[NET]: Make the loopback device per network namespace.
[linux-2.6/linux-loongson.git] / net / ipv4 / route.c
blob2a9b363e820cb0cebc85b892a7acda076ae8c1cc
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
16 * Fixes:
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
26 * clamper.
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
73 #include <linux/mm.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
79 #include <linux/in.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/workqueue.h>
85 #include <linux/skbuff.h>
86 #include <linux/inetdevice.h>
87 #include <linux/igmp.h>
88 #include <linux/pkt_sched.h>
89 #include <linux/mroute.h>
90 #include <linux/netfilter_ipv4.h>
91 #include <linux/random.h>
92 #include <linux/jhash.h>
93 #include <linux/rcupdate.h>
94 #include <linux/times.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
97 #include <net/ip.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
102 #include <net/arp.h>
103 #include <net/tcp.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
108 #ifdef CONFIG_SYSCTL
109 #include <linux/sysctl.h>
110 #endif
112 #define RT_FL_TOS(oldflp) \
113 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115 #define IP_MAX_MTU 0xFFF0
117 #define RT_GC_TIMEOUT (300*HZ)
119 static int ip_rt_min_delay = 2 * HZ;
120 static int ip_rt_max_delay = 10 * HZ;
121 static int ip_rt_max_size;
122 static int ip_rt_gc_timeout = RT_GC_TIMEOUT;
123 static int ip_rt_gc_interval = 60 * HZ;
124 static int ip_rt_gc_min_interval = HZ / 2;
125 static int ip_rt_redirect_number = 9;
126 static int ip_rt_redirect_load = HZ / 50;
127 static int ip_rt_redirect_silence = ((HZ / 50) << (9 + 1));
128 static int ip_rt_error_cost = HZ;
129 static int ip_rt_error_burst = 5 * HZ;
130 static int ip_rt_gc_elasticity = 8;
131 static int ip_rt_mtu_expires = 10 * 60 * HZ;
132 static int ip_rt_min_pmtu = 512 + 20 + 20;
133 static int ip_rt_min_advmss = 256;
134 static int ip_rt_secret_interval = 10 * 60 * HZ;
135 static unsigned long rt_deadline;
137 #define RTprint(a...) printk(KERN_DEBUG a)
139 static struct timer_list rt_flush_timer;
140 static void rt_check_expire(struct work_struct *work);
141 static DECLARE_DELAYED_WORK(expires_work, rt_check_expire);
142 static struct timer_list rt_secret_timer;
145 * Interface to generic destination cache.
148 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
149 static void ipv4_dst_destroy(struct dst_entry *dst);
150 static void ipv4_dst_ifdown(struct dst_entry *dst,
151 struct net_device *dev, int how);
152 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
153 static void ipv4_link_failure(struct sk_buff *skb);
154 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
155 static int rt_garbage_collect(void);
158 static struct dst_ops ipv4_dst_ops = {
159 .family = AF_INET,
160 .protocol = __constant_htons(ETH_P_IP),
161 .gc = rt_garbage_collect,
162 .check = ipv4_dst_check,
163 .destroy = ipv4_dst_destroy,
164 .ifdown = ipv4_dst_ifdown,
165 .negative_advice = ipv4_negative_advice,
166 .link_failure = ipv4_link_failure,
167 .update_pmtu = ip_rt_update_pmtu,
168 .entry_size = sizeof(struct rtable),
171 #define ECN_OR_COST(class) TC_PRIO_##class
173 const __u8 ip_tos2prio[16] = {
174 TC_PRIO_BESTEFFORT,
175 ECN_OR_COST(FILLER),
176 TC_PRIO_BESTEFFORT,
177 ECN_OR_COST(BESTEFFORT),
178 TC_PRIO_BULK,
179 ECN_OR_COST(BULK),
180 TC_PRIO_BULK,
181 ECN_OR_COST(BULK),
182 TC_PRIO_INTERACTIVE,
183 ECN_OR_COST(INTERACTIVE),
184 TC_PRIO_INTERACTIVE,
185 ECN_OR_COST(INTERACTIVE),
186 TC_PRIO_INTERACTIVE_BULK,
187 ECN_OR_COST(INTERACTIVE_BULK),
188 TC_PRIO_INTERACTIVE_BULK,
189 ECN_OR_COST(INTERACTIVE_BULK)
194 * Route cache.
197 /* The locking scheme is rather straight forward:
199 * 1) Read-Copy Update protects the buckets of the central route hash.
200 * 2) Only writers remove entries, and they hold the lock
201 * as they look at rtable reference counts.
202 * 3) Only readers acquire references to rtable entries,
203 * they do so with atomic increments and with the
204 * lock held.
207 struct rt_hash_bucket {
208 struct rtable *chain;
210 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
211 defined(CONFIG_PROVE_LOCKING)
213 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
214 * The size of this table is a power of two and depends on the number of CPUS.
215 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
217 #ifdef CONFIG_LOCKDEP
218 # define RT_HASH_LOCK_SZ 256
219 #else
220 # if NR_CPUS >= 32
221 # define RT_HASH_LOCK_SZ 4096
222 # elif NR_CPUS >= 16
223 # define RT_HASH_LOCK_SZ 2048
224 # elif NR_CPUS >= 8
225 # define RT_HASH_LOCK_SZ 1024
226 # elif NR_CPUS >= 4
227 # define RT_HASH_LOCK_SZ 512
228 # else
229 # define RT_HASH_LOCK_SZ 256
230 # endif
231 #endif
233 static spinlock_t *rt_hash_locks;
234 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
235 # define rt_hash_lock_init() { \
236 int i; \
237 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ, GFP_KERNEL); \
238 if (!rt_hash_locks) panic("IP: failed to allocate rt_hash_locks\n"); \
239 for (i = 0; i < RT_HASH_LOCK_SZ; i++) \
240 spin_lock_init(&rt_hash_locks[i]); \
242 #else
243 # define rt_hash_lock_addr(slot) NULL
244 # define rt_hash_lock_init()
245 #endif
247 static struct rt_hash_bucket *rt_hash_table;
248 static unsigned rt_hash_mask;
249 static int rt_hash_log;
250 static unsigned int rt_hash_rnd;
252 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
253 #define RT_CACHE_STAT_INC(field) \
254 (__raw_get_cpu_var(rt_cache_stat).field++)
256 static int rt_intern_hash(unsigned hash, struct rtable *rth,
257 struct rtable **res);
259 static unsigned int rt_hash_code(u32 daddr, u32 saddr)
261 return (jhash_2words(daddr, saddr, rt_hash_rnd)
262 & rt_hash_mask);
265 #define rt_hash(daddr, saddr, idx) \
266 rt_hash_code((__force u32)(__be32)(daddr),\
267 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
269 #ifdef CONFIG_PROC_FS
270 struct rt_cache_iter_state {
271 int bucket;
274 static struct rtable *rt_cache_get_first(struct seq_file *seq)
276 struct rtable *r = NULL;
277 struct rt_cache_iter_state *st = seq->private;
279 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
280 rcu_read_lock_bh();
281 r = rt_hash_table[st->bucket].chain;
282 if (r)
283 break;
284 rcu_read_unlock_bh();
286 return r;
289 static struct rtable *rt_cache_get_next(struct seq_file *seq, struct rtable *r)
291 struct rt_cache_iter_state *st = rcu_dereference(seq->private);
293 r = r->u.dst.rt_next;
294 while (!r) {
295 rcu_read_unlock_bh();
296 if (--st->bucket < 0)
297 break;
298 rcu_read_lock_bh();
299 r = rt_hash_table[st->bucket].chain;
301 return r;
304 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
306 struct rtable *r = rt_cache_get_first(seq);
308 if (r)
309 while (pos && (r = rt_cache_get_next(seq, r)))
310 --pos;
311 return pos ? NULL : r;
314 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
316 return *pos ? rt_cache_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
319 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
321 struct rtable *r = NULL;
323 if (v == SEQ_START_TOKEN)
324 r = rt_cache_get_first(seq);
325 else
326 r = rt_cache_get_next(seq, v);
327 ++*pos;
328 return r;
331 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
333 if (v && v != SEQ_START_TOKEN)
334 rcu_read_unlock_bh();
337 static int rt_cache_seq_show(struct seq_file *seq, void *v)
339 if (v == SEQ_START_TOKEN)
340 seq_printf(seq, "%-127s\n",
341 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
342 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
343 "HHUptod\tSpecDst");
344 else {
345 struct rtable *r = v;
346 char temp[256];
348 sprintf(temp, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
349 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
350 r->u.dst.dev ? r->u.dst.dev->name : "*",
351 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
352 r->rt_flags, atomic_read(&r->u.dst.__refcnt),
353 r->u.dst.__use, 0, (unsigned long)r->rt_src,
354 (dst_metric(&r->u.dst, RTAX_ADVMSS) ?
