[patch 2/2] Use find_task_by_vpid in audit code
[linux-2.6/linux-loongson.git] / kernel / auditsc.c
blob091409996577dac43506aadef870ead32e88397c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
69 #include "audit.h"
71 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73 #define AUDIT_NAMES 20
75 /* Indicates that audit should log the full pathname. */
76 #define AUDIT_NAME_FULL -1
78 /* no execve audit message should be longer than this (userspace limits) */
79 #define MAX_EXECVE_AUDIT_LEN 7500
81 /* number of audit rules */
82 int audit_n_rules;
84 /* determines whether we collect data for signals sent */
85 int audit_signals;
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92 struct audit_names {
93 const char *name;
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
102 u32 osid;
105 struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
122 struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
130 struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
136 struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
142 struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
149 u32 osid;
152 struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
156 struct mm_struct *mm;
159 struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
165 struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
171 struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
176 struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
179 uid_t target_auid[AUDIT_AUX_PIDS];
180 uid_t target_uid[AUDIT_AUX_PIDS];
181 unsigned int target_sessionid[AUDIT_AUX_PIDS];
182 u32 target_sid[AUDIT_AUX_PIDS];
183 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
184 int pid_count;
187 struct audit_tree_refs {
188 struct audit_tree_refs *next;
189 struct audit_chunk *c[31];
192 /* The per-task audit context. */
193 struct audit_context {
194 int dummy; /* must be the first element */
195 int in_syscall; /* 1 if task is in a syscall */
196 enum audit_state state;
197 unsigned int serial; /* serial number for record */
198 struct timespec ctime; /* time of syscall entry */
199 int major; /* syscall number */
200 unsigned long argv[4]; /* syscall arguments */
201 int return_valid; /* return code is valid */
202 long return_code;/* syscall return code */
203 int auditable; /* 1 if record should be written */
204 int name_count;
205 struct audit_names names[AUDIT_NAMES];
206 char * filterkey; /* key for rule that triggered record */
207 struct path pwd;
208 struct audit_context *previous; /* For nested syscalls */
209 struct audit_aux_data *aux;
210 struct audit_aux_data *aux_pids;
212 /* Save things to print about task_struct */
213 pid_t pid, ppid;
214 uid_t uid, euid, suid, fsuid;
215 gid_t gid, egid, sgid, fsgid;
216 unsigned long personality;
217 int arch;
219 pid_t target_pid;
220 uid_t target_auid;
221 uid_t target_uid;
222 unsigned int target_sessionid;
223 u32 target_sid;
224 char target_comm[TASK_COMM_LEN];
226 struct audit_tree_refs *trees, *first_trees;
227 int tree_count;
229 #if AUDIT_DEBUG
230 int put_count;
231 int ino_count;
232 #endif
235 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236 static inline int open_arg(int flags, int mask)
238 int n = ACC_MODE(flags);
239 if (flags & (O_TRUNC | O_CREAT))
240 n |= AUDIT_PERM_WRITE;
241 return n & mask;
244 static int audit_match_perm(struct audit_context *ctx, int mask)
246 unsigned n = ctx->major;
247 switch (audit_classify_syscall(ctx->arch, n)) {
248 case 0: /* native */
249 if ((mask & AUDIT_PERM_WRITE) &&
250 audit_match_class(AUDIT_CLASS_WRITE, n))
251 return 1;
252 if ((mask & AUDIT_PERM_READ) &&
253 audit_match_class(AUDIT_CLASS_READ, n))
254 return 1;
255 if ((mask & AUDIT_PERM_ATTR) &&
256 audit_match_class(AUDIT_CLASS_CHATTR, n))
257 return 1;
258 return 0;
259 case 1: /* 32bit on biarch */
260 if ((mask & AUDIT_PERM_WRITE) &&
261 audit_match_class(AUDIT_CLASS_WRITE_32, n))
262 return 1;
263 if ((mask & AUDIT_PERM_READ) &&
264 audit_match_class(AUDIT_CLASS_READ_32, n))
265 return 1;
266 if ((mask & AUDIT_PERM_ATTR) &&
267 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
268 return 1;
269 return 0;
270 case 2: /* open */
271 return mask & ACC_MODE(ctx->argv[1]);
272 case 3: /* openat */
273 return mask & ACC_MODE(ctx->argv[2]);
274 case 4: /* socketcall */
275 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
276 case 5: /* execve */
277 return mask & AUDIT_PERM_EXEC;
278 default:
279 return 0;
284 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
285 * ->first_trees points to its beginning, ->trees - to the current end of data.
286 * ->tree_count is the number of free entries in array pointed to by ->trees.
287 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
288 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
289 * it's going to remain 1-element for almost any setup) until we free context itself.
290 * References in it _are_ dropped - at the same time we free/drop aux stuff.
293 #ifdef CONFIG_AUDIT_TREE
294 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
296 struct audit_tree_refs *p = ctx->trees;
297 int left = ctx->tree_count;
298 if (likely(left)) {
299 p->c[--left] = chunk;
300 ctx->tree_count = left;
301 return 1;
303 if (!p)
304 return 0;
305 p = p->next;
306 if (p) {
307 p->c[30] = chunk;
308 ctx->trees = p;
309 ctx->tree_count = 30;
310 return 1;
312 return 0;
315 static int grow_tree_refs(struct audit_context *ctx)
317 struct audit_tree_refs *p = ctx->trees;
318 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
319 if (!ctx->trees) {
320 ctx->trees = p;
321 return 0;
323 if (p)
324 p->next = ctx->trees;
325 else
326 ctx->first_trees = ctx->trees;
327 ctx->tree_count = 31;
328 return 1;
330 #endif
332 static void unroll_tree_refs(struct audit_context *ctx,
333 struct audit_tree_refs *p, int count)
335 #ifdef CONFIG_AUDIT_TREE
336 struct audit_tree_refs *q;
337 int n;
338 if (!p) {
339 /* we started with empty chain */
340 p = ctx->first_trees;
341 count = 31;
342 /* if the very first allocation has failed, nothing to do */
343 if (!p)
344 return;
346 n = count;
347 for (q = p; q != ctx->trees; q = q->next, n = 31) {
348 while (n--) {
349 audit_put_chunk(q->c[n]);
350 q->c[n] = NULL;
353 while (n-- > ctx->tree_count) {
354 audit_put_chunk(q->c[n]);
355 q->c[n] = NULL;
357 ctx->trees = p;
358 ctx->tree_count = count;
359 #endif
362 static void free_tree_refs(struct audit_context *ctx)
364 struct audit_tree_refs *p, *q;
365 for (p = ctx->first_trees; p; p = q) {
366 q = p->next;
367 kfree(p);
371 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
373 #ifdef CONFIG_AUDIT_TREE
374 struct audit_tree_refs *p;
375 int n;
376 if (!tree)
377 return 0;
378 /* full ones */
379 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
380 for (n = 0; n < 31; n++)
381 if (audit_tree_match(p->c[n], tree))
382 return 1;
384 /* partial */
385 if (p) {
386 for (n = ctx->tree_count; n < 31; n++)
387 if (audit_tree_match(p->c[n], tree))
388 return 1;
390 #endif
