[PATCH] mm: remove bad_range
[linux-2.6/linux-loongson.git] / mm / page_alloc.c
blob088712f2ac02b2c90464404556a5a7dd43addee2
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
69 EXPORT_SYMBOL(totalram_pages);
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
75 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76 EXPORT_SYMBOL(zone_table);
78 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79 int min_free_kbytes = 1024;
81 unsigned long __initdata nr_kernel_pages;
82 unsigned long __initdata nr_all_pages;
84 #ifdef CONFIG_DEBUG_VM
85 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
87 int ret = 0;
88 unsigned seq;
89 unsigned long pfn = page_to_pfn(page);
91 do {
92 seq = zone_span_seqbegin(zone);
93 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
94 ret = 1;
95 else if (pfn < zone->zone_start_pfn)
96 ret = 1;
97 } while (zone_span_seqretry(zone, seq));
99 return ret;
102 static int page_is_consistent(struct zone *zone, struct page *page)
104 #ifdef CONFIG_HOLES_IN_ZONE
105 if (!pfn_valid(page_to_pfn(page)))
106 return 0;
107 #endif
108 if (zone != page_zone(page))
109 return 0;
111 return 1;
114 * Temporary debugging check for pages not lying within a given zone.
116 static int bad_range(struct zone *zone, struct page *page)
118 if (page_outside_zone_boundaries(zone, page))
119 return 1;
120 if (!page_is_consistent(zone, page))
121 return 1;
123 return 0;
126 #else
127 static inline int bad_range(struct zone *zone, struct page *page)
129 return 0;
131 #endif
133 static void bad_page(const char *function, struct page *page)
135 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
136 function, current->comm, page);
137 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
138 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
139 page->mapping, page_mapcount(page), page_count(page));
140 printk(KERN_EMERG "Backtrace:\n");
141 dump_stack();
142 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
143 page->flags &= ~(1 << PG_lru |
144 1 << PG_private |
145 1 << PG_locked |
146 1 << PG_active |
147 1 << PG_dirty |
148 1 << PG_reclaim |
149 1 << PG_slab |
150 1 << PG_swapcache |
151 1 << PG_writeback );
152 set_page_count(page, 0);
153 reset_page_mapcount(page);
154 page->mapping = NULL;
155 add_taint(TAINT_BAD_PAGE);
159 * Higher-order pages are called "compound pages". They are structured thusly:
161 * The first PAGE_SIZE page is called the "head page".
163 * The remaining PAGE_SIZE pages are called "tail pages".
165 * All pages have PG_compound set. All pages have their ->private pointing at
166 * the head page (even the head page has this).
168 * The first tail page's ->mapping, if non-zero, holds the address of the
169 * compound page's put_page() function.
171 * The order of the allocation is stored in the first tail page's ->index
172 * This is only for debug at present. This usage means that zero-order pages
173 * may not be compound.
175 static void prep_compound_page(struct page *page, unsigned long order)
177 int i;
178 int nr_pages = 1 << order;
180 page[1].mapping = NULL;
181 page[1].index = order;
182 for (i = 0; i < nr_pages; i++) {
183 struct page *p = page + i;
185 SetPageCompound(p);
186 set_page_private(p, (unsigned long)page);
190 static void destroy_compound_page(struct page *page, unsigned long order)
192 int i;
193 int nr_pages = 1 << order;
195 if (!PageCompound(page))
196 return;
198 if (page[1].index != order)
199 bad_page(__FUNCTION__, page);
201 for (i = 0; i < nr_pages; i++) {
202 struct page *p = page + i;
204 if (!PageCompound(p))
205 bad_page(__FUNCTION__, page);
206 if (page_private(p) != (unsigned long)page)
207 bad_page(__FUNCTION__, page);
208 ClearPageCompound(p);
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
217 static inline unsigned long page_order(struct page *page) {
218 return page_private(page);
221 static inline void set_page_order(struct page *page, int order) {
222 set_page_private(page, order);
223 __SetPagePrivate(page);
226 static inline void rmv_page_order(struct page *page)
228 __ClearPagePrivate(page);
229 set_page_private(page, 0);
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
252 unsigned long buddy_idx = page_idx ^ (1 << order);
254 return page + (buddy_idx - page_idx);
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
260 return (page_idx & ~(1 << order));
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
270 * for recording page's order, we use page_private(page) and PG_private.
273 static inline int page_is_buddy(struct page *page, int order)
275 #ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278 #endif
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
282 page_count(page) == 0)
283 return 1;
284 return 0;
288 * Freeing function for a buddy system allocator.
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
301 * order is recorded in page_private(page) field.
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
308 * -- wli
311 static inline void __free_pages_bulk (struct page *page,
312 struct zone *zone, unsigned int order)
314 unsigned long page_idx;
315 int order_size = 1 << order;
317 if (unlikely(order))
318 destroy_compound_page(page, order);
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
331 buddy = __page_find_buddy(page, page_idx, order);
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
339 combined_idx = __find_combined_index(page_idx, order);
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
349 static inline int free_pages_check(const char *function, struct page *page)
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
362 1 << PG_writeback |
363 1 << PG_reserved ))))
364 bad_page(function, page);
365 if (PageDirty(page))
366 __ClearPageDirty(page);
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
372 return PageReserved(page);
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
378 * count is the number of pages to free.
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
386 static int
387 free_pages_bulk(struct zone *zone, int count,
388 struct list_head *list, unsigned int order)
390 struct page *page = NULL;
391 int ret = 0;
393 spin_lock(&zone->lock);
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
396 while (!list_empty(list) && count--) {
397 page = list_entry(list->prev, struct page, lru);
398 /* have to delete it as __free_pages_bulk list manipulates */
399 list_del(&page->lru);
400 __free_pages_bulk(page, zone, order);
401 ret++;
403 spin_unlock(&zone->lock);
404 return ret;
407 void __free_pages_ok(struct page *page, unsigned int order)
409 unsigned long flags;
410 LIST_HEAD(list);
411 int i;
412 int reserved = 0;
414 arch_free_page(page, order);
416 #ifndef CONFIG_MMU
417 if (order > 0)
418 for (i = 1 ; i < (1 << order) ; ++i)
419 __put_page(page + i);
420 #endif
422 for (i = 0 ; i < (1 << order) ; ++i)
423 reserved += free_pages_check(__FUNCTION__, page + i);
424 if (reserved)
425 return;
427 list_add(&page->lru, &list);
428 mod_page_state(pgfree, 1 << order);
429 kernel_map_pages(page, 1<<order, 0);
430 local_irq_save(flags);
431 free_pages_bulk(page_zone(page), 1, &list, order);
432 local_irq_restore(flags);
437 * The order of subdivision here is critical for the IO subsystem.
438 * Please do not alter this order without good reasons and regression
439 * testing. Specifically, as large blocks of memory are subdivided,
440 * the order in which smaller blocks are delivered depends on the order
441 * they're subdivided in this function. This is the primary factor
442 * influencing the order in which pages are delivered to the IO
443 * subsystem according to empirical testing, and this is also justified
444 * by considering the behavior of a buddy system containing a single
445 * large block of memory acted on by a series of small allocations.
446 * This behavior is a critical factor in sglist merging's success.
