V4L/DVB (5057): Pvrusb2: Stream configuration cleanups
[linux-2.6/linux-loongson.git] / drivers / net / s2io.c
blobfd85648d98d142e5b10e8186680721650d695352
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/ethtool.h>
63 #include <linux/workqueue.h>
64 #include <linux/if_vlan.h>
65 #include <linux/ip.h>
66 #include <linux/tcp.h>
67 #include <net/tcp.h>
69 #include <asm/system.h>
70 #include <asm/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/div64.h>
73 #include <asm/irq.h>
75 /* local include */
76 #include "s2io.h"
77 #include "s2io-regs.h"
79 #define DRV_VERSION "2.0.16.1"
81 /* S2io Driver name & version. */
82 static char s2io_driver_name[] = "Neterion";
83 static char s2io_driver_version[] = DRV_VERSION;
85 static int rxd_size[4] = {32,48,48,64};
86 static int rxd_count[4] = {127,85,85,63};
88 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
90 int ret;
92 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95 return ret;
99 * Cards with following subsystem_id have a link state indication
100 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101 * macro below identifies these cards given the subsystem_id.
103 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104 (dev_type == XFRAME_I_DEVICE) ? \
105 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
111 #define PANIC 1
112 #define LOW 2
113 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
115 struct mac_info *mac_control;
117 mac_control = &sp->mac_control;
118 if (rxb_size <= rxd_count[sp->rxd_mode])
119 return PANIC;
120 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
121 return LOW;
122 return 0;
125 /* Ethtool related variables and Macros. */
126 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127 "Register test\t(offline)",
128 "Eeprom test\t(offline)",
129 "Link test\t(online)",
130 "RLDRAM test\t(offline)",
131 "BIST Test\t(offline)"
134 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
135 {"tmac_frms"},
136 {"tmac_data_octets"},
137 {"tmac_drop_frms"},
138 {"tmac_mcst_frms"},
139 {"tmac_bcst_frms"},
140 {"tmac_pause_ctrl_frms"},
141 {"tmac_ttl_octets"},
142 {"tmac_ucst_frms"},
143 {"tmac_nucst_frms"},
144 {"tmac_any_err_frms"},
145 {"tmac_ttl_less_fb_octets"},
146 {"tmac_vld_ip_octets"},
147 {"tmac_vld_ip"},
148 {"tmac_drop_ip"},
149 {"tmac_icmp"},
150 {"tmac_rst_tcp"},
151 {"tmac_tcp"},
152 {"tmac_udp"},
153 {"rmac_vld_frms"},
154 {"rmac_data_octets"},
155 {"rmac_fcs_err_frms"},
156 {"rmac_drop_frms"},
157 {"rmac_vld_mcst_frms"},
158 {"rmac_vld_bcst_frms"},
159 {"rmac_in_rng_len_err_frms"},
160 {"rmac_out_rng_len_err_frms"},
161 {"rmac_long_frms"},
162 {"rmac_pause_ctrl_frms"},
163 {"rmac_unsup_ctrl_frms"},
164 {"rmac_ttl_octets"},
165 {"rmac_accepted_ucst_frms"},
166 {"rmac_accepted_nucst_frms"},
167 {"rmac_discarded_frms"},
168 {"rmac_drop_events"},
169 {"rmac_ttl_less_fb_octets"},
170 {"rmac_ttl_frms"},
171 {"rmac_usized_frms"},
172 {"rmac_osized_frms"},
173 {"rmac_frag_frms"},
174 {"rmac_jabber_frms"},
175 {"rmac_ttl_64_frms"},
176 {"rmac_ttl_65_127_frms"},
177 {"rmac_ttl_128_255_frms"},
178 {"rmac_ttl_256_511_frms"},
179 {"rmac_ttl_512_1023_frms"},
180 {"rmac_ttl_1024_1518_frms"},
181 {"rmac_ip"},
182 {"rmac_ip_octets"},
183 {"rmac_hdr_err_ip"},
184 {"rmac_drop_ip"},
185 {"rmac_icmp"},
186 {"rmac_tcp"},
187 {"rmac_udp"},
188 {"rmac_err_drp_udp"},
189 {"rmac_xgmii_err_sym"},
190 {"rmac_frms_q0"},
191 {"rmac_frms_q1"},
192 {"rmac_frms_q2"},
193 {"rmac_frms_q3"},
194 {"rmac_frms_q4"},
195 {"rmac_frms_q5"},
196 {"rmac_frms_q6"},
197 {"rmac_frms_q7"},
198 {"rmac_full_q0"},
199 {"rmac_full_q1"},
200 {"rmac_full_q2"},
201 {"rmac_full_q3"},
202 {"rmac_full_q4"},
203 {"rmac_full_q5"},
204 {"rmac_full_q6"},
205 {"rmac_full_q7"},
206 {"rmac_pause_cnt"},
207 {"rmac_xgmii_data_err_cnt"},
208 {"rmac_xgmii_ctrl_err_cnt"},
209 {"rmac_accepted_ip"},
210 {"rmac_err_tcp"},
211 {"rd_req_cnt"},
212 {"new_rd_req_cnt"},
213 {"new_rd_req_rtry_cnt"},
214 {"rd_rtry_cnt"},
215 {"wr_rtry_rd_ack_cnt"},
216 {"wr_req_cnt"},
217 {"new_wr_req_cnt"},
218 {"new_wr_req_rtry_cnt"},
219 {"wr_rtry_cnt"},
220 {"wr_disc_cnt"},
221 {"rd_rtry_wr_ack_cnt"},
222 {"txp_wr_cnt"},
223 {"txd_rd_cnt"},
224 {"txd_wr_cnt"},
225 {"rxd_rd_cnt"},
226 {"rxd_wr_cnt"},
227 {"txf_rd_cnt"},
228 {"rxf_wr_cnt"},
229 {"rmac_ttl_1519_4095_frms"},
230 {"rmac_ttl_4096_8191_frms"},
231 {"rmac_ttl_8192_max_frms"},
232 {"rmac_ttl_gt_max_frms"},
233 {"rmac_osized_alt_frms"},
234 {"rmac_jabber_alt_frms"},
235 {"rmac_gt_max_alt_frms"},
236 {"rmac_vlan_frms"},
237 {"rmac_len_discard"},
238 {"rmac_fcs_discard"},
239 {"rmac_pf_discard"},
240 {"rmac_da_discard"},
241 {"rmac_red_discard"},
242 {"rmac_rts_discard"},
243 {"rmac_ingm_full_discard"},
244 {"link_fault_cnt"},
245 {"\n DRIVER STATISTICS"},
246 {"single_bit_ecc_errs"},
247 {"double_bit_ecc_errs"},
248 {"parity_err_cnt"},
249 {"serious_err_cnt"},
250 {"soft_reset_cnt"},
251 {"fifo_full_cnt"},
252 {"ring_full_cnt"},
253 ("alarm_transceiver_temp_high"),
254 ("alarm_transceiver_temp_low"),
255 ("alarm_laser_bias_current_high"),
256 ("alarm_laser_bias_current_low"),
257 ("alarm_laser_output_power_high"),
258 ("alarm_laser_output_power_low"),
259 ("warn_transceiver_temp_high"),
260 ("warn_transceiver_temp_low"),
261 ("warn_laser_bias_current_high"),
262 ("warn_laser_bias_current_low"),
263 ("warn_laser_output_power_high"),
264 ("warn_laser_output_power_low"),
265 ("lro_aggregated_pkts"),
266 ("lro_flush_both_count"),
267 ("lro_out_of_sequence_pkts"),
268 ("lro_flush_due_to_max_pkts"),
269 ("lro_avg_aggr_pkts"),
272 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
278 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
279 init_timer(&timer); \
280 timer.function = handle; \
281 timer.data = (unsigned long) arg; \
282 mod_timer(&timer, (jiffies + exp)) \
284 /* Add the vlan */
285 static void s2io_vlan_rx_register(struct net_device *dev,
286 struct vlan_group *grp)
288 struct s2io_nic *nic = dev->priv;
289 unsigned long flags;
291 spin_lock_irqsave(&nic->tx_lock, flags);
292 nic->vlgrp = grp;
293 spin_unlock_irqrestore(&nic->tx_lock, flags);
296 /* Unregister the vlan */
297 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 struct s2io_nic *nic = dev->priv;
300 unsigned long flags;
302 spin_lock_irqsave(&nic->tx_lock, flags);
303 if (nic->vlgrp)
304 nic->vlgrp->vlan_devices[vid] = NULL;
305 spin_unlock_irqrestore(&nic->tx_lock, flags);
309 * Constants to be programmed into the Xena's registers, to configure
310 * the XAUI.
313 #define END_SIGN 0x0
314 static const u64 herc_act_dtx_cfg[] = {
315 /* Set address */
316 0x8000051536750000ULL, 0x80000515367500E0ULL,
317 /* Write data */
318 0x8000051536750004ULL, 0x80000515367500E4ULL,
319 /* Set address */
320 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
321 /* Write data */
322 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
323 /* Set address */
324 0x801205150D440000ULL, 0x801205150D4400E0ULL,
325 /* Write data */
326 0x801205150D440004ULL, 0x801205150D4400E4ULL,
327 /* Set address */
328 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
329 /* Write data */
330 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
331 /* Done */
332 END_SIGN
335 static const u64 xena_dtx_cfg[] = {
336 /* Set address */
337 0x8000051500000000ULL, 0x80000515000000E0ULL,
338 /* Write data */
339 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
340 /* Set address */
341 0x8001051500000000ULL, 0x80010515000000E0ULL,
342 /* Write data */
343 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
344 /* Set address */
345 0x8002051500000000ULL, 0x80020515000000E0ULL,
346 /* Write data */
347 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
348 END_SIGN
352 * Constants for Fixing the MacAddress problem seen mostly on
353 * Alpha machines.
355 static const u64 fix_mac[] = {
356 0x0060000000000000ULL, 0x0060600000000000ULL,
357 0x0040600000000000ULL, 0x0000600000000000ULL,
358 0x0020600000000000ULL, 0x0060600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0000600000000000ULL,
369 0x0040600000000000ULL, 0x0060600000000000ULL,
370 END_SIGN
373 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
374 MODULE_LICENSE("GPL");
375 MODULE_VERSION(DRV_VERSION);
378 /* Module Loadable parameters. */
379 S2IO_PARM_INT(tx_fifo_num, 1);
380 S2IO_PARM_INT(rx_ring_num, 1);
383 S2IO_PARM_INT(rx_ring_mode, 1);
384 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
385 S2IO_PARM_INT(rmac_pause_time, 0x100);
386 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
387 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
388 S2IO_PARM_INT(shared_splits, 0);
389 S2IO_PARM_INT(tmac_util_period, 5);
390 S2IO_PARM_INT(rmac_util_period, 5);
391 S2IO_PARM_INT(bimodal, 0);
392 S2IO_PARM_INT(l3l4hdr_size, 128);
393 /* Frequency of Rx desc syncs expressed as power of 2 */
394 S2IO_PARM_INT(rxsync_frequency, 3);
395 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
396 S2IO_PARM_INT(intr_type, 0);
397 /* Large receive offload feature */
398 S2IO_PARM_INT(lro, 0);
399 /* Max pkts to be aggregated by LRO at one time. If not specified,
400 * aggregation happens until we hit max IP pkt size(64K)
402 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
403 S2IO_PARM_INT(indicate_max_pkts, 0);
405 S2IO_PARM_INT(napi, 1);
406 S2IO_PARM_INT(ufo, 0);
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
420 * S2IO device table.
421 * This table lists all the devices that this driver supports.
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425 PCI_ANY_ID, PCI_ANY_ID},
426 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427 PCI_ANY_ID, PCI_ANY_ID},
428 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429 PCI_ANY_ID, PCI_ANY_ID},
430 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431 PCI_ANY_ID, PCI_ANY_ID},
432 {0,}
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437 static struct pci_driver s2io_driver = {
438 .name = "S2IO",
439 .id_table = s2io_tbl,
440 .probe = s2io_init_nic,
441 .remove = __devexit_p(s2io_rem_nic),
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
448 * init_shared_mem - Allocation and Initialization of Memory
449 * @nic: Device private variable.
450 * Description: The function allocates all the memory areas shared
451 * between the NIC and the driver. This includes Tx descriptors,
452 * Rx descriptors and the statistics block.
455 static int init_shared_mem(struct s2io_nic *nic)
457 u32 size;
458 void *tmp_v_addr, *tmp_v_addr_next;
459 dma_addr_t tmp_p_addr, tmp_p_addr_next;
460 struct RxD_block *pre_rxd_blk = NULL;
461 int i, j, blk_cnt;
462 int lst_size, lst_per_page;
463 struct net_device *dev = nic->dev;
464 unsigned long tmp;
465 struct buffAdd *ba;
467 struct mac_info *mac_control;
468 struct config_param *config;
470 mac_control = &nic->mac_control;
471 config = &nic->config;
474 /* Allocation and initialization of TXDLs in FIOFs */
475 size = 0;
476 for (i = 0; i < config->tx_fifo_num; i++) {
477 size += config->tx_cfg[i].fifo_len;
479 if (size > MAX_AVAILABLE_TXDS) {
480 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482 return -EINVAL;
485 lst_size = (sizeof(struct TxD) * config->max_txds);
486 lst_per_page = PAGE_SIZE / lst_size;
488 for (i = 0; i < config->tx_fifo_num; i++) {
489 int fifo_len = config->tx_cfg[i].fifo_len;
490 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
491 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
492 GFP_KERNEL);
493 if (!mac_control->fifos[i].list_info) {
494 DBG_PRINT(ERR_DBG,
495 "Malloc failed for list_info\n");
496 return -ENOMEM;
498 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
500 for (i = 0; i < config->tx_fifo_num; i++) {
501 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
502 lst_per_page);
503 mac_control->fifos[i].tx_curr_put_info.offset = 0;
504 mac_control->fifos[i].tx_curr_put_info.fifo_len =
505 config->tx_cfg[i].fifo_len - 1;
506 mac_control->fifos[i].tx_curr_get_info.offset = 0;
507 mac_control->fifos[i].tx_curr_get_info.fifo_len =
508 config->tx_cfg[i].fifo_len - 1;
509 mac_control->fifos[i].fifo_no = i;
510 mac_control->fifos[i].nic = nic;
511 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
513 for (j = 0; j < page_num; j++) {
514 int k = 0;
515 dma_addr_t tmp_p;
516 void *tmp_v;
517 tmp_v = pci_alloc_consistent(nic->pdev,
518 PAGE_SIZE, &tmp_p);
519 if (!tmp_v) {
520 DBG_PRINT(ERR_DBG,
521 "pci_alloc_consistent ");
522 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
523 return -ENOMEM;
525 /* If we got a zero DMA address(can happen on
526 * certain platforms like PPC), reallocate.
527 * Store virtual address of page we don't want,
528 * to be freed later.
530 if (!tmp_p) {
531 mac_control->zerodma_virt_addr = tmp_v;
532 DBG_PRINT(INIT_DBG,
533 "%s: Zero DMA address for TxDL. ", dev->name);
534 DBG_PRINT(INIT_DBG,
535 "Virtual address %p\n", tmp_v);
536 tmp_v = pci_alloc_consistent(nic->pdev,
537 PAGE_SIZE, &tmp_p);
538 if (!tmp_v) {
539 DBG_PRINT(ERR_DBG,
540 "pci_alloc_consistent ");
541 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
542 return -ENOMEM;
545 while (k < lst_per_page) {
546 int l = (j * lst_per_page) + k;
547 if (l == config->tx_cfg[i].fifo_len)
548 break;
549 mac_control->fifos[i].list_info[l].list_virt_addr =
550 tmp_v + (k * lst_size);
551 mac_control->fifos[i].list_info[l].list_phy_addr =
552 tmp_p + (k * lst_size);
553 k++;
558 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
559 if (!nic->ufo_in_band_v)
560 return -ENOMEM;
562 /* Allocation and initialization of RXDs in Rings */
563 size = 0;
564 for (i = 0; i < config->rx_ring_num; i++) {
565 if (config->rx_cfg[i].num_rxd %
566 (rxd_count[nic->rxd_mode] + 1)) {
567 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
568 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
570 DBG_PRINT(ERR_DBG, "RxDs per Block");
571 return FAILURE;
573 size += config->rx_cfg[i].num_rxd;
574 mac_control->rings[i].block_count =
575 config->rx_cfg[i].num_rxd /
576 (rxd_count[nic->rxd_mode] + 1 );
577 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
578 mac_control->rings[i].block_count;
580 if (nic->rxd_mode == RXD_MODE_1)
581 size = (size * (sizeof(struct RxD1)));
582 else
583 size = (size * (sizeof(struct RxD3)));
585 for (i = 0; i < config->rx_ring_num; i++) {
586 mac_control->rings[i].rx_curr_get_info.block_index = 0;
587 mac_control->rings[i].rx_curr_get_info.offset = 0;
588 mac_control->rings[i].rx_curr_get_info.ring_len =
589 config->rx_cfg[i].num_rxd - 1;
590 mac_control->rings[i].rx_curr_put_info.block_index = 0;
591 mac_control->rings[i].rx_curr_put_info.offset = 0;
592 mac_control->rings[i].rx_curr_put_info.ring_len =
593 config->rx_cfg[i].num_rxd - 1;
594 mac_control->rings[i].nic = nic;
595 mac_control->rings[i].ring_no = i;
597 blk_cnt = config->rx_cfg[i].num_rxd /
598 (rxd_count[nic->rxd_mode] + 1);
599 /* Allocating all the Rx blocks */
600 for (j = 0; j < blk_cnt; j++) {
601 struct rx_block_info *rx_blocks;
602 int l;
604 rx_blocks = &mac_control->rings[i].rx_blocks[j];
605 size = SIZE_OF_BLOCK; //size is always page size
606 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
607 &tmp_p_addr);
608 if (tmp_v_addr == NULL) {
610 * In case of failure, free_shared_mem()
611 * is called, which should free any
612 * memory that was alloced till the
613 * failure happened.
615 rx_blocks->block_virt_addr = tmp_v_addr;
616 return -ENOMEM;
618 memset(tmp_v_addr, 0, size);
619 rx_blocks->block_virt_addr = tmp_v_addr;
620 rx_blocks->block_dma_addr = tmp_p_addr;
621 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
622 rxd_count[nic->rxd_mode],
623 GFP_KERNEL);
624 if (!rx_blocks->rxds)
625 return -ENOMEM;
626 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
627 rx_blocks->rxds[l].virt_addr =
628 rx_blocks->block_virt_addr +
629 (rxd_size[nic->rxd_mode] * l);
630 rx_blocks->rxds[l].dma_addr =
631 rx_blocks->block_dma_addr +
632 (rxd_size[nic->rxd_mode] * l);
635 /* Interlinking all Rx Blocks */
636 for (j = 0; j < blk_cnt; j++) {
637 tmp_v_addr =
638 mac_control->rings[i].rx_blocks[j].block_virt_addr;
639 tmp_v_addr_next =
640 mac_control->rings[i].rx_blocks[(j + 1) %
641 blk_cnt].block_virt_addr;
642 tmp_p_addr =
643 mac_control->rings[i].rx_blocks[j].block_dma_addr;
644 tmp_p_addr_next =
645 mac_control->rings[i].rx_blocks[(j + 1) %
646 blk_cnt].block_dma_addr;
648 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
649 pre_rxd_blk->reserved_2_pNext_RxD_block =
650 (unsigned long) tmp_v_addr_next;
651 pre_rxd_blk->pNext_RxD_Blk_physical =
652 (u64) tmp_p_addr_next;
655 if (nic->rxd_mode >= RXD_MODE_3A) {
657 * Allocation of Storages for buffer addresses in 2BUFF mode
658 * and the buffers as well.
660 for (i = 0; i < config->rx_ring_num; i++) {
661 blk_cnt = config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode]+ 1);
663 mac_control->rings[i].ba =
664 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
665 GFP_KERNEL);
666 if (!mac_control->rings[i].ba)
667 return -ENOMEM;
668 for (j = 0; j < blk_cnt; j++) {
669 int k = 0;
670 mac_control->rings[i].ba[j] =
671 kmalloc((sizeof(struct buffAdd) *
672 (rxd_count[nic->rxd_mode] + 1)),
673 GFP_KERNEL);
674 if (!mac_control->rings[i].ba[j])
675 return -ENOMEM;
676 while (k != rxd_count[nic->rxd_mode]) {
677 ba = &mac_control->rings[i].ba[j][k];
679 ba->ba_0_org = (void *) kmalloc
680 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
681 if (!ba->ba_0_org)
682 return -ENOMEM;
683 tmp = (unsigned long)ba->ba_0_org;
684 tmp += ALIGN_SIZE;
685 tmp &= ~((unsigned long) ALIGN_SIZE);
686 ba->ba_0 = (void *) tmp;
688 ba->ba_1_org = (void *) kmalloc
689 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
690 if (!ba->ba_1_org)
691 return -ENOMEM;
692 tmp = (unsigned long) ba->ba_1_org;
693 tmp += ALIGN_SIZE;
694 tmp &= ~((unsigned long) ALIGN_SIZE);
695 ba->ba_1 = (void *) tmp;
696 k++;
702 /* Allocation and initialization of Statistics block */
703 size = sizeof(struct stat_block);
704 mac_control->stats_mem = pci_alloc_consistent
705 (nic->pdev, size, &mac_control->stats_mem_phy);
707 if (!mac_control->stats_mem) {
709 * In case of failure, free_shared_mem() is called, which
710 * should free any memory that was alloced till the
711 * failure happened.
713 return -ENOMEM;
715 mac_control->stats_mem_sz = size;
717 tmp_v_addr = mac_control->stats_mem;
718 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
719 memset(tmp_v_addr, 0, size);
720 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
721 (unsigned long long) tmp_p_addr);
723 return SUCCESS;
727 * free_shared_mem - Free the allocated Memory
728 * @nic: Device private variable.
729 * Description: This function is to free all memory locations allocated by
730 * the init_shared_mem() function and return it to the kernel.
733 static void free_shared_mem(struct s2io_nic *nic)
735 int i, j, blk_cnt, size;
736 void *tmp_v_addr;
737 dma_addr_t tmp_p_addr;
738 struct mac_info *mac_control;
739 struct config_param *config;
740 int lst_size, lst_per_page;
741 struct net_device *dev = nic->dev;
743 if (!nic)
744 return;
746 mac_control = &nic->mac_control;
747 config = &nic->config;
749 lst_size = (sizeof(struct TxD) * config->max_txds);
750 lst_per_page = PAGE_SIZE / lst_size;
752 for (i = 0; i < config->tx_fifo_num; i++) {
753 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
754 lst_per_page);
755 for (j = 0; j < page_num; j++) {
756 int mem_blks = (j * lst_per_page);
757 if (!mac_control->fifos[i].list_info)
758 return;
759 if (!mac_control->fifos[i].list_info[mem_blks].
760 list_virt_addr)
761 break;
762 pci_free_consistent(nic->pdev, PAGE_SIZE,
763 mac_control->fifos[i].
764 list_info[mem_blks].
765 list_virt_addr,
766 mac_control->fifos[i].
767 list_info[mem_blks].
768 list_phy_addr);
770 /* If we got a zero DMA address during allocation,
771 * free the page now
773 if (mac_control->zerodma_virt_addr) {
774 pci_free_consistent(nic->pdev, PAGE_SIZE,
775 mac_control->zerodma_virt_addr,
776 (dma_addr_t)0);
777 DBG_PRINT(INIT_DBG,
778 "%s: Freeing TxDL with zero DMA addr. ",
779 dev->name);
780 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
781 mac_control->zerodma_virt_addr);
783 kfree(mac_control->fifos[i].list_info);
786 size = SIZE_OF_BLOCK;
787 for (i = 0; i < config->rx_ring_num; i++) {
788 blk_cnt = mac_control->rings[i].block_count;
789 for (j = 0; j < blk_cnt; j++) {
790 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
791 block_virt_addr;
792 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
793 block_dma_addr;
794 if (tmp_v_addr == NULL)
795 break;
796 pci_free_consistent(nic->pdev, size,
797 tmp_v_addr, tmp_p_addr);
798 kfree(mac_control->rings[i].rx_blocks[j].rxds);
802 if (nic->rxd_mode >= RXD_MODE_3A) {
803 /* Freeing buffer storage addresses in 2BUFF mode. */
804 for (i = 0; i < config->rx_ring_num; i++) {
805 blk_cnt = config->rx_cfg[i].num_rxd /
806 (rxd_count[nic->rxd_mode] + 1);
807 for (j = 0; j < blk_cnt; j++) {
808 int k = 0;
809 if (!mac_control->rings[i].ba[j])
810 continue;
811 while (k != rxd_count[nic->rxd_mode]) {
812 struct buffAdd *ba =
813 &mac_control->rings[i].ba[j][k];
814 kfree(ba->ba_0_org);
815 kfree(ba->ba_1_org);
816 k++;
818 kfree(mac_control->rings[i].ba[j]);
820 kfree(mac_control->rings[i].ba);
824 if (mac_control->stats_mem) {
825 pci_free_consistent(nic->pdev,
826 mac_control->stats_mem_sz,
827 mac_control->stats_mem,
828 mac_control->stats_mem_phy);
830 if (nic->ufo_in_band_v)
831 kfree(nic->ufo_in_band_v);
835 * s2io_verify_pci_mode -
838 static int s2io_verify_pci_mode(struct s2io_nic *nic)
840 struct XENA_dev_config __iomem *bar0 = nic->bar0;
841 register u64 val64 = 0;
842 int mode;
844 val64 = readq(&bar0->pci_mode);
845 mode = (u8)GET_PCI_MODE(val64);
847 if ( val64 & PCI_MODE_UNKNOWN_MODE)
848 return -1; /* Unknown PCI mode */
849 return mode;
852 #define NEC_VENID 0x1033
853 #define NEC_DEVID 0x0125
854 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856 struct pci_dev *tdev = NULL;
857 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
858 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
859 if (tdev->bus == s2io_pdev->bus->parent)
860 pci_dev_put(tdev);
861 return 1;
864 return 0;
867 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 * s2io_print_pci_mode -
871 static int s2io_print_pci_mode(struct s2io_nic *nic)
873 struct XENA_dev_config __iomem *bar0 = nic->bar0;
874 register u64 val64 = 0;
875 int mode;
876 struct config_param *config = &nic->config;
878 val64 = readq(&bar0->pci_mode);
879 mode = (u8)GET_PCI_MODE(val64);
881 if ( val64 & PCI_MODE_UNKNOWN_MODE)
882 return -1; /* Unknown PCI mode */
884 config->bus_speed = bus_speed[mode];
886 if (s2io_on_nec_bridge(nic->pdev)) {
887 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
888 nic->dev->name);
889 return mode;
892 if (val64 & PCI_MODE_32_BITS) {
893 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
894 } else {
895 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
898 switch(mode) {
899 case PCI_MODE_PCI_33:
900 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
901 break;
902 case PCI_MODE_PCI_66:
903 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
904 break;
905 case PCI_MODE_PCIX_M1_66:
906 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
907 break;
908 case PCI_MODE_PCIX_M1_100:
909 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
910 break;
911 case PCI_MODE_PCIX_M1_133:
912 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
913 break;
914 case PCI_MODE_PCIX_M2_66:
915 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
916 break;
917 case PCI_MODE_PCIX_M2_100:
918 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
919 break;
920 case PCI_MODE_PCIX_M2_133:
921 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
922 break;
923 default:
924 return -1; /* Unsupported bus speed */
927 return mode;
931 * init_nic - Initialization of hardware
932 * @nic: device peivate variable
933 * Description: The function sequentially configures every block
934 * of the H/W from their reset values.
