[ALSA] opl4 - Move EXPORT_SYMBOL() to adjacent to each function
[linux-2.6/linux-loongson.git] / include / asm-i386 / system.h
blob0249f912a29c2d42ebee12883be318dd627c79a1
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <linux/bitops.h> /* for LOCK_PREFIX */
9 #ifdef __KERNEL__
11 struct task_struct; /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
14 #define switch_to(prev,next,last) do { \
15 unsigned long esi,edi; \
16 asm volatile("pushl %%ebp\n\t" \
17 "movl %%esp,%0\n\t" /* save ESP */ \
18 "movl %5,%%esp\n\t" /* restore ESP */ \
19 "movl $1f,%1\n\t" /* save EIP */ \
20 "pushl %6\n\t" /* restore EIP */ \
21 "jmp __switch_to\n" \
22 "1:\t" \
23 "popl %%ebp\n\t" \
24 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
25 "=a" (last),"=S" (esi),"=D" (edi) \
26 :"m" (next->thread.esp),"m" (next->thread.eip), \
27 "2" (prev), "d" (next)); \
28 } while (0)
30 #define _set_base(addr,base) do { unsigned long __pr; \
31 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
32 "rorl $16,%%edx\n\t" \
33 "movb %%dl,%2\n\t" \
34 "movb %%dh,%3" \
35 :"=&d" (__pr) \
36 :"m" (*((addr)+2)), \
37 "m" (*((addr)+4)), \
38 "m" (*((addr)+7)), \
39 "0" (base) \
40 ); } while(0)
42 #define _set_limit(addr,limit) do { unsigned long __lr; \
43 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
44 "rorl $16,%%edx\n\t" \
45 "movb %2,%%dh\n\t" \
46 "andb $0xf0,%%dh\n\t" \
47 "orb %%dh,%%dl\n\t" \
48 "movb %%dl,%2" \
49 :"=&d" (__lr) \
50 :"m" (*(addr)), \
51 "m" (*((addr)+6)), \
52 "0" (limit) \
53 ); } while(0)
55 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
56 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
59 * Load a segment. Fall back on loading the zero
60 * segment if something goes wrong..
62 #define loadsegment(seg,value) \
63 asm volatile("\n" \
64 "1:\t" \
65 "mov %0,%%" #seg "\n" \
66 "2:\n" \
67 ".section .fixup,\"ax\"\n" \
68 "3:\t" \
69 "pushl $0\n\t" \
70 "popl %%" #seg "\n\t" \
71 "jmp 2b\n" \
72 ".previous\n" \
73 ".section __ex_table,\"a\"\n\t" \
74 ".align 4\n\t" \
75 ".long 1b,3b\n" \
76 ".previous" \
77 : :"rm" (value))
80 * Save a segment register away
82 #define savesegment(seg, value) \
83 asm volatile("mov %%" #seg ",%0":"=rm" (value))
86 * Clear and set 'TS' bit respectively
88 #define clts() __asm__ __volatile__ ("clts")
89 #define read_cr0() ({ \
90 unsigned int __dummy; \
91 __asm__ __volatile__( \
92 "movl %%cr0,%0\n\t" \
93 :"=r" (__dummy)); \
94 __dummy; \
96 #define write_cr0(x) \
97 __asm__ __volatile__("movl %0,%%cr0": :"r" (x));
99 #define read_cr2() ({ \
100 unsigned int __dummy; \
101 __asm__ __volatile__( \
102 "movl %%cr2,%0\n\t" \
103 :"=r" (__dummy)); \
104 __dummy; \
106 #define write_cr2(x) \
107 __asm__ __volatile__("movl %0,%%cr2": :"r" (x));
109 #define read_cr3() ({ \
110 unsigned int __dummy; \
111 __asm__ ( \
112 "movl %%cr3,%0\n\t" \
113 :"=r" (__dummy)); \
114 __dummy; \
116 #define write_cr3(x) \
117 __asm__ __volatile__("movl %0,%%cr3": :"r" (x));
119 #define read_cr4() ({ \
120 unsigned int __dummy; \
121 __asm__( \
122 "movl %%cr4,%0\n\t" \
123 :"=r" (__dummy)); \
124 __dummy; \
127 #define read_cr4_safe() ({ \
128 unsigned int __dummy; \
129 /* This could fault if %cr4 does not exist */ \
130 __asm__("1: movl %%cr4, %0 \n" \
131 "2: \n" \
132 ".section __ex_table,\"a\" \n" \
133 ".long 1b,2b \n" \
134 ".previous \n" \
135 : "=r" (__dummy): "0" (0)); \
136 __dummy; \
139 #define write_cr4(x) \
140 __asm__ __volatile__("movl %0,%%cr4": :"r" (x));
141 #define stts() write_cr0(8 | read_cr0())
143 #endif /* __KERNEL__ */
145 #define wbinvd() \
146 __asm__ __volatile__ ("wbinvd": : :"memory");
148 static inline unsigned long get_limit(unsigned long segment)
150 unsigned long __limit;
151 __asm__("lsll %1,%0"
152 :"=r" (__limit):"r" (segment));
153 return __limit+1;
156 #define nop() __asm__ __volatile__ ("nop")
158 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
160 #define tas(ptr) (xchg((ptr),1))
162 struct __xchg_dummy { unsigned long a[100]; };
163 #define __xg(x) ((struct __xchg_dummy *)(x))
166 #ifdef CONFIG_X86_CMPXCHG64
169 * The semantics of XCHGCMP8B are a bit strange, this is why
170 * there is a loop and the loading of %%eax and %%edx has to
171 * be inside. This inlines well in most cases, the cached
172 * cost is around ~38 cycles. (in the future we might want
173 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
174 * might have an implicit FPU-save as a cost, so it's not
175 * clear which path to go.)