355 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
356 dst_metric(&r->u.dst, RTAX_WINDOW),
357 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
358 dst_metric(&r->u.dst, RTAX_RTTVAR)),
359 r->fl.fl4_tos,
360 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
361 r->u.dst.hh ? (r->u.dst.hh->hh_output ==
362 dev_queue_xmit) : 0,
363 r->rt_spec_dst);
364 seq_printf(seq, "%-127s\n", temp);
366 return 0;
369 static const struct seq_operations rt_cache_seq_ops = {
370 .start = rt_cache_seq_start,
371 .next = rt_cache_seq_next,
372 .stop = rt_cache_seq_stop,
373 .show = rt_cache_seq_show,
376 static int rt_cache_seq_open(struct inode *inode, struct file *file)
378 struct seq_file *seq;
379 int rc = -ENOMEM;
380 struct rt_cache_iter_state *s;
382 s = kzalloc(sizeof(*s), GFP_KERNEL);
383 if (!s)
384 goto out;
385 rc = seq_open(file, &rt_cache_seq_ops);
386 if (rc)
387 goto out_kfree;
388 seq = file->private_data;
389 seq->private = s;
390 out:
391 return rc;
392 out_kfree:
393 kfree(s);
394 goto out;
397 static const struct file_operations rt_cache_seq_fops = {
398 .owner = THIS_MODULE,
399 .open = rt_cache_seq_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
406 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
408 int cpu;
410 if (*pos == 0)
411 return SEQ_START_TOKEN;
413 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
414 if (!cpu_possible(cpu))
415 continue;
416 *pos = cpu+1;
417 return &per_cpu(rt_cache_stat, cpu);
419 return NULL;
422 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
424 int cpu;
426 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
427 if (!cpu_possible(cpu))
428 continue;
429 *pos = cpu+1;
430 return &per_cpu(rt_cache_stat, cpu);
432 return NULL;
436 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
441 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
443 struct rt_cache_stat *st = v;
445 if (v == SEQ_START_TOKEN) {
446 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
447 return 0;
450 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x "
451 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
452 atomic_read(&ipv4_dst_ops.entries),
453 st->in_hit,
454 st->in_slow_tot,
455 st->in_slow_mc,
456 st->in_no_route,
457 st->in_brd,
458 st->in_martian_dst,
459 st->in_martian_src,
461 st->out_hit,
462 st->out_slow_tot,
463 st->out_slow_mc,
465 st->gc_total,
466 st->gc_ignored,
467 st->gc_goal_miss,
468 st->gc_dst_overflow,
469 st->in_hlist_search,
470 st->out_hlist_search
472 return 0;
475 static const struct seq_operations rt_cpu_seq_ops = {
476 .start = rt_cpu_seq_start,
477 .next = rt_cpu_seq_next,
478 .stop = rt_cpu_seq_stop,
479 .show = rt_cpu_seq_show,
483 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
485 return seq_open(file, &rt_cpu_seq_ops);
488 static const struct file_operations rt_cpu_seq_fops = {
489 .owner = THIS_MODULE,
490 .open = rt_cpu_seq_open,
491 .read = seq_read,
492 .llseek = seq_lseek,
493 .release = seq_release,
496 #endif /* CONFIG_PROC_FS */
498 static __inline__ void rt_free(struct rtable *rt)
500 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
503 static __inline__ void rt_drop(struct rtable *rt)
505 ip_rt_put(rt);
506 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
509 static __inline__ int rt_fast_clean(struct rtable *rth)
511 /* Kill broadcast/multicast entries very aggresively, if they
512 collide in hash table with more useful entries */
513 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
514 rth->fl.iif && rth->u.dst.rt_next;
517 static __inline__ int rt_valuable(struct rtable *rth)
519 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
520 rth->u.dst.expires;
523 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
525 unsigned long age;
526 int ret = 0;
528 if (atomic_read(&rth->u.dst.__refcnt))
529 goto out;
531 ret = 1;
532 if (rth->u.dst.expires &&
533 time_after_eq(jiffies, rth->u.dst.expires))
534 goto out;
536 age = jiffies - rth->u.dst.lastuse;
537 ret = 0;
538 if ((age <= tmo1 && !rt_fast_clean(rth)) ||
539 (age <= tmo2 && rt_valuable(rth)))
540 goto out;
541 ret = 1;
542 out: return ret;
545 /* Bits of score are:
546 * 31: very valuable
547 * 30: not quite useless
548 * 29..0: usage counter
550 static inline u32 rt_score(struct rtable *rt)
552 u32 score = jiffies - rt->u.dst.lastuse;
554 score = ~score & ~(3<<30);
556 if (rt_valuable(rt))
557 score |= (1<<31);
559 if (!rt->fl.iif ||
560 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
561 score |= (1<<30);
563 return score;
566 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
568 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
569 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
570 (fl1->mark ^ fl2->mark) |
571 (*(u16 *)&fl1->nl_u.ip4_u.tos ^
572 *(u16 *)&fl2->nl_u.ip4_u.tos) |
573 (fl1->oif ^ fl2->oif) |
574 (fl1->iif ^ fl2->iif)) == 0;
577 static void rt_check_expire(struct work_struct *work)
579 static unsigned int rover;
580 unsigned int i = rover, goal;
581 struct rtable *rth, **rthp;
582 u64 mult;
584 mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
585 if (ip_rt_gc_timeout > 1)
586 do_div(mult, ip_rt_gc_timeout);
587 goal = (unsigned int)mult;
588 if (goal > rt_hash_mask)
589 goal = rt_hash_mask + 1;
590 for (; goal > 0; goal--) {
591 unsigned long tmo = ip_rt_gc_timeout;
593 i = (i + 1) & rt_hash_mask;
594 rthp = &rt_hash_table[i].chain;
596 if (*rthp == 0)
597 continue;
598 spin_lock_bh(rt_hash_lock_addr(i));
599 while ((rth = *rthp) != NULL) {
600 if (rth->u.dst.expires) {
601 /* Entry is expired even if it is in use */
602 if (time_before_eq(jiffies, rth->u.dst.expires)) {
603 tmo >>= 1;
604 rthp = &rth->u.dst.rt_next;
605 continue;
607 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
608 tmo >>= 1;
609 rthp = &rth->u.dst.rt_next;
610 continue;
613 /* Cleanup aged off entries. */
614 *rthp = rth->u.dst.rt_next;
615 rt_free(rth);
617 spin_unlock_bh(rt_hash_lock_addr(i));
619 rover = i;
620 schedule_delayed_work(&expires_work, ip_rt_gc_interval);
623 /* This can run from both BH and non-BH contexts, the latter
624 * in the case of a forced flush event.
626 static void rt_run_flush(unsigned long dummy)
628 int i;
629 struct rtable *rth, *next;
631 rt_deadline = 0;
633 get_random_bytes(&rt_hash_rnd, 4);
635 for (i = rt_hash_mask; i >= 0; i--) {
636 spin_lock_bh(rt_hash_lock_addr(i));
637 rth = rt_hash_table[i].chain;
638 if (rth)
639 rt_hash_table[i].chain = NULL;
640 spin_unlock_bh(rt_hash_lock_addr(i));
642 for (; rth; rth = next) {
643 next = rth->u.dst.rt_next;
644 rt_free(rth);
649 static DEFINE_SPINLOCK(rt_flush_lock);
651 void rt_cache_flush(int delay)
653 unsigned long now = jiffies;
654 int user_mode = !in_softirq();
656 if (delay < 0)
657 delay = ip_rt_min_delay;
659 spin_lock_bh(&rt_flush_lock);
661 if (del_timer(&rt_flush_timer) && delay > 0 && rt_deadline) {
662 long tmo = (long)(rt_deadline - now);
664 /* If flush timer is already running
665 and flush request is not immediate (delay > 0):
667 if deadline is not achieved, prolongate timer to "delay",
668 otherwise fire it at deadline time.
671 if (user_mode && tmo < ip_rt_max_delay-ip_rt_min_delay)
672 tmo = 0;
674 if (delay > tmo)
675 delay = tmo;
678 if (delay <= 0) {
679 spin_unlock_bh(&rt_flush_lock);
680 rt_run_flush(0);
681 return;
684 if (rt_deadline == 0)
685 rt_deadline = now + ip_rt_max_delay;
687 mod_timer(&rt_flush_timer, now+delay);
688 spin_unlock_bh(&rt_flush_lock);
691 static void rt_secret_rebuild(unsigned long dummy)
693 unsigned long now = jiffies;
695 rt_cache_flush(0);
696 mod_timer(&rt_secret_timer, now + ip_rt_secret_interval);
700 Short description of GC goals.
702 We want to build algorithm, which will keep routing cache
703 at some equilibrium point, when number of aged off entries
704 is kept approximately equal to newly generated ones.
706 Current expiration strength is variable "expire".
707 We try to adjust it dynamically, so that if networking
708 is idle expires is large enough to keep enough of warm entries,
709 and when load increases it reduces to limit cache size.
712 static int rt_garbage_collect(void)
714 static unsigned long expire = RT_GC_TIMEOUT;
715 static unsigned long last_gc;
716 static int rover;
717 static int equilibrium;
718 struct rtable *rth, **rthp;
719 unsigned long now = jiffies;
720 int goal;
723 * Garbage collection is pretty expensive,
724 * do not make it too frequently.
727 RT_CACHE_STAT_INC(gc_total);
729 if (now - last_gc < ip_rt_gc_min_interval &&
730 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
731 RT_CACHE_STAT_INC(gc_ignored);
732 goto out;
735 /* Calculate number of entries, which we want to expire now. */
736 goal = atomic_read(&ipv4_dst_ops.entries) -
737 (ip_rt_gc_elasticity << rt_hash_log);
738 if (goal <= 0) {
739 if (equilibrium < ipv4_dst_ops.gc_thresh)
740 equilibrium = ipv4_dst_ops.gc_thresh;
741 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
742 if (goal > 0) {
743 equilibrium += min_t(unsigned int, goal / 2, rt_hash_mask + 1);
744 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
746 } else {
747 /* We are in dangerous area. Try to reduce cache really
748 * aggressively.
750 goal = max_t(unsigned int, goal / 2, rt_hash_mask + 1);
751 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
754 if (now - last_gc >= ip_rt_gc_min_interval)
755 last_gc = now;
757 if (goal <= 0) {
758 equilibrium += goal;
759 goto work_done;
762 do {
763 int i, k;
765 for (i = rt_hash_mask, k = rover; i >= 0; i--) {
766 unsigned long tmo = expire;
768 k = (k + 1) & rt_hash_mask;
769 rthp = &rt_hash_table[k].chain;
770 spin_lock_bh(rt_hash_lock_addr(k));
771 while ((rth = *rthp) != NULL) {
772 if (!rt_may_expire(rth, tmo, expire)) {
773 tmo >>= 1;
774 rthp = &rth->u.dst.rt_next;
775 continue;
777 *rthp = rth->u.dst.rt_next;
778 rt_free(rth);
779 goal--;
781 spin_unlock_bh(rt_hash_lock_addr(k));
782 if (goal <= 0)
783 break;
785 rover = k;
787 if (goal <= 0)
788 goto work_done;
790 /* Goal is not achieved. We stop process if:
792 - if expire reduced to zero. Otherwise, expire is halfed.
793 - if table is not full.
794 - if we are called from interrupt.
795 - jiffies check is just fallback/debug loop breaker.
796 We will not spin here for long time in any case.
799 RT_CACHE_STAT_INC(gc_goal_miss);
801 if (expire == 0)
802 break;
804 expire >>= 1;
805 #if RT_CACHE_DEBUG >= 2
806 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
807 atomic_read(&ipv4_dst_ops.entries), goal, i);
808 #endif
810 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
811 goto out;
812 } while (!in_softirq() && time_before_eq(jiffies, now));
814 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
815 goto out;
816 if (net_ratelimit())
817 printk(KERN_WARNING "dst cache overflow\n");
818 RT_CACHE_STAT_INC(gc_dst_overflow);
819 return 1;
821 work_done:
822 expire += ip_rt_gc_min_interval;
823 if (expire > ip_rt_gc_timeout ||
824 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
825 expire = ip_rt_gc_timeout;
826 #if RT_CACHE_DEBUG >= 2
827 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
828 atomic_read(&ipv4_dst_ops.entries), goal, rover);
829 #endif
830 out: return 0;
833 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
835 struct rtable *rth, **rthp;
836 unsigned long now;
837 struct rtable *cand, **candp;
838 u32 min_score;
839 int chain_length;
840 int attempts = !in_softirq();
842 restart:
843 chain_length = 0;
844 min_score = ~(u32)0;
845 cand = NULL;
846 candp = NULL;
847 now = jiffies;
849 rthp = &rt_hash_table[hash].chain;
851 spin_lock_bh(rt_hash_lock_addr(hash));
852 while ((rth = *rthp) != NULL) {
853 if (compare_keys(&rth->fl, &rt->fl)) {
854 /* Put it first */
855 *rthp = rth->u.dst.rt_next;
857 * Since lookup is lockfree, the deletion
858 * must be visible to another weakly ordered CPU before
859 * the insertion at the start of the hash chain.
861 rcu_assign_pointer(rth->u.dst.rt_next,
862 rt_hash_table[hash].chain);
864 * Since lookup is lockfree, the update writes
865 * must be ordered for consistency on SMP.