391 return 0;
394 /* Determine if any context name data matches a rule's watch data */
395 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
396 * otherwise. */
397 static int audit_filter_rules(struct task_struct *tsk,
398 struct audit_krule *rule,
399 struct audit_context *ctx,
400 struct audit_names *name,
401 enum audit_state *state)
403 int i, j, need_sid = 1;
404 u32 sid;
406 for (i = 0; i < rule->field_count; i++) {
407 struct audit_field *f = &rule->fields[i];
408 int result = 0;
410 switch (f->type) {
411 case AUDIT_PID:
412 result = audit_comparator(tsk->pid, f->op, f->val);
413 break;
414 case AUDIT_PPID:
415 if (ctx) {
416 if (!ctx->ppid)
417 ctx->ppid = sys_getppid();
418 result = audit_comparator(ctx->ppid, f->op, f->val);
420 break;
421 case AUDIT_UID:
422 result = audit_comparator(tsk->uid, f->op, f->val);
423 break;
424 case AUDIT_EUID:
425 result = audit_comparator(tsk->euid, f->op, f->val);
426 break;
427 case AUDIT_SUID:
428 result = audit_comparator(tsk->suid, f->op, f->val);
429 break;
430 case AUDIT_FSUID:
431 result = audit_comparator(tsk->fsuid, f->op, f->val);
432 break;
433 case AUDIT_GID:
434 result = audit_comparator(tsk->gid, f->op, f->val);
435 break;
436 case AUDIT_EGID:
437 result = audit_comparator(tsk->egid, f->op, f->val);
438 break;
439 case AUDIT_SGID:
440 result = audit_comparator(tsk->sgid, f->op, f->val);
441 break;
442 case AUDIT_FSGID:
443 result = audit_comparator(tsk->fsgid, f->op, f->val);
444 break;
445 case AUDIT_PERS:
446 result = audit_comparator(tsk->personality, f->op, f->val);
447 break;
448 case AUDIT_ARCH:
449 if (ctx)
450 result = audit_comparator(ctx->arch, f->op, f->val);
451 break;
453 case AUDIT_EXIT:
454 if (ctx && ctx->return_valid)
455 result = audit_comparator(ctx->return_code, f->op, f->val);
456 break;
457 case AUDIT_SUCCESS:
458 if (ctx && ctx->return_valid) {
459 if (f->val)
460 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
461 else
462 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
464 break;
465 case AUDIT_DEVMAJOR:
466 if (name)
467 result = audit_comparator(MAJOR(name->dev),
468 f->op, f->val);
469 else if (ctx) {
470 for (j = 0; j < ctx->name_count; j++) {
471 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
472 ++result;
473 break;
477 break;
478 case AUDIT_DEVMINOR:
479 if (name)
480 result = audit_comparator(MINOR(name->dev),
481 f->op, f->val);
482 else if (ctx) {
483 for (j = 0; j < ctx->name_count; j++) {
484 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
485 ++result;
486 break;
490 break;
491 case AUDIT_INODE:
492 if (name)
493 result = (name->ino == f->val);
494 else if (ctx) {
495 for (j = 0; j < ctx->name_count; j++) {
496 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
497 ++result;
498 break;
502 break;
503 case AUDIT_WATCH:
504 if (name && rule->watch->ino != (unsigned long)-1)
505 result = (name->dev == rule->watch->dev &&
506 name->ino == rule->watch->ino);
507 break;
508 case AUDIT_DIR:
509 if (ctx)
510 result = match_tree_refs(ctx, rule->tree);
511 break;
512 case AUDIT_LOGINUID:
513 result = 0;
514 if (ctx)
515 result = audit_comparator(tsk->loginuid, f->op, f->val);
516 break;
517 case AUDIT_SUBJ_USER:
518 case AUDIT_SUBJ_ROLE:
519 case AUDIT_SUBJ_TYPE:
520 case AUDIT_SUBJ_SEN:
521 case AUDIT_SUBJ_CLR:
522 /* NOTE: this may return negative values indicating
523 a temporary error. We simply treat this as a
524 match for now to avoid losing information that
525 may be wanted. An error message will also be
526 logged upon error */
527 if (f->lsm_rule) {
528 if (need_sid) {
529 security_task_getsecid(tsk, &sid);
530 need_sid = 0;
532 result = security_audit_rule_match(sid, f->type,
533 f->op,
534 f->lsm_rule,
535 ctx);
537 break;
538 case AUDIT_OBJ_USER:
539 case AUDIT_OBJ_ROLE:
540 case AUDIT_OBJ_TYPE:
541 case AUDIT_OBJ_LEV_LOW:
542 case AUDIT_OBJ_LEV_HIGH:
543 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
544 also applies here */
545 if (f->lsm_rule) {
546 /* Find files that match */
547 if (name) {
548 result = security_audit_rule_match(
549 name->osid, f->type, f->op,
550 f->lsm_rule, ctx);
551 } else if (ctx) {
552 for (j = 0; j < ctx->name_count; j++) {
553 if (security_audit_rule_match(
554 ctx->names[j].osid,
555 f->type, f->op,
556 f->lsm_rule, ctx)) {
557 ++result;
558 break;
562 /* Find ipc objects that match */
563 if (ctx) {
564 struct audit_aux_data *aux;
565 for (aux = ctx->aux; aux;
566 aux = aux->next) {
567 if (aux->type == AUDIT_IPC) {
568 struct audit_aux_data_ipcctl *axi = (void *)aux;
569 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
570 ++result;
571 break;
577 break;
578 case AUDIT_ARG0:
579 case AUDIT_ARG1:
580 case AUDIT_ARG2:
581 case AUDIT_ARG3:
582 if (ctx)
583 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
584 break;
585 case AUDIT_FILTERKEY:
586 /* ignore this field for filtering */
587 result = 1;
588 break;
589 case AUDIT_PERM:
590 result = audit_match_perm(ctx, f->val);
591 break;
594 if (!result)
595 return 0;
597 if (rule->filterkey)
598 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
599 switch (rule->action) {
600 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
601 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
603 return 1;
606 /* At process creation time, we can determine if system-call auditing is
607 * completely disabled for this task. Since we only have the task
608 * structure at this point, we can only check uid and gid.
610 static enum audit_state audit_filter_task(struct task_struct *tsk)
612 struct audit_entry *e;
613 enum audit_state state;
615 rcu_read_lock();
616 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
617 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
618 rcu_read_unlock();
619 return state;
622 rcu_read_unlock();
623 return AUDIT_BUILD_CONTEXT;
626 /* At syscall entry and exit time, this filter is called if the
627 * audit_state is not low enough that auditing cannot take place, but is
628 * also not high enough that we already know we have to write an audit
629 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
631 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
632 struct audit_context *ctx,
633 struct list_head *list)
635 struct audit_entry *e;
636 enum audit_state state;
638 if (audit_pid && tsk->tgid == audit_pid)
639 return AUDIT_DISABLED;
641 rcu_read_lock();
642 if (!list_empty(list)) {
643 int word = AUDIT_WORD(ctx->major);
644 int bit = AUDIT_BIT(ctx->major);
646 list_for_each_entry_rcu(e, list, list) {
647 if ((e->rule.mask[word] & bit) == bit &&
648 audit_filter_rules(tsk, &e->rule, ctx, NULL,
649 &state)) {
650 rcu_read_unlock();
651 return state;
655 rcu_read_unlock();
656 return AUDIT_BUILD_CONTEXT;
659 /* At syscall exit time, this filter is called if any audit_names[] have been
660 * collected during syscall processing. We only check rules in sublists at hash
661 * buckets applicable to the inode numbers in audit_names[].
662 * Regarding audit_state, same rules apply as for audit_filter_syscall().
