[PATCH] x86: use probe_kernel_address in handle_BUG()
[linux-2.6/linux-loongson.git] / arch / i386 / kernel / traps.c
bloba13037fe0ee383dc0088893af946ab5eb42bfd0e
1 /*
2 * linux/arch/i386/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/highmem.h>
25 #include <linux/kallsyms.h>
26 #include <linux/ptrace.h>
27 #include <linux/utsname.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
33 #ifdef CONFIG_EISA
34 #include <linux/ioport.h>
35 #include <linux/eisa.h>
36 #endif
38 #ifdef CONFIG_MCA
39 #include <linux/mca.h>
40 #endif
42 #include <asm/processor.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/debugreg.h>
47 #include <asm/desc.h>
48 #include <asm/i387.h>
49 #include <asm/nmi.h>
50 #include <asm/unwind.h>
51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h>
54 #include <asm/stacktrace.h>
56 #include <linux/module.h>
58 #include "mach_traps.h"
60 asmlinkage int system_call(void);
62 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
63 { 0, 0 }, { 0, 0 } };
65 /* Do we ignore FPU interrupts ? */
66 char ignore_fpu_irq = 0;
69 * The IDT has to be page-aligned to simplify the Pentium
70 * F0 0F bug workaround.. We have a special link segment
71 * for this.
73 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
75 asmlinkage void divide_error(void);
76 asmlinkage void debug(void);
77 asmlinkage void nmi(void);
78 asmlinkage void int3(void);
79 asmlinkage void overflow(void);
80 asmlinkage void bounds(void);
81 asmlinkage void invalid_op(void);
82 asmlinkage void device_not_available(void);
83 asmlinkage void coprocessor_segment_overrun(void);
84 asmlinkage void invalid_TSS(void);
85 asmlinkage void segment_not_present(void);
86 asmlinkage void stack_segment(void);
87 asmlinkage void general_protection(void);
88 asmlinkage void page_fault(void);
89 asmlinkage void coprocessor_error(void);
90 asmlinkage void simd_coprocessor_error(void);
91 asmlinkage void alignment_check(void);
92 asmlinkage void spurious_interrupt_bug(void);
93 asmlinkage void machine_check(void);
95 static int kstack_depth_to_print = 24;
96 #ifdef CONFIG_STACK_UNWIND
97 static int call_trace = 1;
98 #else
99 #define call_trace (-1)
100 #endif
101 ATOMIC_NOTIFIER_HEAD(i386die_chain);
103 int register_die_notifier(struct notifier_block *nb)
105 vmalloc_sync_all();
106 return atomic_notifier_chain_register(&i386die_chain, nb);
108 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
110 int unregister_die_notifier(struct notifier_block *nb)
112 return atomic_notifier_chain_unregister(&i386die_chain, nb);
114 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
116 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
118 return p > (void *)tinfo &&
119 p < (void *)tinfo + THREAD_SIZE - 3;
122 static inline unsigned long print_context_stack(struct thread_info *tinfo,
123 unsigned long *stack, unsigned long ebp,
124 struct stacktrace_ops *ops, void *data)
126 unsigned long addr;
128 #ifdef CONFIG_FRAME_POINTER
129 while (valid_stack_ptr(tinfo, (void *)ebp)) {
130 addr = *(unsigned long *)(ebp + 4);
131 ops->address(data, addr);
133 * break out of recursive entries (such as
134 * end_of_stack_stop_unwind_function):
136 if (ebp == *(unsigned long *)ebp)
137 break;
138 ebp = *(unsigned long *)ebp;
140 #else
141 while (valid_stack_ptr(tinfo, stack)) {
142 addr = *stack++;
143 if (__kernel_text_address(addr))
144 ops->address(data, addr);
146 #endif
147 return ebp;
150 struct ops_and_data {
151 struct stacktrace_ops *ops;
152 void *data;
155 static asmlinkage int
156 dump_trace_unwind(struct unwind_frame_info *info, void *data)
158 struct ops_and_data *oad = (struct ops_and_data *)data;
159 int n = 0;
161 while (unwind(info) == 0 && UNW_PC(info)) {
162 n++;
163 oad->ops->address(oad->data, UNW_PC(info));
164 if (arch_unw_user_mode(info))
165 break;
167 return n;
170 void dump_trace(struct task_struct *task, struct pt_regs *regs,
171 unsigned long *stack,
172 struct stacktrace_ops *ops, void *data)
174 unsigned long ebp = 0;
176 if (!task)
177 task = current;
179 if (call_trace >= 0) {
180 int unw_ret = 0;
181 struct unwind_frame_info info;
182 struct ops_and_data oad = { .ops = ops, .data = data };
184 if (regs) {
185 if (unwind_init_frame_info(&info, task, regs) == 0)
186 unw_ret = dump_trace_unwind(&info, &oad);
187 } else if (task == current)
188 unw_ret = unwind_init_running(&info, dump_trace_unwind, &oad);
189 else {
190 if (unwind_init_blocked(&info, task) == 0)
191 unw_ret = dump_trace_unwind(&info, &oad);
193 if (unw_ret > 0) {
194 if (call_trace == 1 && !arch_unw_user_mode(&info)) {
195 ops->warning_symbol(data, "DWARF2 unwinder stuck at %s\n",