448 * -- wli
450 static inline struct page *
451 expand(struct zone *zone, struct page *page,
452 int low, int high, struct free_area *area)
454 unsigned long size = 1 << high;
456 while (high > low) {
457 area--;
458 high--;
459 size >>= 1;
460 BUG_ON(bad_range(zone, &page[size]));
461 list_add(&page[size].lru, &area->free_list);
462 area->nr_free++;
463 set_page_order(&page[size], high);
465 return page;
469 * This page is about to be returned from the page allocator
471 static int prep_new_page(struct page *page, int order)
473 if (unlikely(page_mapcount(page) |
474 (page->mapping != NULL) |
475 (page_count(page) != 0) |
476 (page->flags & (
477 1 << PG_lru |
478 1 << PG_private |
479 1 << PG_locked |
480 1 << PG_active |
481 1 << PG_dirty |
482 1 << PG_reclaim |
483 1 << PG_slab |
484 1 << PG_swapcache |
485 1 << PG_writeback |
486 1 << PG_reserved ))))
487 bad_page(__FUNCTION__, page);
490 * For now, we report if PG_reserved was found set, but do not
491 * clear it, and do not allocate the page: as a safety net.
493 if (PageReserved(page))
494 return 1;
496 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
497 1 << PG_referenced | 1 << PG_arch_1 |
498 1 << PG_checked | 1 << PG_mappedtodisk);
499 set_page_private(page, 0);
500 set_page_refs(page, order);
501 kernel_map_pages(page, 1 << order, 1);
502 return 0;
506 * Do the hard work of removing an element from the buddy allocator.
507 * Call me with the zone->lock already held.
509 static struct page *__rmqueue(struct zone *zone, unsigned int order)
511 struct free_area * area;
512 unsigned int current_order;
513 struct page *page;
515 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
516 area = zone->free_area + current_order;
517 if (list_empty(&area->free_list))
518 continue;
520 page = list_entry(area->free_list.next, struct page, lru);
521 list_del(&page->lru);
522 rmv_page_order(page);
523 area->nr_free--;
524 zone->free_pages -= 1UL << order;
525 return expand(zone, page, order, current_order, area);
528 return NULL;
532 * Obtain a specified number of elements from the buddy allocator, all under
533 * a single hold of the lock, for efficiency. Add them to the supplied list.
534 * Returns the number of new pages which were placed at *list.
536 static int rmqueue_bulk(struct zone *zone, unsigned int order,
537 unsigned long count, struct list_head *list)
539 int i;
540 int allocated = 0;
541 struct page *page;
543 spin_lock(&zone->lock);
544 for (i = 0; i < count; ++i) {
545 page = __rmqueue(zone, order);
546 if (page == NULL)
547 break;
548 allocated++;
549 list_add_tail(&page->lru, list);
551 spin_unlock(&zone->lock);
552 return allocated;
555 #ifdef CONFIG_NUMA
556 /* Called from the slab reaper to drain remote pagesets */
557 void drain_remote_pages(void)
559 struct zone *zone;
560 int i;
561 unsigned long flags;
563 local_irq_save(flags);
564 for_each_zone(zone) {
565 struct per_cpu_pageset *pset;
567 /* Do not drain local pagesets */
568 if (zone->zone_pgdat->node_id == numa_node_id())
569 continue;
571 pset = zone->pageset[smp_processor_id()];
572 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
573 struct per_cpu_pages *pcp;
575 pcp = &pset->pcp[i];
576 if (pcp->count)
577 pcp->count -= free_pages_bulk(zone, pcp->count,
578 &pcp->list, 0);
581 local_irq_restore(flags);
583 #endif
585 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
586 static void __drain_pages(unsigned int cpu)
588 unsigned long flags;
589 struct zone *zone;
590 int i;
592 for_each_zone(zone) {
593 struct per_cpu_pageset *pset;
595 pset = zone_pcp(zone, cpu);
596 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
597 struct per_cpu_pages *pcp;
599 pcp = &pset->pcp[i];
600 local_irq_save(flags);
601 pcp->count -= free_pages_bulk(zone, pcp->count,
602 &pcp->list, 0);
603 local_irq_restore(flags);
607 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
609 #ifdef CONFIG_PM
611 void mark_free_pages(struct zone *zone)
613 unsigned long zone_pfn, flags;
614 int order;
615 struct list_head *curr;
617 if (!zone->spanned_pages)
618 return;
620 spin_lock_irqsave(&zone->lock, flags);
621 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
622 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
624 for (order = MAX_ORDER - 1; order >= 0; --order)
625 list_for_each(curr, &zone->free_area[order].free_list) {
626 unsigned long start_pfn, i;
628 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
630 for (i=0; i < (1<<order); i++)
631 SetPageNosaveFree(pfn_to_page(start_pfn+i));
633 spin_unlock_irqrestore(&zone->lock, flags);
637 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
639 void drain_local_pages(void)
641 unsigned long flags;
643 local_irq_save(flags);
644 __drain_pages(smp_processor_id());
645 local_irq_restore(flags);
647 #endif /* CONFIG_PM */
649 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
651 #ifdef CONFIG_NUMA
652 unsigned long flags;
653 int cpu;
654 pg_data_t *pg = z->zone_pgdat;
655 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
656 struct per_cpu_pageset *p;
658 local_irq_save(flags);
659 cpu = smp_processor_id();
660 p = zone_pcp(z,cpu);
661 if (pg == orig) {
662 p->numa_hit++;
663 } else {
664 p->numa_miss++;
665 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
667 if (pg == NODE_DATA(numa_node_id()))
668 p->local_node++;
669 else
670 p->other_node++;
671 local_irq_restore(flags);
672 #endif
676 * Free a 0-order page
678 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
679 static void fastcall free_hot_cold_page(struct page *page, int cold)
681 struct zone *zone = page_zone(page);
682 struct per_cpu_pages *pcp;
683 unsigned long flags;
685 arch_free_page(page, 0);
687 if (PageAnon(page))
688 page->mapping = NULL;
689 if (free_pages_check(__FUNCTION__, page))
690 return;
692 inc_page_state(pgfree);
693 kernel_map_pages(page, 1, 0);
695 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
696 local_irq_save(flags);
697 list_add(&page->lru, &pcp->list);
698 pcp->count++;
699 if (pcp->count >= pcp->high)
700 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
701 local_irq_restore(flags);
702 put_cpu();
705 void fastcall free_hot_page(struct page *page)
707 free_hot_cold_page(page, 0);
710 void fastcall free_cold_page(struct page *page)
712 free_hot_cold_page(page, 1);
715 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
717 int i;
719 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
720 for(i = 0; i < (1 << order); i++)
721 clear_highpage(page + i);
725 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
726 * we cheat by calling it from here, in the order > 0 path. Saves a branch
727 * or two.
729 static struct page *
730 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
732 unsigned long flags;
733 struct page *page;
734 int cold = !!(gfp_flags & __GFP_COLD);
736 again:
737 if (order == 0) {
738 struct per_cpu_pages *pcp;
740 page = NULL;
741 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
742 local_irq_save(flags);
743 if (pcp->count <= pcp->low)
744 pcp->count += rmqueue_bulk(zone, 0,
745 pcp->batch, &pcp->list);
746 if (likely(pcp->count)) {
747 page = list_entry(pcp->list.next, struct page, lru);
748 list_del(&page->lru);
749 pcp->count--;
751 local_irq_restore(flags);
752 put_cpu();
753 } else {
754 spin_lock_irqsave(&zone->lock, flags);
755 page = __rmqueue(zone, order);
756 spin_unlock_irqrestore(&zone->lock, flags);
759 if (page != NULL) {
760 BUG_ON(bad_range(zone, page));
761 mod_page_state_zone(zone, pgalloc, 1 << order);
762 if (prep_new_page(page, order))
763 goto again;
765 if (gfp_flags & __GFP_ZERO)
766 prep_zero_page(page, order, gfp_flags);
768 if (order && (gfp_flags & __GFP_COMP))
769 prep_compound_page(page, order);
771 return page;
774 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
775 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
776 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
777 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
778 #define ALLOC_HARDER 0x10 /* try to alloc harder */
779 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
780 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
783 * Return 1 if free pages are above 'mark'. This takes into account the order
784 * of the allocation.