935 * Return Value: SUCCESS on success and
936 * '-1' on failure (endian settings incorrect).
939 static int init_nic(struct s2io_nic *nic)
941 struct XENA_dev_config __iomem *bar0 = nic->bar0;
942 struct net_device *dev = nic->dev;
943 register u64 val64 = 0;
944 void __iomem *add;
945 u32 time;
946 int i, j;
947 struct mac_info *mac_control;
948 struct config_param *config;
949 int dtx_cnt = 0;
950 unsigned long long mem_share;
951 int mem_size;
953 mac_control = &nic->mac_control;
954 config = &nic->config;
956 /* to set the swapper controle on the card */
957 if(s2io_set_swapper(nic)) {
958 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
959 return -1;
963 * Herc requires EOI to be removed from reset before XGXS, so..
965 if (nic->device_type & XFRAME_II_DEVICE) {
966 val64 = 0xA500000000ULL;
967 writeq(val64, &bar0->sw_reset);
968 msleep(500);
969 val64 = readq(&bar0->sw_reset);
972 /* Remove XGXS from reset state */
973 val64 = 0;
974 writeq(val64, &bar0->sw_reset);
975 msleep(500);
976 val64 = readq(&bar0->sw_reset);
978 /* Enable Receiving broadcasts */
979 add = &bar0->mac_cfg;
980 val64 = readq(&bar0->mac_cfg);
981 val64 |= MAC_RMAC_BCAST_ENABLE;
982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
983 writel((u32) val64, add);
984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
985 writel((u32) (val64 >> 32), (add + 4));
987 /* Read registers in all blocks */
988 val64 = readq(&bar0->mac_int_mask);
989 val64 = readq(&bar0->mc_int_mask);
990 val64 = readq(&bar0->xgxs_int_mask);
992 /* Set MTU */
993 val64 = dev->mtu;
994 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996 if (nic->device_type & XFRAME_II_DEVICE) {
997 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
998 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
999 &bar0->dtx_control, UF);
1000 if (dtx_cnt & 0x1)
1001 msleep(1); /* Necessary!! */
1002 dtx_cnt++;
1004 } else {
1005 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1006 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1007 &bar0->dtx_control, UF);
1008 val64 = readq(&bar0->dtx_control);
1009 dtx_cnt++;
1013 /* Tx DMA Initialization */
1014 val64 = 0;
1015 writeq(val64, &bar0->tx_fifo_partition_0);
1016 writeq(val64, &bar0->tx_fifo_partition_1);
1017 writeq(val64, &bar0->tx_fifo_partition_2);
1018 writeq(val64, &bar0->tx_fifo_partition_3);
1021 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1022 val64 |=
1023 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1024 13) | vBIT(config->tx_cfg[i].fifo_priority,
1025 ((i * 32) + 5), 3);
1027 if (i == (config->tx_fifo_num - 1)) {
1028 if (i % 2 == 0)
1029 i++;
1032 switch (i) {
1033 case 1:
1034 writeq(val64, &bar0->tx_fifo_partition_0);
1035 val64 = 0;
1036 break;
1037 case 3:
1038 writeq(val64, &bar0->tx_fifo_partition_1);
1039 val64 = 0;
1040 break;
1041 case 5:
1042 writeq(val64, &bar0->tx_fifo_partition_2);
1043 val64 = 0;
1044 break;
1045 case 7:
1046 writeq(val64, &bar0->tx_fifo_partition_3);
1047 break;
1052 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055 if ((nic->device_type == XFRAME_I_DEVICE) &&
1056 (get_xena_rev_id(nic->pdev) < 4))
1057 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059 val64 = readq(&bar0->tx_fifo_partition_0);
1060 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1061 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1064 * Initialization of Tx_PA_CONFIG register to ignore packet
1065 * integrity checking.
1067 val64 = readq(&bar0->tx_pa_cfg);
1068 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1069 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1070 writeq(val64, &bar0->tx_pa_cfg);
1072 /* Rx DMA intialization. */
1073 val64 = 0;
1074 for (i = 0; i < config->rx_ring_num; i++) {
1075 val64 |=
1076 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1079 writeq(val64, &bar0->rx_queue_priority);
1082 * Allocating equal share of memory to all the
1083 * configured Rings.
1085 val64 = 0;
1086 if (nic->device_type & XFRAME_II_DEVICE)
1087 mem_size = 32;
1088 else
1089 mem_size = 64;
1091 for (i = 0; i < config->rx_ring_num; i++) {
1092 switch (i) {
1093 case 0:
1094 mem_share = (mem_size / config->rx_ring_num +
1095 mem_size % config->rx_ring_num);
1096 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1097 continue;
1098 case 1:
1099 mem_share = (mem_size / config->rx_ring_num);
1100 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1101 continue;
1102 case 2:
1103 mem_share = (mem_size / config->rx_ring_num);
1104 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1105 continue;
1106 case 3:
1107 mem_share = (mem_size / config->rx_ring_num);
1108 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1109 continue;
1110 case 4:
1111 mem_share = (mem_size / config->rx_ring_num);
1112 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1113 continue;
1114 case 5:
1115 mem_share = (mem_size / config->rx_ring_num);
1116 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1117 continue;
1118 case 6:
1119 mem_share = (mem_size / config->rx_ring_num);
1120 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1121 continue;
1122 case 7:
1123 mem_share = (mem_size / config->rx_ring_num);
1124 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1125 continue;
1128 writeq(val64, &bar0->rx_queue_cfg);
1131 * Filling Tx round robin registers
1132 * as per the number of FIFOs
1134 switch (config->tx_fifo_num) {
1135 case 1:
1136 val64 = 0x0000000000000000ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_0);
1138 writeq(val64, &bar0->tx_w_round_robin_1);
1139 writeq(val64, &bar0->tx_w_round_robin_2);
1140 writeq(val64, &bar0->tx_w_round_robin_3);
1141 writeq(val64, &bar0->tx_w_round_robin_4);
1142 break;
1143 case 2:
1144 val64 = 0x0000010000010000ULL;
1145 writeq(val64, &bar0->tx_w_round_robin_0);
1146 val64 = 0x0100000100000100ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_1);
1148 val64 = 0x0001000001000001ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_2);
1150 val64 = 0x0000010000010000ULL;
1151 writeq(val64, &bar0->tx_w_round_robin_3);
1152 val64 = 0x0100000000000000ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_4);
1154 break;
1155 case 3:
1156 val64 = 0x0001000102000001ULL;
1157 writeq(val64, &bar0->tx_w_round_robin_0);
1158 val64 = 0x0001020000010001ULL;
1159 writeq(val64, &bar0->tx_w_round_robin_1);
1160 val64 = 0x0200000100010200ULL;
1161 writeq(val64, &bar0->tx_w_round_robin_2);
1162 val64 = 0x0001000102000001ULL;
1163 writeq(val64, &bar0->tx_w_round_robin_3);
1164 val64 = 0x0001020000000000ULL;
1165 writeq(val64, &bar0->tx_w_round_robin_4);
1166 break;
1167 case 4:
1168 val64 = 0x0001020300010200ULL;
1169 writeq(val64, &bar0->tx_w_round_robin_0);
1170 val64 = 0x0100000102030001ULL;
1171 writeq(val64, &bar0->tx_w_round_robin_1);
1172 val64 = 0x0200010000010203ULL;
1173 writeq(val64, &bar0->tx_w_round_robin_2);
1174 val64 = 0x0001020001000001ULL;
1175 writeq(val64, &bar0->tx_w_round_robin_3);
1176 val64 = 0x0203000100000000ULL;
1177 writeq(val64, &bar0->tx_w_round_robin_4);
1178 break;
1179 case 5:
1180 val64 = 0x0001000203000102ULL;
1181 writeq(val64, &bar0->tx_w_round_robin_0);
1182 val64 = 0x0001020001030004ULL;
1183 writeq(val64, &bar0->tx_w_round_robin_1);
1184 val64 = 0x0001000203000102ULL;
1185 writeq(val64, &bar0->tx_w_round_robin_2);
1186 val64 = 0x0001020001030004ULL;
1187 writeq(val64, &bar0->tx_w_round_robin_3);
1188 val64 = 0x0001000000000000ULL;
1189 writeq(val64, &bar0->tx_w_round_robin_4);
1190 break;
1191 case 6:
1192 val64 = 0x0001020304000102ULL;
1193 writeq(val64, &bar0->tx_w_round_robin_0);
1194 val64 = 0x0304050001020001ULL;
1195 writeq(val64, &bar0->tx_w_round_robin_1);
1196 val64 = 0x0203000100000102ULL;
1197 writeq(val64, &bar0->tx_w_round_robin_2);
1198 val64 = 0x0304000102030405ULL;
1199 writeq(val64, &bar0->tx_w_round_robin_3);
1200 val64 = 0x0001000200000000ULL;
1201 writeq(val64, &bar0->tx_w_round_robin_4);
1202 break;
1203 case 7:
1204 val64 = 0x0001020001020300ULL;
1205 writeq(val64, &bar0->tx_w_round_robin_0);
1206 val64 = 0x0102030400010203ULL;
1207 writeq(val64, &bar0->tx_w_round_robin_1);
1208 val64 = 0x0405060001020001ULL;
1209 writeq(val64, &bar0->tx_w_round_robin_2);
1210 val64 = 0x0304050000010200ULL;
1211 writeq(val64, &bar0->tx_w_round_robin_3);
1212 val64 = 0x0102030000000000ULL;
1213 writeq(val64, &bar0->tx_w_round_robin_4);
1214 break;
1215 case 8:
1216 val64 = 0x0001020300040105ULL;
1217 writeq(val64, &bar0->tx_w_round_robin_0);
1218 val64 = 0x0200030106000204ULL;
1219 writeq(val64, &bar0->tx_w_round_robin_1);
1220 val64 = 0x0103000502010007ULL;
1221 writeq(val64, &bar0->tx_w_round_robin_2);
1222 val64 = 0x0304010002060500ULL;
1223 writeq(val64, &bar0->tx_w_round_robin_3);
1224 val64 = 0x0103020400000000ULL;
1225 writeq(val64, &bar0->tx_w_round_robin_4);
1226 break;
1229 /* Enable all configured Tx FIFO partitions */
1230 val64 = readq(&bar0->tx_fifo_partition_0);
1231 val64 |= (TX_FIFO_PARTITION_EN);
1232 writeq(val64, &bar0->tx_fifo_partition_0);
1234 /* Filling the Rx round robin registers as per the
1235 * number of Rings and steering based on QoS.
1237 switch (config->rx_ring_num) {
1238 case 1:
1239 val64 = 0x8080808080808080ULL;
1240 writeq(val64, &bar0->rts_qos_steering);
1241 break;
1242 case 2:
1243 val64 = 0x0000010000010000ULL;
1244 writeq(val64, &bar0->rx_w_round_robin_0);
1245 val64 = 0x0100000100000100ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_1);
1247 val64 = 0x0001000001000001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_2);
1249 val64 = 0x0000010000010000ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_3);
1251 val64 = 0x0100000000000000ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_4);
1254 val64 = 0x8080808040404040ULL;
1255 writeq(val64, &bar0->rts_qos_steering);
1256 break;
1257 case 3:
1258 val64 = 0x0001000102000001ULL;
1259 writeq(val64, &bar0->rx_w_round_robin_0);
1260 val64 = 0x0001020000010001ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_1);
1262 val64 = 0x0200000100010200ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_2);
1264 val64 = 0x0001000102000001ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_3);
1266 val64 = 0x0001020000000000ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_4);
1269 val64 = 0x8080804040402020ULL;
1270 writeq(val64, &bar0->rts_qos_steering);
1271 break;
1272 case 4:
1273 val64 = 0x0001020300010200ULL;
1274 writeq(val64, &bar0->rx_w_round_robin_0);
1275 val64 = 0x0100000102030001ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_1);
1277 val64 = 0x0200010000010203ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_2);
1279 val64 = 0x0001020001000001ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_3);
1281 val64 = 0x0203000100000000ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_4);
1284 val64 = 0x8080404020201010ULL;
1285 writeq(val64, &bar0->rts_qos_steering);
1286 break;
1287 case 5:
1288 val64 = 0x0001000203000102ULL;
1289 writeq(val64, &bar0->rx_w_round_robin_0);
1290 val64 = 0x0001020001030004ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_1);
1292 val64 = 0x0001000203000102ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_2);
1294 val64 = 0x0001020001030004ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_3);
1296 val64 = 0x0001000000000000ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_4);
1299 val64 = 0x8080404020201008ULL;
1300 writeq(val64, &bar0->rts_qos_steering);
1301 break;
1302 case 6:
1303 val64 = 0x0001020304000102ULL;
1304 writeq(val64, &bar0->rx_w_round_robin_0);
1305 val64 = 0x0304050001020001ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_1);
1307 val64 = 0x0203000100000102ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_2);
1309 val64 = 0x0304000102030405ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_3);
1311 val64 = 0x0001000200000000ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_4);
1314 val64 = 0x8080404020100804ULL;
1315 writeq(val64, &bar0->rts_qos_steering);
1316 break;
1317 case 7:
1318 val64 = 0x0001020001020300ULL;
1319 writeq(val64, &bar0->rx_w_round_robin_0);
1320 val64 = 0x0102030400010203ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_1);
1322 val64 = 0x0405060001020001ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_2);
1324 val64 = 0x0304050000010200ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_3);
1326 val64 = 0x0102030000000000ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_4);
1329 val64 = 0x8080402010080402ULL;
1330 writeq(val64, &bar0->rts_qos_steering);
1331 break;
1332 case 8:
1333 val64 = 0x0001020300040105ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_0);
1335 val64 = 0x0200030106000204ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_1);
1337 val64 = 0x0103000502010007ULL;
1338 writeq(val64, &bar0->rx_w_round_robin_2);
1339 val64 = 0x0304010002060500ULL;
1340 writeq(val64, &bar0->rx_w_round_robin_3);
1341 val64 = 0x0103020400000000ULL;
1342 writeq(val64, &bar0->rx_w_round_robin_4);
1344 val64 = 0x8040201008040201ULL;
1345 writeq(val64, &bar0->rts_qos_steering);
1346 break;
1349 /* UDP Fix */
1350 val64 = 0;
1351 for (i = 0; i < 8; i++)
1352 writeq(val64, &bar0->rts_frm_len_n[i]);
1354 /* Set the default rts frame length for the rings configured */
1355 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1356 for (i = 0 ; i < config->rx_ring_num ; i++)
1357 writeq(val64, &bar0->rts_frm_len_n[i]);
1359 /* Set the frame length for the configured rings
1360 * desired by the user
1362 for (i = 0; i < config->rx_ring_num; i++) {
1363 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364 * specified frame length steering.
1365 * If the user provides the frame length then program
1366 * the rts_frm_len register for those values or else
1367 * leave it as it is.
1369 if (rts_frm_len[i] != 0) {
1370 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1371 &bar0->rts_frm_len_n[i]);
1375 /* Program statistics memory */
1376 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378 if (nic->device_type == XFRAME_II_DEVICE) {
1379 val64 = STAT_BC(0x320);
1380 writeq(val64, &bar0->stat_byte_cnt);
1384 * Initializing the sampling rate for the device to calculate the
1385 * bandwidth utilization.
1387 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1388 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1389 writeq(val64, &bar0->mac_link_util);
1393 * Initializing the Transmit and Receive Traffic Interrupt
1394 * Scheme.
1397 * TTI Initialization. Default Tx timer gets us about
1398 * 250 interrupts per sec. Continuous interrupts are enabled
1399 * by default.
1401 if (nic->device_type == XFRAME_II_DEVICE) {
1402 int count = (nic->config.bus_speed * 125)/2;
1403 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1404 } else {
1406 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1409 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1410 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1411 if (use_continuous_tx_intrs)
1412 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1413 writeq(val64, &bar0->tti_data1_mem);
1415 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1416 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1417 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1418 writeq(val64, &bar0->tti_data2_mem);
1420 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1421 writeq(val64, &bar0->tti_command_mem);
1424 * Once the operation completes, the Strobe bit of the command
1425 * register will be reset. We poll for this particular condition
1426 * We wait for a maximum of 500ms for the operation to complete,
1427 * if it's not complete by then we return error.
1429 time = 0;
1430 while (TRUE) {
1431 val64 = readq(&bar0->tti_command_mem);
1432 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1433 break;
1435 if (time > 10) {
1436 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1437 dev->name);
1438 return -1;
1440 msleep(50);
1441 time++;
1444 if (nic->config.bimodal) {
1445 int k = 0;
1446 for (k = 0; k < config->rx_ring_num; k++) {
1447 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1448 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1449 writeq(val64, &bar0->tti_command_mem);
1452 * Once the operation completes, the Strobe bit of the command
1453 * register will be reset. We poll for this particular condition
1454 * We wait for a maximum of 500ms for the operation to complete,
1455 * if it's not complete by then we return error.
1457 time = 0;
1458 while (TRUE) {
1459 val64 = readq(&bar0->tti_command_mem);
1460 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1461 break;
1463 if (time > 10) {
1464 DBG_PRINT(ERR_DBG,
1465 "%s: TTI init Failed\n",
1466 dev->name);
1467 return -1;
1469 time++;
1470 msleep(50);
1473 } else {
1475 /* RTI Initialization */
1476 if (nic->device_type == XFRAME_II_DEVICE) {
1478 * Programmed to generate Apprx 500 Intrs per
1479 * second
1481 int count = (nic->config.bus_speed * 125)/4;
1482 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1483 } else {
1484 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1487 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1488 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490 writeq(val64, &bar0->rti_data1_mem);
1492 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1493 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1494 if (nic->intr_type == MSI_X)
1495 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1496 RTI_DATA2_MEM_RX_UFC_D(0x40));
1497 else
1498 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1499 RTI_DATA2_MEM_RX_UFC_D(0x80));
1500 writeq(val64, &bar0->rti_data2_mem);
1502 for (i = 0; i < config->rx_ring_num; i++) {
1503 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1504 | RTI_CMD_MEM_OFFSET(i);
1505 writeq(val64, &bar0->rti_command_mem);
1508 * Once the operation completes, the Strobe bit of the
1509 * command register will be reset. We poll for this
1510 * particular condition. We wait for a maximum of 500ms
1511 * for the operation to complete, if it's not complete
1512 * by then we return error.
1514 time = 0;
1515 while (TRUE) {
1516 val64 = readq(&bar0->rti_command_mem);
1517 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1518 break;
1520 if (time > 10) {
1521 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1522 dev->name);
1523 return -1;
1525 time++;
1526 msleep(50);
1532 * Initializing proper values as Pause threshold into all
1533 * the 8 Queues on Rx side.
1535 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538 /* Disable RMAC PAD STRIPPING */
1539 add = &bar0->mac_cfg;
1540 val64 = readq(&bar0->mac_cfg);
1541 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1546 val64 = readq(&bar0->mac_cfg);
1548 /* Enable FCS stripping by adapter */
1549 add = &bar0->mac_cfg;
1550 val64 = readq(&bar0->mac_cfg);
1551 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1552 if (nic->device_type == XFRAME_II_DEVICE)
1553 writeq(val64, &bar0->mac_cfg);
1554 else {
1555 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1556 writel((u32) (val64), add);
1557 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1558 writel((u32) (val64 >> 32), (add + 4));
1562 * Set the time value to be inserted in the pause frame
1563 * generated by xena.
1565 val64 = readq(&bar0->rmac_pause_cfg);
1566 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1567 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1568 writeq(val64, &bar0->rmac_pause_cfg);
1571 * Set the Threshold Limit for Generating the pause frame
1572 * If the amount of data in any Queue exceeds ratio of
1573 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1574 * pause frame is generated
1576 val64 = 0;
1577 for (i = 0; i < 4; i++) {
1578 val64 |=
1579 (((u64) 0xFF00 | nic->mac_control.
1580 mc_pause_threshold_q0q3)
1581 << (i * 2 * 8));
1583 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585 val64 = 0;
1586 for (i = 0; i < 4; i++) {
1587 val64 |=
1588 (((u64) 0xFF00 | nic->mac_control.
1589 mc_pause_threshold_q4q7)
1590 << (i * 2 * 8));
1592 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1595 * TxDMA will stop Read request if the number of read split has
1596 * exceeded the limit pointed by shared_splits
1598 val64 = readq(&bar0->pic_control);
1599 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1600 writeq(val64, &bar0->pic_control);
1602 if (nic->config.bus_speed == 266) {
1603 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1604 writeq(0x0, &bar0->read_retry_delay);
1605 writeq(0x0, &bar0->write_retry_delay);
1609 * Programming the Herc to split every write transaction
1610 * that does not start on an ADB to reduce disconnects.
1612 if (nic->device_type == XFRAME_II_DEVICE) {
1613 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1614 MISC_LINK_STABILITY_PRD(3);
1615 writeq(val64, &bar0->misc_control);
1616 val64 = readq(&bar0->pic_control2);
1617 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1618 writeq(val64, &bar0->pic_control2);
1620 if (strstr(nic->product_name, "CX4")) {
1621 val64 = TMAC_AVG_IPG(0x17);
1622 writeq(val64, &bar0->tmac_avg_ipg);
1625 return SUCCESS;
1627 #define LINK_UP_DOWN_INTERRUPT 1
1628 #define MAC_RMAC_ERR_TIMER 2
1630 static int s2io_link_fault_indication(struct s2io_nic *nic)
1632 if (nic->intr_type != INTA)
1633 return MAC_RMAC_ERR_TIMER;
1634 if (nic->device_type == XFRAME_II_DEVICE)
1635 return LINK_UP_DOWN_INTERRUPT;
1636 else
1637 return MAC_RMAC_ERR_TIMER;
1641 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1642 * @nic: device private variable,
1643 * @mask: A mask indicating which Intr block must be modified and,
1644 * @flag: A flag indicating whether to enable or disable the Intrs.
1645 * Description: This function will either disable or enable the interrupts
1646 * depending on the flag argument. The mask argument can be used to
1647 * enable/disable any Intr block.
1648 * Return Value: NONE.
1651 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1654 register u64 val64 = 0, temp64 = 0;
1656 /* Top level interrupt classification */
1657 /* PIC Interrupts */
1658 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1659 /* Enable PIC Intrs in the general intr mask register */
1660 val64 = TXPIC_INT_M;
1661 if (flag == ENABLE_INTRS) {
1662 temp64 = readq(&bar0->general_int_mask);
1663 temp64 &= ~((u64) val64);
1664 writeq(temp64, &bar0->general_int_mask);
1666 * If Hercules adapter enable GPIO otherwise
1667 * disable all PCIX, Flash, MDIO, IIC and GPIO
1668 * interrupts for now.
1669 * TODO
1671 if (s2io_link_fault_indication(nic) ==
1672 LINK_UP_DOWN_INTERRUPT ) {
1673 temp64 = readq(&bar0->pic_int_mask);
1674 temp64 &= ~((u64) PIC_INT_GPIO);
1675 writeq(temp64, &bar0->pic_int_mask);
1676 temp64 = readq(&bar0->gpio_int_mask);
1677 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1678 writeq(temp64, &bar0->gpio_int_mask);
1679 } else {
1680 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1683 * No MSI Support is available presently, so TTI and
1684 * RTI interrupts are also disabled.
1686 } else if (flag == DISABLE_INTRS) {
1688 * Disable PIC Intrs in the general
1689 * intr mask register
1691 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1692 temp64 = readq(&bar0->general_int_mask);
1693 val64 |= temp64;
1694 writeq(val64, &bar0->general_int_mask);
1698 /* MAC Interrupts */
1699 /* Enabling/Disabling MAC interrupts */
1700 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1701 val64 = TXMAC_INT_M | RXMAC_INT_M;
1702 if (flag == ENABLE_INTRS) {
1703 temp64 = readq(&bar0->general_int_mask);
1704 temp64 &= ~((u64) val64);
1705 writeq(temp64, &bar0->general_int_mask);
1707 * All MAC block error interrupts are disabled for now
1708 * TODO
1710 } else if (flag == DISABLE_INTRS) {
1712 * Disable MAC Intrs in the general intr mask register
1714 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1715 writeq(DISABLE_ALL_INTRS,
1716 &bar0->mac_rmac_err_mask);
1718 temp64 = readq(&bar0->general_int_mask);
1719 val64 |= temp64;
1720 writeq(val64, &bar0->general_int_mask);
1724 /* Tx traffic interrupts */
1725 if (mask & TX_TRAFFIC_INTR) {
1726 val64 = TXTRAFFIC_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
1732 * Enable all the Tx side interrupts
1733 * writing 0 Enables all 64 TX interrupt levels
1735 writeq(0x0, &bar0->tx_traffic_mask);
1736 } else if (flag == DISABLE_INTRS) {
1738 * Disable Tx Traffic Intrs in the general intr mask
1739 * register.
1741 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1743 val64 |= temp64;
1744 writeq(val64, &bar0->general_int_mask);
1748 /* Rx traffic interrupts */
1749 if (mask & RX_TRAFFIC_INTR) {
1750 val64 = RXTRAFFIC_INT_M;
1751 if (flag == ENABLE_INTRS) {
1752 temp64 = readq(&bar0->general_int_mask);
1753 temp64 &= ~((u64) val64);
1754 writeq(temp64, &bar0->general_int_mask);
1755 /* writing 0 Enables all 8 RX interrupt levels */
1756 writeq(0x0, &bar0->rx_traffic_mask);
1757 } else if (flag == DISABLE_INTRS) {
1759 * Disable Rx Traffic Intrs in the general intr mask
1760 * register.
1762 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1763 temp64 = readq(&bar0->general_int_mask);
1764 val64 |= temp64;
1765 writeq(val64, &bar0->general_int_mask);
1771 * verify_pcc_quiescent- Checks for PCC quiescent state
1772 * Return: 1 If PCC is quiescence
1773 * 0 If PCC is not quiescence
1775 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1777 int ret = 0, herc;
1778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1779 u64 val64 = readq(&bar0->adapter_status);
1781 herc = (sp->device_type == XFRAME_II_DEVICE);
1783 if (flag == FALSE) {
1784 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1785 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1786 ret = 1;
1787 } else {
1788 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1789 ret = 1;
1791 } else {
1792 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1793 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1794 ADAPTER_STATUS_RMAC_PCC_IDLE))
1795 ret = 1;
1796 } else {
1797 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1798 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1799 ret = 1;
1803 return ret;
1806 * verify_xena_quiescence - Checks whether the H/W is ready
1807 * Description: Returns whether the H/W is ready to go or not. Depending
1808 * on whether adapter enable bit was written or not the comparison
1809 * differs and the calling function passes the input argument flag to
1810 * indicate this.
