intelfb: support i854
[linux-2.6/linux-loongson.git] / drivers / video / intelfb / intelfbhw.c
blob0689f97c5238a187ff44360bd57c4d2d86eb13ad
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
37 #include <asm/io.h>
39 #include "intelfb.h"
40 #include "intelfbhw.h"
42 struct pll_min_max {
43 int min_m, max_m, min_m1, max_m1;
44 int min_m2, max_m2, min_n, max_n;
45 int min_p, max_p, min_p1, max_p1;
46 int min_vco, max_vco, p_transition_clk, ref_clk;
47 int p_inc_lo, p_inc_hi;
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
54 static struct pll_min_max plls[PLLS_MAX] = {
55 { 108, 140, 18, 26,
56 6, 16, 3, 16,
57 4, 128, 0, 31,
58 930000, 1400000, 165000, 48000,
59 4, 2 }, /* I8xx */
61 { 75, 120, 10, 20,
62 5, 9, 4, 7,
63 5, 80, 1, 8,
64 1400000, 2800000, 200000, 96000,
65 10, 5 } /* I9xx */
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
70 u32 tmp;
71 if (!pdev || !dinfo)
72 return 1;
74 switch (pdev->device) {
75 case PCI_DEVICE_ID_INTEL_830M:
76 dinfo->name = "Intel(R) 830M";
77 dinfo->chipset = INTEL_830M;
78 dinfo->mobile = 1;
79 dinfo->pll_index = PLLS_I8xx;
80 return 0;
81 case PCI_DEVICE_ID_INTEL_845G:
82 dinfo->name = "Intel(R) 845G";
83 dinfo->chipset = INTEL_845G;
84 dinfo->mobile = 0;
85 dinfo->pll_index = PLLS_I8xx;
86 return 0;
87 case PCI_DEVICE_ID_INTEL_854:
88 dinfo->mobile = 1;
89 dinfo->name = "Intel(R) 854";
90 dinfo->chipset = INTEL_854;
91 return 0;
92 case PCI_DEVICE_ID_INTEL_85XGM:
93 tmp = 0;
94 dinfo->mobile = 1;
95 dinfo->pll_index = PLLS_I8xx;
96 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
97 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
98 INTEL_85X_VARIANT_MASK) {
99 case INTEL_VAR_855GME:
100 dinfo->name = "Intel(R) 855GME";
101 dinfo->chipset = INTEL_855GME;
102 return 0;
103 case INTEL_VAR_855GM:
104 dinfo->name = "Intel(R) 855GM";
105 dinfo->chipset = INTEL_855GM;
106 return 0;
107 case INTEL_VAR_852GME:
108 dinfo->name = "Intel(R) 852GME";
109 dinfo->chipset = INTEL_852GME;
110 return 0;
111 case INTEL_VAR_852GM:
112 dinfo->name = "Intel(R) 852GM";
113 dinfo->chipset = INTEL_852GM;
114 return 0;
115 default:
116 dinfo->name = "Intel(R) 852GM/855GM";
117 dinfo->chipset = INTEL_85XGM;
118 return 0;
120 break;
121 case PCI_DEVICE_ID_INTEL_865G:
122 dinfo->name = "Intel(R) 865G";
123 dinfo->chipset = INTEL_865G;
124 dinfo->mobile = 0;
125 dinfo->pll_index = PLLS_I8xx;
126 return 0;
127 case PCI_DEVICE_ID_INTEL_915G:
128 dinfo->name = "Intel(R) 915G";
129 dinfo->chipset = INTEL_915G;
130 dinfo->mobile = 0;
131 dinfo->pll_index = PLLS_I9xx;
132 return 0;
133 case PCI_DEVICE_ID_INTEL_915GM:
134 dinfo->name = "Intel(R) 915GM";
135 dinfo->chipset = INTEL_915GM;
136 dinfo->mobile = 1;
137 dinfo->pll_index = PLLS_I9xx;
138 return 0;
139 case PCI_DEVICE_ID_INTEL_945G:
140 dinfo->name = "Intel(R) 945G";
141 dinfo->chipset = INTEL_945G;
142 dinfo->mobile = 0;
143 dinfo->pll_index = PLLS_I9xx;
144 return 0;
145 case PCI_DEVICE_ID_INTEL_945GM:
146 dinfo->name = "Intel(R) 945GM";
147 dinfo->chipset = INTEL_945GM;
148 dinfo->mobile = 1;
149 dinfo->pll_index = PLLS_I9xx;
150 return 0;
151 case PCI_DEVICE_ID_INTEL_945GME:
152 dinfo->name = "Intel(R) 945GME";
153 dinfo->chipset = INTEL_945GME;
154 dinfo->mobile = 1;
155 dinfo->pll_index = PLLS_I9xx;
156 return 0;
157 case PCI_DEVICE_ID_INTEL_965G:
158 dinfo->name = "Intel(R) 965G";
159 dinfo->chipset = INTEL_965G;
160 dinfo->mobile = 0;
161 dinfo->pll_index = PLLS_I9xx;
162 return 0;
163 case PCI_DEVICE_ID_INTEL_965GM:
164 dinfo->name = "Intel(R) 965GM";
165 dinfo->chipset = INTEL_965GM;
166 dinfo->mobile = 1;
167 dinfo->pll_index = PLLS_I9xx;
168 return 0;
169 default:
170 return 1;
174 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
175 int *stolen_size)
177 struct pci_dev *bridge_dev;
178 u16 tmp;
179 int stolen_overhead;
181 if (!pdev || !aperture_size || !stolen_size)
182 return 1;
184 /* Find the bridge device. It is always 0:0.0 */
185 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
186 ERR_MSG("cannot find bridge device\n");
187 return 1;
190 /* Get the fb aperture size and "stolen" memory amount. */
191 tmp = 0;
192 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
193 pci_dev_put(bridge_dev);
195 switch (pdev->device) {
196 case PCI_DEVICE_ID_INTEL_915G:
197 case PCI_DEVICE_ID_INTEL_915GM:
198 case PCI_DEVICE_ID_INTEL_945G:
199 case PCI_DEVICE_ID_INTEL_945GM:
200 case PCI_DEVICE_ID_INTEL_945GME:
201 case PCI_DEVICE_ID_INTEL_965G:
202 case PCI_DEVICE_ID_INTEL_965GM:
203 /* 915, 945 and 965 chipsets support a 256MB aperture.
204 Aperture size is determined by inspected the
205 base address of the aperture. */
206 if (pci_resource_start(pdev, 2) & 0x08000000)
207 *aperture_size = MB(128);
208 else
209 *aperture_size = MB(256);
210 break;
211 default:
212 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
213 *aperture_size = MB(64);
214 else
215 *aperture_size = MB(128);
216 break;
219 /* Stolen memory size is reduced by the GTT and the popup.