786 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
787 int classzone_idx, int alloc_flags)
789 /* free_pages my go negative - that's OK */
790 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
791 int o;
793 if (alloc_flags & ALLOC_HIGH)
794 min -= min / 2;
795 if (alloc_flags & ALLOC_HARDER)
796 min -= min / 4;
798 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
799 return 0;
800 for (o = 0; o < order; o++) {
801 /* At the next order, this order's pages become unavailable */
802 free_pages -= z->free_area[o].nr_free << o;
804 /* Require fewer higher order pages to be free */
805 min >>= 1;
807 if (free_pages <= min)
808 return 0;
810 return 1;
814 * get_page_from_freeliest goes through the zonelist trying to allocate
815 * a page.
817 static struct page *
818 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
819 struct zonelist *zonelist, int alloc_flags)
821 struct zone **z = zonelist->zones;
822 struct page *page = NULL;
823 int classzone_idx = zone_idx(*z);
826 * Go through the zonelist once, looking for a zone with enough free.
827 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
829 do {
830 if ((alloc_flags & ALLOC_CPUSET) &&
831 !cpuset_zone_allowed(*z, gfp_mask))
832 continue;
834 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
835 unsigned long mark;
836 if (alloc_flags & ALLOC_WMARK_MIN)
837 mark = (*z)->pages_min;
838 else if (alloc_flags & ALLOC_WMARK_LOW)
839 mark = (*z)->pages_low;
840 else
841 mark = (*z)->pages_high;
842 if (!zone_watermark_ok(*z, order, mark,
843 classzone_idx, alloc_flags))
844 continue;
847 page = buffered_rmqueue(*z, order, gfp_mask);
848 if (page) {
849 zone_statistics(zonelist, *z);
850 break;
852 } while (*(++z) != NULL);
853 return page;
857 * This is the 'heart' of the zoned buddy allocator.
859 struct page * fastcall
860 __alloc_pages(gfp_t gfp_mask, unsigned int order,
861 struct zonelist *zonelist)
863 const gfp_t wait = gfp_mask & __GFP_WAIT;
864 struct zone **z;
865 struct page *page;
866 struct reclaim_state reclaim_state;
867 struct task_struct *p = current;
868 int do_retry;
869 int alloc_flags;
870 int did_some_progress;
872 might_sleep_if(wait);
874 restart:
875 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
877 if (unlikely(*z == NULL)) {
878 /* Should this ever happen?? */
879 return NULL;
882 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
883 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
884 if (page)
885 goto got_pg;
887 do {
888 wakeup_kswapd(*z, order);
889 } while (*(++z));
892 * OK, we're below the kswapd watermark and have kicked background
893 * reclaim. Now things get more complex, so set up alloc_flags according
894 * to how we want to proceed.
896 * The caller may dip into page reserves a bit more if the caller
897 * cannot run direct reclaim, or if the caller has realtime scheduling
898 * policy.
900 alloc_flags = ALLOC_WMARK_MIN;
901 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
902 alloc_flags |= ALLOC_HARDER;
903 if (gfp_mask & __GFP_HIGH)
904 alloc_flags |= ALLOC_HIGH;
905 alloc_flags |= ALLOC_CPUSET;
908 * Go through the zonelist again. Let __GFP_HIGH and allocations
909 * coming from realtime tasks go deeper into reserves.
911 * This is the last chance, in general, before the goto nopage.
912 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
913 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
915 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
916 if (page)
917 goto got_pg;
919 /* This allocation should allow future memory freeing. */
921 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
922 && !in_interrupt()) {
923 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
924 nofail_alloc:
925 /* go through the zonelist yet again, ignoring mins */
926 page = get_page_from_freelist(gfp_mask, order,
927 zonelist, ALLOC_NO_WATERMARKS);
928 if (page)
929 goto got_pg;
930 if (gfp_mask & __GFP_NOFAIL) {
931 blk_congestion_wait(WRITE, HZ/50);
932 goto nofail_alloc;
935 goto nopage;
938 /* Atomic allocations - we can't balance anything */
939 if (!wait)
940 goto nopage;
942 rebalance:
943 cond_resched();
945 /* We now go into synchronous reclaim */
946 p->flags |= PF_MEMALLOC;
947 reclaim_state.reclaimed_slab = 0;
948 p->reclaim_state = &reclaim_state;
950 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
952 p->reclaim_state = NULL;
953 p->flags &= ~PF_MEMALLOC;
955 cond_resched();
957 if (likely(did_some_progress)) {
958 page = get_page_from_freelist(gfp_mask, order,
959 zonelist, alloc_flags);
960 if (page)
961 goto got_pg;
962 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
964 * Go through the zonelist yet one more time, keep
965 * very high watermark here, this is only to catch
966 * a parallel oom killing, we must fail if we're still
967 * under heavy pressure.
969 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
970 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
971 if (page)
972 goto got_pg;
974 out_of_memory(gfp_mask, order);
975 goto restart;
979 * Don't let big-order allocations loop unless the caller explicitly
980 * requests that. Wait for some write requests to complete then retry.
982 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
983 * <= 3, but that may not be true in other implementations.
985 do_retry = 0;
986 if (!(gfp_mask & __GFP_NORETRY)) {
987 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
988 do_retry = 1;
989 if (gfp_mask & __GFP_NOFAIL)
990 do_retry = 1;
992 if (do_retry) {
993 blk_congestion_wait(WRITE, HZ/50);
994 goto rebalance;
997 nopage:
998 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
999 printk(KERN_WARNING "%s: page allocation failure."
1000 " order:%d, mode:0x%x\n",
1001 p->comm, order, gfp_mask);
1002 dump_stack();
1003 show_mem();
1005 got_pg:
1006 return page;
1009 EXPORT_SYMBOL(__alloc_pages);
1012 * Common helper functions.
1014 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1016 struct page * page;
1017 page = alloc_pages(gfp_mask, order);
1018 if (!page)
1019 return 0;
1020 return (unsigned long) page_address(page);
1023 EXPORT_SYMBOL(__get_free_pages);
1025 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1027 struct page * page;
1030 * get_zeroed_page() returns a 32-bit address, which cannot represent
1031 * a highmem page
1033 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1035 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1036 if (page)
1037 return (unsigned long) page_address(page);
1038 return 0;
1041 EXPORT_SYMBOL(get_zeroed_page);
1043 void __pagevec_free(struct pagevec *pvec)
1045 int i = pagevec_count(pvec);
1047 while (--i >= 0)
1048 free_hot_cold_page(pvec->pages[i], pvec->cold);
1051 fastcall void __free_pages(struct page *page, unsigned int order)
1053 if (put_page_testzero(page)) {
1054 if (order == 0)
1055 free_hot_page(page);
1056 else
1057 __free_pages_ok(page, order);
1061 EXPORT_SYMBOL(__free_pages);
1063 fastcall void free_pages(unsigned long addr, unsigned int order)
1065 if (addr != 0) {
1066 BUG_ON(!virt_addr_valid((void *)addr));
1067 __free_pages(virt_to_page((void *)addr), order);
1071 EXPORT_SYMBOL(free_pages);
1074 * Total amount of free (allocatable) RAM:
1076 unsigned int nr_free_pages(void)
1078 unsigned int sum = 0;
1079 struct zone *zone;
1081 for_each_zone(zone)
1082 sum += zone->free_pages;
1084 return sum;
1087 EXPORT_SYMBOL(nr_free_pages);
1089 #ifdef CONFIG_NUMA
1090 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1092 unsigned int i, sum = 0;
1094 for (i = 0; i < MAX_NR_ZONES; i++)
1095 sum += pgdat->node_zones[i].free_pages;
1097 return sum;
1099 #endif
1101 static unsigned int nr_free_zone_pages(int offset)
1103 /* Just pick one node, since fallback list is circular */
1104 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1105 unsigned int sum = 0;
1107 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1108 struct zone **zonep = zonelist->zones;
1109 struct zone *zone;
1111 for (zone = *zonep++; zone; zone = *zonep++) {
1112 unsigned long size = zone->present_pages;
1113 unsigned long high = zone->pages_high;
1114 if (size > high)
1115 sum += size - high;
1118 return sum;
1122 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1124 unsigned int nr_free_buffer_pages(void)
1126 return nr_free_zone_pages(gfp_zone(GFP_USER));
1130 * Amount of free RAM allocatable within all zones
1132 unsigned int nr_free_pagecache_pages(void)
1134 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1137 #ifdef CONFIG_HIGHMEM
1138 unsigned int nr_free_highpages (void)
1140 pg_data_t *pgdat;
1141 unsigned int pages = 0;
1143 for_each_pgdat(pgdat)
1144 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1146 return pages;
1148 #endif
1150 #ifdef CONFIG_NUMA
1151 static void show_node(struct zone *zone)
1153 printk("Node %d ", zone->zone_pgdat->node_id);
1155 #else
1156 #define show_node(zone) do { } while (0)
1157 #endif
1160 * Accumulate the page_state information across all CPUs.
