[SCSI] libsas: Add SATA support to STP piece for SATA on SAS expanders
[linux-2.6/linux-loongson.git] / drivers / scsi / libsas / sas_expander.c
blob0c4e3a977915ec125e09b03524e23518505f7577
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
27 #include "sas_internal.h"
29 #include <scsi/scsi_transport.h>
30 #include <scsi/scsi_transport_sas.h>
31 #include "../scsi_sas_internal.h"
33 static int sas_discover_expander(struct domain_device *dev);
34 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
35 static int sas_configure_phy(struct domain_device *dev, int phy_id,
36 u8 *sas_addr, int include);
37 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
39 #if 0
40 /* FIXME: smp needs to migrate into the sas class */
41 static ssize_t smp_portal_read(struct kobject *, struct bin_attribute *,
42 char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, struct bin_attribute *,
44 char *, loff_t, size_t);
45 #endif
47 /* ---------- SMP task management ---------- */
49 static void smp_task_timedout(unsigned long _task)
51 struct sas_task *task = (void *) _task;
52 unsigned long flags;
54 spin_lock_irqsave(&task->task_state_lock, flags);
55 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
56 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
57 spin_unlock_irqrestore(&task->task_state_lock, flags);
59 complete(&task->completion);
62 static void smp_task_done(struct sas_task *task)
64 if (!del_timer(&task->timer))
65 return;
66 complete(&task->completion);
69 /* Give it some long enough timeout. In seconds. */
70 #define SMP_TIMEOUT 10
72 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
73 void *resp, int resp_size)
75 int res, retry;
76 struct sas_task *task = NULL;
77 struct sas_internal *i =
78 to_sas_internal(dev->port->ha->core.shost->transportt);
80 for (retry = 0; retry < 3; retry++) {
81 task = sas_alloc_task(GFP_KERNEL);
82 if (!task)
83 return -ENOMEM;
85 task->dev = dev;
86 task->task_proto = dev->tproto;
87 sg_init_one(&task->smp_task.smp_req, req, req_size);
88 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
90 task->task_done = smp_task_done;
92 task->timer.data = (unsigned long) task;
93 task->timer.function = smp_task_timedout;
94 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
95 add_timer(&task->timer);
97 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
99 if (res) {
100 del_timer(&task->timer);
101 SAS_DPRINTK("executing SMP task failed:%d\n", res);
102 goto ex_err;
105 wait_for_completion(&task->completion);
106 res = -ETASK;
107 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
108 SAS_DPRINTK("smp task timed out or aborted\n");
109 i->dft->lldd_abort_task(task);
110 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
111 SAS_DPRINTK("SMP task aborted and not done\n");
112 goto ex_err;
115 if (task->task_status.resp == SAS_TASK_COMPLETE &&
116 task->task_status.stat == SAM_GOOD) {
117 res = 0;
118 break;
119 } else {
120 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
121 "status 0x%x\n", __FUNCTION__,
122 SAS_ADDR(dev->sas_addr),
123 task->task_status.resp,
124 task->task_status.stat);
125 sas_free_task(task);
126 task = NULL;
129 ex_err:
130 BUG_ON(retry == 3 && task != NULL);
131 if (task != NULL) {
132 sas_free_task(task);
134 return res;
137 /* ---------- Allocations ---------- */
139 static inline void *alloc_smp_req(int size)
141 u8 *p = kzalloc(size, GFP_KERNEL);
142 if (p)
143 p[0] = SMP_REQUEST;
144 return p;
147 static inline void *alloc_smp_resp(int size)
149 return kzalloc(size, GFP_KERNEL);
152 /* ---------- Expander configuration ---------- */
154 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
155 void *disc_resp)
157 struct expander_device *ex = &dev->ex_dev;
158 struct ex_phy *phy = &ex->ex_phy[phy_id];
159 struct smp_resp *resp = disc_resp;
160 struct discover_resp *dr = &resp->disc;
161 struct sas_rphy *rphy = dev->rphy;
162 int rediscover = (phy->phy != NULL);
164 if (!rediscover) {
165 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
167 /* FIXME: error_handling */
168 BUG_ON(!phy->phy);
171 switch (resp->result) {
172 case SMP_RESP_PHY_VACANT:
173 phy->phy_state = PHY_VACANT;
174 return;
175 default:
176 phy->phy_state = PHY_NOT_PRESENT;
177 return;
178 case SMP_RESP_FUNC_ACC:
179 phy->phy_state = PHY_EMPTY; /* do not know yet */
180 break;
183 phy->phy_id = phy_id;
184 phy->attached_dev_type = dr->attached_dev_type;
185 phy->linkrate = dr->linkrate;
186 phy->attached_sata_host = dr->attached_sata_host;
187 phy->attached_sata_dev = dr->attached_sata_dev;
188 phy->attached_sata_ps = dr->attached_sata_ps;
189 phy->attached_iproto = dr->iproto << 1;
190 phy->attached_tproto = dr->tproto << 1;
191 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
192 phy->attached_phy_id = dr->attached_phy_id;
193 phy->phy_change_count = dr->change_count;
194 phy->routing_attr = dr->routing_attr;
195 phy->virtual = dr->virtual;
196 phy->last_da_index = -1;
198 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
199 phy->phy->identify.target_port_protocols = phy->attached_tproto;
200 phy->phy->identify.phy_identifier = phy_id;
201 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
202 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
203 phy->phy->minimum_linkrate = dr->pmin_linkrate;
204 phy->phy->maximum_linkrate = dr->pmax_linkrate;
205 phy->phy->negotiated_linkrate = phy->linkrate;
207 if (!rediscover)
208 sas_phy_add(phy->phy);
210 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
211 SAS_ADDR(dev->sas_addr), phy->phy_id,
212 phy->routing_attr == TABLE_ROUTING ? 'T' :
213 phy->routing_attr == DIRECT_ROUTING ? 'D' :
214 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
215 SAS_ADDR(phy->attached_sas_addr));
217 return;
220 #define DISCOVER_REQ_SIZE 16
221 #define DISCOVER_RESP_SIZE 56
223 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
224 u8 *disc_resp, int single)
226 int i, res;
228 disc_req[9] = single;
229 for (i = 1 ; i < 3; i++) {
230 struct discover_resp *dr;
232 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
233 disc_resp, DISCOVER_RESP_SIZE);
234 if (res)
235 return res;
236 /* This is detecting a failure to transmit inital
237 * dev to host FIS as described in section G.5 of
238 * sas-2 r 04b */
239 dr = &((struct smp_resp *)disc_resp)->disc;
240 if (!(dr->attached_dev_type == 0 &&
241 dr->attached_sata_dev))
242 break;
243 /* In order to generate the dev to host FIS, we
244 * send a link reset to the expander port */
245 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET);
246 /* Wait for the reset to trigger the negotiation */
247 msleep(500);
249 sas_set_ex_phy(dev, single, disc_resp);
250 return 0;
253 static int sas_ex_phy_discover(struct domain_device *dev, int single)
255 struct expander_device *ex = &dev->ex_dev;
256 int res = 0;
257 u8 *disc_req;
258 u8 *disc_resp;
260 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
261 if (!disc_req)
262 return -ENOMEM;
264 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
265 if (!disc_resp) {
266 kfree(disc_req);
267 return -ENOMEM;
270 disc_req[1] = SMP_DISCOVER;