664 enum audit_state audit_filter_inodes(struct task_struct *tsk,
665 struct audit_context *ctx)
667 int i;
668 struct audit_entry *e;
669 enum audit_state state;
671 if (audit_pid && tsk->tgid == audit_pid)
672 return AUDIT_DISABLED;
674 rcu_read_lock();
675 for (i = 0; i < ctx->name_count; i++) {
676 int word = AUDIT_WORD(ctx->major);
677 int bit = AUDIT_BIT(ctx->major);
678 struct audit_names *n = &ctx->names[i];
679 int h = audit_hash_ino((u32)n->ino);
680 struct list_head *list = &audit_inode_hash[h];
682 if (list_empty(list))
683 continue;
685 list_for_each_entry_rcu(e, list, list) {
686 if ((e->rule.mask[word] & bit) == bit &&
687 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
688 rcu_read_unlock();
689 return state;
693 rcu_read_unlock();
694 return AUDIT_BUILD_CONTEXT;
697 void audit_set_auditable(struct audit_context *ctx)
699 ctx->auditable = 1;
702 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
703 int return_valid,
704 int return_code)
706 struct audit_context *context = tsk->audit_context;
708 if (likely(!context))
709 return NULL;
710 context->return_valid = return_valid;
713 * we need to fix up the return code in the audit logs if the actual
714 * return codes are later going to be fixed up by the arch specific
715 * signal handlers
717 * This is actually a test for:
718 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
719 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
721 * but is faster than a bunch of ||
723 if (unlikely(return_code <= -ERESTARTSYS) &&
724 (return_code >= -ERESTART_RESTARTBLOCK) &&
725 (return_code != -ENOIOCTLCMD))
726 context->return_code = -EINTR;
727 else
728 context->return_code = return_code;
730 if (context->in_syscall && !context->dummy && !context->auditable) {
731 enum audit_state state;
733 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
734 if (state == AUDIT_RECORD_CONTEXT) {
735 context->auditable = 1;
736 goto get_context;
739 state = audit_filter_inodes(tsk, context);
740 if (state == AUDIT_RECORD_CONTEXT)
741 context->auditable = 1;
745 get_context:
747 tsk->audit_context = NULL;
748 return context;
751 static inline void audit_free_names(struct audit_context *context)
753 int i;
755 #if AUDIT_DEBUG == 2
756 if (context->auditable
757 ||context->put_count + context->ino_count != context->name_count) {
758 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
759 " name_count=%d put_count=%d"
760 " ino_count=%d [NOT freeing]\n",
761 __FILE__, __LINE__,
762 context->serial, context->major, context->in_syscall,
763 context->name_count, context->put_count,
764 context->ino_count);
765 for (i = 0; i < context->name_count; i++) {
766 printk(KERN_ERR "names[%d] = %p = %s\n", i,
767 context->names[i].name,
768 context->names[i].name ?: "(null)");
770 dump_stack();
771 return;
773 #endif
774 #if AUDIT_DEBUG
775 context->put_count = 0;
776 context->ino_count = 0;
777 #endif
779 for (i = 0; i < context->name_count; i++) {
780 if (context->names[i].name && context->names[i].name_put)
781 __putname(context->names[i].name);
783 context->name_count = 0;
784 path_put(&context->pwd);
785 context->pwd.dentry = NULL;
786 context->pwd.mnt = NULL;
789 static inline void audit_free_aux(struct audit_context *context)
791 struct audit_aux_data *aux;
793 while ((aux = context->aux)) {
794 context->aux = aux->next;
795 kfree(aux);
797 while ((aux = context->aux_pids)) {
798 context->aux_pids = aux->next;
799 kfree(aux);
803 static inline void audit_zero_context(struct audit_context *context,
804 enum audit_state state)
806 memset(context, 0, sizeof(*context));
807 context->state = state;
810 static inline struct audit_context *audit_alloc_context(enum audit_state state)
812 struct audit_context *context;
814 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
815 return NULL;
816 audit_zero_context(context, state);
817 return context;
821 * audit_alloc - allocate an audit context block for a task
822 * @tsk: task
824 * Filter on the task information and allocate a per-task audit context
825 * if necessary. Doing so turns on system call auditing for the
826 * specified task. This is called from copy_process, so no lock is
827 * needed.
829 int audit_alloc(struct task_struct *tsk)
831 struct audit_context *context;
832 enum audit_state state;
834 if (likely(!audit_ever_enabled))
835 return 0; /* Return if not auditing. */
837 state = audit_filter_task(tsk);
838 if (likely(state == AUDIT_DISABLED))
839 return 0;
841 if (!(context = audit_alloc_context(state))) {
842 audit_log_lost("out of memory in audit_alloc");
843 return -ENOMEM;
846 tsk->audit_context = context;
847 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
848 return 0;
851 static inline void audit_free_context(struct audit_context *context)
853 struct audit_context *previous;
854 int count = 0;
856 do {
857 previous = context->previous;
858 if (previous || (count && count < 10)) {
859 ++count;
860 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
861 " freeing multiple contexts (%d)\n",
862 context->serial, context->major,
863 context->name_count, count);
865 audit_free_names(context);
866 unroll_tree_refs(context, NULL, 0);
867 free_tree_refs(context);
868 audit_free_aux(context);
869 kfree(context->filterkey);
870 kfree(context);
871 context = previous;
872 } while (context);
873 if (count >= 10)
874 printk(KERN_ERR "audit: freed %d contexts\n", count);
877 void audit_log_task_context(struct audit_buffer *ab)
879 char *ctx = NULL;
880 unsigned len;
881 int error;
882 u32 sid;
884 security_task_getsecid(current, &sid);
885 if (!sid)
886 return;
888 error = security_secid_to_secctx(sid, &ctx, &len);
889 if (error) {
890 if (error != -EINVAL)
891 goto error_path;
892 return;
895 audit_log_format(ab, " subj=%s", ctx);
896 security_release_secctx(ctx, len);
897 return;
899 error_path:
900 audit_panic("error in audit_log_task_context");
901 return;
904 EXPORT_SYMBOL(audit_log_task_context);
906 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
908 char name[sizeof(tsk->comm)];
909 struct mm_struct *mm = tsk->mm;
910 struct vm_area_struct *vma;
912 /* tsk == current */
914 get_task_comm(name, tsk);
915 audit_log_format(ab, " comm=");
916 audit_log_untrustedstring(ab, name);
918 if (mm) {
919 down_read(&mm->mmap_sem);
920 vma = mm->mmap;
921 while (vma) {
922 if ((vma->vm_flags & VM_EXECUTABLE) &&
923 vma->vm_file) {
924 audit_log_d_path(ab, "exe=",
925 &vma->vm_file->f_path);
926 break;
928 vma = vma->vm_next;
930 up_read(&mm->mmap_sem);
932 audit_log_task_context(ab);
935 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
936 uid_t auid, uid_t uid, unsigned int sessionid,
937 u32 sid, char *comm)
939 struct audit_buffer *ab;
940 char *ctx = NULL;
941 u32 len;
942 int rc = 0;
944 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
945 if (!ab)
946 return rc;
948 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
949 uid, sessionid);
950 if (security_secid_to_secctx(sid, &ctx, &len)) {
951 audit_log_format(ab, " obj=(none)");
952 rc = 1;
953 } else {
954 audit_log_format(ab, " obj=%s", ctx);
955 security_release_secctx(ctx, len);
957 audit_log_format(ab, " ocomm=");
958 audit_log_untrustedstring(ab, comm);
959 audit_log_end(ab);
961 return rc;
965 * to_send and len_sent accounting are very loose estimates. We aren't
966 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
967 * within about 500 bytes (next page boundry)
969 * why snprintf? an int is up to 12 digits long. if we just assumed when
970 * logging that a[%d]= was going to be 16 characters long we would be wasting
971 * space in every audit message. In one 7500 byte message we can log up to
972 * about 1000 min size arguments. That comes down to about 50% waste of space
973 * if we didn't do the snprintf to find out how long arg_num_len was.
975 static int audit_log_single_execve_arg(struct audit_context *context,
976 struct audit_buffer **ab,
977 int arg_num,
978 size_t *len_sent,
979 const char __user *p,
980 char *buf)
982 char arg_num_len_buf[12];
983 const char __user *tmp_p = p;
984 /* how many digits are in arg_num? 3 is the length of a=\n */
985 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
986 size_t len, len_left, to_send;
987 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
988 unsigned int i, has_cntl = 0, too_long = 0;
989 int ret;
991 /* strnlen_user includes the null we don't want to send */
992 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
995 * We just created this mm, if we can't find the strings
996 * we just copied into it something is _very_ wrong. Similar
997 * for strings that are too long, we should not have created
998 * any.
1000 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1001 WARN_ON(1);
1002 send_sig(SIGKILL, current, 0);
1003 return -1;
1006 /* walk the whole argument looking for non-ascii chars */
1007 do {
1008 if (len_left > MAX_EXECVE_AUDIT_LEN)
1009 to_send = MAX_EXECVE_AUDIT_LEN;
1010 else
1011 to_send = len_left;
1012 ret = copy_from_user(buf, tmp_p, to_send);
1014 * There is no reason for this copy to be short. We just
1015 * copied them here, and the mm hasn't been exposed to user-
1016 * space yet.