196 UNW_PC(&info));
197 if (UNW_SP(&info) >= PAGE_OFFSET) {
198 ops->warning(data, "Leftover inexact backtrace:\n");
199 stack = (void *)UNW_SP(&info);
200 if (!stack)
201 return;
202 ebp = UNW_FP(&info);
203 } else
204 ops->warning(data, "Full inexact backtrace again:\n");
205 } else if (call_trace >= 1)
206 return;
207 else
208 ops->warning(data, "Full inexact backtrace again:\n");
209 } else
210 ops->warning(data, "Inexact backtrace:\n");
212 if (!stack) {
213 unsigned long dummy;
214 stack = &dummy;
215 if (task && task != current)
216 stack = (unsigned long *)task->thread.esp;
219 #ifdef CONFIG_FRAME_POINTER
220 if (!ebp) {
221 if (task == current) {
222 /* Grab ebp right from our regs */
223 asm ("movl %%ebp, %0" : "=r" (ebp) : );
224 } else {
225 /* ebp is the last reg pushed by switch_to */
226 ebp = *(unsigned long *) task->thread.esp;
229 #endif
231 while (1) {
232 struct thread_info *context;
233 context = (struct thread_info *)
234 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
235 ebp = print_context_stack(context, stack, ebp, ops, data);
236 /* Should be after the line below, but somewhere
237 in early boot context comes out corrupted and we
238 can't reference it -AK */
239 if (ops->stack(data, "IRQ") < 0)
240 break;
241 stack = (unsigned long*)context->previous_esp;
242 if (!stack)
243 break;
246 EXPORT_SYMBOL(dump_trace);
248 static void
249 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
251 printk(data);
252 print_symbol(msg, symbol);
253 printk("\n");
256 static void print_trace_warning(void *data, char *msg)
258 printk("%s%s\n", (char *)data, msg);
261 static int print_trace_stack(void *data, char *name)
263 return 0;
267 * Print one address/symbol entries per line.
269 static void print_trace_address(void *data, unsigned long addr)
271 printk("%s [<%08lx>] ", (char *)data, addr);
272 print_symbol("%s\n", addr);
275 static struct stacktrace_ops print_trace_ops = {
276 .warning = print_trace_warning,
277 .warning_symbol = print_trace_warning_symbol,
278 .stack = print_trace_stack,
279 .address = print_trace_address,
282 static void
283 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
284 unsigned long * stack, char *log_lvl)
286 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
287 printk("%s =======================\n", log_lvl);
290 void show_trace(struct task_struct *task, struct pt_regs *regs,
291 unsigned long * stack)
293 show_trace_log_lvl(task, regs, stack, "");
296 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
297 unsigned long *esp, char *log_lvl)
299 unsigned long *stack;
300 int i;
302 if (esp == NULL) {
303 if (task)
304 esp = (unsigned long*)task->thread.esp;
305 else
306 esp = (unsigned long *)&esp;
309 stack = esp;
310 for(i = 0; i < kstack_depth_to_print; i++) {
311 if (kstack_end(stack))
312 break;
313 if (i && ((i % 8) == 0))
314 printk("\n%s ", log_lvl);
315 printk("%08lx ", *stack++);
317 printk("\n%sCall Trace:\n", log_lvl);
318 show_trace_log_lvl(task, regs, esp, log_lvl);
321 void show_stack(struct task_struct *task, unsigned long *esp)
323 printk(" ");
324 show_stack_log_lvl(task, NULL, esp, "");
328 * The architecture-independent dump_stack generator
330 void dump_stack(void)
332 unsigned long stack;
334 show_trace(current, NULL, &stack);
337 EXPORT_SYMBOL(dump_stack);
339 void show_registers(struct pt_regs *regs)
341 int i;
342 int in_kernel = 1;
343 unsigned long esp;
344 unsigned short ss;
346 esp = (unsigned long) (&regs->esp);
347 savesegment(ss, ss);
348 if (user_mode_vm(regs)) {
349 in_kernel = 0;
350 esp = regs->esp;
351 ss = regs->xss & 0xffff;
353 print_modules();
354 printk(KERN_EMERG "CPU: %d\n"
355 KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
356 KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
357 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
358 print_tainted(), regs->eflags, system_utsname.release,
359 (int)strcspn(system_utsname.version, " "),
360 system_utsname.version);
361 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
362 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
363 regs->eax, regs->ebx, regs->ecx, regs->edx);
364 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
365 regs->esi, regs->edi, regs->ebp, esp);
366 printk(KERN_EMERG "ds: %04x es: %04x ss: %04x\n",
367 regs->xds & 0xffff, regs->xes & 0xffff, ss);
368 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
369 TASK_COMM_LEN, current->comm, current->pid,
370 current_thread_info(), current, current->thread_info);
372 * When in-kernel, we also print out the stack and code at the
373 * time of the fault..