220 GTT is 1K per MB of aperture size, and popup is 4K. */
221 stolen_overhead = (*aperture_size / MB(1)) + 4;
222 switch(pdev->device) {
223 case PCI_DEVICE_ID_INTEL_830M:
224 case PCI_DEVICE_ID_INTEL_845G:
225 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
226 case INTEL_830_GMCH_GMS_STOLEN_512:
227 *stolen_size = KB(512) - KB(stolen_overhead);
228 return 0;
229 case INTEL_830_GMCH_GMS_STOLEN_1024:
230 *stolen_size = MB(1) - KB(stolen_overhead);
231 return 0;
232 case INTEL_830_GMCH_GMS_STOLEN_8192:
233 *stolen_size = MB(8) - KB(stolen_overhead);
234 return 0;
235 case INTEL_830_GMCH_GMS_LOCAL:
236 ERR_MSG("only local memory found\n");
237 return 1;
238 case INTEL_830_GMCH_GMS_DISABLED:
239 ERR_MSG("video memory is disabled\n");
240 return 1;
241 default:
242 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
243 tmp & INTEL_830_GMCH_GMS_MASK);
244 return 1;
246 break;
247 default:
248 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
249 case INTEL_855_GMCH_GMS_STOLEN_1M:
250 *stolen_size = MB(1) - KB(stolen_overhead);
251 return 0;
252 case INTEL_855_GMCH_GMS_STOLEN_4M:
253 *stolen_size = MB(4) - KB(stolen_overhead);
254 return 0;
255 case INTEL_855_GMCH_GMS_STOLEN_8M:
256 *stolen_size = MB(8) - KB(stolen_overhead);
257 return 0;
258 case INTEL_855_GMCH_GMS_STOLEN_16M:
259 *stolen_size = MB(16) - KB(stolen_overhead);
260 return 0;
261 case INTEL_855_GMCH_GMS_STOLEN_32M:
262 *stolen_size = MB(32) - KB(stolen_overhead);
263 return 0;
264 case INTEL_915G_GMCH_GMS_STOLEN_48M:
265 *stolen_size = MB(48) - KB(stolen_overhead);
266 return 0;
267 case INTEL_915G_GMCH_GMS_STOLEN_64M:
268 *stolen_size = MB(64) - KB(stolen_overhead);
269 return 0;
270 case INTEL_855_GMCH_GMS_DISABLED:
271 ERR_MSG("video memory is disabled\n");
272 return 0;
273 default:
274 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
275 tmp & INTEL_855_GMCH_GMS_MASK);
276 return 1;
281 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
283 int dvo = 0;
285 if (INREG(LVDS) & PORT_ENABLE)
286 dvo |= LVDS_PORT;
287 if (INREG(DVOA) & PORT_ENABLE)
288 dvo |= DVOA_PORT;
289 if (INREG(DVOB) & PORT_ENABLE)
290 dvo |= DVOB_PORT;
291 if (INREG(DVOC) & PORT_ENABLE)
292 dvo |= DVOC_PORT;
294 return dvo;
297 const char * intelfbhw_dvo_to_string(int dvo)
299 if (dvo & DVOA_PORT)
300 return "DVO port A";
301 else if (dvo & DVOB_PORT)
302 return "DVO port B";
303 else if (dvo & DVOC_PORT)
304 return "DVO port C";
305 else if (dvo & LVDS_PORT)
306 return "LVDS port";
307 else
308 return NULL;
312 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
313 struct fb_var_screeninfo *var)
315 int bytes_per_pixel;
316 int tmp;
318 #if VERBOSE > 0
319 DBG_MSG("intelfbhw_validate_mode\n");
320 #endif
322 bytes_per_pixel = var->bits_per_pixel / 8;
323 if (bytes_per_pixel == 3)
324 bytes_per_pixel = 4;
326 /* Check if enough video memory. */
327 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
328 if (tmp > dinfo->fb.size) {
329 WRN_MSG("Not enough video ram for mode "
330 "(%d KByte vs %d KByte).\n",
331 BtoKB(tmp), BtoKB(dinfo->fb.size));
332 return 1;
335 /* Check if x/y limits are OK. */
336 if (var->xres - 1 > HACTIVE_MASK) {
337 WRN_MSG("X resolution too large (%d vs %d).\n",
338 var->xres, HACTIVE_MASK + 1);
339 return 1;
341 if (var->yres - 1 > VACTIVE_MASK) {
342 WRN_MSG("Y resolution too large (%d vs %d).\n",
343 var->yres, VACTIVE_MASK + 1);
344 return 1;
346 if (var->xres < 4) {
347 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
348 return 1;
350 if (var->yres < 4) {
351 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
352 return 1;
355 /* Check for doublescan modes. */
356 if (var->vmode & FB_VMODE_DOUBLE) {
357 WRN_MSG("Mode is double-scan.\n");
358 return 1;
361 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
362 WRN_MSG("Odd number of lines in interlaced mode\n");
363 return 1;
366 /* Check if clock is OK. */
367 tmp = 1000000000 / var->pixclock;
368 if (tmp < MIN_CLOCK) {
369 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
370 (tmp + 500) / 1000, MIN_CLOCK / 1000);
371 return 1;
373 if (tmp > MAX_CLOCK) {
374 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
375 (tmp + 500) / 1000, MAX_CLOCK / 1000);
376 return 1;
379 return 0;
382 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
384 struct intelfb_info *dinfo = GET_DINFO(info);
385 u32 offset, xoffset, yoffset;
387 #if VERBOSE > 0
388 DBG_MSG("intelfbhw_pan_display\n");
389 #endif
391 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
392 yoffset = var->yoffset;
394 if ((xoffset + var->xres > var->xres_virtual) ||
395 (yoffset + var->yres > var->yres_virtual))
396 return -EINVAL;
398 offset = (yoffset * dinfo->pitch) +
399 (xoffset * var->bits_per_pixel) / 8;
401 offset += dinfo->fb.offset << 12;
403 dinfo->vsync.pan_offset = offset;
404 if ((var->activate & FB_ACTIVATE_VBL) &&
405 !intelfbhw_enable_irq(dinfo))
406 dinfo->vsync.pan_display = 1;
407 else {
408 dinfo->vsync.pan_display = 0;
409 OUTREG(DSPABASE, offset);
412 return 0;
415 /* Blank the screen. */
416 void intelfbhw_do_blank(int blank, struct fb_info *info)
418 struct intelfb_info *dinfo = GET_DINFO(info);
419 u32 tmp;
421 #if VERBOSE > 0
422 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
423 #endif
425 /* Turn plane A on or off */
426 tmp = INREG(DSPACNTR);
427 if (blank)
428 tmp &= ~DISPPLANE_PLANE_ENABLE;
429 else
430 tmp |= DISPPLANE_PLANE_ENABLE;
431 OUTREG(DSPACNTR, tmp);
432 /* Flush */
433 tmp = INREG(DSPABASE);
434 OUTREG(DSPABASE, tmp);
436 /* Turn off/on the HW cursor */
437 #if VERBOSE > 0
438 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
439 #endif
440 if (dinfo->cursor_on) {
441 if (blank)
442 intelfbhw_cursor_hide(dinfo);
443 else
444 intelfbhw_cursor_show(dinfo);
445 dinfo->cursor_on = 1;
447 dinfo->cursor_blanked = blank;
449 /* Set DPMS level */
450 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
451 switch (blank) {
452 case FB_BLANK_UNBLANK:
453 case FB_BLANK_NORMAL:
454 tmp |= ADPA_DPMS_D0;
455 break;
456 case FB_BLANK_VSYNC_SUSPEND:
457 tmp |= ADPA_DPMS_D1;
458 break;
459 case FB_BLANK_HSYNC_SUSPEND:
460 tmp |= ADPA_DPMS_D2;
461 break;
462 case FB_BLANK_POWERDOWN:
463 tmp |= ADPA_DPMS_D3;
464 break;
466 OUTREG(ADPA, tmp);
468 return;
472 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
473 unsigned red, unsigned green, unsigned blue,
474 unsigned transp)
476 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
477 PALETTE_A : PALETTE_B;
479 #if VERBOSE > 0
480 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
481 regno, red, green, blue);
482 #endif
484 OUTREG(palette_reg + (regno << 2),
485 (red << PALETTE_8_RED_SHIFT) |
486 (green << PALETTE_8_GREEN_SHIFT) |
487 (blue << PALETTE_8_BLUE_SHIFT));
491 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
492 struct intelfb_hwstate *hw, int flag)
494 int i;
496 #if VERBOSE > 0
497 DBG_MSG("intelfbhw_read_hw_state\n");
498 #endif
500 if (!hw || !dinfo)
501 return -1;
503 /* Read in as much of the HW state as possible. */
504 hw->vga0_divisor = INREG(VGA0_DIVISOR);
505 hw->vga1_divisor = INREG(VGA1_DIVISOR);
506 hw->vga_pd = INREG(VGAPD);
507 hw->dpll_a = INREG(DPLL_A);
508 hw->dpll_b = INREG(DPLL_B);
509 hw->fpa0 = INREG(FPA0);
510 hw->fpa1 = INREG(FPA1);
511 hw->fpb0 = INREG(FPB0);
512 hw->fpb1 = INREG(FPB1);
514 if (flag == 1)
515 return flag;
