MIPS: Loongson 2 needs no hazard barriers.
[linux-2.6/linux-loongson.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.h
blob9ebc8706b6bfc7b70fcdd884a5328130d53e65d4
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
18 * Other major contributions:
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *-----------------------------------------------------------------------------
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/gfp.h>
42 #ifndef SYM_HIPD_H
43 #define SYM_HIPD_H
46 * Generic driver options.
48 * They may be defined in platform specific headers, if they
49 * are useful.
51 * SYM_OPT_HANDLE_DEVICE_QUEUEING
52 * When this option is set, the driver will use a queue per
53 * device and handle QUEUE FULL status requeuing internally.
55 * SYM_OPT_LIMIT_COMMAND_REORDERING
56 * When this option is set, the driver tries to limit tagged
57 * command reordering to some reasonnable value.
58 * (set for Linux)
60 #if 0
61 #define SYM_OPT_HANDLE_DEVICE_QUEUEING
62 #define SYM_OPT_LIMIT_COMMAND_REORDERING
63 #endif
66 * Active debugging tags and verbosity.
67 * Both DEBUG_FLAGS and sym_verbose can be redefined
68 * by the platform specific code to something else.
70 #define DEBUG_ALLOC (0x0001)
71 #define DEBUG_PHASE (0x0002)
72 #define DEBUG_POLL (0x0004)
73 #define DEBUG_QUEUE (0x0008)
74 #define DEBUG_RESULT (0x0010)
75 #define DEBUG_SCATTER (0x0020)
76 #define DEBUG_SCRIPT (0x0040)
77 #define DEBUG_TINY (0x0080)
78 #define DEBUG_TIMING (0x0100)
79 #define DEBUG_NEGO (0x0200)
80 #define DEBUG_TAGS (0x0400)
81 #define DEBUG_POINTER (0x0800)
83 #ifndef DEBUG_FLAGS
84 #define DEBUG_FLAGS (0x0000)
85 #endif
87 #ifndef sym_verbose
88 #define sym_verbose (np->verbose)
89 #endif
92 * These ones should have been already defined.
94 #ifndef assert
95 #define assert(expression) { \
96 if (!(expression)) { \
97 (void)panic( \
98 "assertion \"%s\" failed: file \"%s\", line %d\n", \
99 #expression, \
100 __FILE__, __LINE__); \
103 #endif
106 * Number of tasks per device we want to handle.
108 #if SYM_CONF_MAX_TAG_ORDER > 8
109 #error "more than 256 tags per logical unit not allowed."
110 #endif
111 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
114 * Donnot use more tasks that we can handle.
116 #ifndef SYM_CONF_MAX_TAG
117 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
118 #endif
119 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
120 #undef SYM_CONF_MAX_TAG
121 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
122 #endif
125 * This one means 'NO TAG for this job'
127 #define NO_TAG (256)
130 * Number of SCSI targets.
132 #if SYM_CONF_MAX_TARGET > 16
133 #error "more than 16 targets not allowed."
134 #endif
137 * Number of logical units per target.
139 #if SYM_CONF_MAX_LUN > 64
140 #error "more than 64 logical units per target not allowed."
141 #endif
144 * Asynchronous pre-scaler (ns). Shall be 40 for
145 * the SCSI timings to be compliant.
147 #define SYM_CONF_MIN_ASYNC (40)
151 * MEMORY ALLOCATOR.
154 #define SYM_MEM_WARN 1 /* Warn on failed operations */
156 #define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
157 #define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
158 #define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
160 * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
161 * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
162 * (1 PAGE at a time is just fine).
164 #define SYM_MEM_SHIFT 4
165 #define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
166 #define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
169 * Number of entries in the START and DONE queues.
171 * We limit to 1 PAGE in order to succeed allocation of
172 * these queues. Each entry is 8 bytes long (2 DWORDS).
174 #ifdef SYM_CONF_MAX_START
175 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
176 #else
177 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
178 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
179 #endif
181 #if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
182 #undef SYM_CONF_MAX_QUEUE
183 #define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
184 #undef SYM_CONF_MAX_START
185 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
186 #endif
189 * For this one, we want a short name :-)
191 #define MAX_QUEUE SYM_CONF_MAX_QUEUE
194 * Common definitions for both bus space based and legacy IO methods.