1811 * Return: 1 If xena is quiescence
1812 * 0 If Xena is not quiescence
1815 static int verify_xena_quiescence(struct s2io_nic *sp)
1817 int mode;
1818 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1819 u64 val64 = readq(&bar0->adapter_status);
1820 mode = s2io_verify_pci_mode(sp);
1822 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1823 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1824 return 0;
1826 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1827 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1828 return 0;
1830 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1831 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1832 return 0;
1834 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1835 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1836 return 0;
1838 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1839 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1840 return 0;
1842 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1843 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1844 return 0;
1846 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1847 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1848 return 0;
1850 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1851 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1852 return 0;
1856 * In PCI 33 mode, the P_PLL is not used, and therefore,
1857 * the the P_PLL_LOCK bit in the adapter_status register will
1858 * not be asserted.
1860 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1861 sp->device_type == XFRAME_II_DEVICE && mode !=
1862 PCI_MODE_PCI_33) {
1863 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1864 return 0;
1866 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1867 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1868 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1869 return 0;
1871 return 1;
1875 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1876 * @sp: Pointer to device specifc structure
1877 * Description :
1878 * New procedure to clear mac address reading problems on Alpha platforms
1882 static void fix_mac_address(struct s2io_nic * sp)
1884 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1885 u64 val64;
1886 int i = 0;
1888 while (fix_mac[i] != END_SIGN) {
1889 writeq(fix_mac[i++], &bar0->gpio_control);
1890 udelay(10);
1891 val64 = readq(&bar0->gpio_control);
1896 * start_nic - Turns the device on
1897 * @nic : device private variable.
1898 * Description:
1899 * This function actually turns the device on. Before this function is
1900 * called,all Registers are configured from their reset states
1901 * and shared memory is allocated but the NIC is still quiescent. On
1902 * calling this function, the device interrupts are cleared and the NIC is
1903 * literally switched on by writing into the adapter control register.
1904 * Return Value:
1905 * SUCCESS on success and -1 on failure.
1908 static int start_nic(struct s2io_nic *nic)
1910 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1911 struct net_device *dev = nic->dev;
1912 register u64 val64 = 0;
1913 u16 subid, i;
1914 struct mac_info *mac_control;
1915 struct config_param *config;
1917 mac_control = &nic->mac_control;
1918 config = &nic->config;
1920 /* PRC Initialization and configuration */
1921 for (i = 0; i < config->rx_ring_num; i++) {
1922 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1923 &bar0->prc_rxd0_n[i]);
1925 val64 = readq(&bar0->prc_ctrl_n[i]);
1926 if (nic->config.bimodal)
1927 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1928 if (nic->rxd_mode == RXD_MODE_1)
1929 val64 |= PRC_CTRL_RC_ENABLED;
1930 else
1931 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1932 if (nic->device_type == XFRAME_II_DEVICE)
1933 val64 |= PRC_CTRL_GROUP_READS;
1934 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1935 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1936 writeq(val64, &bar0->prc_ctrl_n[i]);
1939 if (nic->rxd_mode == RXD_MODE_3B) {
1940 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1941 val64 = readq(&bar0->rx_pa_cfg);
1942 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1943 writeq(val64, &bar0->rx_pa_cfg);
1947 * Enabling MC-RLDRAM. After enabling the device, we timeout
1948 * for around 100ms, which is approximately the time required
1949 * for the device to be ready for operation.
1951 val64 = readq(&bar0->mc_rldram_mrs);
1952 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1953 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1954 val64 = readq(&bar0->mc_rldram_mrs);
1956 msleep(100); /* Delay by around 100 ms. */
1958 /* Enabling ECC Protection. */
1959 val64 = readq(&bar0->adapter_control);
1960 val64 &= ~ADAPTER_ECC_EN;
1961 writeq(val64, &bar0->adapter_control);
1964 * Clearing any possible Link state change interrupts that
1965 * could have popped up just before Enabling the card.
1967 val64 = readq(&bar0->mac_rmac_err_reg);
1968 if (val64)
1969 writeq(val64, &bar0->mac_rmac_err_reg);
1972 * Verify if the device is ready to be enabled, if so enable
1973 * it.
1975 val64 = readq(&bar0->adapter_status);
1976 if (!verify_xena_quiescence(nic)) {
1977 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1978 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1979 (unsigned long long) val64);
1980 return FAILURE;
1984 * With some switches, link might be already up at this point.
1985 * Because of this weird behavior, when we enable laser,
1986 * we may not get link. We need to handle this. We cannot
1987 * figure out which switch is misbehaving. So we are forced to
1988 * make a global change.
1991 /* Enabling Laser. */
1992 val64 = readq(&bar0->adapter_control);
1993 val64 |= ADAPTER_EOI_TX_ON;
1994 writeq(val64, &bar0->adapter_control);
1996 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1998 * Dont see link state interrupts initally on some switches,
1999 * so directly scheduling the link state task here.
2001 schedule_work(&nic->set_link_task);
2003 /* SXE-002: Initialize link and activity LED */
2004 subid = nic->pdev->subsystem_device;
2005 if (((subid & 0xFF) >= 0x07) &&
2006 (nic->device_type == XFRAME_I_DEVICE)) {
2007 val64 = readq(&bar0->gpio_control);
2008 val64 |= 0x0000800000000000ULL;
2009 writeq(val64, &bar0->gpio_control);
2010 val64 = 0x0411040400000000ULL;
2011 writeq(val64, (void __iomem *)bar0 + 0x2700);
2014 return SUCCESS;
2017 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2019 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2020 TxD *txdlp, int get_off)
2022 struct s2io_nic *nic = fifo_data->nic;
2023 struct sk_buff *skb;
2024 struct TxD *txds;
2025 u16 j, frg_cnt;
2027 txds = txdlp;
2028 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2029 pci_unmap_single(nic->pdev, (dma_addr_t)
2030 txds->Buffer_Pointer, sizeof(u64),
2031 PCI_DMA_TODEVICE);
2032 txds++;
2035 skb = (struct sk_buff *) ((unsigned long)
2036 txds->Host_Control);
2037 if (!skb) {
2038 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2039 return NULL;
2041 pci_unmap_single(nic->pdev, (dma_addr_t)
2042 txds->Buffer_Pointer,
2043 skb->len - skb->data_len,
2044 PCI_DMA_TODEVICE);
2045 frg_cnt = skb_shinfo(skb)->nr_frags;
2046 if (frg_cnt) {
2047 txds++;
2048 for (j = 0; j < frg_cnt; j++, txds++) {
2049 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2050 if (!txds->Buffer_Pointer)
2051 break;
2052 pci_unmap_page(nic->pdev, (dma_addr_t)
2053 txds->Buffer_Pointer,
2054 frag->size, PCI_DMA_TODEVICE);
2057 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2058 return(skb);
2062 * free_tx_buffers - Free all queued Tx buffers
2063 * @nic : device private variable.
2064 * Description:
2065 * Free all queued Tx buffers.
2066 * Return Value: void
2069 static void free_tx_buffers(struct s2io_nic *nic)
2071 struct net_device *dev = nic->dev;
2072 struct sk_buff *skb;
2073 struct TxD *txdp;
2074 int i, j;
2075 struct mac_info *mac_control;
2076 struct config_param *config;
2077 int cnt = 0;
2079 mac_control = &nic->mac_control;
2080 config = &nic->config;
2082 for (i = 0; i < config->tx_fifo_num; i++) {
2083 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2084 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2085 list_virt_addr;
2086 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2087 if (skb) {
2088 dev_kfree_skb(skb);
2089 cnt++;
2092 DBG_PRINT(INTR_DBG,
2093 "%s:forcibly freeing %d skbs on FIFO%d\n",
2094 dev->name, cnt, i);
2095 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2096 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2101 * stop_nic - To stop the nic
2102 * @nic ; device private variable.
2103 * Description:
2104 * This function does exactly the opposite of what the start_nic()
2105 * function does. This function is called to stop the device.
2106 * Return Value:
2107 * void.
2110 static void stop_nic(struct s2io_nic *nic)
2112 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2113 register u64 val64 = 0;
2114 u16 interruptible;
2115 struct mac_info *mac_control;
2116 struct config_param *config;
2118 mac_control = &nic->mac_control;
2119 config = &nic->config;
2121 /* Disable all interrupts */
2122 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2123 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2124 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2125 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2127 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2128 val64 = readq(&bar0->adapter_control);
2129 val64 &= ~(ADAPTER_CNTL_EN);
2130 writeq(val64, &bar0->adapter_control);
2133 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2134 sk_buff *skb)
2136 struct net_device *dev = nic->dev;
2137 struct sk_buff *frag_list;
2138 void *tmp;
2140 /* Buffer-1 receives L3/L4 headers */
2141 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2142 (nic->pdev, skb->data, l3l4hdr_size + 4,
2143 PCI_DMA_FROMDEVICE);
2145 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2146 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2147 if (skb_shinfo(skb)->frag_list == NULL) {
2148 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2149 return -ENOMEM ;
2151 frag_list = skb_shinfo(skb)->frag_list;
2152 skb->truesize += frag_list->truesize;
2153 frag_list->next = NULL;
2154 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2155 frag_list->data = tmp;
2156 frag_list->tail = tmp;
2158 /* Buffer-2 receives L4 data payload */
2159 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2160 frag_list->data, dev->mtu,
2161 PCI_DMA_FROMDEVICE);
2162 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2163 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2165 return SUCCESS;
2169 * fill_rx_buffers - Allocates the Rx side skbs
2170 * @nic: device private variable
2171 * @ring_no: ring number
2172 * Description:
2173 * The function allocates Rx side skbs and puts the physical
2174 * address of these buffers into the RxD buffer pointers, so that the NIC
2175 * can DMA the received frame into these locations.
2176 * The NIC supports 3 receive modes, viz
2177 * 1. single buffer,
2178 * 2. three buffer and
2179 * 3. Five buffer modes.
2180 * Each mode defines how many fragments the received frame will be split
2181 * up into by the NIC. The frame is split into L3 header, L4 Header,
2182 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2183 * is split into 3 fragments. As of now only single buffer mode is
2184 * supported.
2185 * Return Value:
2186 * SUCCESS on success or an appropriate -ve value on failure.
2189 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2191 struct net_device *dev = nic->dev;
2192 struct sk_buff *skb;
2193 struct RxD_t *rxdp;
2194 int off, off1, size, block_no, block_no1;
2195 u32 alloc_tab = 0;
2196 u32 alloc_cnt;
2197 struct mac_info *mac_control;
2198 struct config_param *config;
2199 u64 tmp;
2200 struct buffAdd *ba;
2201 unsigned long flags;
2202 struct RxD_t *first_rxdp = NULL;
2204 mac_control = &nic->mac_control;
2205 config = &nic->config;
2206 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2207 atomic_read(&nic->rx_bufs_left[ring_no]);
2209 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2210 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2211 while (alloc_tab < alloc_cnt) {
2212 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2213 block_index;
2214 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2216 rxdp = mac_control->rings[ring_no].
2217 rx_blocks[block_no].rxds[off].virt_addr;
2219 if ((block_no == block_no1) && (off == off1) &&
2220 (rxdp->Host_Control)) {
2221 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2222 dev->name);
2223 DBG_PRINT(INTR_DBG, " info equated\n");
2224 goto end;
2226 if (off && (off == rxd_count[nic->rxd_mode])) {
2227 mac_control->rings[ring_no].rx_curr_put_info.
2228 block_index++;
2229 if (mac_control->rings[ring_no].rx_curr_put_info.
2230 block_index == mac_control->rings[ring_no].
2231 block_count)
2232 mac_control->rings[ring_no].rx_curr_put_info.
2233 block_index = 0;
2234 block_no = mac_control->rings[ring_no].
2235 rx_curr_put_info.block_index;
2236 if (off == rxd_count[nic->rxd_mode])
2237 off = 0;
2238 mac_control->rings[ring_no].rx_curr_put_info.
2239 offset = off;
2240 rxdp = mac_control->rings[ring_no].
2241 rx_blocks[block_no].block_virt_addr;
2242 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2243 dev->name, rxdp);
2245 if(!napi) {
2246 spin_lock_irqsave(&nic->put_lock, flags);
2247 mac_control->rings[ring_no].put_pos =
2248 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2249 spin_unlock_irqrestore(&nic->put_lock, flags);
2250 } else {
2251 mac_control->rings[ring_no].put_pos =
2252 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2254 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2255 ((nic->rxd_mode >= RXD_MODE_3A) &&
2256 (rxdp->Control_2 & BIT(0)))) {
2257 mac_control->rings[ring_no].rx_curr_put_info.
2258 offset = off;
2259 goto end;
2261 /* calculate size of skb based on ring mode */
2262 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2263 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2264 if (nic->rxd_mode == RXD_MODE_1)
2265 size += NET_IP_ALIGN;
2266 else if (nic->rxd_mode == RXD_MODE_3B)
2267 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2268 else
2269 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2271 /* allocate skb */
2272 skb = dev_alloc_skb(size);
2273 if(!skb) {
2274 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2275 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2276 if (first_rxdp) {
2277 wmb();
2278 first_rxdp->Control_1 |= RXD_OWN_XENA;
2280 return -ENOMEM ;
2282 if (nic->rxd_mode == RXD_MODE_1) {
2283 /* 1 buffer mode - normal operation mode */
2284 memset(rxdp, 0, sizeof(struct RxD1));
2285 skb_reserve(skb, NET_IP_ALIGN);
2286 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2287 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2288 PCI_DMA_FROMDEVICE);
2289 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2291 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2293 * 2 or 3 buffer mode -
2294 * Both 2 buffer mode and 3 buffer mode provides 128
2295 * byte aligned receive buffers.
2297 * 3 buffer mode provides header separation where in
2298 * skb->data will have L3/L4 headers where as
2299 * skb_shinfo(skb)->frag_list will have the L4 data
2300 * payload
2303 memset(rxdp, 0, sizeof(struct RxD3));
2304 ba = &mac_control->rings[ring_no].ba[block_no][off];
2305 skb_reserve(skb, BUF0_LEN);
2306 tmp = (u64)(unsigned long) skb->data;
2307 tmp += ALIGN_SIZE;
2308 tmp &= ~ALIGN_SIZE;
2309 skb->data = (void *) (unsigned long)tmp;
2310 skb->tail = (void *) (unsigned long)tmp;
2312 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2313 ((struct RxD3*)rxdp)->Buffer0_ptr =
2314 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2315 PCI_DMA_FROMDEVICE);
2316 else
2317 pci_dma_sync_single_for_device(nic->pdev,
2318 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2319 BUF0_LEN, PCI_DMA_FROMDEVICE);
2320 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2321 if (nic->rxd_mode == RXD_MODE_3B) {
2322 /* Two buffer mode */
2325 * Buffer2 will have L3/L4 header plus
2326 * L4 payload
2328 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2329 (nic->pdev, skb->data, dev->mtu + 4,
2330 PCI_DMA_FROMDEVICE);
2332 /* Buffer-1 will be dummy buffer. Not used */
2333 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2334 ((struct RxD3*)rxdp)->Buffer1_ptr =
2335 pci_map_single(nic->pdev,
2336 ba->ba_1, BUF1_LEN,
2337 PCI_DMA_FROMDEVICE);
2339 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2340 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2341 (dev->mtu + 4);
2342 } else {
2343 /* 3 buffer mode */
2344 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2345 dev_kfree_skb_irq(skb);
2346 if (first_rxdp) {
2347 wmb();
2348 first_rxdp->Control_1 |=
2349 RXD_OWN_XENA;
2351 return -ENOMEM ;
2354 rxdp->Control_2 |= BIT(0);
2356 rxdp->Host_Control = (unsigned long) (skb);
2357 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2358 rxdp->Control_1 |= RXD_OWN_XENA;
2359 off++;
2360 if (off == (rxd_count[nic->rxd_mode] + 1))
2361 off = 0;
2362 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2364 rxdp->Control_2 |= SET_RXD_MARKER;
2365 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2366 if (first_rxdp) {
2367 wmb();
2368 first_rxdp->Control_1 |= RXD_OWN_XENA;
2370 first_rxdp = rxdp;
2372 atomic_inc(&nic->rx_bufs_left[ring_no]);
2373 alloc_tab++;
2376 end:
2377 /* Transfer ownership of first descriptor to adapter just before
2378 * exiting. Before that, use memory barrier so that ownership
2379 * and other fields are seen by adapter correctly.
2381 if (first_rxdp) {
2382 wmb();
2383 first_rxdp->Control_1 |= RXD_OWN_XENA;
2386 return SUCCESS;
2389 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2391 struct net_device *dev = sp->dev;
2392 int j;
2393 struct sk_buff *skb;
2394 struct RxD_t *rxdp;
2395 struct mac_info *mac_control;
2396 struct buffAdd *ba;
2398 mac_control = &sp->mac_control;
2399 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2400 rxdp = mac_control->rings[ring_no].
2401 rx_blocks[blk].rxds[j].virt_addr;
2402 skb = (struct sk_buff *)
2403 ((unsigned long) rxdp->Host_Control);
2404 if (!skb) {
2405 continue;
2407 if (sp->rxd_mode == RXD_MODE_1) {
2408 pci_unmap_single(sp->pdev, (dma_addr_t)
2409 ((struct RxD1*)rxdp)->Buffer0_ptr,
2410 dev->mtu +
2411 HEADER_ETHERNET_II_802_3_SIZE
2412 + HEADER_802_2_SIZE +
2413 HEADER_SNAP_SIZE,
2414 PCI_DMA_FROMDEVICE);
2415 memset(rxdp, 0, sizeof(struct RxD1));
2416 } else if(sp->rxd_mode == RXD_MODE_3B) {
2417 ba = &mac_control->rings[ring_no].
2418 ba[blk][j];
2419 pci_unmap_single(sp->pdev, (dma_addr_t)
2420 ((struct RxD3*)rxdp)->Buffer0_ptr,
2421 BUF0_LEN,
2422 PCI_DMA_FROMDEVICE);
2423 pci_unmap_single(sp->pdev, (dma_addr_t)
2424 ((struct RxD3*)rxdp)->Buffer1_ptr,
2425 BUF1_LEN,
2426 PCI_DMA_FROMDEVICE);
2427 pci_unmap_single(sp->pdev, (dma_addr_t)
2428 ((struct RxD3*)rxdp)->Buffer2_ptr,
2429 dev->mtu + 4,
2430 PCI_DMA_FROMDEVICE);
2431 memset(rxdp, 0, sizeof(struct RxD3));
2432 } else {
2433 pci_unmap_single(sp->pdev, (dma_addr_t)
2434 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2435 PCI_DMA_FROMDEVICE);
2436 pci_unmap_single(sp->pdev, (dma_addr_t)
2437 ((struct RxD3*)rxdp)->Buffer1_ptr,
2438 l3l4hdr_size + 4,
2439 PCI_DMA_FROMDEVICE);
2440 pci_unmap_single(sp->pdev, (dma_addr_t)
2441 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2442 PCI_DMA_FROMDEVICE);
2443 memset(rxdp, 0, sizeof(struct RxD3));
2445 dev_kfree_skb(skb);
2446 atomic_dec(&sp->rx_bufs_left[ring_no]);
2451 * free_rx_buffers - Frees all Rx buffers
2452 * @sp: device private variable.
2453 * Description:
2454 * This function will free all Rx buffers allocated by host.
2455 * Return Value:
2456 * NONE.
2459 static void free_rx_buffers(struct s2io_nic *sp)
2461 struct net_device *dev = sp->dev;
2462 int i, blk = 0, buf_cnt = 0;
2463 struct mac_info *mac_control;
2464 struct config_param *config;
2466 mac_control = &sp->mac_control;
2467 config = &sp->config;
2469 for (i = 0; i < config->rx_ring_num; i++) {
2470 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2471 free_rxd_blk(sp,i,blk);
2473 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2474 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2475 mac_control->rings[i].rx_curr_put_info.offset = 0;
2476 mac_control->rings[i].rx_curr_get_info.offset = 0;
2477 atomic_set(&sp->rx_bufs_left[i], 0);
2478 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2479 dev->name, buf_cnt, i);
2484 * s2io_poll - Rx interrupt handler for NAPI support
2485 * @dev : pointer to the device structure.
2486 * @budget : The number of packets that were budgeted to be processed
2487 * during one pass through the 'Poll" function.
2488 * Description:
2489 * Comes into picture only if NAPI support has been incorporated. It does
2490 * the same thing that rx_intr_handler does, but not in a interrupt context
2491 * also It will process only a given number of packets.
2492 * Return value:
2493 * 0 on success and 1 if there are No Rx packets to be processed.
2496 static int s2io_poll(struct net_device *dev, int *budget)
2498 struct s2io_nic *nic = dev->priv;
2499 int pkt_cnt = 0, org_pkts_to_process;
2500 struct mac_info *mac_control;
2501 struct config_param *config;
2502 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2503 int i;
2505 atomic_inc(&nic->isr_cnt);
2506 mac_control = &nic->mac_control;
2507 config = &nic->config;
2509 nic->pkts_to_process = *budget;
2510 if (nic->pkts_to_process > dev->quota)
2511 nic->pkts_to_process = dev->quota;
2512 org_pkts_to_process = nic->pkts_to_process;
2514 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2515 readl(&bar0->rx_traffic_int);
2517 for (i = 0; i < config->rx_ring_num; i++) {
2518 rx_intr_handler(&mac_control->rings[i]);
2519 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2520 if (!nic->pkts_to_process) {
2521 /* Quota for the current iteration has been met */
2522 goto no_rx;
2525 if (!pkt_cnt)
2526 pkt_cnt = 1;
2528 dev->quota -= pkt_cnt;
2529 *budget -= pkt_cnt;
2530 netif_rx_complete(dev);
2532 for (i = 0; i < config->rx_ring_num; i++) {
2533 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2534 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2535 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2536 break;
2539 /* Re enable the Rx interrupts. */
2540 writeq(0x0, &bar0->rx_traffic_mask);
2541 readl(&bar0->rx_traffic_mask);
2542 atomic_dec(&nic->isr_cnt);
2543 return 0;
2545 no_rx:
2546 dev->quota -= pkt_cnt;
2547 *budget -= pkt_cnt;
2549 for (i = 0; i < config->rx_ring_num; i++) {
2550 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2551 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2552 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2553 break;
2556 atomic_dec(&nic->isr_cnt);
2557 return 1;
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2562 * s2io_netpoll - netpoll event handler entry point
2563 * @dev : pointer to the device structure.
2564 * Description:
2565 * This function will be called by upper layer to check for events on the
2566 * interface in situations where interrupts are disabled. It is used for
2567 * specific in-kernel networking tasks, such as remote consoles and kernel
2568 * debugging over the network (example netdump in RedHat).
2570 static void s2io_netpoll(struct net_device *dev)
2572 struct s2io_nic *nic = dev->priv;
2573 struct mac_info *mac_control;
2574 struct config_param *config;
2575 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2576 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2577 int i;
2579 disable_irq(dev->irq);
2581 atomic_inc(&nic->isr_cnt);
2582 mac_control = &nic->mac_control;
2583 config = &nic->config;
2585 writeq(val64, &bar0->rx_traffic_int);
2586 writeq(val64, &bar0->tx_traffic_int);
2588 /* we need to free up the transmitted skbufs or else netpoll will
2589 * run out of skbs and will fail and eventually netpoll application such
2590 * as netdump will fail.
2592 for (i = 0; i < config->tx_fifo_num; i++)
2593 tx_intr_handler(&mac_control->fifos[i]);
2595 /* check for received packet and indicate up to network */
2596 for (i = 0; i < config->rx_ring_num; i++)
2597 rx_intr_handler(&mac_control->rings[i]);
2599 for (i = 0; i < config->rx_ring_num; i++) {
2600 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2601 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2602 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2603 break;
2606 atomic_dec(&nic->isr_cnt);
2607 enable_irq(dev->irq);
2608 return;
2610 #endif
2613 * rx_intr_handler - Rx interrupt handler
2614 * @nic: device private variable.
2615 * Description:
2616 * If the interrupt is because of a received frame or if the
2617 * receive ring contains fresh as yet un-processed frames,this function is
2618 * called. It picks out the RxD at which place the last Rx processing had
2619 * stopped and sends the skb to the OSM's Rx handler and then increments
2620 * the offset.
2621 * Return Value:
2622 * NONE.
2624 static void rx_intr_handler(struct ring_info *ring_data)
2626 struct s2io_nic *nic = ring_data->nic;
2627 struct net_device *dev = (struct net_device *) nic->dev;
2628 int get_block, put_block, put_offset;
2629 struct rx_curr_get_info get_info, put_info;
2630 struct RxD_t *rxdp;
2631 struct sk_buff *skb;
2632 int pkt_cnt = 0;
2633 int i;
2635 spin_lock(&nic->rx_lock);
2636 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2637 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2638 __FUNCTION__, dev->name);
2639 spin_unlock(&nic->rx_lock);
2640 return;
2643 get_info = ring_data->rx_curr_get_info;
2644 get_block = get_info.block_index;
2645 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2646 put_block = put_info.block_index;
2647 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2648 if (!napi) {
2649 spin_lock(&nic->put_lock);
2650 put_offset = ring_data->put_pos;
2651 spin_unlock(&nic->put_lock);
2652 } else
2653 put_offset = ring_data->put_pos;
2655 while (RXD_IS_UP2DT(rxdp)) {
2657 * If your are next to put index then it's
2658 * FIFO full condition
2660 if ((get_block == put_block) &&
2661 (get_info.offset + 1) == put_info.offset) {
2662 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2663 break;
2665 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2666 if (skb == NULL) {
2667 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2668 dev->name);
2669 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2670 spin_unlock(&nic->rx_lock);
2671 return;
2673 if (nic->rxd_mode == RXD_MODE_1) {
2674 pci_unmap_single(nic->pdev, (dma_addr_t)
2675 ((struct RxD1*)rxdp)->Buffer0_ptr,
2676 dev->mtu +
2677 HEADER_ETHERNET_II_802_3_SIZE +
2678 HEADER_802_2_SIZE +
2679 HEADER_SNAP_SIZE,
2680 PCI_DMA_FROMDEVICE);
2681 } else if (nic->rxd_mode == RXD_MODE_3B) {
2682 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2683 ((struct RxD3*)rxdp)->Buffer0_ptr,
2684 BUF0_LEN, PCI_DMA_FROMDEVICE);
2685 pci_unmap_single(nic->pdev, (dma_addr_t)
2686 ((struct RxD3*)rxdp)->Buffer2_ptr,
2687 dev->mtu + 4,
2688 PCI_DMA_FROMDEVICE);
2689 } else {
2690 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2691 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2692 PCI_DMA_FROMDEVICE);
2693 pci_unmap_single(nic->pdev, (dma_addr_t)
2694 ((struct RxD3*)rxdp)->Buffer1_ptr,
2695 l3l4hdr_size + 4,
2696 PCI_DMA_FROMDEVICE);
2697 pci_unmap_single(nic->pdev, (dma_addr_t)
2698 ((struct RxD3*)rxdp)->Buffer2_ptr,
2699 dev->mtu, PCI_DMA_FROMDEVICE);
2701 prefetch(skb->data);
2702 rx_osm_handler(ring_data, rxdp);
2703 get_info.offset++;
2704 ring_data->rx_curr_get_info.offset = get_info.offset;
2705 rxdp = ring_data->rx_blocks[get_block].