1018 if (ret) {
1019 WARN_ON(1);
1020 send_sig(SIGKILL, current, 0);
1021 return -1;
1023 buf[to_send] = '\0';
1024 has_cntl = audit_string_contains_control(buf, to_send);
1025 if (has_cntl) {
1027 * hex messages get logged as 2 bytes, so we can only
1028 * send half as much in each message
1030 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1031 break;
1033 len_left -= to_send;
1034 tmp_p += to_send;
1035 } while (len_left > 0);
1037 len_left = len;
1039 if (len > max_execve_audit_len)
1040 too_long = 1;
1042 /* rewalk the argument actually logging the message */
1043 for (i = 0; len_left > 0; i++) {
1044 int room_left;
1046 if (len_left > max_execve_audit_len)
1047 to_send = max_execve_audit_len;
1048 else
1049 to_send = len_left;
1051 /* do we have space left to send this argument in this ab? */
1052 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1053 if (has_cntl)
1054 room_left -= (to_send * 2);
1055 else
1056 room_left -= to_send;
1057 if (room_left < 0) {
1058 *len_sent = 0;
1059 audit_log_end(*ab);
1060 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1061 if (!*ab)
1062 return 0;
1066 * first record needs to say how long the original string was
1067 * so we can be sure nothing was lost.
1069 if ((i == 0) && (too_long))
1070 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1071 has_cntl ? 2*len : len);
1074 * normally arguments are small enough to fit and we already
1075 * filled buf above when we checked for control characters
1076 * so don't bother with another copy_from_user
1078 if (len >= max_execve_audit_len)
1079 ret = copy_from_user(buf, p, to_send);
1080 else
1081 ret = 0;
1082 if (ret) {
1083 WARN_ON(1);
1084 send_sig(SIGKILL, current, 0);
1085 return -1;
1087 buf[to_send] = '\0';
1089 /* actually log it */
1090 audit_log_format(*ab, "a%d", arg_num);
1091 if (too_long)
1092 audit_log_format(*ab, "[%d]", i);
1093 audit_log_format(*ab, "=");
1094 if (has_cntl)
1095 audit_log_n_hex(*ab, buf, to_send);
1096 else
1097 audit_log_format(*ab, "\"%s\"", buf);
1098 audit_log_format(*ab, "\n");
1100 p += to_send;
1101 len_left -= to_send;
1102 *len_sent += arg_num_len;
1103 if (has_cntl)
1104 *len_sent += to_send * 2;
1105 else
1106 *len_sent += to_send;
1108 /* include the null we didn't log */
1109 return len + 1;
1112 static void audit_log_execve_info(struct audit_context *context,
1113 struct audit_buffer **ab,
1114 struct audit_aux_data_execve *axi)
1116 int i;
1117 size_t len, len_sent = 0;
1118 const char __user *p;
1119 char *buf;
1121 if (axi->mm != current->mm)
1122 return; /* execve failed, no additional info */
1124 p = (const char __user *)axi->mm->arg_start;
1126 audit_log_format(*ab, "argc=%d ", axi->argc);
1129 * we need some kernel buffer to hold the userspace args. Just
1130 * allocate one big one rather than allocating one of the right size
1131 * for every single argument inside audit_log_single_execve_arg()
1132 * should be <8k allocation so should be pretty safe.
1134 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1135 if (!buf) {
1136 audit_panic("out of memory for argv string\n");
1137 return;
1140 for (i = 0; i < axi->argc; i++) {
1141 len = audit_log_single_execve_arg(context, ab, i,
1142 &len_sent, p, buf);
1143 if (len <= 0)
1144 break;
1145 p += len;
1147 kfree(buf);
1150 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1152 int i, call_panic = 0;
1153 struct audit_buffer *ab;
1154 struct audit_aux_data *aux;
1155 const char *tty;
1157 /* tsk == current */
1158 context->pid = tsk->pid;
1159 if (!context->ppid)
1160 context->ppid = sys_getppid();
1161 context->uid = tsk->uid;
1162 context->gid = tsk->gid;
1163 context->euid = tsk->euid;
1164 context->suid = tsk->suid;
1165 context->fsuid = tsk->fsuid;
1166 context->egid = tsk->egid;
1167 context->sgid = tsk->sgid;
1168 context->fsgid = tsk->fsgid;
1169 context->personality = tsk->personality;
1171 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1172 if (!ab)
1173 return; /* audit_panic has been called */
1174 audit_log_format(ab, "arch=%x syscall=%d",
1175 context->arch, context->major);
1176 if (context->personality != PER_LINUX)
1177 audit_log_format(ab, " per=%lx", context->personality);
1178 if (context->return_valid)
1179 audit_log_format(ab, " success=%s exit=%ld",
1180 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1181 context->return_code);
1183 mutex_lock(&tty_mutex);
1184 read_lock(&tasklist_lock);
1185 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1186 tty = tsk->signal->tty->name;
1187 else
1188 tty = "(none)";
1189 read_unlock(&tasklist_lock);
1190 audit_log_format(ab,
1191 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1192 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1193 " euid=%u suid=%u fsuid=%u"
1194 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1195 context->argv[0],
1196 context->argv[1],
1197 context->argv[2],
1198 context->argv[3],
1199 context->name_count,
1200 context->ppid,
1201 context->pid,
1202 tsk->loginuid,
1203 context->uid,
1204 context->gid,
1205 context->euid, context->suid, context->fsuid,
1206 context->egid, context->sgid, context->fsgid, tty,
1207 tsk->sessionid);
1209 mutex_unlock(&tty_mutex);
1211 audit_log_task_info(ab, tsk);
1212 if (context->filterkey) {
1213 audit_log_format(ab, " key=");
1214 audit_log_untrustedstring(ab, context->filterkey);
1215 } else
1216 audit_log_format(ab, " key=(null)");
1217 audit_log_end(ab);
1219 for (aux = context->aux; aux; aux = aux->next) {
1221 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1222 if (!ab)
1223 continue; /* audit_panic has been called */
1225 switch (aux->type) {
1226 case AUDIT_MQ_OPEN: {
1227 struct audit_aux_data_mq_open *axi = (void *)aux;
1228 audit_log_format(ab,
1229 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1230 "mq_msgsize=%ld mq_curmsgs=%ld",
1231 axi->oflag, axi->mode, axi->attr.mq_flags,
1232 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1233 axi->attr.mq_curmsgs);
1234 break; }
1236 case AUDIT_MQ_SENDRECV: {
1237 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1238 audit_log_format(ab,
1239 "mqdes=%d msg_len=%zd msg_prio=%u "
1240 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1241 axi->mqdes, axi->msg_len, axi->msg_prio,
1242 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1243 break; }
1245 case AUDIT_MQ_NOTIFY: {
1246 struct audit_aux_data_mq_notify *axi = (void *)aux;
1247 audit_log_format(ab,
1248 "mqdes=%d sigev_signo=%d",
1249 axi->mqdes,
1250 axi->notification.sigev_signo);
1251 break; }
1253 case AUDIT_MQ_GETSETATTR: {
1254 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1255 audit_log_format(ab,
1256 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1257 "mq_curmsgs=%ld ",
1258 axi->mqdes,
1259 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1260 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1261 break; }
1263 case AUDIT_IPC: {
1264 struct audit_aux_data_ipcctl *axi = (void *)aux;
1265 audit_log_format(ab,
1266 "ouid=%u ogid=%u mode=%#o",
1267 axi->uid, axi->gid, axi->mode);
1268 if (axi->osid != 0) {
1269 char *ctx = NULL;
1270 u32 len;
1271 if (security_secid_to_secctx(
1272 axi->osid, &ctx, &len)) {
1273 audit_log_format(ab, " osid=%u",
1274 axi->osid);
1275 call_panic = 1;
1276 } else {
1277 audit_log_format(ab, " obj=%s", ctx);
1278 security_release_secctx(ctx, len);
1281 break; }
1283 case AUDIT_IPC_SET_PERM: {
1284 struct audit_aux_data_ipcctl *axi = (void *)aux;
1285 audit_log_format(ab,