197 #define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
198 #define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
199 #define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
201 #define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
202 #define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
203 #define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
205 #define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
206 #define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
207 #define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
209 #define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
210 #define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
211 #define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
213 #define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
214 #define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
215 #define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
216 #define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
217 #define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
218 #define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
221 * We normally want the chip to have a consistent view
222 * of driver internal data structures when we restart it.
223 * Thus these macros.
225 #define OUTL_DSP(np, v) \
226 do { \
227 MEMORY_WRITE_BARRIER(); \
228 OUTL(np, nc_dsp, (v)); \
229 } while (0)
231 #define OUTONB_STD() \
232 do { \
233 MEMORY_WRITE_BARRIER(); \
234 OUTONB(np, nc_dcntl, (STD|NOCOM)); \
235 } while (0)
238 * Command control block states.
240 #define HS_IDLE (0)
241 #define HS_BUSY (1)
242 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
243 #define HS_DISCONNECT (3) /* Disconnected by target */
244 #define HS_WAIT (4) /* waiting for resource */
246 #define HS_DONEMASK (0x80)
247 #define HS_COMPLETE (4|HS_DONEMASK)
248 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
249 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
250 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
253 * Software Interrupt Codes
255 #define SIR_BAD_SCSI_STATUS (1)
256 #define SIR_SEL_ATN_NO_MSG_OUT (2)
257 #define SIR_MSG_RECEIVED (3)
258 #define SIR_MSG_WEIRD (4)
259 #define SIR_NEGO_FAILED (5)
260 #define SIR_NEGO_PROTO (6)
261 #define SIR_SCRIPT_STOPPED (7)
262 #define SIR_REJECT_TO_SEND (8)
263 #define SIR_SWIDE_OVERRUN (9)
264 #define SIR_SODL_UNDERRUN (10)
265 #define SIR_RESEL_NO_MSG_IN (11)
266 #define SIR_RESEL_NO_IDENTIFY (12)
267 #define SIR_RESEL_BAD_LUN (13)
268 #define SIR_TARGET_SELECTED (14)
269 #define SIR_RESEL_BAD_I_T_L (15)
270 #define SIR_RESEL_BAD_I_T_L_Q (16)
271 #define SIR_ABORT_SENT (17)
272 #define SIR_RESEL_ABORTED (18)
273 #define SIR_MSG_OUT_DONE (19)
274 #define SIR_COMPLETE_ERROR (20)
275 #define SIR_DATA_OVERRUN (21)
276 #define SIR_BAD_PHASE (22)
277 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
278 #define SIR_DMAP_DIRTY (23)
279 #define SIR_MAX (23)
280 #else
281 #define SIR_MAX (22)
282 #endif
285 * Extended error bit codes.
286 * xerr_status field of struct sym_ccb.
288 #define XE_EXTRA_DATA (1) /* unexpected data phase */
289 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
290 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
291 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
292 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
295 * Negotiation status.
296 * nego_status field of struct sym_ccb.
298 #define NS_SYNC (1)
299 #define NS_WIDE (2)
300 #define NS_PPR (3)
303 * A CCB hashed table is used to retrieve CCB address
304 * from DSA value.
306 #define CCB_HASH_SHIFT 8
307 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
308 #define CCB_HASH_MASK (CCB_HASH_SIZE-1)
309 #if 1
310 #define CCB_HASH_CODE(dsa) \
311 (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
312 #else
313 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
314 #endif
316 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
318 * We may want to use segment registers for 64 bit DMA.
319 * 16 segments registers -> up to 64 GB addressable.
321 #define SYM_DMAP_SHIFT (4)
322 #define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
323 #define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
324 #endif
327 * Device flags.
329 #define SYM_DISC_ENABLED (1)
330 #define SYM_TAGS_ENABLED (1<<1)
331 #define SYM_SCAN_BOOT_DISABLED (1<<2)
332 #define SYM_SCAN_LUNS_DISABLED (1<<3)
335 * Host adapter miscellaneous flags.
337 #define SYM_AVOID_BUS_RESET (1)
340 * Misc.
