ieee1394/ohci1394: CycleTooLong interrupt management
[linux-2.6/linux-loongson.git] / drivers / ieee1394 / ohci1394.c
blob643094c3339c346019d9c125ba5f6b76917e999d
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
36 * Things not implemented:
37 * . DMA error recovery
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
45 * Acknowledgments:
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
85 #include <linux/config.h>
86 #include <linux/kernel.h>
87 #include <linux/list.h>
88 #include <linux/slab.h>
89 #include <linux/interrupt.h>
90 #include <linux/wait.h>
91 #include <linux/errno.h>
92 #include <linux/module.h>
93 #include <linux/moduleparam.h>
94 #include <linux/pci.h>
95 #include <linux/fs.h>
96 #include <linux/poll.h>
97 #include <asm/byteorder.h>
98 #include <asm/atomic.h>
99 #include <asm/uaccess.h>
100 #include <linux/delay.h>
101 #include <linux/spinlock.h>
103 #include <asm/pgtable.h>
104 #include <asm/page.h>
105 #include <asm/irq.h>
106 #include <linux/sched.h>
107 #include <linux/types.h>
108 #include <linux/vmalloc.h>
109 #include <linux/init.h>
111 #ifdef CONFIG_PPC_PMAC
112 #include <asm/machdep.h>
113 #include <asm/pmac_feature.h>
114 #include <asm/prom.h>
115 #include <asm/pci-bridge.h>
116 #endif
118 #include "csr1212.h"
119 #include "ieee1394.h"
120 #include "ieee1394_types.h"
121 #include "hosts.h"
122 #include "dma.h"
123 #include "iso.h"
124 #include "ieee1394_core.h"
125 #include "highlevel.h"
126 #include "ohci1394.h"
128 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
129 #define OHCI1394_DEBUG
130 #endif
132 #ifdef DBGMSG
133 #undef DBGMSG
134 #endif
136 #ifdef OHCI1394_DEBUG
137 #define DBGMSG(fmt, args...) \
138 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
139 #else
140 #define DBGMSG(fmt, args...)
141 #endif
143 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
144 #define OHCI_DMA_ALLOC(fmt, args...) \
145 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
146 ++global_outstanding_dmas, ## args)
147 #define OHCI_DMA_FREE(fmt, args...) \
148 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
149 --global_outstanding_dmas, ## args)
150 static int global_outstanding_dmas = 0;
151 #else
152 #define OHCI_DMA_ALLOC(fmt, args...)
153 #define OHCI_DMA_FREE(fmt, args...)
154 #endif
156 /* print general (card independent) information */
157 #define PRINT_G(level, fmt, args...) \
158 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
160 /* print card specific information */
161 #define PRINT(level, fmt, args...) \
162 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
164 /* Module Parameters */
165 static int phys_dma = 1;
166 module_param(phys_dma, int, 0644);
167 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
169 static void dma_trm_tasklet(unsigned long data);
170 static void dma_trm_reset(struct dma_trm_ctx *d);
172 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
173 enum context_type type, int ctx, int num_desc,
174 int buf_size, int split_buf_size, int context_base);
175 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
176 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
178 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
179 enum context_type type, int ctx, int num_desc,
180 int context_base);
182 static void ohci1394_pci_remove(struct pci_dev *pdev);
184 #ifndef __LITTLE_ENDIAN
185 static unsigned hdr_sizes[] =
187 3, /* TCODE_WRITEQ */
188 4, /* TCODE_WRITEB */
189 3, /* TCODE_WRITE_RESPONSE */
190 0, /* ??? */
191 3, /* TCODE_READQ */
192 4, /* TCODE_READB */
193 3, /* TCODE_READQ_RESPONSE */
194 4, /* TCODE_READB_RESPONSE */
195 1, /* TCODE_CYCLE_START (???) */
196 4, /* TCODE_LOCK_REQUEST */
197 2, /* TCODE_ISO_DATA */
198 4, /* TCODE_LOCK_RESPONSE */
201 /* Swap headers */
202 static inline void packet_swab(quadlet_t *data, int tcode)
204 size_t size = hdr_sizes[tcode];
206 if (tcode > TCODE_LOCK_RESPONSE || hdr_sizes[tcode] == 0)
207 return;
209 while (size--)
210 data[size] = swab32(data[size]);
212 #else
213 /* Don't waste cycles on same sex byte swaps */
214 #define packet_swab(w,x)
215 #endif /* !LITTLE_ENDIAN */
217 /***********************************
218 * IEEE-1394 functionality section *
219 ***********************************/
221 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
223 int i;
224 unsigned long flags;
225 quadlet_t r;
227 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
229 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
231 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
232 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
233 break;
235 mdelay(1);
238 r = reg_read(ohci, OHCI1394_PhyControl);
240 if (i >= OHCI_LOOP_COUNT)
241 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
242 r, r & 0x80000000, i);
244 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
246 return (r & 0x00ff0000) >> 16;
249 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
251 int i;
252 unsigned long flags;
253 u32 r = 0;
255 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
257 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
259 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
260 r = reg_read(ohci, OHCI1394_PhyControl);
261 if (!(r & 0x00004000))
262 break;
264 mdelay(1);
267 if (i == OHCI_LOOP_COUNT)
268 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
269 r, r & 0x00004000, i);
271 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
273 return;
276 /* Or's our value into the current value */
277 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
279 u8 old;
281 old = get_phy_reg (ohci, addr);
282 old |= data;
283 set_phy_reg (ohci, addr, old);
285 return;
288 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
289 int phyid, int isroot)
291 quadlet_t *q = ohci->selfid_buf_cpu;
292 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
293 size_t size;
294 quadlet_t q0, q1;
296 /* Check status of self-id reception */
298 if (ohci->selfid_swap)
299 q0 = le32_to_cpu(q[0]);
300 else
301 q0 = q[0];
303 if ((self_id_count & 0x80000000) ||
304 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
305 PRINT(KERN_ERR,
306 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
307 self_id_count, q0, ohci->self_id_errors);
309 /* Tip by James Goodwin <jamesg@Filanet.com>:
310 * We had an error, generate another bus reset in response. */
311 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
312 set_phy_reg_mask (ohci, 1, 0x40);
313 ohci->self_id_errors++;
314 } else {
315 PRINT(KERN_ERR,
316 "Too many errors on SelfID error reception, giving up!");
318 return;
321 /* SelfID Ok, reset error counter. */
322 ohci->self_id_errors = 0;
324 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
325 q++;
327 while (size > 0) {
328 if (ohci->selfid_swap) {
329 q0 = le32_to_cpu(q[0]);
330 q1 = le32_to_cpu(q[1]);
331 } else {
332 q0 = q[0];
333 q1 = q[1];
336 if (q0 == ~q1) {
337 DBGMSG ("SelfID packet 0x%x received", q0);
338 hpsb_selfid_received(host, cpu_to_be32(q0));
339 if (((q0 & 0x3f000000) >> 24) == phyid)
340 DBGMSG ("SelfID for this node is 0x%08x", q0);
341 } else {
342 PRINT(KERN_ERR,
343 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
345 q += 2;
346 size -= 2;
349 DBGMSG("SelfID complete");
351 return;
354 static void ohci_soft_reset(struct ti_ohci *ohci) {
355 int i;
357 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
359 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
360 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
361 break;
362 mdelay(1);
364 DBGMSG ("Soft reset finished");
368 /* Generate the dma receive prgs and start the context */
369 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
371 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
372 int i;
374 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
376 for (i=0; i<d->num_desc; i++) {
377 u32 c;
379 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
380 if (generate_irq)
381 c |= DMA_CTL_IRQ;
383 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
385 /* End of descriptor list? */
386 if (i + 1 < d->num_desc) {
387 d->prg_cpu[i]->branchAddress =
388 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
389 } else {
390 d->prg_cpu[i]->branchAddress =
391 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
394 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
395 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
398 d->buf_ind = 0;
399 d->buf_offset = 0;
401 if (d->type == DMA_CTX_ISO) {
402 /* Clear contextControl */
403 reg_write(ohci, d->ctrlClear, 0xffffffff);
405 /* Set bufferFill, isochHeader, multichannel for IR context */
406 reg_write(ohci, d->ctrlSet, 0xd0000000);
408 /* Set the context match register to match on all tags */
409 reg_write(ohci, d->ctxtMatch, 0xf0000000);
411 /* Clear the multi channel mask high and low registers */
412 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
413 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
415 /* Set up isoRecvIntMask to generate interrupts */
416 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
419 /* Tell the controller where the first AR program is */
420 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
422 /* Run context */
423 reg_write(ohci, d->ctrlSet, 0x00008000);
425 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
428 /* Initialize the dma transmit context */
429 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
431 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
433 /* Stop the context */
434 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
436 d->prg_ind = 0;
437 d->sent_ind = 0;
438 d->free_prgs = d->num_desc;
439 d->branchAddrPtr = NULL;
440 INIT_LIST_HEAD(&d->fifo_list);
441 INIT_LIST_HEAD(&d->pending_list);
443 if (d->type == DMA_CTX_ISO) {
444 /* enable interrupts */
445 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
448 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
451 /* Count the number of available iso contexts */
452 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
454 int i,ctx=0;
455 u32 tmp;
457 reg_write(ohci, reg, 0xffffffff);
458 tmp = reg_read(ohci, reg);
460 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
462 /* Count the number of contexts */
463 for (i=0; i<32; i++) {
464 if (tmp & 1) ctx++;
465 tmp >>= 1;
467 return ctx;
470 /* Global initialization */
471 static void ohci_initialize(struct ti_ohci *ohci)
473 char irq_buf[16];
474 quadlet_t buf;
475 int num_ports, i;
477 spin_lock_init(&ohci->phy_reg_lock);
479 /* Put some defaults to these undefined bus options */
480 buf = reg_read(ohci, OHCI1394_BusOptions);
481 buf |= 0x60000000; /* Enable CMC and ISC */
482 if (hpsb_disable_irm)
483 buf &= ~0x80000000;
484 else
485 buf |= 0x80000000; /* Enable IRMC */
486 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
487 buf &= ~0x18000000; /* Disable PMC and BMC */
488 reg_write(ohci, OHCI1394_BusOptions, buf);
490 /* Set the bus number */
491 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
493 /* Enable posted writes */
494 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
496 /* Clear link control register */
497 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
499 /* Enable cycle timer and cycle master and set the IRM
500 * contender bit in our self ID packets if appropriate. */
501 reg_write(ohci, OHCI1394_LinkControlSet,
502 OHCI1394_LinkControl_CycleTimerEnable |
503 OHCI1394_LinkControl_CycleMaster);
504 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
505 if (hpsb_disable_irm)
506 i &= ~PHY_04_CONTENDER;
507 else
508 i |= PHY_04_CONTENDER;
509 set_phy_reg(ohci, 4, i);
511 /* Set up self-id dma buffer */
512 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
514 /* enable self-id and phys */
515 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
516 OHCI1394_LinkControl_RcvPhyPkt);
518 /* Set the Config ROM mapping register */
519 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
521 /* Now get our max packet size */
522 ohci->max_packet_size =
523 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
525 /* Don't accept phy packets into AR request context */
526 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
528 /* Clear the interrupt mask */
529 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
530 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
532 /* Clear the interrupt mask */
533 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
534 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
536 /* Initialize AR dma */
537 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
538 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
540 /* Initialize AT dma */
541 initialize_dma_trm_ctx(&ohci->at_req_context);
542 initialize_dma_trm_ctx(&ohci->at_resp_context);
544 /* Initialize IR Legacy DMA channel mask */
545 ohci->ir_legacy_channels = 0;
547 /* Accept AR requests from all nodes */
548 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
550 /* Set the address range of the physical response unit.
551 * Most controllers do not implement it as a writable register though.
552 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
553 * register content.
