status is fine, post SRST, we perform this magic
2089 * delay here as well.
2091 msleep(150);
2093 ata_bus_post_reset(ap, devmask);
2095 return 0;
2099 * ata_bus_reset - reset host port and associated ATA channel
2100 * @ap: port to reset
2102 * This is typically the first time we actually start issuing
2103 * commands to the ATA channel. We wait for BSY to clear, then
2104 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2105 * result. Determine what devices, if any, are on the channel
2106 * by looking at the device 0/1 error register. Look at the signature
2107 * stored in each device's taskfile registers, to determine if
2108 * the device is ATA or ATAPI.
2110 * LOCKING:
2111 * PCI/etc. bus probe sem.
2112 * Obtains host_set lock.
2114 * SIDE EFFECTS:
2115 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2118 void ata_bus_reset(struct ata_port *ap)
2120 struct ata_ioports *ioaddr = &ap->ioaddr;
2121 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2122 u8 err;
2123 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2125 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2127 /* determine if device 0/1 are present */
2128 if (ap->flags & ATA_FLAG_SATA_RESET)
2129 dev0 = 1;
2130 else {
2131 dev0 = ata_devchk(ap, 0);
2132 if (slave_possible)
2133 dev1 = ata_devchk(ap, 1);
2136 if (dev0)
2137 devmask |= (1 << 0);
2138 if (dev1)
2139 devmask |= (1 << 1);
2141 /* select device 0 again */
2142 ap->ops->dev_select(ap, 0);
2144 /* issue bus reset */
2145 if (ap->flags & ATA_FLAG_SRST)
2146 rc = ata_bus_softreset(ap, devmask);
2147 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2148 /* set up device control */
2149 if (ap->flags & ATA_FLAG_MMIO)
2150 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2151 else
2152 outb(ap->ctl, ioaddr->ctl_addr);
2153 rc = ata_bus_edd(ap);
2156 if (rc)
2157 goto err_out;
2160 * determine by signature whether we have ATA or ATAPI devices
2162 err = ata_dev_try_classify(ap, 0);
2163 if ((slave_possible) && (err != 0x81))
2164 ata_dev_try_classify(ap, 1);
2166 /* re-enable interrupts */
2167 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2168 ata_irq_on(ap);
2170 /* is double-select really necessary? */
2171 if (ap->device[1].class != ATA_DEV_NONE)
2172 ap->ops->dev_select(ap, 1);
2173 if (ap->device[0].class != ATA_DEV_NONE)
2174 ap->ops->dev_select(ap, 0);
2176 /* if no devices were detected, disable this port */
2177 if ((ap->device[0].class == ATA_DEV_NONE) &&
2178 (ap->device[1].class == ATA_DEV_NONE))
2179 goto err_out;
2181 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2182 /* set up device control for ATA_FLAG_SATA_RESET */
2183 if (ap->flags & ATA_FLAG_MMIO)
2184 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2185 else
2186 outb(ap->ctl, ioaddr->ctl_addr);
2189 DPRINTK("EXIT\n");
2190 return;
2192 err_out:
2193 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2194 ap->ops->port_disable(ap);
2196 DPRINTK("EXIT\n");
2199 static void ata_pr_blacklisted(const struct ata_port *ap,
2200 const struct ata_device *dev)
2202 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2203 ap->id, dev->devno);
2206 static const char * const ata_dma_blacklist [] = {
2207 "WDC AC11000H",
2208 "WDC AC22100H",
2209 "WDC AC32500H",
2210 "WDC AC33100H",
2211 "WDC AC31600H",
2212 "WDC AC32100H",
2213 "WDC AC23200L",
2214 "Compaq CRD-8241B",
2215 "CRD-8400B",
2216 "CRD-8480B",
2217 "CRD-8482B",
2218 "CRD-84",
2219 "SanDisk SDP3B",
2220 "SanDisk SDP3B-64",
2221 "SANYO CD-ROM CRD",
2222 "HITACHI CDR-8",
2223 "HITACHI CDR-8335",
2224 "HITACHI CDR-8435",
2225 "Toshiba CD-ROM XM-6202B",
2226 "TOSHIBA CD-ROM XM-1702BC",
2227 "CD-532E-A",
2228 "E-IDE CD-ROM CR-840",
2229 "CD-ROM Drive/F5A",
2230 "WPI CDD-820",
2231 "SAMSUNG CD-ROM SC-148C",
2232 "SAMSUNG CD-ROM SC",
2233 "SanDisk SDP3B-64",
2234 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2235 "_NEC DV5800A",
2238 static int ata_dma_blacklisted(const struct ata_device *dev)
2240 unsigned char model_num[40];
2241 char *s;
2242 unsigned int len;
2243 int i;
2245 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2246 sizeof(model_num));
2247 s = &model_num[0];
2248 len = strnlen(s, sizeof(model_num));
2250 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2251 while ((len > 0) && (s[len - 1] == ' ')) {
2252 len--;
2253 s[len] = 0;
2256 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2257 if (!strncmp(ata_dma_blacklist[i], s, len))
2258 return 1;
2260 return 0;
2263 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2265 const struct ata_device *master, *slave;
2266 unsigned int mask;
2268 master = &ap->device[0];
2269 slave = &ap->device[1];
2271 assert (ata_dev_present(master) || ata_dev_present(slave));
2273 if (shift == ATA_SHIFT_UDMA) {
2274 mask = ap->udma_mask;
2275 if (ata_dev_present(master)) {
2276 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2277 if (ata_dma_blacklisted(master)) {
2278 mask = 0;
2279 ata_pr_blacklisted(ap, master);
2282 if (ata_dev_present(slave)) {
2283 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2284 if (ata_dma_blacklisted(slave)) {
2285 mask = 0;
2286 ata_pr_blacklisted(ap, slave);
2290 else if (shift == ATA_SHIFT_MWDMA) {
2291 mask = ap->mwdma_mask;
2292 if (ata_dev_present(master)) {
2293 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2294 if (ata_dma_blacklisted(master)) {
2295 mask = 0;
2296 ata_pr_blacklisted(ap, master);
2299 if (ata_dev_present(slave)) {
2300 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2301 if (ata_dma_blacklisted(slave)) {
2302 mask = 0;
2303 ata_pr_blacklisted(ap, slave);
2307 else if (shift == ATA_SHIFT_PIO) {
2308 mask = ap->pio_mask;
2309 if (ata_dev_present(master)) {
2310 /* spec doesn't return explicit support for
2311 * PIO0-2, so we fake it
2313 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2314 tmp_mode <<= 3;
2315 tmp_mode |= 0x7;
2316 mask &= tmp_mode;
2318 if (ata_dev_present(slave)) {
2319 /* spec doesn't return explicit support for
2320 * PIO0-2, so we fake it
2322 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2323 tmp_mode <<= 3;
2324 tmp_mode |= 0x7;
2325 mask &= tmp_mode;
2328 else {
2329 mask = 0xffffffff; /* shut up compiler warning */
2330 BUG();
2333 return mask;
2336 /* find greatest bit */
2337 static int fgb(u32 bitmap)
2339 unsigned int i;
2340 int x = -1;
2342 for (i = 0; i < 32; i++)
2343 if (bitmap & (1 << i))
2344 x = i;
2346 return x;
2350 * ata_choose_xfer_mode - attempt to find best transfer mode
2351 * @ap: Port for which an xfer mode will be selected
2352 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2353 * @xfer_shift_out: (output) bit shift that selects this mode
2355 * Based on host and device capabilities, determine the
2356 * maximum transfer mode that is amenable to all.
2358 * LOCKING:
2359 * PCI/etc. bus probe sem.
2361 * RETURNS:
2362 * Zero on success, negative on error.
2365 static int ata_choose_xfer_mode(const struct ata_port *ap,
2366 u8 *xfer_mode_out,
2367 unsigned int *xfer_shift_out)
2369 unsigned int mask, shift;
2370 int x, i;
2372 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2373 shift = xfer_mode_classes[i].shift;
2374 mask = ata_get_mode_mask(ap, shift);
2376 x = fgb(mask);
2377 if (x >= 0) {
2378 *xfer_mode_out = xfer_mode_classes[i].base + x;
2379 *xfer_shift_out = shift;
2380 return 0;
2384 return -1;
2388 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2389 * @ap: Port associated with device @dev
2390 * @dev: Device to which command will be sent
2392 * Issue SET FEATURES - XFER MODE command to device @dev
2393 * on port @ap.
2395 * LOCKING:
2396 * PCI/etc. bus probe sem.
2399 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2401 struct ata_taskfile tf;
2403 /* set up set-features taskfile */
2404 DPRINTK("set features - xfer mode\n");
2406 ata_tf_init(ap, &tf, dev->devno);
2407 tf.command = ATA_CMD_SET_FEATURES;
2408 tf.feature = SETFEATURES_XFER;
2409 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2410 tf.protocol = ATA_PROT_NODATA;
2411 tf.nsect = dev->xfer_mode;
2413 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2414 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2415 ap->id);
2416 ata_port_disable(ap);
2419 DPRINTK("EXIT\n");
2423 * ata_dev_reread_id - Reread the device identify device info
2424 * @ap: port where the device is
2425 * @dev: device to reread the identify device info
2427 * LOCKING:
2430 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2432 struct ata_taskfile tf;
2434 ata_tf_init(ap, &tf, dev->devno);
2436 if (dev->class == ATA_DEV_ATA) {
2437 tf.command = ATA_CMD_ID_ATA;
2438 DPRINTK("do ATA identify\n");
2439 } else {
2440 tf.command = ATA_CMD_ID_ATAPI;
2441 DPRINTK("do ATAPI identify\n");
2444 tf.flags |= ATA_TFLAG_DEVICE;
2445 tf.protocol = ATA_PROT_PIO;
2447 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2448 dev->id, sizeof(dev->id)))
2449 goto err_out;
2451 swap_buf_le16(dev->id, ATA_ID_WORDS);
2453 ata_dump_id(dev);
2455 DPRINTK("EXIT\n");
2457 return;
2458 err_out:
2459 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2460 ata_port_disable(ap);
2464 * ata_dev_init_params - Issue INIT DEV PARAMS command
2465 * @ap: Port associated with device @dev
2466 * @dev: Device to which command will be sent
2468 * LOCKING:
2471 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2473 struct ata_taskfile tf;
2474 u16 sectors = dev->id[6];
2475 u16 heads = dev->id[3];
2477 /* Number of sectors per track 1-255. Number of heads 1-16 */
2478 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2479 return;
2481 /* set up init dev params taskfile */
2482 DPRINTK("init dev params \n");
2484 ata_tf_init(ap, &tf, dev->devno);
2485 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2486 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2487 tf.protocol = ATA_PROT_NODATA;
2488 tf.nsect = sectors;
2489 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2491 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2492 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2493 ap->id);
2494 ata_port_disable(ap);
2497 DPRINTK("EXIT\n");
2501 * ata_sg_clean - Unmap DMA memory associated with command
2502 * @qc: Command containing DMA memory to be released
2504 * Unmap all mapped DMA memory associated with this command.