342 #define SYM_SNOOP_TIMEOUT (10000000)
343 #define BUS_8_BIT 0
344 #define BUS_16_BIT 1
347 * Gather negotiable parameters value
349 struct sym_trans {
350 u8 period;
351 u8 offset;
352 unsigned int width:1;
353 unsigned int iu:1;
354 unsigned int dt:1;
355 unsigned int qas:1;
356 unsigned int check_nego:1;
357 unsigned int renego:2;
361 * Global TCB HEADER.
363 * Due to lack of indirect addressing on earlier NCR chips,
364 * this substructure is copied from the TCB to a global
365 * address after selection.
366 * For SYMBIOS chips that support LOAD/STORE this copy is
367 * not needed and thus not performed.
369 struct sym_tcbh {
371 * Scripts bus addresses of LUN table accessed from scripts.
372 * LUN #0 is a special case, since multi-lun devices are rare,
373 * and we we want to speed-up the general case and not waste
374 * resources.
376 u32 luntbl_sa; /* bus address of this table */
377 u32 lun0_sa; /* bus address of LCB #0 */
379 * Actual SYNC/WIDE IO registers value for this target.
380 * 'sval', 'wval' and 'uval' are read from SCRIPTS and
381 * so have alignment constraints.
383 /*0*/ u_char uval; /* -> SCNTL4 register */
384 /*1*/ u_char sval; /* -> SXFER io register */
385 /*2*/ u_char filler1;
386 /*3*/ u_char wval; /* -> SCNTL3 io register */
390 * Target Control Block
392 struct sym_tcb {
394 * TCB header.
395 * Assumed at offset 0.
397 /*0*/ struct sym_tcbh head;
400 * LUN table used by the SCRIPTS processor.
401 * An array of bus addresses is used on reselection.
403 u32 *luntbl; /* LCBs bus address table */
406 * LUN table used by the C code.
408 struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
409 #if SYM_CONF_MAX_LUN > 1
410 struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
411 #endif
413 #ifdef SYM_HAVE_STCB
415 * O/S specific data structure.
417 struct sym_stcb s;
418 #endif
420 /* Transfer goal */
421 struct sym_trans tgoal;
423 /* Last printed transfer speed */
424 struct sym_trans tprint;
427 * Keep track of the CCB used for the negotiation in order
428 * to ensure that only 1 negotiation is queued at a time.
430 struct sym_ccb * nego_cp; /* CCB used for the nego */
433 * Set when we want to reset the device.
435 u_char to_reset;
438 * Other user settable limits and options.
439 * These limits are read from the NVRAM if present.
441 unsigned char usrflags;
442 unsigned char usr_period;
443 unsigned char usr_width;
444 unsigned short usrtags;
445 struct scsi_target *starget;
449 * Global LCB HEADER.
451 * Due to lack of indirect addressing on earlier NCR chips,
452 * this substructure is copied from the LCB to a global
453 * address after selection.
454 * For SYMBIOS chips that support LOAD/STORE this copy is
455 * not needed and thus not performed.
457 struct sym_lcbh {
459 * SCRIPTS address jumped by SCRIPTS on reselection.
460 * For not probed logical units, this address points to
461 * SCRIPTS that deal with bad LU handling (must be at
462 * offset zero of the LCB for that reason).
464 /*0*/ u32 resel_sa;
467 * Task (bus address of a CCB) read from SCRIPTS that points
468 * to the unique ITL nexus allowed to be disconnected.
470 u32 itl_task_sa;
473 * Task table bus address (read from SCRIPTS).
475 u32 itlq_tbl_sa;
479 * Logical Unit Control Block
481 struct sym_lcb {
483 * TCB header.
484 * Assumed at offset 0.
486 /*0*/ struct sym_lcbh head;
489 * Task table read from SCRIPTS that contains pointers to
490 * ITLQ nexuses. The bus address read from SCRIPTS is
491 * inside the header.
493 u32 *itlq_tbl; /* Kernel virtual address */
496 * Busy CCBs management.
498 u_short busy_itlq; /* Number of busy tagged CCBs */
499 u_short busy_itl; /* Number of busy untagged CCBs */
502 * Circular tag allocation buffer.