375 if (in_kernel) {
376 u8 __user *eip;
377 int code_bytes = 64;
378 unsigned char c;
380 printk("\n" KERN_EMERG "Stack: ");
381 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
383 printk(KERN_EMERG "Code: ");
385 eip = (u8 __user *)regs->eip - 43;
386 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
387 /* try starting at EIP */
388 eip = (u8 __user *)regs->eip;
389 code_bytes = 32;
391 for (i = 0; i < code_bytes; i++, eip++) {
392 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
393 printk(" Bad EIP value.");
394 break;
396 if (eip == (u8 __user *)regs->eip)
397 printk("<%02x> ", c);
398 else
399 printk("%02x ", c);
402 printk("\n");
405 static void handle_BUG(struct pt_regs *regs)
407 unsigned long eip = regs->eip;
408 unsigned short ud2;
410 if (eip < PAGE_OFFSET)
411 return;
412 if (probe_kernel_address((unsigned short __user *)eip, ud2))
413 return;
414 if (ud2 != 0x0b0f)
415 return;
417 printk(KERN_EMERG "------------[ cut here ]------------\n");
419 #ifdef CONFIG_DEBUG_BUGVERBOSE
420 do {
421 unsigned short line;
422 char *file;
423 char c;
425 if (probe_kernel_address((unsigned short __user *)(eip + 2),
426 line))
427 break;
428 if (__get_user(file, (char * __user *)(eip + 4)) ||
429 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
430 file = "<bad filename>";
432 printk(KERN_EMERG "kernel BUG at %s:%d!\n", file, line);
433 return;
434 } while (0);
435 #endif
436 printk(KERN_EMERG "Kernel BUG at [verbose debug info unavailable]\n");
439 /* This is gone through when something in the kernel
440 * has done something bad and is about to be terminated.
442 void die(const char * str, struct pt_regs * regs, long err)
444 static struct {
445 spinlock_t lock;
446 u32 lock_owner;
447 int lock_owner_depth;
448 } die = {
449 .lock = SPIN_LOCK_UNLOCKED,
450 .lock_owner = -1,
451 .lock_owner_depth = 0
453 static int die_counter;
454 unsigned long flags;
456 oops_enter();
458 if (die.lock_owner != raw_smp_processor_id()) {
459 console_verbose();
460 spin_lock_irqsave(&die.lock, flags);
461 die.lock_owner = smp_processor_id();
462 die.lock_owner_depth = 0;
463 bust_spinlocks(1);
465 else
466 local_save_flags(flags);
468 if (++die.lock_owner_depth < 3) {
469 int nl = 0;
470 unsigned long esp;
471 unsigned short ss;
473 handle_BUG(regs);
474 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
475 #ifdef CONFIG_PREEMPT
476 printk(KERN_EMERG "PREEMPT ");
477 nl = 1;
478 #endif
479 #ifdef CONFIG_SMP
480 if (!nl)
481 printk(KERN_EMERG);
482 printk("SMP ");
483 nl = 1;
484 #endif
485 #ifdef CONFIG_DEBUG_PAGEALLOC
486 if (!nl)
487 printk(KERN_EMERG);
488 printk("DEBUG_PAGEALLOC");
489 nl = 1;
490 #endif
491 if (nl)
492 printk("\n");
493 if (notify_die(DIE_OOPS, str, regs, err,
494 current->thread.trap_no, SIGSEGV) !=
495 NOTIFY_STOP) {
496 show_registers(regs);
497 /* Executive summary in case the oops scrolled away */
498 esp = (unsigned long) (&regs->esp);
499 savesegment(ss, ss);
500 if (user_mode(regs)) {
501 esp = regs->esp;
502 ss = regs->xss & 0xffff;
504 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
505 print_symbol("%s", regs->eip);
506 printk(" SS:ESP %04x:%08lx\n", ss, esp);
508 else
509 regs = NULL;
510 } else
511 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
513 bust_spinlocks(0);
514 die.lock_owner = -1;
515 spin_unlock_irqrestore(&die.lock, flags);
517 if (!regs)
518 return;
520 if (kexec_should_crash(current))
521 crash_kexec(regs);
523 if (in_interrupt())
524 panic("Fatal exception in interrupt");
526 if (panic_on_oops)
527 panic("Fatal exception");
529 oops_exit();
530 do_exit(SIGSEGV);
533 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