867 rcu_assign_pointer(rt_hash_table[hash].chain, rth);
869 rth->u.dst.__use++;
870 dst_hold(&rth->u.dst);
871 rth->u.dst.lastuse = now;
872 spin_unlock_bh(rt_hash_lock_addr(hash));
874 rt_drop(rt);
875 *rp = rth;
876 return 0;
879 if (!atomic_read(&rth->u.dst.__refcnt)) {
880 u32 score = rt_score(rth);
882 if (score <= min_score) {
883 cand = rth;
884 candp = rthp;
885 min_score = score;
889 chain_length++;
891 rthp = &rth->u.dst.rt_next;
894 if (cand) {
895 /* ip_rt_gc_elasticity used to be average length of chain
896 * length, when exceeded gc becomes really aggressive.
898 * The second limit is less certain. At the moment it allows
899 * only 2 entries per bucket. We will see.
901 if (chain_length > ip_rt_gc_elasticity) {
902 *candp = cand->u.dst.rt_next;
903 rt_free(cand);
907 /* Try to bind route to arp only if it is output
908 route or unicast forwarding path.
910 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
911 int err = arp_bind_neighbour(&rt->u.dst);
912 if (err) {
913 spin_unlock_bh(rt_hash_lock_addr(hash));
915 if (err != -ENOBUFS) {
916 rt_drop(rt);
917 return err;
920 /* Neighbour tables are full and nothing
921 can be released. Try to shrink route cache,
922 it is most likely it holds some neighbour records.
924 if (attempts-- > 0) {
925 int saved_elasticity = ip_rt_gc_elasticity;
926 int saved_int = ip_rt_gc_min_interval;
927 ip_rt_gc_elasticity = 1;
928 ip_rt_gc_min_interval = 0;
929 rt_garbage_collect();
930 ip_rt_gc_min_interval = saved_int;
931 ip_rt_gc_elasticity = saved_elasticity;
932 goto restart;
935 if (net_ratelimit())
936 printk(KERN_WARNING "Neighbour table overflow.\n");
937 rt_drop(rt);
938 return -ENOBUFS;
942 rt->u.dst.rt_next = rt_hash_table[hash].chain;
943 #if RT_CACHE_DEBUG >= 2
944 if (rt->u.dst.rt_next) {
945 struct rtable *trt;
946 printk(KERN_DEBUG "rt_cache @%02x: %u.%u.%u.%u", hash,
947 NIPQUAD(rt->rt_dst));
948 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
949 printk(" . %u.%u.%u.%u", NIPQUAD(trt->rt_dst));
950 printk("\n");
952 #endif
953 rt_hash_table[hash].chain = rt;
954 spin_unlock_bh(rt_hash_lock_addr(hash));
955 *rp = rt;
956 return 0;
959 void rt_bind_peer(struct rtable *rt, int create)
961 static DEFINE_SPINLOCK(rt_peer_lock);
962 struct inet_peer *peer;
964 peer = inet_getpeer(rt->rt_dst, create);
966 spin_lock_bh(&rt_peer_lock);
967 if (rt->peer == NULL) {
968 rt->peer = peer;
969 peer = NULL;
971 spin_unlock_bh(&rt_peer_lock);
972 if (peer)
973 inet_putpeer(peer);
977 * Peer allocation may fail only in serious out-of-memory conditions. However
978 * we still can generate some output.
979 * Random ID selection looks a bit dangerous because we have no chances to
980 * select ID being unique in a reasonable period of time.
981 * But broken packet identifier may be better than no packet at all.
983 static void ip_select_fb_ident(struct iphdr *iph)
985 static DEFINE_SPINLOCK(ip_fb_id_lock);
986 static u32 ip_fallback_id;
987 u32 salt;
989 spin_lock_bh(&ip_fb_id_lock);
990 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
991 iph->id = htons(salt & 0xFFFF);
992 ip_fallback_id = salt;
993 spin_unlock_bh(&ip_fb_id_lock);
996 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
998 struct rtable *rt = (struct rtable *) dst;
1000 if (rt) {
1001 if (rt->peer == NULL)
1002 rt_bind_peer(rt, 1);
1004 /* If peer is attached to destination, it is never detached,
1005 so that we need not to grab a lock to dereference it.
1007 if (rt->peer) {
1008 iph->id = htons(inet_getid(rt->peer, more));
1009 return;
1011 } else
1012 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1013 __builtin_return_address(0));
1015 ip_select_fb_ident(iph);
1018 static void rt_del(unsigned hash, struct rtable *rt)
1020 struct rtable **rthp;
1022 spin_lock_bh(rt_hash_lock_addr(hash));
1023 ip_rt_put(rt);
1024 for (rthp = &rt_hash_table[hash].chain; *rthp;
1025 rthp = &(*rthp)->u.dst.rt_next)
1026 if (*rthp == rt) {
1027 *rthp = rt->u.dst.rt_next;
1028 rt_free(rt);
1029 break;
1031 spin_unlock_bh(rt_hash_lock_addr(hash));
1034 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1035 __be32 saddr, struct net_device *dev)
1037 int i, k;
1038 struct in_device *in_dev = in_dev_get(dev);
1039 struct rtable *rth, **rthp;
1040 __be32 skeys[2] = { saddr, 0 };
1041 int ikeys[2] = { dev->ifindex, 0 };
1042 struct netevent_redirect netevent;
1044 if (!in_dev)
1045 return;
1047 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1048 || MULTICAST(new_gw) || BADCLASS(new_gw) || ZERONET(new_gw))
1049 goto reject_redirect;
1051 if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1052 if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1053 goto reject_redirect;
1054 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1055 goto reject_redirect;
1056 } else {
1057 if (inet_addr_type(new_gw) != RTN_UNICAST)
1058 goto reject_redirect;
1061 for (i = 0; i < 2; i++) {
1062 for (k = 0; k < 2; k++) {
1063 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k]);
1065 rthp=&rt_hash_table[hash].chain;
1067 rcu_read_lock();
1068 while ((rth = rcu_dereference(*rthp)) != NULL) {
1069 struct rtable *rt;
1071 if (rth->fl.fl4_dst != daddr ||
1072 rth->fl.fl4_src != skeys[i] ||
1073 rth->fl.oif != ikeys[k] ||
1074 rth->fl.iif != 0) {
1075 rthp = &rth->u.dst.rt_next;
1076 continue;
1079 if (rth->rt_dst != daddr ||
1080 rth->rt_src != saddr ||
1081 rth->u.dst.error ||
1082 rth->rt_gateway != old_gw ||
1083 rth->u.dst.dev != dev)
1084 break;
1086 dst_hold(&rth->u.dst);
1087 rcu_read_unlock();
1089 rt = dst_alloc(&ipv4_dst_ops);
1090 if (rt == NULL) {
1091 ip_rt_put(rth);
1092 in_dev_put(in_dev);
1093 return;
1096 /* Copy all the information. */
1097 *rt = *rth;
1098 INIT_RCU_HEAD(&rt->u.dst.rcu_head);
1099 rt->u.dst.__use = 1;
1100 atomic_set(&rt->u.dst.__refcnt, 1);
1101 rt->u.dst.child = NULL;
1102 if (rt->u.dst.dev)
1103 dev_hold(rt->u.dst.dev);
1104 if (rt->idev)
1105 in_dev_hold(rt->idev);
1106 rt->u.dst.obsolete = 0;
1107 rt->u.dst.lastuse = jiffies;
1108 rt->u.dst.path = &rt->u.dst;
1109 rt->u.dst.neighbour = NULL;
1110 rt->u.dst.hh = NULL;
1111 rt->u.dst.xfrm = NULL;
1113 rt->rt_flags |= RTCF_REDIRECTED;
1115 /* Gateway is different ... */
1116 rt->rt_gateway = new_gw;
1118 /* Redirect received -> path was valid */
1119 dst_confirm(&rth->u.dst);
1121 if (rt->peer)
1122 atomic_inc(&rt->peer->refcnt);
1124 if (arp_bind_neighbour(&rt->u.dst) ||
1125 !(rt->u.dst.neighbour->nud_state &
1126 NUD_VALID)) {
1127 if (rt->u.dst.neighbour)
1128 neigh_event_send(rt->u.dst.neighbour, NULL);
1129 ip_rt_put(rth);
1130 rt_drop(rt);
1131 goto do_next;
1134 netevent.old = &rth->u.dst;
1135 netevent.new = &rt->u.dst;
1136 call_netevent_notifiers(NETEVENT_REDIRECT,
1137 &netevent);
1139 rt_del(hash, rth);
1140 if (!rt_intern_hash(hash, rt, &rt))
1141 ip_rt_put(rt);
1142 goto do_next;
1144 rcu_read_unlock();
1145 do_next:
1149 in_dev_put(in_dev);
1150 return;
1152 reject_redirect:
1153 #ifdef CONFIG_IP_ROUTE_VERBOSE
1154 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1155 printk(KERN_INFO "Redirect from %u.%u.%u.%u on %s about "
1156 "%u.%u.%u.%u ignored.\n"
1157 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1158 NIPQUAD(old_gw), dev->name, NIPQUAD(new_gw),
1159 NIPQUAD(saddr), NIPQUAD(daddr));
1160 #endif
1161 in_dev_put(in_dev);
1164 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1166 struct rtable *rt = (struct rtable*)dst;
1167 struct dst_entry *ret = dst;
1169 if (rt) {
1170 if (dst->obsolete) {
1171 ip_rt_put(rt);
1172 ret = NULL;
1173 } else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1174 rt->u.dst.expires) {
1175 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1176 rt->fl.oif);
1177 #if RT_CACHE_DEBUG >= 1
1178 printk(KERN_DEBUG "ip_rt_advice: redirect to "
1179 "%u.%u.%u.%u/%02x dropped\n",
1180 NIPQUAD(rt->rt_dst), rt->fl.fl4_tos);
1181 #endif
1182 rt_del(hash, rt);
1183 ret = NULL;
1186 return ret;
1190 * Algorithm:
1191 * 1. The first ip_rt_redirect_number redirects are sent
1192 * with exponential backoff, then we stop sending them at all,
1193 * assuming that the host ignores our redirects.
1194 * 2. If we did not see packets requiring redirects
1195 * during ip_rt_redirect_silence, we assume that the host
1196 * forgot redirected route and start to send redirects again.
1198 * This algorithm is much cheaper and more intelligent than dumb load limiting
1199 * in icmp.c.
1201 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1202 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1205 void ip_rt_send_redirect(struct sk_buff *skb)
1207 struct rtable *rt = (struct rtable*)skb->dst;
1208 struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1210 if (!in_dev)
1211 return;
1213 if (!IN_DEV_TX_REDIRECTS(in_dev))
1214 goto out;
1216 /* No redirected packets during ip_rt_redirect_silence;
1217 * reset the algorithm.
1219 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1220 rt->u.dst.rate_tokens = 0;
1222 /* Too many ignored redirects; do not send anything
1223 * set u.dst.rate_last to the last seen redirected packet.
1225 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1226 rt->u.dst.rate_last = jiffies;
1227 goto out;
1230 /* Check for load limit; set rate_last to the latest sent
1231 * redirect.