272 if (0 <= single && single < ex->num_phys) {
273 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
274 } else {
275 int i;
277 for (i = 0; i < ex->num_phys; i++) {
278 res = sas_ex_phy_discover_helper(dev, disc_req,
279 disc_resp, i);
280 if (res)
281 goto out_err;
284 out_err:
285 kfree(disc_resp);
286 kfree(disc_req);
287 return res;
290 static int sas_expander_discover(struct domain_device *dev)
292 struct expander_device *ex = &dev->ex_dev;
293 int res = -ENOMEM;
295 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
296 if (!ex->ex_phy)
297 return -ENOMEM;
299 res = sas_ex_phy_discover(dev, -1);
300 if (res)
301 goto out_err;
303 return 0;
304 out_err:
305 kfree(ex->ex_phy);
306 ex->ex_phy = NULL;
307 return res;
310 #define MAX_EXPANDER_PHYS 128
312 static void ex_assign_report_general(struct domain_device *dev,
313 struct smp_resp *resp)
315 struct report_general_resp *rg = &resp->rg;
317 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
318 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
319 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
320 dev->ex_dev.conf_route_table = rg->conf_route_table;
321 dev->ex_dev.configuring = rg->configuring;
322 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
325 #define RG_REQ_SIZE 8
326 #define RG_RESP_SIZE 32
328 static int sas_ex_general(struct domain_device *dev)
330 u8 *rg_req;
331 struct smp_resp *rg_resp;
332 int res;
333 int i;
335 rg_req = alloc_smp_req(RG_REQ_SIZE);
336 if (!rg_req)
337 return -ENOMEM;
339 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
340 if (!rg_resp) {
341 kfree(rg_req);
342 return -ENOMEM;
345 rg_req[1] = SMP_REPORT_GENERAL;
347 for (i = 0; i < 5; i++) {
348 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
349 RG_RESP_SIZE);
351 if (res) {
352 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
353 SAS_ADDR(dev->sas_addr), res);
354 goto out;
355 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
356 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
357 SAS_ADDR(dev->sas_addr), rg_resp->result);
358 res = rg_resp->result;
359 goto out;
362 ex_assign_report_general(dev, rg_resp);
364 if (dev->ex_dev.configuring) {
365 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
366 SAS_ADDR(dev->sas_addr));
367 schedule_timeout_interruptible(5*HZ);
368 } else
369 break;
371 out:
372 kfree(rg_req);
373 kfree(rg_resp);
374 return res;
377 static void ex_assign_manuf_info(struct domain_device *dev, void
378 *_mi_resp)
380 u8 *mi_resp = _mi_resp;
381 struct sas_rphy *rphy = dev->rphy;
382 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
384 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
385 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
386 memcpy(edev->product_rev, mi_resp + 36,
387 SAS_EXPANDER_PRODUCT_REV_LEN);
389 if (mi_resp[8] & 1) {
390 memcpy(edev->component_vendor_id, mi_resp + 40,
391 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
392 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
393 edev->component_revision_id = mi_resp[50];
397 #define MI_REQ_SIZE 8
398 #define MI_RESP_SIZE 64
400 static int sas_ex_manuf_info(struct domain_device *dev)
402 u8 *mi_req;
403 u8 *mi_resp;
404 int res;
406 mi_req = alloc_smp_req(MI_REQ_SIZE);
407 if (!mi_req)
408 return -ENOMEM;
410 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
411 if (!mi_resp) {
412 kfree(mi_req);
413 return -ENOMEM;
416 mi_req[1] = SMP_REPORT_MANUF_INFO;
418 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
419 if (res) {
420 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
421 SAS_ADDR(dev->sas_addr), res);
422 goto out;
423 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
424 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
425 SAS_ADDR(dev->sas_addr), mi_resp[2]);
426 goto out;
429 ex_assign_manuf_info(dev, mi_resp);
430 out:
431 kfree(mi_req);
432 kfree(mi_resp);
433 return res;
436 #define PC_REQ_SIZE 44
437 #define PC_RESP_SIZE 8
439 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
440 enum phy_func phy_func,
441 struct sas_phy_linkrates *rates)
443 u8 *pc_req;
444 u8 *pc_resp;
445 int res;
447 pc_req = alloc_smp_req(PC_REQ_SIZE);
448 if (!pc_req)
449 return -ENOMEM;
451 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
452 if (!pc_resp) {
453 kfree(pc_req);
454 return -ENOMEM;
457 pc_req[1] = SMP_PHY_CONTROL;
458 pc_req[9] = phy_id;
459 pc_req[10]= phy_func;
460 if (rates) {
461 pc_req[32] = rates->minimum_linkrate << 4;
462 pc_req[33] = rates->maximum_linkrate << 4;
465 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
467 kfree(pc_resp);
468 kfree(pc_req);
469 return res;
472 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
474 struct expander_device *ex = &dev->ex_dev;
475 struct ex_phy *phy = &ex->ex_phy[phy_id];
477 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
478 phy->linkrate = SAS_PHY_DISABLED;
481 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
483 struct expander_device *ex = &dev->ex_dev;
484 int i;
486 for (i = 0; i < ex->num_phys; i++) {
487 struct ex_phy *phy = &ex->ex_phy[i];
489 if (phy->phy_state == PHY_VACANT ||
490 phy->phy_state == PHY_NOT_PRESENT)
491 continue;
493 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
494 sas_ex_disable_phy(dev, i);
498 static int sas_dev_present_in_domain(struct asd_sas_port *port,
499 u8 *sas_addr)
501 struct domain_device *dev;
503 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
504 return 1;
505 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
506 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
507 return 1;
509 return 0;
512 #define RPEL_REQ_SIZE 16
513 #define RPEL_RESP_SIZE 32
514 int sas_smp_get_phy_events(struct sas_phy *phy)
516 int res;
517 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
518 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
519 u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
520 u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
522 if (!resp)
523 return -ENOMEM;
525 req[1] = SMP_REPORT_PHY_ERR_LOG;
526 req[9] = phy->number;
528 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
529 resp, RPEL_RESP_SIZE);
531 if (!res)
532 goto out;
534 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
535 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
536 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
537 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
539 out:
540 kfree(resp);
541 return res;
545 #define RPS_REQ_SIZE 16
546 #define RPS_RESP_SIZE 60
548 static int sas_get_report_phy_sata(struct domain_device *dev,
549 int phy_id,
550 struct smp_resp *rps_resp)
552 int res;
553 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
554 u8 *resp = (u8 *)rps_resp;
556 if (!rps_req)
557 return -ENOMEM;
559 rps_req[1] = SMP_REPORT_PHY_SATA;
560 rps_req[9] = phy_id;
562 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
563 rps_resp, RPS_RESP_SIZE);
565 /* 0x34 is the FIS type for the D2H fis. There's a potential
566 * standards cockup here. sas-2 explicitly specifies the FIS
567 * should be encoded so that FIS type is in resp[24].