1161 * The result is unavoidably approximate - it can change
1162 * during and after execution of this function.
1164 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1166 atomic_t nr_pagecache = ATOMIC_INIT(0);
1167 EXPORT_SYMBOL(nr_pagecache);
1168 #ifdef CONFIG_SMP
1169 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1170 #endif
1172 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1174 int cpu = 0;
1176 memset(ret, 0, sizeof(*ret));
1177 cpus_and(*cpumask, *cpumask, cpu_online_map);
1179 cpu = first_cpu(*cpumask);
1180 while (cpu < NR_CPUS) {
1181 unsigned long *in, *out, off;
1183 in = (unsigned long *)&per_cpu(page_states, cpu);
1185 cpu = next_cpu(cpu, *cpumask);
1187 if (cpu < NR_CPUS)
1188 prefetch(&per_cpu(page_states, cpu));
1190 out = (unsigned long *)ret;
1191 for (off = 0; off < nr; off++)
1192 *out++ += *in++;
1196 void get_page_state_node(struct page_state *ret, int node)
1198 int nr;
1199 cpumask_t mask = node_to_cpumask(node);
1201 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1202 nr /= sizeof(unsigned long);
1204 __get_page_state(ret, nr+1, &mask);
1207 void get_page_state(struct page_state *ret)
1209 int nr;
1210 cpumask_t mask = CPU_MASK_ALL;
1212 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1213 nr /= sizeof(unsigned long);
1215 __get_page_state(ret, nr + 1, &mask);
1218 void get_full_page_state(struct page_state *ret)
1220 cpumask_t mask = CPU_MASK_ALL;
1222 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1225 unsigned long __read_page_state(unsigned long offset)
1227 unsigned long ret = 0;
1228 int cpu;
1230 for_each_online_cpu(cpu) {
1231 unsigned long in;
1233 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1234 ret += *((unsigned long *)in);
1236 return ret;
1239 void __mod_page_state(unsigned long offset, unsigned long delta)
1241 unsigned long flags;
1242 void* ptr;
1244 local_irq_save(flags);
1245 ptr = &__get_cpu_var(page_states);
1246 *(unsigned long*)(ptr + offset) += delta;
1247 local_irq_restore(flags);
1250 EXPORT_SYMBOL(__mod_page_state);
1252 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1253 unsigned long *free, struct pglist_data *pgdat)
1255 struct zone *zones = pgdat->node_zones;
1256 int i;
1258 *active = 0;
1259 *inactive = 0;
1260 *free = 0;
1261 for (i = 0; i < MAX_NR_ZONES; i++) {
1262 *active += zones[i].nr_active;
1263 *inactive += zones[i].nr_inactive;
1264 *free += zones[i].free_pages;
1268 void get_zone_counts(unsigned long *active,
1269 unsigned long *inactive, unsigned long *free)
1271 struct pglist_data *pgdat;
1273 *active = 0;
1274 *inactive = 0;
1275 *free = 0;
1276 for_each_pgdat(pgdat) {
1277 unsigned long l, m, n;
1278 __get_zone_counts(&l, &m, &n, pgdat);
1279 *active += l;
1280 *inactive += m;
1281 *free += n;
1285 void si_meminfo(struct sysinfo *val)
1287 val->totalram = totalram_pages;
1288 val->sharedram = 0;
1289 val->freeram = nr_free_pages();
1290 val->bufferram = nr_blockdev_pages();
1291 #ifdef CONFIG_HIGHMEM
1292 val->totalhigh = totalhigh_pages;
1293 val->freehigh = nr_free_highpages();
1294 #else
1295 val->totalhigh = 0;
1296 val->freehigh = 0;
1297 #endif
1298 val->mem_unit = PAGE_SIZE;
1301 EXPORT_SYMBOL(si_meminfo);
1303 #ifdef CONFIG_NUMA
1304 void si_meminfo_node(struct sysinfo *val, int nid)
1306 pg_data_t *pgdat = NODE_DATA(nid);
1308 val->totalram = pgdat->node_present_pages;
1309 val->freeram = nr_free_pages_pgdat(pgdat);
1310 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1311 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1312 val->mem_unit = PAGE_SIZE;
1314 #endif
1316 #define K(x) ((x) << (PAGE_SHIFT-10))
1319 * Show free area list (used inside shift_scroll-lock stuff)
1320 * We also calculate the percentage fragmentation. We do this by counting the
1321 * memory on each free list with the exception of the first item on the list.
1323 void show_free_areas(void)
1325 struct page_state ps;
1326 int cpu, temperature;
1327 unsigned long active;
1328 unsigned long inactive;
1329 unsigned long free;
1330 struct zone *zone;
1332 for_each_zone(zone) {
1333 show_node(zone);
1334 printk("%s per-cpu:", zone->name);
1336 if (!zone->present_pages) {
1337 printk(" empty\n");
1338 continue;
1339 } else
1340 printk("\n");
1342 for_each_online_cpu(cpu) {
1343 struct per_cpu_pageset *pageset;
1345 pageset = zone_pcp(zone, cpu);
1347 for (temperature = 0; temperature < 2; temperature++)
1348 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1349 cpu,
1350 temperature ? "cold" : "hot",
1351 pageset->pcp[temperature].low,
1352 pageset->pcp[temperature].high,
1353 pageset->pcp[temperature].batch,
1354 pageset->pcp[temperature].count);
1358 get_page_state(&ps);
1359 get_zone_counts(&active, &inactive, &free);
1361 printk("Free pages: %11ukB (%ukB HighMem)\n",
1362 K(nr_free_pages()),
1363 K(nr_free_highpages()));
1365 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1366 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1367 active,
1368 inactive,
1369 ps.nr_dirty,
1370 ps.nr_writeback,
1371 ps.nr_unstable,
1372 nr_free_pages(),
1373 ps.nr_slab,
1374 ps.nr_mapped,
1375 ps.nr_page_table_pages);
1377 for_each_zone(zone) {
1378 int i;
1380 show_node(zone);
1381 printk("%s"
1382 " free:%lukB"
1383 " min:%lukB"
1384 " low:%lukB"
1385 " high:%lukB"
1386 " active:%lukB"
1387 " inactive:%lukB"
1388 " present:%lukB"
1389 " pages_scanned:%lu"
1390 " all_unreclaimable? %s"
1391 "\n",
1392 zone->name,
1393 K(zone->free_pages),
1394 K(zone->pages_min),
1395 K(zone->pages_low),
1396 K(zone->pages_high),
1397 K(zone->nr_active),
1398 K(zone->nr_inactive),
1399 K(zone->present_pages),
1400 zone->pages_scanned,
1401 (zone->all_unreclaimable ? "yes" : "no")
1403 printk("lowmem_reserve[]:");
1404 for (i = 0; i < MAX_NR_ZONES; i++)
1405 printk(" %lu", zone->lowmem_reserve[i]);
1406 printk("\n");
1409 for_each_zone(zone) {
1410 unsigned long nr, flags, order, total = 0;
1412 show_node(zone);
1413 printk("%s: ", zone->name);
1414 if (!zone->present_pages) {
1415 printk("empty\n");
1416 continue;
1419 spin_lock_irqsave(&zone->lock, flags);
1420 for (order = 0; order < MAX_ORDER; order++) {
1421 nr = zone->free_area[order].nr_free;
1422 total += nr << order;
1423 printk("%lu*%lukB ", nr, K(1UL) << order);
1425 spin_unlock_irqrestore(&zone->lock, flags);
1426 printk("= %lukB\n", K(total));
1429 show_swap_cache_info();
1433 * Builds allocation fallback zone lists.