554 * To actually enable physical responses is the job of our interrupt
555 * handler which programs the physical request filter. */
556 reg_write(ohci, OHCI1394_PhyUpperBound, 0x01000000);
558 DBGMSG("physUpperBoundOffset=%08x",
559 reg_read(ohci, OHCI1394_PhyUpperBound));
561 /* Specify AT retries */
562 reg_write(ohci, OHCI1394_ATRetries,
563 OHCI1394_MAX_AT_REQ_RETRIES |
564 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
565 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
567 /* We don't want hardware swapping */
568 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
570 /* Enable interrupts */
571 reg_write(ohci, OHCI1394_IntMaskSet,
572 OHCI1394_unrecoverableError |
573 OHCI1394_masterIntEnable |
574 OHCI1394_busReset |
575 OHCI1394_selfIDComplete |
576 OHCI1394_RSPkt |
577 OHCI1394_RQPkt |
578 OHCI1394_respTxComplete |
579 OHCI1394_reqTxComplete |
580 OHCI1394_isochRx |
581 OHCI1394_isochTx |
582 OHCI1394_postedWriteErr |
583 OHCI1394_cycleTooLong |
584 OHCI1394_cycleInconsistent);
586 /* Enable link */
587 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
589 buf = reg_read(ohci, OHCI1394_Version);
590 #ifndef __sparc__
591 sprintf (irq_buf, "%d", ohci->dev->irq);
592 #else
593 sprintf (irq_buf, "%s", __irq_itoa(ohci->dev->irq));
594 #endif
595 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
596 "MMIO=[%lx-%lx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
597 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
598 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
599 pci_resource_start(ohci->dev, 0),
600 pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
601 ohci->max_packet_size,
602 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
604 /* Check all of our ports to make sure that if anything is
605 * connected, we enable that port. */
606 num_ports = get_phy_reg(ohci, 2) & 0xf;
607 for (i = 0; i < num_ports; i++) {
608 unsigned int status;
610 set_phy_reg(ohci, 7, i);
611 status = get_phy_reg(ohci, 8);
613 if (status & 0x20)
614 set_phy_reg(ohci, 8, status & ~1);
617 /* Serial EEPROM Sanity check. */
618 if ((ohci->max_packet_size < 512) ||
619 (ohci->max_packet_size > 4096)) {
620 /* Serial EEPROM contents are suspect, set a sane max packet
621 * size and print the raw contents for bug reports if verbose
622 * debug is enabled. */
623 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
624 int i;
625 #endif
627 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
628 "attempting to setting max_packet_size to 512 bytes");
629 reg_write(ohci, OHCI1394_BusOptions,
630 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
631 ohci->max_packet_size = 512;
632 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
633 PRINT(KERN_DEBUG, " EEPROM Present: %d",
634 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
635 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
637 for (i = 0;
638 ((i < 1000) &&
639 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
640 udelay(10);
642 for (i = 0; i < 0x20; i++) {
643 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
644 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
645 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
647 #endif
652 * Insert a packet in the DMA fifo and generate the DMA prg
653 * FIXME: rewrite the program in order to accept packets crossing
654 * page boundaries.
655 * check also that a single dma descriptor doesn't cross a
656 * page boundary.
658 static void insert_packet(struct ti_ohci *ohci,
659 struct dma_trm_ctx *d, struct hpsb_packet *packet)
661 u32 cycleTimer;
662 int idx = d->prg_ind;
664 DBGMSG("Inserting packet for node " NODE_BUS_FMT
665 ", tlabel=%d, tcode=0x%x, speed=%d",
666 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
667 packet->tcode, packet->speed_code);
669 d->prg_cpu[idx]->begin.address = 0;
670 d->prg_cpu[idx]->begin.branchAddress = 0;
672 if (d->type == DMA_CTX_ASYNC_RESP) {
674 * For response packets, we need to put a timeout value in
675 * the 16 lower bits of the status... let's try 1 sec timeout
677 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
678 d->prg_cpu[idx]->begin.status = cpu_to_le32(
679 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
680 ((cycleTimer&0x01fff000)>>12));
682 DBGMSG("cycleTimer: %08x timeStamp: %08x",
683 cycleTimer, d->prg_cpu[idx]->begin.status);
684 } else
685 d->prg_cpu[idx]->begin.status = 0;
687 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
689 if (packet->type == hpsb_raw) {
690 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
691 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
692 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
693 } else {
694 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
695 (packet->header[0] & 0xFFFF);
697 if (packet->tcode == TCODE_ISO_DATA) {
698 /* Sending an async stream packet */
699 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
700 } else {
701 /* Sending a normal async request or response */
702 d->prg_cpu[idx]->data[1] =
703 (packet->header[1] & 0xFFFF) |
704 (packet->header[0] & 0xFFFF0000);
705 d->prg_cpu[idx]->data[2] = packet->header[2];
706 d->prg_cpu[idx]->data[3] = packet->header[3];
708 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
711 if (packet->data_size) { /* block transmit */
712 if (packet->tcode == TCODE_STREAM_DATA){
713 d->prg_cpu[idx]->begin.control =
714 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
715 DMA_CTL_IMMEDIATE | 0x8);
716 } else {
717 d->prg_cpu[idx]->begin.control =
718 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
719 DMA_CTL_IMMEDIATE | 0x10);
721 d->prg_cpu[idx]->end.control =
722 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
723 DMA_CTL_IRQ |
724 DMA_CTL_BRANCH |
725 packet->data_size);
727 * Check that the packet data buffer
728 * does not cross a page boundary.
730 * XXX Fix this some day. eth1394 seems to trigger
731 * it, but ignoring it doesn't seem to cause a
732 * problem.
734 #if 0
735 if (cross_bound((unsigned long)packet->data,
736 packet->data_size)>0) {
737 /* FIXME: do something about it */
738 PRINT(KERN_ERR,
739 "%s: packet data addr: %p size %Zd bytes "
740 "cross page boundary", __FUNCTION__,
741 packet->data, packet->data_size);
743 #endif
744 d->prg_cpu[idx]->end.address = cpu_to_le32(
745 pci_map_single(ohci->dev, packet->data,
746 packet->data_size,
747 PCI_DMA_TODEVICE));
748 OHCI_DMA_ALLOC("single, block transmit packet");
750 d->prg_cpu[idx]->end.branchAddress = 0;
751 d->prg_cpu[idx]->end.status = 0;
752 if (d->branchAddrPtr)
753 *(d->branchAddrPtr) =
754 cpu_to_le32(d->prg_bus[idx] | 0x3);
755 d->branchAddrPtr =
756 &(d->prg_cpu[idx]->end.branchAddress);
757 } else { /* quadlet transmit */
758 if (packet->type == hpsb_raw)
759 d->prg_cpu[idx]->begin.control =
760 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
761 DMA_CTL_IMMEDIATE |
762 DMA_CTL_IRQ |
763 DMA_CTL_BRANCH |
764 (packet->header_size + 4));
765 else
766 d->prg_cpu[idx]->begin.control =
767 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
768 DMA_CTL_IMMEDIATE |
769 DMA_CTL_IRQ |
770 DMA_CTL_BRANCH |
771 packet->header_size);
773 if (d->branchAddrPtr)
774 *(d->branchAddrPtr) =
775 cpu_to_le32(d->prg_bus[idx] | 0x2);
776 d->branchAddrPtr =
777 &(d->prg_cpu[idx]->begin.branchAddress);
780 } else { /* iso packet */
781 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
782 (packet->header[0] & 0xFFFF);
783 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
784 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
786 d->prg_cpu[idx]->begin.control =
787 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
788 DMA_CTL_IMMEDIATE | 0x8);
789 d->prg_cpu[idx]->end.control =
790 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
791 DMA_CTL_UPDATE |
792 DMA_CTL_IRQ |
793 DMA_CTL_BRANCH |
794 packet->data_size);
795 d->prg_cpu[idx]->end.address = cpu_to_le32(
796 pci_map_single(ohci->dev, packet->data,
797 packet->data_size, PCI_DMA_TODEVICE));
798 OHCI_DMA_ALLOC("single, iso transmit packet");
800 d->prg_cpu[idx]->end.branchAddress = 0;
801 d->prg_cpu[idx]->end.status = 0;
802 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
803 " begin=%08x %08x %08x %08x\n"
804 " %08x %08x %08x %08x\n"
805 " end =%08x %08x %08x %08x",
806 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
807 d->prg_cpu[idx]->begin.control,
808 d->prg_cpu[idx]->begin.address,
809 d->prg_cpu[idx]->begin.branchAddress,
810 d->prg_cpu[idx]->begin.status,
811 d->prg_cpu[idx]->data[0],
812 d->prg_cpu[idx]->data[1],
813 d->prg_cpu[idx]->data[2],
814 d->prg_cpu[idx]->data[3],
815 d->prg_cpu[idx]->end.control,
816 d->prg_cpu[idx]->end.address,
817 d->prg_cpu[idx]->end.branchAddress,
818 d->prg_cpu[idx]->end.status);
819 if (d->branchAddrPtr)
820 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
821 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
823 d->free_prgs--;
825 /* queue the packet in the appropriate context queue */
826 list_add_tail(&packet->driver_list, &d->fifo_list);
827 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
831 * This function fills the FIFO with the (eventual) pending packets
832 * and runs or wakes up the DMA prg if necessary.
834 * The function MUST be called with the d->lock held.