2706 rxds[get_info.offset].virt_addr;
2707 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2708 get_info.offset = 0;
2709 ring_data->rx_curr_get_info.offset = get_info.offset;
2710 get_block++;
2711 if (get_block == ring_data->block_count)
2712 get_block = 0;
2713 ring_data->rx_curr_get_info.block_index = get_block;
2714 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2717 nic->pkts_to_process -= 1;
2718 if ((napi) && (!nic->pkts_to_process))
2719 break;
2720 pkt_cnt++;
2721 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2722 break;
2724 if (nic->lro) {
2725 /* Clear all LRO sessions before exiting */
2726 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2727 struct lro *lro = &nic->lro0_n[i];
2728 if (lro->in_use) {
2729 update_L3L4_header(nic, lro);
2730 queue_rx_frame(lro->parent);
2731 clear_lro_session(lro);
2736 spin_unlock(&nic->rx_lock);
2740 * tx_intr_handler - Transmit interrupt handler
2741 * @nic : device private variable
2742 * Description:
2743 * If an interrupt was raised to indicate DMA complete of the
2744 * Tx packet, this function is called. It identifies the last TxD
2745 * whose buffer was freed and frees all skbs whose data have already
2746 * DMA'ed into the NICs internal memory.
2747 * Return Value:
2748 * NONE
2751 static void tx_intr_handler(struct fifo_info *fifo_data)
2753 struct s2io_nic *nic = fifo_data->nic;
2754 struct net_device *dev = (struct net_device *) nic->dev;
2755 struct tx_curr_get_info get_info, put_info;
2756 struct sk_buff *skb;
2757 struct TxD *txdlp;
2759 get_info = fifo_data->tx_curr_get_info;
2760 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2761 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2762 list_virt_addr;
2763 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2764 (get_info.offset != put_info.offset) &&
2765 (txdlp->Host_Control)) {
2766 /* Check for TxD errors */
2767 if (txdlp->Control_1 & TXD_T_CODE) {
2768 unsigned long long err;
2769 err = txdlp->Control_1 & TXD_T_CODE;
2770 if (err & 0x1) {
2771 nic->mac_control.stats_info->sw_stat.
2772 parity_err_cnt++;
2774 if ((err >> 48) == 0xA) {
2775 DBG_PRINT(TX_DBG, "TxD returned due \
2776 to loss of link\n");
2778 else {
2779 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2783 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2784 if (skb == NULL) {
2785 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2786 __FUNCTION__);
2787 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2788 return;
2791 /* Updating the statistics block */
2792 nic->stats.tx_bytes += skb->len;
2793 dev_kfree_skb_irq(skb);
2795 get_info.offset++;
2796 if (get_info.offset == get_info.fifo_len + 1)
2797 get_info.offset = 0;
2798 txdlp = (struct TxD *) fifo_data->list_info
2799 [get_info.offset].list_virt_addr;
2800 fifo_data->tx_curr_get_info.offset =
2801 get_info.offset;
2804 spin_lock(&nic->tx_lock);
2805 if (netif_queue_stopped(dev))
2806 netif_wake_queue(dev);
2807 spin_unlock(&nic->tx_lock);
2811 * s2io_mdio_write - Function to write in to MDIO registers
2812 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2813 * @addr : address value
2814 * @value : data value
2815 * @dev : pointer to net_device structure
2816 * Description:
2817 * This function is used to write values to the MDIO registers
2818 * NONE
2820 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2822 u64 val64 = 0x0;
2823 struct s2io_nic *sp = dev->priv;
2824 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2826 //address transaction
2827 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2828 | MDIO_MMD_DEV_ADDR(mmd_type)
2829 | MDIO_MMS_PRT_ADDR(0x0);
2830 writeq(val64, &bar0->mdio_control);
2831 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2832 writeq(val64, &bar0->mdio_control);
2833 udelay(100);
2835 //Data transaction
2836 val64 = 0x0;
2837 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2838 | MDIO_MMD_DEV_ADDR(mmd_type)
2839 | MDIO_MMS_PRT_ADDR(0x0)
2840 | MDIO_MDIO_DATA(value)
2841 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2842 writeq(val64, &bar0->mdio_control);
2843 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2844 writeq(val64, &bar0->mdio_control);
2845 udelay(100);
2847 val64 = 0x0;
2848 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2849 | MDIO_MMD_DEV_ADDR(mmd_type)
2850 | MDIO_MMS_PRT_ADDR(0x0)
2851 | MDIO_OP(MDIO_OP_READ_TRANS);
2852 writeq(val64, &bar0->mdio_control);
2853 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2854 writeq(val64, &bar0->mdio_control);
2855 udelay(100);
2860 * s2io_mdio_read - Function to write in to MDIO registers
2861 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2862 * @addr : address value
2863 * @dev : pointer to net_device structure
2864 * Description:
2865 * This function is used to read values to the MDIO registers
2866 * NONE
2868 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2870 u64 val64 = 0x0;
2871 u64 rval64 = 0x0;
2872 struct s2io_nic *sp = dev->priv;
2873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2875 /* address transaction */
2876 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2877 | MDIO_MMD_DEV_ADDR(mmd_type)
2878 | MDIO_MMS_PRT_ADDR(0x0);
2879 writeq(val64, &bar0->mdio_control);
2880 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2881 writeq(val64, &bar0->mdio_control);
2882 udelay(100);
2884 /* Data transaction */
2885 val64 = 0x0;
2886 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2887 | MDIO_MMD_DEV_ADDR(mmd_type)
2888 | MDIO_MMS_PRT_ADDR(0x0)
2889 | MDIO_OP(MDIO_OP_READ_TRANS);
2890 writeq(val64, &bar0->mdio_control);
2891 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2892 writeq(val64, &bar0->mdio_control);
2893 udelay(100);
2895 /* Read the value from regs */
2896 rval64 = readq(&bar0->mdio_control);
2897 rval64 = rval64 & 0xFFFF0000;
2898 rval64 = rval64 >> 16;
2899 return rval64;
2902 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2903 * @counter : couter value to be updated
2904 * @flag : flag to indicate the status
2905 * @type : counter type
2906 * Description:
2907 * This function is to check the status of the xpak counters value
2908 * NONE
2911 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2913 u64 mask = 0x3;
2914 u64 val64;
2915 int i;
2916 for(i = 0; i <index; i++)
2917 mask = mask << 0x2;
2919 if(flag > 0)
2921 *counter = *counter + 1;
2922 val64 = *regs_stat & mask;
2923 val64 = val64 >> (index * 0x2);
2924 val64 = val64 + 1;
2925 if(val64 == 3)
2927 switch(type)
2929 case 1:
2930 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2931 "service. Excessive temperatures may "
2932 "result in premature transceiver "
2933 "failure \n");
2934 break;
2935 case 2:
2936 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2937 "service Excessive bias currents may "
2938 "indicate imminent laser diode "
2939 "failure \n");
2940 break;
2941 case 3:
2942 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2943 "service Excessive laser output "
2944 "power may saturate far-end "
2945 "receiver\n");
2946 break;
2947 default:
2948 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2949 "type \n");
2951 val64 = 0x0;
2953 val64 = val64 << (index * 0x2);
2954 *regs_stat = (*regs_stat & (~mask)) | (val64);
2956 } else {
2957 *regs_stat = *regs_stat & (~mask);
2962 * s2io_updt_xpak_counter - Function to update the xpak counters
2963 * @dev : pointer to net_device struct
2964 * Description:
2965 * This function is to upate the status of the xpak counters value
2966 * NONE
2968 static void s2io_updt_xpak_counter(struct net_device *dev)
2970 u16 flag = 0x0;
2971 u16 type = 0x0;
2972 u16 val16 = 0x0;
2973 u64 val64 = 0x0;
2974 u64 addr = 0x0;
2976 struct s2io_nic *sp = dev->priv;
2977 struct stat_block *stat_info = sp->mac_control.stats_info;
2979 /* Check the communication with the MDIO slave */
2980 addr = 0x0000;
2981 val64 = 0x0;
2982 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2983 if((val64 == 0xFFFF) || (val64 == 0x0000))
2985 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2986 "Returned %llx\n", (unsigned long long)val64);
2987 return;
2990 /* Check for the expecte value of 2040 at PMA address 0x0000 */
2991 if(val64 != 0x2040)
2993 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2994 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2995 (unsigned long long)val64);
2996 return;
2999 /* Loading the DOM register to MDIO register */
3000 addr = 0xA100;
3001 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3002 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3004 /* Reading the Alarm flags */
3005 addr = 0xA070;
3006 val64 = 0x0;
3007 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3009 flag = CHECKBIT(val64, 0x7);
3010 type = 1;
3011 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3012 &stat_info->xpak_stat.xpak_regs_stat,
3013 0x0, flag, type);
3015 if(CHECKBIT(val64, 0x6))
3016 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3018 flag = CHECKBIT(val64, 0x3);
3019 type = 2;
3020 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3021 &stat_info->xpak_stat.xpak_regs_stat,
3022 0x2, flag, type);
3024 if(CHECKBIT(val64, 0x2))
3025 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3027 flag = CHECKBIT(val64, 0x1);
3028 type = 3;
3029 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3030 &stat_info->xpak_stat.xpak_regs_stat,
3031 0x4, flag, type);
3033 if(CHECKBIT(val64, 0x0))
3034 stat_info->xpak_stat.alarm_laser_output_power_low++;
3036 /* Reading the Warning flags */
3037 addr = 0xA074;
3038 val64 = 0x0;
3039 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3041 if(CHECKBIT(val64, 0x7))
3042 stat_info->xpak_stat.warn_transceiver_temp_high++;
3044 if(CHECKBIT(val64, 0x6))
3045 stat_info->xpak_stat.warn_transceiver_temp_low++;
3047 if(CHECKBIT(val64, 0x3))
3048 stat_info->xpak_stat.warn_laser_bias_current_high++;
3050 if(CHECKBIT(val64, 0x2))
3051 stat_info->xpak_stat.warn_laser_bias_current_low++;
3053 if(CHECKBIT(val64, 0x1))
3054 stat_info->xpak_stat.warn_laser_output_power_high++;
3056 if(CHECKBIT(val64, 0x0))
3057 stat_info->xpak_stat.warn_laser_output_power_low++;
3061 * alarm_intr_handler - Alarm Interrrupt handler
3062 * @nic: device private variable
3063 * Description: If the interrupt was neither because of Rx packet or Tx
3064 * complete, this function is called. If the interrupt was to indicate
3065 * a loss of link, the OSM link status handler is invoked for any other
3066 * alarm interrupt the block that raised the interrupt is displayed
3067 * and a H/W reset is issued.
3068 * Return Value:
3069 * NONE
3072 static void alarm_intr_handler(struct s2io_nic *nic)
3074 struct net_device *dev = (struct net_device *) nic->dev;
3075 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3076 register u64 val64 = 0, err_reg = 0;
3077 u64 cnt;
3078 int i;
3079 if (atomic_read(&nic->card_state) == CARD_DOWN)
3080 return;
3081 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3082 /* Handling the XPAK counters update */
3083 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3084 /* waiting for an hour */
3085 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3086 } else {
3087 s2io_updt_xpak_counter(dev);
3088 /* reset the count to zero */
3089 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3092 /* Handling link status change error Intr */
3093 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3094 err_reg = readq(&bar0->mac_rmac_err_reg);
3095 writeq(err_reg, &bar0->mac_rmac_err_reg);
3096 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3097 schedule_work(&nic->set_link_task);
3101 /* Handling Ecc errors */
3102 val64 = readq(&bar0->mc_err_reg);
3103 writeq(val64, &bar0->mc_err_reg);
3104 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3105 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3106 nic->mac_control.stats_info->sw_stat.
3107 double_ecc_errs++;
3108 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3109 dev->name);
3110 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3111 if (nic->device_type != XFRAME_II_DEVICE) {
3112 /* Reset XframeI only if critical error */
3113 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3114 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3115 netif_stop_queue(dev);
3116 schedule_work(&nic->rst_timer_task);
3117 nic->mac_control.stats_info->sw_stat.
3118 soft_reset_cnt++;
3121 } else {
3122 nic->mac_control.stats_info->sw_stat.
3123 single_ecc_errs++;
3127 /* In case of a serious error, the device will be Reset. */
3128 val64 = readq(&bar0->serr_source);
3129 if (val64 & SERR_SOURCE_ANY) {
3130 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3131 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3132 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3133 (unsigned long long)val64);
3134 netif_stop_queue(dev);
3135 schedule_work(&nic->rst_timer_task);
3136 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3140 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3141 * Error occurs, the adapter will be recycled by disabling the
3142 * adapter enable bit and enabling it again after the device
3143 * becomes Quiescent.
3145 val64 = readq(&bar0->pcc_err_reg);
3146 writeq(val64, &bar0->pcc_err_reg);
3147 if (val64 & PCC_FB_ECC_DB_ERR) {
3148 u64 ac = readq(&bar0->adapter_control);
3149 ac &= ~(ADAPTER_CNTL_EN);
3150 writeq(ac, &bar0->adapter_control);
3151 ac = readq(&bar0->adapter_control);
3152 schedule_work(&nic->set_link_task);
3154 /* Check for data parity error */
3155 val64 = readq(&bar0->pic_int_status);
3156 if (val64 & PIC_INT_GPIO) {
3157 val64 = readq(&bar0->gpio_int_reg);
3158 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3159 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3160 schedule_work(&nic->rst_timer_task);
3161 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3165 /* Check for ring full counter */
3166 if (nic->device_type & XFRAME_II_DEVICE) {
3167 val64 = readq(&bar0->ring_bump_counter1);
3168 for (i=0; i<4; i++) {
3169 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3170 cnt >>= 64 - ((i+1)*16);
3171 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3172 += cnt;
3175 val64 = readq(&bar0->ring_bump_counter2);
3176 for (i=0; i<4; i++) {
3177 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3178 cnt >>= 64 - ((i+1)*16);
3179 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3180 += cnt;
3184 /* Other type of interrupts are not being handled now, TODO */
3188 * wait_for_cmd_complete - waits for a command to complete.
3189 * @sp : private member of the device structure, which is a pointer to the
3190 * s2io_nic structure.
3191 * Description: Function that waits for a command to Write into RMAC
3192 * ADDR DATA registers to be completed and returns either success or
3193 * error depending on whether the command was complete or not.
3194 * Return value:
3195 * SUCCESS on success and FAILURE on failure.
3198 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3200 int ret = FAILURE, cnt = 0;
3201 u64 val64;
3203 while (TRUE) {
3204 val64 = readq(addr);
3205 if (!(val64 & busy_bit)) {
3206 ret = SUCCESS;
3207 break;
3210 if(in_interrupt())
3211 mdelay(50);
3212 else
3213 msleep(50);
3215 if (cnt++ > 10)
3216 break;
3218 return ret;
3221 * check_pci_device_id - Checks if the device id is supported
3222 * @id : device id
3223 * Description: Function to check if the pci device id is supported by driver.
3224 * Return value: Actual device id if supported else PCI_ANY_ID
3226 static u16 check_pci_device_id(u16 id)
3228 switch (id) {
3229 case PCI_DEVICE_ID_HERC_WIN:
3230 case PCI_DEVICE_ID_HERC_UNI:
3231 return XFRAME_II_DEVICE;
3232 case PCI_DEVICE_ID_S2IO_UNI:
3233 case PCI_DEVICE_ID_S2IO_WIN:
3234 return XFRAME_I_DEVICE;
3235 default:
3236 return PCI_ANY_ID;
3241 * s2io_reset - Resets the card.
3242 * @sp : private member of the device structure.
3243 * Description: Function to Reset the card. This function then also
3244 * restores the previously saved PCI configuration space registers as
3245 * the card reset also resets the configuration space.
3246 * Return value:
3247 * void.
3250 static void s2io_reset(struct s2io_nic * sp)
3252 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3253 u64 val64;
3254 u16 subid, pci_cmd;
3255 int i;
3256 u16 val16;
3257 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3258 __FUNCTION__, sp->dev->name);
3260 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3261 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3263 if (sp->device_type == XFRAME_II_DEVICE) {
3264 int ret;
3265 ret = pci_set_power_state(sp->pdev, 3);
3266 if (!ret)
3267 ret = pci_set_power_state(sp->pdev, 0);
3268 else {
3269 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3270 __FUNCTION__);
3271 goto old_way;
3273 msleep(20);
3274 goto new_way;
3276 old_way:
3277 val64 = SW_RESET_ALL;
3278 writeq(val64, &bar0->sw_reset);
3279 new_way:
3280 if (strstr(sp->product_name, "CX4")) {
3281 msleep(750);
3283 msleep(250);
3284 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3286 /* Restore the PCI state saved during initialization. */
3287 pci_restore_state(sp->pdev);
3288 pci_read_config_word(sp->pdev, 0x2, &val16);
3289 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3290 break;
3291 msleep(200);
3294 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3295 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3298 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3300 s2io_init_pci(sp);
3302 /* Set swapper to enable I/O register access */
3303 s2io_set_swapper(sp);
3305 /* Restore the MSIX table entries from local variables */
3306 restore_xmsi_data(sp);
3308 /* Clear certain PCI/PCI-X fields after reset */
3309 if (sp->device_type == XFRAME_II_DEVICE) {
3310 /* Clear "detected parity error" bit */
3311 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3313 /* Clearing PCIX Ecc status register */
3314 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3316 /* Clearing PCI_STATUS error reflected here */
3317 writeq(BIT(62), &bar0->txpic_int_reg);
3320 /* Reset device statistics maintained by OS */
3321 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3323 /* SXE-002: Configure link and activity LED to turn it off */
3324 subid = sp->pdev->subsystem_device;
3325 if (((subid & 0xFF) >= 0x07) &&
3326 (sp->device_type == XFRAME_I_DEVICE)) {
3327 val64 = readq(&bar0->gpio_control);
3328 val64 |= 0x0000800000000000ULL;
3329 writeq(val64, &bar0->gpio_control);
3330 val64 = 0x0411040400000000ULL;
3331 writeq(val64, (void __iomem *)bar0 + 0x2700);
3335 * Clear spurious ECC interrupts that would have occured on
3336 * XFRAME II cards after reset.
3338 if (sp->device_type == XFRAME_II_DEVICE) {
3339 val64 = readq(&bar0->pcc_err_reg);
3340 writeq(val64, &bar0->pcc_err_reg);
3343 sp->device_enabled_once = FALSE;
3347 * s2io_set_swapper - to set the swapper controle on the card
3348 * @sp : private member of the device structure,
3349 * pointer to the s2io_nic structure.
3350 * Description: Function to set the swapper control on the card
3351 * correctly depending on the 'endianness' of the system.
3352 * Return value:
3353 * SUCCESS on success and FAILURE on failure.
3356 static int s2io_set_swapper(struct s2io_nic * sp)
3358 struct net_device *dev = sp->dev;
3359 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3360 u64 val64, valt, valr;
3363 * Set proper endian settings and verify the same by reading
3364 * the PIF Feed-back register.
3367 val64 = readq(&bar0->pif_rd_swapper_fb);
3368 if (val64 != 0x0123456789ABCDEFULL) {
3369 int i = 0;
3370 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3371 0x8100008181000081ULL, /* FE=1, SE=0 */
3372 0x4200004242000042ULL, /* FE=0, SE=1 */
3373 0}; /* FE=0, SE=0 */
3375 while(i<4) {
3376 writeq(value[i], &bar0->swapper_ctrl);
3377 val64 = readq(&bar0->pif_rd_swapper_fb);
3378 if (val64 == 0x0123456789ABCDEFULL)
3379 break;
3380 i++;
3382 if (i == 4) {
3383 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3384 dev->name);
3385 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3386 (unsigned long long) val64);
3387 return FAILURE;
3389 valr = value[i];
3390 } else {
3391 valr = readq(&bar0->swapper_ctrl);
3394 valt = 0x0123456789ABCDEFULL;
3395 writeq(valt, &bar0->xmsi_address);
3396 val64 = readq(&bar0->xmsi_address);
3398 if(val64 != valt) {
3399 int i = 0;
3400 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3401 0x0081810000818100ULL, /* FE=1, SE=0 */
3402 0x0042420000424200ULL, /* FE=0, SE=1 */
3403 0}; /* FE=0, SE=0 */
3405 while(i<4) {
3406 writeq((value[i] | valr), &bar0->swapper_ctrl);
3407 writeq(valt, &bar0->xmsi_address);
3408 val64 = readq(&bar0->xmsi_address);
3409 if(val64 == valt)
3410 break;
3411 i++;
3413 if(i == 4) {
3414 unsigned long long x = val64;
3415 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3416 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3417 return FAILURE;
3420 val64 = readq(&bar0->swapper_ctrl);
3421 val64 &= 0xFFFF000000000000ULL;
3423 #ifdef __BIG_ENDIAN
3425 * The device by default set to a big endian format, so a
3426 * big endian driver need not set anything.
3428 val64 |= (SWAPPER_CTRL_TXP_FE |
3429 SWAPPER_CTRL_TXP_SE |
3430 SWAPPER_CTRL_TXD_R_FE |
3431 SWAPPER_CTRL_TXD_W_FE |
3432 SWAPPER_CTRL_TXF_R_FE |
3433 SWAPPER_CTRL_RXD_R_FE |
3434 SWAPPER_CTRL_RXD_W_FE |
3435 SWAPPER_CTRL_RXF_W_FE |
3436 SWAPPER_CTRL_XMSI_FE |
3437 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3438 if (sp->intr_type == INTA)
3439 val64 |= SWAPPER_CTRL_XMSI_SE;
3440 writeq(val64, &bar0->swapper_ctrl);
3441 #else
3443 * Initially we enable all bits to make it accessible by the
3444 * driver, then we selectively enable only those bits that
3445 * we want to set.
3447 val64 |= (SWAPPER_CTRL_TXP_FE |
3448 SWAPPER_CTRL_TXP_SE |
3449 SWAPPER_CTRL_TXD_R_FE |
3450 SWAPPER_CTRL_TXD_R_SE |
3451 SWAPPER_CTRL_TXD_W_FE |
3452 SWAPPER_CTRL_TXD_W_SE |
3453 SWAPPER_CTRL_TXF_R_FE |
3454 SWAPPER_CTRL_RXD_R_FE |
3455 SWAPPER_CTRL_RXD_R_SE |
3456 SWAPPER_CTRL_RXD_W_FE |
3457 SWAPPER_CTRL_RXD_W_SE |
3458 SWAPPER_CTRL_RXF_W_FE |
3459 SWAPPER_CTRL_XMSI_FE |
3460 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3461 if (sp->intr_type == INTA)
3462 val64 |= SWAPPER_CTRL_XMSI_SE;
3463 writeq(val64, &bar0->swapper_ctrl);
3464 #endif
3465 val64 = readq(&bar0->swapper_ctrl);
3468 * Verifying if endian settings are accurate by reading a
3469 * feedback register.
3471 val64 = readq(&bar0->pif_rd_swapper_fb);
3472 if (val64 != 0x0123456789ABCDEFULL) {
3473 /* Endian settings are incorrect, calls for another dekko. */
3474 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3475 dev->name);
3476 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3477 (unsigned long long) val64);
3478 return FAILURE;
3481 return SUCCESS;
3484 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3486 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3487 u64 val64;
3488 int ret = 0, cnt = 0;
3490 do {
3491 val64 = readq(&bar0->xmsi_access);
3492 if (!(val64 & BIT(15)))
3493 break;
3494 mdelay(1);
3495 cnt++;
3496 } while(cnt < 5);
3497 if (cnt == 5) {
3498 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3499 ret = 1;
3502 return ret;
3505 static void restore_xmsi_data(struct s2io_nic *nic)
3507 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3508 u64 val64;
3509 int i;
3511 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3512 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3513 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3514 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3515 writeq(val64, &bar0->xmsi_access);
3516 if (wait_for_msix_trans(nic, i)) {
3517 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3518 continue;
3523 static void store_xmsi_data(struct s2io_nic *nic)
3525 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3526 u64 val64, addr, data;
3527 int i;
3529 /* Store and display */
3530 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3531 val64 = (BIT(15) | vBIT(i, 26, 6));
3532 writeq(val64, &bar0->xmsi_access);
3533 if (wait_for_msix_trans(nic, i)) {
3534 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3535 continue;
3537 addr = readq(&bar0->xmsi_address);
3538 data = readq(&bar0->xmsi_data);
3539 if (addr && data) {
3540 nic->msix_info[i].addr = addr;
3541 nic->msix_info[i].data = data;
3546 int s2io_enable_msi(struct s2io_nic *nic)
3548 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3549 u16 msi_ctrl, msg_val;
3550 struct config_param *config = &nic->config;
3551 struct net_device *dev = nic->dev;
3552 u64 val64, tx_mat, rx_mat;
3553 int i, err;
3555 val64 = readq(&bar0->pic_control);
3556 val64 &= ~BIT(1);
3557 writeq(val64, &bar0->pic_control);
3559 err = pci_enable_msi(nic->pdev);
3560 if (err) {
3561 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3562 nic->dev->name);
3563 return err;
3567 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3568 * for interrupt handling.