1435 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1437 switch (k) {
1438 struct zone *zone;
1439 default:
1440 BUG();
1441 case ZONE_HIGHMEM:
1442 zone = pgdat->node_zones + ZONE_HIGHMEM;
1443 if (zone->present_pages) {
1444 #ifndef CONFIG_HIGHMEM
1445 BUG();
1446 #endif
1447 zonelist->zones[j++] = zone;
1449 case ZONE_NORMAL:
1450 zone = pgdat->node_zones + ZONE_NORMAL;
1451 if (zone->present_pages)
1452 zonelist->zones[j++] = zone;
1453 case ZONE_DMA32:
1454 zone = pgdat->node_zones + ZONE_DMA32;
1455 if (zone->present_pages)
1456 zonelist->zones[j++] = zone;
1457 case ZONE_DMA:
1458 zone = pgdat->node_zones + ZONE_DMA;
1459 if (zone->present_pages)
1460 zonelist->zones[j++] = zone;
1463 return j;
1466 static inline int highest_zone(int zone_bits)
1468 int res = ZONE_NORMAL;
1469 if (zone_bits & (__force int)__GFP_HIGHMEM)
1470 res = ZONE_HIGHMEM;
1471 if (zone_bits & (__force int)__GFP_DMA32)
1472 res = ZONE_DMA32;
1473 if (zone_bits & (__force int)__GFP_DMA)
1474 res = ZONE_DMA;
1475 return res;
1478 #ifdef CONFIG_NUMA
1479 #define MAX_NODE_LOAD (num_online_nodes())
1480 static int __initdata node_load[MAX_NUMNODES];
1482 * find_next_best_node - find the next node that should appear in a given node's fallback list
1483 * @node: node whose fallback list we're appending
1484 * @used_node_mask: nodemask_t of already used nodes
1486 * We use a number of factors to determine which is the next node that should
1487 * appear on a given node's fallback list. The node should not have appeared
1488 * already in @node's fallback list, and it should be the next closest node
1489 * according to the distance array (which contains arbitrary distance values
1490 * from each node to each node in the system), and should also prefer nodes
1491 * with no CPUs, since presumably they'll have very little allocation pressure
1492 * on them otherwise.
1493 * It returns -1 if no node is found.
1495 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1497 int i, n, val;
1498 int min_val = INT_MAX;
1499 int best_node = -1;
1501 for_each_online_node(i) {
1502 cpumask_t tmp;
1504 /* Start from local node */
1505 n = (node+i) % num_online_nodes();
1507 /* Don't want a node to appear more than once */
1508 if (node_isset(n, *used_node_mask))
1509 continue;
1511 /* Use the local node if we haven't already */
1512 if (!node_isset(node, *used_node_mask)) {
1513 best_node = node;
1514 break;
1517 /* Use the distance array to find the distance */
1518 val = node_distance(node, n);
1520 /* Give preference to headless and unused nodes */
1521 tmp = node_to_cpumask(n);
1522 if (!cpus_empty(tmp))
1523 val += PENALTY_FOR_NODE_WITH_CPUS;
1525 /* Slight preference for less loaded node */
1526 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1527 val += node_load[n];
1529 if (val < min_val) {
1530 min_val = val;
1531 best_node = n;
1535 if (best_node >= 0)
1536 node_set(best_node, *used_node_mask);
1538 return best_node;
1541 static void __init build_zonelists(pg_data_t *pgdat)
1543 int i, j, k, node, local_node;
1544 int prev_node, load;
1545 struct zonelist *zonelist;
1546 nodemask_t used_mask;
1548 /* initialize zonelists */
1549 for (i = 0; i < GFP_ZONETYPES; i++) {
1550 zonelist = pgdat->node_zonelists + i;
1551 zonelist->zones[0] = NULL;
1554 /* NUMA-aware ordering of nodes */
1555 local_node = pgdat->node_id;
1556 load = num_online_nodes();
1557 prev_node = local_node;
1558 nodes_clear(used_mask);
1559 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1561 * We don't want to pressure a particular node.
1562 * So adding penalty to the first node in same
1563 * distance group to make it round-robin.
1565 if (node_distance(local_node, node) !=
1566 node_distance(local_node, prev_node))
1567 node_load[node] += load;
1568 prev_node = node;
1569 load--;
1570 for (i = 0; i < GFP_ZONETYPES; i++) {
1571 zonelist = pgdat->node_zonelists + i;
1572 for (j = 0; zonelist->zones[j] != NULL; j++);
1574 k = highest_zone(i);
1576 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1577 zonelist->zones[j] = NULL;
1582 #else /* CONFIG_NUMA */
1584 static void __init build_zonelists(pg_data_t *pgdat)
1586 int i, j, k, node, local_node;
1588 local_node = pgdat->node_id;
1589 for (i = 0; i < GFP_ZONETYPES; i++) {
1590 struct zonelist *zonelist;
1592 zonelist = pgdat->node_zonelists + i;
1594 j = 0;
1595 k = highest_zone(i);
1596 j = build_zonelists_node(pgdat, zonelist, j, k);
1598 * Now we build the zonelist so that it contains the zones
1599 * of all the other nodes.
1600 * We don't want to pressure a particular node, so when
1601 * building the zones for node N, we make sure that the
1602 * zones coming right after the local ones are those from
1603 * node N+1 (modulo N)
1605 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1606 if (!node_online(node))
1607 continue;
1608 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1610 for (node = 0; node < local_node; node++) {
1611 if (!node_online(node))
1612 continue;
1613 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1616 zonelist->zones[j] = NULL;
1620 #endif /* CONFIG_NUMA */
1622 void __init build_all_zonelists(void)
1624 int i;
1626 for_each_online_node(i)
1627 build_zonelists(NODE_DATA(i));
1628 printk("Built %i zonelists\n", num_online_nodes());
1629 cpuset_init_current_mems_allowed();
1633 * Helper functions to size the waitqueue hash table.
1634 * Essentially these want to choose hash table sizes sufficiently
1635 * large so that collisions trying to wait on pages are rare.
1636 * But in fact, the number of active page waitqueues on typical
1637 * systems is ridiculously low, less than 200. So this is even
1638 * conservative, even though it seems large.
1640 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1641 * waitqueues, i.e. the size of the waitq table given the number of pages.
1643 #define PAGES_PER_WAITQUEUE 256
1645 static inline unsigned long wait_table_size(unsigned long pages)
1647 unsigned long size = 1;
1649 pages /= PAGES_PER_WAITQUEUE;
1651 while (size < pages)
1652 size <<= 1;
1655 * Once we have dozens or even hundreds of threads sleeping
1656 * on IO we've got bigger problems than wait queue collision.