836 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
838 struct hpsb_packet *packet, *ptmp;
839 int idx = d->prg_ind;
840 int z = 0;
842 /* insert the packets into the dma fifo */
843 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
844 if (!d->free_prgs)
845 break;
847 /* For the first packet only */
848 if (!z)
849 z = (packet->data_size) ? 3 : 2;
851 /* Insert the packet */
852 list_del_init(&packet->driver_list);
853 insert_packet(ohci, d, packet);
856 /* Nothing must have been done, either no free_prgs or no packets */
857 if (z == 0)
858 return;
860 /* Is the context running ? (should be unless it is
861 the first packet to be sent in this context) */
862 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
863 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
865 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
866 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
868 /* Check that the node id is valid, and not 63 */
869 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
870 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
871 else
872 reg_write(ohci, d->ctrlSet, 0x8000);
873 } else {
874 /* Wake up the dma context if necessary */
875 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
876 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
878 /* do this always, to avoid race condition */
879 reg_write(ohci, d->ctrlSet, 0x1000);
882 return;
885 /* Transmission of an async or iso packet */
886 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
888 struct ti_ohci *ohci = host->hostdata;
889 struct dma_trm_ctx *d;
890 unsigned long flags;
892 if (packet->data_size > ohci->max_packet_size) {
893 PRINT(KERN_ERR,
894 "Transmit packet size %Zd is too big",
895 packet->data_size);
896 return -EOVERFLOW;
899 /* Decide whether we have an iso, a request, or a response packet */
900 if (packet->type == hpsb_raw)
901 d = &ohci->at_req_context;
902 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
903 /* The legacy IT DMA context is initialized on first
904 * use. However, the alloc cannot be run from
905 * interrupt context, so we bail out if that is the
906 * case. I don't see anyone sending ISO packets from
907 * interrupt context anyway... */
909 if (ohci->it_legacy_context.ohci == NULL) {
910 if (in_interrupt()) {
911 PRINT(KERN_ERR,
912 "legacy IT context cannot be initialized during interrupt");
913 return -EINVAL;
916 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
917 DMA_CTX_ISO, 0, IT_NUM_DESC,
918 OHCI1394_IsoXmitContextBase) < 0) {
919 PRINT(KERN_ERR,
920 "error initializing legacy IT context");
921 return -ENOMEM;
924 initialize_dma_trm_ctx(&ohci->it_legacy_context);
927 d = &ohci->it_legacy_context;
928 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
929 d = &ohci->at_resp_context;
930 else
931 d = &ohci->at_req_context;
933 spin_lock_irqsave(&d->lock,flags);
935 list_add_tail(&packet->driver_list, &d->pending_list);
937 dma_trm_flush(ohci, d);
939 spin_unlock_irqrestore(&d->lock,flags);
941 return 0;
944 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
946 struct ti_ohci *ohci = host->hostdata;
947 int retval = 0;
948 unsigned long flags;
949 int phy_reg;
951 switch (cmd) {
952 case RESET_BUS:
953 switch (arg) {
954 case SHORT_RESET:
955 phy_reg = get_phy_reg(ohci, 5);
956 phy_reg |= 0x40;
957 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
958 break;
959 case LONG_RESET:
960 phy_reg = get_phy_reg(ohci, 1);
961 phy_reg |= 0x40;
962 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
963 break;
964 case SHORT_RESET_NO_FORCE_ROOT:
965 phy_reg = get_phy_reg(ohci, 1);
966 if (phy_reg & 0x80) {
967 phy_reg &= ~0x80;
968 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
971 phy_reg = get_phy_reg(ohci, 5);
972 phy_reg |= 0x40;
973 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
974 break;
975 case LONG_RESET_NO_FORCE_ROOT:
976 phy_reg = get_phy_reg(ohci, 1);
977 phy_reg &= ~0x80;
978 phy_reg |= 0x40;
979 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
980 break;
981 case SHORT_RESET_FORCE_ROOT:
982 phy_reg = get_phy_reg(ohci, 1);
983 if (!(phy_reg & 0x80)) {
984 phy_reg |= 0x80;
985 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
988 phy_reg = get_phy_reg(ohci, 5);
989 phy_reg |= 0x40;
990 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
991 break;
992 case LONG_RESET_FORCE_ROOT:
993 phy_reg = get_phy_reg(ohci, 1);
994 phy_reg |= 0xc0;
995 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
996 break;
997 default:
998 retval = -1;
1000 break;
1002 case GET_CYCLE_COUNTER:
1003 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1004 break;
1006 case SET_CYCLE_COUNTER:
1007 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1008 break;
1010 case SET_BUS_ID:
1011 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1012 break;
1014 case ACT_CYCLE_MASTER:
1015 if (arg) {
1016 /* check if we are root and other nodes are present */
1017 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1018 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1020 * enable cycleTimer, cycleMaster
1022 DBGMSG("Cycle master enabled");
1023 reg_write(ohci, OHCI1394_LinkControlSet,
1024 OHCI1394_LinkControl_CycleTimerEnable |
1025 OHCI1394_LinkControl_CycleMaster);
1027 } else {
1028 /* disable cycleTimer, cycleMaster, cycleSource */
1029 reg_write(ohci, OHCI1394_LinkControlClear,
1030 OHCI1394_LinkControl_CycleTimerEnable |
1031 OHCI1394_LinkControl_CycleMaster |
1032 OHCI1394_LinkControl_CycleSource);
1034 break;
1036 case CANCEL_REQUESTS:
1037 DBGMSG("Cancel request received");
1038 dma_trm_reset(&ohci->at_req_context);
1039 dma_trm_reset(&ohci->at_resp_context);
1040 break;
1042 case ISO_LISTEN_CHANNEL:
1044 u64 mask;
1045 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1046 int ir_legacy_active;
1048 if (arg<0 || arg>63) {
1049 PRINT(KERN_ERR,
1050 "%s: IS0 listen channel %d is out of range",
1051 __FUNCTION__, arg);
1052 return -EFAULT;
1055 mask = (u64)0x1<<arg;
1057 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1059 if (ohci->ISO_channel_usage & mask) {
1060 PRINT(KERN_ERR,
1061 "%s: IS0 listen channel %d is already used",
1062 __FUNCTION__, arg);
1063 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1064 return -EFAULT;
1067 ir_legacy_active = ohci->ir_legacy_channels;
1069 ohci->ISO_channel_usage |= mask;
1070 ohci->ir_legacy_channels |= mask;
1072 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1074 if (!ir_legacy_active) {
1075 if (ohci1394_register_iso_tasklet(ohci,
1076 &ohci->ir_legacy_tasklet) < 0) {
1077 PRINT(KERN_ERR, "No IR DMA context available");
1078 return -EBUSY;
1081 /* the IR context can be assigned to any DMA context
1082 * by ohci1394_register_iso_tasklet */
1083 d->ctx = ohci->ir_legacy_tasklet.context;
1084 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1085 32*d->ctx;
1086 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1087 32*d->ctx;
1088 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1089 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1091 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1093 if (printk_ratelimit())
1094 DBGMSG("IR legacy activated");
1097 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1099 if (arg>31)
1100 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1101 1<<(arg-32));
1102 else
1103 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1104 1<<arg);
1106 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1107 DBGMSG("Listening enabled on channel %d", arg);
1108 break;
1110 case ISO_UNLISTEN_CHANNEL:
1112 u64 mask;
1114 if (arg<0 || arg>63) {
1115 PRINT(KERN_ERR,
1116 "%s: IS0 unlisten channel %d is out of range",
1117 __FUNCTION__, arg);
1118 return -EFAULT;
1121 mask = (u64)0x1<<arg;
1123 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1125 if (!(ohci->ISO_channel_usage & mask)) {
1126 PRINT(KERN_ERR,
1127 "%s: IS0 unlisten channel %d is not used",
1128 __FUNCTION__, arg);
1129 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1130 return -EFAULT;
1133 ohci->ISO_channel_usage &= ~mask;
1134 ohci->ir_legacy_channels &= ~mask;
1136 if (arg>31)
1137 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1138 1<<(arg-32));
1139 else
1140 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1141 1<<arg);
1143 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1144 DBGMSG("Listening disabled on channel %d", arg);
1146 if (ohci->ir_legacy_channels == 0) {
1147 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1148 DBGMSG("ISO legacy receive context stopped");
1151 break;
1153 default:
1154 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1155 cmd);
1156 break;
1158 return retval;
1161 /***********************************
1162 * rawiso ISO reception *
1163 ***********************************/
1166 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1167 buffer is split into "blocks" (regions described by one DMA
1168 descriptor). Each block must be one page or less in size, and
1169 must not cross a page boundary.
1171 There is one little wrinkle with buffer-fill mode: a packet that
1172 starts in the final block may wrap around into the first block. But
1173 the user API expects all packets to be contiguous. Our solution is
1174 to keep the very last page of the DMA buffer in reserve - if a
1175 packet spans the gap, we copy its tail into this page.
1178 struct ohci_iso_recv {
1179 struct ti_ohci *ohci;
1181 struct ohci1394_iso_tasklet task;
1182 int task_active;
1184 enum { BUFFER_FILL_MODE = 0,
1185 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1187 /* memory and PCI mapping for the DMA descriptors */
1188 struct dma_prog_region prog;
1189 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1191 /* how many DMA blocks fit in the buffer */
1192 unsigned int nblocks;
1194 /* stride of DMA blocks */
1195 unsigned int buf_stride;
1197 /* number of blocks to batch between interrupts */
1198 int block_irq_interval;
1200 /* block that DMA will finish next */
1201 int block_dma;
1203 /* (buffer-fill only) block that the reader will release next */
1204 int block_reader;
1206 /* (buffer-fill only) bytes of buffer the reader has released,
1207 less than one block */
1208 int released_bytes;
1210 /* (buffer-fill only) buffer offset at which the next packet will appear */
1211 int dma_offset;
1213 /* OHCI DMA context control registers */
1214 u32 ContextControlSet;
1215 u32 ContextControlClear;
1216 u32 CommandPtr;
1217 u32 ContextMatch;
1220 static void ohci_iso_recv_task(unsigned long data);
1221 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1222 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1223 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1224 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1226 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1228 struct ti_ohci *ohci = iso->host->hostdata;
1229 struct ohci_iso_recv *recv;
1230 int ctx;
1231 int ret = -ENOMEM;
1233 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1234 if (!recv)
1235 return -ENOMEM;
1237 iso->hostdata = recv;
1238 recv->ohci = ohci;
1239 recv->task_active = 0;
1240 dma_prog_region_init(&recv->prog);
1241 recv->block = NULL;
1243 /* use buffer-fill mode, unless irq_interval is 1
1244 (note: multichannel requires buffer-fill) */
1246 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1247 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1248 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1249 } else {
1250 recv->dma_mode = BUFFER_FILL_MODE;
1253 /* set nblocks, buf_stride, block_irq_interval */
1255 if (recv->dma_mode == BUFFER_FILL_MODE) {
1256 recv->buf_stride = PAGE_SIZE;
1258 /* one block per page of data in the DMA buffer, minus the final guard page */
1259 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1260 if (recv->nblocks < 3) {
1261 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1262 goto err;
1265 /* iso->irq_interval is in packets - translate that to blocks */
1266 if (iso->irq_interval == 1)
1267 recv->block_irq_interval = 1;
1268 else
1269 recv->block_irq_interval = iso->irq_interval *
1270 ((recv->nblocks+1)/iso->buf_packets);
1271 if (recv->block_irq_interval*4 > recv->nblocks)
1272 recv->block_irq_interval = recv->nblocks/4;
1273 if (recv->block_irq_interval < 1)
1274 recv->block_irq_interval = 1;
1276 } else {
1277 int max_packet_size;
1279 recv->nblocks = iso->buf_packets;
1280 recv->block_irq_interval = iso->irq_interval;
1281 if (recv->block_irq_interval * 4 > iso->buf_packets)
1282 recv->block_irq_interval = iso->buf_packets / 4;
1283 if (recv->block_irq_interval < 1)
1284 recv->block_irq_interval = 1;
1286 /* choose a buffer stride */
1287 /* must be a power of 2, and <= PAGE_SIZE */
1289 max_packet_size = iso->buf_size / iso->buf_packets;
1291 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1292 recv->buf_stride *= 2);
1294 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1295 recv->buf_stride > PAGE_SIZE) {
1296 /* this shouldn't happen, but anyway... */
1297 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1298 goto err;
1302 recv->block_reader = 0;
1303 recv->released_bytes = 0;
1304 recv->block_dma = 0;
1305 recv->dma_offset = 0;
1307 /* size of DMA program = one descriptor per block */
1308 if (dma_prog_region_alloc(&recv->prog,
1309 sizeof(struct dma_cmd) * recv->nblocks,
1310 recv->ohci->dev))
1311 goto err;
1313 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1315 ohci1394_init_iso_tasklet(&recv->task,
1316 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1317 OHCI_ISO_RECEIVE,
1318 ohci_iso_recv_task, (unsigned long) iso);
1320 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1321 ret = -EBUSY;
1322 goto err;
1325 recv->task_active = 1;
1327 /* recv context registers are spaced 32 bytes apart */
1328 ctx = recv->task.context;
1329 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1330 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1331 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1332 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1334 if (iso->channel == -1) {
1335 /* clear multi-channel selection mask */
1336 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1337 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1340 /* write the DMA program */
1341 ohci_iso_recv_program(iso);
1343 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1344 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1345 recv->dma_mode == BUFFER_FILL_MODE ?