517 #if 0
518 /* This seems to be a problem with the 852GM/855GM */
519 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
520 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
521 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
523 #endif
525 if (flag == 2)
526 return flag;
528 hw->htotal_a = INREG(HTOTAL_A);
529 hw->hblank_a = INREG(HBLANK_A);
530 hw->hsync_a = INREG(HSYNC_A);
531 hw->vtotal_a = INREG(VTOTAL_A);
532 hw->vblank_a = INREG(VBLANK_A);
533 hw->vsync_a = INREG(VSYNC_A);
534 hw->src_size_a = INREG(SRC_SIZE_A);
535 hw->bclrpat_a = INREG(BCLRPAT_A);
536 hw->htotal_b = INREG(HTOTAL_B);
537 hw->hblank_b = INREG(HBLANK_B);
538 hw->hsync_b = INREG(HSYNC_B);
539 hw->vtotal_b = INREG(VTOTAL_B);
540 hw->vblank_b = INREG(VBLANK_B);
541 hw->vsync_b = INREG(VSYNC_B);
542 hw->src_size_b = INREG(SRC_SIZE_B);
543 hw->bclrpat_b = INREG(BCLRPAT_B);
545 if (flag == 3)
546 return flag;
548 hw->adpa = INREG(ADPA);
549 hw->dvoa = INREG(DVOA);
550 hw->dvob = INREG(DVOB);
551 hw->dvoc = INREG(DVOC);
552 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
553 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
554 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
555 hw->lvds = INREG(LVDS);
557 if (flag == 4)
558 return flag;
560 hw->pipe_a_conf = INREG(PIPEACONF);
561 hw->pipe_b_conf = INREG(PIPEBCONF);
562 hw->disp_arb = INREG(DISPARB);
564 if (flag == 5)
565 return flag;
567 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
568 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
569 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
570 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
572 if (flag == 6)
573 return flag;
575 for (i = 0; i < 4; i++) {
576 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
577 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
580 if (flag == 7)
581 return flag;
583 hw->cursor_size = INREG(CURSOR_SIZE);
585 if (flag == 8)
586 return flag;
588 hw->disp_a_ctrl = INREG(DSPACNTR);
589 hw->disp_b_ctrl = INREG(DSPBCNTR);
590 hw->disp_a_base = INREG(DSPABASE);
591 hw->disp_b_base = INREG(DSPBBASE);
592 hw->disp_a_stride = INREG(DSPASTRIDE);
593 hw->disp_b_stride = INREG(DSPBSTRIDE);
595 if (flag == 9)
596 return flag;
598 hw->vgacntrl = INREG(VGACNTRL);
600 if (flag == 10)
601 return flag;
603 hw->add_id = INREG(ADD_ID);
605 if (flag == 11)
606 return flag;
608 for (i = 0; i < 7; i++) {
609 hw->swf0x[i] = INREG(SWF00 + (i << 2));
610 hw->swf1x[i] = INREG(SWF10 + (i << 2));
611 if (i < 3)
612 hw->swf3x[i] = INREG(SWF30 + (i << 2));
615 for (i = 0; i < 8; i++)
616 hw->fence[i] = INREG(FENCE + (i << 2));
618 hw->instpm = INREG(INSTPM);
619 hw->mem_mode = INREG(MEM_MODE);
620 hw->fw_blc_0 = INREG(FW_BLC_0);
621 hw->fw_blc_1 = INREG(FW_BLC_1);
623 hw->hwstam = INREG16(HWSTAM);
624 hw->ier = INREG16(IER);
625 hw->iir = INREG16(IIR);
626 hw->imr = INREG16(IMR);
628 return 0;
632 static int calc_vclock3(int index, int m, int n, int p)
634 if (p == 0 || n == 0)
635 return 0;
636 return plls[index].ref_clk * m / n / p;
639 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
640 int lvds)
642 struct pll_min_max *pll = &plls[index];
643 u32 m, vco, p;
645 m = (5 * (m1 + 2)) + (m2 + 2);
646 n += 2;
647 vco = pll->ref_clk * m / n;
649 if (index == PLLS_I8xx)
650 p = ((p1 + 2) * (1 << (p2 + 1)));
651 else
652 p = ((p1) * (p2 ? 5 : 10));
653 return vco / p;
656 #if REGDUMP
657 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
658 int *o_p1, int *o_p2)
660 int p1, p2;
662 if (IS_I9XX(dinfo)) {
663 if (dpll & DPLL_P1_FORCE_DIV2)
664 p1 = 1;
665 else
666 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
668 p1 = ffs(p1);
670 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
671 } else {
672 if (dpll & DPLL_P1_FORCE_DIV2)
673 p1 = 0;
674 else
675 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
676 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
679 *o_p1 = p1;
680 *o_p2 = p2;
682 #endif
685 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
686 struct intelfb_hwstate *hw)
688 #if REGDUMP
689 int i, m1, m2, n, p1, p2;
690 int index = dinfo->pll_index;
691 DBG_MSG("intelfbhw_print_hw_state\n");
693 if (!hw)
694 return;
695 /* Read in as much of the HW state as possible. */
696 printk("hw state dump start\n");
697 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
698 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
699 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
700 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
701 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
702 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
704 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
706 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
707 m1, m2, n, p1, p2);
708 printk(" VGA0: clock is %d\n",
709 calc_vclock(index, m1, m2, n, p1, p2, 0));
711 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
712 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
713 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
715 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
716 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
717 m1, m2, n, p1, p2);
718 printk(" VGA1: clock is %d\n",
719 calc_vclock(index, m1, m2, n, p1, p2, 0));
721 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
722 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
723 printk(" FPA0: 0x%08x\n", hw->fpa0);
724 printk(" FPA1: 0x%08x\n", hw->fpa1);
725 printk(" FPB0: 0x%08x\n", hw->fpb0);
726 printk(" FPB1: 0x%08x\n", hw->fpb1);
728 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
732 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
734 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
735 m1, m2, n, p1, p2);
736 printk(" PLLA0: clock is %d\n",
737 calc_vclock(index, m1, m2, n, p1, p2, 0));
739 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
740 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
741 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
743 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
745 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
746 m1, m2, n, p1, p2);
747 printk(" PLLA1: clock is %d\n",
748 calc_vclock(index, m1, m2, n, p1, p2, 0));
750 #if 0
751 printk(" PALETTE_A:\n");
752 for (i = 0; i < PALETTE_8_ENTRIES)
753 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
754 printk(" PALETTE_B:\n");
755 for (i = 0; i < PALETTE_8_ENTRIES)
756 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
757 #endif
759 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
760 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
761 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
762 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
763 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
764 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
765 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
766 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
767 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
768 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
769 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
770 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
771 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
772 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
773 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