1233 if (rt->u.dst.rate_tokens == 0 ||
1234 time_after(jiffies,
1235 (rt->u.dst.rate_last +
1236 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1237 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1238 rt->u.dst.rate_last = jiffies;
1239 ++rt->u.dst.rate_tokens;
1240 #ifdef CONFIG_IP_ROUTE_VERBOSE
1241 if (IN_DEV_LOG_MARTIANS(in_dev) &&
1242 rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1243 net_ratelimit())
1244 printk(KERN_WARNING "host %u.%u.%u.%u/if%d ignores "
1245 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1246 NIPQUAD(rt->rt_src), rt->rt_iif,
1247 NIPQUAD(rt->rt_dst), NIPQUAD(rt->rt_gateway));
1248 #endif
1250 out:
1251 in_dev_put(in_dev);
1254 static int ip_error(struct sk_buff *skb)
1256 struct rtable *rt = (struct rtable*)skb->dst;
1257 unsigned long now;
1258 int code;
1260 switch (rt->u.dst.error) {
1261 case EINVAL:
1262 default:
1263 goto out;
1264 case EHOSTUNREACH:
1265 code = ICMP_HOST_UNREACH;
1266 break;
1267 case ENETUNREACH:
1268 code = ICMP_NET_UNREACH;
1269 break;
1270 case EACCES:
1271 code = ICMP_PKT_FILTERED;
1272 break;
1275 now = jiffies;
1276 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1277 if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1278 rt->u.dst.rate_tokens = ip_rt_error_burst;
1279 rt->u.dst.rate_last = now;
1280 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1281 rt->u.dst.rate_tokens -= ip_rt_error_cost;
1282 icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1285 out: kfree_skb(skb);
1286 return 0;
1290 * The last two values are not from the RFC but
1291 * are needed for AMPRnet AX.25 paths.
1294 static const unsigned short mtu_plateau[] =
1295 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1297 static __inline__ unsigned short guess_mtu(unsigned short old_mtu)
1299 int i;
1301 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1302 if (old_mtu > mtu_plateau[i])
1303 return mtu_plateau[i];
1304 return 68;
1307 unsigned short ip_rt_frag_needed(struct iphdr *iph, unsigned short new_mtu)
1309 int i;
1310 unsigned short old_mtu = ntohs(iph->tot_len);
1311 struct rtable *rth;
1312 __be32 skeys[2] = { iph->saddr, 0, };
1313 __be32 daddr = iph->daddr;
1314 unsigned short est_mtu = 0;
1316 if (ipv4_config.no_pmtu_disc)
1317 return 0;
1319 for (i = 0; i < 2; i++) {
1320 unsigned hash = rt_hash(daddr, skeys[i], 0);
1322 rcu_read_lock();
1323 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1324 rth = rcu_dereference(rth->u.dst.rt_next)) {
1325 if (rth->fl.fl4_dst == daddr &&
1326 rth->fl.fl4_src == skeys[i] &&
1327 rth->rt_dst == daddr &&
1328 rth->rt_src == iph->saddr &&
1329 rth->fl.iif == 0 &&
1330 !(dst_metric_locked(&rth->u.dst, RTAX_MTU))) {
1331 unsigned short mtu = new_mtu;
1333 if (new_mtu < 68 || new_mtu >= old_mtu) {
1335 /* BSD 4.2 compatibility hack :-( */
1336 if (mtu == 0 &&
1337 old_mtu >= rth->u.dst.metrics[RTAX_MTU-1] &&
1338 old_mtu >= 68 + (iph->ihl << 2))
1339 old_mtu -= iph->ihl << 2;
1341 mtu = guess_mtu(old_mtu);
1343 if (mtu <= rth->u.dst.metrics[RTAX_MTU-1]) {
1344 if (mtu < rth->u.dst.metrics[RTAX_MTU-1]) {
1345 dst_confirm(&rth->u.dst);
1346 if (mtu < ip_rt_min_pmtu) {
1347 mtu = ip_rt_min_pmtu;
1348 rth->u.dst.metrics[RTAX_LOCK-1] |=
1349 (1 << RTAX_MTU);
1351 rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1352 dst_set_expires(&rth->u.dst,
1353 ip_rt_mtu_expires);
1355 est_mtu = mtu;
1359 rcu_read_unlock();
1361 return est_mtu ? : new_mtu;
1364 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1366 if (dst->metrics[RTAX_MTU-1] > mtu && mtu >= 68 &&
1367 !(dst_metric_locked(dst, RTAX_MTU))) {
1368 if (mtu < ip_rt_min_pmtu) {
1369 mtu = ip_rt_min_pmtu;
1370 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1372 dst->metrics[RTAX_MTU-1] = mtu;
1373 dst_set_expires(dst, ip_rt_mtu_expires);
1374 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1378 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1380 return NULL;
1383 static void ipv4_dst_destroy(struct dst_entry *dst)
1385 struct rtable *rt = (struct rtable *) dst;
1386 struct inet_peer *peer = rt->peer;
1387 struct in_device *idev = rt->idev;
1389 if (peer) {
1390 rt->peer = NULL;
1391 inet_putpeer(peer);
1394 if (idev) {
1395 rt->idev = NULL;
1396 in_dev_put(idev);
1400 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1401 int how)
1403 struct rtable *rt = (struct rtable *) dst;
1404 struct in_device *idev = rt->idev;
1405 if (dev != init_net.loopback_dev && idev && idev->dev == dev) {
1406 struct in_device *loopback_idev = in_dev_get(init_net.loopback_dev);
1407 if (loopback_idev) {
1408 rt->idev = loopback_idev;
1409 in_dev_put(idev);
1414 static void ipv4_link_failure(struct sk_buff *skb)
1416 struct rtable *rt;
1418 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1420 rt = (struct rtable *) skb->dst;
1421 if (rt)
1422 dst_set_expires(&rt->u.dst, 0);
1425 static int ip_rt_bug(struct sk_buff *skb)
1427 printk(KERN_DEBUG "ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1428 NIPQUAD(ip_hdr(skb)->saddr), NIPQUAD(ip_hdr(skb)->daddr),
1429 skb->dev ? skb->dev->name : "?");
1430 kfree_skb(skb);
1431 return 0;
1435 We do not cache source address of outgoing interface,
1436 because it is used only by IP RR, TS and SRR options,
1437 so that it out of fast path.
1439 BTW remember: "addr" is allowed to be not aligned
1440 in IP options!
1443 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1445 __be32 src;
1446 struct fib_result res;
1448 if (rt->fl.iif == 0)
1449 src = rt->rt_src;
1450 else if (fib_lookup(&rt->fl, &res) == 0) {
1451 src = FIB_RES_PREFSRC(res);
1452 fib_res_put(&res);
1453 } else
1454 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1455 RT_SCOPE_UNIVERSE);
1456 memcpy(addr, &src, 4);
1459 #ifdef CONFIG_NET_CLS_ROUTE
1460 static void set_class_tag(struct rtable *rt, u32 tag)
1462 if (!(rt->u.dst.tclassid & 0xFFFF))
1463 rt->u.dst.tclassid |= tag & 0xFFFF;
1464 if (!(rt->u.dst.tclassid & 0xFFFF0000))
1465 rt->u.dst.tclassid |= tag & 0xFFFF0000;
1467 #endif
1469 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1471 struct fib_info *fi = res->fi;
1473 if (fi) {
1474 if (FIB_RES_GW(*res) &&
1475 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1476 rt->rt_gateway = FIB_RES_GW(*res);
1477 memcpy(rt->u.dst.metrics, fi->fib_metrics,
1478 sizeof(rt->u.dst.metrics));
1479 if (fi->fib_mtu == 0) {
1480 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1481 if (rt->u.dst.metrics[RTAX_LOCK-1] & (1 << RTAX_MTU) &&
1482 rt->rt_gateway != rt->rt_dst &&
1483 rt->u.dst.dev->mtu > 576)
1484 rt->u.dst.metrics[RTAX_MTU-1] = 576;
1486 #ifdef CONFIG_NET_CLS_ROUTE
1487 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1488 #endif
1489 } else
1490 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1492 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1493 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1494 if (rt->u.dst.metrics[RTAX_MTU-1] > IP_MAX_MTU)
1495 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1496 if (rt->u.dst.metrics[RTAX_ADVMSS-1] == 0)
1497 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1498 ip_rt_min_advmss);
1499 if (rt->u.dst.metrics[RTAX_ADVMSS-1] > 65535 - 40)
1500 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1502 #ifdef CONFIG_NET_CLS_ROUTE
1503 #ifdef CONFIG_IP_MULTIPLE_TABLES
1504 set_class_tag(rt, fib_rules_tclass(res));
1505 #endif
1506 set_class_tag(rt, itag);
1507 #endif
1508 rt->rt_type = res->type;
1511 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1512 u8 tos, struct net_device *dev, int our)
1514 unsigned hash;
1515 struct rtable *rth;
1516 __be32 spec_dst;
1517 struct in_device *in_dev = in_dev_get(dev);
1518 u32 itag = 0;
1520 /* Primary sanity checks. */
1522 if (in_dev == NULL)
1523 return -EINVAL;
1525 if (MULTICAST(saddr) || BADCLASS(saddr) || LOOPBACK(saddr) ||
1526 skb->protocol != htons(ETH_P_IP))
1527 goto e_inval;
1529 if (ZERONET(saddr)) {
1530 if (!LOCAL_MCAST(daddr))
1531 goto e_inval;
1532 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1533 } else if (fib_validate_source(saddr, 0, tos, 0,
1534 dev, &spec_dst, &itag) < 0)
1535 goto e_inval;
1537 rth = dst_alloc(&ipv4_dst_ops);
1538 if (!rth)
1539 goto e_nobufs;
1541 rth->u.dst.output= ip_rt_bug;
1543 atomic_set(&rth->u.dst.__refcnt, 1);
1544 rth->u.dst.flags= DST_HOST;
1545 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1546 rth->u.dst.flags |= DST_NOPOLICY;
1547 rth->fl.fl4_dst = daddr;
1548 rth->rt_dst = daddr;
1549 rth->fl.fl4_tos = tos;
1550 rth->fl.mark = skb->mark;
1551 rth->fl.fl4_src = saddr;
1552 rth->rt_src = saddr;
1553 #ifdef CONFIG_NET_CLS_ROUTE
1554 rth->u.dst.tclassid = itag;
1555 #endif
1556 rth->rt_iif =
1557 rth->fl.iif = dev->ifindex;
1558 rth->u.dst.dev = init_net.loopback_dev;
1559 dev_hold(rth->u.dst.dev);
1560 rth->idev = in_dev_get(rth->u.dst.dev);
1561 rth->fl.oif = 0;
1562 rth->rt_gateway = daddr;
1563 rth->rt_spec_dst= spec_dst;
1564 rth->rt_type = RTN_MULTICAST;
1565 rth->rt_flags = RTCF_MULTICAST;
1566 if (our) {
1567 rth->u.dst.input= ip_local_deliver;
1568 rth->rt_flags |= RTCF_LOCAL;
1571 #ifdef CONFIG_IP_MROUTE
1572 if (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
1573 rth->u.dst.input = ip_mr_input;
1574 #endif
1575 RT_CACHE_STAT_INC(in_slow_mc);
1577 in_dev_put(in_dev);
1578 hash = rt_hash(daddr, saddr, dev->ifindex);
1579 return rt_intern_hash(hash, rth, (struct rtable**) &skb->dst);
1581 e_nobufs:
1582 in_dev_put(in_dev);
1583 return -ENOBUFS;
1585 e_inval:
1586 in_dev_put(in_dev);
1587 return -EINVAL;
1591 static void ip_handle_martian_source(struct net_device *dev,
1592 struct in_device *in_dev,
1593 struct sk_buff *skb,
1594 __be32 daddr,
1595 __be32 saddr)
1597 RT_CACHE_STAT_INC(in_martian_src);
1598 #ifdef CONFIG_IP_ROUTE_VERBOSE
1599 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1601 * RFC1812 recommendation, if source is martian,
1602 * the only hint is MAC header.