1346 "buffer-fill" : "packet-per-buffer",
1347 iso->buf_size/PAGE_SIZE, iso->buf_size,
1348 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1350 return 0;
1352 err:
1353 ohci_iso_recv_shutdown(iso);
1354 return ret;
1357 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1359 struct ohci_iso_recv *recv = iso->hostdata;
1361 /* disable interrupts */
1362 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1364 /* halt DMA */
1365 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1368 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1370 struct ohci_iso_recv *recv = iso->hostdata;
1372 if (recv->task_active) {
1373 ohci_iso_recv_stop(iso);
1374 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1375 recv->task_active = 0;
1378 dma_prog_region_free(&recv->prog);
1379 kfree(recv);
1380 iso->hostdata = NULL;
1383 /* set up a "gapped" ring buffer DMA program */
1384 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1386 struct ohci_iso_recv *recv = iso->hostdata;
1387 int blk;
1389 /* address of 'branch' field in previous DMA descriptor */
1390 u32 *prev_branch = NULL;
1392 for (blk = 0; blk < recv->nblocks; blk++) {
1393 u32 control;
1395 /* the DMA descriptor */
1396 struct dma_cmd *cmd = &recv->block[blk];
1398 /* offset of the DMA descriptor relative to the DMA prog buffer */
1399 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1401 /* offset of this packet's data within the DMA buffer */
1402 unsigned long buf_offset = blk * recv->buf_stride;
1404 if (recv->dma_mode == BUFFER_FILL_MODE) {
1405 control = 2 << 28; /* INPUT_MORE */
1406 } else {
1407 control = 3 << 28; /* INPUT_LAST */
1410 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1412 /* interrupt on last block, and at intervals */
1413 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1414 control |= 3 << 20; /* want interrupt */
1417 control |= 3 << 18; /* enable branch to address */
1418 control |= recv->buf_stride;
1420 cmd->control = cpu_to_le32(control);
1421 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1422 cmd->branchAddress = 0; /* filled in on next loop */
1423 cmd->status = cpu_to_le32(recv->buf_stride);
1425 /* link the previous descriptor to this one */
1426 if (prev_branch) {
1427 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1430 prev_branch = &cmd->branchAddress;
1433 /* the final descriptor's branch address and Z should be left at 0 */
1436 /* listen or unlisten to a specific channel (multi-channel mode only) */
1437 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1439 struct ohci_iso_recv *recv = iso->hostdata;
1440 int reg, i;
1442 if (channel < 32) {
1443 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1444 i = channel;
1445 } else {
1446 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1447 i = channel - 32;
1450 reg_write(recv->ohci, reg, (1 << i));
1452 /* issue a dummy read to force all PCI writes to be posted immediately */
1453 mb();
1454 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1457 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1459 struct ohci_iso_recv *recv = iso->hostdata;
1460 int i;
1462 for (i = 0; i < 64; i++) {
1463 if (mask & (1ULL << i)) {
1464 if (i < 32)
1465 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1466 else
1467 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1468 } else {
1469 if (i < 32)
1470 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1471 else
1472 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1476 /* issue a dummy read to force all PCI writes to be posted immediately */
1477 mb();
1478 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1481 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1483 struct ohci_iso_recv *recv = iso->hostdata;
1484 struct ti_ohci *ohci = recv->ohci;
1485 u32 command, contextMatch;
1487 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1488 wmb();
1490 /* always keep ISO headers */
1491 command = (1 << 30);
1493 if (recv->dma_mode == BUFFER_FILL_MODE)
1494 command |= (1 << 31);
1496 reg_write(recv->ohci, recv->ContextControlSet, command);
1498 /* match on specified tags */
1499 contextMatch = tag_mask << 28;
1501 if (iso->channel == -1) {
1502 /* enable multichannel reception */
1503 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1504 } else {
1505 /* listen on channel */
1506 contextMatch |= iso->channel;
1509 if (cycle != -1) {
1510 u32 seconds;
1512 /* enable cycleMatch */
1513 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1515 /* set starting cycle */
1516 cycle &= 0x1FFF;
1518 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1519 just snarf them from the current time */
1520 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1522 /* advance one second to give some extra time for DMA to start */
1523 seconds += 1;
1525 cycle |= (seconds & 3) << 13;
1527 contextMatch |= cycle << 12;
1530 if (sync != -1) {
1531 /* set sync flag on first DMA descriptor */
1532 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1533 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1535 /* match sync field */
1536 contextMatch |= (sync&0xf)<<8;
1539 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1541 /* address of first descriptor block */
1542 command = dma_prog_region_offset_to_bus(&recv->prog,
1543 recv->block_dma * sizeof(struct dma_cmd));
1544 command |= 1; /* Z=1 */
1546 reg_write(recv->ohci, recv->CommandPtr, command);
1548 /* enable interrupts */
1549 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1551 wmb();
1553 /* run */
1554 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1556 /* issue a dummy read of the cycle timer register to force
1557 all PCI writes to be posted immediately */
1558 mb();
1559 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1561 /* check RUN */
1562 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1563 PRINT(KERN_ERR,
1564 "Error starting IR DMA (ContextControl 0x%08x)\n",
1565 reg_read(recv->ohci, recv->ContextControlSet));
1566 return -1;
1569 return 0;
1572 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1574 /* re-use the DMA descriptor for the block */
1575 /* by linking the previous descriptor to it */
1577 int next_i = block;
1578 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1580 struct dma_cmd *next = &recv->block[next_i];
1581 struct dma_cmd *prev = &recv->block[prev_i];
1583 /* ignore out-of-range requests */
1584 if ((block < 0) || (block > recv->nblocks))
1585 return;
1587 /* 'next' becomes the new end of the DMA chain,
1588 so disable branch and enable interrupt */
1589 next->branchAddress = 0;
1590 next->control |= cpu_to_le32(3 << 20);
1591 next->status = cpu_to_le32(recv->buf_stride);
1593 /* link prev to next */
1594 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1595 sizeof(struct dma_cmd) * next_i)
1596 | 1); /* Z=1 */
1598 /* disable interrupt on previous DMA descriptor, except at intervals */
1599 if ((prev_i % recv->block_irq_interval) == 0) {
1600 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1601 } else {
1602 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1604 wmb();
1606 /* wake up DMA in case it fell asleep */
1607 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1610 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1611 struct hpsb_iso_packet_info *info)
1613 /* release the memory where the packet was */
1614 recv->released_bytes += info->total_len;
1616 /* have we released enough memory for one block? */
1617 while (recv->released_bytes > recv->buf_stride) {
1618 ohci_iso_recv_release_block(recv, recv->block_reader);
1619 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1620 recv->released_bytes -= recv->buf_stride;
1624 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1626 struct ohci_iso_recv *recv = iso->hostdata;
1627 if (recv->dma_mode == BUFFER_FILL_MODE) {
1628 ohci_iso_recv_bufferfill_release(recv, info);
1629 } else {
1630 ohci_iso_recv_release_block(recv, info - iso->infos);
1634 /* parse all packets from blocks that have been fully received */
1635 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1637 int wake = 0;
1638 int runaway = 0;
1639 struct ti_ohci *ohci = recv->ohci;
1641 while (1) {
1642 /* we expect the next parsable packet to begin at recv->dma_offset */
1643 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1645 unsigned int offset;
1646 unsigned short len, cycle, total_len;
1647 unsigned char channel, tag, sy;
1649 unsigned char *p = iso->data_buf.kvirt;
1651 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1653 /* don't loop indefinitely */
1654 if (runaway++ > 100000) {
1655 atomic_inc(&iso->overflows);
1656 PRINT(KERN_ERR,
1657 "IR DMA error - Runaway during buffer parsing!\n");
1658 break;
1661 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1662 if (this_block == recv->block_dma)
1663 break;
1665 wake = 1;
1667 /* parse data length, tag, channel, and sy */
1669 /* note: we keep our own local copies of 'len' and 'offset'
1670 so the user can't mess with them by poking in the mmap area */
1672 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1674 if (len > 4096) {
1675 PRINT(KERN_ERR,
1676 "IR DMA error - bogus 'len' value %u\n", len);
1679 channel = p[recv->dma_offset+1] & 0x3F;
1680 tag = p[recv->dma_offset+1] >> 6;
1681 sy = p[recv->dma_offset+0] & 0xF;
1683 /* advance to data payload */
1684 recv->dma_offset += 4;
1686 /* check for wrap-around */
1687 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1688 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1691 /* dma_offset now points to the first byte of the data payload */
1692 offset = recv->dma_offset;
1694 /* advance to xferStatus/timeStamp */
1695 recv->dma_offset += len;
1697 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1698 /* payload is padded to 4 bytes */
1699 if (len % 4) {
1700 recv->dma_offset += 4 - (len%4);
1701 total_len += 4 - (len%4);
1704 /* check for wrap-around */
1705 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1706 /* uh oh, the packet data wraps from the last
1707 to the first DMA block - make the packet
1708 contiguous by copying its "tail" into the
1709 guard page */
1711 int guard_off = recv->buf_stride*recv->nblocks;
1712 int tail_len = len - (guard_off - offset);
1714 if (tail_len > 0 && tail_len < recv->buf_stride) {
1715 memcpy(iso->data_buf.kvirt + guard_off,
1716 iso->data_buf.kvirt,
1717 tail_len);
1720 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1723 /* parse timestamp */
1724 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1725 cycle &= 0x1FFF;
1727 /* advance to next packet */
1728 recv->dma_offset += 4;
1730 /* check for wrap-around */
1731 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1732 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1735 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1738 if (wake)
1739 hpsb_iso_wake(iso);
1742 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1744 int loop;
1745 struct ti_ohci *ohci = recv->ohci;
1747 /* loop over all blocks */
1748 for (loop = 0; loop < recv->nblocks; loop++) {
1750 /* check block_dma to see if it's done */
1751 struct dma_cmd *im = &recv->block[recv->block_dma];
1753 /* check the DMA descriptor for new writes to xferStatus */
1754 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1756 /* rescount is the number of bytes *remaining to be written* in the block */
1757 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1759 unsigned char event = xferstatus & 0x1F;
1761 if (!event) {
1762 /* nothing has happened to this block yet */
1763 break;
1766 if (event != 0x11) {
1767 atomic_inc(&iso->overflows);
1768 PRINT(KERN_ERR,
1769 "IR DMA error - OHCI error code 0x%02x\n", event);
1772 if (rescount != 0) {
1773 /* the card is still writing to this block;
1774 we can't touch it until it's done */
1775 break;
1778 /* OK, the block is finished... */
1780 /* sync our view of the block */
1781 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1783 /* reset the DMA descriptor */
1784 im->status = recv->buf_stride;
1786 /* advance block_dma */
1787 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1789 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1790 atomic_inc(&iso->overflows);
1791 DBGMSG("ISO reception overflow - "
1792 "ran out of DMA blocks");
1796 /* parse any packets that have arrived */
1797 ohci_iso_recv_bufferfill_parse(iso, recv);
1800 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1802 int count;
1803 int wake = 0;
1804 struct ti_ohci *ohci = recv->ohci;
1806 /* loop over the entire buffer */
1807 for (count = 0; count < recv->nblocks; count++) {
1808 u32 packet_len = 0;
1810 /* pointer to the DMA descriptor */
1811 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1813 /* check the DMA descriptor for new writes to xferStatus */
1814 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1815 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1817 unsigned char event = xferstatus & 0x1F;
1819 if (!event) {