2506 * LOCKING:
2507 * spin_lock_irqsave(host_set lock)
2510 static void ata_sg_clean(struct ata_queued_cmd *qc)
2512 struct ata_port *ap = qc->ap;
2513 struct scatterlist *sg = qc->__sg;
2514 int dir = qc->dma_dir;
2515 void *pad_buf = NULL;
2517 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2518 assert(sg != NULL);
2520 if (qc->flags & ATA_QCFLAG_SINGLE)
2521 assert(qc->n_elem <= 1);
2523 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2525 /* if we padded the buffer out to 32-bit bound, and data
2526 * xfer direction is from-device, we must copy from the
2527 * pad buffer back into the supplied buffer
2529 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2530 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2532 if (qc->flags & ATA_QCFLAG_SG) {
2533 if (qc->n_elem)
2534 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2535 /* restore last sg */
2536 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2537 if (pad_buf) {
2538 struct scatterlist *psg = &qc->pad_sgent;
2539 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2540 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2541 kunmap_atomic(addr, KM_IRQ0);
2543 } else {
2544 if (qc->n_elem)
2545 dma_unmap_single(ap->host_set->dev,
2546 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2547 dir);
2548 /* restore sg */
2549 sg->length += qc->pad_len;
2550 if (pad_buf)
2551 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2552 pad_buf, qc->pad_len);
2555 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2556 qc->__sg = NULL;
2560 * ata_fill_sg - Fill PCI IDE PRD table
2561 * @qc: Metadata associated with taskfile to be transferred
2563 * Fill PCI IDE PRD (scatter-gather) table with segments
2564 * associated with the current disk command.
2566 * LOCKING:
2567 * spin_lock_irqsave(host_set lock)
2570 static void ata_fill_sg(struct ata_queued_cmd *qc)
2572 struct ata_port *ap = qc->ap;
2573 struct scatterlist *sg;
2574 unsigned int idx;
2576 assert(qc->__sg != NULL);
2577 assert(qc->n_elem > 0 || qc->pad_len > 0);
2579 idx = 0;
2580 ata_for_each_sg(sg, qc) {
2581 u32 addr, offset;
2582 u32 sg_len, len;
2584 /* determine if physical DMA addr spans 64K boundary.
2585 * Note h/w doesn't support 64-bit, so we unconditionally
2586 * truncate dma_addr_t to u32.
2588 addr = (u32) sg_dma_address(sg);
2589 sg_len = sg_dma_len(sg);
2591 while (sg_len) {
2592 offset = addr & 0xffff;
2593 len = sg_len;
2594 if ((offset + sg_len) > 0x10000)
2595 len = 0x10000 - offset;
2597 ap->prd[idx].addr = cpu_to_le32(addr);
2598 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2599 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2601 idx++;
2602 sg_len -= len;
2603 addr += len;
2607 if (idx)
2608 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2611 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2612 * @qc: Metadata associated with taskfile to check
2614 * Allow low-level driver to filter ATA PACKET commands, returning
2615 * a status indicating whether or not it is OK to use DMA for the
2616 * supplied PACKET command.
2618 * LOCKING:
2619 * spin_lock_irqsave(host_set lock)
2621 * RETURNS: 0 when ATAPI DMA can be used
2622 * nonzero otherwise
2624 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2626 struct ata_port *ap = qc->ap;
2627 int rc = 0; /* Assume ATAPI DMA is OK by default */
2629 if (ap->ops->check_atapi_dma)
2630 rc = ap->ops->check_atapi_dma(qc);
2632 return rc;
2635 * ata_qc_prep - Prepare taskfile for submission
2636 * @qc: Metadata associated with taskfile to be prepared
2638 * Prepare ATA taskfile for submission.
2640 * LOCKING:
2641 * spin_lock_irqsave(host_set lock)
2643 void ata_qc_prep(struct ata_queued_cmd *qc)
2645 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2646 return;
2648 ata_fill_sg(qc);
2652 * ata_sg_init_one - Associate command with memory buffer
2653 * @qc: Command to be associated
2654 * @buf: Memory buffer
2655 * @buflen: Length of memory buffer, in bytes.
2657 * Initialize the data-related elements of queued_cmd @qc
2658 * to point to a single memory buffer, @buf of byte length @buflen.
2660 * LOCKING:
2661 * spin_lock_irqsave(host_set lock)
2664 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2666 struct scatterlist *sg;
2668 qc->flags |= ATA_QCFLAG_SINGLE;
2670 memset(&qc->sgent, 0, sizeof(qc->sgent));
2671 qc->__sg = &qc->sgent;
2672 qc->n_elem = 1;
2673 qc->orig_n_elem = 1;
2674 qc->buf_virt = buf;
2676 sg = qc->__sg;
2677 sg_init_one(sg, buf, buflen);
2681 * ata_sg_init - Associate command with scatter-gather table.
2682 * @qc: Command to be associated
2683 * @sg: Scatter-gather table.
2684 * @n_elem: Number of elements in s/g table.
2686 * Initialize the data-related elements of queued_cmd @qc
2687 * to point to a scatter-gather table @sg, containing @n_elem
2688 * elements.
2690 * LOCKING:
2691 * spin_lock_irqsave(host_set lock)
2694 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2695 unsigned int n_elem)
2697 qc->flags |= ATA_QCFLAG_SG;
2698 qc->__sg = sg;
2699 qc->n_elem = n_elem;
2700 qc->orig_n_elem = n_elem;
2704 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2705 * @qc: Command with memory buffer to be mapped.
2707 * DMA-map the memory buffer associated with queued_cmd @qc.
2709 * LOCKING:
2710 * spin_lock_irqsave(host_set lock)
2712 * RETURNS:
2713 * Zero on success, negative on error.
2716 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2718 struct ata_port *ap = qc->ap;
2719 int dir = qc->dma_dir;
2720 struct scatterlist *sg = qc->__sg;
2721 dma_addr_t dma_address;
2722 int trim_sg = 0;
2724 /* we must lengthen transfers to end on a 32-bit boundary */
2725 qc->pad_len = sg->length & 3;
2726 if (qc->pad_len) {
2727 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2728 struct scatterlist *psg = &qc->pad_sgent;
2730 assert(qc->dev->class == ATA_DEV_ATAPI);
2732 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2734 if (qc->tf.flags & ATA_TFLAG_WRITE)
2735 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2736 qc->pad_len);
2738 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2739 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2740 /* trim sg */
2741 sg->length -= qc->pad_len;
2742 if (sg->length == 0)
2743 trim_sg = 1;
2745 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2746 sg->length, qc->pad_len);
2749 if (trim_sg) {
2750 qc->n_elem--;
2751 goto skip_map;
2754 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2755 sg->length, dir);
2756 if (dma_mapping_error(dma_address)) {
2757 /* restore sg */
2758 sg->length += qc->pad_len;
2759 return -1;
2762 sg_dma_address(sg) = dma_address;
2763 sg_dma_len(sg) = sg->length;
2765 skip_map:
2766 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2767 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2769 return 0;
2773 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2774 * @qc: Command with scatter-gather table to be mapped.
2776 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2778 * LOCKING:
2779 * spin_lock_irqsave(host_set lock)
2781 * RETURNS:
2782 * Zero on success, negative on error.
2786 static int ata_sg_setup(struct ata_queued_cmd *qc)
2788 struct ata_port *ap = qc->ap;
2789 struct scatterlist *sg = qc->__sg;
2790 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2791 int n_elem, pre_n_elem, dir, trim_sg = 0;
2793 VPRINTK("ENTER, ata%u\n", ap->id);
2794 assert(qc->flags & ATA_QCFLAG_SG);
2796 /* we must lengthen transfers to end on a 32-bit boundary */
2797 qc->pad_len = lsg->length & 3;
2798 if (qc->pad_len) {
2799 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2800 struct scatterlist *psg = &qc->pad_sgent;
2801 unsigned int offset;
2803 assert(qc->dev->class == ATA_DEV_ATAPI);
2805 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2808 * psg->page/offset are used to copy to-be-written
2809 * data in this function or read data in ata_sg_clean.