535 if (!user_mode_vm(regs))
536 die(str, regs, err);
539 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
540 struct pt_regs * regs, long error_code,
541 siginfo_t *info)
543 struct task_struct *tsk = current;
544 tsk->thread.error_code = error_code;
545 tsk->thread.trap_no = trapnr;
547 if (regs->eflags & VM_MASK) {
548 if (vm86)
549 goto vm86_trap;
550 goto trap_signal;
553 if (!user_mode(regs))
554 goto kernel_trap;
556 trap_signal: {
557 if (info)
558 force_sig_info(signr, info, tsk);
559 else
560 force_sig(signr, tsk);
561 return;
564 kernel_trap: {
565 if (!fixup_exception(regs))
566 die(str, regs, error_code);
567 return;
570 vm86_trap: {
571 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
572 if (ret) goto trap_signal;
573 return;
577 #define DO_ERROR(trapnr, signr, str, name) \
578 fastcall void do_##name(struct pt_regs * regs, long error_code) \
580 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
581 == NOTIFY_STOP) \
582 return; \
583 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
586 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
587 fastcall void do_##name(struct pt_regs * regs, long error_code) \
589 siginfo_t info; \
590 info.si_signo = signr; \
591 info.si_errno = 0; \
592 info.si_code = sicode; \
593 info.si_addr = (void __user *)siaddr; \
594 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
595 == NOTIFY_STOP) \
596 return; \
597 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
600 #define DO_VM86_ERROR(trapnr, signr, str, name) \
601 fastcall void do_##name(struct pt_regs * regs, long error_code) \
603 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
604 == NOTIFY_STOP) \
605 return; \
606 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
609 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
610 fastcall void do_##name(struct pt_regs * regs, long error_code) \
612 siginfo_t info; \
613 info.si_signo = signr; \
614 info.si_errno = 0; \
615 info.si_code = sicode; \
616 info.si_addr = (void __user *)siaddr; \
617 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
618 == NOTIFY_STOP) \
619 return; \
620 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
623 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
624 #ifndef CONFIG_KPROBES
625 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
626 #endif
627 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
628 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
629 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
630 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
631 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
632 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
633 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
634 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
635 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
637 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
638 long error_code)
640 int cpu = get_cpu();
641 struct tss_struct *tss = &per_cpu(init_tss, cpu);
642 struct thread_struct *thread = &current->thread;
645 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
646 * invalid offset set (the LAZY one) and the faulting thread has
647 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
648 * and we set the offset field correctly. Then we let the CPU to
649 * restart the faulting instruction.
651 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
652 thread->io_bitmap_ptr) {
653 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
654 thread->io_bitmap_max);
656 * If the previously set map was extending to higher ports
657 * than the current one, pad extra space with 0xff (no access).