3570 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3571 msg_val ^= 0x1;
3572 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3573 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3575 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3576 msi_ctrl |= 0x10;
3577 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3579 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3580 tx_mat = readq(&bar0->tx_mat0_n[0]);
3581 for (i=0; i<config->tx_fifo_num; i++) {
3582 tx_mat |= TX_MAT_SET(i, 1);
3584 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3586 rx_mat = readq(&bar0->rx_mat);
3587 for (i=0; i<config->rx_ring_num; i++) {
3588 rx_mat |= RX_MAT_SET(i, 1);
3590 writeq(rx_mat, &bar0->rx_mat);
3592 dev->irq = nic->pdev->irq;
3593 return 0;
3596 static int s2io_enable_msi_x(struct s2io_nic *nic)
3598 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3599 u64 tx_mat, rx_mat;
3600 u16 msi_control; /* Temp variable */
3601 int ret, i, j, msix_indx = 1;
3603 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3604 GFP_KERNEL);
3605 if (nic->entries == NULL) {
3606 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3607 return -ENOMEM;
3609 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3611 nic->s2io_entries =
3612 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3613 GFP_KERNEL);
3614 if (nic->s2io_entries == NULL) {
3615 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3616 kfree(nic->entries);
3617 return -ENOMEM;
3619 memset(nic->s2io_entries, 0,
3620 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3622 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3623 nic->entries[i].entry = i;
3624 nic->s2io_entries[i].entry = i;
3625 nic->s2io_entries[i].arg = NULL;
3626 nic->s2io_entries[i].in_use = 0;
3629 tx_mat = readq(&bar0->tx_mat0_n[0]);
3630 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3631 tx_mat |= TX_MAT_SET(i, msix_indx);
3632 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3633 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3634 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3636 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3638 if (!nic->config.bimodal) {
3639 rx_mat = readq(&bar0->rx_mat);
3640 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3641 rx_mat |= RX_MAT_SET(j, msix_indx);
3642 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3643 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3644 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3646 writeq(rx_mat, &bar0->rx_mat);
3647 } else {
3648 tx_mat = readq(&bar0->tx_mat0_n[7]);
3649 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3650 tx_mat |= TX_MAT_SET(i, msix_indx);
3651 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3652 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3653 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3655 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3658 nic->avail_msix_vectors = 0;
3659 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3660 /* We fail init if error or we get less vectors than min required */
3661 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3662 nic->avail_msix_vectors = ret;
3663 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3665 if (ret) {
3666 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3667 kfree(nic->entries);
3668 kfree(nic->s2io_entries);
3669 nic->entries = NULL;
3670 nic->s2io_entries = NULL;
3671 nic->avail_msix_vectors = 0;
3672 return -ENOMEM;
3674 if (!nic->avail_msix_vectors)
3675 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3678 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3679 * in the herc NIC. (Temp change, needs to be removed later)
3681 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3682 msi_control |= 0x1; /* Enable MSI */
3683 pci_write_config_word(nic->pdev, 0x42, msi_control);
3685 return 0;
3688 /* ********************************************************* *
3689 * Functions defined below concern the OS part of the driver *
3690 * ********************************************************* */
3693 * s2io_open - open entry point of the driver
3694 * @dev : pointer to the device structure.
3695 * Description:
3696 * This function is the open entry point of the driver. It mainly calls a
3697 * function to allocate Rx buffers and inserts them into the buffer
3698 * descriptors and then enables the Rx part of the NIC.
3699 * Return value:
3700 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3701 * file on failure.
3704 static int s2io_open(struct net_device *dev)
3706 struct s2io_nic *sp = dev->priv;
3707 int err = 0;
3710 * Make sure you have link off by default every time
3711 * Nic is initialized
3713 netif_carrier_off(dev);
3714 sp->last_link_state = 0;
3716 /* Initialize H/W and enable interrupts */
3717 err = s2io_card_up(sp);
3718 if (err) {
3719 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3720 dev->name);
3721 goto hw_init_failed;
3724 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3725 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3726 s2io_card_down(sp);
3727 err = -ENODEV;
3728 goto hw_init_failed;
3731 netif_start_queue(dev);
3732 return 0;
3734 hw_init_failed:
3735 if (sp->intr_type == MSI_X) {
3736 if (sp->entries)
3737 kfree(sp->entries);
3738 if (sp->s2io_entries)
3739 kfree(sp->s2io_entries);
3741 return err;
3745 * s2io_close -close entry point of the driver
3746 * @dev : device pointer.
3747 * Description:
3748 * This is the stop entry point of the driver. It needs to undo exactly
3749 * whatever was done by the open entry point,thus it's usually referred to
3750 * as the close function.Among other things this function mainly stops the
3751 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3752 * Return value:
3753 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3754 * file on failure.
3757 static int s2io_close(struct net_device *dev)
3759 struct s2io_nic *sp = dev->priv;
3761 netif_stop_queue(dev);
3762 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3763 s2io_card_down(sp);
3765 sp->device_close_flag = TRUE; /* Device is shut down. */
3766 return 0;
3770 * s2io_xmit - Tx entry point of te driver
3771 * @skb : the socket buffer containing the Tx data.
3772 * @dev : device pointer.
3773 * Description :
3774 * This function is the Tx entry point of the driver. S2IO NIC supports
3775 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3776 * NOTE: when device cant queue the pkt,just the trans_start variable will
3777 * not be upadted.
3778 * Return value:
3779 * 0 on success & 1 on failure.
3782 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3784 struct s2io_nic *sp = dev->priv;
3785 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3786 register u64 val64;
3787 struct TxD *txdp;
3788 struct TxFIFO_element __iomem *tx_fifo;
3789 unsigned long flags;
3790 u16 vlan_tag = 0;
3791 int vlan_priority = 0;
3792 struct mac_info *mac_control;
3793 struct config_param *config;
3794 int offload_type;
3796 mac_control = &sp->mac_control;
3797 config = &sp->config;
3799 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3800 spin_lock_irqsave(&sp->tx_lock, flags);
3801 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3802 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3803 dev->name);
3804 spin_unlock_irqrestore(&sp->tx_lock, flags);
3805 dev_kfree_skb(skb);
3806 return 0;
3809 queue = 0;
3811 /* Get Fifo number to Transmit based on vlan priority */
3812 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3813 vlan_tag = vlan_tx_tag_get(skb);
3814 vlan_priority = vlan_tag >> 13;
3815 queue = config->fifo_mapping[vlan_priority];
3818 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3819 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3820 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3821 list_virt_addr;
3823 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3824 /* Avoid "put" pointer going beyond "get" pointer */
3825 if (txdp->Host_Control ||
3826 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3827 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3828 netif_stop_queue(dev);
3829 dev_kfree_skb(skb);
3830 spin_unlock_irqrestore(&sp->tx_lock, flags);
3831 return 0;
3834 /* A buffer with no data will be dropped */
3835 if (!skb->len) {
3836 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3837 dev_kfree_skb(skb);
3838 spin_unlock_irqrestore(&sp->tx_lock, flags);
3839 return 0;
3842 offload_type = s2io_offload_type(skb);
3843 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3844 txdp->Control_1 |= TXD_TCP_LSO_EN;
3845 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3847 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3848 txdp->Control_2 |=
3849 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3850 TXD_TX_CKO_UDP_EN);
3852 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3853 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3854 txdp->Control_2 |= config->tx_intr_type;
3856 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3857 txdp->Control_2 |= TXD_VLAN_ENABLE;
3858 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3861 frg_len = skb->len - skb->data_len;
3862 if (offload_type == SKB_GSO_UDP) {
3863 int ufo_size;
3865 ufo_size = s2io_udp_mss(skb);
3866 ufo_size &= ~7;
3867 txdp->Control_1 |= TXD_UFO_EN;
3868 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3869 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3870 #ifdef __BIG_ENDIAN
3871 sp->ufo_in_band_v[put_off] =
3872 (u64)skb_shinfo(skb)->ip6_frag_id;
3873 #else
3874 sp->ufo_in_band_v[put_off] =
3875 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3876 #endif
3877 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3878 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3879 sp->ufo_in_band_v,
3880 sizeof(u64), PCI_DMA_TODEVICE);
3881 txdp++;
3884 txdp->Buffer_Pointer = pci_map_single
3885 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3886 txdp->Host_Control = (unsigned long) skb;
3887 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3888 if (offload_type == SKB_GSO_UDP)
3889 txdp->Control_1 |= TXD_UFO_EN;
3891 frg_cnt = skb_shinfo(skb)->nr_frags;
3892 /* For fragmented SKB. */
3893 for (i = 0; i < frg_cnt; i++) {
3894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3895 /* A '0' length fragment will be ignored */
3896 if (!frag->size)
3897 continue;
3898 txdp++;
3899 txdp->Buffer_Pointer = (u64) pci_map_page
3900 (sp->pdev, frag->page, frag->page_offset,
3901 frag->size, PCI_DMA_TODEVICE);
3902 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3903 if (offload_type == SKB_GSO_UDP)
3904 txdp->Control_1 |= TXD_UFO_EN;
3906 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3908 if (offload_type == SKB_GSO_UDP)
3909 frg_cnt++; /* as Txd0 was used for inband header */
3911 tx_fifo = mac_control->tx_FIFO_start[queue];
3912 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3913 writeq(val64, &tx_fifo->TxDL_Pointer);
3915 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3916 TX_FIFO_LAST_LIST);
3917 if (offload_type)
3918 val64 |= TX_FIFO_SPECIAL_FUNC;
3920 writeq(val64, &tx_fifo->List_Control);
3922 mmiowb();
3924 put_off++;
3925 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3926 put_off = 0;
3927 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3929 /* Avoid "put" pointer going beyond "get" pointer */
3930 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3931 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3932 DBG_PRINT(TX_DBG,
3933 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3934 put_off, get_off);
3935 netif_stop_queue(dev);
3938 dev->trans_start = jiffies;
3939 spin_unlock_irqrestore(&sp->tx_lock, flags);
3941 return 0;
3944 static void
3945 s2io_alarm_handle(unsigned long data)
3947 struct s2io_nic *sp = (struct s2io_nic *)data;
3949 alarm_intr_handler(sp);
3950 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3953 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
3955 int rxb_size, level;
3957 if (!sp->lro) {
3958 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3959 level = rx_buffer_level(sp, rxb_size, rng_n);
3961 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3962 int ret;
3963 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3964 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3965 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3966 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3967 __FUNCTION__);
3968 clear_bit(0, (&sp->tasklet_status));
3969 return -1;
3971 clear_bit(0, (&sp->tasklet_status));
3972 } else if (level == LOW)
3973 tasklet_schedule(&sp->task);
3975 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3976 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3977 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3979 return 0;
3982 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
3984 struct net_device *dev = (struct net_device *) dev_id;
3985 struct s2io_nic *sp = dev->priv;
3986 int i;
3987 struct mac_info *mac_control;
3988 struct config_param *config;
3990 atomic_inc(&sp->isr_cnt);
3991 mac_control = &sp->mac_control;
3992 config = &sp->config;
3993 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3995 /* If Intr is because of Rx Traffic */
3996 for (i = 0; i < config->rx_ring_num; i++)
3997 rx_intr_handler(&mac_control->rings[i]);
3999 /* If Intr is because of Tx Traffic */
4000 for (i = 0; i < config->tx_fifo_num; i++)
4001 tx_intr_handler(&mac_control->fifos[i]);
4004 * If the Rx buffer count is below the panic threshold then
4005 * reallocate the buffers from the interrupt handler itself,
4006 * else schedule a tasklet to reallocate the buffers.
4008 for (i = 0; i < config->rx_ring_num; i++)
4009 s2io_chk_rx_buffers(sp, i);
4011 atomic_dec(&sp->isr_cnt);
4012 return IRQ_HANDLED;
4015 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4017 struct ring_info *ring = (struct ring_info *)dev_id;
4018 struct s2io_nic *sp = ring->nic;
4020 atomic_inc(&sp->isr_cnt);
4022 rx_intr_handler(ring);
4023 s2io_chk_rx_buffers(sp, ring->ring_no);
4025 atomic_dec(&sp->isr_cnt);
4026 return IRQ_HANDLED;
4029 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4031 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4032 struct s2io_nic *sp = fifo->nic;
4034 atomic_inc(&sp->isr_cnt);
4035 tx_intr_handler(fifo);
4036 atomic_dec(&sp->isr_cnt);
4037 return IRQ_HANDLED;
4039 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4041 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4042 u64 val64;
4044 val64 = readq(&bar0->pic_int_status);
4045 if (val64 & PIC_INT_GPIO) {
4046 val64 = readq(&bar0->gpio_int_reg);
4047 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4048 (val64 & GPIO_INT_REG_LINK_UP)) {
4050 * This is unstable state so clear both up/down
4051 * interrupt and adapter to re-evaluate the link state.
4053 val64 |= GPIO_INT_REG_LINK_DOWN;
4054 val64 |= GPIO_INT_REG_LINK_UP;
4055 writeq(val64, &bar0->gpio_int_reg);
4056 val64 = readq(&bar0->gpio_int_mask);
4057 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4058 GPIO_INT_MASK_LINK_DOWN);
4059 writeq(val64, &bar0->gpio_int_mask);
4061 else if (val64 & GPIO_INT_REG_LINK_UP) {
4062 val64 = readq(&bar0->adapter_status);
4063 /* Enable Adapter */
4064 val64 = readq(&bar0->adapter_control);
4065 val64 |= ADAPTER_CNTL_EN;
4066 writeq(val64, &bar0->adapter_control);
4067 val64 |= ADAPTER_LED_ON;
4068 writeq(val64, &bar0->adapter_control);
4069 if (!sp->device_enabled_once)
4070 sp->device_enabled_once = 1;
4072 s2io_link(sp, LINK_UP);
4074 * unmask link down interrupt and mask link-up
4075 * intr
4077 val64 = readq(&bar0->gpio_int_mask);
4078 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4079 val64 |= GPIO_INT_MASK_LINK_UP;
4080 writeq(val64, &bar0->gpio_int_mask);
4082 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4083 val64 = readq(&bar0->adapter_status);
4084 s2io_link(sp, LINK_DOWN);
4085 /* Link is down so unmaks link up interrupt */
4086 val64 = readq(&bar0->gpio_int_mask);
4087 val64 &= ~GPIO_INT_MASK_LINK_UP;
4088 val64 |= GPIO_INT_MASK_LINK_DOWN;
4089 writeq(val64, &bar0->gpio_int_mask);
4092 val64 = readq(&bar0->gpio_int_mask);
4096 * s2io_isr - ISR handler of the device .
4097 * @irq: the irq of the device.
4098 * @dev_id: a void pointer to the dev structure of the NIC.
4099 * Description: This function is the ISR handler of the device. It
4100 * identifies the reason for the interrupt and calls the relevant
4101 * service routines. As a contongency measure, this ISR allocates the
4102 * recv buffers, if their numbers are below the panic value which is
4103 * presently set to 25% of the original number of rcv buffers allocated.
4104 * Return value:
4105 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4106 * IRQ_NONE: will be returned if interrupt is not from our device
4108 static irqreturn_t s2io_isr(int irq, void *dev_id)
4110 struct net_device *dev = (struct net_device *) dev_id;
4111 struct s2io_nic *sp = dev->priv;
4112 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4113 int i;
4114 u64 reason = 0;
4115 struct mac_info *mac_control;
4116 struct config_param *config;
4118 atomic_inc(&sp->isr_cnt);
4119 mac_control = &sp->mac_control;
4120 config = &sp->config;
4123 * Identify the cause for interrupt and call the appropriate
4124 * interrupt handler. Causes for the interrupt could be;
4125 * 1. Rx of packet.
4126 * 2. Tx complete.
4127 * 3. Link down.
4128 * 4. Error in any functional blocks of the NIC.
4130 reason = readq(&bar0->general_int_status);
4132 if (!reason) {
4133 /* The interrupt was not raised by us. */
4134 atomic_dec(&sp->isr_cnt);
4135 return IRQ_NONE;
4137 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4138 /* Disable device and get out */
4139 atomic_dec(&sp->isr_cnt);
4140 return IRQ_NONE;
4143 if (napi) {
4144 if (reason & GEN_INTR_RXTRAFFIC) {
4145 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4146 __netif_rx_schedule(dev);
4147 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4149 else
4150 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4152 } else {
4154 * Rx handler is called by default, without checking for the
4155 * cause of interrupt.
4156 * rx_traffic_int reg is an R1 register, writing all 1's
4157 * will ensure that the actual interrupt causing bit get's
4158 * cleared and hence a read can be avoided.
4160 if (reason & GEN_INTR_RXTRAFFIC)
4161 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4163 for (i = 0; i < config->rx_ring_num; i++) {
4164 rx_intr_handler(&mac_control->rings[i]);
4169 * tx_traffic_int reg is an R1 register, writing all 1's
4170 * will ensure that the actual interrupt causing bit get's
4171 * cleared and hence a read can be avoided.
4173 if (reason & GEN_INTR_TXTRAFFIC)
4174 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4176 for (i = 0; i < config->tx_fifo_num; i++)
4177 tx_intr_handler(&mac_control->fifos[i]);
4179 if (reason & GEN_INTR_TXPIC)
4180 s2io_txpic_intr_handle(sp);
4182 * If the Rx buffer count is below the panic threshold then
4183 * reallocate the buffers from the interrupt handler itself,
4184 * else schedule a tasklet to reallocate the buffers.
4186 if (!napi) {
4187 for (i = 0; i < config->rx_ring_num; i++)
4188 s2io_chk_rx_buffers(sp, i);
4191 writeq(0, &bar0->general_int_mask);
4192 readl(&bar0->general_int_status);
4194 atomic_dec(&sp->isr_cnt);
4195 return IRQ_HANDLED;
4199 * s2io_updt_stats -
4201 static void s2io_updt_stats(struct s2io_nic *sp)
4203 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4204 u64 val64;
4205 int cnt = 0;
4207 if (atomic_read(&sp->card_state) == CARD_UP) {
4208 /* Apprx 30us on a 133 MHz bus */
4209 val64 = SET_UPDT_CLICKS(10) |
4210 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4211 writeq(val64, &bar0->stat_cfg);
4212 do {
4213 udelay(100);
4214 val64 = readq(&bar0->stat_cfg);
4215 if (!(val64 & BIT(0)))
4216 break;
4217 cnt++;
4218 if (cnt == 5)
4219 break; /* Updt failed */
4220 } while(1);
4221 } else {
4222 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
4227 * s2io_get_stats - Updates the device statistics structure.
4228 * @dev : pointer to the device structure.
4229 * Description:
4230 * This function updates the device statistics structure in the s2io_nic
4231 * structure and returns a pointer to the same.
4232 * Return value:
4233 * pointer to the updated net_device_stats structure.
4236 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4238 struct s2io_nic *sp = dev->priv;
4239 struct mac_info *mac_control;
4240 struct config_param *config;
4243 mac_control = &sp->mac_control;
4244 config = &sp->config;
4246 /* Configure Stats for immediate updt */
4247 s2io_updt_stats(sp);
4249 sp->stats.tx_packets =
4250 le32_to_cpu(mac_control->stats_info->tmac_frms);
4251 sp->stats.tx_errors =
4252 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4253 sp->stats.rx_errors =
4254 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4255 sp->stats.multicast =
4256 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4257 sp->stats.rx_length_errors =
4258 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4260 return (&sp->stats);
4264 * s2io_set_multicast - entry point for multicast address enable/disable.
4265 * @dev : pointer to the device structure
4266 * Description:
4267 * This function is a driver entry point which gets called by the kernel
4268 * whenever multicast addresses must be enabled/disabled. This also gets
4269 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4270 * determine, if multicast address must be enabled or if promiscuous mode
4271 * is to be disabled etc.
4272 * Return value:
4273 * void.
4276 static void s2io_set_multicast(struct net_device *dev)
4278 int i, j, prev_cnt;
4279 struct dev_mc_list *mclist;
4280 struct s2io_nic *sp = dev->priv;
4281 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4282 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4283 0xfeffffffffffULL;
4284 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4285 void __iomem *add;
4287 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4288 /* Enable all Multicast addresses */
4289 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4290 &bar0->rmac_addr_data0_mem);
4291 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4292 &bar0->rmac_addr_data1_mem);
4293 val64 = RMAC_ADDR_CMD_MEM_WE |
4294 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4295 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4296 writeq(val64, &bar0->rmac_addr_cmd_mem);
4297 /* Wait till command completes */
4298 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4299 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4301 sp->m_cast_flg = 1;
4302 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4303 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4304 /* Disable all Multicast addresses */
4305 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4306 &bar0->rmac_addr_data0_mem);
4307 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4308 &bar0->rmac_addr_data1_mem);
4309 val64 = RMAC_ADDR_CMD_MEM_WE |
4310 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4311 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4312 writeq(val64, &bar0->rmac_addr_cmd_mem);
4313 /* Wait till command completes */
4314 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4315 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4317 sp->m_cast_flg = 0;
4318 sp->all_multi_pos = 0;
4321 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4322 /* Put the NIC into promiscuous mode */
4323 add = &bar0->mac_cfg;
4324 val64 = readq(&bar0->mac_cfg);
4325 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4327 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4328 writel((u32) val64, add);
4329 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4330 writel((u32) (val64 >> 32), (add + 4));
4332 val64 = readq(&bar0->mac_cfg);
4333 sp->promisc_flg = 1;
4334 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4335 dev->name);
4336 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4337 /* Remove the NIC from promiscuous mode */
4338 add = &bar0->mac_cfg;
4339 val64 = readq(&bar0->mac_cfg);
4340 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4342 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4343 writel((u32) val64, add);
4344 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4345 writel((u32) (val64 >> 32), (add + 4));
4347 val64 = readq(&bar0->mac_cfg);
4348 sp->promisc_flg = 0;
4349 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4350 dev->name);
4353 /* Update individual M_CAST address list */
4354 if ((!sp->m_cast_flg) && dev->mc_count) {
4355 if (dev->mc_count >
4356 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4357 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4358 dev->name);
4359 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4360 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4361 return;
4364 prev_cnt = sp->mc_addr_count;
4365 sp->mc_addr_count = dev->mc_count;
4367 /* Clear out the previous list of Mc in the H/W. */
4368 for (i = 0; i < prev_cnt; i++) {
4369 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4370 &bar0->rmac_addr_data0_mem);
4371 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4372 &bar0->rmac_addr_data1_mem);
4373 val64 = RMAC_ADDR_CMD_MEM_WE |
4374 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4375 RMAC_ADDR_CMD_MEM_OFFSET
4376 (MAC_MC_ADDR_START_OFFSET + i);
4377 writeq(val64, &bar0->rmac_addr_cmd_mem);
4379 /* Wait for command completes */
4380 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4381 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4382 DBG_PRINT(ERR_DBG, "%s: Adding ",
4383 dev->name);
4384 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4385 return;
4389 /* Create the new Rx filter list and update the same in H/W. */
4390 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4391 i++, mclist = mclist->next) {
4392 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4393 ETH_ALEN);
4394 mac_addr = 0;
4395 for (j = 0; j < ETH_ALEN; j++) {
4396 mac_addr |= mclist->dmi_addr[j];
4397 mac_addr <<= 8;
4399 mac_addr >>= 8;
4400 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4401 &bar0->rmac_addr_data0_mem);
4402 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4403 &bar0->rmac_addr_data1_mem);
4404 val64 = RMAC_ADDR_CMD_MEM_WE |
4405 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4406 RMAC_ADDR_CMD_MEM_OFFSET
4407 (i + MAC_MC_ADDR_START_OFFSET);
4408 writeq(val64, &bar0->rmac_addr_cmd_mem);
4410 /* Wait for command completes */
4411 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4412 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4413 DBG_PRINT(ERR_DBG, "%s: Adding ",
4414 dev->name);
4415 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4416 return;
4423 * s2io_set_mac_addr - Programs the Xframe mac address
4424 * @dev : pointer to the device structure.
4425 * @addr: a uchar pointer to the new mac address which is to be set.
4426 * Description : This procedure will program the Xframe to receive
4427 * frames with new Mac Address
4428 * Return value: SUCCESS on success and an appropriate (-)ve integer
4429 * as defined in errno.h file on failure.
4432 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4434 struct s2io_nic *sp = dev->priv;
4435 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4436 register u64 val64, mac_addr = 0;
4437 int i;
4440 * Set the new MAC address as the new unicast filter and reflect this
4441 * change on the device address registered with the OS. It will be
4442 * at offset 0.
4444 for (i = 0; i < ETH_ALEN; i++) {
4445 mac_addr <<= 8;
4446 mac_addr |= addr[i];
4449 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4450 &bar0->rmac_addr_data0_mem);
4452 val64 =
4453 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4454 RMAC_ADDR_CMD_MEM_OFFSET(0);
4455 writeq(val64, &bar0->rmac_addr_cmd_mem);
4456 /* Wait till command completes */
4457 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4458 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4459 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4460 return FAILURE;
4463 return SUCCESS;
4467 * s2io_ethtool_sset - Sets different link parameters.
4468 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4469 * @info: pointer to the structure with parameters given by ethtool to set
4470 * link information.
4471 * Description:
4472 * The function sets different link parameters provided by the user onto
4473 * the NIC.
4474 * Return value:
4475 * 0 on success.
4478 static int s2io_ethtool_sset(struct net_device *dev,
4479 struct ethtool_cmd *info)
4481 struct s2io_nic *sp = dev->priv;
4482 if ((info->autoneg == AUTONEG_ENABLE) ||
4483 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4484 return -EINVAL;
4485 else {
4486 s2io_close(sp->dev);
4487 s2io_open(sp->dev);
4490 return 0;
4494 * s2io_ethtol_gset - Return link specific information.
4495 * @sp : private member of the device structure, pointer to the
4496 * s2io_nic structure.
4497 * @info : pointer to the structure with parameters given by ethtool
4498 * to return link information.
4499 * Description:
4500 * Returns link specific information like speed, duplex etc.. to ethtool.
4501 * Return value :
4502 * return 0 on success.
4505 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4507 struct s2io_nic *sp = dev->priv;
4508 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4509 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4510 info->port = PORT_FIBRE;
4511 /* info->transceiver?? TODO */
4513 if (netif_carrier_ok(sp->dev)) {
4514 info->speed = 10000;
4515 info->duplex = DUPLEX_FULL;
4516 } else {
4517 info->speed = -1;
4518 info->duplex = -1;
4521 info->autoneg = AUTONEG_DISABLE;
4522 return 0;
4526 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4527 * @sp : private member of the device structure, which is a pointer to the
4528 * s2io_nic structure.
4529 * @info : pointer to the structure with parameters given by ethtool to
4530 * return driver information.
4531 * Description:
4532 * Returns driver specefic information like name, version etc.. to ethtool.
4533 * Return value:
4534 * void
4537 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4538 struct ethtool_drvinfo *info)
4540 struct s2io_nic *sp = dev->priv;
4542 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4543 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4544 strncpy(info->fw_version, "", sizeof(info->fw_version));
4545 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4546 info->regdump_len = XENA_REG_SPACE;
4547 info->eedump_len = XENA_EEPROM_SPACE;
4548 info->testinfo_len = S2IO_TEST_LEN;
4549 info->n_stats = S2IO_STAT_LEN;
4553 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4554 * @sp: private member of the device structure, which is a pointer to the
4555 * s2io_nic structure.
4556 * @regs : pointer to the structure with parameters given by ethtool for
4557 * dumping the registers.
4558 * @reg_space: The input argumnet into which all the registers are dumped.
4559 * Description:
4560 * Dumps the entire register space of xFrame NIC into the user given
4561 * buffer area.
4562 * Return value :
4563 * void .
4566 static void s2io_ethtool_gregs(struct net_device *dev,
4567 struct ethtool_regs *regs, void *space)
4569 int i;
4570 u64 reg;
4571 u8 *reg_space = (u8 *) space;
4572 struct s2io_nic *sp = dev->priv;
4574 regs->len = XENA_REG_SPACE;
4575 regs->version = sp->pdev->subsystem_device;
4577 for (i = 0; i < regs->len; i += 8) {
4578 reg = readq(sp->bar0 + i);
4579 memcpy((reg_space + i), &reg, 8);
4584 * s2io_phy_id - timer function that alternates adapter LED.