774 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
776 printk(" ADPA: 0x%08x\n", hw->adpa);
777 printk(" DVOA: 0x%08x\n", hw->dvoa);
778 printk(" DVOB: 0x%08x\n", hw->dvob);
779 printk(" DVOC: 0x%08x\n", hw->dvoc);
780 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
781 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
782 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
783 printk(" LVDS: 0x%08x\n", hw->lvds);
785 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
786 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
787 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
789 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
790 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
791 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
792 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
794 printk(" CURSOR_A_PALETTE: ");
795 for (i = 0; i < 4; i++) {
796 printk("0x%08x", hw->cursor_a_palette[i]);
797 if (i < 3)
798 printk(", ");
800 printk("\n");
801 printk(" CURSOR_B_PALETTE: ");
802 for (i = 0; i < 4; i++) {
803 printk("0x%08x", hw->cursor_b_palette[i]);
804 if (i < 3)
805 printk(", ");
807 printk("\n");
809 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
811 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
812 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
813 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
814 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
815 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
816 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
818 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
819 printk(" ADD_ID: 0x%08x\n", hw->add_id);
821 for (i = 0; i < 7; i++) {
822 printk(" SWF0%d 0x%08x\n", i,
823 hw->swf0x[i]);
825 for (i = 0; i < 7; i++) {
826 printk(" SWF1%d 0x%08x\n", i,
827 hw->swf1x[i]);
829 for (i = 0; i < 3; i++) {
830 printk(" SWF3%d 0x%08x\n", i,
831 hw->swf3x[i]);
833 for (i = 0; i < 8; i++)
834 printk(" FENCE%d 0x%08x\n", i,
835 hw->fence[i]);
837 printk(" INSTPM 0x%08x\n", hw->instpm);
838 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
839 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
840 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
842 printk(" HWSTAM 0x%04x\n", hw->hwstam);
843 printk(" IER 0x%04x\n", hw->ier);
844 printk(" IIR 0x%04x\n", hw->iir);
845 printk(" IMR 0x%04x\n", hw->imr);
846 printk("hw state dump end\n");
847 #endif
852 /* Split the M parameter into M1 and M2. */
853 static int splitm(int index, unsigned int m, unsigned int *retm1,
854 unsigned int *retm2)
856 int m1, m2;
857 int testm;
858 struct pll_min_max *pll = &plls[index];
860 /* no point optimising too much - brute force m */
861 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
862 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
863 testm = (5 * (m1 + 2)) + (m2 + 2);
864 if (testm == m) {
865 *retm1 = (unsigned int)m1;
866 *retm2 = (unsigned int)m2;
867 return 0;
871 return 1;
874 /* Split the P parameter into P1 and P2. */
875 static int splitp(int index, unsigned int p, unsigned int *retp1,
876 unsigned int *retp2)
878 int p1, p2;
879 struct pll_min_max *pll = &plls[index];
881 if (index == PLLS_I9xx) {
882 p2 = (p % 10) ? 1 : 0;
884 p1 = p / (p2 ? 5 : 10);
886 *retp1 = (unsigned int)p1;
887 *retp2 = (unsigned int)p2;
888 return 0;
891 if (p % 4 == 0)
892 p2 = 1;
893 else
894 p2 = 0;
895 p1 = (p / (1 << (p2 + 1))) - 2;
896 if (p % 4 == 0 && p1 < pll->min_p1) {
897 p2 = 0;
898 p1 = (p / (1 << (p2 + 1))) - 2;
900 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
901 (p1 + 2) * (1 << (p2 + 1)) != p) {
902 return 1;
903 } else {
904 *retp1 = (unsigned int)p1;
905 *retp2 = (unsigned int)p2;
906 return 0;
910 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
911 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
913 u32 m1, m2, n, p1, p2, n1, testm;
914 u32 f_vco, p, p_best = 0, m, f_out = 0;
915 u32 err_max, err_target, err_best = 10000000;
916 u32 n_best = 0, m_best = 0, f_best, f_err;
917 u32 p_min, p_max, p_inc, div_max;
918 struct pll_min_max *pll = &plls[index];
920 /* Accept 0.5% difference, but aim for 0.1% */
921 err_max = 5 * clock / 1000;
922 err_target = clock / 1000;
924 DBG_MSG("Clock is %d\n", clock);
926 div_max = pll->max_vco / clock;
928 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
929 p_min = p_inc;
930 p_max = ROUND_DOWN_TO(div_max, p_inc);
931 if (p_min < pll->min_p)
932 p_min = pll->min_p;
933 if (p_max > pll->max_p)
934 p_max = pll->max_p;
936 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
938 p = p_min;
939 do {
940 if (splitp(index, p, &p1, &p2)) {
941 WRN_MSG("cannot split p = %d\n", p);
942 p += p_inc;
943 continue;
945 n = pll->min_n;
946 f_vco = clock * p;
948 do {
949 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
950 if (m < pll->min_m)
951 m = pll->min_m + 1;
952 if (m > pll->max_m)
953 m = pll->max_m - 1;
954 for (testm = m - 1; testm <= m; testm++) {
955 f_out = calc_vclock3(index, testm, n, p);
956 if (splitm(index, testm, &m1, &m2)) {
957 WRN_MSG("cannot split m = %d\n",
958 testm);
959 continue;
961 if (clock > f_out)
962 f_err = clock - f_out;
963 else/* slightly bias the error for bigger clocks */
964 f_err = f_out - clock + 1;
966 if (f_err < err_best) {
967 m_best = testm;
968 n_best = n;
969 p_best = p;
970 f_best = f_out;
971 err_best = f_err;
974 n++;
975 } while ((n <= pll->max_n) && (f_out >= clock));
976 p += p_inc;
977 } while ((p <= p_max));
979 if (!m_best) {
980 WRN_MSG("cannot find parameters for clock %d\n", clock);
981 return 1;
983 m = m_best;
984 n = n_best;
985 p = p_best;
986 splitm(index, m, &m1, &m2);
987 splitp(index, p, &p1, &p2);
988 n1 = n - 2;
990 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
991 "f: %d (%d), VCO: %d\n",
992 m, m1, m2, n, n1, p, p1, p2,
993 calc_vclock3(index, m, n, p),
994 calc_vclock(index, m1, m2, n1, p1, p2, 0),
995 calc_vclock3(index, m, n, p) * p);
996 *retm1 = m1;
997 *retm2 = m2;
998 *retn = n1;
999 *retp1 = p1;
1000 *retp2 = p2;
1001 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1003 return 0;
1006 static __inline__ int check_overflow(u32 value, u32 limit,
1007 const char *description)
1009 if (value > limit) {
1010 WRN_MSG("%s value %d exceeds limit %d\n",
1011 description, value, limit);
1012 return 1;
1014 return 0;
1017 /* It is assumed that hw is filled in with the initial state information. */
1018 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1019 struct intelfb_hwstate *hw,
1020 struct fb_var_screeninfo *var)
1022 int pipe = PIPE_A;
1023 u32 *dpll, *fp0, *fp1;
1024 u32 m1, m2, n, p1, p2, clock_target, clock;
1025 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1026 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1027 u32 vsync_pol, hsync_pol;
1028 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1029 u32 stride_alignment;
1031 DBG_MSG("intelfbhw_mode_to_hw\n");
1033 /* Disable VGA */
1034 hw->vgacntrl |= VGA_DISABLE;
1036 /* Check whether pipe A or pipe B is enabled. */
1037 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1038 pipe = PIPE_A;
1039 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1040 pipe = PIPE_B;
1042 /* Set which pipe's registers will be set. */
1043 if (pipe == PIPE_B) {
1044 dpll = &hw->dpll_b;
1045 fp0 = &hw->fpb0;
1046 fp1 = &hw->fpb1;