659 if (thread->io_bitmap_max < tss->io_bitmap_max)
660 memset((char *) tss->io_bitmap +
661 thread->io_bitmap_max, 0xff,
662 tss->io_bitmap_max - thread->io_bitmap_max);
663 tss->io_bitmap_max = thread->io_bitmap_max;
664 tss->io_bitmap_base = IO_BITMAP_OFFSET;
665 tss->io_bitmap_owner = thread;
666 put_cpu();
667 return;
669 put_cpu();
671 current->thread.error_code = error_code;
672 current->thread.trap_no = 13;
674 if (regs->eflags & VM_MASK)
675 goto gp_in_vm86;
677 if (!user_mode(regs))
678 goto gp_in_kernel;
680 current->thread.error_code = error_code;
681 current->thread.trap_no = 13;
682 force_sig(SIGSEGV, current);
683 return;
685 gp_in_vm86:
686 local_irq_enable();
687 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
688 return;
690 gp_in_kernel:
691 if (!fixup_exception(regs)) {
692 if (notify_die(DIE_GPF, "general protection fault", regs,
693 error_code, 13, SIGSEGV) == NOTIFY_STOP)
694 return;
695 die("general protection fault", regs, error_code);
699 static __kprobes void
700 mem_parity_error(unsigned char reason, struct pt_regs * regs)
702 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
703 "CPU %d.\n", reason, smp_processor_id());
704 printk(KERN_EMERG "You probably have a hardware problem with your RAM "
705 "chips\n");
706 if (panic_on_unrecovered_nmi)
707 panic("NMI: Not continuing");
709 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
711 /* Clear and disable the memory parity error line. */
712 clear_mem_error(reason);
715 static __kprobes void
716 io_check_error(unsigned char reason, struct pt_regs * regs)
718 unsigned long i;
720 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
721 show_registers(regs);
723 /* Re-enable the IOCK line, wait for a few seconds */
724 reason = (reason & 0xf) | 8;
725 outb(reason, 0x61);
726 i = 2000;
727 while (--i) udelay(1000);
728 reason &= ~8;
729 outb(reason, 0x61);
732 static __kprobes void
733 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
735 #ifdef CONFIG_MCA
736 /* Might actually be able to figure out what the guilty party
737 * is. */
738 if( MCA_bus ) {
739 mca_handle_nmi();
740 return;
742 #endif
743 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
744 "CPU %d.\n", reason, smp_processor_id());
745 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
746 if (panic_on_unrecovered_nmi)
747 panic("NMI: Not continuing");
749 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
752 static DEFINE_SPINLOCK(nmi_print_lock);
754 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
756 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
757 NOTIFY_STOP)
758 return;
760 spin_lock(&nmi_print_lock);
762 * We are in trouble anyway, lets at least try
763 * to get a message out.
765 bust_spinlocks(1);
766 printk(KERN_EMERG "%s", msg);
767 printk(" on CPU%d, eip %08lx, registers:\n",
768 smp_processor_id(), regs->eip);
769 show_registers(regs);
770 printk(KERN_EMERG "console shuts up ...\n");
771 console_silent();
772 spin_unlock(&nmi_print_lock);
773 bust_spinlocks(0);
775 /* If we are in kernel we are probably nested up pretty bad
776 * and might aswell get out now while we still can.
778 if (!user_mode_vm(regs)) {
779 current->thread.trap_no = 2;
780 crash_kexec(regs);
783 do_exit(SIGSEGV);
786 static __kprobes void default_do_nmi(struct pt_regs * regs)
788 unsigned char reason = 0;
790 /* Only the BSP gets external NMIs from the system. */
791 if (!smp_processor_id())
792 reason = get_nmi_reason();
794 if (!(reason & 0xc0)) {
795 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
796 == NOTIFY_STOP)
797 return;
798 #ifdef CONFIG_X86_LOCAL_APIC
800 * Ok, so this is none of the documented NMI sources,
801 * so it must be the NMI watchdog.
803 if (nmi_watchdog_tick(regs, reason))
804 return;
805 if (!do_nmi_callback(regs, smp_processor_id()))
806 #endif
807 unknown_nmi_error(reason, regs);
809 return;
811 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
812 return;
813 if (reason & 0x80)
814 mem_parity_error(reason, regs);
815 if (reason & 0x40)
816 io_check_error(reason, regs);
818 * Reassert NMI in case it became active meanwhile
819 * as it's edge-triggered.
821 reassert_nmi();
824 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
826 int cpu;
828 nmi_enter();
830 cpu = smp_processor_id();
832 ++nmi_count(cpu);
834 default_do_nmi(regs);
836 nmi_exit();
839 #ifdef CONFIG_KPROBES
840 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
842 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
843 == NOTIFY_STOP)
844 return;
845 /* This is an interrupt gate, because kprobes wants interrupts
846 disabled. Normal trap handlers don't. */
847 restore_interrupts(regs);
848 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
850 #endif
853 * Our handling of the processor debug registers is non-trivial.