2811 offset = lsg->offset + lsg->length - qc->pad_len;
2812 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2813 psg->offset = offset_in_page(offset);
2815 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2816 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2817 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2818 kunmap_atomic(addr, KM_IRQ0);
2821 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2822 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2823 /* trim last sg */
2824 lsg->length -= qc->pad_len;
2825 if (lsg->length == 0)
2826 trim_sg = 1;
2828 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2829 qc->n_elem - 1, lsg->length, qc->pad_len);
2832 pre_n_elem = qc->n_elem;
2833 if (trim_sg && pre_n_elem)
2834 pre_n_elem--;
2836 if (!pre_n_elem) {
2837 n_elem = 0;
2838 goto skip_map;
2841 dir = qc->dma_dir;
2842 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2843 if (n_elem < 1) {
2844 /* restore last sg */
2845 lsg->length += qc->pad_len;
2846 return -1;
2849 DPRINTK("%d sg elements mapped\n", n_elem);
2851 skip_map:
2852 qc->n_elem = n_elem;
2854 return 0;
2858 * ata_poll_qc_complete - turn irq back on and finish qc
2859 * @qc: Command to complete
2860 * @err_mask: ATA status register content
2862 * LOCKING:
2863 * None. (grabs host lock)
2866 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2868 struct ata_port *ap = qc->ap;
2869 unsigned long flags;
2871 spin_lock_irqsave(&ap->host_set->lock, flags);
2872 ap->flags &= ~ATA_FLAG_NOINTR;
2873 ata_irq_on(ap);
2874 ata_qc_complete(qc);
2875 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2879 * ata_pio_poll -
2880 * @ap: the target ata_port
2882 * LOCKING:
2883 * None. (executing in kernel thread context)
2885 * RETURNS:
2886 * timeout value to use
2889 static unsigned long ata_pio_poll(struct ata_port *ap)
2891 struct ata_queued_cmd *qc;
2892 u8 status;
2893 unsigned int poll_state = HSM_ST_UNKNOWN;
2894 unsigned int reg_state = HSM_ST_UNKNOWN;
2896 qc = ata_qc_from_tag(ap, ap->active_tag);
2897 assert(qc != NULL);
2899 switch (ap->hsm_task_state) {
2900 case HSM_ST:
2901 case HSM_ST_POLL:
2902 poll_state = HSM_ST_POLL;
2903 reg_state = HSM_ST;
2904 break;
2905 case HSM_ST_LAST:
2906 case HSM_ST_LAST_POLL:
2907 poll_state = HSM_ST_LAST_POLL;
2908 reg_state = HSM_ST_LAST;
2909 break;
2910 default:
2911 BUG();
2912 break;
2915 status = ata_chk_status(ap);
2916 if (status & ATA_BUSY) {
2917 if (time_after(jiffies, ap->pio_task_timeout)) {
2918 qc->err_mask |= AC_ERR_ATA_BUS;
2919 ap->hsm_task_state = HSM_ST_TMOUT;
2920 return 0;
2922 ap->hsm_task_state = poll_state;
2923 return ATA_SHORT_PAUSE;
2926 ap->hsm_task_state = reg_state;
2927 return 0;
2931 * ata_pio_complete - check if drive is busy or idle
2932 * @ap: the target ata_port
2934 * LOCKING:
2935 * None. (executing in kernel thread context)
2937 * RETURNS:
2938 * Non-zero if qc completed, zero otherwise.
2941 static int ata_pio_complete (struct ata_port *ap)
2943 struct ata_queued_cmd *qc;
2944 u8 drv_stat;
2947 * This is purely heuristic. This is a fast path. Sometimes when
2948 * we enter, BSY will be cleared in a chk-status or two. If not,
2949 * the drive is probably seeking or something. Snooze for a couple
2950 * msecs, then chk-status again. If still busy, fall back to
2951 * HSM_ST_POLL state.
2953 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2954 if (drv_stat & ATA_BUSY) {
2955 msleep(2);
2956 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2957 if (drv_stat & ATA_BUSY) {
2958 ap->hsm_task_state = HSM_ST_LAST_POLL;
2959 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2960 return 0;
2964 qc = ata_qc_from_tag(ap, ap->active_tag);
2965 assert(qc != NULL);
2967 drv_stat = ata_wait_idle(ap);
2968 if (!ata_ok(drv_stat)) {
2969 qc->err_mask |= __ac_err_mask(drv_stat);
2970 ap->hsm_task_state = HSM_ST_ERR;
2971 return 0;
2974 ap->hsm_task_state = HSM_ST_IDLE;
2976 assert(qc->err_mask == 0);
2977 ata_poll_qc_complete(qc);
2979 /* another command may start at this point */
2981 return 1;
2986 * swap_buf_le16 - swap halves of 16-words in place
2987 * @buf: Buffer to swap
2988 * @buf_words: Number of 16-bit words in buffer.
2990 * Swap halves of 16-bit words if needed to convert from
2991 * little-endian byte order to native cpu byte order, or
2992 * vice-versa.
2994 * LOCKING:
2995 * Inherited from caller.
2997 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2999 #ifdef __BIG_ENDIAN
3000 unsigned int i;
3002 for (i = 0; i < buf_words; i++)
3003 buf[i] = le16_to_cpu(buf[i]);
3004 #endif /* __BIG_ENDIAN */
3008 * ata_mmio_data_xfer - Transfer data by MMIO
3009 * @ap: port to read/write
3010 * @buf: data buffer
3011 * @buflen: buffer length
3012 * @write_data: read/write
3014 * Transfer data from/to the device data register by MMIO.
3016 * LOCKING:
3017 * Inherited from caller.
3020 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3021 unsigned int buflen, int write_data)
3023 unsigned int i;
3024 unsigned int words = buflen >> 1;
3025 u16 *buf16 = (u16 *) buf;
3026 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3028 /* Transfer multiple of 2 bytes */
3029 if (write_data) {
3030 for (i = 0; i < words; i++)
3031 writew(le16_to_cpu(buf16[i]), mmio);
3032 } else {
3033 for (i = 0; i < words; i++)
3034 buf16[i] = cpu_to_le16(readw(mmio));
3037 /* Transfer trailing 1 byte, if any. */
3038 if (unlikely(buflen & 0x01)) {
3039 u16 align_buf[1] = { 0 };
3040 unsigned char *trailing_buf = buf + buflen - 1;
3042 if (write_data) {
3043 memcpy(align_buf, trailing_buf, 1);
3044 writew(le16_to_cpu(align_buf[0]), mmio);
3045 } else {
3046 align_buf[0] = cpu_to_le16(readw(mmio));
3047 memcpy(trailing_buf, align_buf, 1);
3053 * ata_pio_data_xfer - Transfer data by PIO
3054 * @ap: port to read/write
3055 * @buf: data buffer
3056 * @buflen: buffer length
3057 * @write_data: read/write
3059 * Transfer data from/to the device data register by PIO.
3061 * LOCKING:
3062 * Inherited from caller.
3065 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3066 unsigned int buflen, int write_data)
3068 unsigned int words = buflen >> 1;
3070 /* Transfer multiple of 2 bytes */
3071 if (write_data)
3072 outsw(ap->ioaddr.data_addr, buf, words);
3073 else
3074 insw(ap->ioaddr.data_addr, buf, words);
3076 /* Transfer trailing 1 byte, if any. */
3077 if (unlikely(buflen & 0x01)) {
3078 u16 align_buf[1] = { 0 };
3079 unsigned char *trailing_buf = buf + buflen - 1;
3081 if (write_data) {
3082 memcpy(align_buf, trailing_buf, 1);
3083 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3084 } else {
3085 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3086 memcpy(trailing_buf, align_buf, 1);
3092 * ata_data_xfer - Transfer data from/to the data register.
3093 * @ap: port to read/write
3094 * @buf: data buffer
3095 * @buflen: buffer length
3096 * @do_write: read/write
3098 * Transfer data from/to the device data register.
3100 * LOCKING:
3101 * Inherited from caller.
3104 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3105 unsigned int buflen, int do_write)
3107 /* Make the crap hardware pay the costs not the good stuff */
3108 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3109 unsigned long flags;
3110 local_irq_save(flags);
3111 if (ap->flags & ATA_FLAG_MMIO)
3112 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3113 else
3114 ata_pio_data_xfer(ap, buf, buflen, do_write);
3115 local_irq_restore(flags);
3116 } else {
3117 if (ap->flags & ATA_FLAG_MMIO)
3118 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3119 else
3120 ata_pio_data_xfer(ap, buf, buflen, do_write);
3125 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3126 * @qc: Command on going
3128 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3130 * LOCKING:
3131 * Inherited from caller.
3134 static void ata_pio_sector(struct ata_queued_cmd *qc)
3136 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3137 struct scatterlist *sg = qc->__sg;
3138 struct ata_port *ap = qc->ap;
3139 struct page *page;
3140 unsigned int offset;
3141 unsigned char *buf;
3143 if (qc->cursect == (qc->nsect - 1))
3144 ap->hsm_task_state = HSM_ST_LAST;
3146 page = sg[qc->cursg].page;
3147 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3149 /* get the current page and offset */
3150 page = nth_page(page, (offset >> PAGE_SHIFT));
3151 offset %= PAGE_SIZE;
3153 buf = kmap(page) + offset;
3155 qc->cursect++;
3156 qc->cursg_ofs++;
3158 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3159 qc->cursg++;
3160 qc->cursg_ofs = 0;
3163 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3165 /* do the actual data transfer */
3166 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3167 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3169 kunmap(page);
3173 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3174 * @qc: Command on going
3175 * @bytes: number of bytes
3177 * Transfer Transfer data from/to the ATAPI device.
3179 * LOCKING:
3180 * Inherited from caller.
3184 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3186 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3187 struct scatterlist *sg = qc->__sg;
3188 struct ata_port *ap = qc->ap;
3189 struct page *page;
3190 unsigned char *buf;
3191 unsigned int offset, count;
3193 if (qc->curbytes + bytes >= qc->nbytes)
3194 ap->hsm_task_state = HSM_ST_LAST;
3196 next_sg:
3197 if (unlikely(qc->cursg >= qc->n_elem)) {
3199 * The end of qc->sg is reached and the device expects
3200 * more data to transfer. In order not to overrun qc->sg
3201 * and fulfill length specified in the byte count register,
3202 * - for read case, discard trailing data from the device
3203 * - for write case, padding zero data to the device
3205 u16 pad_buf[1] = { 0 };
3206 unsigned int words = bytes >> 1;
3207 unsigned int i;
3209 if (words) /* warning if bytes > 1 */
3210 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3211 ap->id, bytes);
3213 for (i = 0; i < words; i++)
3214 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3216 ap->hsm_task_state = HSM_ST_LAST;
3217 return;
3220 sg = &qc->__sg[qc->cursg];
3222 page = sg->page;
3223 offset = sg->offset + qc->cursg_ofs;
3225 /* get the current page and offset */
3226 page = nth_page(page, (offset >> PAGE_SHIFT));
3227 offset %= PAGE_SIZE;
3229 /* don't overrun current sg */
3230 count = min(sg->length - qc->cursg_ofs, bytes);
3232 /* don't cross page boundaries */
3233 count = min(count, (unsigned int)PAGE_SIZE - offset);
3235 buf = kmap(page) + offset;
3237 bytes -= count;
3238 qc->curbytes += count;
3239 qc->cursg_ofs += count;
3241 if (qc->cursg_ofs == sg->length) {
3242 qc->cursg++;
3243 qc->cursg_ofs = 0;
3246 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3248 /* do the actual data transfer */
3249 ata_data_xfer(ap, buf, count, do_write);
3251 kunmap(page);
3253 if (bytes)
3254 goto next_sg;
3258 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3259 * @qc: Command on going
3261 * Transfer Transfer data from/to the ATAPI device.
3263 * LOCKING:
3264 * Inherited from caller.