1047 hs = &hw->hsync_b;
1048 hb = &hw->hblank_b;
1049 ht = &hw->htotal_b;
1050 vs = &hw->vsync_b;
1051 vb = &hw->vblank_b;
1052 vt = &hw->vtotal_b;
1053 ss = &hw->src_size_b;
1054 pipe_conf = &hw->pipe_b_conf;
1055 } else {
1056 dpll = &hw->dpll_a;
1057 fp0 = &hw->fpa0;
1058 fp1 = &hw->fpa1;
1059 hs = &hw->hsync_a;
1060 hb = &hw->hblank_a;
1061 ht = &hw->htotal_a;
1062 vs = &hw->vsync_a;
1063 vb = &hw->vblank_a;
1064 vt = &hw->vtotal_a;
1065 ss = &hw->src_size_a;
1066 pipe_conf = &hw->pipe_a_conf;
1069 /* Use ADPA register for sync control. */
1070 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1072 /* sync polarity */
1073 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1074 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1075 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1076 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1077 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1078 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1079 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1080 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1082 /* Connect correct pipe to the analog port DAC */
1083 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1084 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1086 /* Set DPMS state to D0 (on) */
1087 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1088 hw->adpa |= ADPA_DPMS_D0;
1090 hw->adpa |= ADPA_DAC_ENABLE;
1092 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1093 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1094 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1096 /* Desired clock in kHz */
1097 clock_target = 1000000000 / var->pixclock;
1099 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1100 &n, &p1, &p2, &clock)) {
1101 WRN_MSG("calc_pll_params failed\n");
1102 return 1;
1105 /* Check for overflow. */
1106 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1107 return 1;
1108 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1109 return 1;
1110 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1111 return 1;
1112 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1113 return 1;
1114 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1115 return 1;
1117 *dpll &= ~DPLL_P1_FORCE_DIV2;
1118 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1119 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1121 if (IS_I9XX(dinfo)) {
1122 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1123 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1124 } else
1125 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1127 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1128 (m1 << FP_M1_DIVISOR_SHIFT) |
1129 (m2 << FP_M2_DIVISOR_SHIFT);
1130 *fp1 = *fp0;
1132 hw->dvob &= ~PORT_ENABLE;
1133 hw->dvoc &= ~PORT_ENABLE;
1135 /* Use display plane A. */
1136 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1137 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1138 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1139 switch (intelfb_var_to_depth(var)) {
1140 case 8:
1141 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1142 break;
1143 case 15:
1144 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1145 break;
1146 case 16:
1147 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1148 break;
1149 case 24:
1150 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1151 break;
1153 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1154 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1156 /* Set CRTC registers. */
1157 hactive = var->xres;
1158 hsync_start = hactive + var->right_margin;
1159 hsync_end = hsync_start + var->hsync_len;
1160 htotal = hsync_end + var->left_margin;
1161 hblank_start = hactive;
1162 hblank_end = htotal;
1164 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1165 hactive, hsync_start, hsync_end, htotal, hblank_start,
1166 hblank_end);
1168 vactive = var->yres;
1169 if (var->vmode & FB_VMODE_INTERLACED)
1170 vactive--; /* the chip adds 2 halflines automatically */
1171 vsync_start = vactive + var->lower_margin;
1172 vsync_end = vsync_start + var->vsync_len;
1173 vtotal = vsync_end + var->upper_margin;
1174 vblank_start = vactive;
1175 vblank_end = vtotal;
1176 vblank_end = vsync_end + 1;
1178 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1179 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1180 vblank_end);
1182 /* Adjust for register values, and check for overflow. */
1183 hactive--;
1184 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1185 return 1;
1186 hsync_start--;
1187 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1188 return 1;
1189 hsync_end--;
1190 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1191 return 1;
1192 htotal--;
1193 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1194 return 1;
1195 hblank_start--;
1196 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1197 return 1;
1198 hblank_end--;
1199 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1200 return 1;
1202 vactive--;
1203 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1204 return 1;
1205 vsync_start--;
1206 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1207 return 1;
1208 vsync_end--;
1209 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1210 return 1;
1211 vtotal--;
1212 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1213 return 1;
1214 vblank_start--;
1215 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1216 return 1;
1217 vblank_end--;
1218 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1219 return 1;
1221 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1222 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1223 (hblank_end << HSYNCEND_SHIFT);
1224 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1226 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1227 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1228 (vblank_end << VSYNCEND_SHIFT);
1229 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1230 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1231 (vactive << SRC_SIZE_VERT_SHIFT);
1233 hw->disp_a_stride = dinfo->pitch;
1234 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1236 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1237 var->xoffset * var->bits_per_pixel / 8;
1239 hw->disp_a_base += dinfo->fb.offset << 12;
1241 /* Check stride alignment. */
1242 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1243 STRIDE_ALIGNMENT;
1244 if (hw->disp_a_stride % stride_alignment != 0) {
1245 WRN_MSG("display stride %d has bad alignment %d\n",
1246 hw->disp_a_stride, stride_alignment);
1247 return 1;
1250 /* Set the palette to 8-bit mode. */
1251 *pipe_conf &= ~PIPECONF_GAMMA;
1253 if (var->vmode & FB_VMODE_INTERLACED)
1254 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1255 else
1256 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1258 return 0;
1261 /* Program a (non-VGA) video mode. */
1262 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1263 const struct intelfb_hwstate *hw, int blank)
1265 int pipe = PIPE_A;
1266 u32 tmp;
1267 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1268 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1269 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1270 u32 hsync_reg, htotal_reg, hblank_reg;
1271 u32 vsync_reg, vtotal_reg, vblank_reg;
1272 u32 src_size_reg;