1820 /* this packet hasn't come in yet; we are done for now */
1821 goto out;
1824 if (event == 0x11) {
1825 /* packet received successfully! */
1827 /* rescount is the number of bytes *remaining* in the packet buffer,
1828 after the packet was written */
1829 packet_len = recv->buf_stride - rescount;
1831 } else if (event == 0x02) {
1832 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1833 } else if (event) {
1834 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1837 /* sync our view of the buffer */
1838 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1840 /* record the per-packet info */
1842 /* iso header is 8 bytes ahead of the data payload */
1843 unsigned char *hdr;
1845 unsigned int offset;
1846 unsigned short cycle;
1847 unsigned char channel, tag, sy;
1849 offset = iso->pkt_dma * recv->buf_stride;
1850 hdr = iso->data_buf.kvirt + offset;
1852 /* skip iso header */
1853 offset += 8;
1854 packet_len -= 8;
1856 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1857 channel = hdr[5] & 0x3F;
1858 tag = hdr[5] >> 6;
1859 sy = hdr[4] & 0xF;
1861 hpsb_iso_packet_received(iso, offset, packet_len,
1862 recv->buf_stride, cycle, channel, tag, sy);
1865 /* reset the DMA descriptor */
1866 il->status = recv->buf_stride;
1868 wake = 1;
1869 recv->block_dma = iso->pkt_dma;
1872 out:
1873 if (wake)
1874 hpsb_iso_wake(iso);
1877 static void ohci_iso_recv_task(unsigned long data)
1879 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1880 struct ohci_iso_recv *recv = iso->hostdata;
1882 if (recv->dma_mode == BUFFER_FILL_MODE)
1883 ohci_iso_recv_bufferfill_task(iso, recv);
1884 else
1885 ohci_iso_recv_packetperbuf_task(iso, recv);
1888 /***********************************
1889 * rawiso ISO transmission *
1890 ***********************************/
1892 struct ohci_iso_xmit {
1893 struct ti_ohci *ohci;
1894 struct dma_prog_region prog;
1895 struct ohci1394_iso_tasklet task;
1896 int task_active;
1898 u32 ContextControlSet;
1899 u32 ContextControlClear;
1900 u32 CommandPtr;
1903 /* transmission DMA program:
1904 one OUTPUT_MORE_IMMEDIATE for the IT header
1905 one OUTPUT_LAST for the buffer data */
1907 struct iso_xmit_cmd {
1908 struct dma_cmd output_more_immediate;
1909 u8 iso_hdr[8];
1910 u32 unused[2];
1911 struct dma_cmd output_last;
1914 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1915 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1916 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1917 static void ohci_iso_xmit_task(unsigned long data);
1919 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1921 struct ohci_iso_xmit *xmit;
1922 unsigned int prog_size;
1923 int ctx;
1924 int ret = -ENOMEM;
1926 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1927 if (!xmit)
1928 return -ENOMEM;
1930 iso->hostdata = xmit;
1931 xmit->ohci = iso->host->hostdata;
1932 xmit->task_active = 0;
1934 dma_prog_region_init(&xmit->prog);
1936 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1938 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1939 goto err;
1941 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1942 ohci_iso_xmit_task, (unsigned long) iso);
1944 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1945 ret = -EBUSY;
1946 goto err;
1949 xmit->task_active = 1;
1951 /* xmit context registers are spaced 16 bytes apart */
1952 ctx = xmit->task.context;
1953 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1954 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1955 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1957 return 0;
1959 err:
1960 ohci_iso_xmit_shutdown(iso);
1961 return ret;
1964 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1966 struct ohci_iso_xmit *xmit = iso->hostdata;
1967 struct ti_ohci *ohci = xmit->ohci;
1969 /* disable interrupts */
1970 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1972 /* halt DMA */
1973 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1974 /* XXX the DMA context will lock up if you try to send too much data! */
1975 PRINT(KERN_ERR,
1976 "you probably exceeded the OHCI card's bandwidth limit - "
1977 "reload the module and reduce xmit bandwidth");
1981 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1983 struct ohci_iso_xmit *xmit = iso->hostdata;
1985 if (xmit->task_active) {
1986 ohci_iso_xmit_stop(iso);
1987 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1988 xmit->task_active = 0;
1991 dma_prog_region_free(&xmit->prog);
1992 kfree(xmit);
1993 iso->hostdata = NULL;
1996 static void ohci_iso_xmit_task(unsigned long data)
1998 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1999 struct ohci_iso_xmit *xmit = iso->hostdata;
2000 struct ti_ohci *ohci = xmit->ohci;
2001 int wake = 0;
2002 int count;
2004 /* check the whole buffer if necessary, starting at pkt_dma */
2005 for (count = 0; count < iso->buf_packets; count++) {
2006 int cycle;
2008 /* DMA descriptor */
2009 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2011 /* check for new writes to xferStatus */
2012 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2013 u8 event = xferstatus & 0x1F;
2015 if (!event) {
2016 /* packet hasn't been sent yet; we are done for now */
2017 break;
2020 if (event != 0x11)
2021 PRINT(KERN_ERR,
2022 "IT DMA error - OHCI error code 0x%02x\n", event);
2024 /* at least one packet went out, so wake up the writer */
2025 wake = 1;
2027 /* parse cycle */
2028 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2030 /* tell the subsystem the packet has gone out */
2031 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2033 /* reset the DMA descriptor for next time */
2034 cmd->output_last.status = 0;
2037 if (wake)
2038 hpsb_iso_wake(iso);
2041 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2043 struct ohci_iso_xmit *xmit = iso->hostdata;
2044 struct ti_ohci *ohci = xmit->ohci;
2046 int next_i, prev_i;
2047 struct iso_xmit_cmd *next, *prev;
2049 unsigned int offset;
2050 unsigned short len;
2051 unsigned char tag, sy;
2053 /* check that the packet doesn't cross a page boundary
2054 (we could allow this if we added OUTPUT_MORE descriptor support) */
2055 if (cross_bound(info->offset, info->len)) {
2056 PRINT(KERN_ERR,
2057 "rawiso xmit: packet %u crosses a page boundary",
2058 iso->first_packet);
2059 return -EINVAL;
2062 offset = info->offset;
2063 len = info->len;
2064 tag = info->tag;
2065 sy = info->sy;
2067 /* sync up the card's view of the buffer */
2068 dma_region_sync_for_device(&iso->data_buf, offset, len);
2070 /* append first_packet to the DMA chain */
2071 /* by linking the previous descriptor to it */
2072 /* (next will become the new end of the DMA chain) */
2074 next_i = iso->first_packet;
2075 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2077 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2078 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2080 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2081 memset(next, 0, sizeof(struct iso_xmit_cmd));
2082 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2084 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2086 /* tcode = 0xA, and sy */
2087 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2089 /* tag and channel number */
2090 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2092 /* transmission speed */
2093 next->iso_hdr[2] = iso->speed & 0x7;
2095 /* payload size */
2096 next->iso_hdr[6] = len & 0xFF;
2097 next->iso_hdr[7] = len >> 8;
2099 /* set up the OUTPUT_LAST */
2100 next->output_last.control = cpu_to_le32(1 << 28);
2101 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2102 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2103 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2104 next->output_last.control |= cpu_to_le32(len);
2106 /* payload bus address */
2107 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2109 /* leave branchAddress at zero for now */
2111 /* re-write the previous DMA descriptor to chain to this one */
2113 /* set prev branch address to point to next (Z=3) */
2114 prev->output_last.branchAddress = cpu_to_le32(
2115 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2117 /* disable interrupt, unless required by the IRQ interval */
2118 if (prev_i % iso->irq_interval) {
2119 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2120 } else {
2121 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2124 wmb();
2126 /* wake DMA in case it is sleeping */
2127 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2129 /* issue a dummy read of the cycle timer to force all PCI
2130 writes to be posted immediately */
2131 mb();
2132 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2134 return 0;
2137 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2139 struct ohci_iso_xmit *xmit = iso->hostdata;
2140 struct ti_ohci *ohci = xmit->ohci;
2142 /* clear out the control register */
2143 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2144 wmb();
2146 /* address and length of first descriptor block (Z=3) */
2147 reg_write(xmit->ohci, xmit->CommandPtr,
2148 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2150 /* cycle match */
2151 if (cycle != -1) {
2152 u32 start = cycle & 0x1FFF;
2154 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2155 just snarf them from the current time */
2156 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2158 /* advance one second to give some extra time for DMA to start */
2159 seconds += 1;
2161 start |= (seconds & 3) << 13;
2163 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2166 /* enable interrupts */
2167 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2169 /* run */
2170 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2171 mb();
2173 /* wait 100 usec to give the card time to go active */
2174 udelay(100);
2176 /* check the RUN bit */
2177 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2178 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2179 reg_read(xmit->ohci, xmit->ContextControlSet));
2180 return -1;
2183 return 0;
2186 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2189 switch(cmd) {
2190 case XMIT_INIT:
2191 return ohci_iso_xmit_init(iso);
2192 case XMIT_START:
2193 return ohci_iso_xmit_start(iso, arg);
2194 case XMIT_STOP:
2195 ohci_iso_xmit_stop(iso);
2196 return 0;
2197 case XMIT_QUEUE:
2198 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2199 case XMIT_SHUTDOWN:
2200 ohci_iso_xmit_shutdown(iso);
2201 return 0;
2203 case RECV_INIT:
2204 return ohci_iso_recv_init(iso);
2205 case RECV_START: {
2206 int *args = (int*) arg;
2207 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2209 case RECV_STOP:
2210 ohci_iso_recv_stop(iso);
2211 return 0;
2212 case RECV_RELEASE:
2213 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2214 return 0;
2215 case RECV_FLUSH:
2216 ohci_iso_recv_task((unsigned long) iso);
2217 return 0;
2218 case RECV_SHUTDOWN:
2219 ohci_iso_recv_shutdown(iso);
2220 return 0;
2221 case RECV_LISTEN_CHANNEL:
2222 ohci_iso_recv_change_channel(iso, arg, 1);
2223 return 0;
2224 case RECV_UNLISTEN_CHANNEL:
2225 ohci_iso_recv_change_channel(iso, arg, 0);
2226 return 0;
2227 case RECV_SET_CHANNEL_MASK:
2228 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2229 return 0;
2231 default:
2232 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2233 cmd);
2234 break;
2236 return -EINVAL;
2239 /***************************************
2240 * IEEE-1394 functionality section END *
2241 ***************************************/
2244 /********************************************************
2245 * Global stuff (interrupt handler, init/shutdown code) *
2246 ********************************************************/
2248 static void dma_trm_reset(struct dma_trm_ctx *d)
2250 unsigned long flags;
2251 LIST_HEAD(packet_list);
2252 struct ti_ohci *ohci = d->ohci;
2253 struct hpsb_packet *packet, *ptmp;
2255 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2257 /* Lock the context, reset it and release it. Move the packets
2258 * that were pending in the context to packet_list and free
2259 * them after releasing the lock. */
2261 spin_lock_irqsave(&d->lock, flags);
2263 list_splice(&d->fifo_list, &packet_list);
2264 list_splice(&d->pending_list, &packet_list);
2265 INIT_LIST_HEAD(&d->fifo_list);
2266 INIT_LIST_HEAD(&d->pending_list);
2268 d->branchAddrPtr = NULL;
2269 d->sent_ind = d->prg_ind;
2270 d->free_prgs = d->num_desc;
2272 spin_unlock_irqrestore(&d->lock, flags);
2274 if (list_empty(&packet_list))
2275 return;
2277 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2279 /* Now process subsystem callbacks for the packets from this
2280 * context. */
2281 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2282 list_del_init(&packet->driver_list);
2283 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2287 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2288 quadlet_t rx_event,
2289 quadlet_t tx_event)
2291 struct ohci1394_iso_tasklet *t;
2292 unsigned long mask;
2293 unsigned long flags;