1604 printk(KERN_WARNING "martian source %u.%u.%u.%u from "
1605 "%u.%u.%u.%u, on dev %s\n",
1606 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1607 if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1608 int i;
1609 const unsigned char *p = skb_mac_header(skb);
1610 printk(KERN_WARNING "ll header: ");
1611 for (i = 0; i < dev->hard_header_len; i++, p++) {
1612 printk("%02x", *p);
1613 if (i < (dev->hard_header_len - 1))
1614 printk(":");
1616 printk("\n");
1619 #endif
1622 static inline int __mkroute_input(struct sk_buff *skb,
1623 struct fib_result* res,
1624 struct in_device *in_dev,
1625 __be32 daddr, __be32 saddr, u32 tos,
1626 struct rtable **result)
1629 struct rtable *rth;
1630 int err;
1631 struct in_device *out_dev;
1632 unsigned flags = 0;
1633 __be32 spec_dst;
1634 u32 itag;
1636 /* get a working reference to the output device */
1637 out_dev = in_dev_get(FIB_RES_DEV(*res));
1638 if (out_dev == NULL) {
1639 if (net_ratelimit())
1640 printk(KERN_CRIT "Bug in ip_route_input" \
1641 "_slow(). Please, report\n");
1642 return -EINVAL;
1646 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1647 in_dev->dev, &spec_dst, &itag);
1648 if (err < 0) {
1649 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1650 saddr);
1652 err = -EINVAL;
1653 goto cleanup;
1656 if (err)
1657 flags |= RTCF_DIRECTSRC;
1659 if (out_dev == in_dev && err && !(flags & (RTCF_NAT | RTCF_MASQ)) &&
1660 (IN_DEV_SHARED_MEDIA(out_dev) ||
1661 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1662 flags |= RTCF_DOREDIRECT;
1664 if (skb->protocol != htons(ETH_P_IP)) {
1665 /* Not IP (i.e. ARP). Do not create route, if it is
1666 * invalid for proxy arp. DNAT routes are always valid.
1668 if (out_dev == in_dev && !(flags & RTCF_DNAT)) {
1669 err = -EINVAL;
1670 goto cleanup;
1675 rth = dst_alloc(&ipv4_dst_ops);
1676 if (!rth) {
1677 err = -ENOBUFS;
1678 goto cleanup;
1681 atomic_set(&rth->u.dst.__refcnt, 1);
1682 rth->u.dst.flags= DST_HOST;
1683 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1684 rth->u.dst.flags |= DST_NOPOLICY;
1685 if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1686 rth->u.dst.flags |= DST_NOXFRM;
1687 rth->fl.fl4_dst = daddr;
1688 rth->rt_dst = daddr;
1689 rth->fl.fl4_tos = tos;
1690 rth->fl.mark = skb->mark;
1691 rth->fl.fl4_src = saddr;
1692 rth->rt_src = saddr;
1693 rth->rt_gateway = daddr;
1694 rth->rt_iif =
1695 rth->fl.iif = in_dev->dev->ifindex;
1696 rth->u.dst.dev = (out_dev)->dev;
1697 dev_hold(rth->u.dst.dev);
1698 rth->idev = in_dev_get(rth->u.dst.dev);
1699 rth->fl.oif = 0;
1700 rth->rt_spec_dst= spec_dst;
1702 rth->u.dst.input = ip_forward;
1703 rth->u.dst.output = ip_output;
1705 rt_set_nexthop(rth, res, itag);
1707 rth->rt_flags = flags;
1709 *result = rth;
1710 err = 0;
1711 cleanup:
1712 /* release the working reference to the output device */
1713 in_dev_put(out_dev);
1714 return err;
1717 static inline int ip_mkroute_input(struct sk_buff *skb,
1718 struct fib_result* res,
1719 const struct flowi *fl,
1720 struct in_device *in_dev,
1721 __be32 daddr, __be32 saddr, u32 tos)
1723 struct rtable* rth = NULL;
1724 int err;
1725 unsigned hash;
1727 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1728 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
1729 fib_select_multipath(fl, res);
1730 #endif
1732 /* create a routing cache entry */
1733 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
1734 if (err)
1735 return err;
1737 /* put it into the cache */
1738 hash = rt_hash(daddr, saddr, fl->iif);
1739 return rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1743 * NOTE. We drop all the packets that has local source
1744 * addresses, because every properly looped back packet
1745 * must have correct destination already attached by output routine.
1747 * Such approach solves two big problems:
1748 * 1. Not simplex devices are handled properly.
1749 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1752 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1753 u8 tos, struct net_device *dev)
1755 struct fib_result res;
1756 struct in_device *in_dev = in_dev_get(dev);
1757 struct flowi fl = { .nl_u = { .ip4_u =
1758 { .daddr = daddr,
1759 .saddr = saddr,
1760 .tos = tos,
1761 .scope = RT_SCOPE_UNIVERSE,
1762 } },
1763 .mark = skb->mark,
1764 .iif = dev->ifindex };
1765 unsigned flags = 0;
1766 u32 itag = 0;
1767 struct rtable * rth;
1768 unsigned hash;
1769 __be32 spec_dst;
1770 int err = -EINVAL;
1771 int free_res = 0;
1773 /* IP on this device is disabled. */
1775 if (!in_dev)
1776 goto out;
1778 /* Check for the most weird martians, which can be not detected
1779 by fib_lookup.
1782 if (MULTICAST(saddr) || BADCLASS(saddr) || LOOPBACK(saddr))
1783 goto martian_source;
1785 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
1786 goto brd_input;
1788 /* Accept zero addresses only to limited broadcast;
1789 * I even do not know to fix it or not. Waiting for complains :-)
1791 if (ZERONET(saddr))
1792 goto martian_source;
1794 if (BADCLASS(daddr) || ZERONET(daddr) || LOOPBACK(daddr))
1795 goto martian_destination;
1798 * Now we are ready to route packet.
1800 if ((err = fib_lookup(&fl, &res)) != 0) {
1801 if (!IN_DEV_FORWARD(in_dev))
1802 goto e_hostunreach;
1803 goto no_route;
1805 free_res = 1;
1807 RT_CACHE_STAT_INC(in_slow_tot);
1809 if (res.type == RTN_BROADCAST)
1810 goto brd_input;
1812 if (res.type == RTN_LOCAL) {
1813 int result;
1814 result = fib_validate_source(saddr, daddr, tos,
1815 init_net.loopback_dev->ifindex,
1816 dev, &spec_dst, &itag);
1817 if (result < 0)
1818 goto martian_source;
1819 if (result)
1820 flags |= RTCF_DIRECTSRC;
1821 spec_dst = daddr;
1822 goto local_input;
1825 if (!IN_DEV_FORWARD(in_dev))
1826 goto e_hostunreach;
1827 if (res.type != RTN_UNICAST)
1828 goto martian_destination;
1830 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
1831 if (err == -ENOBUFS)
1832 goto e_nobufs;
1833 if (err == -EINVAL)
1834 goto e_inval;
1836 done:
1837 in_dev_put(in_dev);
1838 if (free_res)
1839 fib_res_put(&res);
1840 out: return err;
1842 brd_input:
1843 if (skb->protocol != htons(ETH_P_IP))
1844 goto e_inval;
1846 if (ZERONET(saddr))
1847 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1848 else {
1849 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
1850 &itag);
1851 if (err < 0)
1852 goto martian_source;
1853 if (err)
1854 flags |= RTCF_DIRECTSRC;
1856 flags |= RTCF_BROADCAST;
1857 res.type = RTN_BROADCAST;
1858 RT_CACHE_STAT_INC(in_brd);
1860 local_input:
1861 rth = dst_alloc(&ipv4_dst_ops);
1862 if (!rth)
1863 goto e_nobufs;
1865 rth->u.dst.output= ip_rt_bug;
1867 atomic_set(&rth->u.dst.__refcnt, 1);
1868 rth->u.dst.flags= DST_HOST;
1869 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1870 rth->u.dst.flags |= DST_NOPOLICY;
1871 rth->fl.fl4_dst = daddr;
1872 rth->rt_dst = daddr;
1873 rth->fl.fl4_tos = tos;
1874 rth->fl.mark = skb->mark;
1875 rth->fl.fl4_src = saddr;
1876 rth->rt_src = saddr;
1877 #ifdef CONFIG_NET_CLS_ROUTE
1878 rth->u.dst.tclassid = itag;
1879 #endif
1880 rth->rt_iif =
1881 rth->fl.iif = dev->ifindex;
1882 rth->u.dst.dev = init_net.loopback_dev;
1883 dev_hold(rth->u.dst.dev);
1884 rth->idev = in_dev_get(rth->u.dst.dev);
1885 rth->rt_gateway = daddr;
1886 rth->rt_spec_dst= spec_dst;
1887 rth->u.dst.input= ip_local_deliver;
1888 rth->rt_flags = flags|RTCF_LOCAL;
1889 if (res.type == RTN_UNREACHABLE) {
1890 rth->u.dst.input= ip_error;
1891 rth->u.dst.error= -err;
1892 rth->rt_flags &= ~RTCF_LOCAL;
1894 rth->rt_type = res.type;
1895 hash = rt_hash(daddr, saddr, fl.iif);
1896 err = rt_intern_hash(hash, rth, (struct rtable**)&skb->dst);
1897 goto done;
1899 no_route:
1900 RT_CACHE_STAT_INC(in_no_route);
1901 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
1902 res.type = RTN_UNREACHABLE;
1903 goto local_input;
1906 * Do not cache martian addresses: they should be logged (RFC1812)
1908 martian_destination:
1909 RT_CACHE_STAT_INC(in_martian_dst);
1910 #ifdef CONFIG_IP_ROUTE_VERBOSE
1911 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1912 printk(KERN_WARNING "martian destination %u.%u.%u.%u from "
1913 "%u.%u.%u.%u, dev %s\n",
1914 NIPQUAD(daddr), NIPQUAD(saddr), dev->name);
1915 #endif
1917 e_hostunreach:
1918 err = -EHOSTUNREACH;
1919 goto done;
1921 e_inval:
1922 err = -EINVAL;
1923 goto done;
1925 e_nobufs:
1926 err = -ENOBUFS;
1927 goto done;
1929 martian_source:
1930 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
1931 goto e_inval;
1934 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1935 u8 tos, struct net_device *dev)
1937 struct rtable * rth;
1938 unsigned hash;
1939 int iif = dev->ifindex;
1941 tos &= IPTOS_RT_MASK;
1942 hash = rt_hash(daddr, saddr, iif);
1944 rcu_read_lock();
1945 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1946 rth = rcu_dereference(rth->u.dst.rt_next)) {
1947 if (rth->fl.fl4_dst == daddr &&
1948 rth->fl.fl4_src == saddr &&
1949 rth->fl.iif == iif &&
1950 rth->fl.oif == 0 &&
1951 rth->fl.mark == skb->mark &&
1952 rth->fl.fl4_tos == tos) {
1953 rth->u.dst.lastuse = jiffies;
1954 dst_hold(&rth->u.dst);
1955 rth->u.dst.__use++;
1956 RT_CACHE_STAT_INC(in_hit);
1957 rcu_read_unlock();
1958 skb->dst = (struct dst_entry*)rth;
1959 return 0;
1961 RT_CACHE_STAT_INC(in_hlist_search);
1963 rcu_read_unlock();
1965 /* Multicast recognition logic is moved from route cache to here.