3267 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3269 struct ata_port *ap = qc->ap;
3270 struct ata_device *dev = qc->dev;
3271 unsigned int ireason, bc_lo, bc_hi, bytes;
3272 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3274 ap->ops->tf_read(ap, &qc->tf);
3275 ireason = qc->tf.nsect;
3276 bc_lo = qc->tf.lbam;
3277 bc_hi = qc->tf.lbah;
3278 bytes = (bc_hi << 8) | bc_lo;
3280 /* shall be cleared to zero, indicating xfer of data */
3281 if (ireason & (1 << 0))
3282 goto err_out;
3284 /* make sure transfer direction matches expected */
3285 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3286 if (do_write != i_write)
3287 goto err_out;
3289 __atapi_pio_bytes(qc, bytes);
3291 return;
3293 err_out:
3294 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3295 ap->id, dev->devno);
3296 qc->err_mask |= AC_ERR_ATA_BUS;
3297 ap->hsm_task_state = HSM_ST_ERR;
3301 * ata_pio_block - start PIO on a block
3302 * @ap: the target ata_port
3304 * LOCKING:
3305 * None. (executing in kernel thread context)
3308 static void ata_pio_block(struct ata_port *ap)
3310 struct ata_queued_cmd *qc;
3311 u8 status;
3314 * This is purely heuristic. This is a fast path.
3315 * Sometimes when we enter, BSY will be cleared in
3316 * a chk-status or two. If not, the drive is probably seeking
3317 * or something. Snooze for a couple msecs, then
3318 * chk-status again. If still busy, fall back to
3319 * HSM_ST_POLL state.
3321 status = ata_busy_wait(ap, ATA_BUSY, 5);
3322 if (status & ATA_BUSY) {
3323 msleep(2);
3324 status = ata_busy_wait(ap, ATA_BUSY, 10);
3325 if (status & ATA_BUSY) {
3326 ap->hsm_task_state = HSM_ST_POLL;
3327 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3328 return;
3332 qc = ata_qc_from_tag(ap, ap->active_tag);
3333 assert(qc != NULL);
3335 /* check error */
3336 if (status & (ATA_ERR | ATA_DF)) {
3337 qc->err_mask |= AC_ERR_DEV;
3338 ap->hsm_task_state = HSM_ST_ERR;
3339 return;
3342 /* transfer data if any */
3343 if (is_atapi_taskfile(&qc->tf)) {
3344 /* DRQ=0 means no more data to transfer */
3345 if ((status & ATA_DRQ) == 0) {
3346 ap->hsm_task_state = HSM_ST_LAST;
3347 return;
3350 atapi_pio_bytes(qc);
3351 } else {
3352 /* handle BSY=0, DRQ=0 as error */
3353 if ((status & ATA_DRQ) == 0) {
3354 qc->err_mask |= AC_ERR_ATA_BUS;
3355 ap->hsm_task_state = HSM_ST_ERR;
3356 return;
3359 ata_pio_sector(qc);
3363 static void ata_pio_error(struct ata_port *ap)
3365 struct ata_queued_cmd *qc;
3367 qc = ata_qc_from_tag(ap, ap->active_tag);
3368 assert(qc != NULL);
3370 if (qc->tf.command != ATA_CMD_PACKET)
3371 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3373 /* make sure qc->err_mask is available to
3374 * know what's wrong and recover
3376 assert(qc->err_mask);
3378 ap->hsm_task_state = HSM_ST_IDLE;
3380 ata_poll_qc_complete(qc);
3383 static void ata_pio_task(void *_data)
3385 struct ata_port *ap = _data;
3386 unsigned long timeout;
3387 int qc_completed;
3389 fsm_start:
3390 timeout = 0;
3391 qc_completed = 0;
3393 switch (ap->hsm_task_state) {
3394 case HSM_ST_IDLE:
3395 return;
3397 case HSM_ST:
3398 ata_pio_block(ap);
3399 break;
3401 case HSM_ST_LAST:
3402 qc_completed = ata_pio_complete(ap);
3403 break;
3405 case HSM_ST_POLL:
3406 case HSM_ST_LAST_POLL:
3407 timeout = ata_pio_poll(ap);
3408 break;
3410 case HSM_ST_TMOUT:
3411 case HSM_ST_ERR:
3412 ata_pio_error(ap);
3413 return;
3416 if (timeout)
3417 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3418 else if (!qc_completed)
3419 goto fsm_start;
3423 * ata_qc_timeout - Handle timeout of queued command
3424 * @qc: Command that timed out
3426 * Some part of the kernel (currently, only the SCSI layer)
3427 * has noticed that the active command on port @ap has not
3428 * completed after a specified length of time. Handle this
3429 * condition by disabling DMA (if necessary) and completing
3430 * transactions, with error if necessary.
3432 * This also handles the case of the "lost interrupt", where
3433 * for some reason (possibly hardware bug, possibly driver bug)
3434 * an interrupt was not delivered to the driver, even though the
3435 * transaction completed successfully.
3437 * LOCKING:
3438 * Inherited from SCSI layer (none, can sleep)
3441 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3443 struct ata_port *ap = qc->ap;
3444 struct ata_host_set *host_set = ap->host_set;
3445 u8 host_stat = 0, drv_stat;
3446 unsigned long flags;
3448 DPRINTK("ENTER\n");
3450 spin_lock_irqsave(&host_set->lock, flags);
3452 /* hack alert! We cannot use the supplied completion
3453 * function from inside the ->eh_strategy_handler() thread.
3454 * libata is the only user of ->eh_strategy_handler() in
3455 * any kernel, so the default scsi_done() assumes it is
3456 * not being called from the SCSI EH.
3458 qc->scsidone = scsi_finish_command;
3460 switch (qc->tf.protocol) {
3462 case ATA_PROT_DMA:
3463 case ATA_PROT_ATAPI_DMA:
3464 host_stat = ap->ops->bmdma_status(ap);
3466 /* before we do anything else, clear DMA-Start bit */
3467 ap->ops->bmdma_stop(qc);
3469 /* fall through */
3471 default:
3472 ata_altstatus(ap);
3473 drv_stat = ata_chk_status(ap);
3475 /* ack bmdma irq events */
3476 ap->ops->irq_clear(ap);
3478 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3479 ap->id, qc->tf.command, drv_stat, host_stat);
3481 /* complete taskfile transaction */
3482 qc->err_mask |= ac_err_mask(drv_stat);
3483 ata_qc_complete(qc);
3484 break;
3487 spin_unlock_irqrestore(&host_set->lock, flags);
3489 DPRINTK("EXIT\n");
3493 * ata_eng_timeout - Handle timeout of queued command
3494 * @ap: Port on which timed-out command is active
3496 * Some part of the kernel (currently, only the SCSI layer)
3497 * has noticed that the active command on port @ap has not
3498 * completed after a specified length of time. Handle this
3499 * condition by disabling DMA (if necessary) and completing
3500 * transactions, with error if necessary.
3502 * This also handles the case of the "lost interrupt", where
3503 * for some reason (possibly hardware bug, possibly driver bug)
3504 * an interrupt was not delivered to the driver, even though the
3505 * transaction completed successfully.
3507 * LOCKING:
3508 * Inherited from SCSI layer (none, can sleep)
3511 void ata_eng_timeout(struct ata_port *ap)
3513 struct ata_queued_cmd *qc;
3515 DPRINTK("ENTER\n");
3517 qc = ata_qc_from_tag(ap, ap->active_tag);
3518 if (qc)
3519 ata_qc_timeout(qc);
3520 else {
3521 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3522 ap->id);
3523 goto out;
3526 out:
3527 DPRINTK("EXIT\n");
3531 * ata_qc_new - Request an available ATA command, for queueing
3532 * @ap: Port associated with device @dev
3533 * @dev: Device from whom we request an available command structure
3535 * LOCKING:
3536 * None.
3539 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3541 struct ata_queued_cmd *qc = NULL;
3542 unsigned int i;
3544 for (i = 0; i < ATA_MAX_QUEUE; i++)
3545 if (!test_and_set_bit(i, &ap->qactive)) {
3546 qc = ata_qc_from_tag(ap, i);
3547 break;
3550 if (qc)
3551 qc->tag = i;
3553 return qc;
3557 * ata_qc_new_init - Request an available ATA command, and initialize it
3558 * @ap: Port associated with device @dev
3559 * @dev: Device from whom we request an available command structure
3561 * LOCKING:
3562 * None.
3565 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3566 struct ata_device *dev)
3568 struct ata_queued_cmd *qc;
3570 qc = ata_qc_new(ap);
3571 if (qc) {
3572 qc->scsicmd = NULL;
3573 qc->ap = ap;
3574 qc->dev = dev;
3576 ata_qc_reinit(qc);
3579 return qc;
3582 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3584 struct ata_port *ap = qc->ap;
3585 unsigned int tag;
3587 qc->flags = 0;
3588 tag = qc->tag;
3589 if (likely(ata_tag_valid(tag))) {
3590 if (tag == ap->active_tag)
3591 ap->active_tag = ATA_TAG_POISON;
3592 qc->tag = ATA_TAG_POISON;
3593 clear_bit(tag, &ap->qactive);
3598 * ata_qc_free - free unused ata_queued_cmd
3599 * @qc: Command to complete
3601 * Designed to free unused ata_queued_cmd object
3602 * in case something prevents using it.
3604 * LOCKING:
3605 * spin_lock_irqsave(host_set lock)
3607 void ata_qc_free(struct ata_queued_cmd *qc)
3609 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3611 __ata_qc_complete(qc);
3615 * ata_qc_complete - Complete an active ATA command
3616 * @qc: Command to complete
3617 * @err_mask: ATA Status register contents
3619 * Indicate to the mid and upper layers that an ATA
3620 * command has completed, with either an ok or not-ok status.