1286 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1287 axi->qbytes, axi->uid, axi->gid, axi->mode);
1288 break; }
1290 case AUDIT_EXECVE: {
1291 struct audit_aux_data_execve *axi = (void *)aux;
1292 audit_log_execve_info(context, &ab, axi);
1293 break; }
1295 case AUDIT_SOCKETCALL: {
1296 struct audit_aux_data_socketcall *axs = (void *)aux;
1297 audit_log_format(ab, "nargs=%d", axs->nargs);
1298 for (i=0; i<axs->nargs; i++)
1299 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1300 break; }
1302 case AUDIT_SOCKADDR: {
1303 struct audit_aux_data_sockaddr *axs = (void *)aux;
1305 audit_log_format(ab, "saddr=");
1306 audit_log_n_hex(ab, axs->a, axs->len);
1307 break; }
1309 case AUDIT_FD_PAIR: {
1310 struct audit_aux_data_fd_pair *axs = (void *)aux;
1311 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1312 break; }
1315 audit_log_end(ab);
1318 for (aux = context->aux_pids; aux; aux = aux->next) {
1319 struct audit_aux_data_pids *axs = (void *)aux;
1321 for (i = 0; i < axs->pid_count; i++)
1322 if (audit_log_pid_context(context, axs->target_pid[i],
1323 axs->target_auid[i],
1324 axs->target_uid[i],
1325 axs->target_sessionid[i],
1326 axs->target_sid[i],
1327 axs->target_comm[i]))
1328 call_panic = 1;
1331 if (context->target_pid &&
1332 audit_log_pid_context(context, context->target_pid,
1333 context->target_auid, context->target_uid,
1334 context->target_sessionid,
1335 context->target_sid, context->target_comm))
1336 call_panic = 1;
1338 if (context->pwd.dentry && context->pwd.mnt) {
1339 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1340 if (ab) {
1341 audit_log_d_path(ab, "cwd=", &context->pwd);
1342 audit_log_end(ab);
1345 for (i = 0; i < context->name_count; i++) {
1346 struct audit_names *n = &context->names[i];
1348 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1349 if (!ab)
1350 continue; /* audit_panic has been called */
1352 audit_log_format(ab, "item=%d", i);
1354 if (n->name) {
1355 switch(n->name_len) {
1356 case AUDIT_NAME_FULL:
1357 /* log the full path */
1358 audit_log_format(ab, " name=");
1359 audit_log_untrustedstring(ab, n->name);
1360 break;
1361 case 0:
1362 /* name was specified as a relative path and the
1363 * directory component is the cwd */
1364 audit_log_d_path(ab, " name=", &context->pwd);
1365 break;
1366 default:
1367 /* log the name's directory component */
1368 audit_log_format(ab, " name=");
1369 audit_log_n_untrustedstring(ab, n->name,
1370 n->name_len);
1372 } else
1373 audit_log_format(ab, " name=(null)");
1375 if (n->ino != (unsigned long)-1) {
1376 audit_log_format(ab, " inode=%lu"
1377 " dev=%02x:%02x mode=%#o"
1378 " ouid=%u ogid=%u rdev=%02x:%02x",
1379 n->ino,
1380 MAJOR(n->dev),
1381 MINOR(n->dev),
1382 n->mode,
1383 n->uid,
1384 n->gid,
1385 MAJOR(n->rdev),
1386 MINOR(n->rdev));
1388 if (n->osid != 0) {
1389 char *ctx = NULL;
1390 u32 len;
1391 if (security_secid_to_secctx(
1392 n->osid, &ctx, &len)) {
1393 audit_log_format(ab, " osid=%u", n->osid);
1394 call_panic = 2;
1395 } else {
1396 audit_log_format(ab, " obj=%s", ctx);
1397 security_release_secctx(ctx, len);
1401 audit_log_end(ab);
1404 /* Send end of event record to help user space know we are finished */
1405 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1406 if (ab)
1407 audit_log_end(ab);
1408 if (call_panic)
1409 audit_panic("error converting sid to string");
1413 * audit_free - free a per-task audit context
1414 * @tsk: task whose audit context block to free
1416 * Called from copy_process and do_exit
1418 void audit_free(struct task_struct *tsk)
1420 struct audit_context *context;
1422 context = audit_get_context(tsk, 0, 0);
1423 if (likely(!context))
1424 return;
1426 /* Check for system calls that do not go through the exit
1427 * function (e.g., exit_group), then free context block.
1428 * We use GFP_ATOMIC here because we might be doing this
1429 * in the context of the idle thread */
1430 /* that can happen only if we are called from do_exit() */
1431 if (context->in_syscall && context->auditable)
1432 audit_log_exit(context, tsk);
1434 audit_free_context(context);
1438 * audit_syscall_entry - fill in an audit record at syscall entry
1439 * @tsk: task being audited
1440 * @arch: architecture type
1441 * @major: major syscall type (function)
1442 * @a1: additional syscall register 1
1443 * @a2: additional syscall register 2
1444 * @a3: additional syscall register 3
1445 * @a4: additional syscall register 4
1447 * Fill in audit context at syscall entry. This only happens if the
1448 * audit context was created when the task was created and the state or
1449 * filters demand the audit context be built. If the state from the
1450 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1451 * then the record will be written at syscall exit time (otherwise, it
1452 * will only be written if another part of the kernel requests that it
1453 * be written).
1455 void audit_syscall_entry(int arch, int major,
1456 unsigned long a1, unsigned long a2,
1457 unsigned long a3, unsigned long a4)
1459 struct task_struct *tsk = current;
1460 struct audit_context *context = tsk->audit_context;
1461 enum audit_state state;
1463 BUG_ON(!context);
1466 * This happens only on certain architectures that make system
1467 * calls in kernel_thread via the entry.S interface, instead of
1468 * with direct calls. (If you are porting to a new
1469 * architecture, hitting this condition can indicate that you
1470 * got the _exit/_leave calls backward in entry.S.)
1472 * i386 no
1473 * x86_64 no
1474 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1476 * This also happens with vm86 emulation in a non-nested manner
1477 * (entries without exits), so this case must be caught.
1479 if (context->in_syscall) {
1480 struct audit_context *newctx;
1482 #if AUDIT_DEBUG
1483 printk(KERN_ERR
1484 "audit(:%d) pid=%d in syscall=%d;"
1485 " entering syscall=%d\n",
1486 context->serial, tsk->pid, context->major, major);
1487 #endif
1488 newctx = audit_alloc_context(context->state);
1489 if (newctx) {
1490 newctx->previous = context;
1491 context = newctx;
1492 tsk->audit_context = newctx;
1493 } else {
1494 /* If we can't alloc a new context, the best we
1495 * can do is to leak memory (any pending putname
1496 * will be lost). The only other alternative is
1497 * to abandon auditing. */
1498 audit_zero_context(context, context->state);
1501 BUG_ON(context->in_syscall || context->name_count);
1503 if (!audit_enabled)
1504 return;
1506 context->arch = arch;
1507 context->major = major;
1508 context->argv[0] = a1;
1509 context->argv[1] = a2;
1510 context->argv[2] = a3;
1511 context->argv[3] = a4;
1513 state = context->state;
1514 context->dummy = !audit_n_rules;
1515 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1516 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1517 if (likely(state == AUDIT_DISABLED))
1518 return;
1520 context->serial = 0;
1521 context->ctime = CURRENT_TIME;
1522 context->in_syscall = 1;
1523 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1524 context->ppid = 0;
1528 * audit_syscall_exit - deallocate audit context after a system call
1529 * @tsk: task being audited
1530 * @valid: success/failure flag
1531 * @return_code: syscall return value
1533 * Tear down after system call. If the audit context has been marked as
1534 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1535 * filtering, or because some other part of the kernel write an audit
1536 * message), then write out the syscall information. In call cases,
1537 * free the names stored from getname().