177 * cmpxchg8b must be used with the lock prefix here to allow
178 * the instruction to be executed atomically, see page 3-102
179 * of the instruction set reference 24319102.pdf. We need
180 * the reader side to see the coherent 64bit value.
182 static inline void __set_64bit (unsigned long long * ptr,
183 unsigned int low, unsigned int high)
185 __asm__ __volatile__ (
186 "\n1:\t"
187 "movl (%0), %%eax\n\t"
188 "movl 4(%0), %%edx\n\t"
189 "lock cmpxchg8b (%0)\n\t"
190 "jnz 1b"
191 : /* no outputs */
192 : "D"(ptr),
193 "b"(low),
194 "c"(high)
195 : "ax","dx","memory");
198 static inline void __set_64bit_constant (unsigned long long *ptr,
199 unsigned long long value)
201 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
203 #define ll_low(x) *(((unsigned int*)&(x))+0)
204 #define ll_high(x) *(((unsigned int*)&(x))+1)
206 static inline void __set_64bit_var (unsigned long long *ptr,
207 unsigned long long value)
209 __set_64bit(ptr,ll_low(value), ll_high(value));
212 #define set_64bit(ptr,value) \
213 (__builtin_constant_p(value) ? \
214 __set_64bit_constant(ptr, value) : \
215 __set_64bit_var(ptr, value) )
217 #define _set_64bit(ptr,value) \
218 (__builtin_constant_p(value) ? \
219 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
220 __set_64bit(ptr, ll_low(value), ll_high(value)) )
222 #endif
225 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
226 * Note 2: xchg has side effect, so that attribute volatile is necessary,
227 * but generally the primitive is invalid, *ptr is output argument. --ANK
229 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
231 switch (size) {
232 case 1:
233 __asm__ __volatile__("xchgb %b0,%1"
234 :"=q" (x)
235 :"m" (*__xg(ptr)), "0" (x)
236 :"memory");
237 break;
238 case 2:
239 __asm__ __volatile__("xchgw %w0,%1"
240 :"=r" (x)
241 :"m" (*__xg(ptr)), "0" (x)
242 :"memory");
243 break;
244 case 4:
245 __asm__ __volatile__("xchgl %0,%1"
246 :"=r" (x)
247 :"m" (*__xg(ptr)), "0" (x)
248 :"memory");
249 break;
251 return x;
255 * Atomic compare and exchange. Compare OLD with MEM, if identical,
256 * store NEW in MEM. Return the initial value in MEM. Success is
257 * indicated by comparing RETURN with OLD.
260 #ifdef CONFIG_X86_CMPXCHG
261 #define __HAVE_ARCH_CMPXCHG 1
262 #define cmpxchg(ptr,o,n)\
263 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
264 (unsigned long)(n),sizeof(*(ptr))))
265 #endif
267 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
268 unsigned long new, int size)
270 unsigned long prev;
271 switch (size) {
272 case 1:
273 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
274 : "=a"(prev)
275 : "q"(new), "m"(*__xg(ptr)), "0"(old)
276 : "memory");
277 return prev;
278 case 2:
279 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
280 : "=a"(prev)
281 : "r"(new), "m"(*__xg(ptr)), "0"(old)
282 : "memory");
283 return prev;
284 case 4:
285 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
286 : "=a"(prev)
287 : "r"(new), "m"(*__xg(ptr)), "0"(old)
288 : "memory");
289 return prev;
291 return old;
294 #ifndef CONFIG_X86_CMPXCHG
296 * Building a kernel capable running on 80386. It may be necessary to
297 * simulate the cmpxchg on the 80386 CPU. For that purpose we define
298 * a function for each of the sizes we support.
301 extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
302 extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
303 extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
305 static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
306 unsigned long new, int size)
308 switch (size) {
309 case 1:
310 return cmpxchg_386_u8(ptr, old, new);
311 case 2:
312 return cmpxchg_386_u16(ptr, old, new);
313 case 4:
314 return cmpxchg_386_u32(ptr, old, new);
316 return old;
319 #define cmpxchg(ptr,o,n) \
320 ({ \
321 __typeof__(*(ptr)) __ret; \
322 if (likely(boot_cpu_data.x86 > 3)) \
323 __ret = __cmpxchg((ptr), (unsigned long)(o), \
324 (unsigned long)(n), sizeof(*(ptr))); \
325 else \
326 __ret = cmpxchg_386((ptr), (unsigned long)(o), \
327 (unsigned long)(n), sizeof(*(ptr))); \
328 __ret; \
330 #endif
332 #ifdef CONFIG_X86_CMPXCHG64
334 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
335 unsigned long long new)
337 unsigned long long prev;
338 __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
339 : "=A"(prev)
340 : "b"((unsigned long)new),
341 "c"((unsigned long)(new >> 32)),
342 "m"(*__xg(ptr)),
343 "0"(old)
344 : "memory");
345 return prev;
348 #define cmpxchg64(ptr,o,n)\
349 ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
350 (unsigned long long)(n)))
352 #endif
355 * Force strict CPU ordering.