3622 * LOCKING:
3623 * spin_lock_irqsave(host_set lock)
3626 void ata_qc_complete(struct ata_queued_cmd *qc)
3628 int rc;
3630 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3631 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3633 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3634 ata_sg_clean(qc);
3636 /* atapi: mark qc as inactive to prevent the interrupt handler
3637 * from completing the command twice later, before the error handler
3638 * is called. (when rc != 0 and atapi request sense is needed)
3640 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3642 /* call completion callback */
3643 rc = qc->complete_fn(qc);
3645 /* if callback indicates not to complete command (non-zero),
3646 * return immediately
3648 if (rc != 0)
3649 return;
3651 __ata_qc_complete(qc);
3653 VPRINTK("EXIT\n");
3656 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3658 struct ata_port *ap = qc->ap;
3660 switch (qc->tf.protocol) {
3661 case ATA_PROT_DMA:
3662 case ATA_PROT_ATAPI_DMA:
3663 return 1;
3665 case ATA_PROT_ATAPI:
3666 case ATA_PROT_PIO:
3667 case ATA_PROT_PIO_MULT:
3668 if (ap->flags & ATA_FLAG_PIO_DMA)
3669 return 1;
3671 /* fall through */
3673 default:
3674 return 0;
3677 /* never reached */
3681 * ata_qc_issue - issue taskfile to device
3682 * @qc: command to issue to device
3684 * Prepare an ATA command to submission to device.
3685 * This includes mapping the data into a DMA-able
3686 * area, filling in the S/G table, and finally
3687 * writing the taskfile to hardware, starting the command.
3689 * LOCKING:
3690 * spin_lock_irqsave(host_set lock)
3692 * RETURNS:
3693 * Zero on success, negative on error.
3696 int ata_qc_issue(struct ata_queued_cmd *qc)
3698 struct ata_port *ap = qc->ap;
3700 if (ata_should_dma_map(qc)) {
3701 if (qc->flags & ATA_QCFLAG_SG) {
3702 if (ata_sg_setup(qc))
3703 goto err_out;
3704 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3705 if (ata_sg_setup_one(qc))
3706 goto err_out;
3708 } else {
3709 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3712 ap->ops->qc_prep(qc);
3714 qc->ap->active_tag = qc->tag;
3715 qc->flags |= ATA_QCFLAG_ACTIVE;
3717 return ap->ops->qc_issue(qc);
3719 err_out:
3720 return -1;
3725 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3726 * @qc: command to issue to device
3728 * Using various libata functions and hooks, this function
3729 * starts an ATA command. ATA commands are grouped into
3730 * classes called "protocols", and issuing each type of protocol
3731 * is slightly different.
3733 * May be used as the qc_issue() entry in ata_port_operations.
3735 * LOCKING:
3736 * spin_lock_irqsave(host_set lock)
3738 * RETURNS:
3739 * Zero on success, negative on error.
3742 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3744 struct ata_port *ap = qc->ap;
3746 ata_dev_select(ap, qc->dev->devno, 1, 0);
3748 switch (qc->tf.protocol) {
3749 case ATA_PROT_NODATA:
3750 ata_tf_to_host(ap, &qc->tf);
3751 break;
3753 case ATA_PROT_DMA:
3754 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3755 ap->ops->bmdma_setup(qc); /* set up bmdma */
3756 ap->ops->bmdma_start(qc); /* initiate bmdma */
3757 break;
3759 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3760 ata_qc_set_polling(qc);
3761 ata_tf_to_host(ap, &qc->tf);
3762 ap->hsm_task_state = HSM_ST;
3763 queue_work(ata_wq, &ap->pio_task);
3764 break;
3766 case ATA_PROT_ATAPI:
3767 ata_qc_set_polling(qc);
3768 ata_tf_to_host(ap, &qc->tf);
3769 queue_work(ata_wq, &ap->packet_task);
3770 break;
3772 case ATA_PROT_ATAPI_NODATA:
3773 ap->flags |= ATA_FLAG_NOINTR;
3774 ata_tf_to_host(ap, &qc->tf);
3775 queue_work(ata_wq, &ap->packet_task);
3776 break;
3778 case ATA_PROT_ATAPI_DMA:
3779 ap->flags |= ATA_FLAG_NOINTR;
3780 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3781 ap->ops->bmdma_setup(qc); /* set up bmdma */
3782 queue_work(ata_wq, &ap->packet_task);
3783 break;
3785 default:
3786 WARN_ON(1);
3787 return -1;
3790 return 0;
3794 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3795 * @qc: Info associated with this ATA transaction.
3797 * LOCKING:
3798 * spin_lock_irqsave(host_set lock)
3801 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3803 struct ata_port *ap = qc->ap;
3804 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3805 u8 dmactl;
3806 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3808 /* load PRD table addr. */
3809 mb(); /* make sure PRD table writes are visible to controller */
3810 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3812 /* specify data direction, triple-check start bit is clear */
3813 dmactl = readb(mmio + ATA_DMA_CMD);
3814 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3815 if (!rw)
3816 dmactl |= ATA_DMA_WR;
3817 writeb(dmactl, mmio + ATA_DMA_CMD);
3819 /* issue r/w command */
3820 ap->ops->exec_command(ap, &qc->tf);
3824 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3825 * @qc: Info associated with this ATA transaction.
3827 * LOCKING:
3828 * spin_lock_irqsave(host_set lock)
3831 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3833 struct ata_port *ap = qc->ap;
3834 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3835 u8 dmactl;
3837 /* start host DMA transaction */
3838 dmactl = readb(mmio + ATA_DMA_CMD);
3839 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3841 /* Strictly, one may wish to issue a readb() here, to
3842 * flush the mmio write. However, control also passes
3843 * to the hardware at this point, and it will interrupt
3844 * us when we are to resume control. So, in effect,
3845 * we don't care when the mmio write flushes.
3846 * Further, a read of the DMA status register _immediately_
3847 * following the write may not be what certain flaky hardware
3848 * is expected, so I think it is best to not add a readb()
3849 * without first all the MMIO ATA cards/mobos.
3850 * Or maybe I'm just being paranoid.
3855 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3856 * @qc: Info associated with this ATA transaction.
3858 * LOCKING:
3859 * spin_lock_irqsave(host_set lock)
3862 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3864 struct ata_port *ap = qc->ap;
3865 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3866 u8 dmactl;
3868 /* load PRD table addr. */
3869 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3871 /* specify data direction, triple-check start bit is clear */
3872 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3873 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3874 if (!rw)
3875 dmactl |= ATA_DMA_WR;
3876 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3878 /* issue r/w command */
3879 ap->ops->exec_command(ap, &qc->tf);
3883 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3884 * @qc: Info associated with this ATA transaction.
3886 * LOCKING:
3887 * spin_lock_irqsave(host_set lock)
3890 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3892 struct ata_port *ap = qc->ap;
3893 u8 dmactl;
3895 /* start host DMA transaction */
3896 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3897 outb(dmactl | ATA_DMA_START,
3898 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3903 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3904 * @qc: Info associated with this ATA transaction.
3906 * Writes the ATA_DMA_START flag to the DMA command register.
3908 * May be used as the bmdma_start() entry in ata_port_operations.
3910 * LOCKING:
3911 * spin_lock_irqsave(host_set lock)
3913 void ata_bmdma_start(struct ata_queued_cmd *qc)
3915 if (qc->ap->flags & ATA_FLAG_MMIO)
3916 ata_bmdma_start_mmio(qc);
3917 else
3918 ata_bmdma_start_pio(qc);
3923 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3924 * @qc: Info associated with this ATA transaction.
3926 * Writes address of PRD table to device's PRD Table Address
3927 * register, sets the DMA control register, and calls
3928 * ops->exec_command() to start the transfer.
3930 * May be used as the bmdma_setup() entry in ata_port_operations.
3932 * LOCKING:
3933 * spin_lock_irqsave(host_set lock)
3935 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3937 if (qc->ap->flags & ATA_FLAG_MMIO)
3938 ata_bmdma_setup_mmio(qc);
3939 else
3940 ata_bmdma_setup_pio(qc);
3945 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3946 * @ap: Port associated with this ATA transaction.
3948 * Clear interrupt and error flags in DMA status register.
3950 * May be used as the irq_clear() entry in ata_port_operations.
3952 * LOCKING:
3953 * spin_lock_irqsave(host_set lock)
3956 void ata_bmdma_irq_clear(struct ata_port *ap)
3958 if (ap->flags & ATA_FLAG_MMIO) {
3959 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3960 writeb(readb(mmio), mmio);
3961 } else {
3962 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3963 outb(inb(addr), addr);
3970 * ata_bmdma_status - Read PCI IDE BMDMA status
3971 * @ap: Port associated with this ATA transaction.
3973 * Read and return BMDMA status register.
3975 * May be used as the bmdma_status() entry in ata_port_operations.
3977 * LOCKING:
3978 * spin_lock_irqsave(host_set lock)
3981 u8 ata_bmdma_status(struct ata_port *ap)
3983 u8 host_stat;
3984 if (ap->flags & ATA_FLAG_MMIO) {
3985 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3986 host_stat = readb(mmio + ATA_DMA_STATUS);
3987 } else
3988 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3989 return host_stat;
3994 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3995 * @qc: Command we are ending DMA for
3997 * Clears the ATA_DMA_START flag in the dma control register
3999 * May be used as the bmdma_stop() entry in ata_port_operations.
4001 * LOCKING:
4002 * spin_lock_irqsave(host_set lock)
4005 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4007 struct ata_port *ap = qc->ap;
4008 if (ap->flags & ATA_FLAG_MMIO) {
4009 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4011 /* clear start/stop bit */
4012 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4013 mmio + ATA_DMA_CMD);
4014 } else {
4015 /* clear start/stop bit */
4016 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4017 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4020 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4021 ata_altstatus(ap); /* dummy read */
4025 * ata_host_intr - Handle host interrupt for given (port, task)
4026 * @ap: Port on which interrupt arrived (possibly...)
4027 * @qc: Taskfile currently active in engine
4029 * Handle host interrupt for given queued command. Currently,
4030 * only DMA interrupts are handled. All other commands are
4031 * handled via polling with interrupts disabled (nIEN bit).
4033 * LOCKING:
4034 * spin_lock_irqsave(host_set lock)
4036 * RETURNS:
4037 * One if interrupt was handled, zero if not (shared irq).