1273 u32 count, tmp_val[3];
1275 /* Assume single pipe, display plane A, analog CRT. */
1277 #if VERBOSE > 0
1278 DBG_MSG("intelfbhw_program_mode\n");
1279 #endif
1281 /* Disable VGA */
1282 tmp = INREG(VGACNTRL);
1283 tmp |= VGA_DISABLE;
1284 OUTREG(VGACNTRL, tmp);
1286 /* Check whether pipe A or pipe B is enabled. */
1287 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1288 pipe = PIPE_A;
1289 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1290 pipe = PIPE_B;
1292 dinfo->pipe = pipe;
1294 if (pipe == PIPE_B) {
1295 dpll = &hw->dpll_b;
1296 fp0 = &hw->fpb0;
1297 fp1 = &hw->fpb1;
1298 pipe_conf = &hw->pipe_b_conf;
1299 hs = &hw->hsync_b;
1300 hb = &hw->hblank_b;
1301 ht = &hw->htotal_b;
1302 vs = &hw->vsync_b;
1303 vb = &hw->vblank_b;
1304 vt = &hw->vtotal_b;
1305 ss = &hw->src_size_b;
1306 dpll_reg = DPLL_B;
1307 fp0_reg = FPB0;
1308 fp1_reg = FPB1;
1309 pipe_conf_reg = PIPEBCONF;
1310 pipe_stat_reg = PIPEBSTAT;
1311 hsync_reg = HSYNC_B;
1312 htotal_reg = HTOTAL_B;
1313 hblank_reg = HBLANK_B;
1314 vsync_reg = VSYNC_B;
1315 vtotal_reg = VTOTAL_B;
1316 vblank_reg = VBLANK_B;
1317 src_size_reg = SRC_SIZE_B;
1318 } else {
1319 dpll = &hw->dpll_a;
1320 fp0 = &hw->fpa0;
1321 fp1 = &hw->fpa1;
1322 pipe_conf = &hw->pipe_a_conf;
1323 hs = &hw->hsync_a;
1324 hb = &hw->hblank_a;
1325 ht = &hw->htotal_a;
1326 vs = &hw->vsync_a;
1327 vb = &hw->vblank_a;
1328 vt = &hw->vtotal_a;
1329 ss = &hw->src_size_a;
1330 dpll_reg = DPLL_A;
1331 fp0_reg = FPA0;
1332 fp1_reg = FPA1;
1333 pipe_conf_reg = PIPEACONF;
1334 pipe_stat_reg = PIPEASTAT;
1335 hsync_reg = HSYNC_A;
1336 htotal_reg = HTOTAL_A;
1337 hblank_reg = HBLANK_A;
1338 vsync_reg = VSYNC_A;
1339 vtotal_reg = VTOTAL_A;
1340 vblank_reg = VBLANK_A;
1341 src_size_reg = SRC_SIZE_A;
1344 /* turn off pipe */
1345 tmp = INREG(pipe_conf_reg);
1346 tmp &= ~PIPECONF_ENABLE;
1347 OUTREG(pipe_conf_reg, tmp);
1349 count = 0;
1350 do {
1351 tmp_val[count % 3] = INREG(PIPEA_DSL);
1352 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1353 break;
1354 count++;
1355 udelay(1);
1356 if (count % 200 == 0) {
1357 tmp = INREG(pipe_conf_reg);
1358 tmp &= ~PIPECONF_ENABLE;
1359 OUTREG(pipe_conf_reg, tmp);
1361 } while (count < 2000);
1363 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1365 /* Disable planes A and B. */
1366 tmp = INREG(DSPACNTR);
1367 tmp &= ~DISPPLANE_PLANE_ENABLE;
1368 OUTREG(DSPACNTR, tmp);
1369 tmp = INREG(DSPBCNTR);
1370 tmp &= ~DISPPLANE_PLANE_ENABLE;
1371 OUTREG(DSPBCNTR, tmp);
1373 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1374 mdelay(20);
1376 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1377 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1378 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1380 /* Disable Sync */
1381 tmp = INREG(ADPA);
1382 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1383 tmp |= ADPA_DPMS_D3;
1384 OUTREG(ADPA, tmp);
1386 /* do some funky magic - xyzzy */
1387 OUTREG(0x61204, 0xabcd0000);
1389 /* turn off PLL */
1390 tmp = INREG(dpll_reg);
1391 tmp &= ~DPLL_VCO_ENABLE;
1392 OUTREG(dpll_reg, tmp);
1394 /* Set PLL parameters */
1395 OUTREG(fp0_reg, *fp0);
1396 OUTREG(fp1_reg, *fp1);
1398 /* Enable PLL */
1399 OUTREG(dpll_reg, *dpll);
1401 /* Set DVOs B/C */
1402 OUTREG(DVOB, hw->dvob);
1403 OUTREG(DVOC, hw->dvoc);
1405 /* undo funky magic */
1406 OUTREG(0x61204, 0x00000000);
1408 /* Set ADPA */
1409 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1410 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1412 /* Set pipe parameters */
1413 OUTREG(hsync_reg, *hs);
1414 OUTREG(hblank_reg, *hb);
1415 OUTREG(htotal_reg, *ht);
1416 OUTREG(vsync_reg, *vs);
1417 OUTREG(vblank_reg, *vb);
1418 OUTREG(vtotal_reg, *vt);
1419 OUTREG(src_size_reg, *ss);
1421 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1422 FB_VMODE_ODD_FLD_FIRST)) {
1423 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1424 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1425 break;
1426 case FB_VMODE_INTERLACED: /* even lines first */
1427 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1428 break;
1429 default: /* non-interlaced */
1430 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1432 /* Enable pipe */
1433 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1435 /* Enable sync */
1436 tmp = INREG(ADPA);
1437 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1438 tmp |= ADPA_DPMS_D0;
1439 OUTREG(ADPA, tmp);
1441 /* setup display plane */
1442 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1444 * i830M errata: the display plane must be enabled
1445 * to allow writes to the other bits in the plane
1446 * control register.
1448 tmp = INREG(DSPACNTR);
1449 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1450 tmp |= DISPPLANE_PLANE_ENABLE;
1451 OUTREG(DSPACNTR, tmp);
1452 OUTREG(DSPACNTR,
1453 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1454 mdelay(1);
1458 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1459 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1460 OUTREG(DSPABASE, hw->disp_a_base);
1462 /* Enable plane */
1463 if (!blank) {
1464 tmp = INREG(DSPACNTR);
1465 tmp |= DISPPLANE_PLANE_ENABLE;
1466 OUTREG(DSPACNTR, tmp);
1467 OUTREG(DSPABASE, hw->disp_a_base);
1470 return 0;
1473 /* forward declarations */
1474 static void refresh_ring(struct intelfb_info *dinfo);
1475 static void reset_state(struct intelfb_info *dinfo);
1476 static void do_flush(struct intelfb_info *dinfo);
1478 static u32 get_ring_space(struct intelfb_info *dinfo)
1480 u32 ring_space;
1482 if (dinfo->ring_tail >= dinfo->ring_head)
1483 ring_space = dinfo->ring.size -
1484 (dinfo->ring_tail - dinfo->ring_head);
1485 else
1486 ring_space = dinfo->ring_head - dinfo->ring_tail;
1488 if (ring_space > RING_MIN_FREE)
1489 ring_space -= RING_MIN_FREE;
1490 else
1491 ring_space = 0;
1493 return ring_space;
1496 static int wait_ring(struct intelfb_info *dinfo, int n)
1498 int i = 0;
1499 unsigned long end;
1500 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1502 #if VERBOSE > 0
1503 DBG_MSG("wait_ring: %d\n", n);
1504 #endif
1506 end = jiffies + (HZ * 3);
1507 while (dinfo->ring_space < n) {
1508 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1509 dinfo->ring_space = get_ring_space(dinfo);
1511 if (dinfo->ring_head != last_head) {
1512 end = jiffies + (HZ * 3);
1513 last_head = dinfo->ring_head;
1515 i++;
1516 if (time_before(end, jiffies)) {
1517 if (!i) {
1518 /* Try again */
1519 reset_state(dinfo);
1520 refresh_ring(dinfo);
1521 do_flush(dinfo);
1522 end = jiffies + (HZ * 3);
1523 i = 1;
1524 } else {
1525 WRN_MSG("ring buffer : space: %d wanted %d\n",
1526 dinfo->ring_space, n);
1527 WRN_MSG("lockup - turning off hardware "
1528 "acceleration\n");
1529 dinfo->ring_lockup = 1;
1530 break;
1533 udelay(1);
1535 return i;
1538 static void do_flush(struct intelfb_info *dinfo)
1540 START_RING(2);
1541 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1542 OUT_RING(MI_NOOP);
1543 ADVANCE_RING();
1546 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1548 #if VERBOSE > 0
1549 DBG_MSG("intelfbhw_do_sync\n");
1550 #endif
1552 if (!dinfo->accel)
1553 return;
1556 * Send a flush, then wait until the ring is empty. This is what
1557 * the XFree86 driver does, and actually it doesn't seem a lot worse
1558 * than the recommended method (both have problems).