1539 void audit_syscall_exit(int valid, long return_code)
1541 struct task_struct *tsk = current;
1542 struct audit_context *context;
1544 context = audit_get_context(tsk, valid, return_code);
1546 if (likely(!context))
1547 return;
1549 if (context->in_syscall && context->auditable)
1550 audit_log_exit(context, tsk);
1552 context->in_syscall = 0;
1553 context->auditable = 0;
1555 if (context->previous) {
1556 struct audit_context *new_context = context->previous;
1557 context->previous = NULL;
1558 audit_free_context(context);
1559 tsk->audit_context = new_context;
1560 } else {
1561 audit_free_names(context);
1562 unroll_tree_refs(context, NULL, 0);
1563 audit_free_aux(context);
1564 context->aux = NULL;
1565 context->aux_pids = NULL;
1566 context->target_pid = 0;
1567 context->target_sid = 0;
1568 kfree(context->filterkey);
1569 context->filterkey = NULL;
1570 tsk->audit_context = context;
1574 static inline void handle_one(const struct inode *inode)
1576 #ifdef CONFIG_AUDIT_TREE
1577 struct audit_context *context;
1578 struct audit_tree_refs *p;
1579 struct audit_chunk *chunk;
1580 int count;
1581 if (likely(list_empty(&inode->inotify_watches)))
1582 return;
1583 context = current->audit_context;
1584 p = context->trees;
1585 count = context->tree_count;
1586 rcu_read_lock();
1587 chunk = audit_tree_lookup(inode);
1588 rcu_read_unlock();
1589 if (!chunk)
1590 return;
1591 if (likely(put_tree_ref(context, chunk)))
1592 return;
1593 if (unlikely(!grow_tree_refs(context))) {
1594 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1595 audit_set_auditable(context);
1596 audit_put_chunk(chunk);
1597 unroll_tree_refs(context, p, count);
1598 return;
1600 put_tree_ref(context, chunk);
1601 #endif
1604 static void handle_path(const struct dentry *dentry)
1606 #ifdef CONFIG_AUDIT_TREE
1607 struct audit_context *context;
1608 struct audit_tree_refs *p;
1609 const struct dentry *d, *parent;
1610 struct audit_chunk *drop;
1611 unsigned long seq;
1612 int count;
1614 context = current->audit_context;
1615 p = context->trees;
1616 count = context->tree_count;
1617 retry:
1618 drop = NULL;
1619 d = dentry;
1620 rcu_read_lock();
1621 seq = read_seqbegin(&rename_lock);
1622 for(;;) {
1623 struct inode *inode = d->d_inode;
1624 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1625 struct audit_chunk *chunk;
1626 chunk = audit_tree_lookup(inode);
1627 if (chunk) {
1628 if (unlikely(!put_tree_ref(context, chunk))) {
1629 drop = chunk;
1630 break;
1634 parent = d->d_parent;
1635 if (parent == d)
1636 break;
1637 d = parent;
1639 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1640 rcu_read_unlock();
1641 if (!drop) {
1642 /* just a race with rename */
1643 unroll_tree_refs(context, p, count);
1644 goto retry;
1646 audit_put_chunk(drop);
1647 if (grow_tree_refs(context)) {
1648 /* OK, got more space */
1649 unroll_tree_refs(context, p, count);
1650 goto retry;
1652 /* too bad */
1653 printk(KERN_WARNING
1654 "out of memory, audit has lost a tree reference\n");
1655 unroll_tree_refs(context, p, count);
1656 audit_set_auditable(context);
1657 return;
1659 rcu_read_unlock();
1660 #endif
1664 * audit_getname - add a name to the list
1665 * @name: name to add
1667 * Add a name to the list of audit names for this context.
1668 * Called from fs/namei.c:getname().
1670 void __audit_getname(const char *name)
1672 struct audit_context *context = current->audit_context;
1674 if (IS_ERR(name) || !name)
1675 return;
1677 if (!context->in_syscall) {
1678 #if AUDIT_DEBUG == 2
1679 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1680 __FILE__, __LINE__, context->serial, name);
1681 dump_stack();
1682 #endif
1683 return;
1685 BUG_ON(context->name_count >= AUDIT_NAMES);
1686 context->names[context->name_count].name = name;
1687 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1688 context->names[context->name_count].name_put = 1;
1689 context->names[context->name_count].ino = (unsigned long)-1;
1690 context->names[context->name_count].osid = 0;
1691 ++context->name_count;
1692 if (!context->pwd.dentry) {
1693 read_lock(&current->fs->lock);
1694 context->pwd = current->fs->pwd;
1695 path_get(&current->fs->pwd);
1696 read_unlock(&current->fs->lock);
1701 /* audit_putname - intercept a putname request
1702 * @name: name to intercept and delay for putname
1704 * If we have stored the name from getname in the audit context,
1705 * then we delay the putname until syscall exit.
1706 * Called from include/linux/fs.h:putname().
1708 void audit_putname(const char *name)
1710 struct audit_context *context = current->audit_context;
1712 BUG_ON(!context);
1713 if (!context->in_syscall) {
1714 #if AUDIT_DEBUG == 2
1715 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1716 __FILE__, __LINE__, context->serial, name);
1717 if (context->name_count) {
1718 int i;
1719 for (i = 0; i < context->name_count; i++)
1720 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1721 context->names[i].name,
1722 context->names[i].name ?: "(null)");
1724 #endif
1725 __putname(name);
1727 #if AUDIT_DEBUG
1728 else {
1729 ++context->put_count;
1730 if (context->put_count > context->name_count) {
1731 printk(KERN_ERR "%s:%d(:%d): major=%d"
1732 " in_syscall=%d putname(%p) name_count=%d"
1733 " put_count=%d\n",
1734 __FILE__, __LINE__,
1735 context->serial, context->major,
1736 context->in_syscall, name, context->name_count,
1737 context->put_count);
1738 dump_stack();
1741 #endif
1744 static int audit_inc_name_count(struct audit_context *context,
1745 const struct inode *inode)
1747 if (context->name_count >= AUDIT_NAMES) {
1748 if (inode)
1749 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1750 "dev=%02x:%02x, inode=%lu\n",
1751 MAJOR(inode->i_sb->s_dev),
1752 MINOR(inode->i_sb->s_dev),
1753 inode->i_ino);
1755 else
1756 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1757 return 1;
1759 context->name_count++;
1760 #if AUDIT_DEBUG
1761 context->ino_count++;
1762 #endif
1763 return 0;
1766 /* Copy inode data into an audit_names. */
1767 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1769 name->ino = inode->i_ino;
1770 name->dev = inode->i_sb->s_dev;
1771 name->mode = inode->i_mode;
1772 name->uid = inode->i_uid;
1773 name->gid = inode->i_gid;
1774 name->rdev = inode->i_rdev;
1775 security_inode_getsecid(inode, &name->osid);
1779 * audit_inode - store the inode and device from a lookup
1780 * @name: name being audited
1781 * @dentry: dentry being audited
1783 * Called from fs/namei.c:path_lookup().
1785 void __audit_inode(const char *name, const struct dentry *dentry)
1787 int idx;
1788 struct audit_context *context = current->audit_context;
1789 const struct inode *inode = dentry->d_inode;
1791 if (!context->in_syscall)
1792 return;
1793 if (context->name_count
1794 && context->names[context->name_count-1].name
1795 && context->names[context->name_count-1].name == name)
1796 idx = context->name_count - 1;
1797 else if (context->name_count > 1
1798 && context->names[context->name_count-2].name
1799 && context->names[context->name_count-2].name == name)
1800 idx = context->name_count - 2;
1801 else {
1802 /* FIXME: how much do we care about inodes that have no
1803 * associated name? */
1804 if (audit_inc_name_count(context, inode))
1805 return;
1806 idx = context->name_count - 1;
1807 context->names[idx].name = NULL;
1809 handle_path(dentry);
1810 audit_copy_inode(&context->names[idx], inode);
1814 * audit_inode_child - collect inode info for created/removed objects
1815 * @dname: inode's dentry name
1816 * @dentry: dentry being audited
1817 * @parent: inode of dentry parent
1819 * For syscalls that create or remove filesystem objects, audit_inode
1820 * can only collect information for the filesystem object's parent.
1821 * This call updates the audit context with the child's information.
1822 * Syscalls that create a new filesystem object must be hooked after
1823 * the object is created. Syscalls that remove a filesystem object
1824 * must be hooked prior, in order to capture the target inode during
1825 * unsuccessful attempts.