4040 inline unsigned int ata_host_intr (struct ata_port *ap,
4041 struct ata_queued_cmd *qc)
4043 u8 status, host_stat;
4045 switch (qc->tf.protocol) {
4047 case ATA_PROT_DMA:
4048 case ATA_PROT_ATAPI_DMA:
4049 case ATA_PROT_ATAPI:
4050 /* check status of DMA engine */
4051 host_stat = ap->ops->bmdma_status(ap);
4052 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4054 /* if it's not our irq... */
4055 if (!(host_stat & ATA_DMA_INTR))
4056 goto idle_irq;
4058 /* before we do anything else, clear DMA-Start bit */
4059 ap->ops->bmdma_stop(qc);
4061 /* fall through */
4063 case ATA_PROT_ATAPI_NODATA:
4064 case ATA_PROT_NODATA:
4065 /* check altstatus */
4066 status = ata_altstatus(ap);
4067 if (status & ATA_BUSY)
4068 goto idle_irq;
4070 /* check main status, clearing INTRQ */
4071 status = ata_chk_status(ap);
4072 if (unlikely(status & ATA_BUSY))
4073 goto idle_irq;
4074 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4075 ap->id, qc->tf.protocol, status);
4077 /* ack bmdma irq events */
4078 ap->ops->irq_clear(ap);
4080 /* complete taskfile transaction */
4081 qc->err_mask |= ac_err_mask(status);
4082 ata_qc_complete(qc);
4083 break;
4085 default:
4086 goto idle_irq;
4089 return 1; /* irq handled */
4091 idle_irq:
4092 ap->stats.idle_irq++;
4094 #ifdef ATA_IRQ_TRAP
4095 if ((ap->stats.idle_irq % 1000) == 0) {
4096 handled = 1;
4097 ata_irq_ack(ap, 0); /* debug trap */
4098 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4100 #endif
4101 return 0; /* irq not handled */
4105 * ata_interrupt - Default ATA host interrupt handler
4106 * @irq: irq line (unused)
4107 * @dev_instance: pointer to our ata_host_set information structure
4108 * @regs: unused
4110 * Default interrupt handler for PCI IDE devices. Calls
4111 * ata_host_intr() for each port that is not disabled.
4113 * LOCKING:
4114 * Obtains host_set lock during operation.
4116 * RETURNS:
4117 * IRQ_NONE or IRQ_HANDLED.
4120 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4122 struct ata_host_set *host_set = dev_instance;
4123 unsigned int i;
4124 unsigned int handled = 0;
4125 unsigned long flags;
4127 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4128 spin_lock_irqsave(&host_set->lock, flags);
4130 for (i = 0; i < host_set->n_ports; i++) {
4131 struct ata_port *ap;
4133 ap = host_set->ports[i];
4134 if (ap &&
4135 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4136 struct ata_queued_cmd *qc;
4138 qc = ata_qc_from_tag(ap, ap->active_tag);
4139 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4140 (qc->flags & ATA_QCFLAG_ACTIVE))
4141 handled |= ata_host_intr(ap, qc);
4145 spin_unlock_irqrestore(&host_set->lock, flags);
4147 return IRQ_RETVAL(handled);
4151 * atapi_packet_task - Write CDB bytes to hardware
4152 * @_data: Port to which ATAPI device is attached.
4154 * When device has indicated its readiness to accept
4155 * a CDB, this function is called. Send the CDB.
4156 * If DMA is to be performed, exit immediately.
4157 * Otherwise, we are in polling mode, so poll
4158 * status under operation succeeds or fails.
4160 * LOCKING:
4161 * Kernel thread context (may sleep)
4164 static void atapi_packet_task(void *_data)
4166 struct ata_port *ap = _data;
4167 struct ata_queued_cmd *qc;
4168 u8 status;
4170 qc = ata_qc_from_tag(ap, ap->active_tag);
4171 assert(qc != NULL);
4172 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4174 /* sleep-wait for BSY to clear */
4175 DPRINTK("busy wait\n");
4176 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4177 qc->err_mask |= AC_ERR_ATA_BUS;
4178 goto err_out;
4181 /* make sure DRQ is set */
4182 status = ata_chk_status(ap);
4183 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4184 qc->err_mask |= AC_ERR_ATA_BUS;
4185 goto err_out;
4188 /* send SCSI cdb */
4189 DPRINTK("send cdb\n");
4190 assert(ap->cdb_len >= 12);
4192 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4193 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4194 unsigned long flags;
4196 /* Once we're done issuing command and kicking bmdma,
4197 * irq handler takes over. To not lose irq, we need
4198 * to clear NOINTR flag before sending cdb, but
4199 * interrupt handler shouldn't be invoked before we're
4200 * finished. Hence, the following locking.
4202 spin_lock_irqsave(&ap->host_set->lock, flags);
4203 ap->flags &= ~ATA_FLAG_NOINTR;
4204 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4205 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4206 ap->ops->bmdma_start(qc); /* initiate bmdma */
4207 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4208 } else {
4209 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4211 /* PIO commands are handled by polling */
4212 ap->hsm_task_state = HSM_ST;
4213 queue_work(ata_wq, &ap->pio_task);
4216 return;
4218 err_out:
4219 ata_poll_qc_complete(qc);
4224 * ata_port_start - Set port up for dma.
4225 * @ap: Port to initialize
4227 * Called just after data structures for each port are
4228 * initialized. Allocates space for PRD table.
4230 * May be used as the port_start() entry in ata_port_operations.
4232 * LOCKING:
4233 * Inherited from caller.
4237 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4238 * without filling any other registers
4240 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4241 u8 cmd)
4243 struct ata_taskfile tf;
4244 int err;
4246 ata_tf_init(ap, &tf, dev->devno);
4248 tf.command = cmd;
4249 tf.flags |= ATA_TFLAG_DEVICE;
4250 tf.protocol = ATA_PROT_NODATA;
4252 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4253 if (err)
4254 printk(KERN_ERR "%s: ata command failed: %d\n",
4255 __FUNCTION__, err);
4257 return err;
4260 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4262 u8 cmd;
4264 if (!ata_try_flush_cache(dev))
4265 return 0;
4267 if (ata_id_has_flush_ext(dev->id))
4268 cmd = ATA_CMD_FLUSH_EXT;
4269 else
4270 cmd = ATA_CMD_FLUSH;
4272 return ata_do_simple_cmd(ap, dev, cmd);
4275 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4277 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4280 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4282 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4286 * ata_device_resume - wakeup a previously suspended devices
4288 * Kick the drive back into action, by sending it an idle immediate
4289 * command and making sure its transfer mode matches between drive
4290 * and host.
4293 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4295 if (ap->flags & ATA_FLAG_SUSPENDED) {
4296 ap->flags &= ~ATA_FLAG_SUSPENDED;
4297 ata_set_mode(ap);
4299 if (!ata_dev_present(dev))
4300 return 0;
4301 if (dev->class == ATA_DEV_ATA)
4302 ata_start_drive(ap, dev);
4304 return 0;
4308 * ata_device_suspend - prepare a device for suspend
4310 * Flush the cache on the drive, if appropriate, then issue a
4311 * standbynow command.
4314 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4316 if (!ata_dev_present(dev))
4317 return 0;
4318 if (dev->class == ATA_DEV_ATA)
4319 ata_flush_cache(ap, dev);
4321 ata_standby_drive(ap, dev);
4322 ap->flags |= ATA_FLAG_SUSPENDED;
4323 return 0;
4326 int ata_port_start (struct ata_port *ap)
4328 struct device *dev = ap->host_set->dev;
4329 int rc;
4331 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4332 if (!ap->prd)
4333 return -ENOMEM;
4335 rc = ata_pad_alloc(ap, dev);
4336 if (rc) {
4337 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4338 return rc;
4341 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4343 return 0;
4348 * ata_port_stop - Undo ata_port_start()
4349 * @ap: Port to shut down
4351 * Frees the PRD table.
4353 * May be used as the port_stop() entry in ata_port_operations.
4355 * LOCKING:
4356 * Inherited from caller.
4359 void ata_port_stop (struct ata_port *ap)
4361 struct device *dev = ap->host_set->dev;
4363 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4364 ata_pad_free(ap, dev);
4367 void ata_host_stop (struct ata_host_set *host_set)
4369 if (host_set->mmio_base)
4370 iounmap(host_set->mmio_base);
4375 * ata_host_remove - Unregister SCSI host structure with upper layers
4376 * @ap: Port to unregister
4377 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4379 * LOCKING:
4380 * Inherited from caller.
4383 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4385 struct Scsi_Host *sh = ap->host;
4387 DPRINTK("ENTER\n");
4389 if (do_unregister)
4390 scsi_remove_host(sh);
4392 ap->ops->port_stop(ap);
4396 * ata_host_init - Initialize an ata_port structure
4397 * @ap: Structure to initialize
4398 * @host: associated SCSI mid-layer structure
4399 * @host_set: Collection of hosts to which @ap belongs
4400 * @ent: Probe information provided by low-level driver
4401 * @port_no: Port number associated with this ata_port
4403 * Initialize a new ata_port structure, and its associated
4404 * scsi_host.
4406 * LOCKING:
4407 * Inherited from caller.
4410 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4411 struct ata_host_set *host_set,
4412 const struct ata_probe_ent *ent, unsigned int port_no)
4414 unsigned int i;
4416 host->max_id = 16;
4417 host->max_lun = 1;
4418 host->max_channel = 1;
4419 host->unique_id = ata_unique_id++;
4420 host->max_cmd_len = 12;
4422 ap->flags = ATA_FLAG_PORT_DISABLED;
4423 ap->id = host->unique_id;
4424 ap->host = host;
4425 ap->ctl = ATA_DEVCTL_OBS;
4426 ap->host_set = host_set;
4427 ap->port_no = port_no;
4428 ap->hard_port_no =
4429 ent->legacy_mode ? ent->hard_port_no : port_no;
4430 ap->pio_mask = ent->pio_mask;
4431 ap->mwdma_mask = ent->mwdma_mask;
4432 ap->udma_mask = ent->udma_mask;
4433 ap->flags |= ent->host_flags;
4434 ap->ops = ent->port_ops;
4435 ap->cbl = ATA_CBL_NONE;
4436 ap->active_tag = ATA_TAG_POISON;
4437 ap->last_ctl = 0xFF;
4439 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4440 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4442 for (i = 0; i < ATA_MAX_DEVICES; i++)
4443 ap->device[i].devno = i;
4445 #ifdef ATA_IRQ_TRAP
4446 ap->stats.unhandled_irq = 1;
4447 ap->stats.idle_irq = 1;
4448 #endif
4450 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4454 * ata_host_add - Attach low-level ATA driver to system
4455 * @ent: Information provided by low-level driver
4456 * @host_set: Collections of ports to which we add
4457 * @port_no: Port number associated with this host
4459 * Attach low-level ATA driver to system.