1560 do_flush(dinfo);
1561 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1562 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1565 static void refresh_ring(struct intelfb_info *dinfo)
1567 #if VERBOSE > 0
1568 DBG_MSG("refresh_ring\n");
1569 #endif
1571 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1572 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1573 dinfo->ring_space = get_ring_space(dinfo);
1576 static void reset_state(struct intelfb_info *dinfo)
1578 int i;
1579 u32 tmp;
1581 #if VERBOSE > 0
1582 DBG_MSG("reset_state\n");
1583 #endif
1585 for (i = 0; i < FENCE_NUM; i++)
1586 OUTREG(FENCE + (i << 2), 0);
1588 /* Flush the ring buffer if it's enabled. */
1589 tmp = INREG(PRI_RING_LENGTH);
1590 if (tmp & RING_ENABLE) {
1591 #if VERBOSE > 0
1592 DBG_MSG("reset_state: ring was enabled\n");
1593 #endif
1594 refresh_ring(dinfo);
1595 intelfbhw_do_sync(dinfo);
1596 DO_RING_IDLE();
1599 OUTREG(PRI_RING_LENGTH, 0);
1600 OUTREG(PRI_RING_HEAD, 0);
1601 OUTREG(PRI_RING_TAIL, 0);
1602 OUTREG(PRI_RING_START, 0);
1605 /* Stop the 2D engine, and turn off the ring buffer. */
1606 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1608 #if VERBOSE > 0
1609 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1610 dinfo->accel, dinfo->ring_active);
1611 #endif
1613 if (!dinfo->accel)
1614 return;
1616 dinfo->ring_active = 0;
1617 reset_state(dinfo);
1621 * Enable the ring buffer, and initialise the 2D engine.
1622 * It is assumed that the graphics engine has been stopped by previously
1623 * calling intelfb_2d_stop().
1625 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1627 #if VERBOSE > 0
1628 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1629 dinfo->accel, dinfo->ring_active);
1630 #endif
1632 if (!dinfo->accel)
1633 return;
1635 /* Initialise the primary ring buffer. */
1636 OUTREG(PRI_RING_LENGTH, 0);
1637 OUTREG(PRI_RING_TAIL, 0);
1638 OUTREG(PRI_RING_HEAD, 0);
1640 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1641 OUTREG(PRI_RING_LENGTH,
1642 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1643 RING_NO_REPORT | RING_ENABLE);
1644 refresh_ring(dinfo);
1645 dinfo->ring_active = 1;
1648 /* 2D fillrect (solid fill or invert) */
1649 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1650 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1652 u32 br00, br09, br13, br14, br16;
1654 #if VERBOSE > 0
1655 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1656 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1657 #endif
1659 br00 = COLOR_BLT_CMD;
1660 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1661 br13 = (rop << ROP_SHIFT) | pitch;
1662 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1663 br16 = color;
1665 switch (bpp) {
1666 case 8:
1667 br13 |= COLOR_DEPTH_8;
1668 break;
1669 case 16:
1670 br13 |= COLOR_DEPTH_16;
1671 break;
1672 case 32:
1673 br13 |= COLOR_DEPTH_32;
1674 br00 |= WRITE_ALPHA | WRITE_RGB;
1675 break;
1678 START_RING(6);
1679 OUT_RING(br00);
1680 OUT_RING(br13);
1681 OUT_RING(br14);
1682 OUT_RING(br09);
1683 OUT_RING(br16);
1684 OUT_RING(MI_NOOP);
1685 ADVANCE_RING();
1687 #if VERBOSE > 0
1688 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1689 dinfo->ring_tail, dinfo->ring_space);
1690 #endif
1693 void
1694 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1695 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1697 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1699 #if VERBOSE > 0
1700 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1701 curx, cury, dstx, dsty, w, h, pitch, bpp);
1702 #endif
1704 br00 = XY_SRC_COPY_BLT_CMD;
1705 br09 = dinfo->fb_start;
1706 br11 = (pitch << PITCH_SHIFT);
1707 br12 = dinfo->fb_start;
1708 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1709 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1710 br23 = ((dstx + w) << WIDTH_SHIFT) |
1711 ((dsty + h) << HEIGHT_SHIFT);
1712 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1714 switch (bpp) {
1715 case 8:
1716 br13 |= COLOR_DEPTH_8;
1717 break;
1718 case 16:
1719 br13 |= COLOR_DEPTH_16;
1720 break;
1721 case 32:
1722 br13 |= COLOR_DEPTH_32;
1723 br00 |= WRITE_ALPHA | WRITE_RGB;
1724 break;
1727 START_RING(8);
1728 OUT_RING(br00);
1729 OUT_RING(br13);
1730 OUT_RING(br22);
1731 OUT_RING(br23);
1732 OUT_RING(br09);
1733 OUT_RING(br26);
1734 OUT_RING(br11);
1735 OUT_RING(br12);
1736 ADVANCE_RING();
1739 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1740 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1741 u32 bpp)
1743 int nbytes, ndwords, pad, tmp;
1744 u32 br00, br09, br13, br18, br19, br22, br23;
1745 int dat, ix, iy, iw;
1746 int i, j;
1748 #if VERBOSE > 0
1749 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1750 #endif
1752 /* size in bytes of a padded scanline */
1753 nbytes = ROUND_UP_TO(w, 16) / 8;
1755 /* Total bytes of padded scanline data to write out. */
1756 nbytes = nbytes * h;
1759 * Check if the glyph data exceeds the immediate mode limit.
1760 * It would take a large font (1K pixels) to hit this limit.