568 * However, some expanders endian reverse this. Undo the
569 * reversal here */
570 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
571 int i;
573 for (i = 0; i < 5; i++) {
574 int j = 24 + (i*4);
575 u8 a, b;
576 a = resp[j + 0];
577 b = resp[j + 1];
578 resp[j + 0] = resp[j + 3];
579 resp[j + 1] = resp[j + 2];
580 resp[j + 2] = b;
581 resp[j + 3] = a;
585 kfree(rps_req);
586 return res;
589 static void sas_ex_get_linkrate(struct domain_device *parent,
590 struct domain_device *child,
591 struct ex_phy *parent_phy)
593 struct expander_device *parent_ex = &parent->ex_dev;
594 struct sas_port *port;
595 int i;
597 child->pathways = 0;
599 port = parent_phy->port;
601 for (i = 0; i < parent_ex->num_phys; i++) {
602 struct ex_phy *phy = &parent_ex->ex_phy[i];
604 if (phy->phy_state == PHY_VACANT ||
605 phy->phy_state == PHY_NOT_PRESENT)
606 continue;
608 if (SAS_ADDR(phy->attached_sas_addr) ==
609 SAS_ADDR(child->sas_addr)) {
611 child->min_linkrate = min(parent->min_linkrate,
612 phy->linkrate);
613 child->max_linkrate = max(parent->max_linkrate,
614 phy->linkrate);
615 child->pathways++;
616 sas_port_add_phy(port, phy->phy);
619 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
620 child->pathways = min(child->pathways, parent->pathways);
623 static struct domain_device *sas_ex_discover_end_dev(
624 struct domain_device *parent, int phy_id)
626 struct expander_device *parent_ex = &parent->ex_dev;
627 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
628 struct domain_device *child = NULL;
629 struct sas_rphy *rphy;
630 int res;
632 if (phy->attached_sata_host || phy->attached_sata_ps)
633 return NULL;
635 child = kzalloc(sizeof(*child), GFP_KERNEL);
636 if (!child)
637 return NULL;
639 child->parent = parent;
640 child->port = parent->port;
641 child->iproto = phy->attached_iproto;
642 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
643 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
644 if (!phy->port) {
645 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
646 if (unlikely(!phy->port))
647 goto out_err;
648 if (unlikely(sas_port_add(phy->port) != 0)) {
649 sas_port_free(phy->port);
650 goto out_err;
653 sas_ex_get_linkrate(parent, child, phy);
655 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
656 child->dev_type = SATA_DEV;
657 if (phy->attached_tproto & SAS_PROTO_STP)
658 child->tproto = phy->attached_tproto;
659 if (phy->attached_sata_dev)
660 child->tproto |= SATA_DEV;
661 res = sas_get_report_phy_sata(parent, phy_id,
662 &child->sata_dev.rps_resp);
663 if (res) {
664 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
665 "0x%x\n", SAS_ADDR(parent->sas_addr),
666 phy_id, res);
667 goto out_free;
669 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
670 sizeof(struct dev_to_host_fis));
672 rphy = sas_end_device_alloc(phy->port);
673 /* FIXME: error handling */
674 BUG_ON(!rphy);
676 sas_init_dev(child);
678 child->rphy = rphy;
680 spin_lock(&parent->port->dev_list_lock);
681 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
682 spin_unlock(&parent->port->dev_list_lock);
684 res = sas_discover_sata(child);
685 if (res) {
686 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
687 "%016llx:0x%x returned 0x%x\n",
688 SAS_ADDR(child->sas_addr),
689 SAS_ADDR(parent->sas_addr), phy_id, res);
690 goto out_list_del;
692 } else if (phy->attached_tproto & SAS_PROTO_SSP) {
693 child->dev_type = SAS_END_DEV;
694 rphy = sas_end_device_alloc(phy->port);
695 /* FIXME: error handling */
696 if (unlikely(!rphy))
697 goto out_free;
698 child->tproto = phy->attached_tproto;
699 sas_init_dev(child);
701 child->rphy = rphy;
702 sas_fill_in_rphy(child, rphy);
704 spin_lock(&parent->port->dev_list_lock);
705 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
706 spin_unlock(&parent->port->dev_list_lock);
708 res = sas_discover_end_dev(child);
709 if (res) {
710 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
711 "at %016llx:0x%x returned 0x%x\n",
712 SAS_ADDR(child->sas_addr),
713 SAS_ADDR(parent->sas_addr), phy_id, res);
714 goto out_list_del;
716 } else {
717 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
718 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
719 phy_id);
722 list_add_tail(&child->siblings, &parent_ex->children);
723 return child;
725 out_list_del:
726 sas_rphy_free(child->rphy);
727 child->rphy = NULL;
728 list_del(&child->dev_list_node);
729 out_free:
730 sas_port_delete(phy->port);
731 out_err:
732 phy->port = NULL;
733 kfree(child);
734 return NULL;
737 /* See if this phy is part of a wide port */
738 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
740 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
741 int i;
743 for (i = 0; i < parent->ex_dev.num_phys; i++) {
744 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
746 if (ephy == phy)
747 continue;
749 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
750 SAS_ADDR_SIZE) && ephy->port) {
751 sas_port_add_phy(ephy->port, phy->phy);
752 phy->phy_state = PHY_DEVICE_DISCOVERED;
753 return 0;
757 return -ENODEV;
760 static struct domain_device *sas_ex_discover_expander(
761 struct domain_device *parent, int phy_id)
763 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
764 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
765 struct domain_device *child = NULL;
766 struct sas_rphy *rphy;
767 struct sas_expander_device *edev;
768 struct asd_sas_port *port;
769 int res;
771 if (phy->routing_attr == DIRECT_ROUTING) {
772 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
773 "allowed\n",
774 SAS_ADDR(parent->sas_addr), phy_id,
775 SAS_ADDR(phy->attached_sas_addr),
776 phy->attached_phy_id);
777 return NULL;
779 child = kzalloc(sizeof(*child), GFP_KERNEL);
780 if (!child)
781 return NULL;
783 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784 /* FIXME: better error handling */
785 BUG_ON(sas_port_add(phy->port) != 0);
788 switch (phy->attached_dev_type) {
789 case EDGE_DEV:
790 rphy = sas_expander_alloc(phy->port,
791 SAS_EDGE_EXPANDER_DEVICE);
792 break;
793 case FANOUT_DEV:
794 rphy = sas_expander_alloc(phy->port,
795 SAS_FANOUT_EXPANDER_DEVICE);
796 break;
797 default:
798 rphy = NULL; /* shut gcc up */
799 BUG();
801 port = parent->port;
802 child->rphy = rphy;
803 edev = rphy_to_expander_device(rphy);
804 child->dev_type = phy->attached_dev_type;
805 child->parent = parent;
806 child->port = port;
807 child->iproto = phy->attached_iproto;
808 child->tproto = phy->attached_tproto;
809 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
810 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
811 sas_ex_get_linkrate(parent, child, phy);
812 edev->level = parent_ex->level + 1;
813 parent->port->disc.max_level = max(parent->port->disc.max_level,
814 edev->level);
815 sas_init_dev(child);
816 sas_fill_in_rphy(child, rphy);
817 sas_rphy_add(rphy);
819 spin_lock(&parent->port->dev_list_lock);
820 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
821 spin_unlock(&parent->port->dev_list_lock);
823 res = sas_discover_expander(child);
824 if (res) {
825 kfree(child);
826 return NULL;
828 list_add_tail(&child->siblings, &parent->ex_dev.children);
829 return child;
832 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
834 struct expander_device *ex = &dev->ex_dev;
835 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
836 struct domain_device *child = NULL;
837 int res = 0;
839 /* Phy state */
840 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
841 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
842 res = sas_ex_phy_discover(dev, phy_id);
843 if (res)
844 return res;
847 /* Parent and domain coherency */
848 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
849 SAS_ADDR(dev->port->sas_addr))) {
850 sas_add_parent_port(dev, phy_id);
851 return 0;
853 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
854 SAS_ADDR(dev->parent->sas_addr))) {
855 sas_add_parent_port(dev, phy_id);
856 if (ex_phy->routing_attr == TABLE_ROUTING)
857 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
858 return 0;
861 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
862 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
864 if (ex_phy->attached_dev_type == NO_DEVICE) {
865 if (ex_phy->routing_attr == DIRECT_ROUTING) {
866 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
867 sas_configure_routing(dev, ex_phy->attached_sas_addr);
869 return 0;
870 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
871 return 0;
873 if (ex_phy->attached_dev_type != SAS_END_DEV &&
874 ex_phy->attached_dev_type != FANOUT_DEV &&
875 ex_phy->attached_dev_type != EDGE_DEV) {
876 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
877 "phy 0x%x\n", ex_phy->attached_dev_type,
878 SAS_ADDR(dev->sas_addr),
879 phy_id);
880 return 0;
883 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
884 if (res) {
885 SAS_DPRINTK("configure routing for dev %016llx "
886 "reported 0x%x. Forgotten\n",
887 SAS_ADDR(ex_phy->attached_sas_addr), res);
888 sas_disable_routing(dev, ex_phy->attached_sas_addr);
889 return res;
892 res = sas_ex_join_wide_port(dev, phy_id);
893 if (!res) {
894 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
895 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
896 return res;
899 switch (ex_phy->attached_dev_type) {
900 case SAS_END_DEV:
901 child = sas_ex_discover_end_dev(dev, phy_id);
902 break;
903 case FANOUT_DEV:
904 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
905 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
906 "attached to ex %016llx phy 0x%x\n",
907 SAS_ADDR(ex_phy->attached_sas_addr),
908 ex_phy->attached_phy_id,
909 SAS_ADDR(dev->sas_addr),
910 phy_id);
911 sas_ex_disable_phy(dev, phy_id);
912 break;
913 } else
914 memcpy(dev->port->disc.fanout_sas_addr,
915 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
916 /* fallthrough */
917 case EDGE_DEV:
918 child = sas_ex_discover_expander(dev, phy_id);
919 break;
920 default:
921 break;
924 if (child) {
925 int i;
927 for (i = 0; i < ex->num_phys; i++) {
928 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
929 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
930 continue;
932 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
933 SAS_ADDR(child->sas_addr))
934 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
938 return res;
941 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
943 struct expander_device *ex = &dev->ex_dev;
944 int i;
946 for (i = 0; i < ex->num_phys; i++) {
947 struct ex_phy *phy = &ex->ex_phy[i];
949 if (phy->phy_state == PHY_VACANT ||
950 phy->phy_state == PHY_NOT_PRESENT)
951 continue;
953 if ((phy->attached_dev_type == EDGE_DEV ||
954 phy->attached_dev_type == FANOUT_DEV) &&
955 phy->routing_attr == SUBTRACTIVE_ROUTING) {
957 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
959 return 1;
962 return 0;
965 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
967 struct expander_device *ex = &dev->ex_dev;
968 struct domain_device *child;
969 u8 sub_addr[8] = {0, };
971 list_for_each_entry(child, &ex->children, siblings) {
972 if (child->dev_type != EDGE_DEV &&
973 child->dev_type != FANOUT_DEV)
974 continue;
975 if (sub_addr[0] == 0) {
976 sas_find_sub_addr(child, sub_addr);
977 continue;
978 } else {
979 u8 s2[8];
981 if (sas_find_sub_addr(child, s2) &&
982 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
984 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
985 "diverges from subtractive "
986 "boundary %016llx\n",
987 SAS_ADDR(dev->sas_addr),
988 SAS_ADDR(child->sas_addr),
989 SAS_ADDR(s2),
990 SAS_ADDR(sub_addr));
992 sas_ex_disable_port(child, s2);
996 return 0;
999 * sas_ex_discover_devices -- discover devices attached to this expander
1000 * dev: pointer to the expander domain device
1001 * single: if you want to do a single phy, else set to -1;
1003 * Configure this expander for use with its devices and register the
1004 * devices of this expander.