2295 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2297 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2298 mask = 1 << t->context;
2300 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2301 tasklet_schedule(&t->tasklet);
2302 else if (rx_event & mask)
2303 tasklet_schedule(&t->tasklet);
2306 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2309 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2310 struct pt_regs *regs_are_unused)
2312 quadlet_t event, node_id;
2313 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2314 struct hpsb_host *host = ohci->host;
2315 int phyid = -1, isroot = 0;
2316 unsigned long flags;
2318 /* Read and clear the interrupt event register. Don't clear
2319 * the busReset event, though. This is done when we get the
2320 * selfIDComplete interrupt. */
2321 spin_lock_irqsave(&ohci->event_lock, flags);
2322 event = reg_read(ohci, OHCI1394_IntEventClear);
2323 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2324 spin_unlock_irqrestore(&ohci->event_lock, flags);
2326 if (!event)
2327 return IRQ_NONE;
2329 /* If event is ~(u32)0 cardbus card was ejected. In this case
2330 * we just return, and clean up in the ohci1394_pci_remove
2331 * function. */
2332 if (event == ~(u32) 0) {
2333 DBGMSG("Device removed.");
2334 return IRQ_NONE;
2337 DBGMSG("IntEvent: %08x", event);
2339 if (event & OHCI1394_unrecoverableError) {
2340 int ctx;
2341 PRINT(KERN_ERR, "Unrecoverable error!");
2343 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2344 PRINT(KERN_ERR, "Async Req Tx Context died: "
2345 "ctrl[%08x] cmdptr[%08x]",
2346 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2347 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2349 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2350 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2351 "ctrl[%08x] cmdptr[%08x]",
2352 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2353 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2355 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2356 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2357 "ctrl[%08x] cmdptr[%08x]",
2358 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2359 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2361 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2362 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2363 "ctrl[%08x] cmdptr[%08x]",
2364 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2365 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2367 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2368 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2369 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2370 "ctrl[%08x] cmdptr[%08x]", ctx,
2371 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2372 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2375 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2376 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2377 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2378 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2379 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2380 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2381 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2384 event &= ~OHCI1394_unrecoverableError;
2386 if (event & OHCI1394_postedWriteErr) {
2387 PRINT(KERN_ERR, "physical posted write error");
2388 /* no recovery strategy yet, had to involve protocol drivers */
2390 if (event & OHCI1394_cycleTooLong) {
2391 if(printk_ratelimit())
2392 PRINT(KERN_WARNING, "isochronous cycle too long");
2393 else
2394 DBGMSG("OHCI1394_cycleTooLong");
2395 reg_write(ohci, OHCI1394_LinkControlSet,
2396 OHCI1394_LinkControl_CycleMaster);
2397 event &= ~OHCI1394_cycleTooLong;
2399 if (event & OHCI1394_cycleInconsistent) {
2400 /* We subscribe to the cycleInconsistent event only to
2401 * clear the corresponding event bit... otherwise,
2402 * isochronous cycleMatch DMA won't work. */
2403 DBGMSG("OHCI1394_cycleInconsistent");
2404 event &= ~OHCI1394_cycleInconsistent;
2406 if (event & OHCI1394_busReset) {
2407 /* The busReset event bit can't be cleared during the
2408 * selfID phase, so we disable busReset interrupts, to
2409 * avoid burying the cpu in interrupt requests. */
2410 spin_lock_irqsave(&ohci->event_lock, flags);
2411 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2413 if (ohci->check_busreset) {
2414 int loop_count = 0;
2416 udelay(10);
2418 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2419 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2421 spin_unlock_irqrestore(&ohci->event_lock, flags);
2422 udelay(10);
2423 spin_lock_irqsave(&ohci->event_lock, flags);
2425 /* The loop counter check is to prevent the driver
2426 * from remaining in this state forever. For the
2427 * initial bus reset, the loop continues for ever
2428 * and the system hangs, until some device is plugged-in
2429 * or out manually into a port! The forced reset seems
2430 * to solve this problem. This mainly effects nForce2. */
2431 if (loop_count > 10000) {
2432 ohci_devctl(host, RESET_BUS, LONG_RESET);
2433 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2434 loop_count = 0;
2437 loop_count++;
2440 spin_unlock_irqrestore(&ohci->event_lock, flags);
2441 if (!host->in_bus_reset) {
2442 DBGMSG("irq_handler: Bus reset requested");
2444 /* Subsystem call */
2445 hpsb_bus_reset(ohci->host);
2447 event &= ~OHCI1394_busReset;
2449 if (event & OHCI1394_reqTxComplete) {
2450 struct dma_trm_ctx *d = &ohci->at_req_context;
2451 DBGMSG("Got reqTxComplete interrupt "
2452 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2453 if (reg_read(ohci, d->ctrlSet) & 0x800)
2454 ohci1394_stop_context(ohci, d->ctrlClear,
2455 "reqTxComplete");
2456 else
2457 dma_trm_tasklet((unsigned long)d);
2458 //tasklet_schedule(&d->task);
2459 event &= ~OHCI1394_reqTxComplete;
2461 if (event & OHCI1394_respTxComplete) {
2462 struct dma_trm_ctx *d = &ohci->at_resp_context;
2463 DBGMSG("Got respTxComplete interrupt "
2464 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2465 if (reg_read(ohci, d->ctrlSet) & 0x800)
2466 ohci1394_stop_context(ohci, d->ctrlClear,
2467 "respTxComplete");
2468 else
2469 tasklet_schedule(&d->task);
2470 event &= ~OHCI1394_respTxComplete;
2472 if (event & OHCI1394_RQPkt) {
2473 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2474 DBGMSG("Got RQPkt interrupt status=0x%08X",
2475 reg_read(ohci, d->ctrlSet));
2476 if (reg_read(ohci, d->ctrlSet) & 0x800)
2477 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2478 else
2479 tasklet_schedule(&d->task);
2480 event &= ~OHCI1394_RQPkt;
2482 if (event & OHCI1394_RSPkt) {
2483 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2484 DBGMSG("Got RSPkt interrupt status=0x%08X",
2485 reg_read(ohci, d->ctrlSet));
2486 if (reg_read(ohci, d->ctrlSet) & 0x800)
2487 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2488 else
2489 tasklet_schedule(&d->task);
2490 event &= ~OHCI1394_RSPkt;
2492 if (event & OHCI1394_isochRx) {
2493 quadlet_t rx_event;
2495 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2496 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2497 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2498 event &= ~OHCI1394_isochRx;
2500 if (event & OHCI1394_isochTx) {
2501 quadlet_t tx_event;
2503 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2504 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2505 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2506 event &= ~OHCI1394_isochTx;
2508 if (event & OHCI1394_selfIDComplete) {
2509 if (host->in_bus_reset) {
2510 node_id = reg_read(ohci, OHCI1394_NodeID);
2512 if (!(node_id & 0x80000000)) {
2513 PRINT(KERN_ERR,
2514 "SelfID received, but NodeID invalid "
2515 "(probably new bus reset occurred): %08X",
2516 node_id);
2517 goto selfid_not_valid;
2520 phyid = node_id & 0x0000003f;
2521 isroot = (node_id & 0x40000000) != 0;
2523 DBGMSG("SelfID interrupt received "
2524 "(phyid %d, %s)", phyid,
2525 (isroot ? "root" : "not root"));
2527 handle_selfid(ohci, host, phyid, isroot);
2529 /* Clear the bus reset event and re-enable the
2530 * busReset interrupt. */
2531 spin_lock_irqsave(&ohci->event_lock, flags);
2532 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2533 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2534 spin_unlock_irqrestore(&ohci->event_lock, flags);
2536 /* Turn on phys dma reception.
2538 * TODO: Enable some sort of filtering management.
2540 if (phys_dma) {
2541 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2542 0xffffffff);
2543 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2544 0xffffffff);
2547 DBGMSG("PhyReqFilter=%08x%08x",
2548 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2549 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2551 hpsb_selfid_complete(host, phyid, isroot);
2552 } else
2553 PRINT(KERN_ERR,
2554 "SelfID received outside of bus reset sequence");
2556 selfid_not_valid:
2557 event &= ~OHCI1394_selfIDComplete;
2560 /* Make sure we handle everything, just in case we accidentally
2561 * enabled an interrupt that we didn't write a handler for. */
2562 if (event)
2563 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2564 event);
2566 return IRQ_HANDLED;
2569 /* Put the buffer back into the dma context */
2570 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2572 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2573 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2575 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2576 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2577 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2578 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2580 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2581 * context program descriptors before it sees the wakeup bit set. */
2582 wmb();
2584 /* wake up the dma context if necessary */
2585 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2586 PRINT(KERN_INFO,
2587 "Waking dma ctx=%d ... processing is probably too slow",
2588 d->ctx);
2591 /* do this always, to avoid race condition */
2592 reg_write(ohci, d->ctrlSet, 0x1000);
2595 #define cond_le32_to_cpu(data, noswap) \
2596 (noswap ? data : le32_to_cpu(data))
2598 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2599 -1, 0, -1, 0, -1, -1, 16, -1};
2602 * Determine the length of a packet in the buffer
2603 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2605 static __inline__ int packet_length(struct dma_rcv_ctx *d, int idx, quadlet_t *buf_ptr,
2606 int offset, unsigned char tcode, int noswap)
2608 int length = -1;
2610 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2611 length = TCODE_SIZE[tcode];
2612 if (length == 0) {
2613 if (offset + 12 >= d->buf_size) {
2614 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2615 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2616 } else {
2617 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2619 length += 20;
2621 } else if (d->type == DMA_CTX_ISO) {
2622 /* Assumption: buffer fill mode with header/trailer */
2623 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2626 if (length > 0 && length % 4)
2627 length += 4 - (length % 4);
2629 return length;
2632 /* Tasklet that processes dma receive buffers */
2633 static void dma_rcv_tasklet (unsigned long data)
2635 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2636 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2637 unsigned int split_left, idx, offset, rescount;
2638 unsigned char tcode;
2639 int length, bytes_left, ack;
2640 unsigned long flags;
2641 quadlet_t *buf_ptr;
2642 char *split_ptr;
2643 char msg[256];
2645 spin_lock_irqsave(&d->lock, flags);
2647 idx = d->buf_ind;
2648 offset = d->buf_offset;
2649 buf_ptr = d->buf_cpu[idx] + offset/4;
2651 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2652 bytes_left = d->buf_size - rescount - offset;
2654 while (bytes_left > 0) {
2655 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2657 /* packet_length() will return < 4 for an error */
2658 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2660 if (length < 4) { /* something is wrong */
2661 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2662 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2663 d->ctx, length);
2664 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2665 spin_unlock_irqrestore(&d->lock, flags);
2666 return;
2669 /* The first case is where we have a packet that crosses
2670 * over more than one descriptor. The next case is where
2671 * it's all in the first descriptor. */
2672 if ((offset + length) > d->buf_size) {
2673 DBGMSG("Split packet rcv'd");
2674 if (length > d->split_buf_size) {
2675 ohci1394_stop_context(ohci, d->ctrlClear,
2676 "Split packet size exceeded");
2677 d->buf_ind = idx;
2678 d->buf_offset = offset;
2679 spin_unlock_irqrestore(&d->lock, flags);
2680 return;
2683 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2684 == d->buf_size) {
2685 /* Other part of packet not written yet.