1657 * Limit the size of the wait table to a reasonable size.
1659 size = min(size, 4096UL);
1661 return max(size, 4UL);
1665 * This is an integer logarithm so that shifts can be used later
1666 * to extract the more random high bits from the multiplicative
1667 * hash function before the remainder is taken.
1669 static inline unsigned long wait_table_bits(unsigned long size)
1671 return ffz(~size);
1674 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1676 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1677 unsigned long *zones_size, unsigned long *zholes_size)
1679 unsigned long realtotalpages, totalpages = 0;
1680 int i;
1682 for (i = 0; i < MAX_NR_ZONES; i++)
1683 totalpages += zones_size[i];
1684 pgdat->node_spanned_pages = totalpages;
1686 realtotalpages = totalpages;
1687 if (zholes_size)
1688 for (i = 0; i < MAX_NR_ZONES; i++)
1689 realtotalpages -= zholes_size[i];
1690 pgdat->node_present_pages = realtotalpages;
1691 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1696 * Initially all pages are reserved - free ones are freed
1697 * up by free_all_bootmem() once the early boot process is
1698 * done. Non-atomic initialization, single-pass.
1700 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1701 unsigned long start_pfn)
1703 struct page *page;
1704 unsigned long end_pfn = start_pfn + size;
1705 unsigned long pfn;
1707 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1708 if (!early_pfn_valid(pfn))
1709 continue;
1710 page = pfn_to_page(pfn);
1711 set_page_links(page, zone, nid, pfn);
1712 set_page_count(page, 1);
1713 reset_page_mapcount(page);
1714 SetPageReserved(page);
1715 INIT_LIST_HEAD(&page->lru);
1716 #ifdef WANT_PAGE_VIRTUAL
1717 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1718 if (!is_highmem_idx(zone))
1719 set_page_address(page, __va(pfn << PAGE_SHIFT));
1720 #endif
1724 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1725 unsigned long size)
1727 int order;
1728 for (order = 0; order < MAX_ORDER ; order++) {
1729 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1730 zone->free_area[order].nr_free = 0;
1734 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1735 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1736 unsigned long size)
1738 unsigned long snum = pfn_to_section_nr(pfn);
1739 unsigned long end = pfn_to_section_nr(pfn + size);
1741 if (FLAGS_HAS_NODE)
1742 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1743 else
1744 for (; snum <= end; snum++)
1745 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1748 #ifndef __HAVE_ARCH_MEMMAP_INIT
1749 #define memmap_init(size, nid, zone, start_pfn) \
1750 memmap_init_zone((size), (nid), (zone), (start_pfn))
1751 #endif
1753 static int __devinit zone_batchsize(struct zone *zone)
1755 int batch;
1758 * The per-cpu-pages pools are set to around 1000th of the
1759 * size of the zone. But no more than 1/2 of a meg.
1761 * OK, so we don't know how big the cache is. So guess.
1763 batch = zone->present_pages / 1024;
1764 if (batch * PAGE_SIZE > 512 * 1024)
1765 batch = (512 * 1024) / PAGE_SIZE;
1766 batch /= 4; /* We effectively *= 4 below */
1767 if (batch < 1)
1768 batch = 1;
1771 * Clamp the batch to a 2^n - 1 value. Having a power
1772 * of 2 value was found to be more likely to have
1773 * suboptimal cache aliasing properties in some cases.
1775 * For example if 2 tasks are alternately allocating
1776 * batches of pages, one task can end up with a lot
1777 * of pages of one half of the possible page colors
1778 * and the other with pages of the other colors.
1780 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1782 return batch;
1785 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1787 struct per_cpu_pages *pcp;
1789 memset(p, 0, sizeof(*p));
1791 pcp = &p->pcp[0]; /* hot */
1792 pcp->count = 0;
1793 pcp->low = 0;
1794 pcp->high = 6 * batch;
1795 pcp->batch = max(1UL, 1 * batch);
1796 INIT_LIST_HEAD(&pcp->list);
1798 pcp = &p->pcp[1]; /* cold*/
1799 pcp->count = 0;
1800 pcp->low = 0;
1801 pcp->high = 2 * batch;
1802 pcp->batch = max(1UL, batch/2);
1803 INIT_LIST_HEAD(&pcp->list);
1806 #ifdef CONFIG_NUMA
1808 * Boot pageset table. One per cpu which is going to be used for all
1809 * zones and all nodes. The parameters will be set in such a way
1810 * that an item put on a list will immediately be handed over to
1811 * the buddy list. This is safe since pageset manipulation is done
1812 * with interrupts disabled.
1814 * Some NUMA counter updates may also be caught by the boot pagesets.
1816 * The boot_pagesets must be kept even after bootup is complete for
1817 * unused processors and/or zones. They do play a role for bootstrapping
1818 * hotplugged processors.
1820 * zoneinfo_show() and maybe other functions do
1821 * not check if the processor is online before following the pageset pointer.
1822 * Other parts of the kernel may not check if the zone is available.
1824 static struct per_cpu_pageset
1825 boot_pageset[NR_CPUS];
1828 * Dynamically allocate memory for the
1829 * per cpu pageset array in struct zone.
1831 static int __devinit process_zones(int cpu)
1833 struct zone *zone, *dzone;
1835 for_each_zone(zone) {
1837 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1838 GFP_KERNEL, cpu_to_node(cpu));
1839 if (!zone->pageset[cpu])
1840 goto bad;
1842 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1845 return 0;
1846 bad:
1847 for_each_zone(dzone) {
1848 if (dzone == zone)
1849 break;
1850 kfree(dzone->pageset[cpu]);
1851 dzone->pageset[cpu] = NULL;
1853 return -ENOMEM;
1856 static inline void free_zone_pagesets(int cpu)
1858 #ifdef CONFIG_NUMA
1859 struct zone *zone;
1861 for_each_zone(zone) {
1862 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1864 zone_pcp(zone, cpu) = NULL;
1865 kfree(pset);
1867 #endif
1870 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1871 unsigned long action,
1872 void *hcpu)
1874 int cpu = (long)hcpu;
1875 int ret = NOTIFY_OK;
1877 switch (action) {
1878 case CPU_UP_PREPARE:
1879 if (process_zones(cpu))
1880 ret = NOTIFY_BAD;
1881 break;
1882 case CPU_UP_CANCELED:
1883 case CPU_DEAD:
1884 free_zone_pagesets(cpu);
1885 break;
1886 default:
1887 break;
1889 return ret;
1892 static struct notifier_block pageset_notifier =
1893 { &pageset_cpuup_callback, NULL, 0 };
1895 void __init setup_per_cpu_pageset(void)
1897 int err;
1899 /* Initialize per_cpu_pageset for cpu 0.
1900 * A cpuup callback will do this for every cpu
1901 * as it comes online
1903 err = process_zones(smp_processor_id());
1904 BUG_ON(err);
1905 register_cpu_notifier(&pageset_notifier);
1908 #endif
1910 static __devinit
1911 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1913 int i;
1914 struct pglist_data *pgdat = zone->zone_pgdat;
1917 * The per-page waitqueue mechanism uses hashed waitqueues
1918 * per zone.