1762 if (nbytes > MAX_MONO_IMM_SIZE)
1763 return 0;
1765 /* Src data is packaged a dword (32-bit) at a time. */
1766 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1769 * Ring has to be padded to a quad word. But because the command starts
1770 with 7 bytes, pad only if there is an even number of ndwords
1772 pad = !(ndwords % 2);
1774 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1775 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1776 br09 = dinfo->fb_start;
1777 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1778 br18 = bg;
1779 br19 = fg;
1780 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1781 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1783 switch (bpp) {
1784 case 8:
1785 br13 |= COLOR_DEPTH_8;
1786 break;
1787 case 16:
1788 br13 |= COLOR_DEPTH_16;
1789 break;
1790 case 32:
1791 br13 |= COLOR_DEPTH_32;
1792 br00 |= WRITE_ALPHA | WRITE_RGB;
1793 break;
1796 START_RING(8 + ndwords);
1797 OUT_RING(br00);
1798 OUT_RING(br13);
1799 OUT_RING(br22);
1800 OUT_RING(br23);
1801 OUT_RING(br09);
1802 OUT_RING(br18);
1803 OUT_RING(br19);
1804 ix = iy = 0;
1805 iw = ROUND_UP_TO(w, 8) / 8;
1806 while (ndwords--) {
1807 dat = 0;
1808 for (j = 0; j < 2; ++j) {
1809 for (i = 0; i < 2; ++i) {
1810 if (ix != iw || i == 0)
1811 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1813 if (ix == iw && iy != (h-1)) {
1814 ix = 0;
1815 ++iy;
1818 OUT_RING(dat);
1820 if (pad)
1821 OUT_RING(MI_NOOP);
1822 ADVANCE_RING();
1824 return 1;
1827 /* HW cursor functions. */
1828 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1830 u32 tmp;
1832 #if VERBOSE > 0
1833 DBG_MSG("intelfbhw_cursor_init\n");
1834 #endif
1836 if (dinfo->mobile || IS_I9XX(dinfo)) {
1837 if (!dinfo->cursor.physical)
1838 return;
1839 tmp = INREG(CURSOR_A_CONTROL);
1840 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1841 CURSOR_MEM_TYPE_LOCAL |
1842 (1 << CURSOR_PIPE_SELECT_SHIFT));
1843 tmp |= CURSOR_MODE_DISABLE;
1844 OUTREG(CURSOR_A_CONTROL, tmp);
1845 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1846 } else {
1847 tmp = INREG(CURSOR_CONTROL);
1848 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1849 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1850 tmp = CURSOR_FORMAT_3C;
1851 OUTREG(CURSOR_CONTROL, tmp);
1852 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1853 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1854 (64 << CURSOR_SIZE_V_SHIFT);
1855 OUTREG(CURSOR_SIZE, tmp);
1859 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1861 u32 tmp;
1863 #if VERBOSE > 0
1864 DBG_MSG("intelfbhw_cursor_hide\n");
1865 #endif
1867 dinfo->cursor_on = 0;
1868 if (dinfo->mobile || IS_I9XX(dinfo)) {
1869 if (!dinfo->cursor.physical)
1870 return;
1871 tmp = INREG(CURSOR_A_CONTROL);
1872 tmp &= ~CURSOR_MODE_MASK;
1873 tmp |= CURSOR_MODE_DISABLE;
1874 OUTREG(CURSOR_A_CONTROL, tmp);
1875 /* Flush changes */
1876 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1877 } else {
1878 tmp = INREG(CURSOR_CONTROL);
1879 tmp &= ~CURSOR_ENABLE;
1880 OUTREG(CURSOR_CONTROL, tmp);
1884 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1886 u32 tmp;
1888 #if VERBOSE > 0
1889 DBG_MSG("intelfbhw_cursor_show\n");
1890 #endif
1892 dinfo->cursor_on = 1;
1894 if (dinfo->cursor_blanked)
1895 return;
1897 if (dinfo->mobile || IS_I9XX(dinfo)) {
1898 if (!dinfo->cursor.physical)
1899 return;
1900 tmp = INREG(CURSOR_A_CONTROL);
1901 tmp &= ~CURSOR_MODE_MASK;
1902 tmp |= CURSOR_MODE_64_4C_AX;
1903 OUTREG(CURSOR_A_CONTROL, tmp);
1904 /* Flush changes */
1905 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1906 } else {
1907 tmp = INREG(CURSOR_CONTROL);
1908 tmp |= CURSOR_ENABLE;
1909 OUTREG(CURSOR_CONTROL, tmp);
1913 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1915 u32 tmp;
1917 #if VERBOSE > 0
1918 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1919 #endif
1922 * Sets the position. The coordinates are assumed to already
1923 * have any offset adjusted. Assume that the cursor is never
1924 * completely off-screen, and that x, y are always >= 0.
1927 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1928 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1929 OUTREG(CURSOR_A_POSITION, tmp);
1931 if (IS_I9XX(dinfo))
1932 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1935 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1937 #if VERBOSE > 0
1938 DBG_MSG("intelfbhw_cursor_setcolor\n");
1939 #endif
1941 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1942 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1943 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1944 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1947 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1948 u8 *data)
1950 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1951 int i, j, w = width / 8;
1952 int mod = width % 8, t_mask, d_mask;
1954 #if VERBOSE > 0
1955 DBG_MSG("intelfbhw_cursor_load\n");
1956 #endif
1958 if (!dinfo->cursor.virtual)
1959 return;
1961 t_mask = 0xff >> mod;
1962 d_mask = ~(0xff >> mod);
1963 for (i = height; i--; ) {
1964 for (j = 0; j < w; j++) {
1965 writeb(0x00, addr + j);
1966 writeb(*(data++), addr + j+8);
1968 if (mod) {
1969 writeb(t_mask, addr + j);
1970 writeb(*(data++) & d_mask, addr + j+8);
1972 addr += 16;
1976 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1978 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1979 int i, j;
1981 #if VERBOSE > 0
1982 DBG_MSG("intelfbhw_cursor_reset\n");
1983 #endif
1985 if (!dinfo->cursor.virtual)
1986 return;
1988 for (i = 64; i--; ) {
1989 for (j = 0; j < 8; j++) {
1990 writeb(0xff, addr + j+0);
1991 writeb(0x00, addr + j+8);
1993 addr += 16;
1997 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1999 u16 tmp;
2000 struct intelfb_info *dinfo = dev_id;
2002 spin_lock(&dinfo->int_lock);
2004 tmp = INREG16(IIR);
2005 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2006 tmp &= PIPE_A_EVENT_INTERRUPT;
2007 else
2008 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2010 if (tmp == 0) {
2011 spin_unlock(&dinfo->int_lock);
2012 return IRQ_RETVAL(0); /* not us */
2015 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2016 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2018 OUTREG16(IIR, tmp);
2019 if (dinfo->vsync.pan_display) {
2020 dinfo->vsync.pan_display = 0;
2021 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2024 dinfo->vsync.count++;
2025 wake_up_interruptible(&dinfo->vsync.wait);
2027 spin_unlock(&dinfo->int_lock);
2029 return IRQ_RETVAL(1);
2032 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2034 u16 tmp;
2035 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2036 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2037 "intelfb", dinfo)) {
2038 clear_bit(0, &dinfo->irq_flags);
2039 return -EINVAL;
2042 spin_lock_irq(&dinfo->int_lock);
2043 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2044 OUTREG16(IMR, 0);
2045 } else
2046 spin_lock_irq(&dinfo->int_lock);
2048 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2049 tmp = PIPE_A_EVENT_INTERRUPT;
2050 else
2051 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2052 if (tmp != INREG16(IER)) {
2053 DBG_MSG("changing IER to 0x%X\n", tmp);
2054 OUTREG16(IER, tmp);
2057 spin_unlock_irq(&dinfo->int_lock);
2058 return 0;
2061 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2063 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2064 if (dinfo->vsync.pan_display) {
2065 dinfo->vsync.pan_display = 0;
2066 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2068 spin_lock_irq(&dinfo->int_lock);
2069 OUTREG16(HWSTAM, 0xffff);
2070 OUTREG16(IMR, 0xffff);
2071 OUTREG16(IER, 0x0);
2073 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2074 spin_unlock_irq(&dinfo->int_lock);
2076 free_irq(dinfo->pdev->irq, dinfo);
2080 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2082 struct intelfb_vsync *vsync;
2083 unsigned int count;
2084 int ret;
2086 switch (pipe) {
2087 case 0:
2088 vsync = &dinfo->vsync;
2089 break;
2090 default:
2091 return -ENODEV;
2094 ret = intelfbhw_enable_irq(dinfo);
2095 if (ret)
2096 return ret;
2098 count = vsync->count;
2099 ret = wait_event_interruptible_timeout(vsync->wait,
2100 count != vsync->count, HZ / 10);
2101 if (ret < 0)
2102 return ret;
2103 if (ret == 0) {
2104 DBG_MSG("wait_for_vsync timed out!\n");
2105 return -ETIMEDOUT;
2108 return 0;