504 u_short ia_tag; /* Tag allocation index */
505 u_short if_tag; /* Tag release index */
506 u_char *cb_tags; /* Circular tags buffer */
509 * O/S specific data structure.
511 #ifdef SYM_HAVE_SLCB
512 struct sym_slcb s;
513 #endif
515 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
517 * Optionnaly the driver can handle device queueing,
518 * and requeues internally command to redo.
520 SYM_QUEHEAD waiting_ccbq;
521 SYM_QUEHEAD started_ccbq;
522 int num_sgood;
523 u_short started_tags;
524 u_short started_no_tag;
525 u_short started_max;
526 u_short started_limit;
527 #endif
529 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
531 * Optionally the driver can try to prevent SCSI
532 * IOs from being reordered too much.
534 u_char tags_si; /* Current index to tags sum */
535 u_short tags_sum[2]; /* Tags sum counters */
536 u_short tags_since; /* # of tags since last switch */
537 #endif
540 * Set when we want to clear all tasks.
542 u_char to_clear;
545 * Capabilities.
547 u_char user_flags;
548 u_char curr_flags;
552 * Action from SCRIPTS on a task.
553 * Is part of the CCB, but is also used separately to plug
554 * error handling action to perform from SCRIPTS.
556 struct sym_actscr {
557 u32 start; /* Jumped by SCRIPTS after selection */
558 u32 restart; /* Jumped by SCRIPTS on relection */
562 * Phase mismatch context.
564 * It is part of the CCB and is used as parameters for the
565 * DATA pointer. We need two contexts to handle correctly the
566 * SAVED DATA POINTER.
568 struct sym_pmc {
569 struct sym_tblmove sg; /* Updated interrupted SG block */
570 u32 ret; /* SCRIPT return address */
574 * LUN control block lookup.
575 * We use a direct pointer for LUN #0, and a table of
576 * pointers which is only allocated for devices that support
577 * LUN(s) > 0.
579 #if SYM_CONF_MAX_LUN <= 1
580 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
581 #else
582 #define sym_lp(tp, lun) \
583 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
584 #endif
587 * Status are used by the host and the script processor.
589 * The last four bytes (status[4]) are copied to the
590 * scratchb register (declared as scr0..scr3) just after the
591 * select/reselect, and copied back just after disconnecting.
592 * Inside the script the XX_REG are used.
596 * Last four bytes (script)
598 #define HX_REG scr0
599 #define HX_PRT nc_scr0
600 #define HS_REG scr1
601 #define HS_PRT nc_scr1
602 #define SS_REG scr2
603 #define SS_PRT nc_scr2
604 #define HF_REG scr3
605 #define HF_PRT nc_scr3
608 * Last four bytes (host)
610 #define host_xflags phys.head.status[0]
611 #define host_status phys.head.status[1]
612 #define ssss_status phys.head.status[2]
613 #define host_flags phys.head.status[3]
616 * Host flags
618 #define HF_IN_PM0 1u
619 #define HF_IN_PM1 (1u<<1)
620 #define HF_ACT_PM (1u<<2)
621 #define HF_DP_SAVED (1u<<3)
622 #define HF_SENSE (1u<<4)
623 #define HF_EXT_ERR (1u<<5)
624 #define HF_DATA_IN (1u<<6)
625 #ifdef SYM_CONF_IARB_SUPPORT
626 #define HF_HINT_IARB (1u<<7)
627 #endif
630 * More host flags
632 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
633 #define HX_DMAP_DIRTY (1u<<7)
634 #endif
637 * Global CCB HEADER.
639 * Due to lack of indirect addressing on earlier NCR chips,
640 * this substructure is copied from the ccb to a global
641 * address after selection (or reselection) and copied back
642 * before disconnect.
643 * For SYMBIOS chips that support LOAD/STORE this copy is
644 * not needed and thus not performed.
647 struct sym_ccbh {
649 * Start and restart SCRIPTS addresses (must be at 0).
651 /*0*/ struct sym_actscr go;
654 * SCRIPTS jump address that deal with data pointers.
655 * 'savep' points to the position in the script responsible
656 * for the actual transfer of data.