1966 The problem was that too many Ethernet cards have broken/missing
1967 hardware multicast filters :-( As result the host on multicasting
1968 network acquires a lot of useless route cache entries, sort of
1969 SDR messages from all the world. Now we try to get rid of them.
1970 Really, provided software IP multicast filter is organized
1971 reasonably (at least, hashed), it does not result in a slowdown
1972 comparing with route cache reject entries.
1973 Note, that multicast routers are not affected, because
1974 route cache entry is created eventually.
1976 if (MULTICAST(daddr)) {
1977 struct in_device *in_dev;
1979 rcu_read_lock();
1980 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
1981 int our = ip_check_mc(in_dev, daddr, saddr,
1982 ip_hdr(skb)->protocol);
1983 if (our
1984 #ifdef CONFIG_IP_MROUTE
1985 || (!LOCAL_MCAST(daddr) && IN_DEV_MFORWARD(in_dev))
1986 #endif
1988 rcu_read_unlock();
1989 return ip_route_input_mc(skb, daddr, saddr,
1990 tos, dev, our);
1993 rcu_read_unlock();
1994 return -EINVAL;
1996 return ip_route_input_slow(skb, daddr, saddr, tos, dev);
1999 static inline int __mkroute_output(struct rtable **result,
2000 struct fib_result* res,
2001 const struct flowi *fl,
2002 const struct flowi *oldflp,
2003 struct net_device *dev_out,
2004 unsigned flags)
2006 struct rtable *rth;
2007 struct in_device *in_dev;
2008 u32 tos = RT_FL_TOS(oldflp);
2009 int err = 0;
2011 if (LOOPBACK(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2012 return -EINVAL;
2014 if (fl->fl4_dst == htonl(0xFFFFFFFF))
2015 res->type = RTN_BROADCAST;
2016 else if (MULTICAST(fl->fl4_dst))
2017 res->type = RTN_MULTICAST;
2018 else if (BADCLASS(fl->fl4_dst) || ZERONET(fl->fl4_dst))
2019 return -EINVAL;
2021 if (dev_out->flags & IFF_LOOPBACK)
2022 flags |= RTCF_LOCAL;
2024 /* get work reference to inet device */
2025 in_dev = in_dev_get(dev_out);
2026 if (!in_dev)
2027 return -EINVAL;
2029 if (res->type == RTN_BROADCAST) {
2030 flags |= RTCF_BROADCAST | RTCF_LOCAL;
2031 if (res->fi) {
2032 fib_info_put(res->fi);
2033 res->fi = NULL;
2035 } else if (res->type == RTN_MULTICAST) {
2036 flags |= RTCF_MULTICAST|RTCF_LOCAL;
2037 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2038 oldflp->proto))
2039 flags &= ~RTCF_LOCAL;
2040 /* If multicast route do not exist use
2041 default one, but do not gateway in this case.
2042 Yes, it is hack.
2044 if (res->fi && res->prefixlen < 4) {
2045 fib_info_put(res->fi);
2046 res->fi = NULL;
2051 rth = dst_alloc(&ipv4_dst_ops);
2052 if (!rth) {
2053 err = -ENOBUFS;
2054 goto cleanup;
2057 atomic_set(&rth->u.dst.__refcnt, 1);
2058 rth->u.dst.flags= DST_HOST;
2059 if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2060 rth->u.dst.flags |= DST_NOXFRM;
2061 if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2062 rth->u.dst.flags |= DST_NOPOLICY;
2064 rth->fl.fl4_dst = oldflp->fl4_dst;
2065 rth->fl.fl4_tos = tos;
2066 rth->fl.fl4_src = oldflp->fl4_src;
2067 rth->fl.oif = oldflp->oif;
2068 rth->fl.mark = oldflp->mark;
2069 rth->rt_dst = fl->fl4_dst;
2070 rth->rt_src = fl->fl4_src;
2071 rth->rt_iif = oldflp->oif ? : dev_out->ifindex;
2072 /* get references to the devices that are to be hold by the routing
2073 cache entry */
2074 rth->u.dst.dev = dev_out;
2075 dev_hold(dev_out);
2076 rth->idev = in_dev_get(dev_out);
2077 rth->rt_gateway = fl->fl4_dst;
2078 rth->rt_spec_dst= fl->fl4_src;
2080 rth->u.dst.output=ip_output;
2082 RT_CACHE_STAT_INC(out_slow_tot);
2084 if (flags & RTCF_LOCAL) {
2085 rth->u.dst.input = ip_local_deliver;
2086 rth->rt_spec_dst = fl->fl4_dst;
2088 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2089 rth->rt_spec_dst = fl->fl4_src;
2090 if (flags & RTCF_LOCAL &&
2091 !(dev_out->flags & IFF_LOOPBACK)) {
2092 rth->u.dst.output = ip_mc_output;
2093 RT_CACHE_STAT_INC(out_slow_mc);
2095 #ifdef CONFIG_IP_MROUTE
2096 if (res->type == RTN_MULTICAST) {
2097 if (IN_DEV_MFORWARD(in_dev) &&
2098 !LOCAL_MCAST(oldflp->fl4_dst)) {
2099 rth->u.dst.input = ip_mr_input;
2100 rth->u.dst.output = ip_mc_output;
2103 #endif
2106 rt_set_nexthop(rth, res, 0);
2108 rth->rt_flags = flags;
2110 *result = rth;
2111 cleanup:
2112 /* release work reference to inet device */
2113 in_dev_put(in_dev);
2115 return err;
2118 static inline int ip_mkroute_output(struct rtable **rp,
2119 struct fib_result* res,
2120 const struct flowi *fl,
2121 const struct flowi *oldflp,
2122 struct net_device *dev_out,
2123 unsigned flags)
2125 struct rtable *rth = NULL;
2126 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2127 unsigned hash;
2128 if (err == 0) {
2129 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif);
2130 err = rt_intern_hash(hash, rth, rp);
2133 return err;
2137 * Major route resolver routine.
2140 static int ip_route_output_slow(struct rtable **rp, const struct flowi *oldflp)
2142 u32 tos = RT_FL_TOS(oldflp);
2143 struct flowi fl = { .nl_u = { .ip4_u =
2144 { .daddr = oldflp->fl4_dst,
2145 .saddr = oldflp->fl4_src,
2146 .tos = tos & IPTOS_RT_MASK,
2147 .scope = ((tos & RTO_ONLINK) ?
2148 RT_SCOPE_LINK :
2149 RT_SCOPE_UNIVERSE),
2150 } },
2151 .mark = oldflp->mark,
2152 .iif = init_net.loopback_dev->ifindex,
2153 .oif = oldflp->oif };
2154 struct fib_result res;
2155 unsigned flags = 0;
2156 struct net_device *dev_out = NULL;
2157 int free_res = 0;
2158 int err;
2161 res.fi = NULL;
2162 #ifdef CONFIG_IP_MULTIPLE_TABLES
2163 res.r = NULL;
2164 #endif
2166 if (oldflp->fl4_src) {
2167 err = -EINVAL;
2168 if (MULTICAST(oldflp->fl4_src) ||
2169 BADCLASS(oldflp->fl4_src) ||
2170 ZERONET(oldflp->fl4_src))
2171 goto out;
2173 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2174 dev_out = ip_dev_find(oldflp->fl4_src);
2175 if (dev_out == NULL)
2176 goto out;
2178 /* I removed check for oif == dev_out->oif here.
2179 It was wrong for two reasons:
2180 1. ip_dev_find(saddr) can return wrong iface, if saddr is
2181 assigned to multiple interfaces.
2182 2. Moreover, we are allowed to send packets with saddr
2183 of another iface. --ANK
2186 if (oldflp->oif == 0
2187 && (MULTICAST(oldflp->fl4_dst) || oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2188 /* Special hack: user can direct multicasts
2189 and limited broadcast via necessary interface
2190 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2191 This hack is not just for fun, it allows
2192 vic,vat and friends to work.
2193 They bind socket to loopback, set ttl to zero
2194 and expect that it will work.
2195 From the viewpoint of routing cache they are broken,
2196 because we are not allowed to build multicast path
2197 with loopback source addr (look, routing cache
2198 cannot know, that ttl is zero, so that packet
2199 will not leave this host and route is valid).
2200 Luckily, this hack is good workaround.
2203 fl.oif = dev_out->ifindex;
2204 goto make_route;
2206 if (dev_out)
2207 dev_put(dev_out);
2208 dev_out = NULL;
2212 if (oldflp->oif) {
2213 dev_out = dev_get_by_index(&init_net, oldflp->oif);
2214 err = -ENODEV;
2215 if (dev_out == NULL)
2216 goto out;
2218 /* RACE: Check return value of inet_select_addr instead. */
2219 if (__in_dev_get_rtnl(dev_out) == NULL) {
2220 dev_put(dev_out);
2221 goto out; /* Wrong error code */
2224 if (LOCAL_MCAST(oldflp->fl4_dst) || oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2225 if (!fl.fl4_src)
2226 fl.fl4_src = inet_select_addr(dev_out, 0,
2227 RT_SCOPE_LINK);
2228 goto make_route;
2230 if (!fl.fl4_src) {
2231 if (MULTICAST(oldflp->fl4_dst))
2232 fl.fl4_src = inet_select_addr(dev_out, 0,
2233 fl.fl4_scope);
2234 else if (!oldflp->fl4_dst)
2235 fl.fl4_src = inet_select_addr(dev_out, 0,
2236 RT_SCOPE_HOST);
2240 if (!fl.fl4_dst) {
2241 fl.fl4_dst = fl.fl4_src;
2242 if (!fl.fl4_dst)
2243 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2244 if (dev_out)
2245 dev_put(dev_out);
2246 dev_out = init_net.loopback_dev;
2247 dev_hold(dev_out);
2248 fl.oif = init_net.loopback_dev->ifindex;
2249 res.type = RTN_LOCAL;
2250 flags |= RTCF_LOCAL;
2251 goto make_route;
2254 if (fib_lookup(&fl, &res)) {
2255 res.fi = NULL;
2256 if (oldflp->oif) {
2257 /* Apparently, routing tables are wrong. Assume,
2258 that the destination is on link.
2260 WHY? DW.
2261 Because we are allowed to send to iface
2262 even if it has NO routes and NO assigned
2263 addresses. When oif is specified, routing
2264 tables are looked up with only one purpose:
2265 to catch if destination is gatewayed, rather than
2266 direct. Moreover, if MSG_DONTROUTE is set,
2267 we send packet, ignoring both routing tables
2268 and ifaddr state. --ANK
2271 We could make it even if oif is unknown,
2272 likely IPv6, but we do not.