1827 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1828 const struct inode *parent)
1830 int idx;
1831 struct audit_context *context = current->audit_context;
1832 const char *found_parent = NULL, *found_child = NULL;
1833 const struct inode *inode = dentry->d_inode;
1834 int dirlen = 0;
1836 if (!context->in_syscall)
1837 return;
1839 if (inode)
1840 handle_one(inode);
1841 /* determine matching parent */
1842 if (!dname)
1843 goto add_names;
1845 /* parent is more likely, look for it first */
1846 for (idx = 0; idx < context->name_count; idx++) {
1847 struct audit_names *n = &context->names[idx];
1849 if (!n->name)
1850 continue;
1852 if (n->ino == parent->i_ino &&
1853 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1854 n->name_len = dirlen; /* update parent data in place */
1855 found_parent = n->name;
1856 goto add_names;
1860 /* no matching parent, look for matching child */
1861 for (idx = 0; idx < context->name_count; idx++) {
1862 struct audit_names *n = &context->names[idx];
1864 if (!n->name)
1865 continue;
1867 /* strcmp() is the more likely scenario */
1868 if (!strcmp(dname, n->name) ||
1869 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1870 if (inode)
1871 audit_copy_inode(n, inode);
1872 else
1873 n->ino = (unsigned long)-1;
1874 found_child = n->name;
1875 goto add_names;
1879 add_names:
1880 if (!found_parent) {
1881 if (audit_inc_name_count(context, parent))
1882 return;
1883 idx = context->name_count - 1;
1884 context->names[idx].name = NULL;
1885 audit_copy_inode(&context->names[idx], parent);
1888 if (!found_child) {
1889 if (audit_inc_name_count(context, inode))
1890 return;
1891 idx = context->name_count - 1;
1893 /* Re-use the name belonging to the slot for a matching parent
1894 * directory. All names for this context are relinquished in
1895 * audit_free_names() */
1896 if (found_parent) {
1897 context->names[idx].name = found_parent;
1898 context->names[idx].name_len = AUDIT_NAME_FULL;
1899 /* don't call __putname() */
1900 context->names[idx].name_put = 0;
1901 } else {
1902 context->names[idx].name = NULL;
1905 if (inode)
1906 audit_copy_inode(&context->names[idx], inode);
1907 else
1908 context->names[idx].ino = (unsigned long)-1;
1911 EXPORT_SYMBOL_GPL(__audit_inode_child);
1914 * auditsc_get_stamp - get local copies of audit_context values
1915 * @ctx: audit_context for the task
1916 * @t: timespec to store time recorded in the audit_context
1917 * @serial: serial value that is recorded in the audit_context
1919 * Also sets the context as auditable.
1921 void auditsc_get_stamp(struct audit_context *ctx,
1922 struct timespec *t, unsigned int *serial)
1924 if (!ctx->serial)
1925 ctx->serial = audit_serial();
1926 t->tv_sec = ctx->ctime.tv_sec;
1927 t->tv_nsec = ctx->ctime.tv_nsec;
1928 *serial = ctx->serial;
1929 ctx->auditable = 1;
1932 /* global counter which is incremented every time something logs in */
1933 static atomic_t session_id = ATOMIC_INIT(0);
1936 * audit_set_loginuid - set a task's audit_context loginuid
1937 * @task: task whose audit context is being modified
1938 * @loginuid: loginuid value
1940 * Returns 0.
1942 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1944 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1946 unsigned int sessionid = atomic_inc_return(&session_id);
1947 struct audit_context *context = task->audit_context;
1949 if (context && context->in_syscall) {
1950 struct audit_buffer *ab;
1952 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1953 if (ab) {
1954 audit_log_format(ab, "login pid=%d uid=%u "
1955 "old auid=%u new auid=%u"
1956 " old ses=%u new ses=%u",
1957 task->pid, task->uid,
1958 task->loginuid, loginuid,
1959 task->sessionid, sessionid);
1960 audit_log_end(ab);
1963 task->sessionid = sessionid;
1964 task->loginuid = loginuid;
1965 return 0;
1969 * __audit_mq_open - record audit data for a POSIX MQ open
1970 * @oflag: open flag
1971 * @mode: mode bits
1972 * @u_attr: queue attributes
1974 * Returns 0 for success or NULL context or < 0 on error.
1976 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1978 struct audit_aux_data_mq_open *ax;
1979 struct audit_context *context = current->audit_context;
1981 if (!audit_enabled)
1982 return 0;
1984 if (likely(!context))
1985 return 0;
1987 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1988 if (!ax)
1989 return -ENOMEM;
1991 if (u_attr != NULL) {
1992 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1993 kfree(ax);
1994 return -EFAULT;
1996 } else
1997 memset(&ax->attr, 0, sizeof(ax->attr));
1999 ax->oflag = oflag;
2000 ax->mode = mode;
2002 ax->d.type = AUDIT_MQ_OPEN;
2003 ax->d.next = context->aux;
2004 context->aux = (void *)ax;
2005 return 0;
2009 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2010 * @mqdes: MQ descriptor
2011 * @msg_len: Message length
2012 * @msg_prio: Message priority
2013 * @u_abs_timeout: Message timeout in absolute time
2015 * Returns 0 for success or NULL context or < 0 on error.
2017 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2018 const struct timespec __user *u_abs_timeout)
2020 struct audit_aux_data_mq_sendrecv *ax;
2021 struct audit_context *context = current->audit_context;
2023 if (!audit_enabled)
2024 return 0;
2026 if (likely(!context))
2027 return 0;
2029 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2030 if (!ax)
2031 return -ENOMEM;
2033 if (u_abs_timeout != NULL) {
2034 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2035 kfree(ax);
2036 return -EFAULT;
2038 } else
2039 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2041 ax->mqdes = mqdes;
2042 ax->msg_len = msg_len;
2043 ax->msg_prio = msg_prio;
2045 ax->d.type = AUDIT_MQ_SENDRECV;
2046 ax->d.next = context->aux;
2047 context->aux = (void *)ax;
2048 return 0;
2052 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2053 * @mqdes: MQ descriptor
2054 * @msg_len: Message length
2055 * @u_msg_prio: Message priority
2056 * @u_abs_timeout: Message timeout in absolute time
2058 * Returns 0 for success or NULL context or < 0 on error.
2060 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2061 unsigned int __user *u_msg_prio,
2062 const struct timespec __user *u_abs_timeout)
2064 struct audit_aux_data_mq_sendrecv *ax;
2065 struct audit_context *context = current->audit_context;
2067 if (!audit_enabled)
2068 return 0;
2070 if (likely(!context))
2071 return 0;
2073 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2074 if (!ax)
2075 return -ENOMEM;
2077 if (u_msg_prio != NULL) {
2078 if (get_user(ax->msg_prio, u_msg_prio)) {
2079 kfree(ax);
2080 return -EFAULT;
2082 } else
2083 ax->msg_prio = 0;
2085 if (u_abs_timeout != NULL) {
2086 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2087 kfree(ax);
2088 return -EFAULT;
2090 } else
2091 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2093 ax->mqdes = mqdes;
2094 ax->msg_len = msg_len;
2096 ax->d.type = AUDIT_MQ_SENDRECV;
2097 ax->d.next = context->aux;
2098 context->aux = (void *)ax;
2099 return 0;
2103 * __audit_mq_notify - record audit data for a POSIX MQ notify
2104 * @mqdes: MQ descriptor
2105 * @u_notification: Notification event
2107 * Returns 0 for success or NULL context or < 0 on error.
2110 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2112 struct audit_aux_data_mq_notify *ax;
2113 struct audit_context *context = current->audit_context;
2115 if (!audit_enabled)
2116 return 0;
2118 if (likely(!context))
2119 return 0;
2121 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2122 if (!ax)
2123 return -ENOMEM;
2125 if (u_notification != NULL) {
2126 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2127 kfree(ax);
2128 return -EFAULT;
2130 } else
2131 memset(&ax->notification, 0, sizeof(ax->notification));
2133 ax->mqdes = mqdes;
2135 ax->d.type = AUDIT_MQ_NOTIFY;
2136 ax->d.next = context->aux;
2137 context->aux = (void *)ax;
2138 return 0;
2142 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2143 * @mqdes: MQ descriptor
2144 * @mqstat: MQ flags
2146 * Returns 0 for success or NULL context or < 0 on error.