1920 zone->wait_table_size = wait_table_size(zone_size_pages);
1921 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1922 zone->wait_table = (wait_queue_head_t *)
1923 alloc_bootmem_node(pgdat, zone->wait_table_size
1924 * sizeof(wait_queue_head_t));
1926 for(i = 0; i < zone->wait_table_size; ++i)
1927 init_waitqueue_head(zone->wait_table + i);
1930 static __devinit void zone_pcp_init(struct zone *zone)
1932 int cpu;
1933 unsigned long batch = zone_batchsize(zone);
1935 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1936 #ifdef CONFIG_NUMA
1937 /* Early boot. Slab allocator not functional yet */
1938 zone->pageset[cpu] = &boot_pageset[cpu];
1939 setup_pageset(&boot_pageset[cpu],0);
1940 #else
1941 setup_pageset(zone_pcp(zone,cpu), batch);
1942 #endif
1944 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1945 zone->name, zone->present_pages, batch);
1948 static __devinit void init_currently_empty_zone(struct zone *zone,
1949 unsigned long zone_start_pfn, unsigned long size)
1951 struct pglist_data *pgdat = zone->zone_pgdat;
1953 zone_wait_table_init(zone, size);
1954 pgdat->nr_zones = zone_idx(zone) + 1;
1956 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1957 zone->zone_start_pfn = zone_start_pfn;
1959 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1961 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1965 * Set up the zone data structures:
1966 * - mark all pages reserved
1967 * - mark all memory queues empty
1968 * - clear the memory bitmaps
1970 static void __init free_area_init_core(struct pglist_data *pgdat,
1971 unsigned long *zones_size, unsigned long *zholes_size)
1973 unsigned long j;
1974 int nid = pgdat->node_id;
1975 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1977 pgdat_resize_init(pgdat);
1978 pgdat->nr_zones = 0;
1979 init_waitqueue_head(&pgdat->kswapd_wait);
1980 pgdat->kswapd_max_order = 0;
1982 for (j = 0; j < MAX_NR_ZONES; j++) {
1983 struct zone *zone = pgdat->node_zones + j;
1984 unsigned long size, realsize;
1986 realsize = size = zones_size[j];
1987 if (zholes_size)
1988 realsize -= zholes_size[j];
1990 if (j < ZONE_HIGHMEM)
1991 nr_kernel_pages += realsize;
1992 nr_all_pages += realsize;
1994 zone->spanned_pages = size;
1995 zone->present_pages = realsize;
1996 zone->name = zone_names[j];
1997 spin_lock_init(&zone->lock);
1998 spin_lock_init(&zone->lru_lock);
1999 zone_seqlock_init(zone);
2000 zone->zone_pgdat = pgdat;
2001 zone->free_pages = 0;
2003 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2005 zone_pcp_init(zone);
2006 INIT_LIST_HEAD(&zone->active_list);
2007 INIT_LIST_HEAD(&zone->inactive_list);
2008 zone->nr_scan_active = 0;
2009 zone->nr_scan_inactive = 0;
2010 zone->nr_active = 0;
2011 zone->nr_inactive = 0;
2012 atomic_set(&zone->reclaim_in_progress, 0);
2013 if (!size)
2014 continue;
2016 zonetable_add(zone, nid, j, zone_start_pfn, size);
2017 init_currently_empty_zone(zone, zone_start_pfn, size);
2018 zone_start_pfn += size;
2022 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2024 /* Skip empty nodes */
2025 if (!pgdat->node_spanned_pages)
2026 return;
2028 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2029 /* ia64 gets its own node_mem_map, before this, without bootmem */
2030 if (!pgdat->node_mem_map) {
2031 unsigned long size;
2032 struct page *map;
2034 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2035 map = alloc_remap(pgdat->node_id, size);
2036 if (!map)
2037 map = alloc_bootmem_node(pgdat, size);
2038 pgdat->node_mem_map = map;
2040 #ifdef CONFIG_FLATMEM
2042 * With no DISCONTIG, the global mem_map is just set as node 0's
2044 if (pgdat == NODE_DATA(0))
2045 mem_map = NODE_DATA(0)->node_mem_map;
2046 #endif
2047 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2050 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2051 unsigned long *zones_size, unsigned long node_start_pfn,
2052 unsigned long *zholes_size)
2054 pgdat->node_id = nid;
2055 pgdat->node_start_pfn = node_start_pfn;
2056 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2058 alloc_node_mem_map(pgdat);
2060 free_area_init_core(pgdat, zones_size, zholes_size);
2063 #ifndef CONFIG_NEED_MULTIPLE_NODES
2064 static bootmem_data_t contig_bootmem_data;
2065 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2067 EXPORT_SYMBOL(contig_page_data);
2068 #endif
2070 void __init free_area_init(unsigned long *zones_size)
2072 free_area_init_node(0, NODE_DATA(0), zones_size,
2073 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2076 #ifdef CONFIG_PROC_FS
2078 #include <linux/seq_file.h>
2080 static void *frag_start(struct seq_file *m, loff_t *pos)
2082 pg_data_t *pgdat;
2083 loff_t node = *pos;
2085 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2086 --node;
2088 return pgdat;
2091 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2093 pg_data_t *pgdat = (pg_data_t *)arg;
2095 (*pos)++;
2096 return pgdat->pgdat_next;
2099 static void frag_stop(struct seq_file *m, void *arg)
2104 * This walks the free areas for each zone.
2106 static int frag_show(struct seq_file *m, void *arg)
2108 pg_data_t *pgdat = (pg_data_t *)arg;
2109 struct zone *zone;
2110 struct zone *node_zones = pgdat->node_zones;
2111 unsigned long flags;
2112 int order;
2114 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2115 if (!zone->present_pages)
2116 continue;
2118 spin_lock_irqsave(&zone->lock, flags);
2119 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2120 for (order = 0; order < MAX_ORDER; ++order)
2121 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2122 spin_unlock_irqrestore(&zone->lock, flags);
2123 seq_putc(m, '\n');
2125 return 0;
2128 struct seq_operations fragmentation_op = {
2129 .start = frag_start,
2130 .next = frag_next,
2131 .stop = frag_stop,
2132 .show = frag_show,
2136 * Output information about zones in @pgdat.