356 * And yes, this is required on UP too when we're talking
357 * to devices.
359 * For now, "wmb()" doesn't actually do anything, as all
360 * Intel CPU's follow what Intel calls a *Processor Order*,
361 * in which all writes are seen in the program order even
362 * outside the CPU.
364 * I expect future Intel CPU's to have a weaker ordering,
365 * but I'd also expect them to finally get their act together
366 * and add some real memory barriers if so.
368 * Some non intel clones support out of order store. wmb() ceases to be a
369 * nop for these.
374 * Actually only lfence would be needed for mb() because all stores done
375 * by the kernel should be already ordered. But keep a full barrier for now.
378 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
379 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
382 * read_barrier_depends - Flush all pending reads that subsequents reads
383 * depend on.
385 * No data-dependent reads from memory-like regions are ever reordered
386 * over this barrier. All reads preceding this primitive are guaranteed
387 * to access memory (but not necessarily other CPUs' caches) before any
388 * reads following this primitive that depend on the data return by
389 * any of the preceding reads. This primitive is much lighter weight than
390 * rmb() on most CPUs, and is never heavier weight than is
391 * rmb().
393 * These ordering constraints are respected by both the local CPU
394 * and the compiler.
396 * Ordering is not guaranteed by anything other than these primitives,
397 * not even by data dependencies. See the documentation for
398 * memory_barrier() for examples and URLs to more information.
400 * For example, the following code would force ordering (the initial
401 * value of "a" is zero, "b" is one, and "p" is "&a"):
403 * <programlisting>
404 * CPU 0 CPU 1
406 * b = 2;
407 * memory_barrier();
408 * p = &b; q = p;
409 * read_barrier_depends();
410 * d = *q;
411 * </programlisting>
413 * because the read of "*q" depends on the read of "p" and these
414 * two reads are separated by a read_barrier_depends(). However,
415 * the following code, with the same initial values for "a" and "b":
417 * <programlisting>
418 * CPU 0 CPU 1
420 * a = 2;
421 * memory_barrier();
422 * b = 3; y = b;
423 * read_barrier_depends();
424 * x = a;
425 * </programlisting>
427 * does not enforce ordering, since there is no data dependency between
428 * the read of "a" and the read of "b". Therefore, on some CPUs, such
429 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
430 * in cases like thiswhere there are no data dependencies.
433 #define read_barrier_depends() do { } while(0)
435 #ifdef CONFIG_X86_OOSTORE
436 /* Actually there are no OOO store capable CPUs for now that do SSE,
437 but make it already an possibility. */
438 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
439 #else
440 #define wmb() __asm__ __volatile__ ("": : :"memory")
441 #endif
443 #ifdef CONFIG_SMP
444 #define smp_mb() mb()
445 #define smp_rmb() rmb()
446 #define smp_wmb() wmb()
447 #define smp_read_barrier_depends() read_barrier_depends()
448 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
449 #else
450 #define smp_mb() barrier()
451 #define smp_rmb() barrier()
452 #define smp_wmb() barrier()
453 #define smp_read_barrier_depends() do { } while(0)
454 #define set_mb(var, value) do { var = value; barrier(); } while (0)
455 #endif
457 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
459 /* interrupt control.. */
460 #define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
461 #define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
462 #define local_irq_disable() __asm__ __volatile__("cli": : :"memory")
463 #define local_irq_enable() __asm__ __volatile__("sti": : :"memory")
464 /* used in the idle loop; sti takes one instruction cycle to complete */
465 #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
466 /* used when interrupts are already enabled or to shutdown the processor */
467 #define halt() __asm__ __volatile__("hlt": : :"memory")
469 #define irqs_disabled() \
470 ({ \
471 unsigned long flags; \
472 local_save_flags(flags); \
473 !(flags & (1<<9)); \
476 /* For spinlocks etc */
477 #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
480 * disable hlt during certain critical i/o operations
482 #define HAVE_DISABLE_HLT
483 void disable_hlt(void);
484 void enable_hlt(void);
486 extern int es7000_plat;
487 void cpu_idle_wait(void);
490 * On SMP systems, when the scheduler does migration-cost autodetection,
491 * it needs a way to flush as much of the CPU's caches as possible:
493 static inline void sched_cacheflush(void)
495 wbinvd();
498 extern unsigned long arch_align_stack(unsigned long sp);
499 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
501 void default_idle(void);
503 #endif