4585 * @data : address of the private member of the device structure, which
4586 * is a pointer to the s2io_nic structure, provided as an u32.
4587 * Description: This is actually the timer function that alternates the
4588 * adapter LED bit of the adapter control bit to set/reset every time on
4589 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4590 * once every second.
4592 static void s2io_phy_id(unsigned long data)
4594 struct s2io_nic *sp = (struct s2io_nic *) data;
4595 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4596 u64 val64 = 0;
4597 u16 subid;
4599 subid = sp->pdev->subsystem_device;
4600 if ((sp->device_type == XFRAME_II_DEVICE) ||
4601 ((subid & 0xFF) >= 0x07)) {
4602 val64 = readq(&bar0->gpio_control);
4603 val64 ^= GPIO_CTRL_GPIO_0;
4604 writeq(val64, &bar0->gpio_control);
4605 } else {
4606 val64 = readq(&bar0->adapter_control);
4607 val64 ^= ADAPTER_LED_ON;
4608 writeq(val64, &bar0->adapter_control);
4611 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4615 * s2io_ethtool_idnic - To physically identify the nic on the system.
4616 * @sp : private member of the device structure, which is a pointer to the
4617 * s2io_nic structure.
4618 * @id : pointer to the structure with identification parameters given by
4619 * ethtool.
4620 * Description: Used to physically identify the NIC on the system.
4621 * The Link LED will blink for a time specified by the user for
4622 * identification.
4623 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4624 * identification is possible only if it's link is up.
4625 * Return value:
4626 * int , returns 0 on success
4629 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4631 u64 val64 = 0, last_gpio_ctrl_val;
4632 struct s2io_nic *sp = dev->priv;
4633 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4634 u16 subid;
4636 subid = sp->pdev->subsystem_device;
4637 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4638 if ((sp->device_type == XFRAME_I_DEVICE) &&
4639 ((subid & 0xFF) < 0x07)) {
4640 val64 = readq(&bar0->adapter_control);
4641 if (!(val64 & ADAPTER_CNTL_EN)) {
4642 printk(KERN_ERR
4643 "Adapter Link down, cannot blink LED\n");
4644 return -EFAULT;
4647 if (sp->id_timer.function == NULL) {
4648 init_timer(&sp->id_timer);
4649 sp->id_timer.function = s2io_phy_id;
4650 sp->id_timer.data = (unsigned long) sp;
4652 mod_timer(&sp->id_timer, jiffies);
4653 if (data)
4654 msleep_interruptible(data * HZ);
4655 else
4656 msleep_interruptible(MAX_FLICKER_TIME);
4657 del_timer_sync(&sp->id_timer);
4659 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4660 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4661 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4664 return 0;
4668 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4669 * @sp : private member of the device structure, which is a pointer to the
4670 * s2io_nic structure.
4671 * @ep : pointer to the structure with pause parameters given by ethtool.
4672 * Description:
4673 * Returns the Pause frame generation and reception capability of the NIC.
4674 * Return value:
4675 * void
4677 static void s2io_ethtool_getpause_data(struct net_device *dev,
4678 struct ethtool_pauseparam *ep)
4680 u64 val64;
4681 struct s2io_nic *sp = dev->priv;
4682 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4684 val64 = readq(&bar0->rmac_pause_cfg);
4685 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4686 ep->tx_pause = TRUE;
4687 if (val64 & RMAC_PAUSE_RX_ENABLE)
4688 ep->rx_pause = TRUE;
4689 ep->autoneg = FALSE;
4693 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4694 * @sp : private member of the device structure, which is a pointer to the
4695 * s2io_nic structure.
4696 * @ep : pointer to the structure with pause parameters given by ethtool.
4697 * Description:
4698 * It can be used to set or reset Pause frame generation or reception
4699 * support of the NIC.
4700 * Return value:
4701 * int, returns 0 on Success
4704 static int s2io_ethtool_setpause_data(struct net_device *dev,
4705 struct ethtool_pauseparam *ep)
4707 u64 val64;
4708 struct s2io_nic *sp = dev->priv;
4709 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4711 val64 = readq(&bar0->rmac_pause_cfg);
4712 if (ep->tx_pause)
4713 val64 |= RMAC_PAUSE_GEN_ENABLE;
4714 else
4715 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4716 if (ep->rx_pause)
4717 val64 |= RMAC_PAUSE_RX_ENABLE;
4718 else
4719 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4720 writeq(val64, &bar0->rmac_pause_cfg);
4721 return 0;
4725 * read_eeprom - reads 4 bytes of data from user given offset.
4726 * @sp : private member of the device structure, which is a pointer to the
4727 * s2io_nic structure.
4728 * @off : offset at which the data must be written
4729 * @data : Its an output parameter where the data read at the given
4730 * offset is stored.
4731 * Description:
4732 * Will read 4 bytes of data from the user given offset and return the
4733 * read data.
4734 * NOTE: Will allow to read only part of the EEPROM visible through the
4735 * I2C bus.
4736 * Return value:
4737 * -1 on failure and 0 on success.
4740 #define S2IO_DEV_ID 5
4741 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4743 int ret = -1;
4744 u32 exit_cnt = 0;
4745 u64 val64;
4746 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4748 if (sp->device_type == XFRAME_I_DEVICE) {
4749 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4750 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4751 I2C_CONTROL_CNTL_START;
4752 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4754 while (exit_cnt < 5) {
4755 val64 = readq(&bar0->i2c_control);
4756 if (I2C_CONTROL_CNTL_END(val64)) {
4757 *data = I2C_CONTROL_GET_DATA(val64);
4758 ret = 0;
4759 break;
4761 msleep(50);
4762 exit_cnt++;
4766 if (sp->device_type == XFRAME_II_DEVICE) {
4767 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4768 SPI_CONTROL_BYTECNT(0x3) |
4769 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4770 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4771 val64 |= SPI_CONTROL_REQ;
4772 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4773 while (exit_cnt < 5) {
4774 val64 = readq(&bar0->spi_control);
4775 if (val64 & SPI_CONTROL_NACK) {
4776 ret = 1;
4777 break;
4778 } else if (val64 & SPI_CONTROL_DONE) {
4779 *data = readq(&bar0->spi_data);
4780 *data &= 0xffffff;
4781 ret = 0;
4782 break;
4784 msleep(50);
4785 exit_cnt++;
4788 return ret;
4792 * write_eeprom - actually writes the relevant part of the data value.
4793 * @sp : private member of the device structure, which is a pointer to the
4794 * s2io_nic structure.
4795 * @off : offset at which the data must be written
4796 * @data : The data that is to be written
4797 * @cnt : Number of bytes of the data that are actually to be written into
4798 * the Eeprom. (max of 3)
4799 * Description:
4800 * Actually writes the relevant part of the data value into the Eeprom
4801 * through the I2C bus.
4802 * Return value:
4803 * 0 on success, -1 on failure.
4806 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4808 int exit_cnt = 0, ret = -1;
4809 u64 val64;
4810 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4812 if (sp->device_type == XFRAME_I_DEVICE) {
4813 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4814 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4815 I2C_CONTROL_CNTL_START;
4816 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4818 while (exit_cnt < 5) {
4819 val64 = readq(&bar0->i2c_control);
4820 if (I2C_CONTROL_CNTL_END(val64)) {
4821 if (!(val64 & I2C_CONTROL_NACK))
4822 ret = 0;
4823 break;
4825 msleep(50);
4826 exit_cnt++;
4830 if (sp->device_type == XFRAME_II_DEVICE) {
4831 int write_cnt = (cnt == 8) ? 0 : cnt;
4832 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4834 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4835 SPI_CONTROL_BYTECNT(write_cnt) |
4836 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4837 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4838 val64 |= SPI_CONTROL_REQ;
4839 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4840 while (exit_cnt < 5) {
4841 val64 = readq(&bar0->spi_control);
4842 if (val64 & SPI_CONTROL_NACK) {
4843 ret = 1;
4844 break;
4845 } else if (val64 & SPI_CONTROL_DONE) {
4846 ret = 0;
4847 break;
4849 msleep(50);
4850 exit_cnt++;
4853 return ret;
4855 static void s2io_vpd_read(struct s2io_nic *nic)
4857 u8 *vpd_data;
4858 u8 data;
4859 int i=0, cnt, fail = 0;
4860 int vpd_addr = 0x80;
4862 if (nic->device_type == XFRAME_II_DEVICE) {
4863 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4864 vpd_addr = 0x80;
4866 else {
4867 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4868 vpd_addr = 0x50;
4870 strcpy(nic->serial_num, "NOT AVAILABLE");
4872 vpd_data = kmalloc(256, GFP_KERNEL);
4873 if (!vpd_data)
4874 return;
4876 for (i = 0; i < 256; i +=4 ) {
4877 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4878 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4879 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4880 for (cnt = 0; cnt <5; cnt++) {
4881 msleep(2);
4882 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4883 if (data == 0x80)
4884 break;
4886 if (cnt >= 5) {
4887 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4888 fail = 1;
4889 break;
4891 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4892 (u32 *)&vpd_data[i]);
4895 if(!fail) {
4896 /* read serial number of adapter */
4897 for (cnt = 0; cnt < 256; cnt++) {
4898 if ((vpd_data[cnt] == 'S') &&
4899 (vpd_data[cnt+1] == 'N') &&
4900 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4901 memset(nic->serial_num, 0, VPD_STRING_LEN);
4902 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4903 vpd_data[cnt+2]);
4904 break;
4909 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4910 memset(nic->product_name, 0, vpd_data[1]);
4911 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4913 kfree(vpd_data);
4917 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4918 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4919 * @eeprom : pointer to the user level structure provided by ethtool,
4920 * containing all relevant information.
4921 * @data_buf : user defined value to be written into Eeprom.
4922 * Description: Reads the values stored in the Eeprom at given offset
4923 * for a given length. Stores these values int the input argument data
4924 * buffer 'data_buf' and returns these to the caller (ethtool.)
4925 * Return value:
4926 * int 0 on success
4929 static int s2io_ethtool_geeprom(struct net_device *dev,
4930 struct ethtool_eeprom *eeprom, u8 * data_buf)
4932 u32 i, valid;
4933 u64 data;
4934 struct s2io_nic *sp = dev->priv;
4936 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4938 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4939 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4941 for (i = 0; i < eeprom->len; i += 4) {
4942 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4943 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4944 return -EFAULT;
4946 valid = INV(data);
4947 memcpy((data_buf + i), &valid, 4);
4949 return 0;
4953 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4954 * @sp : private member of the device structure, which is a pointer to the
4955 * s2io_nic structure.
4956 * @eeprom : pointer to the user level structure provided by ethtool,
4957 * containing all relevant information.
4958 * @data_buf ; user defined value to be written into Eeprom.
4959 * Description:
4960 * Tries to write the user provided value in the Eeprom, at the offset
4961 * given by the user.
4962 * Return value:
4963 * 0 on success, -EFAULT on failure.
4966 static int s2io_ethtool_seeprom(struct net_device *dev,
4967 struct ethtool_eeprom *eeprom,
4968 u8 * data_buf)
4970 int len = eeprom->len, cnt = 0;
4971 u64 valid = 0, data;
4972 struct s2io_nic *sp = dev->priv;
4974 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4975 DBG_PRINT(ERR_DBG,
4976 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4977 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4978 eeprom->magic);
4979 return -EFAULT;
4982 while (len) {
4983 data = (u32) data_buf[cnt] & 0x000000FF;
4984 if (data) {
4985 valid = (u32) (data << 24);
4986 } else
4987 valid = data;
4989 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4990 DBG_PRINT(ERR_DBG,
4991 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4992 DBG_PRINT(ERR_DBG,
4993 "write into the specified offset\n");
4994 return -EFAULT;
4996 cnt++;
4997 len--;
5000 return 0;
5004 * s2io_register_test - reads and writes into all clock domains.
5005 * @sp : private member of the device structure, which is a pointer to the
5006 * s2io_nic structure.
5007 * @data : variable that returns the result of each of the test conducted b
5008 * by the driver.
5009 * Description:
5010 * Read and write into all clock domains. The NIC has 3 clock domains,
5011 * see that registers in all the three regions are accessible.
5012 * Return value:
5013 * 0 on success.
5016 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5018 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5019 u64 val64 = 0, exp_val;
5020 int fail = 0;
5022 val64 = readq(&bar0->pif_rd_swapper_fb);
5023 if (val64 != 0x123456789abcdefULL) {
5024 fail = 1;
5025 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5028 val64 = readq(&bar0->rmac_pause_cfg);
5029 if (val64 != 0xc000ffff00000000ULL) {
5030 fail = 1;
5031 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5034 val64 = readq(&bar0->rx_queue_cfg);
5035 if (sp->device_type == XFRAME_II_DEVICE)
5036 exp_val = 0x0404040404040404ULL;
5037 else
5038 exp_val = 0x0808080808080808ULL;
5039 if (val64 != exp_val) {
5040 fail = 1;
5041 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5044 val64 = readq(&bar0->xgxs_efifo_cfg);
5045 if (val64 != 0x000000001923141EULL) {
5046 fail = 1;
5047 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5050 val64 = 0x5A5A5A5A5A5A5A5AULL;
5051 writeq(val64, &bar0->xmsi_data);
5052 val64 = readq(&bar0->xmsi_data);
5053 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5054 fail = 1;
5055 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5058 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5059 writeq(val64, &bar0->xmsi_data);
5060 val64 = readq(&bar0->xmsi_data);
5061 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5062 fail = 1;
5063 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5066 *data = fail;
5067 return fail;
5071 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5072 * @sp : private member of the device structure, which is a pointer to the
5073 * s2io_nic structure.
5074 * @data:variable that returns the result of each of the test conducted by
5075 * the driver.
5076 * Description:
5077 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5078 * register.
5079 * Return value:
5080 * 0 on success.
5083 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5085 int fail = 0;
5086 u64 ret_data, org_4F0, org_7F0;
5087 u8 saved_4F0 = 0, saved_7F0 = 0;
5088 struct net_device *dev = sp->dev;
5090 /* Test Write Error at offset 0 */
5091 /* Note that SPI interface allows write access to all areas
5092 * of EEPROM. Hence doing all negative testing only for Xframe I.
5094 if (sp->device_type == XFRAME_I_DEVICE)
5095 if (!write_eeprom(sp, 0, 0, 3))
5096 fail = 1;
5098 /* Save current values at offsets 0x4F0 and 0x7F0 */
5099 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5100 saved_4F0 = 1;
5101 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5102 saved_7F0 = 1;
5104 /* Test Write at offset 4f0 */
5105 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5106 fail = 1;
5107 if (read_eeprom(sp, 0x4F0, &ret_data))
5108 fail = 1;
5110 if (ret_data != 0x012345) {
5111 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5112 "Data written %llx Data read %llx\n",
5113 dev->name, (unsigned long long)0x12345,
5114 (unsigned long long)ret_data);
5115 fail = 1;
5118 /* Reset the EEPROM data go FFFF */
5119 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5121 /* Test Write Request Error at offset 0x7c */
5122 if (sp->device_type == XFRAME_I_DEVICE)
5123 if (!write_eeprom(sp, 0x07C, 0, 3))
5124 fail = 1;
5126 /* Test Write Request at offset 0x7f0 */
5127 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5128 fail = 1;
5129 if (read_eeprom(sp, 0x7F0, &ret_data))
5130 fail = 1;
5132 if (ret_data != 0x012345) {
5133 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5134 "Data written %llx Data read %llx\n",
5135 dev->name, (unsigned long long)0x12345,
5136 (unsigned long long)ret_data);
5137 fail = 1;
5140 /* Reset the EEPROM data go FFFF */
5141 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5143 if (sp->device_type == XFRAME_I_DEVICE) {
5144 /* Test Write Error at offset 0x80 */
5145 if (!write_eeprom(sp, 0x080, 0, 3))
5146 fail = 1;
5148 /* Test Write Error at offset 0xfc */
5149 if (!write_eeprom(sp, 0x0FC, 0, 3))
5150 fail = 1;
5152 /* Test Write Error at offset 0x100 */
5153 if (!write_eeprom(sp, 0x100, 0, 3))
5154 fail = 1;
5156 /* Test Write Error at offset 4ec */
5157 if (!write_eeprom(sp, 0x4EC, 0, 3))
5158 fail = 1;
5161 /* Restore values at offsets 0x4F0 and 0x7F0 */
5162 if (saved_4F0)
5163 write_eeprom(sp, 0x4F0, org_4F0, 3);
5164 if (saved_7F0)
5165 write_eeprom(sp, 0x7F0, org_7F0, 3);
5167 *data = fail;
5168 return fail;
5172 * s2io_bist_test - invokes the MemBist test of the card .
5173 * @sp : private member of the device structure, which is a pointer to the
5174 * s2io_nic structure.
5175 * @data:variable that returns the result of each of the test conducted by
5176 * the driver.
5177 * Description:
5178 * This invokes the MemBist test of the card. We give around
5179 * 2 secs time for the Test to complete. If it's still not complete
5180 * within this peiod, we consider that the test failed.
5181 * Return value:
5182 * 0 on success and -1 on failure.
5185 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5187 u8 bist = 0;
5188 int cnt = 0, ret = -1;
5190 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5191 bist |= PCI_BIST_START;
5192 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5194 while (cnt < 20) {
5195 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5196 if (!(bist & PCI_BIST_START)) {
5197 *data = (bist & PCI_BIST_CODE_MASK);
5198 ret = 0;
5199 break;
5201 msleep(100);
5202 cnt++;
5205 return ret;
5209 * s2io-link_test - verifies the link state of the nic
5210 * @sp ; private member of the device structure, which is a pointer to the
5211 * s2io_nic structure.
5212 * @data: variable that returns the result of each of the test conducted by
5213 * the driver.
5214 * Description:
5215 * The function verifies the link state of the NIC and updates the input
5216 * argument 'data' appropriately.
5217 * Return value:
5218 * 0 on success.
5221 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5223 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5224 u64 val64;
5226 val64 = readq(&bar0->adapter_status);
5227 if(!(LINK_IS_UP(val64)))
5228 *data = 1;
5229 else
5230 *data = 0;
5232 return *data;
5236 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5237 * @sp - private member of the device structure, which is a pointer to the
5238 * s2io_nic structure.
5239 * @data - variable that returns the result of each of the test
5240 * conducted by the driver.
5241 * Description:
5242 * This is one of the offline test that tests the read and write
5243 * access to the RldRam chip on the NIC.
5244 * Return value:
5245 * 0 on success.
5248 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5251 u64 val64;
5252 int cnt, iteration = 0, test_fail = 0;
5254 val64 = readq(&bar0->adapter_control);
5255 val64 &= ~ADAPTER_ECC_EN;
5256 writeq(val64, &bar0->adapter_control);
5258 val64 = readq(&bar0->mc_rldram_test_ctrl);
5259 val64 |= MC_RLDRAM_TEST_MODE;
5260 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5262 val64 = readq(&bar0->mc_rldram_mrs);
5263 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5264 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5266 val64 |= MC_RLDRAM_MRS_ENABLE;
5267 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5269 while (iteration < 2) {
5270 val64 = 0x55555555aaaa0000ULL;
5271 if (iteration == 1) {
5272 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5274 writeq(val64, &bar0->mc_rldram_test_d0);
5276 val64 = 0xaaaa5a5555550000ULL;
5277 if (iteration == 1) {
5278 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5280 writeq(val64, &bar0->mc_rldram_test_d1);
5282 val64 = 0x55aaaaaaaa5a0000ULL;
5283 if (iteration == 1) {
5284 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5286 writeq(val64, &bar0->mc_rldram_test_d2);
5288 val64 = (u64) (0x0000003ffffe0100ULL);
5289 writeq(val64, &bar0->mc_rldram_test_add);
5291 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5292 MC_RLDRAM_TEST_GO;
5293 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5295 for (cnt = 0; cnt < 5; cnt++) {
5296 val64 = readq(&bar0->mc_rldram_test_ctrl);
5297 if (val64 & MC_RLDRAM_TEST_DONE)
5298 break;
5299 msleep(200);
5302 if (cnt == 5)
5303 break;
5305 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5306 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5308 for (cnt = 0; cnt < 5; cnt++) {
5309 val64 = readq(&bar0->mc_rldram_test_ctrl);
5310 if (val64 & MC_RLDRAM_TEST_DONE)
5311 break;
5312 msleep(500);
5315 if (cnt == 5)
5316 break;
5318 val64 = readq(&bar0->mc_rldram_test_ctrl);
5319 if (!(val64 & MC_RLDRAM_TEST_PASS))
5320 test_fail = 1;
5322 iteration++;
5325 *data = test_fail;
5327 /* Bring the adapter out of test mode */
5328 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5330 return test_fail;
5334 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5335 * @sp : private member of the device structure, which is a pointer to the
5336 * s2io_nic structure.
5337 * @ethtest : pointer to a ethtool command specific structure that will be
5338 * returned to the user.
5339 * @data : variable that returns the result of each of the test
5340 * conducted by the driver.
5341 * Description:
5342 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5343 * the health of the card.
5344 * Return value:
5345 * void
5348 static void s2io_ethtool_test(struct net_device *dev,
5349 struct ethtool_test *ethtest,
5350 uint64_t * data)
5352 struct s2io_nic *sp = dev->priv;
5353 int orig_state = netif_running(sp->dev);
5355 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5356 /* Offline Tests. */
5357 if (orig_state)
5358 s2io_close(sp->dev);
5360 if (s2io_register_test(sp, &data[0]))
5361 ethtest->flags |= ETH_TEST_FL_FAILED;
5363 s2io_reset(sp);
5365 if (s2io_rldram_test(sp, &data[3]))
5366 ethtest->flags |= ETH_TEST_FL_FAILED;
5368 s2io_reset(sp);
5370 if (s2io_eeprom_test(sp, &data[1]))
5371 ethtest->flags |= ETH_TEST_FL_FAILED;
5373 if (s2io_bist_test(sp, &data[4]))
5374 ethtest->flags |= ETH_TEST_FL_FAILED;
5376 if (orig_state)
5377 s2io_open(sp->dev);
5379 data[2] = 0;
5380 } else {
5381 /* Online Tests. */
5382 if (!orig_state) {
5383 DBG_PRINT(ERR_DBG,
5384 "%s: is not up, cannot run test\n",
5385 dev->name);
5386 data[0] = -1;
5387 data[1] = -1;
5388 data[2] = -1;
5389 data[3] = -1;
5390 data[4] = -1;
5393 if (s2io_link_test(sp, &data[2]))
5394 ethtest->flags |= ETH_TEST_FL_FAILED;
5396 data[0] = 0;
5397 data[1] = 0;
5398 data[3] = 0;
5399 data[4] = 0;
5403 static void s2io_get_ethtool_stats(struct net_device *dev,
5404 struct ethtool_stats *estats,
5405 u64 * tmp_stats)
5407 int i = 0;
5408 struct s2io_nic *sp = dev->priv;
5409 struct stat_block *stat_info = sp->mac_control.stats_info;
5411 s2io_updt_stats(sp);
5412 tmp_stats[i++] =
5413 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5414 le32_to_cpu(stat_info->tmac_frms);
5415 tmp_stats[i++] =
5416 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5417 le32_to_cpu(stat_info->tmac_data_octets);
5418 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5419 tmp_stats[i++] =
5420 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5421 le32_to_cpu(stat_info->tmac_mcst_frms);
5422 tmp_stats[i++] =
5423 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5424 le32_to_cpu(stat_info->tmac_bcst_frms);
5425 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5426 tmp_stats[i++] =
5427 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5428 le32_to_cpu(stat_info->tmac_ttl_octets);
5429 tmp_stats[i++] =
5430 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5431 le32_to_cpu(stat_info->tmac_ucst_frms);
5432 tmp_stats[i++] =
5433 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5434 le32_to_cpu(stat_info->tmac_nucst_frms);
5435 tmp_stats[i++] =
5436 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5437 le32_to_cpu(stat_info->tmac_any_err_frms);
5438 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5439 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5440 tmp_stats[i++] =
5441 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5442 le32_to_cpu(stat_info->tmac_vld_ip);
5443 tmp_stats[i++] =
5444 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5445 le32_to_cpu(stat_info->tmac_drop_ip);
5446 tmp_stats[i++] =
5447 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5448 le32_to_cpu(stat_info->tmac_icmp);
5449 tmp_stats[i++] =
5450 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5451 le32_to_cpu(stat_info->tmac_rst_tcp);
5452 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5453 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5454 le32_to_cpu(stat_info->tmac_udp);
5455 tmp_stats[i++] =
5456 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5457 le32_to_cpu(stat_info->rmac_vld_frms);
5458 tmp_stats[i++] =
5459 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5460 le32_to_cpu(stat_info->rmac_data_octets);
5461 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5462 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5463 tmp_stats[i++] =
5464 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5465 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5466 tmp_stats[i++] =
5467 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5468 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5469 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5470 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5471 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5472 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5474 tmp_stats[i++] =
5475 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5476 le32_to_cpu(stat_info->rmac_ttl_octets);
5477 tmp_stats[i++] =
5478 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5479 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5480 tmp_stats[i++] =
5481 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5482 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5483 tmp_stats[i++] =
5484 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5485 le32_to_cpu(stat_info->rmac_discarded_frms);
5486 tmp_stats[i++] =
5487 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5488 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5489 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5490 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5491 tmp_stats[i++] =
5492 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5493 le32_to_cpu(stat_info->rmac_usized_frms);
5494 tmp_stats[i++] =
5495 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5496 le32_to_cpu(stat_info->rmac_osized_frms);
5497 tmp_stats[i++] =
5498 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5499 le32_to_cpu(stat_info->rmac_frag_frms);
5500 tmp_stats[i++] =
5501 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5502 le32_to_cpu(stat_info->rmac_jabber_frms);
5503 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5504 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5506 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5507 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5508 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5509 tmp_stats[i++] =
5510 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5511 le32_to_cpu(stat_info->rmac_ip);
5512 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5513 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5514 tmp_stats[i++] =
5515 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5516 le32_to_cpu(stat_info->rmac_drop_ip);
5517 tmp_stats[i++] =
5518 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5519 le32_to_cpu(stat_info->rmac_icmp);
5520 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5521 tmp_stats[i++] =
5522 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5523 le32_to_cpu(stat_info->rmac_udp);
5524 tmp_stats[i++] =
5525 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5526 le32_to_cpu(stat_info->rmac_err_drp_udp);
5527 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5528 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5529 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5530 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5531 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5532 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5533 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5534 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5536 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5537 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5538 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5539 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5540 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5541 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5542 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5543 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5544 tmp_stats[i++] =
5545 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5546 le32_to_cpu(stat_info->rmac_pause_cnt);
5547 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5548 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5549 tmp_stats[i++] =
5550 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5551 le32_to_cpu(stat_info->rmac_accepted_ip);
5552 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5553 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5554 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5555 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5556 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5557 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5558 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5559 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5560 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5561 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5562 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5563 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5564 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5565 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5566 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5567 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5568 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5569 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5570 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5571 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5572 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5575 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5576 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5579 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5580 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5583 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5587 tmp_stats[i++] = 0;
5588 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5589 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5590 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5591 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5592 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5593 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5594 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5595 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5596 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5597 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5598 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5599 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5600 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5601 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5602 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5603 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5604 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5605 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5606 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5607 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5608 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5609 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5610 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5611 if (stat_info->sw_stat.num_aggregations) {
5612 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5613 int count = 0;
5615 * Since 64-bit divide does not work on all platforms,
5616 * do repeated subtraction.