2148 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2150 struct audit_aux_data_mq_getsetattr *ax;
2151 struct audit_context *context = current->audit_context;
2153 if (!audit_enabled)
2154 return 0;
2156 if (likely(!context))
2157 return 0;
2159 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2160 if (!ax)
2161 return -ENOMEM;
2163 ax->mqdes = mqdes;
2164 ax->mqstat = *mqstat;
2166 ax->d.type = AUDIT_MQ_GETSETATTR;
2167 ax->d.next = context->aux;
2168 context->aux = (void *)ax;
2169 return 0;
2173 * audit_ipc_obj - record audit data for ipc object
2174 * @ipcp: ipc permissions
2176 * Returns 0 for success or NULL context or < 0 on error.
2178 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2180 struct audit_aux_data_ipcctl *ax;
2181 struct audit_context *context = current->audit_context;
2183 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2184 if (!ax)
2185 return -ENOMEM;
2187 ax->uid = ipcp->uid;
2188 ax->gid = ipcp->gid;
2189 ax->mode = ipcp->mode;
2190 security_ipc_getsecid(ipcp, &ax->osid);
2191 ax->d.type = AUDIT_IPC;
2192 ax->d.next = context->aux;
2193 context->aux = (void *)ax;
2194 return 0;
2198 * audit_ipc_set_perm - record audit data for new ipc permissions
2199 * @qbytes: msgq bytes
2200 * @uid: msgq user id
2201 * @gid: msgq group id
2202 * @mode: msgq mode (permissions)
2204 * Returns 0 for success or NULL context or < 0 on error.
2206 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2208 struct audit_aux_data_ipcctl *ax;
2209 struct audit_context *context = current->audit_context;
2211 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2212 if (!ax)
2213 return -ENOMEM;
2215 ax->qbytes = qbytes;
2216 ax->uid = uid;
2217 ax->gid = gid;
2218 ax->mode = mode;
2220 ax->d.type = AUDIT_IPC_SET_PERM;
2221 ax->d.next = context->aux;
2222 context->aux = (void *)ax;
2223 return 0;
2226 int audit_bprm(struct linux_binprm *bprm)
2228 struct audit_aux_data_execve *ax;
2229 struct audit_context *context = current->audit_context;
2231 if (likely(!audit_enabled || !context || context->dummy))
2232 return 0;
2234 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2235 if (!ax)
2236 return -ENOMEM;
2238 ax->argc = bprm->argc;
2239 ax->envc = bprm->envc;
2240 ax->mm = bprm->mm;
2241 ax->d.type = AUDIT_EXECVE;
2242 ax->d.next = context->aux;
2243 context->aux = (void *)ax;
2244 return 0;
2249 * audit_socketcall - record audit data for sys_socketcall
2250 * @nargs: number of args
2251 * @args: args array
2253 * Returns 0 for success or NULL context or < 0 on error.
2255 int audit_socketcall(int nargs, unsigned long *args)
2257 struct audit_aux_data_socketcall *ax;
2258 struct audit_context *context = current->audit_context;
2260 if (likely(!context || context->dummy))
2261 return 0;
2263 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2264 if (!ax)
2265 return -ENOMEM;
2267 ax->nargs = nargs;
2268 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2270 ax->d.type = AUDIT_SOCKETCALL;
2271 ax->d.next = context->aux;
2272 context->aux = (void *)ax;
2273 return 0;
2277 * __audit_fd_pair - record audit data for pipe and socketpair
2278 * @fd1: the first file descriptor
2279 * @fd2: the second file descriptor
2281 * Returns 0 for success or NULL context or < 0 on error.
2283 int __audit_fd_pair(int fd1, int fd2)
2285 struct audit_context *context = current->audit_context;
2286 struct audit_aux_data_fd_pair *ax;
2288 if (likely(!context)) {
2289 return 0;
2292 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2293 if (!ax) {
2294 return -ENOMEM;
2297 ax->fd[0] = fd1;
2298 ax->fd[1] = fd2;
2300 ax->d.type = AUDIT_FD_PAIR;
2301 ax->d.next = context->aux;
2302 context->aux = (void *)ax;
2303 return 0;
2307 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2308 * @len: data length in user space
2309 * @a: data address in kernel space
2311 * Returns 0 for success or NULL context or < 0 on error.
2313 int audit_sockaddr(int len, void *a)
2315 struct audit_aux_data_sockaddr *ax;
2316 struct audit_context *context = current->audit_context;
2318 if (likely(!context || context->dummy))
2319 return 0;
2321 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2322 if (!ax)
2323 return -ENOMEM;
2325 ax->len = len;
2326 memcpy(ax->a, a, len);
2328 ax->d.type = AUDIT_SOCKADDR;
2329 ax->d.next = context->aux;
2330 context->aux = (void *)ax;
2331 return 0;
2334 void __audit_ptrace(struct task_struct *t)
2336 struct audit_context *context = current->audit_context;
2338 context->target_pid = t->pid;
2339 context->target_auid = audit_get_loginuid(t);
2340 context->target_uid = t->uid;
2341 context->target_sessionid = audit_get_sessionid(t);
2342 security_task_getsecid(t, &context->target_sid);
2343 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2347 * audit_signal_info - record signal info for shutting down audit subsystem
2348 * @sig: signal value
2349 * @t: task being signaled
2351 * If the audit subsystem is being terminated, record the task (pid)
2352 * and uid that is doing that.
2354 int __audit_signal_info(int sig, struct task_struct *t)
2356 struct audit_aux_data_pids *axp;
2357 struct task_struct *tsk = current;
2358 struct audit_context *ctx = tsk->audit_context;
2360 if (audit_pid && t->tgid == audit_pid) {
2361 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2362 audit_sig_pid = tsk->pid;
2363 if (tsk->loginuid != -1)
2364 audit_sig_uid = tsk->loginuid;
2365 else
2366 audit_sig_uid = tsk->uid;
2367 security_task_getsecid(tsk, &audit_sig_sid);
2369 if (!audit_signals || audit_dummy_context())
2370 return 0;
2373 /* optimize the common case by putting first signal recipient directly
2374 * in audit_context */
2375 if (!ctx->target_pid) {
2376 ctx->target_pid = t->tgid;
2377 ctx->target_auid = audit_get_loginuid(t);
2378 ctx->target_uid = t->uid;
2379 ctx->target_sessionid = audit_get_sessionid(t);
2380 security_task_getsecid(t, &ctx->target_sid);
2381 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2382 return 0;
2385 axp = (void *)ctx->aux_pids;
2386 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2387 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2388 if (!axp)
2389 return -ENOMEM;
2391 axp->d.type = AUDIT_OBJ_PID;
2392 axp->d.next = ctx->aux_pids;
2393 ctx->aux_pids = (void *)axp;
2395 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2397 axp->target_pid[axp->pid_count] = t->tgid;
2398 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2399 axp->target_uid[axp->pid_count] = t->uid;
2400 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2401 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2402 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2403 axp->pid_count++;
2405 return 0;
2409 * audit_core_dumps - record information about processes that end abnormally
2410 * @signr: signal value
2412 * If a process ends with a core dump, something fishy is going on and we
2413 * should record the event for investigation.
2415 void audit_core_dumps(long signr)
2417 struct audit_buffer *ab;
2418 u32 sid;
2419 uid_t auid = audit_get_loginuid(current);
2420 unsigned int sessionid = audit_get_sessionid(current);
2422 if (!audit_enabled)
2423 return;
2425 if (signr == SIGQUIT) /* don't care for those */
2426 return;
2428 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2429 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2430 auid, current->uid, current->gid, sessionid);
2431 security_task_getsecid(current, &sid);
2432 if (sid) {
2433 char *ctx = NULL;
2434 u32 len;
2436 if (security_secid_to_secctx(sid, &ctx, &len))
2437 audit_log_format(ab, " ssid=%u", sid);
2438 else {
2439 audit_log_format(ab, " subj=%s", ctx);
2440 security_release_secctx(ctx, len);
2443 audit_log_format(ab, " pid=%d comm=", current->pid);
2444 audit_log_untrustedstring(ab, current->comm);
2445 audit_log_format(ab, " sig=%ld", signr);
2446 audit_log_end(ab);