4461 * LOCKING:
4462 * PCI/etc. bus probe sem.
4464 * RETURNS:
4465 * New ata_port on success, for NULL on error.
4468 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4469 struct ata_host_set *host_set,
4470 unsigned int port_no)
4472 struct Scsi_Host *host;
4473 struct ata_port *ap;
4474 int rc;
4476 DPRINTK("ENTER\n");
4477 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4478 if (!host)
4479 return NULL;
4481 ap = (struct ata_port *) &host->hostdata[0];
4483 ata_host_init(ap, host, host_set, ent, port_no);
4485 rc = ap->ops->port_start(ap);
4486 if (rc)
4487 goto err_out;
4489 return ap;
4491 err_out:
4492 scsi_host_put(host);
4493 return NULL;
4497 * ata_device_add - Register hardware device with ATA and SCSI layers
4498 * @ent: Probe information describing hardware device to be registered
4500 * This function processes the information provided in the probe
4501 * information struct @ent, allocates the necessary ATA and SCSI
4502 * host information structures, initializes them, and registers
4503 * everything with requisite kernel subsystems.
4505 * This function requests irqs, probes the ATA bus, and probes
4506 * the SCSI bus.
4508 * LOCKING:
4509 * PCI/etc. bus probe sem.
4511 * RETURNS:
4512 * Number of ports registered. Zero on error (no ports registered).
4515 int ata_device_add(const struct ata_probe_ent *ent)
4517 unsigned int count = 0, i;
4518 struct device *dev = ent->dev;
4519 struct ata_host_set *host_set;
4521 DPRINTK("ENTER\n");
4522 /* alloc a container for our list of ATA ports (buses) */
4523 host_set = kzalloc(sizeof(struct ata_host_set) +
4524 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4525 if (!host_set)
4526 return 0;
4527 spin_lock_init(&host_set->lock);
4529 host_set->dev = dev;
4530 host_set->n_ports = ent->n_ports;
4531 host_set->irq = ent->irq;
4532 host_set->mmio_base = ent->mmio_base;
4533 host_set->private_data = ent->private_data;
4534 host_set->ops = ent->port_ops;
4536 /* register each port bound to this device */
4537 for (i = 0; i < ent->n_ports; i++) {
4538 struct ata_port *ap;
4539 unsigned long xfer_mode_mask;
4541 ap = ata_host_add(ent, host_set, i);
4542 if (!ap)
4543 goto err_out;
4545 host_set->ports[i] = ap;
4546 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4547 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4548 (ap->pio_mask << ATA_SHIFT_PIO);
4550 /* print per-port info to dmesg */
4551 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4552 "bmdma 0x%lX irq %lu\n",
4553 ap->id,
4554 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4555 ata_mode_string(xfer_mode_mask),
4556 ap->ioaddr.cmd_addr,
4557 ap->ioaddr.ctl_addr,
4558 ap->ioaddr.bmdma_addr,
4559 ent->irq);
4561 ata_chk_status(ap);
4562 host_set->ops->irq_clear(ap);
4563 count++;
4566 if (!count)
4567 goto err_free_ret;
4569 /* obtain irq, that is shared between channels */
4570 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4571 DRV_NAME, host_set))
4572 goto err_out;
4574 /* perform each probe synchronously */
4575 DPRINTK("probe begin\n");
4576 for (i = 0; i < count; i++) {
4577 struct ata_port *ap;
4578 int rc;
4580 ap = host_set->ports[i];
4582 DPRINTK("ata%u: probe begin\n", ap->id);
4583 rc = ata_bus_probe(ap);
4584 DPRINTK("ata%u: probe end\n", ap->id);
4586 if (rc) {
4587 /* FIXME: do something useful here?
4588 * Current libata behavior will
4589 * tear down everything when
4590 * the module is removed
4591 * or the h/w is unplugged.
4595 rc = scsi_add_host(ap->host, dev);
4596 if (rc) {
4597 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4598 ap->id);
4599 /* FIXME: do something useful here */
4600 /* FIXME: handle unconditional calls to
4601 * scsi_scan_host and ata_host_remove, below,
4602 * at the very least
4607 /* probes are done, now scan each port's disk(s) */
4608 DPRINTK("probe begin\n");
4609 for (i = 0; i < count; i++) {
4610 struct ata_port *ap = host_set->ports[i];
4612 ata_scsi_scan_host(ap);
4615 dev_set_drvdata(dev, host_set);
4617 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4618 return ent->n_ports; /* success */
4620 err_out:
4621 for (i = 0; i < count; i++) {
4622 ata_host_remove(host_set->ports[i], 1);
4623 scsi_host_put(host_set->ports[i]->host);
4625 err_free_ret:
4626 kfree(host_set);
4627 VPRINTK("EXIT, returning 0\n");
4628 return 0;
4632 * ata_host_set_remove - PCI layer callback for device removal
4633 * @host_set: ATA host set that was removed
4635 * Unregister all objects associated with this host set. Free those
4636 * objects.
4638 * LOCKING:
4639 * Inherited from calling layer (may sleep).
4642 void ata_host_set_remove(struct ata_host_set *host_set)
4644 struct ata_port *ap;
4645 unsigned int i;
4647 for (i = 0; i < host_set->n_ports; i++) {
4648 ap = host_set->ports[i];
4649 scsi_remove_host(ap->host);
4652 free_irq(host_set->irq, host_set);
4654 for (i = 0; i < host_set->n_ports; i++) {
4655 ap = host_set->ports[i];
4657 ata_scsi_release(ap->host);
4659 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4660 struct ata_ioports *ioaddr = &ap->ioaddr;
4662 if (ioaddr->cmd_addr == 0x1f0)
4663 release_region(0x1f0, 8);
4664 else if (ioaddr->cmd_addr == 0x170)
4665 release_region(0x170, 8);
4668 scsi_host_put(ap->host);
4671 if (host_set->ops->host_stop)
4672 host_set->ops->host_stop(host_set);
4674 kfree(host_set);
4678 * ata_scsi_release - SCSI layer callback hook for host unload
4679 * @host: libata host to be unloaded
4681 * Performs all duties necessary to shut down a libata port...
4682 * Kill port kthread, disable port, and release resources.
4684 * LOCKING:
4685 * Inherited from SCSI layer.
4687 * RETURNS:
4688 * One.
4691 int ata_scsi_release(struct Scsi_Host *host)
4693 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4695 DPRINTK("ENTER\n");
4697 ap->ops->port_disable(ap);
4698 ata_host_remove(ap, 0);
4700 DPRINTK("EXIT\n");
4701 return 1;
4705 * ata_std_ports - initialize ioaddr with standard port offsets.
4706 * @ioaddr: IO address structure to be initialized
4708 * Utility function which initializes data_addr, error_addr,
4709 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4710 * device_addr, status_addr, and command_addr to standard offsets
4711 * relative to cmd_addr.
4713 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4716 void ata_std_ports(struct ata_ioports *ioaddr)
4718 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4719 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4720 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4721 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4722 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4723 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4724 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4725 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4726 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4727 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4730 static struct ata_probe_ent *
4731 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4733 struct ata_probe_ent *probe_ent;
4735 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4736 if (!probe_ent) {
4737 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4738 kobject_name(&(dev->kobj)));
4739 return NULL;
4742 INIT_LIST_HEAD(&probe_ent->node);
4743 probe_ent->dev = dev;
4745 probe_ent->sht = port->sht;
4746 probe_ent->host_flags = port->host_flags;
4747 probe_ent->pio_mask = port->pio_mask;
4748 probe_ent->mwdma_mask = port->mwdma_mask;
4749 probe_ent->udma_mask = port->udma_mask;
4750 probe_ent->port_ops = port->port_ops;
4752 return probe_ent;
4757 #ifdef CONFIG_PCI
4759 void ata_pci_host_stop (struct ata_host_set *host_set)
4761 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4763 pci_iounmap(pdev, host_set->mmio_base);
4767 * ata_pci_init_native_mode - Initialize native-mode driver
4768 * @pdev: pci device to be initialized
4769 * @port: array[2] of pointers to port info structures.
4770 * @ports: bitmap of ports present
4772 * Utility function which allocates and initializes an
4773 * ata_probe_ent structure for a standard dual-port
4774 * PIO-based IDE controller. The returned ata_probe_ent
4775 * structure can be passed to ata_device_add(). The returned
4776 * ata_probe_ent structure should then be freed with kfree().
4778 * The caller need only pass the address of the primary port, the
4779 * secondary will be deduced automatically. If the device has non
4780 * standard secondary port mappings this function can be called twice,
4781 * once for each interface.
4784 struct ata_probe_ent *
4785 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4787 struct ata_probe_ent *probe_ent =
4788 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4789 int p = 0;
4791 if (!probe_ent)
4792 return NULL;
4794 probe_ent->irq = pdev->irq;
4795 probe_ent->irq_flags = SA_SHIRQ;
4796 probe_ent->private_data = port[0]->private_data;
4798 if (ports & ATA_PORT_PRIMARY) {
4799 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4800 probe_ent->port[p].altstatus_addr =
4801 probe_ent->port[p].ctl_addr =
4802 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4803 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4804 ata_std_ports(&probe_ent->port[p]);
4805 p++;
4808 if (ports & ATA_PORT_SECONDARY) {
4809 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4810 probe_ent->port[p].altstatus_addr =
4811 probe_ent->port[p].ctl_addr =
4812 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4813 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4814 ata_std_ports(&probe_ent->port[p]);
4815 p++;
4818 probe_ent->n_ports = p;
4819 return probe_ent;
4822 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4824 struct ata_probe_ent *probe_ent;
4826 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4827 if (!probe_ent)
4828 return NULL;
4830 probe_ent->legacy_mode = 1;
4831 probe_ent->n_ports = 1;
4832 probe_ent->hard_port_no = port_num;
4833 probe_ent->private_data = port->private_data;
4835 switch(port_num)
4837 case 0:
4838 probe_ent->irq = 14;
4839 probe_ent->port[0].cmd_addr = 0x1f0;
4840 probe_ent->port[0].altstatus_addr =
4841 probe_ent->port[0].ctl_addr = 0x3f6;
4842 break;
4843 case 1:
4844 probe_ent->irq = 15;
4845 probe_ent->port[0].cmd_addr = 0x170;
4846 probe_ent->port[0].altstatus_addr =
4847 probe_ent->port[0].ctl_addr = 0x376;
4848 break;
4850 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4851 ata_std_ports(&probe_ent->port[0]);
4852 return probe_ent;
4856 * ata_pci_init_one - Initialize/register PCI IDE host controller
4857 * @pdev: Controller to be initialized
4858 * @port_info: Information from low-level host driver
4859 * @n_ports: Number of ports attached to host controller
4861 * This is a helper function which can be called from a driver's
4862 * xxx_init_one() probe function if the hardware uses traditional
4863 * IDE taskfile registers.