5618 while (tmp >= stat_info->sw_stat.num_aggregations) {
5619 tmp -= stat_info->sw_stat.num_aggregations;
5620 count++;
5622 tmp_stats[i++] = count;
5624 else
5625 tmp_stats[i++] = 0;
5628 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5630 return (XENA_REG_SPACE);
5634 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5636 struct s2io_nic *sp = dev->priv;
5638 return (sp->rx_csum);
5641 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5643 struct s2io_nic *sp = dev->priv;
5645 if (data)
5646 sp->rx_csum = 1;
5647 else
5648 sp->rx_csum = 0;
5650 return 0;
5653 static int s2io_get_eeprom_len(struct net_device *dev)
5655 return (XENA_EEPROM_SPACE);
5658 static int s2io_ethtool_self_test_count(struct net_device *dev)
5660 return (S2IO_TEST_LEN);
5663 static void s2io_ethtool_get_strings(struct net_device *dev,
5664 u32 stringset, u8 * data)
5666 switch (stringset) {
5667 case ETH_SS_TEST:
5668 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5669 break;
5670 case ETH_SS_STATS:
5671 memcpy(data, &ethtool_stats_keys,
5672 sizeof(ethtool_stats_keys));
5675 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5677 return (S2IO_STAT_LEN);
5680 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5682 if (data)
5683 dev->features |= NETIF_F_IP_CSUM;
5684 else
5685 dev->features &= ~NETIF_F_IP_CSUM;
5687 return 0;
5690 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5692 return (dev->features & NETIF_F_TSO) != 0;
5694 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5696 if (data)
5697 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5698 else
5699 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5701 return 0;
5704 static const struct ethtool_ops netdev_ethtool_ops = {
5705 .get_settings = s2io_ethtool_gset,
5706 .set_settings = s2io_ethtool_sset,
5707 .get_drvinfo = s2io_ethtool_gdrvinfo,
5708 .get_regs_len = s2io_ethtool_get_regs_len,
5709 .get_regs = s2io_ethtool_gregs,
5710 .get_link = ethtool_op_get_link,
5711 .get_eeprom_len = s2io_get_eeprom_len,
5712 .get_eeprom = s2io_ethtool_geeprom,
5713 .set_eeprom = s2io_ethtool_seeprom,
5714 .get_pauseparam = s2io_ethtool_getpause_data,
5715 .set_pauseparam = s2io_ethtool_setpause_data,
5716 .get_rx_csum = s2io_ethtool_get_rx_csum,
5717 .set_rx_csum = s2io_ethtool_set_rx_csum,
5718 .get_tx_csum = ethtool_op_get_tx_csum,
5719 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5720 .get_sg = ethtool_op_get_sg,
5721 .set_sg = ethtool_op_set_sg,
5722 .get_tso = s2io_ethtool_op_get_tso,
5723 .set_tso = s2io_ethtool_op_set_tso,
5724 .get_ufo = ethtool_op_get_ufo,
5725 .set_ufo = ethtool_op_set_ufo,
5726 .self_test_count = s2io_ethtool_self_test_count,
5727 .self_test = s2io_ethtool_test,
5728 .get_strings = s2io_ethtool_get_strings,
5729 .phys_id = s2io_ethtool_idnic,
5730 .get_stats_count = s2io_ethtool_get_stats_count,
5731 .get_ethtool_stats = s2io_get_ethtool_stats
5735 * s2io_ioctl - Entry point for the Ioctl
5736 * @dev : Device pointer.
5737 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5738 * a proprietary structure used to pass information to the driver.
5739 * @cmd : This is used to distinguish between the different commands that
5740 * can be passed to the IOCTL functions.
5741 * Description:
5742 * Currently there are no special functionality supported in IOCTL, hence
5743 * function always return EOPNOTSUPPORTED
5746 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5748 return -EOPNOTSUPP;
5752 * s2io_change_mtu - entry point to change MTU size for the device.
5753 * @dev : device pointer.
5754 * @new_mtu : the new MTU size for the device.
5755 * Description: A driver entry point to change MTU size for the device.
5756 * Before changing the MTU the device must be stopped.
5757 * Return value:
5758 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5759 * file on failure.
5762 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5764 struct s2io_nic *sp = dev->priv;
5766 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5767 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5768 dev->name);
5769 return -EPERM;
5772 dev->mtu = new_mtu;
5773 if (netif_running(dev)) {
5774 s2io_card_down(sp);
5775 netif_stop_queue(dev);
5776 if (s2io_card_up(sp)) {
5777 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5778 __FUNCTION__);
5780 if (netif_queue_stopped(dev))
5781 netif_wake_queue(dev);
5782 } else { /* Device is down */
5783 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5784 u64 val64 = new_mtu;
5786 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5789 return 0;
5793 * s2io_tasklet - Bottom half of the ISR.
5794 * @dev_adr : address of the device structure in dma_addr_t format.
5795 * Description:
5796 * This is the tasklet or the bottom half of the ISR. This is
5797 * an extension of the ISR which is scheduled by the scheduler to be run
5798 * when the load on the CPU is low. All low priority tasks of the ISR can
5799 * be pushed into the tasklet. For now the tasklet is used only to
5800 * replenish the Rx buffers in the Rx buffer descriptors.
5801 * Return value:
5802 * void.
5805 static void s2io_tasklet(unsigned long dev_addr)
5807 struct net_device *dev = (struct net_device *) dev_addr;
5808 struct s2io_nic *sp = dev->priv;
5809 int i, ret;
5810 struct mac_info *mac_control;
5811 struct config_param *config;
5813 mac_control = &sp->mac_control;
5814 config = &sp->config;
5816 if (!TASKLET_IN_USE) {
5817 for (i = 0; i < config->rx_ring_num; i++) {
5818 ret = fill_rx_buffers(sp, i);
5819 if (ret == -ENOMEM) {
5820 DBG_PRINT(ERR_DBG, "%s: Out of ",
5821 dev->name);
5822 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5823 break;
5824 } else if (ret == -EFILL) {
5825 DBG_PRINT(ERR_DBG,
5826 "%s: Rx Ring %d is full\n",
5827 dev->name, i);
5828 break;
5831 clear_bit(0, (&sp->tasklet_status));
5836 * s2io_set_link - Set the LInk status
5837 * @data: long pointer to device private structue
5838 * Description: Sets the link status for the adapter
5841 static void s2io_set_link(struct work_struct *work)
5843 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5844 struct net_device *dev = nic->dev;
5845 struct XENA_dev_config __iomem *bar0 = nic->bar0;
5846 register u64 val64;
5847 u16 subid;
5849 rtnl_lock();
5851 if (!netif_running(dev))
5852 goto out_unlock;
5854 if (test_and_set_bit(0, &(nic->link_state))) {
5855 /* The card is being reset, no point doing anything */
5856 goto out_unlock;
5859 subid = nic->pdev->subsystem_device;
5860 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5862 * Allow a small delay for the NICs self initiated
5863 * cleanup to complete.
5865 msleep(100);
5868 val64 = readq(&bar0->adapter_status);
5869 if (LINK_IS_UP(val64)) {
5870 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5871 if (verify_xena_quiescence(nic)) {
5872 val64 = readq(&bar0->adapter_control);
5873 val64 |= ADAPTER_CNTL_EN;
5874 writeq(val64, &bar0->adapter_control);
5875 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5876 nic->device_type, subid)) {
5877 val64 = readq(&bar0->gpio_control);
5878 val64 |= GPIO_CTRL_GPIO_0;
5879 writeq(val64, &bar0->gpio_control);
5880 val64 = readq(&bar0->gpio_control);
5881 } else {
5882 val64 |= ADAPTER_LED_ON;
5883 writeq(val64, &bar0->adapter_control);
5885 nic->device_enabled_once = TRUE;
5886 } else {
5887 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5888 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5889 netif_stop_queue(dev);
5892 val64 = readq(&bar0->adapter_status);
5893 if (!LINK_IS_UP(val64)) {
5894 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5895 DBG_PRINT(ERR_DBG, " Link down after enabling ");
5896 DBG_PRINT(ERR_DBG, "device \n");
5897 } else
5898 s2io_link(nic, LINK_UP);
5899 } else {
5900 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5901 subid)) {
5902 val64 = readq(&bar0->gpio_control);
5903 val64 &= ~GPIO_CTRL_GPIO_0;
5904 writeq(val64, &bar0->gpio_control);
5905 val64 = readq(&bar0->gpio_control);
5907 s2io_link(nic, LINK_DOWN);
5909 clear_bit(0, &(nic->link_state));
5911 out_unlock:
5912 rtnl_lock();
5915 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5916 struct buffAdd *ba,
5917 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5918 u64 *temp2, int size)
5920 struct net_device *dev = sp->dev;
5921 struct sk_buff *frag_list;
5923 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5924 /* allocate skb */
5925 if (*skb) {
5926 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5928 * As Rx frame are not going to be processed,
5929 * using same mapped address for the Rxd
5930 * buffer pointer
5932 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5933 } else {
5934 *skb = dev_alloc_skb(size);
5935 if (!(*skb)) {
5936 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5937 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5938 return -ENOMEM ;
5940 /* storing the mapped addr in a temp variable
5941 * such it will be used for next rxd whose
5942 * Host Control is NULL
5944 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5945 pci_map_single( sp->pdev, (*skb)->data,
5946 size - NET_IP_ALIGN,
5947 PCI_DMA_FROMDEVICE);
5948 rxdp->Host_Control = (unsigned long) (*skb);
5950 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5951 /* Two buffer Mode */
5952 if (*skb) {
5953 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5954 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5955 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5956 } else {
5957 *skb = dev_alloc_skb(size);
5958 if (!(*skb)) {
5959 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5960 dev->name);
5961 return -ENOMEM;
5963 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5964 pci_map_single(sp->pdev, (*skb)->data,
5965 dev->mtu + 4,
5966 PCI_DMA_FROMDEVICE);
5967 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5968 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5969 PCI_DMA_FROMDEVICE);
5970 rxdp->Host_Control = (unsigned long) (*skb);
5972 /* Buffer-1 will be dummy buffer not used */
5973 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5974 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5975 PCI_DMA_FROMDEVICE);
5977 } else if ((rxdp->Host_Control == 0)) {
5978 /* Three buffer mode */
5979 if (*skb) {
5980 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5981 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5982 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5983 } else {
5984 *skb = dev_alloc_skb(size);
5985 if (!(*skb)) {
5986 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5987 dev->name);
5988 return -ENOMEM;
5990 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5991 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5992 PCI_DMA_FROMDEVICE);
5993 /* Buffer-1 receives L3/L4 headers */
5994 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5995 pci_map_single( sp->pdev, (*skb)->data,
5996 l3l4hdr_size + 4,
5997 PCI_DMA_FROMDEVICE);
5999 * skb_shinfo(skb)->frag_list will have L4
6000 * data payload
6002 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6003 ALIGN_SIZE);
6004 if (skb_shinfo(*skb)->frag_list == NULL) {
6005 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6006 failed\n ", dev->name);
6007 return -ENOMEM ;
6009 frag_list = skb_shinfo(*skb)->frag_list;
6010 frag_list->next = NULL;
6012 * Buffer-2 receives L4 data payload
6014 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6015 pci_map_single( sp->pdev, frag_list->data,
6016 dev->mtu, PCI_DMA_FROMDEVICE);
6019 return 0;
6021 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6022 int size)
6024 struct net_device *dev = sp->dev;
6025 if (sp->rxd_mode == RXD_MODE_1) {
6026 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6027 } else if (sp->rxd_mode == RXD_MODE_3B) {
6028 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6029 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6030 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6031 } else {
6032 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6033 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6034 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6038 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6040 int i, j, k, blk_cnt = 0, size;
6041 struct mac_info * mac_control = &sp->mac_control;
6042 struct config_param *config = &sp->config;
6043 struct net_device *dev = sp->dev;
6044 struct RxD_t *rxdp = NULL;
6045 struct sk_buff *skb = NULL;
6046 struct buffAdd *ba = NULL;
6047 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6049 /* Calculate the size based on ring mode */
6050 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6051 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6052 if (sp->rxd_mode == RXD_MODE_1)
6053 size += NET_IP_ALIGN;
6054 else if (sp->rxd_mode == RXD_MODE_3B)
6055 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6056 else
6057 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6059 for (i = 0; i < config->rx_ring_num; i++) {
6060 blk_cnt = config->rx_cfg[i].num_rxd /
6061 (rxd_count[sp->rxd_mode] +1);
6063 for (j = 0; j < blk_cnt; j++) {
6064 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6065 rxdp = mac_control->rings[i].
6066 rx_blocks[j].rxds[k].virt_addr;
6067 if(sp->rxd_mode >= RXD_MODE_3A)
6068 ba = &mac_control->rings[i].ba[j][k];
6069 set_rxd_buffer_pointer(sp, rxdp, ba,
6070 &skb,(u64 *)&temp0_64,
6071 (u64 *)&temp1_64,
6072 (u64 *)&temp2_64, size);
6074 set_rxd_buffer_size(sp, rxdp, size);
6075 wmb();
6076 /* flip the Ownership bit to Hardware */
6077 rxdp->Control_1 |= RXD_OWN_XENA;
6081 return 0;
6085 static int s2io_add_isr(struct s2io_nic * sp)
6087 int ret = 0;
6088 struct net_device *dev = sp->dev;
6089 int err = 0;
6091 if (sp->intr_type == MSI)
6092 ret = s2io_enable_msi(sp);
6093 else if (sp->intr_type == MSI_X)
6094 ret = s2io_enable_msi_x(sp);
6095 if (ret) {
6096 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6097 sp->intr_type = INTA;
6100 /* Store the values of the MSIX table in the struct s2io_nic structure */
6101 store_xmsi_data(sp);
6103 /* After proper initialization of H/W, register ISR */
6104 if (sp->intr_type == MSI) {
6105 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6106 IRQF_SHARED, sp->name, dev);
6107 if (err) {
6108 pci_disable_msi(sp->pdev);
6109 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6110 dev->name);
6111 return -1;
6114 if (sp->intr_type == MSI_X) {
6115 int i;
6117 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6118 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6119 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6120 dev->name, i);
6121 err = request_irq(sp->entries[i].vector,
6122 s2io_msix_fifo_handle, 0, sp->desc[i],
6123 sp->s2io_entries[i].arg);
6124 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6125 (unsigned long long)sp->msix_info[i].addr);
6126 } else {
6127 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6128 dev->name, i);
6129 err = request_irq(sp->entries[i].vector,
6130 s2io_msix_ring_handle, 0, sp->desc[i],
6131 sp->s2io_entries[i].arg);
6132 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6133 (unsigned long long)sp->msix_info[i].addr);
6135 if (err) {
6136 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6137 "failed\n", dev->name, i);
6138 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6139 return -1;
6141 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6144 if (sp->intr_type == INTA) {
6145 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6146 sp->name, dev);
6147 if (err) {
6148 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6149 dev->name);
6150 return -1;
6153 return 0;
6155 static void s2io_rem_isr(struct s2io_nic * sp)
6157 int cnt = 0;
6158 struct net_device *dev = sp->dev;
6160 if (sp->intr_type == MSI_X) {
6161 int i;
6162 u16 msi_control;
6164 for (i=1; (sp->s2io_entries[i].in_use ==
6165 MSIX_REGISTERED_SUCCESS); i++) {
6166 int vector = sp->entries[i].vector;
6167 void *arg = sp->s2io_entries[i].arg;
6169 free_irq(vector, arg);
6171 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6172 msi_control &= 0xFFFE; /* Disable MSI */
6173 pci_write_config_word(sp->pdev, 0x42, msi_control);
6175 pci_disable_msix(sp->pdev);
6176 } else {
6177 free_irq(sp->pdev->irq, dev);
6178 if (sp->intr_type == MSI) {
6179 u16 val;
6181 pci_disable_msi(sp->pdev);
6182 pci_read_config_word(sp->pdev, 0x4c, &val);
6183 val ^= 0x1;
6184 pci_write_config_word(sp->pdev, 0x4c, val);
6187 /* Waiting till all Interrupt handlers are complete */
6188 cnt = 0;
6189 do {
6190 msleep(10);
6191 if (!atomic_read(&sp->isr_cnt))
6192 break;
6193 cnt++;
6194 } while(cnt < 5);
6197 static void s2io_card_down(struct s2io_nic * sp)
6199 int cnt = 0;
6200 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6201 unsigned long flags;
6202 register u64 val64 = 0;
6204 del_timer_sync(&sp->alarm_timer);
6205 /* If s2io_set_link task is executing, wait till it completes. */
6206 while (test_and_set_bit(0, &(sp->link_state))) {
6207 msleep(50);
6209 atomic_set(&sp->card_state, CARD_DOWN);
6211 /* disable Tx and Rx traffic on the NIC */
6212 stop_nic(sp);
6214 s2io_rem_isr(sp);
6216 /* Kill tasklet. */
6217 tasklet_kill(&sp->task);
6219 /* Check if the device is Quiescent and then Reset the NIC */
6220 do {
6221 /* As per the HW requirement we need to replenish the
6222 * receive buffer to avoid the ring bump. Since there is
6223 * no intention of processing the Rx frame at this pointwe are
6224 * just settting the ownership bit of rxd in Each Rx
6225 * ring to HW and set the appropriate buffer size
6226 * based on the ring mode
6228 rxd_owner_bit_reset(sp);
6230 val64 = readq(&bar0->adapter_status);
6231 if (verify_xena_quiescence(sp)) {
6232 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6233 break;
6236 msleep(50);
6237 cnt++;
6238 if (cnt == 10) {
6239 DBG_PRINT(ERR_DBG,
6240 "s2io_close:Device not Quiescent ");
6241 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6242 (unsigned long long) val64);
6243 break;
6245 } while (1);
6246 s2io_reset(sp);
6248 spin_lock_irqsave(&sp->tx_lock, flags);
6249 /* Free all Tx buffers */
6250 free_tx_buffers(sp);
6251 spin_unlock_irqrestore(&sp->tx_lock, flags);
6253 /* Free all Rx buffers */
6254 spin_lock_irqsave(&sp->rx_lock, flags);
6255 free_rx_buffers(sp);
6256 spin_unlock_irqrestore(&sp->rx_lock, flags);
6258 clear_bit(0, &(sp->link_state));
6261 static int s2io_card_up(struct s2io_nic * sp)
6263 int i, ret = 0;
6264 struct mac_info *mac_control;
6265 struct config_param *config;
6266 struct net_device *dev = (struct net_device *) sp->dev;
6267 u16 interruptible;
6269 /* Initialize the H/W I/O registers */
6270 if (init_nic(sp) != 0) {
6271 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6272 dev->name);
6273 s2io_reset(sp);
6274 return -ENODEV;
6278 * Initializing the Rx buffers. For now we are considering only 1
6279 * Rx ring and initializing buffers into 30 Rx blocks
6281 mac_control = &sp->mac_control;
6282 config = &sp->config;
6284 for (i = 0; i < config->rx_ring_num; i++) {
6285 if ((ret = fill_rx_buffers(sp, i))) {
6286 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6287 dev->name);
6288 s2io_reset(sp);
6289 free_rx_buffers(sp);
6290 return -ENOMEM;
6292 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6293 atomic_read(&sp->rx_bufs_left[i]));
6295 /* Maintain the state prior to the open */
6296 if (sp->promisc_flg)
6297 sp->promisc_flg = 0;
6298 if (sp->m_cast_flg) {
6299 sp->m_cast_flg = 0;
6300 sp->all_multi_pos= 0;
6303 /* Setting its receive mode */
6304 s2io_set_multicast(dev);
6306 if (sp->lro) {
6307 /* Initialize max aggregatable pkts per session based on MTU */
6308 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6309 /* Check if we can use(if specified) user provided value */
6310 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6311 sp->lro_max_aggr_per_sess = lro_max_pkts;
6314 /* Enable Rx Traffic and interrupts on the NIC */
6315 if (start_nic(sp)) {
6316 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6317 s2io_reset(sp);
6318 free_rx_buffers(sp);
6319 return -ENODEV;
6322 /* Add interrupt service routine */
6323 if (s2io_add_isr(sp) != 0) {
6324 if (sp->intr_type == MSI_X)
6325 s2io_rem_isr(sp);
6326 s2io_reset(sp);
6327 free_rx_buffers(sp);
6328 return -ENODEV;
6331 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6333 /* Enable tasklet for the device */
6334 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6336 /* Enable select interrupts */
6337 if (sp->intr_type != INTA)
6338 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6339 else {
6340 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6341 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6342 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6343 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6347 atomic_set(&sp->card_state, CARD_UP);
6348 return 0;
6352 * s2io_restart_nic - Resets the NIC.
6353 * @data : long pointer to the device private structure
6354 * Description:
6355 * This function is scheduled to be run by the s2io_tx_watchdog
6356 * function after 0.5 secs to reset the NIC. The idea is to reduce
6357 * the run time of the watch dog routine which is run holding a
6358 * spin lock.
6361 static void s2io_restart_nic(struct work_struct *work)
6363 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6364 struct net_device *dev = sp->dev;
6366 rtnl_lock();
6368 if (!netif_running(dev))
6369 goto out_unlock;
6371 s2io_card_down(sp);
6372 if (s2io_card_up(sp)) {
6373 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6374 dev->name);
6376 netif_wake_queue(dev);
6377 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6378 dev->name);
6379 out_unlock:
6380 rtnl_unlock();
6384 * s2io_tx_watchdog - Watchdog for transmit side.
6385 * @dev : Pointer to net device structure
6386 * Description:
6387 * This function is triggered if the Tx Queue is stopped
6388 * for a pre-defined amount of time when the Interface is still up.
6389 * If the Interface is jammed in such a situation, the hardware is
6390 * reset (by s2io_close) and restarted again (by s2io_open) to
6391 * overcome any problem that might have been caused in the hardware.
6392 * Return value:
6393 * void
6396 static void s2io_tx_watchdog(struct net_device *dev)
6398 struct s2io_nic *sp = dev->priv;
6400 if (netif_carrier_ok(dev)) {
6401 schedule_work(&sp->rst_timer_task);
6402 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6407 * rx_osm_handler - To perform some OS related operations on SKB.
6408 * @sp: private member of the device structure,pointer to s2io_nic structure.
6409 * @skb : the socket buffer pointer.
6410 * @len : length of the packet
6411 * @cksum : FCS checksum of the frame.
6412 * @ring_no : the ring from which this RxD was extracted.
6413 * Description:
6414 * This function is called by the Rx interrupt serivce routine to perform
6415 * some OS related operations on the SKB before passing it to the upper
6416 * layers. It mainly checks if the checksum is OK, if so adds it to the
6417 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6418 * to the upper layer. If the checksum is wrong, it increments the Rx
6419 * packet error count, frees the SKB and returns error.
6420 * Return value:
6421 * SUCCESS on success and -1 on failure.
6423 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6425 struct s2io_nic *sp = ring_data->nic;
6426 struct net_device *dev = (struct net_device *) sp->dev;
6427 struct sk_buff *skb = (struct sk_buff *)
6428 ((unsigned long) rxdp->Host_Control);
6429 int ring_no = ring_data->ring_no;
6430 u16 l3_csum, l4_csum;
6431 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6432 struct lro *lro;
6434 skb->dev = dev;
6436 if (err) {
6437 /* Check for parity error */
6438 if (err & 0x1) {
6439 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6443 * Drop the packet if bad transfer code. Exception being
6444 * 0x5, which could be due to unsupported IPv6 extension header.
6445 * In this case, we let stack handle the packet.
6446 * Note that in this case, since checksum will be incorrect,
6447 * stack will validate the same.
6449 if (err && ((err >> 48) != 0x5)) {
6450 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6451 dev->name, err);
6452 sp->stats.rx_crc_errors++;
6453 dev_kfree_skb(skb);
6454 atomic_dec(&sp->rx_bufs_left[ring_no]);
6455 rxdp->Host_Control = 0;
6456 return 0;
6460 /* Updating statistics */
6461 rxdp->Host_Control = 0;
6462 sp->rx_pkt_count++;
6463 sp->stats.rx_packets++;
6464 if (sp->rxd_mode == RXD_MODE_1) {
6465 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6467 sp->stats.rx_bytes += len;
6468 skb_put(skb, len);
6470 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6471 int get_block = ring_data->rx_curr_get_info.block_index;
6472 int get_off = ring_data->rx_curr_get_info.offset;
6473 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6474 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6475 unsigned char *buff = skb_push(skb, buf0_len);
6477 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6478 sp->stats.rx_bytes += buf0_len + buf2_len;
6479 memcpy(buff, ba->ba_0, buf0_len);
6481 if (sp->rxd_mode == RXD_MODE_3A) {
6482 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6484 skb_put(skb, buf1_len);
6485 skb->len += buf2_len;
6486 skb->data_len += buf2_len;
6487 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6488 sp->stats.rx_bytes += buf1_len;
6490 } else
6491 skb_put(skb, buf2_len);
6494 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6495 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6496 (sp->rx_csum)) {
6497 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6498 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6499 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6501 * NIC verifies if the Checksum of the received
6502 * frame is Ok or not and accordingly returns
6503 * a flag in the RxD.
6505 skb->ip_summed = CHECKSUM_UNNECESSARY;
6506 if (sp->lro) {
6507 u32 tcp_len;
6508 u8 *tcp;
6509 int ret = 0;
6511 ret = s2io_club_tcp_session(skb->data, &tcp,
6512 &tcp_len, &lro, rxdp, sp);
6513 switch (ret) {
6514 case 3: /* Begin anew */
6515 lro->parent = skb;
6516 goto aggregate;
6517 case 1: /* Aggregate */
6519 lro_append_pkt(sp, lro,
6520 skb, tcp_len);
6521 goto aggregate;
6523 case 4: /* Flush session */
6525 lro_append_pkt(sp, lro,
6526 skb, tcp_len);
6527 queue_rx_frame(lro->parent);
6528 clear_lro_session(lro);
6529 sp->mac_control.stats_info->
6530 sw_stat.flush_max_pkts++;
6531 goto aggregate;
6533 case 2: /* Flush both */
6534 lro->parent->data_len =
6535 lro->frags_len;
6536 sp->mac_control.stats_info->
6537 sw_stat.sending_both++;
6538 queue_rx_frame(lro->parent);
6539 clear_lro_session(lro);
6540 goto send_up;
6541 case 0: /* sessions exceeded */
6542 case -1: /* non-TCP or not
6543 * L2 aggregatable
6545 case 5: /*
6546 * First pkt in session not
6547 * L3/L4 aggregatable
6549 break;
6550 default:
6551 DBG_PRINT(ERR_DBG,
6552 "%s: Samadhana!!\n",
6553 __FUNCTION__);
6554 BUG();
6557 } else {
6559 * Packet with erroneous checksum, let the
6560 * upper layers deal with it.