657 * It's written on reception of a SAVE_DATA_POINTER message.
659 u32 savep; /* Jump address to saved data pointer */
660 u32 lastp; /* SCRIPTS address at end of data */
663 * Status fields.
665 u8 status[4];
669 * GET/SET the value of the data pointer used by SCRIPTS.
671 * We must distinguish between the LOAD/STORE-based SCRIPTS
672 * that use directly the header in the CCB, and the NCR-GENERIC
673 * SCRIPTS that use the copy of the header in the HCB.
675 #if SYM_CONF_GENERIC_SUPPORT
676 #define sym_set_script_dp(np, cp, dp) \
677 do { \
678 if (np->features & FE_LDSTR) \
679 cp->phys.head.lastp = cpu_to_scr(dp); \
680 else \
681 np->ccb_head.lastp = cpu_to_scr(dp); \
682 } while (0)
683 #define sym_get_script_dp(np, cp) \
684 scr_to_cpu((np->features & FE_LDSTR) ? \
685 cp->phys.head.lastp : np->ccb_head.lastp)
686 #else
687 #define sym_set_script_dp(np, cp, dp) \
688 do { \
689 cp->phys.head.lastp = cpu_to_scr(dp); \
690 } while (0)
692 #define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
693 #endif
696 * Data Structure Block
698 * During execution of a ccb by the script processor, the
699 * DSA (data structure address) register points to this
700 * substructure of the ccb.
702 struct sym_dsb {
704 * CCB header.
705 * Also assumed at offset 0 of the sym_ccb structure.
707 /*0*/ struct sym_ccbh head;
710 * Phase mismatch contexts.
711 * We need two to handle correctly the SAVED DATA POINTER.
712 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
713 * for address calculation from SCRIPTS.
715 struct sym_pmc pm0;
716 struct sym_pmc pm1;
719 * Table data for Script
721 struct sym_tblsel select;
722 struct sym_tblmove smsg;
723 struct sym_tblmove smsg_ext;
724 struct sym_tblmove cmd;
725 struct sym_tblmove sense;
726 struct sym_tblmove wresid;
727 struct sym_tblmove data [SYM_CONF_MAX_SG];
731 * Our Command Control Block
733 struct sym_ccb {
735 * This is the data structure which is pointed by the DSA
736 * register when it is executed by the script processor.
737 * It must be the first entry.
739 struct sym_dsb phys;
742 * Pointer to CAM ccb and related stuff.
744 struct scsi_cmnd *cmd; /* CAM scsiio ccb */
745 u8 cdb_buf[16]; /* Copy of CDB */
746 #define SYM_SNS_BBUF_LEN 32
747 u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
748 int data_len; /* Total data length */
749 int segments; /* Number of SG segments */
751 u8 order; /* Tag type (if tagged command) */
752 unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */
754 u_char nego_status; /* Negotiation status */
755 u_char xerr_status; /* Extended error flags */
756 u32 extra_bytes; /* Extraneous bytes transferred */
759 * Message areas.
760 * We prepare a message to be sent after selection.
761 * We may use a second one if the command is rescheduled
762 * due to CHECK_CONDITION or COMMAND TERMINATED.
763 * Contents are IDENTIFY and SIMPLE_TAG.
764 * While negotiating sync or wide transfer,
765 * a SDTR or WDTR message is appended.
767 u_char scsi_smsg [12];
768 u_char scsi_smsg2[12];
771 * Auto request sense related fields.
773 u_char sensecmd[6]; /* Request Sense command */
774 u_char sv_scsi_status; /* Saved SCSI status */
775 u_char sv_xerr_status; /* Saved extended status */
776 int sv_resid; /* Saved residual */
779 * Other fields.
781 u32 ccb_ba; /* BUS address of this CCB */
782 u_short tag; /* Tag for this transfer */
783 /* NO_TAG means no tag */
784 u_char target;
785 u_char lun;
786 struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
787 SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
788 u32 startp; /* Initial data pointer */
789 u32 goalp; /* Expected last data pointer */
790 int ext_sg; /* Extreme data pointer, used */
791 int ext_ofs; /* to calculate the residual. */
792 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
793 SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
794 u_char started; /* CCB queued to the squeue */
795 #endif
796 u_char to_abort; /* Want this IO to be aborted */
797 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
798 u_char tags_si; /* Lun tags sum index (0,1) */
799 #endif
802 #define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
804 typedef struct device *m_pool_ident_t;
807 * Host Control Block
809 struct sym_hcb {
811 * Global headers.