1006 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1008 struct expander_device *ex = &dev->ex_dev;
1009 int i = 0, end = ex->num_phys;
1010 int res = 0;
1012 if (0 <= single && single < end) {
1013 i = single;
1014 end = i+1;
1017 for ( ; i < end; i++) {
1018 struct ex_phy *ex_phy = &ex->ex_phy[i];
1020 if (ex_phy->phy_state == PHY_VACANT ||
1021 ex_phy->phy_state == PHY_NOT_PRESENT ||
1022 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1023 continue;
1025 switch (ex_phy->linkrate) {
1026 case SAS_PHY_DISABLED:
1027 case SAS_PHY_RESET_PROBLEM:
1028 case SAS_SATA_PORT_SELECTOR:
1029 continue;
1030 default:
1031 res = sas_ex_discover_dev(dev, i);
1032 if (res)
1033 break;
1034 continue;
1038 if (!res)
1039 sas_check_level_subtractive_boundary(dev);
1041 return res;
1044 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1046 struct expander_device *ex = &dev->ex_dev;
1047 int i;
1048 u8 *sub_sas_addr = NULL;
1050 if (dev->dev_type != EDGE_DEV)
1051 return 0;
1053 for (i = 0; i < ex->num_phys; i++) {
1054 struct ex_phy *phy = &ex->ex_phy[i];
1056 if (phy->phy_state == PHY_VACANT ||
1057 phy->phy_state == PHY_NOT_PRESENT)
1058 continue;
1060 if ((phy->attached_dev_type == FANOUT_DEV ||
1061 phy->attached_dev_type == EDGE_DEV) &&
1062 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1064 if (!sub_sas_addr)
1065 sub_sas_addr = &phy->attached_sas_addr[0];
1066 else if (SAS_ADDR(sub_sas_addr) !=
1067 SAS_ADDR(phy->attached_sas_addr)) {
1069 SAS_DPRINTK("ex %016llx phy 0x%x "
1070 "diverges(%016llx) on subtractive "
1071 "boundary(%016llx). Disabled\n",
1072 SAS_ADDR(dev->sas_addr), i,
1073 SAS_ADDR(phy->attached_sas_addr),
1074 SAS_ADDR(sub_sas_addr));
1075 sas_ex_disable_phy(dev, i);
1079 return 0;
1082 static void sas_print_parent_topology_bug(struct domain_device *child,
1083 struct ex_phy *parent_phy,
1084 struct ex_phy *child_phy)
1086 static const char ra_char[] = {
1087 [DIRECT_ROUTING] = 'D',
1088 [SUBTRACTIVE_ROUTING] = 'S',
1089 [TABLE_ROUTING] = 'T',
1091 static const char *ex_type[] = {
1092 [EDGE_DEV] = "edge",
1093 [FANOUT_DEV] = "fanout",
1095 struct domain_device *parent = child->parent;
1097 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1098 "has %c:%c routing link!\n",
1100 ex_type[parent->dev_type],
1101 SAS_ADDR(parent->sas_addr),
1102 parent_phy->phy_id,
1104 ex_type[child->dev_type],
1105 SAS_ADDR(child->sas_addr),
1106 child_phy->phy_id,
1108 ra_char[parent_phy->routing_attr],
1109 ra_char[child_phy->routing_attr]);
1112 static int sas_check_eeds(struct domain_device *child,
1113 struct ex_phy *parent_phy,
1114 struct ex_phy *child_phy)
1116 int res = 0;
1117 struct domain_device *parent = child->parent;
1119 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1120 res = -ENODEV;
1121 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1122 "phy S:0x%x, while there is a fanout ex %016llx\n",
1123 SAS_ADDR(parent->sas_addr),
1124 parent_phy->phy_id,
1125 SAS_ADDR(child->sas_addr),
1126 child_phy->phy_id,
1127 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1128 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1129 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1130 SAS_ADDR_SIZE);
1131 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1132 SAS_ADDR_SIZE);
1133 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1134 SAS_ADDR(parent->sas_addr)) ||
1135 (SAS_ADDR(parent->port->disc.eeds_a) ==
1136 SAS_ADDR(child->sas_addr)))
1138 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1139 SAS_ADDR(parent->sas_addr)) ||
1140 (SAS_ADDR(parent->port->disc.eeds_b) ==
1141 SAS_ADDR(child->sas_addr))))
1143 else {
1144 res = -ENODEV;
1145 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1146 "phy 0x%x link forms a third EEDS!\n",
1147 SAS_ADDR(parent->sas_addr),
1148 parent_phy->phy_id,
1149 SAS_ADDR(child->sas_addr),
1150 child_phy->phy_id);
1153 return res;
1156 /* Here we spill over 80 columns. It is intentional.