2275 if (fl.fl4_src == 0)
2276 fl.fl4_src = inet_select_addr(dev_out, 0,
2277 RT_SCOPE_LINK);
2278 res.type = RTN_UNICAST;
2279 goto make_route;
2281 if (dev_out)
2282 dev_put(dev_out);
2283 err = -ENETUNREACH;
2284 goto out;
2286 free_res = 1;
2288 if (res.type == RTN_LOCAL) {
2289 if (!fl.fl4_src)
2290 fl.fl4_src = fl.fl4_dst;
2291 if (dev_out)
2292 dev_put(dev_out);
2293 dev_out = init_net.loopback_dev;
2294 dev_hold(dev_out);
2295 fl.oif = dev_out->ifindex;
2296 if (res.fi)
2297 fib_info_put(res.fi);
2298 res.fi = NULL;
2299 flags |= RTCF_LOCAL;
2300 goto make_route;
2303 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2304 if (res.fi->fib_nhs > 1 && fl.oif == 0)
2305 fib_select_multipath(&fl, &res);
2306 else
2307 #endif
2308 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2309 fib_select_default(&fl, &res);
2311 if (!fl.fl4_src)
2312 fl.fl4_src = FIB_RES_PREFSRC(res);
2314 if (dev_out)
2315 dev_put(dev_out);
2316 dev_out = FIB_RES_DEV(res);
2317 dev_hold(dev_out);
2318 fl.oif = dev_out->ifindex;
2321 make_route:
2322 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2325 if (free_res)
2326 fib_res_put(&res);
2327 if (dev_out)
2328 dev_put(dev_out);
2329 out: return err;
2332 int __ip_route_output_key(struct rtable **rp, const struct flowi *flp)
2334 unsigned hash;
2335 struct rtable *rth;
2337 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif);
2339 rcu_read_lock_bh();
2340 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2341 rth = rcu_dereference(rth->u.dst.rt_next)) {
2342 if (rth->fl.fl4_dst == flp->fl4_dst &&
2343 rth->fl.fl4_src == flp->fl4_src &&
2344 rth->fl.iif == 0 &&
2345 rth->fl.oif == flp->oif &&
2346 rth->fl.mark == flp->mark &&
2347 !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2348 (IPTOS_RT_MASK | RTO_ONLINK))) {
2349 rth->u.dst.lastuse = jiffies;
2350 dst_hold(&rth->u.dst);
2351 rth->u.dst.__use++;
2352 RT_CACHE_STAT_INC(out_hit);
2353 rcu_read_unlock_bh();
2354 *rp = rth;
2355 return 0;
2357 RT_CACHE_STAT_INC(out_hlist_search);
2359 rcu_read_unlock_bh();
2361 return ip_route_output_slow(rp, flp);
2364 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2366 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2370 static struct dst_ops ipv4_dst_blackhole_ops = {
2371 .family = AF_INET,
2372 .protocol = __constant_htons(ETH_P_IP),
2373 .destroy = ipv4_dst_destroy,
2374 .check = ipv4_dst_check,
2375 .update_pmtu = ipv4_rt_blackhole_update_pmtu,
2376 .entry_size = sizeof(struct rtable),
2380 static int ipv4_blackhole_output(struct sk_buff *skb)
2382 kfree_skb(skb);
2383 return 0;
2386 static int ipv4_dst_blackhole(struct rtable **rp, struct flowi *flp, struct sock *sk)
2388 struct rtable *ort = *rp;
2389 struct rtable *rt = (struct rtable *)
2390 dst_alloc(&ipv4_dst_blackhole_ops);
2392 if (rt) {
2393 struct dst_entry *new = &rt->u.dst;
2395 atomic_set(&new->__refcnt, 1);
2396 new->__use = 1;
2397 new->input = ipv4_blackhole_output;
2398 new->output = ipv4_blackhole_output;
2399 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2401 new->dev = ort->u.dst.dev;
2402 if (new->dev)
2403 dev_hold(new->dev);
2405 rt->fl = ort->fl;
2407 rt->idev = ort->idev;
2408 if (rt->idev)
2409 in_dev_hold(rt->idev);
2410 rt->rt_flags = ort->rt_flags;
2411 rt->rt_type = ort->rt_type;
2412 rt->rt_dst = ort->rt_dst;
2413 rt->rt_src = ort->rt_src;
2414 rt->rt_iif = ort->rt_iif;
2415 rt->rt_gateway = ort->rt_gateway;
2416 rt->rt_spec_dst = ort->rt_spec_dst;
2417 rt->peer = ort->peer;
2418 if (rt->peer)
2419 atomic_inc(&rt->peer->refcnt);
2421 dst_free(new);
2424 dst_release(&(*rp)->u.dst);
2425 *rp = rt;
2426 return (rt ? 0 : -ENOMEM);
2429 int ip_route_output_flow(struct rtable **rp, struct flowi *flp, struct sock *sk, int flags)
2431 int err;
2433 if ((err = __ip_route_output_key(rp, flp)) != 0)
2434 return err;
2436 if (flp->proto) {
2437 if (!flp->fl4_src)
2438 flp->fl4_src = (*rp)->rt_src;
2439 if (!flp->fl4_dst)
2440 flp->fl4_dst = (*rp)->rt_dst;
2441 err = __xfrm_lookup((struct dst_entry **)rp, flp, sk, flags);
2442 if (err == -EREMOTE)
2443 err = ipv4_dst_blackhole(rp, flp, sk);
2445 return err;
2448 return 0;
2451 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2453 int ip_route_output_key(struct rtable **rp, struct flowi *flp)
2455 return ip_route_output_flow(rp, flp, NULL, 0);
2458 static int rt_fill_info(struct sk_buff *skb, u32 pid, u32 seq, int event,
2459 int nowait, unsigned int flags)
2461 struct rtable *rt = (struct rtable*)skb->dst;
2462 struct rtmsg *r;
2463 struct nlmsghdr *nlh;
2464 long expires;
2465 u32 id = 0, ts = 0, tsage = 0, error;
2467 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2468 if (nlh == NULL)
2469 return -EMSGSIZE;
2471 r = nlmsg_data(nlh);
2472 r->rtm_family = AF_INET;
2473 r->rtm_dst_len = 32;
2474 r->rtm_src_len = 0;
2475 r->rtm_tos = rt->fl.fl4_tos;
2476 r->rtm_table = RT_TABLE_MAIN;
2477 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2478 r->rtm_type = rt->rt_type;
2479 r->rtm_scope = RT_SCOPE_UNIVERSE;
2480 r->rtm_protocol = RTPROT_UNSPEC;
2481 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2482 if (rt->rt_flags & RTCF_NOTIFY)
2483 r->rtm_flags |= RTM_F_NOTIFY;
2485 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2487 if (rt->fl.fl4_src) {
2488 r->rtm_src_len = 32;
2489 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2491 if (rt->u.dst.dev)
2492 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2493 #ifdef CONFIG_NET_CLS_ROUTE
2494 if (rt->u.dst.tclassid)
2495 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2496 #endif
2497 if (rt->fl.iif)
2498 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2499 else if (rt->rt_src != rt->fl.fl4_src)
2500 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2502 if (rt->rt_dst != rt->rt_gateway)
2503 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2505 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2506 goto nla_put_failure;
2508 error = rt->u.dst.error;
2509 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2510 if (rt->peer) {
2511 id = rt->peer->ip_id_count;
2512 if (rt->peer->tcp_ts_stamp) {
2513 ts = rt->peer->tcp_ts;
2514 tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2518 if (rt->fl.iif) {
2519 #ifdef CONFIG_IP_MROUTE
2520 __be32 dst = rt->rt_dst;
2522 if (MULTICAST(dst) && !LOCAL_MCAST(dst) &&
2523 IPV4_DEVCONF_ALL(MC_FORWARDING)) {
2524 int err = ipmr_get_route(skb, r, nowait);
2525 if (err <= 0) {
2526 if (!nowait) {
2527 if (err == 0)
2528 return 0;
2529 goto nla_put_failure;
2530 } else {
2531 if (err == -EMSGSIZE)
2532 goto nla_put_failure;
2533 error = err;
2536 } else
2537 #endif
2538 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2541 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2542 expires, error) < 0)
2543 goto nla_put_failure;
2545 return nlmsg_end(skb, nlh);
2547 nla_put_failure:
2548 nlmsg_cancel(skb, nlh);
2549 return -EMSGSIZE;
2552 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2554 struct rtmsg *rtm;
2555 struct nlattr *tb[RTA_MAX+1];
2556 struct rtable *rt = NULL;
2557 __be32 dst = 0;
2558 __be32 src = 0;
2559 u32 iif;
2560 int err;
2561 struct sk_buff *skb;
2563 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2564 if (err < 0)
2565 goto errout;
2567 rtm = nlmsg_data(nlh);
2569 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2570 if (skb == NULL) {
2571 err = -ENOBUFS;
2572 goto errout;
2575 /* Reserve room for dummy headers, this skb can pass
2576 through good chunk of routing engine.