854 * We do not clear them on entry and exit from the kernel. Therefore
855 * it is possible to get a watchpoint trap here from inside the kernel.
856 * However, the code in ./ptrace.c has ensured that the user can
857 * only set watchpoints on userspace addresses. Therefore the in-kernel
858 * watchpoint trap can only occur in code which is reading/writing
859 * from user space. Such code must not hold kernel locks (since it
860 * can equally take a page fault), therefore it is safe to call
861 * force_sig_info even though that claims and releases locks.
863 * Code in ./signal.c ensures that the debug control register
864 * is restored before we deliver any signal, and therefore that
865 * user code runs with the correct debug control register even though
866 * we clear it here.
868 * Being careful here means that we don't have to be as careful in a
869 * lot of more complicated places (task switching can be a bit lazy
870 * about restoring all the debug state, and ptrace doesn't have to
871 * find every occurrence of the TF bit that could be saved away even
872 * by user code)
874 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
876 unsigned int condition;
877 struct task_struct *tsk = current;
879 get_debugreg(condition, 6);
881 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
882 SIGTRAP) == NOTIFY_STOP)
883 return;
884 /* It's safe to allow irq's after DR6 has been saved */
885 if (regs->eflags & X86_EFLAGS_IF)
886 local_irq_enable();
888 /* Mask out spurious debug traps due to lazy DR7 setting */
889 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
890 if (!tsk->thread.debugreg[7])
891 goto clear_dr7;
894 if (regs->eflags & VM_MASK)
895 goto debug_vm86;
897 /* Save debug status register where ptrace can see it */
898 tsk->thread.debugreg[6] = condition;
901 * Single-stepping through TF: make sure we ignore any events in
902 * kernel space (but re-enable TF when returning to user mode).
904 if (condition & DR_STEP) {
906 * We already checked v86 mode above, so we can
907 * check for kernel mode by just checking the CPL
908 * of CS.
910 if (!user_mode(regs))
911 goto clear_TF_reenable;
914 /* Ok, finally something we can handle */
915 send_sigtrap(tsk, regs, error_code);
917 /* Disable additional traps. They'll be re-enabled when
918 * the signal is delivered.
920 clear_dr7:
921 set_debugreg(0, 7);
922 return;
924 debug_vm86:
925 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
926 return;
928 clear_TF_reenable:
929 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
930 regs->eflags &= ~TF_MASK;
931 return;
935 * Note that we play around with the 'TS' bit in an attempt to get
936 * the correct behaviour even in the presence of the asynchronous
937 * IRQ13 behaviour
939 void math_error(void __user *eip)
941 struct task_struct * task;
942 siginfo_t info;
943 unsigned short cwd, swd;
946 * Save the info for the exception handler and clear the error.
948 task = current;
949 save_init_fpu(task);
950 task->thread.trap_no = 16;
951 task->thread.error_code = 0;
952 info.si_signo = SIGFPE;
953 info.si_errno = 0;
954 info.si_code = __SI_FAULT;
955 info.si_addr = eip;
957 * (~cwd & swd) will mask out exceptions that are not set to unmasked
958 * status. 0x3f is the exception bits in these regs, 0x200 is the
959 * C1 reg you need in case of a stack fault, 0x040 is the stack
960 * fault bit. We should only be taking one exception at a time,
961 * so if this combination doesn't produce any single exception,
962 * then we have a bad program that isn't syncronizing its FPU usage
963 * and it will suffer the consequences since we won't be able to
964 * fully reproduce the context of the exception
966 cwd = get_fpu_cwd(task);
967 swd = get_fpu_swd(task);
968 switch (swd & ~cwd & 0x3f) {
969 case 0x000: /* No unmasked exception */
970 return;
971 default: /* Multiple exceptions */
972 break;
973 case 0x001: /* Invalid Op */
975 * swd & 0x240 == 0x040: Stack Underflow
976 * swd & 0x240 == 0x240: Stack Overflow
977 * User must clear the SF bit (0x40) if set
979 info.si_code = FPE_FLTINV;
980 break;
981 case 0x002: /* Denormalize */
982 case 0x010: /* Underflow */
983 info.si_code = FPE_FLTUND;
984 break;
985 case 0x004: /* Zero Divide */
986 info.si_code = FPE_FLTDIV;
987 break;
988 case 0x008: /* Overflow */
989 info.si_code = FPE_FLTOVF;
990 break;
991 case 0x020: /* Precision */
992 info.si_code = FPE_FLTRES;
993 break;
995 force_sig_info(SIGFPE, &info, task);
998 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
1000 ignore_fpu_irq = 1;
1001 math_error((void __user *)regs->eip);
1004 static void simd_math_error(void __user *eip)
1006 struct task_struct * task;
1007 siginfo_t info;
1008 unsigned short mxcsr;
1011 * Save the info for the exception handler and clear the error.