1158 static int sas_check_parent_topology(struct domain_device *child)
1160 struct expander_device *child_ex = &child->ex_dev;
1161 struct expander_device *parent_ex;
1162 int i;
1163 int res = 0;
1165 if (!child->parent)
1166 return 0;
1168 if (child->parent->dev_type != EDGE_DEV &&
1169 child->parent->dev_type != FANOUT_DEV)
1170 return 0;
1172 parent_ex = &child->parent->ex_dev;
1174 for (i = 0; i < parent_ex->num_phys; i++) {
1175 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1176 struct ex_phy *child_phy;
1178 if (parent_phy->phy_state == PHY_VACANT ||
1179 parent_phy->phy_state == PHY_NOT_PRESENT)
1180 continue;
1182 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1183 continue;
1185 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1187 switch (child->parent->dev_type) {
1188 case EDGE_DEV:
1189 if (child->dev_type == FANOUT_DEV) {
1190 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1191 child_phy->routing_attr != TABLE_ROUTING) {
1192 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1193 res = -ENODEV;
1195 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1196 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1197 res = sas_check_eeds(child, parent_phy, child_phy);
1198 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1199 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1200 res = -ENODEV;
1202 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1203 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1204 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1205 res = -ENODEV;
1207 break;
1208 case FANOUT_DEV:
1209 if (parent_phy->routing_attr != TABLE_ROUTING ||
1210 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1211 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1212 res = -ENODEV;
1214 break;
1215 default:
1216 break;
1220 return res;
1223 #define RRI_REQ_SIZE 16
1224 #define RRI_RESP_SIZE 44
1226 static int sas_configure_present(struct domain_device *dev, int phy_id,
1227 u8 *sas_addr, int *index, int *present)
1229 int i, res = 0;
1230 struct expander_device *ex = &dev->ex_dev;
1231 struct ex_phy *phy = &ex->ex_phy[phy_id];
1232 u8 *rri_req;
1233 u8 *rri_resp;
1235 *present = 0;
1236 *index = 0;
1238 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1239 if (!rri_req)
1240 return -ENOMEM;
1242 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1243 if (!rri_resp) {
1244 kfree(rri_req);
1245 return -ENOMEM;
1248 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1249 rri_req[9] = phy_id;
1251 for (i = 0; i < ex->max_route_indexes ; i++) {
1252 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1253 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1254 RRI_RESP_SIZE);
1255 if (res)
1256 goto out;
1257 res = rri_resp[2];
1258 if (res == SMP_RESP_NO_INDEX) {
1259 SAS_DPRINTK("overflow of indexes: dev %016llx "
1260 "phy 0x%x index 0x%x\n",
1261 SAS_ADDR(dev->sas_addr), phy_id, i);
1262 goto out;
1263 } else if (res != SMP_RESP_FUNC_ACC) {
1264 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1265 "result 0x%x\n", __FUNCTION__,
1266 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1267 goto out;
1269 if (SAS_ADDR(sas_addr) != 0) {
1270 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1271 *index = i;
1272 if ((rri_resp[12] & 0x80) == 0x80)
1273 *present = 0;
1274 else
1275 *present = 1;
1276 goto out;
1277 } else if (SAS_ADDR(rri_resp+16) == 0) {
1278 *index = i;
1279 *present = 0;
1280 goto out;
1282 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1283 phy->last_da_index < i) {
1284 phy->last_da_index = i;
1285 *index = i;
1286 *present = 0;
1287 goto out;
1290 res = -1;
1291 out:
1292 kfree(rri_req);
1293 kfree(rri_resp);
1294 return res;
1297 #define CRI_REQ_SIZE 44
1298 #define CRI_RESP_SIZE 8
1300 static int sas_configure_set(struct domain_device *dev, int phy_id,
1301 u8 *sas_addr, int index, int include)
1303 int res;
1304 u8 *cri_req;
1305 u8 *cri_resp;
1307 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1308 if (!cri_req)
1309 return -ENOMEM;
1311 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1312 if (!cri_resp) {
1313 kfree(cri_req);
1314 return -ENOMEM;
1317 cri_req[1] = SMP_CONF_ROUTE_INFO;
1318 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1319 cri_req[9] = phy_id;
1320 if (SAS_ADDR(sas_addr) == 0 || !include)
1321 cri_req[12] |= 0x80;
1322 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1324 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1325 CRI_RESP_SIZE);
1326 if (res)
1327 goto out;
1328 res = cri_resp[2];
1329 if (res == SMP_RESP_NO_INDEX) {
1330 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1331 "index 0x%x\n",
1332 SAS_ADDR(dev->sas_addr), phy_id, index);
1334 out:
1335 kfree(cri_req);
1336 kfree(cri_resp);
1337 return res;
1340 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1341 u8 *sas_addr, int include)
1343 int index;
1344 int present;
1345 int res;
1347 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1348 if (res)
1349 return res;
1350 if (include ^ present)
1351 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1353 return res;
1357 * sas_configure_parent -- configure routing table of parent
1358 * parent: parent expander
1359 * child: child expander
1360 * sas_addr: SAS port identifier of device directly attached to child
1362 static int sas_configure_parent(struct domain_device *parent,
1363 struct domain_device *child,
1364 u8 *sas_addr, int include)
1366 struct expander_device *ex_parent = &parent->ex_dev;
1367 int res = 0;
1368 int i;
1370 if (parent->parent) {
1371 res = sas_configure_parent(parent->parent, parent, sas_addr,
1372 include);
1373 if (res)
1374 return res;
1377 if (ex_parent->conf_route_table == 0) {
1378 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1379 SAS_ADDR(parent->sas_addr));
1380 return 0;
1383 for (i = 0; i < ex_parent->num_phys; i++) {
1384 struct ex_phy *phy = &ex_parent->ex_phy[i];
1386 if ((phy->routing_attr == TABLE_ROUTING) &&
1387 (SAS_ADDR(phy->attached_sas_addr) ==
1388 SAS_ADDR(child->sas_addr))) {
1389 res = sas_configure_phy(parent, i, sas_addr, include);
1390 if (res)
1391 return res;
1395 return res;
1399 * sas_configure_routing -- configure routing
1400 * dev: expander device
1401 * sas_addr: port identifier of device directly attached to the expander device
1403 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1405 if (dev->parent)
1406 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1407 return 0;
1410 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1412 if (dev->parent)
1413 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1414 return 0;
1417 #if 0
1418 #define SMP_BIN_ATTR_NAME "smp_portal"
1420 static void sas_ex_smp_hook(struct domain_device *dev)
1422 struct expander_device *ex_dev = &dev->ex_dev;
1423 struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1425 memset(bin_attr, 0, sizeof(*bin_attr));
1427 bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1428 bin_attr->attr.mode = 0600;
1430 bin_attr->size = 0;
1431 bin_attr->private = NULL;
1432 bin_attr->read = smp_portal_read;
1433 bin_attr->write= smp_portal_write;
1434 bin_attr->mmap = NULL;
1436 ex_dev->smp_portal_pid = -1;
1437 init_MUTEX(&ex_dev->smp_sema);
1439 #endif
1442 * sas_discover_expander -- expander discovery
1443 * @ex: pointer to expander domain device
1445 * See comment in sas_discover_sata().