6562 skb->ip_summed = CHECKSUM_NONE;
6564 } else {
6565 skb->ip_summed = CHECKSUM_NONE;
6568 if (!sp->lro) {
6569 skb->protocol = eth_type_trans(skb, dev);
6570 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6571 /* Queueing the vlan frame to the upper layer */
6572 if (napi)
6573 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6574 RXD_GET_VLAN_TAG(rxdp->Control_2));
6575 else
6576 vlan_hwaccel_rx(skb, sp->vlgrp,
6577 RXD_GET_VLAN_TAG(rxdp->Control_2));
6578 } else {
6579 if (napi)
6580 netif_receive_skb(skb);
6581 else
6582 netif_rx(skb);
6584 } else {
6585 send_up:
6586 queue_rx_frame(skb);
6588 dev->last_rx = jiffies;
6589 aggregate:
6590 atomic_dec(&sp->rx_bufs_left[ring_no]);
6591 return SUCCESS;
6595 * s2io_link - stops/starts the Tx queue.
6596 * @sp : private member of the device structure, which is a pointer to the
6597 * s2io_nic structure.
6598 * @link : inidicates whether link is UP/DOWN.
6599 * Description:
6600 * This function stops/starts the Tx queue depending on whether the link
6601 * status of the NIC is is down or up. This is called by the Alarm
6602 * interrupt handler whenever a link change interrupt comes up.
6603 * Return value:
6604 * void.
6607 static void s2io_link(struct s2io_nic * sp, int link)
6609 struct net_device *dev = (struct net_device *) sp->dev;
6611 if (link != sp->last_link_state) {
6612 if (link == LINK_DOWN) {
6613 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6614 netif_carrier_off(dev);
6615 } else {
6616 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6617 netif_carrier_on(dev);
6620 sp->last_link_state = link;
6624 * get_xena_rev_id - to identify revision ID of xena.
6625 * @pdev : PCI Dev structure
6626 * Description:
6627 * Function to identify the Revision ID of xena.
6628 * Return value:
6629 * returns the revision ID of the device.
6632 static int get_xena_rev_id(struct pci_dev *pdev)
6634 u8 id = 0;
6635 int ret;
6636 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6637 return id;
6641 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6642 * @sp : private member of the device structure, which is a pointer to the
6643 * s2io_nic structure.
6644 * Description:
6645 * This function initializes a few of the PCI and PCI-X configuration registers
6646 * with recommended values.
6647 * Return value:
6648 * void
6651 static void s2io_init_pci(struct s2io_nic * sp)
6653 u16 pci_cmd = 0, pcix_cmd = 0;
6655 /* Enable Data Parity Error Recovery in PCI-X command register. */
6656 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6657 &(pcix_cmd));
6658 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6659 (pcix_cmd | 1));
6660 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6661 &(pcix_cmd));
6663 /* Set the PErr Response bit in PCI command register. */
6664 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6665 pci_write_config_word(sp->pdev, PCI_COMMAND,
6666 (pci_cmd | PCI_COMMAND_PARITY));
6667 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6670 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6672 if ( tx_fifo_num > 8) {
6673 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6674 "supported\n");
6675 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6676 tx_fifo_num = 8;
6678 if ( rx_ring_num > 8) {
6679 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6680 "supported\n");
6681 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6682 rx_ring_num = 8;
6684 if (*dev_intr_type != INTA)
6685 napi = 0;
6687 #ifndef CONFIG_PCI_MSI
6688 if (*dev_intr_type != INTA) {
6689 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6690 "MSI/MSI-X. Defaulting to INTA\n");
6691 *dev_intr_type = INTA;
6693 #else
6694 if (*dev_intr_type > MSI_X) {
6695 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6696 "Defaulting to INTA\n");
6697 *dev_intr_type = INTA;
6699 #endif
6700 if ((*dev_intr_type == MSI_X) &&
6701 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6702 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6703 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6704 "Defaulting to INTA\n");
6705 *dev_intr_type = INTA;
6707 if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6708 napi = 0;
6709 if (rx_ring_mode > 3) {
6710 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6711 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6712 rx_ring_mode = 3;
6714 return SUCCESS;
6718 * s2io_init_nic - Initialization of the adapter .
6719 * @pdev : structure containing the PCI related information of the device.
6720 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6721 * Description:
6722 * The function initializes an adapter identified by the pci_dec structure.
6723 * All OS related initialization including memory and device structure and
6724 * initlaization of the device private variable is done. Also the swapper
6725 * control register is initialized to enable read and write into the I/O
6726 * registers of the device.
6727 * Return value:
6728 * returns 0 on success and negative on failure.
6731 static int __devinit
6732 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6734 struct s2io_nic *sp;
6735 struct net_device *dev;
6736 int i, j, ret;
6737 int dma_flag = FALSE;
6738 u32 mac_up, mac_down;
6739 u64 val64 = 0, tmp64 = 0;
6740 struct XENA_dev_config __iomem *bar0 = NULL;
6741 u16 subid;
6742 struct mac_info *mac_control;
6743 struct config_param *config;
6744 int mode;
6745 u8 dev_intr_type = intr_type;
6747 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6748 return ret;
6750 if ((ret = pci_enable_device(pdev))) {
6751 DBG_PRINT(ERR_DBG,
6752 "s2io_init_nic: pci_enable_device failed\n");
6753 return ret;
6756 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6757 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6758 dma_flag = TRUE;
6759 if (pci_set_consistent_dma_mask
6760 (pdev, DMA_64BIT_MASK)) {
6761 DBG_PRINT(ERR_DBG,
6762 "Unable to obtain 64bit DMA for \
6763 consistent allocations\n");
6764 pci_disable_device(pdev);
6765 return -ENOMEM;
6767 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6768 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6769 } else {
6770 pci_disable_device(pdev);
6771 return -ENOMEM;
6773 if (dev_intr_type != MSI_X) {
6774 if (pci_request_regions(pdev, s2io_driver_name)) {
6775 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6776 pci_disable_device(pdev);
6777 return -ENODEV;
6780 else {
6781 if (!(request_mem_region(pci_resource_start(pdev, 0),
6782 pci_resource_len(pdev, 0), s2io_driver_name))) {
6783 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6784 pci_disable_device(pdev);
6785 return -ENODEV;
6787 if (!(request_mem_region(pci_resource_start(pdev, 2),
6788 pci_resource_len(pdev, 2), s2io_driver_name))) {
6789 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6790 release_mem_region(pci_resource_start(pdev, 0),
6791 pci_resource_len(pdev, 0));
6792 pci_disable_device(pdev);
6793 return -ENODEV;
6797 dev = alloc_etherdev(sizeof(struct s2io_nic));
6798 if (dev == NULL) {
6799 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6800 pci_disable_device(pdev);
6801 pci_release_regions(pdev);
6802 return -ENODEV;
6805 pci_set_master(pdev);
6806 pci_set_drvdata(pdev, dev);
6807 SET_MODULE_OWNER(dev);
6808 SET_NETDEV_DEV(dev, &pdev->dev);
6810 /* Private member variable initialized to s2io NIC structure */
6811 sp = dev->priv;
6812 memset(sp, 0, sizeof(struct s2io_nic));
6813 sp->dev = dev;
6814 sp->pdev = pdev;
6815 sp->high_dma_flag = dma_flag;
6816 sp->device_enabled_once = FALSE;
6817 if (rx_ring_mode == 1)
6818 sp->rxd_mode = RXD_MODE_1;
6819 if (rx_ring_mode == 2)
6820 sp->rxd_mode = RXD_MODE_3B;
6821 if (rx_ring_mode == 3)
6822 sp->rxd_mode = RXD_MODE_3A;
6824 sp->intr_type = dev_intr_type;
6826 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6827 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6828 sp->device_type = XFRAME_II_DEVICE;
6829 else
6830 sp->device_type = XFRAME_I_DEVICE;
6832 sp->lro = lro;
6834 /* Initialize some PCI/PCI-X fields of the NIC. */
6835 s2io_init_pci(sp);
6838 * Setting the device configuration parameters.
6839 * Most of these parameters can be specified by the user during
6840 * module insertion as they are module loadable parameters. If
6841 * these parameters are not not specified during load time, they
6842 * are initialized with default values.
6844 mac_control = &sp->mac_control;
6845 config = &sp->config;
6847 /* Tx side parameters. */
6848 config->tx_fifo_num = tx_fifo_num;
6849 for (i = 0; i < MAX_TX_FIFOS; i++) {
6850 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6851 config->tx_cfg[i].fifo_priority = i;
6854 /* mapping the QoS priority to the configured fifos */
6855 for (i = 0; i < MAX_TX_FIFOS; i++)
6856 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6858 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6859 for (i = 0; i < config->tx_fifo_num; i++) {
6860 config->tx_cfg[i].f_no_snoop =
6861 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6862 if (config->tx_cfg[i].fifo_len < 65) {
6863 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6864 break;
6867 /* + 2 because one Txd for skb->data and one Txd for UFO */
6868 config->max_txds = MAX_SKB_FRAGS + 2;
6870 /* Rx side parameters. */
6871 config->rx_ring_num = rx_ring_num;
6872 for (i = 0; i < MAX_RX_RINGS; i++) {
6873 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6874 (rxd_count[sp->rxd_mode] + 1);
6875 config->rx_cfg[i].ring_priority = i;
6878 for (i = 0; i < rx_ring_num; i++) {
6879 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6880 config->rx_cfg[i].f_no_snoop =
6881 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6884 /* Setting Mac Control parameters */
6885 mac_control->rmac_pause_time = rmac_pause_time;
6886 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6887 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6890 /* Initialize Ring buffer parameters. */
6891 for (i = 0; i < config->rx_ring_num; i++)
6892 atomic_set(&sp->rx_bufs_left[i], 0);
6894 /* Initialize the number of ISRs currently running */
6895 atomic_set(&sp->isr_cnt, 0);
6897 /* initialize the shared memory used by the NIC and the host */
6898 if (init_shared_mem(sp)) {
6899 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6900 dev->name);
6901 ret = -ENOMEM;
6902 goto mem_alloc_failed;
6905 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6906 pci_resource_len(pdev, 0));
6907 if (!sp->bar0) {
6908 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6909 dev->name);
6910 ret = -ENOMEM;
6911 goto bar0_remap_failed;
6914 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6915 pci_resource_len(pdev, 2));
6916 if (!sp->bar1) {
6917 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6918 dev->name);
6919 ret = -ENOMEM;
6920 goto bar1_remap_failed;
6923 dev->irq = pdev->irq;
6924 dev->base_addr = (unsigned long) sp->bar0;
6926 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6927 for (j = 0; j < MAX_TX_FIFOS; j++) {
6928 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
6929 (sp->bar1 + (j * 0x00020000));
6932 /* Driver entry points */
6933 dev->open = &s2io_open;
6934 dev->stop = &s2io_close;
6935 dev->hard_start_xmit = &s2io_xmit;
6936 dev->get_stats = &s2io_get_stats;
6937 dev->set_multicast_list = &s2io_set_multicast;
6938 dev->do_ioctl = &s2io_ioctl;
6939 dev->change_mtu = &s2io_change_mtu;
6940 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6941 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6942 dev->vlan_rx_register = s2io_vlan_rx_register;
6943 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6946 * will use eth_mac_addr() for dev->set_mac_address
6947 * mac address will be set every time dev->open() is called
6949 dev->poll = s2io_poll;
6950 dev->weight = 32;
6952 #ifdef CONFIG_NET_POLL_CONTROLLER
6953 dev->poll_controller = s2io_netpoll;
6954 #endif
6956 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6957 if (sp->high_dma_flag == TRUE)
6958 dev->features |= NETIF_F_HIGHDMA;
6959 dev->features |= NETIF_F_TSO;
6960 dev->features |= NETIF_F_TSO6;
6961 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
6962 dev->features |= NETIF_F_UFO;
6963 dev->features |= NETIF_F_HW_CSUM;
6966 dev->tx_timeout = &s2io_tx_watchdog;
6967 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6968 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6969 INIT_WORK(&sp->set_link_task, s2io_set_link);
6971 pci_save_state(sp->pdev);
6973 /* Setting swapper control on the NIC, for proper reset operation */
6974 if (s2io_set_swapper(sp)) {
6975 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6976 dev->name);
6977 ret = -EAGAIN;
6978 goto set_swap_failed;
6981 /* Verify if the Herc works on the slot its placed into */
6982 if (sp->device_type & XFRAME_II_DEVICE) {
6983 mode = s2io_verify_pci_mode(sp);
6984 if (mode < 0) {
6985 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6986 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6987 ret = -EBADSLT;
6988 goto set_swap_failed;
6992 /* Not needed for Herc */
6993 if (sp->device_type & XFRAME_I_DEVICE) {
6995 * Fix for all "FFs" MAC address problems observed on
6996 * Alpha platforms
6998 fix_mac_address(sp);
6999 s2io_reset(sp);
7003 * MAC address initialization.
7004 * For now only one mac address will be read and used.
7006 bar0 = sp->bar0;
7007 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7008 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7009 writeq(val64, &bar0->rmac_addr_cmd_mem);
7010 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7011 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7012 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7013 mac_down = (u32) tmp64;
7014 mac_up = (u32) (tmp64 >> 32);
7016 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7018 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7019 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7020 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7021 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7022 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7023 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7025 /* Set the factory defined MAC address initially */
7026 dev->addr_len = ETH_ALEN;
7027 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7029 /* reset Nic and bring it to known state */
7030 s2io_reset(sp);
7033 * Initialize the tasklet status and link state flags
7034 * and the card state parameter
7036 atomic_set(&(sp->card_state), 0);
7037 sp->tasklet_status = 0;
7038 sp->link_state = 0;
7040 /* Initialize spinlocks */
7041 spin_lock_init(&sp->tx_lock);
7043 if (!napi)
7044 spin_lock_init(&sp->put_lock);
7045 spin_lock_init(&sp->rx_lock);
7048 * SXE-002: Configure link and activity LED to init state
7049 * on driver load.
7051 subid = sp->pdev->subsystem_device;
7052 if ((subid & 0xFF) >= 0x07) {
7053 val64 = readq(&bar0->gpio_control);
7054 val64 |= 0x0000800000000000ULL;
7055 writeq(val64, &bar0->gpio_control);
7056 val64 = 0x0411040400000000ULL;
7057 writeq(val64, (void __iomem *) bar0 + 0x2700);
7058 val64 = readq(&bar0->gpio_control);
7061 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7063 if (register_netdev(dev)) {
7064 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7065 ret = -ENODEV;
7066 goto register_failed;
7068 s2io_vpd_read(sp);
7069 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7070 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7071 sp->product_name, get_xena_rev_id(sp->pdev));
7072 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7073 s2io_driver_version);
7074 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7075 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7076 sp->def_mac_addr[0].mac_addr[0],
7077 sp->def_mac_addr[0].mac_addr[1],
7078 sp->def_mac_addr[0].mac_addr[2],
7079 sp->def_mac_addr[0].mac_addr[3],
7080 sp->def_mac_addr[0].mac_addr[4],
7081 sp->def_mac_addr[0].mac_addr[5]);
7082 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7083 if (sp->device_type & XFRAME_II_DEVICE) {
7084 mode = s2io_print_pci_mode(sp);
7085 if (mode < 0) {
7086 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7087 ret = -EBADSLT;
7088 unregister_netdev(dev);
7089 goto set_swap_failed;
7092 switch(sp->rxd_mode) {
7093 case RXD_MODE_1:
7094 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7095 dev->name);
7096 break;
7097 case RXD_MODE_3B:
7098 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7099 dev->name);
7100 break;
7101 case RXD_MODE_3A:
7102 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7103 dev->name);
7104 break;
7107 if (napi)
7108 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7109 switch(sp->intr_type) {
7110 case INTA:
7111 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7112 break;
7113 case MSI:
7114 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7115 break;
7116 case MSI_X:
7117 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7118 break;
7120 if (sp->lro)
7121 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7122 dev->name);
7123 if (ufo)
7124 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7125 " enabled\n", dev->name);
7126 /* Initialize device name */
7127 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7129 /* Initialize bimodal Interrupts */
7130 sp->config.bimodal = bimodal;
7131 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7132 sp->config.bimodal = 0;
7133 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7134 dev->name);
7138 * Make Link state as off at this point, when the Link change
7139 * interrupt comes the state will be automatically changed to
7140 * the right state.
7142 netif_carrier_off(dev);
7144 return 0;
7146 register_failed:
7147 set_swap_failed:
7148 iounmap(sp->bar1);
7149 bar1_remap_failed:
7150 iounmap(sp->bar0);
7151 bar0_remap_failed:
7152 mem_alloc_failed:
7153 free_shared_mem(sp);
7154 pci_disable_device(pdev);
7155 if (dev_intr_type != MSI_X)
7156 pci_release_regions(pdev);
7157 else {
7158 release_mem_region(pci_resource_start(pdev, 0),
7159 pci_resource_len(pdev, 0));
7160 release_mem_region(pci_resource_start(pdev, 2),
7161 pci_resource_len(pdev, 2));
7163 pci_set_drvdata(pdev, NULL);
7164 free_netdev(dev);
7166 return ret;
7170 * s2io_rem_nic - Free the PCI device
7171 * @pdev: structure containing the PCI related information of the device.
7172 * Description: This function is called by the Pci subsystem to release a
7173 * PCI device and free up all resource held up by the device. This could
7174 * be in response to a Hot plug event or when the driver is to be removed
7175 * from memory.
7178 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7180 struct net_device *dev =
7181 (struct net_device *) pci_get_drvdata(pdev);
7182 struct s2io_nic *sp;
7184 if (dev == NULL) {
7185 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7186 return;
7189 flush_scheduled_work();
7191 sp = dev->priv;
7192 unregister_netdev(dev);
7194 free_shared_mem(sp);
7195 iounmap(sp->bar0);
7196 iounmap(sp->bar1);
7197 if (sp->intr_type != MSI_X)
7198 pci_release_regions(pdev);
7199 else {
7200 release_mem_region(pci_resource_start(pdev, 0),
7201 pci_resource_len(pdev, 0));
7202 release_mem_region(pci_resource_start(pdev, 2),
7203 pci_resource_len(pdev, 2));
7205 pci_set_drvdata(pdev, NULL);
7206 free_netdev(dev);
7207 pci_disable_device(pdev);
7211 * s2io_starter - Entry point for the driver
7212 * Description: This function is the entry point for the driver. It verifies
7213 * the module loadable parameters and initializes PCI configuration space.
7216 int __init s2io_starter(void)
7218 return pci_register_driver(&s2io_driver);
7222 * s2io_closer - Cleanup routine for the driver
7223 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7226 static __exit void s2io_closer(void)
7228 pci_unregister_driver(&s2io_driver);
7229 DBG_PRINT(INIT_DBG, "cleanup done\n");
7232 module_init(s2io_starter);
7233 module_exit(s2io_closer);
7235 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7236 struct tcphdr **tcp, struct RxD_t *rxdp)
7238 int ip_off;
7239 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7241 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7242 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7243 __FUNCTION__);
7244 return -1;
7247 /* TODO:
7248 * By default the VLAN field in the MAC is stripped by the card, if this
7249 * feature is turned off in rx_pa_cfg register, then the ip_off field
7250 * has to be shifted by a further 2 bytes
7252 switch (l2_type) {
7253 case 0: /* DIX type */
7254 case 4: /* DIX type with VLAN */
7255 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7256 break;
7257 /* LLC, SNAP etc are considered non-mergeable */
7258 default:
7259 return -1;
7262 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7263 ip_len = (u8)((*ip)->ihl);
7264 ip_len <<= 2;
7265 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7267 return 0;
7270 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7271 struct tcphdr *tcp)
7273 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7274 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7275 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7276 return -1;
7277 return 0;
7280 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7282 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7285 static void initiate_new_session(struct lro *lro, u8 *l2h,
7286 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7288 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7289 lro->l2h = l2h;
7290 lro->iph = ip;
7291 lro->tcph = tcp;
7292 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7293 lro->tcp_ack = ntohl(tcp->ack_seq);
7294 lro->sg_num = 1;
7295 lro->total_len = ntohs(ip->tot_len);
7296 lro->frags_len = 0;
7298 * check if we saw TCP timestamp. Other consistency checks have
7299 * already been done.
7301 if (tcp->doff == 8) {
7302 u32 *ptr;
7303 ptr = (u32 *)(tcp+1);
7304 lro->saw_ts = 1;
7305 lro->cur_tsval = *(ptr+1);
7306 lro->cur_tsecr = *(ptr+2);
7308 lro->in_use = 1;
7311 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7313 struct iphdr *ip = lro->iph;
7314 struct tcphdr *tcp = lro->tcph;
7315 __sum16 nchk;
7316 struct stat_block *statinfo = sp->mac_control.stats_info;
7317 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7319 /* Update L3 header */
7320 ip->tot_len = htons(lro->total_len);
7321 ip->check = 0;
7322 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7323 ip->check = nchk;
7325 /* Update L4 header */
7326 tcp->ack_seq = lro->tcp_ack;
7327 tcp->window = lro->window;
7329 /* Update tsecr field if this session has timestamps enabled */
7330 if (lro->saw_ts) {
7331 u32 *ptr = (u32 *)(tcp + 1);
7332 *(ptr+2) = lro->cur_tsecr;
7335 /* Update counters required for calculation of
7336 * average no. of packets aggregated.
7338 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7339 statinfo->sw_stat.num_aggregations++;
7342 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7343 struct tcphdr *tcp, u32 l4_pyld)
7345 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7346 lro->total_len += l4_pyld;
7347 lro->frags_len += l4_pyld;
7348 lro->tcp_next_seq += l4_pyld;
7349 lro->sg_num++;
7351 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7352 lro->tcp_ack = tcp->ack_seq;
7353 lro->window = tcp->window;
7355 if (lro->saw_ts) {
7356 u32 *ptr;
7357 /* Update tsecr and tsval from this packet */
7358 ptr = (u32 *) (tcp + 1);
7359 lro->cur_tsval = *(ptr + 1);
7360 lro->cur_tsecr = *(ptr + 2);
7364 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7365 struct tcphdr *tcp, u32 tcp_pyld_len)
7367 u8 *ptr;
7369 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7371 if (!tcp_pyld_len) {
7372 /* Runt frame or a pure ack */
7373 return -1;
7376 if (ip->ihl != 5) /* IP has options */
7377 return -1;
7379 /* If we see CE codepoint in IP header, packet is not mergeable */
7380 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7381 return -1;
7383 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7384 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7385 tcp->ece || tcp->cwr || !tcp->ack) {
7387 * Currently recognize only the ack control word and
7388 * any other control field being set would result in
7389 * flushing the LRO session
7391 return -1;
7395 * Allow only one TCP timestamp option. Don't aggregate if
7396 * any other options are detected.
7398 if (tcp->doff != 5 && tcp->doff != 8)
7399 return -1;
7401 if (tcp->doff == 8) {
7402 ptr = (u8 *)(tcp + 1);
7403 while (*ptr == TCPOPT_NOP)
7404 ptr++;
7405 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7406 return -1;
7408 /* Ensure timestamp value increases monotonically */
7409 if (l_lro)
7410 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7411 return -1;
7413 /* timestamp echo reply should be non-zero */
7414 if (*((u32 *)(ptr+6)) == 0)
7415 return -1;
7418 return 0;
7421 static int
7422 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7423 struct RxD_t *rxdp, struct s2io_nic *sp)
7425 struct iphdr *ip;
7426 struct tcphdr *tcph;
7427 int ret = 0, i;
7429 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7430 rxdp))) {
7431 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7432 ip->saddr, ip->daddr);
7433 } else {
7434 return ret;
7437 tcph = (struct tcphdr *)*tcp;
7438 *tcp_len = get_l4_pyld_length(ip, tcph);
7439 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7440 struct lro *l_lro = &sp->lro0_n[i];
7441 if (l_lro->in_use) {
7442 if (check_for_socket_match(l_lro, ip, tcph))
7443 continue;
7444 /* Sock pair matched */
7445 *lro = l_lro;
7447 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7448 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7449 "0x%x, actual 0x%x\n", __FUNCTION__,
7450 (*lro)->tcp_next_seq,
7451 ntohl(tcph->seq));
7453 sp->mac_control.stats_info->
7454 sw_stat.outof_sequence_pkts++;
7455 ret = 2;
7456 break;
7459 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7460 ret = 1; /* Aggregate */
7461 else
7462 ret = 2; /* Flush both */
7463 break;
7467 if (ret == 0) {
7468 /* Before searching for available LRO objects,
7469 * check if the pkt is L3/L4 aggregatable. If not
7470 * don't create new LRO session. Just send this
7471 * packet up.
7473 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7474 return 5;
7477 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7478 struct lro *l_lro = &sp->lro0_n[i];
7479 if (!(l_lro->in_use)) {
7480 *lro = l_lro;
7481 ret = 3; /* Begin anew */
7482 break;
7487 if (ret == 0) { /* sessions exceeded */
7488 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7489 __FUNCTION__);
7490 *lro = NULL;
7491 return ret;
7494 switch (ret) {
7495 case 3:
7496 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7497 break;
7498 case 2:
7499 update_L3L4_header(sp, *lro);
7500 break;
7501 case 1:
7502 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7503 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7504 update_L3L4_header(sp, *lro);
7505 ret = 4; /* Flush the LRO */
7507 break;
7508 default:
7509 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7510 __FUNCTION__);
7511 break;
7514 return ret;
7517 static void clear_lro_session(struct lro *lro)
7519 static u16 lro_struct_size = sizeof(struct lro);
7521 memset(lro, 0, lro_struct_size);
7524 static void queue_rx_frame(struct sk_buff *skb)
7526 struct net_device *dev = skb->dev;
7528 skb->protocol = eth_type_trans(skb, dev);
7529 if (napi)
7530 netif_receive_skb(skb);
7531 else
7532 netif_rx(skb);
7535 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7536 struct sk_buff *skb,
7537 u32 tcp_len)
7539 struct sk_buff *first = lro->parent;
7541 first->len += tcp_len;
7542 first->data_len = lro->frags_len;
7543 skb_pull(skb, (skb->len - tcp_len));
7544 if (skb_shinfo(first)->frag_list)
7545 lro->last_frag->next = skb;
7546 else
7547 skb_shinfo(first)->frag_list = skb;
7548 first->truesize += skb->truesize;
7549 lro->last_frag = skb;
7550 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7551 return;