1013 task = current;
1014 save_init_fpu(task);
1015 task->thread.trap_no = 19;
1016 task->thread.error_code = 0;
1017 info.si_signo = SIGFPE;
1018 info.si_errno = 0;
1019 info.si_code = __SI_FAULT;
1020 info.si_addr = eip;
1022 * The SIMD FPU exceptions are handled a little differently, as there
1023 * is only a single status/control register. Thus, to determine which
1024 * unmasked exception was caught we must mask the exception mask bits
1025 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1027 mxcsr = get_fpu_mxcsr(task);
1028 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1029 case 0x000:
1030 default:
1031 break;
1032 case 0x001: /* Invalid Op */
1033 info.si_code = FPE_FLTINV;
1034 break;
1035 case 0x002: /* Denormalize */
1036 case 0x010: /* Underflow */
1037 info.si_code = FPE_FLTUND;
1038 break;
1039 case 0x004: /* Zero Divide */
1040 info.si_code = FPE_FLTDIV;
1041 break;
1042 case 0x008: /* Overflow */
1043 info.si_code = FPE_FLTOVF;
1044 break;
1045 case 0x020: /* Precision */
1046 info.si_code = FPE_FLTRES;
1047 break;
1049 force_sig_info(SIGFPE, &info, task);
1052 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
1053 long error_code)
1055 if (cpu_has_xmm) {
1056 /* Handle SIMD FPU exceptions on PIII+ processors. */
1057 ignore_fpu_irq = 1;
1058 simd_math_error((void __user *)regs->eip);
1059 } else {
1061 * Handle strange cache flush from user space exception
1062 * in all other cases. This is undocumented behaviour.
1064 if (regs->eflags & VM_MASK) {
1065 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1066 error_code);
1067 return;
1069 current->thread.trap_no = 19;
1070 current->thread.error_code = error_code;
1071 die_if_kernel("cache flush denied", regs, error_code);
1072 force_sig(SIGSEGV, current);
1076 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1077 long error_code)
1079 #if 0
1080 /* No need to warn about this any longer. */
1081 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1082 #endif
1085 fastcall void setup_x86_bogus_stack(unsigned char * stk)
1087 unsigned long *switch16_ptr, *switch32_ptr;
1088 struct pt_regs *regs;
1089 unsigned long stack_top, stack_bot;
1090 unsigned short iret_frame16_off;
1091 int cpu = smp_processor_id();
1092 /* reserve the space on 32bit stack for the magic switch16 pointer */
1093 memmove(stk, stk + 8, sizeof(struct pt_regs));
1094 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
1095 regs = (struct pt_regs *)stk;
1096 /* now the switch32 on 16bit stack */
1097 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1098 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1099 switch32_ptr = (unsigned long *)(stack_top - 8);
1100 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
1101 /* copy iret frame on 16bit stack */
1102 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
1103 /* fill in the switch pointers */
1104 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
1105 switch16_ptr[1] = __ESPFIX_SS;
1106 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
1107 8 - CPU_16BIT_STACK_SIZE;
1108 switch32_ptr[1] = __KERNEL_DS;
1111 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
1113 unsigned long *switch32_ptr;
1114 unsigned char *stack16, *stack32;
1115 unsigned long stack_top, stack_bot;
1116 int len;
1117 int cpu = smp_processor_id();
1118 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
1119 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
1120 switch32_ptr = (unsigned long *)(stack_top - 8);
1121 /* copy the data from 16bit stack to 32bit stack */
1122 len = CPU_16BIT_STACK_SIZE - 8 - sp;
1123 stack16 = (unsigned char *)(stack_bot + sp);
1124 stack32 = (unsigned char *)
1125 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
1126 memcpy(stack32, stack16, len);
1127 return stack32;
1131 * 'math_state_restore()' saves the current math information in the
1132 * old math state array, and gets the new ones from the current task
1134 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1135 * Don't touch unless you *really* know how it works.
1137 * Must be called with kernel preemption disabled (in this case,
1138 * local interrupts are disabled at the call-site in entry.S).