812 * Due to poorness of addressing capabilities, earlier
813 * chips (810, 815, 825) copy part of the data structures
814 * (CCB, TCB and LCB) in fixed areas.
816 #if SYM_CONF_GENERIC_SUPPORT
817 struct sym_ccbh ccb_head;
818 struct sym_tcbh tcb_head;
819 struct sym_lcbh lcb_head;
820 #endif
822 * Idle task and invalid task actions and
823 * their bus addresses.
825 struct sym_actscr idletask, notask, bad_itl, bad_itlq;
826 u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
829 * Dummy lun table to protect us against target
830 * returning bad lun number on reselection.
832 u32 *badluntbl; /* Table physical address */
833 u32 badlun_sa; /* SCRIPT handler BUS address */
836 * Bus address of this host control block.
838 u32 hcb_ba;
841 * Bit 32-63 of the on-chip RAM bus address in LE format.
842 * The START_RAM64 script loads the MMRS and MMWS from this
843 * field.
845 u32 scr_ram_seg;
848 * Initial value of some IO register bits.
849 * These values are assumed to have been set by BIOS, and may
850 * be used to probe adapter implementation differences.
852 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
853 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
854 sv_stest1;
857 * Actual initial value of IO register bits used by the
858 * driver. They are loaded at initialisation according to
859 * features that are to be enabled/disabled.
861 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
862 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
865 * Target data.
867 struct sym_tcb target[SYM_CONF_MAX_TARGET];
870 * Target control block bus address array used by the SCRIPT
871 * on reselection.
873 u32 *targtbl;
874 u32 targtbl_ba;
877 * DMA pool handle for this HBA.
879 m_pool_ident_t bus_dmat;
882 * O/S specific data structure
884 struct sym_shcb s;
887 * Physical bus addresses of the chip.
889 u32 mmio_ba; /* MMIO 32 bit BUS address */
890 u32 ram_ba; /* RAM 32 bit BUS address */
893 * SCRIPTS virtual and physical bus addresses.
894 * 'script' is loaded in the on-chip RAM if present.
895 * 'scripth' stays in main memory for all chips except the
896 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
898 u_char *scripta0; /* Copy of scripts A, B, Z */
899 u_char *scriptb0;
900 u_char *scriptz0;
901 u32 scripta_ba; /* Actual scripts A, B, Z */
902 u32 scriptb_ba; /* 32 bit bus addresses. */
903 u32 scriptz_ba;
904 u_short scripta_sz; /* Actual size of script A, B, Z*/
905 u_short scriptb_sz;
906 u_short scriptz_sz;
909 * Bus addresses, setup and patch methods for
910 * the selected firmware.
912 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
913 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
914 struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
915 void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
916 void (*fw_patch)(struct Scsi_Host *);
917 char *fw_name;
920 * General controller parameters and configuration.
922 u_int features; /* Chip features map */
923 u_char myaddr; /* SCSI id of the adapter */
924 u_char maxburst; /* log base 2 of dwords burst */
925 u_char maxwide; /* Maximum transfer width */
926 u_char minsync; /* Min sync period factor (ST) */
927 u_char maxsync; /* Max sync period factor (ST) */
928 u_char maxoffs; /* Max scsi offset (ST) */
929 u_char minsync_dt; /* Min sync period factor (DT) */
930 u_char maxsync_dt; /* Max sync period factor (DT) */
931 u_char maxoffs_dt; /* Max scsi offset (DT) */
932 u_char multiplier; /* Clock multiplier (1,2,4) */
933 u_char clock_divn; /* Number of clock divisors */
934 u32 clock_khz; /* SCSI clock frequency in KHz */
935 u32 pciclk_khz; /* Estimated PCI clock in KHz */
937 * Start queue management.
938 * It is filled up by the host processor and accessed by the
939 * SCRIPTS processor in order to start SCSI commands.