4865 * This function calls pci_enable_device(), reserves its register
4866 * regions, sets the dma mask, enables bus master mode, and calls
4867 * ata_device_add()
4869 * LOCKING:
4870 * Inherited from PCI layer (may sleep).
4872 * RETURNS:
4873 * Zero on success, negative on errno-based value on error.
4876 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4877 unsigned int n_ports)
4879 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4880 struct ata_port_info *port[2];
4881 u8 tmp8, mask;
4882 unsigned int legacy_mode = 0;
4883 int disable_dev_on_err = 1;
4884 int rc;
4886 DPRINTK("ENTER\n");
4888 port[0] = port_info[0];
4889 if (n_ports > 1)
4890 port[1] = port_info[1];
4891 else
4892 port[1] = port[0];
4894 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4895 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4896 /* TODO: What if one channel is in native mode ... */
4897 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4898 mask = (1 << 2) | (1 << 0);
4899 if ((tmp8 & mask) != mask)
4900 legacy_mode = (1 << 3);
4903 /* FIXME... */
4904 if ((!legacy_mode) && (n_ports > 2)) {
4905 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4906 n_ports = 2;
4907 /* For now */
4910 /* FIXME: Really for ATA it isn't safe because the device may be
4911 multi-purpose and we want to leave it alone if it was already
4912 enabled. Secondly for shared use as Arjan says we want refcounting
4914 Checking dev->is_enabled is insufficient as this is not set at
4915 boot for the primary video which is BIOS enabled
4918 rc = pci_enable_device(pdev);
4919 if (rc)
4920 return rc;
4922 rc = pci_request_regions(pdev, DRV_NAME);
4923 if (rc) {
4924 disable_dev_on_err = 0;
4925 goto err_out;
4928 /* FIXME: Should use platform specific mappers for legacy port ranges */
4929 if (legacy_mode) {
4930 if (!request_region(0x1f0, 8, "libata")) {
4931 struct resource *conflict, res;
4932 res.start = 0x1f0;
4933 res.end = 0x1f0 + 8 - 1;
4934 conflict = ____request_resource(&ioport_resource, &res);
4935 if (!strcmp(conflict->name, "libata"))
4936 legacy_mode |= (1 << 0);
4937 else {
4938 disable_dev_on_err = 0;
4939 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4941 } else
4942 legacy_mode |= (1 << 0);
4944 if (!request_region(0x170, 8, "libata")) {
4945 struct resource *conflict, res;
4946 res.start = 0x170;
4947 res.end = 0x170 + 8 - 1;
4948 conflict = ____request_resource(&ioport_resource, &res);
4949 if (!strcmp(conflict->name, "libata"))
4950 legacy_mode |= (1 << 1);
4951 else {
4952 disable_dev_on_err = 0;
4953 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4955 } else
4956 legacy_mode |= (1 << 1);
4959 /* we have legacy mode, but all ports are unavailable */
4960 if (legacy_mode == (1 << 3)) {
4961 rc = -EBUSY;
4962 goto err_out_regions;
4965 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4966 if (rc)
4967 goto err_out_regions;
4968 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4969 if (rc)
4970 goto err_out_regions;
4972 if (legacy_mode) {
4973 if (legacy_mode & (1 << 0))
4974 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4975 if (legacy_mode & (1 << 1))
4976 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4977 } else {
4978 if (n_ports == 2)
4979 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4980 else
4981 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4983 if (!probe_ent && !probe_ent2) {
4984 rc = -ENOMEM;
4985 goto err_out_regions;
4988 pci_set_master(pdev);
4990 /* FIXME: check ata_device_add return */
4991 if (legacy_mode) {
4992 if (legacy_mode & (1 << 0))
4993 ata_device_add(probe_ent);
4994 if (legacy_mode & (1 << 1))
4995 ata_device_add(probe_ent2);
4996 } else
4997 ata_device_add(probe_ent);
4999 kfree(probe_ent);
5000 kfree(probe_ent2);
5002 return 0;
5004 err_out_regions:
5005 if (legacy_mode & (1 << 0))
5006 release_region(0x1f0, 8);
5007 if (legacy_mode & (1 << 1))
5008 release_region(0x170, 8);
5009 pci_release_regions(pdev);
5010 err_out:
5011 if (disable_dev_on_err)
5012 pci_disable_device(pdev);
5013 return rc;
5017 * ata_pci_remove_one - PCI layer callback for device removal
5018 * @pdev: PCI device that was removed
5020 * PCI layer indicates to libata via this hook that
5021 * hot-unplug or module unload event has occurred.
5022 * Handle this by unregistering all objects associated
5023 * with this PCI device. Free those objects. Then finally
5024 * release PCI resources and disable device.
5026 * LOCKING:
5027 * Inherited from PCI layer (may sleep).
5030 void ata_pci_remove_one (struct pci_dev *pdev)
5032 struct device *dev = pci_dev_to_dev(pdev);
5033 struct ata_host_set *host_set = dev_get_drvdata(dev);
5035 ata_host_set_remove(host_set);
5036 pci_release_regions(pdev);
5037 pci_disable_device(pdev);
5038 dev_set_drvdata(dev, NULL);
5041 /* move to PCI subsystem */
5042 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5044 unsigned long tmp = 0;
5046 switch (bits->width) {
5047 case 1: {
5048 u8 tmp8 = 0;
5049 pci_read_config_byte(pdev, bits->reg, &tmp8);
5050 tmp = tmp8;
5051 break;
5053 case 2: {
5054 u16 tmp16 = 0;
5055 pci_read_config_word(pdev, bits->reg, &tmp16);
5056 tmp = tmp16;
5057 break;
5059 case 4: {
5060 u32 tmp32 = 0;
5061 pci_read_config_dword(pdev, bits->reg, &tmp32);
5062 tmp = tmp32;
5063 break;
5066 default:
5067 return -EINVAL;
5070 tmp &= bits->mask;
5072 return (tmp == bits->val) ? 1 : 0;
5075 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5077 pci_save_state(pdev);
5078 pci_disable_device(pdev);
5079 pci_set_power_state(pdev, PCI_D3hot);
5080 return 0;
5083 int ata_pci_device_resume(struct pci_dev *pdev)
5085 pci_set_power_state(pdev, PCI_D0);
5086 pci_restore_state(pdev);
5087 pci_enable_device(pdev);
5088 pci_set_master(pdev);
5089 return 0;
5091 #endif /* CONFIG_PCI */
5094 static int __init ata_init(void)
5096 ata_wq = create_workqueue("ata");
5097 if (!ata_wq)
5098 return -ENOMEM;
5100 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5101 return 0;
5104 static void __exit ata_exit(void)
5106 destroy_workqueue(ata_wq);
5109 module_init(ata_init);
5110 module_exit(ata_exit);
5112 static unsigned long ratelimit_time;
5113 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5115 int ata_ratelimit(void)
5117 int rc;
5118 unsigned long flags;
5120 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5122 if (time_after(jiffies, ratelimit_time)) {
5123 rc = 1;
5124 ratelimit_time = jiffies + (HZ/5);
5125 } else
5126 rc = 0;
5128 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5130 return rc;
5134 * libata is essentially a library of internal helper functions for
5135 * low-level ATA host controller drivers. As such, the API/ABI is
5136 * likely to change as new drivers are added and updated.
5137 * Do not depend on ABI/API stability.
5140 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5141 EXPORT_SYMBOL_GPL(ata_std_ports);
5142 EXPORT_SYMBOL_GPL(ata_device_add);
5143 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5144 EXPORT_SYMBOL_GPL(ata_sg_init);
5145 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5146 EXPORT_SYMBOL_GPL(ata_qc_complete);
5147 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5148 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5149 EXPORT_SYMBOL_GPL(ata_tf_load);
5150 EXPORT_SYMBOL_GPL(ata_tf_read);
5151 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5152 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5153 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5154 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5155 EXPORT_SYMBOL_GPL(ata_check_status);
5156 EXPORT_SYMBOL_GPL(ata_altstatus);
5157 EXPORT_SYMBOL_GPL(ata_exec_command);
5158 EXPORT_SYMBOL_GPL(ata_port_start);
5159 EXPORT_SYMBOL_GPL(ata_port_stop);
5160 EXPORT_SYMBOL_GPL(ata_host_stop);
5161 EXPORT_SYMBOL_GPL(ata_interrupt);
5162 EXPORT_SYMBOL_GPL(ata_qc_prep);
5163 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5164 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5165 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5166 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5167 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5168 EXPORT_SYMBOL_GPL(ata_port_probe);
5169 EXPORT_SYMBOL_GPL(sata_phy_reset);
5170 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5171 EXPORT_SYMBOL_GPL(ata_bus_reset);
5172 EXPORT_SYMBOL_GPL(ata_port_disable);
5173 EXPORT_SYMBOL_GPL(ata_ratelimit);
5174 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5175 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5176 EXPORT_SYMBOL_GPL(ata_scsi_error);
5177 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5178 EXPORT_SYMBOL_GPL(ata_scsi_release);
5179 EXPORT_SYMBOL_GPL(ata_host_intr);
5180 EXPORT_SYMBOL_GPL(ata_dev_classify);
5181 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5182 EXPORT_SYMBOL_GPL(ata_dev_config);
5183 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5185 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5186 EXPORT_SYMBOL_GPL(ata_timing_compute);
5187 EXPORT_SYMBOL_GPL(ata_timing_merge);
5189 #ifdef CONFIG_PCI
5190 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5191 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5192 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5193 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5194 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5195 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5196 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5197 #endif /* CONFIG_PCI */
5199 EXPORT_SYMBOL_GPL(ata_device_suspend);
5200 EXPORT_SYMBOL_GPL(ata_device_resume);
5201 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5202 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);