2578 skb_reset_mac_header(skb);
2579 skb_reset_network_header(skb);
2581 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2582 ip_hdr(skb)->protocol = IPPROTO_ICMP;
2583 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2585 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2586 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2587 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2589 if (iif) {
2590 struct net_device *dev;
2592 dev = __dev_get_by_index(&init_net, iif);
2593 if (dev == NULL) {
2594 err = -ENODEV;
2595 goto errout_free;
2598 skb->protocol = htons(ETH_P_IP);
2599 skb->dev = dev;
2600 local_bh_disable();
2601 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2602 local_bh_enable();
2604 rt = (struct rtable*) skb->dst;
2605 if (err == 0 && rt->u.dst.error)
2606 err = -rt->u.dst.error;
2607 } else {
2608 struct flowi fl = {
2609 .nl_u = {
2610 .ip4_u = {
2611 .daddr = dst,
2612 .saddr = src,
2613 .tos = rtm->rtm_tos,
2616 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2618 err = ip_route_output_key(&rt, &fl);
2621 if (err)
2622 goto errout_free;
2624 skb->dst = &rt->u.dst;
2625 if (rtm->rtm_flags & RTM_F_NOTIFY)
2626 rt->rt_flags |= RTCF_NOTIFY;
2628 err = rt_fill_info(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2629 RTM_NEWROUTE, 0, 0);
2630 if (err <= 0)
2631 goto errout_free;
2633 err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2634 errout:
2635 return err;
2637 errout_free:
2638 kfree_skb(skb);
2639 goto errout;
2642 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb)
2644 struct rtable *rt;
2645 int h, s_h;
2646 int idx, s_idx;
2648 s_h = cb->args[0];
2649 s_idx = idx = cb->args[1];
2650 for (h = 0; h <= rt_hash_mask; h++) {
2651 if (h < s_h) continue;
2652 if (h > s_h)
2653 s_idx = 0;
2654 rcu_read_lock_bh();
2655 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2656 rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2657 if (idx < s_idx)
2658 continue;
2659 skb->dst = dst_clone(&rt->u.dst);
2660 if (rt_fill_info(skb, NETLINK_CB(cb->skb).pid,
2661 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2662 1, NLM_F_MULTI) <= 0) {
2663 dst_release(xchg(&skb->dst, NULL));
2664 rcu_read_unlock_bh();
2665 goto done;
2667 dst_release(xchg(&skb->dst, NULL));
2669 rcu_read_unlock_bh();
2672 done:
2673 cb->args[0] = h;
2674 cb->args[1] = idx;
2675 return skb->len;
2678 void ip_rt_multicast_event(struct in_device *in_dev)
2680 rt_cache_flush(0);
2683 #ifdef CONFIG_SYSCTL
2684 static int flush_delay;
2686 static int ipv4_sysctl_rtcache_flush(ctl_table *ctl, int write,
2687 struct file *filp, void __user *buffer,
2688 size_t *lenp, loff_t *ppos)
2690 if (write) {
2691 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2692 rt_cache_flush(flush_delay);
2693 return 0;
2696 return -EINVAL;
2699 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
2700 int __user *name,
2701 int nlen,
2702 void __user *oldval,
2703 size_t __user *oldlenp,
2704 void __user *newval,
2705 size_t newlen)
2707 int delay;
2708 if (newlen != sizeof(int))
2709 return -EINVAL;
2710 if (get_user(delay, (int __user *)newval))
2711 return -EFAULT;
2712 rt_cache_flush(delay);
2713 return 0;
2716 ctl_table ipv4_route_table[] = {
2718 .ctl_name = NET_IPV4_ROUTE_FLUSH,
2719 .procname = "flush",
2720 .data = &flush_delay,
2721 .maxlen = sizeof(int),
2722 .mode = 0200,
2723 .proc_handler = &ipv4_sysctl_rtcache_flush,
2724 .strategy = &ipv4_sysctl_rtcache_flush_strategy,
2727 .ctl_name = NET_IPV4_ROUTE_MIN_DELAY,
2728 .procname = "min_delay",
2729 .data = &ip_rt_min_delay,
2730 .maxlen = sizeof(int),
2731 .mode = 0644,
2732 .proc_handler = &proc_dointvec_jiffies,
2733 .strategy = &sysctl_jiffies,
2736 .ctl_name = NET_IPV4_ROUTE_MAX_DELAY,
2737 .procname = "max_delay",
2738 .data = &ip_rt_max_delay,
2739 .maxlen = sizeof(int),
2740 .mode = 0644,
2741 .proc_handler = &proc_dointvec_jiffies,
2742 .strategy = &sysctl_jiffies,
2745 .ctl_name = NET_IPV4_ROUTE_GC_THRESH,
2746 .procname = "gc_thresh",
2747 .data = &ipv4_dst_ops.gc_thresh,
2748 .maxlen = sizeof(int),
2749 .mode = 0644,
2750 .proc_handler = &proc_dointvec,
2753 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE,
2754 .procname = "max_size",
2755 .data = &ip_rt_max_size,
2756 .maxlen = sizeof(int),
2757 .mode = 0644,
2758 .proc_handler = &proc_dointvec,
2761 /* Deprecated. Use gc_min_interval_ms */
2763 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL,
2764 .procname = "gc_min_interval",
2765 .data = &ip_rt_gc_min_interval,
2766 .maxlen = sizeof(int),
2767 .mode = 0644,
2768 .proc_handler = &proc_dointvec_jiffies,
2769 .strategy = &sysctl_jiffies,
2772 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
2773 .procname = "gc_min_interval_ms",
2774 .data = &ip_rt_gc_min_interval,
2775 .maxlen = sizeof(int),
2776 .mode = 0644,
2777 .proc_handler = &proc_dointvec_ms_jiffies,
2778 .strategy = &sysctl_ms_jiffies,
2781 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT,
2782 .procname = "gc_timeout",
2783 .data = &ip_rt_gc_timeout,
2784 .maxlen = sizeof(int),
2785 .mode = 0644,
2786 .proc_handler = &proc_dointvec_jiffies,
2787 .strategy = &sysctl_jiffies,
2790 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL,
2791 .procname = "gc_interval",
2792 .data = &ip_rt_gc_interval,
2793 .maxlen = sizeof(int),
2794 .mode = 0644,
2795 .proc_handler = &proc_dointvec_jiffies,
2796 .strategy = &sysctl_jiffies,
2799 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD,
2800 .procname = "redirect_load",
2801 .data = &ip_rt_redirect_load,
2802 .maxlen = sizeof(int),
2803 .mode = 0644,
2804 .proc_handler = &proc_dointvec,
2807 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER,
2808 .procname = "redirect_number",
2809 .data = &ip_rt_redirect_number,
2810 .maxlen = sizeof(int),
2811 .mode = 0644,
2812 .proc_handler = &proc_dointvec,
2815 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE,
2816 .procname = "redirect_silence",
2817 .data = &ip_rt_redirect_silence,
2818 .maxlen = sizeof(int),
2819 .mode = 0644,
2820 .proc_handler = &proc_dointvec,
2823 .ctl_name = NET_IPV4_ROUTE_ERROR_COST,
2824 .procname = "error_cost",
2825 .data = &ip_rt_error_cost,
2826 .maxlen = sizeof(int),
2827 .mode = 0644,
2828 .proc_handler = &proc_dointvec,
2831 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST,
2832 .procname = "error_burst",
2833 .data = &ip_rt_error_burst,
2834 .maxlen = sizeof(int),
2835 .mode = 0644,
2836 .proc_handler = &proc_dointvec,
2839 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY,
2840 .procname = "gc_elasticity",
2841 .data = &ip_rt_gc_elasticity,
2842 .maxlen = sizeof(int),
2843 .mode = 0644,
2844 .proc_handler = &proc_dointvec,
2847 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES,
2848 .procname = "mtu_expires",
2849 .data = &ip_rt_mtu_expires,
2850 .maxlen = sizeof(int),
2851 .mode = 0644,
2852 .proc_handler = &proc_dointvec_jiffies,
2853 .strategy = &sysctl_jiffies,
2856 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU,
2857 .procname = "min_pmtu",
2858 .data = &ip_rt_min_pmtu,
2859 .maxlen = sizeof(int),
2860 .mode = 0644,
2861 .proc_handler = &proc_dointvec,
2864 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS,
2865 .procname = "min_adv_mss",
2866 .data = &ip_rt_min_advmss,
2867 .maxlen = sizeof(int),
2868 .mode = 0644,
2869 .proc_handler = &proc_dointvec,
2872 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL,
2873 .procname = "secret_interval",
2874 .data = &ip_rt_secret_interval,
2875 .maxlen = sizeof(int),
2876 .mode = 0644,
2877 .proc_handler = &proc_dointvec_jiffies,
2878 .strategy = &sysctl_jiffies,
2880 { .ctl_name = 0 }
2882 #endif
2884 #ifdef CONFIG_NET_CLS_ROUTE
2885 struct ip_rt_acct *ip_rt_acct;
2887 /* This code sucks. But you should have seen it before! --RR */
2889 /* IP route accounting ptr for this logical cpu number. */
2890 #define IP_RT_ACCT_CPU(i) (ip_rt_acct + i * 256)
2892 #ifdef CONFIG_PROC_FS
2893 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
2894 int length, int *eof, void *data)
2896 unsigned int i;
2898 if ((offset & 3) || (length & 3))
2899 return -EIO;
2901 if (offset >= sizeof(struct ip_rt_acct) * 256) {
2902 *eof = 1;
2903 return 0;
2906 if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
2907 length = sizeof(struct ip_rt_acct) * 256 - offset;
2908 *eof = 1;
2911 offset /= sizeof(u32);
2913 if (length > 0) {
2914 u32 *src = ((u32 *) IP_RT_ACCT_CPU(0)) + offset;
2915 u32 *dst = (u32 *) buffer;
2917 /* Copy first cpu. */
2918 *start = buffer;
2919 memcpy(dst, src, length);
2921 /* Add the other cpus in, one int at a time */
2922 for_each_possible_cpu(i) {
2923 unsigned int j;
2925 src = ((u32 *) IP_RT_ACCT_CPU(i)) + offset;
2927 for (j = 0; j < length/4; j++)
2928 dst[j] += src[j];
2931 return length;
2933 #endif /* CONFIG_PROC_FS */
2934 #endif /* CONFIG_NET_CLS_ROUTE */
2936 static __initdata unsigned long rhash_entries;
2937 static int __init set_rhash_entries(char *str)
2939 if (!str)
2940 return 0;
2941 rhash_entries = simple_strtoul(str, &str, 0);
2942 return 1;
2944 __setup("rhash_entries=", set_rhash_entries);
2946 int __init ip_rt_init(void)
2948 int rc = 0;
2950 rt_hash_rnd = (int) ((num_physpages ^ (num_physpages>>8)) ^
2951 (jiffies ^ (jiffies >> 7)));
2953 #ifdef CONFIG_NET_CLS_ROUTE
2955 int order;
2956 for (order = 0;
2957 (PAGE_SIZE << order) < 256 * sizeof(struct ip_rt_acct) * NR_CPUS; order++)
2958 /* NOTHING */;
2959 ip_rt_acct = (struct ip_rt_acct *)__get_free_pages(GFP_KERNEL, order);
2960 if (!ip_rt_acct)
2961 panic("IP: failed to allocate ip_rt_acct\n");
2962 memset(ip_rt_acct, 0, PAGE_SIZE << order);
2964 #endif
2966 ipv4_dst_ops.kmem_cachep =
2967 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
2968 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2970 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
2972 rt_hash_table = (struct rt_hash_bucket *)
2973 alloc_large_system_hash("IP route cache",
2974 sizeof(struct rt_hash_bucket),
2975 rhash_entries,
2976 (num_physpages >= 128 * 1024) ?
2977 15 : 17,
2979 &rt_hash_log,
2980 &rt_hash_mask,
2982 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
2983 rt_hash_lock_init();
2985 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
2986 ip_rt_max_size = (rt_hash_mask + 1) * 16;
2988 devinet_init();
2989 ip_fib_init();
2991 init_timer(&rt_flush_timer);
2992 rt_flush_timer.function = rt_run_flush;
2993 init_timer(&rt_secret_timer);
2994 rt_secret_timer.function = rt_secret_rebuild;
2996 /* All the timers, started at system startup tend
2997 to synchronize. Perturb it a bit.
2999 schedule_delayed_work(&expires_work,
3000 net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3002 rt_secret_timer.expires = jiffies + net_random() % ip_rt_secret_interval +
3003 ip_rt_secret_interval;
3004 add_timer(&rt_secret_timer);
3006 #ifdef CONFIG_PROC_FS
3008 struct proc_dir_entry *rtstat_pde = NULL; /* keep gcc happy */
3009 if (!proc_net_fops_create(&init_net, "rt_cache", S_IRUGO, &rt_cache_seq_fops) ||
3010 !(rtstat_pde = create_proc_entry("rt_cache", S_IRUGO,
3011 init_net.proc_net_stat))) {
3012 return -ENOMEM;
3014 rtstat_pde->proc_fops = &rt_cpu_seq_fops;
3016 #ifdef CONFIG_NET_CLS_ROUTE
3017 create_proc_read_entry("rt_acct", 0, init_net.proc_net, ip_rt_acct_read, NULL);
3018 #endif
3019 #endif
3020 #ifdef CONFIG_XFRM
3021 xfrm_init();
3022 xfrm4_init();
3023 #endif
3024 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3026 return rc;
3029 EXPORT_SYMBOL(__ip_select_ident);
3030 EXPORT_SYMBOL(ip_route_input);
3031 EXPORT_SYMBOL(ip_route_output_key);