941 volatile /* Prevent code optimizations */
942 u32 *squeue; /* Start queue virtual address */
943 u32 squeue_ba; /* Start queue BUS address */
944 u_short squeueput; /* Next free slot of the queue */
945 u_short actccbs; /* Number of allocated CCBs */
948 * Command completion queue.
949 * It is the same size as the start queue to avoid overflow.
951 u_short dqueueget; /* Next position to scan */
952 volatile /* Prevent code optimizations */
953 u32 *dqueue; /* Completion (done) queue */
954 u32 dqueue_ba; /* Done queue BUS address */
957 * Miscellaneous buffers accessed by the scripts-processor.
958 * They shall be DWORD aligned, because they may be read or
959 * written with a script command.
961 u_char msgout[8]; /* Buffer for MESSAGE OUT */
962 u_char msgin [8]; /* Buffer for MESSAGE IN */
963 u32 lastmsg; /* Last SCSI message sent */
964 u32 scratch; /* Scratch for SCSI receive */
965 /* Also used for cache test */
967 * Miscellaneous configuration and status parameters.
969 u_char usrflags; /* Miscellaneous user flags */
970 u_char scsi_mode; /* Current SCSI BUS mode */
971 u_char verbose; /* Verbosity for this controller*/
974 * CCB lists and queue.
976 struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
977 /* CCB_HASH_SIZE lists of CCBs */
978 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
979 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
982 * During error handling and/or recovery,
983 * active CCBs that are to be completed with
984 * error or requeued are moved from the busy_ccbq
985 * to the comp_ccbq prior to completion.
987 SYM_QUEHEAD comp_ccbq;
989 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
990 SYM_QUEHEAD dummy_ccbq;
991 #endif
994 * IMMEDIATE ARBITRATION (IARB) control.
996 * We keep track in 'last_cp' of the last CCB that has been
997 * queued to the SCRIPTS processor and clear 'last_cp' when
998 * this CCB completes. If last_cp is not zero at the moment
999 * we queue a new CCB, we set a flag in 'last_cp' that is
1000 * used by the SCRIPTS as a hint for setting IARB.
1001 * We donnot set more than 'iarb_max' consecutive hints for
1002 * IARB in order to leave devices a chance to reselect.
1003 * By the way, any non zero value of 'iarb_max' is unfair. :)
1005 #ifdef SYM_CONF_IARB_SUPPORT
1006 u_short iarb_max; /* Max. # consecutive IARB hints*/
1007 u_short iarb_count; /* Actual # of these hints */
1008 struct sym_ccb * last_cp;
1009 #endif
1012 * Command abort handling.
1013 * We need to synchronize tightly with the SCRIPTS
1014 * processor in order to handle things correctly.
1016 u_char abrt_msg[4]; /* Message to send buffer */
1017 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
1018 struct sym_tblsel abrt_sel; /* Sync params for selection */
1019 u_char istat_sem; /* Tells the chip to stop (SEM) */
1022 * 64 bit DMA handling.
1024 #if SYM_CONF_DMA_ADDRESSING_MODE != 0
1025 u_char use_dac; /* Use PCI DAC cycles */
1026 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1027 u_char dmap_dirty; /* Dma segments registers dirty */
1028 u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
1029 #endif
1030 #endif
1033 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1034 #define use_dac(np) 0
1035 #define set_dac(np) do { } while (0)
1036 #else
1037 #define use_dac(np) (np)->use_dac
1038 #define set_dac(np) (np)->use_dac = 1
1039 #endif
1041 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1045 * FIRMWARES (sym_fw.c)
1047 struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1048 void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1051 * Driver methods called from O/S specific code.
1053 char *sym_driver_name(void);
1054 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1055 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1056 struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1057 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1058 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1059 #else
1060 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1061 #endif
1062 void sym_start_up(struct Scsi_Host *, int reason);
1063 irqreturn_t sym_interrupt(struct Scsi_Host *);
1064 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1065 struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1066 void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1067 struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1068 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1069 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1070 int sym_reset_scsi_target(struct sym_hcb *np, int target);
1071 void sym_hcb_free(struct sym_hcb *np);
1072 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1075 * Build a scatter/gather entry.