2686 * this should never happen I think
2687 * anyway we'll get it on the next call. */
2688 PRINT(KERN_INFO,
2689 "Got only half a packet!");
2690 d->buf_ind = idx;
2691 d->buf_offset = offset;
2692 spin_unlock_irqrestore(&d->lock, flags);
2693 return;
2696 split_left = length;
2697 split_ptr = (char *)d->spb;
2698 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2699 split_left -= d->buf_size-offset;
2700 split_ptr += d->buf_size-offset;
2701 insert_dma_buffer(d, idx);
2702 idx = (idx+1) % d->num_desc;
2703 buf_ptr = d->buf_cpu[idx];
2704 offset=0;
2706 while (split_left >= d->buf_size) {
2707 memcpy(split_ptr,buf_ptr,d->buf_size);
2708 split_ptr += d->buf_size;
2709 split_left -= d->buf_size;
2710 insert_dma_buffer(d, idx);
2711 idx = (idx+1) % d->num_desc;
2712 buf_ptr = d->buf_cpu[idx];
2715 if (split_left > 0) {
2716 memcpy(split_ptr, buf_ptr, split_left);
2717 offset = split_left;
2718 buf_ptr += offset/4;
2720 } else {
2721 DBGMSG("Single packet rcv'd");
2722 memcpy(d->spb, buf_ptr, length);
2723 offset += length;
2724 buf_ptr += length/4;
2725 if (offset==d->buf_size) {
2726 insert_dma_buffer(d, idx);
2727 idx = (idx+1) % d->num_desc;
2728 buf_ptr = d->buf_cpu[idx];
2729 offset=0;
2733 /* We get one phy packet to the async descriptor for each
2734 * bus reset. We always ignore it. */
2735 if (tcode != OHCI1394_TCODE_PHY) {
2736 if (!ohci->no_swap_incoming)
2737 packet_swab(d->spb, tcode);
2738 DBGMSG("Packet received from node"
2739 " %d ack=0x%02X spd=%d tcode=0x%X"
2740 " length=%d ctx=%d tlabel=%d",
2741 (d->spb[1]>>16)&0x3f,
2742 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2743 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2744 tcode, length, d->ctx,
2745 (cond_le32_to_cpu(d->spb[0], ohci->no_swap_incoming)>>10)&0x3f);
2747 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2748 == 0x11) ? 1 : 0;
2750 hpsb_packet_received(ohci->host, d->spb,
2751 length-4, ack);
2753 #ifdef OHCI1394_DEBUG
2754 else
2755 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2756 d->ctx);
2757 #endif
2759 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2761 bytes_left = d->buf_size - rescount - offset;
2765 d->buf_ind = idx;
2766 d->buf_offset = offset;
2768 spin_unlock_irqrestore(&d->lock, flags);
2771 /* Bottom half that processes sent packets */
2772 static void dma_trm_tasklet (unsigned long data)
2774 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2775 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2776 struct hpsb_packet *packet, *ptmp;
2777 unsigned long flags;
2778 u32 status, ack;
2779 size_t datasize;
2781 spin_lock_irqsave(&d->lock, flags);
2783 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2784 datasize = packet->data_size;
2785 if (datasize && packet->type != hpsb_raw)
2786 status = le32_to_cpu(
2787 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2788 else
2789 status = le32_to_cpu(
2790 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2792 if (status == 0)
2793 /* this packet hasn't been sent yet*/
2794 break;
2796 #ifdef OHCI1394_DEBUG
2797 if (datasize)
2798 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2799 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2800 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2801 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2802 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2803 status&0x1f, (status>>5)&0x3,
2804 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2805 d->ctx);
2806 else
2807 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2808 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2809 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2810 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2811 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2812 status&0x1f, (status>>5)&0x3,
2813 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2814 d->ctx);
2815 else
2816 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2817 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2818 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2819 >>16)&0x3f,
2820 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2821 >>4)&0xf,
2822 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2823 >>10)&0x3f,
2824 status&0x1f, (status>>5)&0x3,
2825 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2826 d->ctx);
2827 #endif
2829 if (status & 0x10) {
2830 ack = status & 0xf;
2831 } else {
2832 switch (status & 0x1f) {
2833 case EVT_NO_STATUS: /* that should never happen */
2834 case EVT_RESERVED_A: /* that should never happen */
2835 case EVT_LONG_PACKET: /* that should never happen */
2836 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2837 ack = ACKX_SEND_ERROR;
2838 break;
2839 case EVT_MISSING_ACK:
2840 ack = ACKX_TIMEOUT;
2841 break;
2842 case EVT_UNDERRUN:
2843 ack = ACKX_SEND_ERROR;
2844 break;
2845 case EVT_OVERRUN: /* that should never happen */
2846 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2847 ack = ACKX_SEND_ERROR;
2848 break;
2849 case EVT_DESCRIPTOR_READ:
2850 case EVT_DATA_READ:
2851 case EVT_DATA_WRITE:
2852 ack = ACKX_SEND_ERROR;
2853 break;
2854 case EVT_BUS_RESET: /* that should never happen */
2855 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2856 ack = ACKX_SEND_ERROR;
2857 break;
2858 case EVT_TIMEOUT:
2859 ack = ACKX_TIMEOUT;
2860 break;
2861 case EVT_TCODE_ERR:
2862 ack = ACKX_SEND_ERROR;
2863 break;
2864 case EVT_RESERVED_B: /* that should never happen */
2865 case EVT_RESERVED_C: /* that should never happen */
2866 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2867 ack = ACKX_SEND_ERROR;
2868 break;
2869 case EVT_UNKNOWN:
2870 case EVT_FLUSHED:
2871 ack = ACKX_SEND_ERROR;
2872 break;
2873 default:
2874 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2875 ack = ACKX_SEND_ERROR;
2876 BUG();
2880 list_del_init(&packet->driver_list);
2881 hpsb_packet_sent(ohci->host, packet, ack);
2883 if (datasize) {
2884 pci_unmap_single(ohci->dev,
2885 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2886 datasize, PCI_DMA_TODEVICE);
2887 OHCI_DMA_FREE("single Xmit data packet");
2890 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2891 d->free_prgs++;
2894 dma_trm_flush(ohci, d);
2896 spin_unlock_irqrestore(&d->lock, flags);
2899 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2901 if (d->ctrlClear) {
2902 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2904 if (d->type == DMA_CTX_ISO) {
2905 /* disable interrupts */
2906 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2907 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2908 } else {
2909 tasklet_kill(&d->task);
2915 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2917 int i;
2918 struct ti_ohci *ohci = d->ohci;
2920 if (ohci == NULL)
2921 return;
2923 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2925 if (d->buf_cpu) {
2926 for (i=0; i<d->num_desc; i++)
2927 if (d->buf_cpu[i] && d->buf_bus[i]) {
2928 pci_free_consistent(
2929 ohci->dev, d->buf_size,
2930 d->buf_cpu[i], d->buf_bus[i]);
2931 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2933 kfree(d->buf_cpu);
2934 kfree(d->buf_bus);
2936 if (d->prg_cpu) {
2937 for (i=0; i<d->num_desc; i++)
2938 if (d->prg_cpu[i] && d->prg_bus[i]) {
2939 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2940 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2942 pci_pool_destroy(d->prg_pool);
2943 OHCI_DMA_FREE("dma_rcv prg pool");
2944 kfree(d->prg_cpu);
2945 kfree(d->prg_bus);
2947 kfree(d->spb);
2949 /* Mark this context as freed. */
2950 d->ohci = NULL;
2953 static int
2954 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2955 enum context_type type, int ctx, int num_desc,
2956 int buf_size, int split_buf_size, int context_base)
2958 int i, len;
2959 static int num_allocs;
2960 static char pool_name[20];
2962 d->ohci = ohci;
2963 d->type = type;
2964 d->ctx = ctx;
2966 d->num_desc = num_desc;
2967 d->buf_size = buf_size;
2968 d->split_buf_size = split_buf_size;
2970 d->ctrlSet = 0;
2971 d->ctrlClear = 0;
2972 d->cmdPtr = 0;
2974 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2975 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2977 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2978 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2979 free_dma_rcv_ctx(d);
2980 return -ENOMEM;
2983 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2984 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2986 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2987 PRINT(KERN_ERR, "Failed to allocate dma prg");
2988 free_dma_rcv_ctx(d);
2989 return -ENOMEM;
2992 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2994 if (d->spb == NULL) {
2995 PRINT(KERN_ERR, "Failed to allocate split buffer");
2996 free_dma_rcv_ctx(d);
2997 return -ENOMEM;
3000 len = sprintf(pool_name, "ohci1394_rcv_prg");
3001 sprintf(pool_name+len, "%d", num_allocs);
3002 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3003 sizeof(struct dma_cmd), 4, 0);
3004 if(d->prg_pool == NULL)
3006 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3007 free_dma_rcv_ctx(d);
3008 return -ENOMEM;
3010 num_allocs++;
3012 OHCI_DMA_ALLOC("dma_rcv prg pool");
3014 for (i=0; i<d->num_desc; i++) {
3015 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3016 d->buf_size,
3017 d->buf_bus+i);
3018 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3020 if (d->buf_cpu[i] != NULL) {
3021 memset(d->buf_cpu[i], 0, d->buf_size);
3022 } else {
3023 PRINT(KERN_ERR,
3024 "Failed to allocate dma buffer");
3025 free_dma_rcv_ctx(d);
3026 return -ENOMEM;
3029 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3030 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3032 if (d->prg_cpu[i] != NULL) {
3033 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3034 } else {
3035 PRINT(KERN_ERR,
3036 "Failed to allocate dma prg");
3037 free_dma_rcv_ctx(d);
3038 return -ENOMEM;
3042 spin_lock_init(&d->lock);
3044 if (type == DMA_CTX_ISO) {
3045 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3046 OHCI_ISO_MULTICHANNEL_RECEIVE,
3047 dma_rcv_tasklet, (unsigned long) d);
3048 } else {
3049 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3050 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3051 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3053 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3056 return 0;
3059 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3061 int i;
3062 struct ti_ohci *ohci = d->ohci;
3064 if (ohci == NULL)
3065 return;
3067 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3069 if (d->prg_cpu) {
3070 for (i=0; i<d->num_desc; i++)
3071 if (d->prg_cpu[i] && d->prg_bus[i]) {
3072 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3073 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3075 pci_pool_destroy(d->prg_pool);
3076 OHCI_DMA_FREE("dma_trm prg pool");
3077 kfree(d->prg_cpu);
3078 kfree(d->prg_bus);
3081 /* Mark this context as freed. */
3082 d->ohci = NULL;
3085 static int
3086 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3087 enum context_type type, int ctx, int num_desc,
3088 int context_base)
3090 int i, len;
3091 static char pool_name[20];
3092 static int num_allocs=0;
3094 d->ohci = ohci;
3095 d->type = type;
3096 d->ctx = ctx;
3097 d->num_desc = num_desc;
3098 d->ctrlSet = 0;
3099 d->ctrlClear = 0;
3100 d->cmdPtr = 0;
3102 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3103 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3105 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3106 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3107 free_dma_trm_ctx(d);
3108 return -ENOMEM;
3111 len = sprintf(pool_name, "ohci1394_trm_prg");
3112 sprintf(pool_name+len, "%d", num_allocs);
3113 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3114 sizeof(struct at_dma_prg), 4, 0);
3115 if (d->prg_pool == NULL) {
3116 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3117 free_dma_trm_ctx(d);
3118 return -ENOMEM;
3120 num_allocs++;
3122 OHCI_DMA_ALLOC("dma_rcv prg pool");
3124 for (i = 0; i < d->num_desc; i++) {
3125 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3126 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3128 if (d->prg_cpu[i] != NULL) {
3129 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3130 } else {
3131 PRINT(KERN_ERR,
3132 "Failed to allocate at dma prg");
3133 free_dma_trm_ctx(d);
3134 return -ENOMEM;
3138 spin_lock_init(&d->lock);
3140 /* initialize tasklet */
3141 if (type == DMA_CTX_ISO) {
3142 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3143 dma_trm_tasklet, (unsigned long) d);
3144 if (ohci1394_register_iso_tasklet(ohci,
3145 &ohci->it_legacy_tasklet) < 0) {
3146 PRINT(KERN_ERR, "No IT DMA context available");
3147 free_dma_trm_ctx(d);
3148 return -EBUSY;
3151 /* IT can be assigned to any context by register_iso_tasklet */
3152 d->ctx = ohci->it_legacy_tasklet.context;
3153 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3154 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3155 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3156 } else {
3157 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3158 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3159 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3160 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3163 return 0;
3166 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3168 struct ti_ohci *ohci = host->hostdata;
3170 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3171 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3173 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3177 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3178 quadlet_t data, quadlet_t compare)
3180 struct ti_ohci *ohci = host->hostdata;
3181 int i;
3183 reg_write(ohci, OHCI1394_CSRData, data);
3184 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3185 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3187 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3188 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3189 break;
3191 mdelay(1);
3194 return reg_read(ohci, OHCI1394_CSRData);
3197 static struct hpsb_host_driver ohci1394_driver = {
3198 .owner = THIS_MODULE,
3199 .name = OHCI1394_DRIVER_NAME,
3200 .set_hw_config_rom = ohci_set_hw_config_rom,
3201 .transmit_packet = ohci_transmit,
3202 .devctl = ohci_devctl,
3203 .isoctl = ohci_isoctl,
3204 .hw_csr_reg = ohci_hw_csr_reg,
3207 /***********************************
3208 * PCI Driver Interface functions *
3209 ***********************************/
3211 #define FAIL(err, fmt, args...) \
3212 do { \
3213 PRINT_G(KERN_ERR, fmt , ## args); \
3214 ohci1394_pci_remove(dev); \
3215 return err; \
3216 } while (0)
3218 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3219 const struct pci_device_id *ent)
3221 struct hpsb_host *host;
3222 struct ti_ohci *ohci; /* shortcut to currently handled device */
3223 unsigned long ohci_base;
3225 if (pci_enable_device(dev))
3226 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3227 pci_set_master(dev);
3229 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3230 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3232 ohci = host->hostdata;
3233 ohci->dev = dev;
3234 ohci->host = host;
3235 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3236 host->pdev = dev;
3237 pci_set_drvdata(dev, ohci);