1447 static int sas_discover_expander(struct domain_device *dev)
1449 int res;
1451 res = sas_notify_lldd_dev_found(dev);
1452 if (res)
1453 return res;
1455 res = sas_ex_general(dev);
1456 if (res)
1457 goto out_err;
1458 res = sas_ex_manuf_info(dev);
1459 if (res)
1460 goto out_err;
1462 res = sas_expander_discover(dev);
1463 if (res) {
1464 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1465 SAS_ADDR(dev->sas_addr), res);
1466 goto out_err;
1469 sas_check_ex_subtractive_boundary(dev);
1470 res = sas_check_parent_topology(dev);
1471 if (res)
1472 goto out_err;
1473 return 0;
1474 out_err:
1475 sas_notify_lldd_dev_gone(dev);
1476 return res;
1479 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1481 int res = 0;
1482 struct domain_device *dev;
1484 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1485 if (dev->dev_type == EDGE_DEV ||
1486 dev->dev_type == FANOUT_DEV) {
1487 struct sas_expander_device *ex =
1488 rphy_to_expander_device(dev->rphy);
1490 if (level == ex->level)
1491 res = sas_ex_discover_devices(dev, -1);
1492 else if (level > 0)
1493 res = sas_ex_discover_devices(port->port_dev, -1);
1498 return res;
1501 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1503 int res;
1504 int level;
1506 do {
1507 level = port->disc.max_level;
1508 res = sas_ex_level_discovery(port, level);
1509 mb();
1510 } while (level < port->disc.max_level);
1512 return res;
1515 int sas_discover_root_expander(struct domain_device *dev)
1517 int res;
1518 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1520 res = sas_rphy_add(dev->rphy);
1521 if (res)
1522 goto out_err;
1524 ex->level = dev->port->disc.max_level; /* 0 */
1525 res = sas_discover_expander(dev);
1526 if (res)
1527 goto out_err2;
1529 sas_ex_bfs_disc(dev->port);
1531 return res;
1533 out_err2:
1534 sas_rphy_remove(dev->rphy);
1535 out_err:
1536 return res;
1539 /* ---------- Domain revalidation ---------- */
1541 static int sas_get_phy_discover(struct domain_device *dev,
1542 int phy_id, struct smp_resp *disc_resp)
1544 int res;
1545 u8 *disc_req;
1547 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1548 if (!disc_req)
1549 return -ENOMEM;
1551 disc_req[1] = SMP_DISCOVER;
1552 disc_req[9] = phy_id;
1554 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1555 disc_resp, DISCOVER_RESP_SIZE);
1556 if (res)
1557 goto out;
1558 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1559 res = disc_resp->result;
1560 goto out;
1562 out:
1563 kfree(disc_req);
1564 return res;
1567 static int sas_get_phy_change_count(struct domain_device *dev,
1568 int phy_id, int *pcc)
1570 int res;
1571 struct smp_resp *disc_resp;
1573 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1574 if (!disc_resp)
1575 return -ENOMEM;
1577 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1578 if (!res)
1579 *pcc = disc_resp->disc.change_count;
1581 kfree(disc_resp);
1582 return res;
1585 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1586 int phy_id, u8 *attached_sas_addr)
1588 int res;
1589 struct smp_resp *disc_resp;
1590 struct discover_resp *dr;
1592 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1593 if (!disc_resp)
1594 return -ENOMEM;
1595 dr = &disc_resp->disc;
1597 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1598 if (!res) {
1599 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1600 if (dr->attached_dev_type == 0)
1601 memset(attached_sas_addr, 0, 8);
1603 kfree(disc_resp);
1604 return res;
1607 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1608 int from_phy)
1610 struct expander_device *ex = &dev->ex_dev;
1611 int res = 0;
1612 int i;
1614 for (i = from_phy; i < ex->num_phys; i++) {
1615 int phy_change_count = 0;
1617 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1618 if (res)
1619 goto out;
1620 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1621 ex->ex_phy[i].phy_change_count = phy_change_count;
1622 *phy_id = i;
1623 return 0;
1626 out:
1627 return res;
1630 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1632 int res;
1633 u8 *rg_req;
1634 struct smp_resp *rg_resp;
1636 rg_req = alloc_smp_req(RG_REQ_SIZE);
1637 if (!rg_req)
1638 return -ENOMEM;
1640 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1641 if (!rg_resp) {
1642 kfree(rg_req);
1643 return -ENOMEM;
1646 rg_req[1] = SMP_REPORT_GENERAL;
1648 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1649 RG_RESP_SIZE);
1650 if (res)
1651 goto out;
1652 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1653 res = rg_resp->result;
1654 goto out;
1657 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1658 out:
1659 kfree(rg_resp);
1660 kfree(rg_req);
1661 return res;
1664 static int sas_find_bcast_dev(struct domain_device *dev,
1665 struct domain_device **src_dev)
1667 struct expander_device *ex = &dev->ex_dev;
1668 int ex_change_count = -1;
1669 int res;
1671 res = sas_get_ex_change_count(dev, &ex_change_count);
1672 if (res)
1673 goto out;
1674 if (ex_change_count != -1 &&
1675 ex_change_count != ex->ex_change_count) {
1676 *src_dev = dev;
1677 ex->ex_change_count = ex_change_count;
1678 } else {
1679 struct domain_device *ch;
1681 list_for_each_entry(ch, &ex->children, siblings) {
1682 if (ch->dev_type == EDGE_DEV ||
1683 ch->dev_type == FANOUT_DEV) {
1684 res = sas_find_bcast_dev(ch, src_dev);
1685 if (src_dev)
1686 return res;
1690 out:
1691 return res;
1694 static void sas_unregister_ex_tree(struct domain_device *dev)
1696 struct expander_device *ex = &dev->ex_dev;
1697 struct domain_device *child, *n;
1699 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1700 if (child->dev_type == EDGE_DEV ||
1701 child->dev_type == FANOUT_DEV)
1702 sas_unregister_ex_tree(child);
1703 else
1704 sas_unregister_dev(child);
1706 sas_unregister_dev(dev);
1709 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1710 int phy_id)
1712 struct expander_device *ex_dev = &parent->ex_dev;
1713 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1714 struct domain_device *child, *n;
1716 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1717 if (SAS_ADDR(child->sas_addr) ==
1718 SAS_ADDR(phy->attached_sas_addr)) {
1719 if (child->dev_type == EDGE_DEV ||
1720 child->dev_type == FANOUT_DEV)
1721 sas_unregister_ex_tree(child);
1722 else
1723 sas_unregister_dev(child);
1724 break;
1727 sas_disable_routing(parent, phy->attached_sas_addr);