1077 * For 64 bit systems, we use the 8 upper bits of the size field
1078 * to provide bus address bits 32-39 to the SCRIPTS processor.
1079 * This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1082 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1083 #define DMA_DAC_MASK DMA_BIT_MASK(32)
1084 #define sym_build_sge(np, data, badd, len) \
1085 do { \
1086 (data)->addr = cpu_to_scr(badd); \
1087 (data)->size = cpu_to_scr(len); \
1088 } while (0)
1089 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1090 #define DMA_DAC_MASK DMA_BIT_MASK(40)
1091 #define sym_build_sge(np, data, badd, len) \
1092 do { \
1093 (data)->addr = cpu_to_scr(badd); \
1094 (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
1095 } while (0)
1096 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1097 #define DMA_DAC_MASK DMA_BIT_MASK(64)
1098 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1099 static inline void
1100 sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1102 u32 h = (badd>>32);
1103 int s = (h&SYM_DMAP_MASK);
1105 if (h != np->dmap_bah[s])
1106 goto bad;
1107 good:
1108 (data)->addr = cpu_to_scr(badd);
1109 (data)->size = cpu_to_scr((s<<24) + len);
1110 return;
1111 bad:
1112 s = sym_lookup_dmap(np, h, s);
1113 goto good;
1115 #else
1116 #error "Unsupported DMA addressing mode"
1117 #endif
1120 * MEMORY ALLOCATOR.
1123 #define sym_get_mem_cluster() \
1124 (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1125 #define sym_free_mem_cluster(p) \
1126 free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1129 * Link between free memory chunks of a given size.
1131 typedef struct sym_m_link {
1132 struct sym_m_link *next;
1133 } *m_link_p;
1136 * Virtual to bus physical translation for a given cluster.
1137 * Such a structure is only useful with DMA abstraction.
1139 typedef struct sym_m_vtob { /* Virtual to Bus address translation */
1140 struct sym_m_vtob *next;
1141 void *vaddr; /* Virtual address */
1142 dma_addr_t baddr; /* Bus physical address */
1143 } *m_vtob_p;
1145 /* Hash this stuff a bit to speed up translations */
1146 #define VTOB_HASH_SHIFT 5
1147 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
1148 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
1149 #define VTOB_HASH_CODE(m) \
1150 ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1153 * Memory pool of a given kind.
1154 * Ideally, we want to use:
1155 * 1) 1 pool for memory we donnot need to involve in DMA.
1156 * 2) The same pool for controllers that require same DMA
1157 * constraints and features.
1158 * The OS specific m_pool_id_t thing and the sym_m_pool_match()
1159 * method are expected to tell the driver about.
1161 typedef struct sym_m_pool {
1162 m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
1163 void * (*get_mem_cluster)(struct sym_m_pool *);
1164 #ifdef SYM_MEM_FREE_UNUSED
1165 void (*free_mem_cluster)(struct sym_m_pool *, void *);
1166 #endif
1167 #define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
1168 #define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
1169 int nump;
1170 m_vtob_p vtob[VTOB_HASH_SIZE];
1171 struct sym_m_pool *next;
1172 struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1173 } *m_pool_p;
1176 * Alloc, free and translate addresses to bus physical
1177 * for DMAable memory.
1179 void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1180 void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1181 dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1184 * Verbs used by the driver code for DMAable memory handling.
1185 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1186 * being discarded.
1188 #define _uvptv_(p) ((void *)((u_long)(p)))
1190 #define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
1191 #define _sym_mfree_dma(np, p, l, n) \
1192 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1193 #define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
1194 #define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
1195 #define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
1198 * We have to provide the driver memory allocator with methods for
1199 * it to maintain virtual to bus physical address translations.
1202 #define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
1204 static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1206 void *vaddr = NULL;
1207 dma_addr_t baddr = 0;
1209 vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1210 GFP_ATOMIC);
1211 if (vaddr) {
1212 vbp->vaddr = vaddr;
1213 vbp->baddr = baddr;
1215 return vaddr;
1218 static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1220 dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1221 vbp->baddr);
1224 #endif /* SYM_HIPD_H */