3239 /* We don't want hardware swapping */
3240 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3242 /* Some oddball Apple controllers do not order the selfid
3243 * properly, so we make up for it here. */
3244 #ifndef __LITTLE_ENDIAN
3245 /* XXX: Need a better way to check this. I'm wondering if we can
3246 * read the values of the OHCI1394_PCI_HCI_Control and the
3247 * noByteSwapData registers to see if they were not cleared to
3248 * zero. Should this work? Obviously it's not defined what these
3249 * registers will read when they aren't supported. Bleh! */
3250 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3251 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3252 ohci->no_swap_incoming = 1;
3253 ohci->selfid_swap = 0;
3254 } else
3255 ohci->selfid_swap = 1;
3256 #endif
3259 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3260 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3261 #endif
3263 /* These chipsets require a bit of extra care when checking after
3264 * a busreset. */
3265 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3266 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3267 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3268 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3269 ohci->check_busreset = 1;
3271 /* We hardwire the MMIO length, since some CardBus adaptors
3272 * fail to report the right length. Anyway, the ohci spec
3273 * clearly says it's 2kb, so this shouldn't be a problem. */
3274 ohci_base = pci_resource_start(dev, 0);
3275 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3276 PRINT(KERN_WARNING, "PCI resource length of %lx too small!",
3277 pci_resource_len(dev, 0));
3279 /* Seems PCMCIA handles this internally. Not sure why. Seems
3280 * pretty bogus to force a driver to special case this. */
3281 #ifndef PCMCIA
3282 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3283 FAIL(-ENOMEM, "MMIO resource (0x%lx - 0x%lx) unavailable",
3284 ohci_base, ohci_base + OHCI1394_REGISTER_SIZE);
3285 #endif
3286 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3288 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3289 if (ohci->registers == NULL)
3290 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3291 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3292 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3294 /* csr_config rom allocation */
3295 ohci->csr_config_rom_cpu =
3296 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3297 &ohci->csr_config_rom_bus);
3298 OHCI_DMA_ALLOC("consistent csr_config_rom");
3299 if (ohci->csr_config_rom_cpu == NULL)
3300 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3301 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3303 /* self-id dma buffer allocation */
3304 ohci->selfid_buf_cpu =
3305 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3306 &ohci->selfid_buf_bus);
3307 OHCI_DMA_ALLOC("consistent selfid_buf");
3309 if (ohci->selfid_buf_cpu == NULL)
3310 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3311 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3313 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3314 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3315 "8Kb boundary... may cause problems on some CXD3222 chip",
3316 ohci->selfid_buf_cpu);
3318 /* No self-id errors at startup */
3319 ohci->self_id_errors = 0;
3321 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3322 /* AR DMA request context allocation */
3323 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3324 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3325 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3326 OHCI1394_AsReqRcvContextBase) < 0)
3327 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3329 /* AR DMA response context allocation */
3330 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3331 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3332 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3333 OHCI1394_AsRspRcvContextBase) < 0)
3334 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3336 /* AT DMA request context */
3337 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3338 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3339 OHCI1394_AsReqTrContextBase) < 0)
3340 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3342 /* AT DMA response context */
3343 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3344 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3345 OHCI1394_AsRspTrContextBase) < 0)
3346 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3348 /* Start off with a soft reset, to clear everything to a sane
3349 * state. */
3350 ohci_soft_reset(ohci);
3352 /* Now enable LPS, which we need in order to start accessing
3353 * most of the registers. In fact, on some cards (ALI M5251),
3354 * accessing registers in the SClk domain without LPS enabled
3355 * will lock up the machine. Wait 50msec to make sure we have
3356 * full link enabled. */
3357 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3359 /* Disable and clear interrupts */
3360 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3361 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3363 mdelay(50);
3365 /* Determine the number of available IR and IT contexts. */
3366 ohci->nb_iso_rcv_ctx =
3367 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3368 ohci->nb_iso_xmit_ctx =
3369 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3371 /* Set the usage bits for non-existent contexts so they can't
3372 * be allocated */
3373 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3374 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3376 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3377 spin_lock_init(&ohci->iso_tasklet_list_lock);
3378 ohci->ISO_channel_usage = 0;
3379 spin_lock_init(&ohci->IR_channel_lock);
3381 /* Allocate the IR DMA context right here so we don't have
3382 * to do it in interrupt path - note that this doesn't
3383 * waste much memory and avoids the jugglery required to
3384 * allocate it in IRQ path. */
3385 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3386 DMA_CTX_ISO, 0, IR_NUM_DESC,
3387 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3388 OHCI1394_IsoRcvContextBase) < 0) {
3389 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3392 /* We hopefully don't have to pre-allocate IT DMA like we did
3393 * for IR DMA above. Allocate it on-demand and mark inactive. */
3394 ohci->it_legacy_context.ohci = NULL;
3395 spin_lock_init(&ohci->event_lock);
3398 * interrupts are disabled, all right, but... due to SA_SHIRQ we
3399 * might get called anyway. We'll see no event, of course, but
3400 * we need to get to that "no event", so enough should be initialized
3401 * by that point.
3403 if (request_irq(dev->irq, ohci_irq_handler, SA_SHIRQ,
3404 OHCI1394_DRIVER_NAME, ohci))
3405 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3407 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3408 ohci_initialize(ohci);
3410 /* Set certain csr values */
3411 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3412 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3413 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3414 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3415 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3417 /* Tell the highlevel this host is ready */
3418 if (hpsb_add_host(host))
3419 FAIL(-ENOMEM, "Failed to register host with highlevel");
3421 ohci->init_state = OHCI_INIT_DONE;
3423 return 0;
3424 #undef FAIL
3427 static void ohci1394_pci_remove(struct pci_dev *pdev)
3429 struct ti_ohci *ohci;
3430 struct device *dev;
3432 ohci = pci_get_drvdata(pdev);
3433 if (!ohci)
3434 return;
3436 dev = get_device(&ohci->host->device);
3438 switch (ohci->init_state) {
3439 case OHCI_INIT_DONE:
3440 hpsb_remove_host(ohci->host);
3442 /* Clear out BUS Options */
3443 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3444 reg_write(ohci, OHCI1394_BusOptions,
3445 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3446 0x00ff0000);
3447 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3449 case OHCI_INIT_HAVE_IRQ:
3450 /* Clear interrupt registers */
3451 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3452 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3453 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3454 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3455 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3456 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3458 /* Disable IRM Contender */
3459 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3461 /* Clear link control register */
3462 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3464 /* Let all other nodes know to ignore us */
3465 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3467 /* Soft reset before we start - this disables
3468 * interrupts and clears linkEnable and LPS. */
3469 ohci_soft_reset(ohci);
3470 free_irq(ohci->dev->irq, ohci);
3472 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3473 /* The ohci_soft_reset() stops all DMA contexts, so we
3474 * dont need to do this. */
3475 free_dma_rcv_ctx(&ohci->ar_req_context);
3476 free_dma_rcv_ctx(&ohci->ar_resp_context);
3477 free_dma_trm_ctx(&ohci->at_req_context);
3478 free_dma_trm_ctx(&ohci->at_resp_context);
3479 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3480 free_dma_trm_ctx(&ohci->it_legacy_context);
3482 case OHCI_INIT_HAVE_SELFID_BUFFER:
3483 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3484 ohci->selfid_buf_cpu,
3485 ohci->selfid_buf_bus);
3486 OHCI_DMA_FREE("consistent selfid_buf");
3488 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3489 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3490 ohci->csr_config_rom_cpu,
3491 ohci->csr_config_rom_bus);
3492 OHCI_DMA_FREE("consistent csr_config_rom");
3494 case OHCI_INIT_HAVE_IOMAPPING:
3495 iounmap(ohci->registers);
3497 case OHCI_INIT_HAVE_MEM_REGION:
3498 #ifndef PCMCIA
3499 release_mem_region(pci_resource_start(ohci->dev, 0),
3500 OHCI1394_REGISTER_SIZE);
3501 #endif
3503 #ifdef CONFIG_PPC_PMAC
3504 /* On UniNorth, power down the cable and turn off the chip
3505 * clock when the module is removed to save power on
3506 * laptops. Turning it back ON is done by the arch code when
3507 * pci_enable_device() is called */
3509 struct device_node* of_node;
3511 of_node = pci_device_to_OF_node(ohci->dev);
3512 if (of_node) {
3513 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3514 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3517 #endif /* CONFIG_PPC_PMAC */
3519 case OHCI_INIT_ALLOC_HOST:
3520 pci_set_drvdata(ohci->dev, NULL);
3523 if (dev)
3524 put_device(dev);
3528 static int ohci1394_pci_resume (struct pci_dev *pdev)
3530 #ifdef CONFIG_PPC_PMAC
3531 if (machine_is(powermac)) {
3532 struct device_node *of_node;
3534 /* Re-enable 1394 */
3535 of_node = pci_device_to_OF_node (pdev);
3536 if (of_node)
3537 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3539 #endif /* CONFIG_PPC_PMAC */
3541 pci_enable_device(pdev);
3543 return 0;
3547 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3549 #ifdef CONFIG_PPC_PMAC
3550 if (machine_is(powermac)) {
3551 struct device_node *of_node;
3553 /* Disable 1394 */
3554 of_node = pci_device_to_OF_node (pdev);
3555 if (of_node)
3556 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3558 #endif
3560 return 0;
3564 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3566 static struct pci_device_id ohci1394_pci_tbl[] = {
3568 .class = PCI_CLASS_FIREWIRE_OHCI,
3569 .class_mask = PCI_ANY_ID,
3570 .vendor = PCI_ANY_ID,
3571 .device = PCI_ANY_ID,
3572 .subvendor = PCI_ANY_ID,
3573 .subdevice = PCI_ANY_ID,
3575 { 0, },
3578 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3580 static struct pci_driver ohci1394_pci_driver = {
3581 .name = OHCI1394_DRIVER_NAME,
3582 .id_table = ohci1394_pci_tbl,
3583 .probe = ohci1394_pci_probe,
3584 .remove = ohci1394_pci_remove,
3585 .resume = ohci1394_pci_resume,
3586 .suspend = ohci1394_pci_suspend,
3589 /***********************************
3590 * OHCI1394 Video Interface *
3591 ***********************************/
3593 /* essentially the only purpose of this code is to allow another
3594 module to hook into ohci's interrupt handler */
3596 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3598 int i=0;
3600 /* stop the channel program if it's still running */
3601 reg_write(ohci, reg, 0x8000);
3603 /* Wait until it effectively stops */
3604 while (reg_read(ohci, reg) & 0x400) {
3605 i++;
3606 if (i>5000) {
3607 PRINT(KERN_ERR,
3608 "Runaway loop while stopping context: %s...", msg ? msg : "");
3609 return 1;
3612 mb();
3613 udelay(10);
3615 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3616 return 0;
3619 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3620 void (*func)(unsigned long), unsigned long data)
3622 tasklet_init(&tasklet->tasklet, func, data);
3623 tasklet->type = type;
3624 /* We init the tasklet->link field, so we can list_del() it
3625 * without worrying whether it was added to the list or not. */
3626 INIT_LIST_HEAD(&tasklet->link);
3629 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3630 struct ohci1394_iso_tasklet *tasklet)
3632 unsigned long flags, *usage;
3633 int n, i, r = -EBUSY;
3635 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3636 n = ohci->nb_iso_xmit_ctx;
3637 usage = &ohci->it_ctx_usage;
3639 else {
3640 n = ohci->nb_iso_rcv_ctx;
3641 usage = &ohci->ir_ctx_usage;
3643 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3644 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3645 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3646 return r;
3651 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3653 for (i = 0; i < n; i++)
3654 if (!test_and_set_bit(i, usage)) {
3655 tasklet->context = i;
3656 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3657 r = 0;
3658 break;
3661 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3663 return r;
3666 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3667 struct ohci1394_iso_tasklet *tasklet)
3669 unsigned long flags;
3671 tasklet_kill(&tasklet->tasklet);
3673 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3675 if (tasklet->type == OHCI_ISO_TRANSMIT)
3676 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3677 else {
3678 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3680 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3681 clear_bit(0, &ohci->ir_multichannel_used);
3685 list_del(&tasklet->link);
3687 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3690 EXPORT_SYMBOL(ohci1394_stop_context);
3691 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3692 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3693 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3695 /***********************************
3696 * General module initialization *
3697 ***********************************/
3699 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3700 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3701 MODULE_LICENSE("GPL");
3703 static void __exit ohci1394_cleanup (void)
3705 pci_unregister_driver(&ohci1394_pci_driver);
3708 static int __init ohci1394_init(void)
3710 return pci_register_driver(&ohci1394_pci_driver);
3713 module_init(ohci1394_init);
3714 module_exit(ohci1394_cleanup);