1140 asmlinkage void math_state_restore(struct pt_regs regs)
1142 struct thread_info *thread = current_thread_info();
1143 struct task_struct *tsk = thread->task;
1145 clts(); /* Allow maths ops (or we recurse) */
1146 if (!tsk_used_math(tsk))
1147 init_fpu(tsk);
1148 restore_fpu(tsk);
1149 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1152 #ifndef CONFIG_MATH_EMULATION
1154 asmlinkage void math_emulate(long arg)
1156 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1157 printk(KERN_EMERG "killing %s.\n",current->comm);
1158 force_sig(SIGFPE,current);
1159 schedule();
1162 #endif /* CONFIG_MATH_EMULATION */
1164 #ifdef CONFIG_X86_F00F_BUG
1165 void __init trap_init_f00f_bug(void)
1167 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1170 * Update the IDT descriptor and reload the IDT so that
1171 * it uses the read-only mapped virtual address.
1173 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1174 load_idt(&idt_descr);
1176 #endif
1179 * This needs to use 'idt_table' rather than 'idt', and
1180 * thus use the _nonmapped_ version of the IDT, as the
1181 * Pentium F0 0F bugfix can have resulted in the mapped
1182 * IDT being write-protected.
1184 void set_intr_gate(unsigned int n, void *addr)
1186 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1190 * This routine sets up an interrupt gate at directory privilege level 3.
1192 static inline void set_system_intr_gate(unsigned int n, void *addr)
1194 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1197 static void __init set_trap_gate(unsigned int n, void *addr)
1199 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1202 static void __init set_system_gate(unsigned int n, void *addr)
1204 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1207 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1209 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1213 void __init trap_init(void)
1215 #ifdef CONFIG_EISA
1216 void __iomem *p = ioremap(0x0FFFD9, 4);
1217 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1218 EISA_bus = 1;
1220 iounmap(p);
1221 #endif
1223 #ifdef CONFIG_X86_LOCAL_APIC
1224 init_apic_mappings();
1225 #endif
1227 set_trap_gate(0,&divide_error);
1228 set_intr_gate(1,&debug);
1229 set_intr_gate(2,&nmi);
1230 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1231 set_system_gate(4,&overflow);
1232 set_trap_gate(5,&bounds);
1233 set_trap_gate(6,&invalid_op);
1234 set_trap_gate(7,&device_not_available);
1235 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1236 set_trap_gate(9,&coprocessor_segment_overrun);
1237 set_trap_gate(10,&invalid_TSS);
1238 set_trap_gate(11,&segment_not_present);
1239 set_trap_gate(12,&stack_segment);
1240 set_trap_gate(13,&general_protection);
1241 set_intr_gate(14,&page_fault);
1242 set_trap_gate(15,&spurious_interrupt_bug);
1243 set_trap_gate(16,&coprocessor_error);
1244 set_trap_gate(17,&alignment_check);
1245 #ifdef CONFIG_X86_MCE
1246 set_trap_gate(18,&machine_check);
1247 #endif
1248 set_trap_gate(19,&simd_coprocessor_error);
1250 if (cpu_has_fxsr) {
1252 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1253 * Generates a compile-time "error: zero width for bit-field" if
1254 * the alignment is wrong.
1256 struct fxsrAlignAssert {
1257 int _:!(offsetof(struct task_struct,
1258 thread.i387.fxsave) & 15);
1261 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1262 set_in_cr4(X86_CR4_OSFXSR);
1263 printk("done.\n");
1265 if (cpu_has_xmm) {
1266 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1267 "support... ");
1268 set_in_cr4(X86_CR4_OSXMMEXCPT);
1269 printk("done.\n");
1272 set_system_gate(SYSCALL_VECTOR,&system_call);
1275 * Should be a barrier for any external CPU state.
1277 cpu_init();
1279 trap_init_hook();
1282 static int __init kstack_setup(char *s)
1284 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1285 return 1;
1287 __setup("kstack=", kstack_setup);
1289 #ifdef CONFIG_STACK_UNWIND
1290 static int __init call_trace_setup(char *s)
1292 if (strcmp(s, "old") == 0)
1293 call_trace = -1;
1294 else if (strcmp(s, "both") == 0)
1295 call_trace = 0;
1296 else if (strcmp(s, "newfallback") == 0)
1297 call_trace = 1;
1298 else if (strcmp(s, "new") == 2)
1299 call_trace = 2;
1300 return 1;
1302 __setup("call_trace=", call_trace_setup);
1303 #endif