1728 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1729 sas_port_delete_phy(phy->port, phy->phy);
1730 if (phy->port->num_phys == 0)
1731 sas_port_delete(phy->port);
1732 phy->port = NULL;
1735 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1736 const int level)
1738 struct expander_device *ex_root = &root->ex_dev;
1739 struct domain_device *child;
1740 int res = 0;
1742 list_for_each_entry(child, &ex_root->children, siblings) {
1743 if (child->dev_type == EDGE_DEV ||
1744 child->dev_type == FANOUT_DEV) {
1745 struct sas_expander_device *ex =
1746 rphy_to_expander_device(child->rphy);
1748 if (level > ex->level)
1749 res = sas_discover_bfs_by_root_level(child,
1750 level);
1751 else if (level == ex->level)
1752 res = sas_ex_discover_devices(child, -1);
1755 return res;
1758 static int sas_discover_bfs_by_root(struct domain_device *dev)
1760 int res;
1761 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1762 int level = ex->level+1;
1764 res = sas_ex_discover_devices(dev, -1);
1765 if (res)
1766 goto out;
1767 do {
1768 res = sas_discover_bfs_by_root_level(dev, level);
1769 mb();
1770 level += 1;
1771 } while (level <= dev->port->disc.max_level);
1772 out:
1773 return res;
1776 static int sas_discover_new(struct domain_device *dev, int phy_id)
1778 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1779 struct domain_device *child;
1780 int res;
1782 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1783 SAS_ADDR(dev->sas_addr), phy_id);
1784 res = sas_ex_phy_discover(dev, phy_id);
1785 if (res)
1786 goto out;
1787 res = sas_ex_discover_devices(dev, phy_id);
1788 if (res)
1789 goto out;
1790 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1791 if (SAS_ADDR(child->sas_addr) ==
1792 SAS_ADDR(ex_phy->attached_sas_addr)) {
1793 if (child->dev_type == EDGE_DEV ||
1794 child->dev_type == FANOUT_DEV)
1795 res = sas_discover_bfs_by_root(child);
1796 break;
1799 out:
1800 return res;
1803 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1805 struct expander_device *ex = &dev->ex_dev;
1806 struct ex_phy *phy = &ex->ex_phy[phy_id];
1807 u8 attached_sas_addr[8];
1808 int res;
1810 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1811 switch (res) {
1812 case SMP_RESP_NO_PHY:
1813 phy->phy_state = PHY_NOT_PRESENT;
1814 sas_unregister_devs_sas_addr(dev, phy_id);
1815 goto out; break;
1816 case SMP_RESP_PHY_VACANT:
1817 phy->phy_state = PHY_VACANT;
1818 sas_unregister_devs_sas_addr(dev, phy_id);
1819 goto out; break;
1820 case SMP_RESP_FUNC_ACC:
1821 break;
1824 if (SAS_ADDR(attached_sas_addr) == 0) {
1825 phy->phy_state = PHY_EMPTY;
1826 sas_unregister_devs_sas_addr(dev, phy_id);
1827 } else if (SAS_ADDR(attached_sas_addr) ==
1828 SAS_ADDR(phy->attached_sas_addr)) {
1829 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1830 SAS_ADDR(dev->sas_addr), phy_id);
1831 sas_ex_phy_discover(dev, phy_id);
1832 } else
1833 res = sas_discover_new(dev, phy_id);
1834 out:
1835 return res;
1838 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1840 struct expander_device *ex = &dev->ex_dev;
1841 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1842 int res = 0;
1843 int i;
1845 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1846 SAS_ADDR(dev->sas_addr), phy_id);
1848 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1849 for (i = 0; i < ex->num_phys; i++) {
1850 struct ex_phy *phy = &ex->ex_phy[i];
1852 if (i == phy_id)
1853 continue;
1854 if (SAS_ADDR(phy->attached_sas_addr) ==
1855 SAS_ADDR(changed_phy->attached_sas_addr)) {
1856 SAS_DPRINTK("phy%d part of wide port with "
1857 "phy%d\n", phy_id, i);
1858 goto out;
1861 res = sas_rediscover_dev(dev, phy_id);
1862 } else
1863 res = sas_discover_new(dev, phy_id);
1864 out:
1865 return res;
1869 * sas_revalidate_domain -- revalidate the domain
1870 * @port: port to the domain of interest
1872 * NOTE: this process _must_ quit (return) as soon as any connection
1873 * errors are encountered. Connection recovery is done elsewhere.
1874 * Discover process only interrogates devices in order to discover the
1875 * domain.
1877 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1879 int res;
1880 struct domain_device *dev = NULL;
1882 res = sas_find_bcast_dev(port_dev, &dev);
1883 if (res)
1884 goto out;
1885 if (dev) {
1886 struct expander_device *ex = &dev->ex_dev;
1887 int i = 0, phy_id;
1889 do {
1890 phy_id = -1;
1891 res = sas_find_bcast_phy(dev, &phy_id, i);
1892 if (phy_id == -1)
1893 break;
1894 res = sas_rediscover(dev, phy_id);
1895 i = phy_id + 1;
1896 } while (i < ex->num_phys);
1898 out:
1899 return res;
1902 #if 0
1903 /* ---------- SMP portal ---------- */
1905 static ssize_t smp_portal_write(struct kobject *kobj,
1906 struct bin_attribute *bin_attr,
1907 char *buf, loff_t offs, size_t size)
1909 struct domain_device *dev = to_dom_device(kobj);
1910 struct expander_device *ex = &dev->ex_dev;
1912 if (offs != 0)
1913 return -EFBIG;
1914 else if (size == 0)
1915 return 0;
1917 down_interruptible(&ex->smp_sema);
1918 if (ex->smp_req)
1919 kfree(ex->smp_req);
1920 ex->smp_req = kzalloc(size, GFP_USER);
1921 if (!ex->smp_req) {
1922 up(&ex->smp_sema);
1923 return -ENOMEM;
1925 memcpy(ex->smp_req, buf, size);
1926 ex->smp_req_size = size;
1927 ex->smp_portal_pid = current->pid;
1928 up(&ex->smp_sema);
1930 return size;
1933 static ssize_t smp_portal_read(struct kobject *kobj,
1934 struct bin_attribute *bin_attr,
1935 char *buf, loff_t offs, size_t size)
1937 struct domain_device *dev = to_dom_device(kobj);
1938 struct expander_device *ex = &dev->ex_dev;
1939 u8 *smp_resp;
1940 int res = -EINVAL;
1942 /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1943 * it should be 0.
1946 down_interruptible(&ex->smp_sema);
1947 if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1948 goto out;
1950 res = 0;
1951 if (size == 0)
1952 goto out;
1954 res = -ENOMEM;
1955 smp_resp = alloc_smp_resp(size);
1956 if (!smp_resp)
1957 goto out;
1958 res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1959 smp_resp, size);
1960 if (!res) {
1961 memcpy(buf, smp_resp, size);
1962 res = size;
1965 kfree(smp_resp);
1966 out:
1967 kfree(ex->smp_req);
1968 ex->smp_req = NULL;
1969 ex->smp_req_size = 0;
1970 ex->smp_portal_pid = -1;
1971 up(&ex->smp_sema);
1972 return res;
1974 #endif