2138 static int zoneinfo_show(struct seq_file *m, void *arg)
2140 pg_data_t *pgdat = arg;
2141 struct zone *zone;
2142 struct zone *node_zones = pgdat->node_zones;
2143 unsigned long flags;
2145 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2146 int i;
2148 if (!zone->present_pages)
2149 continue;
2151 spin_lock_irqsave(&zone->lock, flags);
2152 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2153 seq_printf(m,
2154 "\n pages free %lu"
2155 "\n min %lu"
2156 "\n low %lu"
2157 "\n high %lu"
2158 "\n active %lu"
2159 "\n inactive %lu"
2160 "\n scanned %lu (a: %lu i: %lu)"
2161 "\n spanned %lu"
2162 "\n present %lu",
2163 zone->free_pages,
2164 zone->pages_min,
2165 zone->pages_low,
2166 zone->pages_high,
2167 zone->nr_active,
2168 zone->nr_inactive,
2169 zone->pages_scanned,
2170 zone->nr_scan_active, zone->nr_scan_inactive,
2171 zone->spanned_pages,
2172 zone->present_pages);
2173 seq_printf(m,
2174 "\n protection: (%lu",
2175 zone->lowmem_reserve[0]);
2176 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2177 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2178 seq_printf(m,
2180 "\n pagesets");
2181 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2182 struct per_cpu_pageset *pageset;
2183 int j;
2185 pageset = zone_pcp(zone, i);
2186 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2187 if (pageset->pcp[j].count)
2188 break;
2190 if (j == ARRAY_SIZE(pageset->pcp))
2191 continue;
2192 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2193 seq_printf(m,
2194 "\n cpu: %i pcp: %i"
2195 "\n count: %i"
2196 "\n low: %i"
2197 "\n high: %i"
2198 "\n batch: %i",
2199 i, j,
2200 pageset->pcp[j].count,
2201 pageset->pcp[j].low,
2202 pageset->pcp[j].high,
2203 pageset->pcp[j].batch);
2205 #ifdef CONFIG_NUMA
2206 seq_printf(m,
2207 "\n numa_hit: %lu"
2208 "\n numa_miss: %lu"
2209 "\n numa_foreign: %lu"
2210 "\n interleave_hit: %lu"
2211 "\n local_node: %lu"
2212 "\n other_node: %lu",
2213 pageset->numa_hit,
2214 pageset->numa_miss,
2215 pageset->numa_foreign,
2216 pageset->interleave_hit,
2217 pageset->local_node,
2218 pageset->other_node);
2219 #endif
2221 seq_printf(m,
2222 "\n all_unreclaimable: %u"
2223 "\n prev_priority: %i"
2224 "\n temp_priority: %i"
2225 "\n start_pfn: %lu",
2226 zone->all_unreclaimable,
2227 zone->prev_priority,
2228 zone->temp_priority,
2229 zone->zone_start_pfn);
2230 spin_unlock_irqrestore(&zone->lock, flags);
2231 seq_putc(m, '\n');
2233 return 0;
2236 struct seq_operations zoneinfo_op = {
2237 .start = frag_start, /* iterate over all zones. The same as in
2238 * fragmentation. */
2239 .next = frag_next,
2240 .stop = frag_stop,
2241 .show = zoneinfo_show,
2244 static char *vmstat_text[] = {
2245 "nr_dirty",
2246 "nr_writeback",
2247 "nr_unstable",
2248 "nr_page_table_pages",
2249 "nr_mapped",
2250 "nr_slab",
2252 "pgpgin",
2253 "pgpgout",
2254 "pswpin",
2255 "pswpout",
2256 "pgalloc_high",
2258 "pgalloc_normal",
2259 "pgalloc_dma",
2260 "pgfree",
2261 "pgactivate",
2262 "pgdeactivate",
2264 "pgfault",
2265 "pgmajfault",
2266 "pgrefill_high",
2267 "pgrefill_normal",
2268 "pgrefill_dma",
2270 "pgsteal_high",
2271 "pgsteal_normal",
2272 "pgsteal_dma",
2273 "pgscan_kswapd_high",
2274 "pgscan_kswapd_normal",
2276 "pgscan_kswapd_dma",
2277 "pgscan_direct_high",
2278 "pgscan_direct_normal",
2279 "pgscan_direct_dma",
2280 "pginodesteal",
2282 "slabs_scanned",
2283 "kswapd_steal",
2284 "kswapd_inodesteal",
2285 "pageoutrun",
2286 "allocstall",
2288 "pgrotated",
2289 "nr_bounce",
2292 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2294 struct page_state *ps;
2296 if (*pos >= ARRAY_SIZE(vmstat_text))
2297 return NULL;
2299 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2300 m->private = ps;
2301 if (!ps)
2302 return ERR_PTR(-ENOMEM);
2303 get_full_page_state(ps);
2304 ps->pgpgin /= 2; /* sectors -> kbytes */
2305 ps->pgpgout /= 2;
2306 return (unsigned long *)ps + *pos;
2309 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2311 (*pos)++;
2312 if (*pos >= ARRAY_SIZE(vmstat_text))
2313 return NULL;
2314 return (unsigned long *)m->private + *pos;
2317 static int vmstat_show(struct seq_file *m, void *arg)
2319 unsigned long *l = arg;
2320 unsigned long off = l - (unsigned long *)m->private;
2322 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2323 return 0;
2326 static void vmstat_stop(struct seq_file *m, void *arg)
2328 kfree(m->private);
2329 m->private = NULL;
2332 struct seq_operations vmstat_op = {
2333 .start = vmstat_start,
2334 .next = vmstat_next,
2335 .stop = vmstat_stop,
2336 .show = vmstat_show,
2339 #endif /* CONFIG_PROC_FS */
2341 #ifdef CONFIG_HOTPLUG_CPU
2342 static int page_alloc_cpu_notify(struct notifier_block *self,
2343 unsigned long action, void *hcpu)
2345 int cpu = (unsigned long)hcpu;
2346 long *count;
2347 unsigned long *src, *dest;
2349 if (action == CPU_DEAD) {
2350 int i;
2352 /* Drain local pagecache count. */
2353 count = &per_cpu(nr_pagecache_local, cpu);
2354 atomic_add(*count, &nr_pagecache);
2355 *count = 0;
2356 local_irq_disable();
2357 __drain_pages(cpu);
2359 /* Add dead cpu's page_states to our own. */
2360 dest = (unsigned long *)&__get_cpu_var(page_states);
2361 src = (unsigned long *)&per_cpu(page_states, cpu);
2363 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2364 i++) {
2365 dest[i] += src[i];
2366 src[i] = 0;
2369 local_irq_enable();
2371 return NOTIFY_OK;
2373 #endif /* CONFIG_HOTPLUG_CPU */
2375 void __init page_alloc_init(void)
2377 hotcpu_notifier(page_alloc_cpu_notify, 0);
2381 * setup_per_zone_lowmem_reserve - called whenever
2382 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2383 * has a correct pages reserved value, so an adequate number of
2384 * pages are left in the zone after a successful __alloc_pages().
2386 static void setup_per_zone_lowmem_reserve(void)
2388 struct pglist_data *pgdat;
2389 int j, idx;
2391 for_each_pgdat(pgdat) {
2392 for (j = 0; j < MAX_NR_ZONES; j++) {
2393 struct zone *zone = pgdat->node_zones + j;
2394 unsigned long present_pages = zone->present_pages;
2396 zone->lowmem_reserve[j] = 0;
2398 for (idx = j-1; idx >= 0; idx--) {
2399 struct zone *lower_zone;
2401 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2402 sysctl_lowmem_reserve_ratio[idx] = 1;
2404 lower_zone = pgdat->node_zones + idx;
2405 lower_zone->lowmem_reserve[j] = present_pages /
2406 sysctl_lowmem_reserve_ratio[idx];
2407 present_pages += lower_zone->present_pages;
2414 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2415 * that the pages_{min,low,high} values for each zone are set correctly
2416 * with respect to min_free_kbytes.
2418 void setup_per_zone_pages_min(void)
2420 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2421 unsigned long lowmem_pages = 0;
2422 struct zone *zone;
2423 unsigned long flags;
2425 /* Calculate total number of !ZONE_HIGHMEM pages */
2426 for_each_zone(zone) {
2427 if (!is_highmem(zone))
2428 lowmem_pages += zone->present_pages;
2431 for_each_zone(zone) {
2432 unsigned long tmp;
2433 spin_lock_irqsave(&zone->lru_lock, flags);
2434 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2435 if (is_highmem(zone)) {
2437 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2438 * need highmem pages, so cap pages_min to a small
2439 * value here.
2441 * The (pages_high-pages_low) and (pages_low-pages_min)
2442 * deltas controls asynch page reclaim, and so should
2443 * not be capped for highmem.
2445 int min_pages;
2447 min_pages = zone->present_pages / 1024;
2448 if (min_pages < SWAP_CLUSTER_MAX)
2449 min_pages = SWAP_CLUSTER_MAX;
2450 if (min_pages > 128)
2451 min_pages = 128;
2452 zone->pages_min = min_pages;
2453 } else {
2455 * If it's a lowmem zone, reserve a number of pages
2456 * proportionate to the zone's size.
2458 zone->pages_min = tmp;
2461 zone->pages_low = zone->pages_min + tmp / 4;
2462 zone->pages_high = zone->pages_min + tmp / 2;
2463 spin_unlock_irqrestore(&zone->lru_lock, flags);
2468 * Initialise min_free_kbytes.
2470 * For small machines we want it small (128k min). For large machines
2471 * we want it large (64MB max). But it is not linear, because network
2472 * bandwidth does not increase linearly with machine size. We use
2474 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2475 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2477 * which yields
2479 * 16MB: 512k
2480 * 32MB: 724k
2481 * 64MB: 1024k
2482 * 128MB: 1448k
2483 * 256MB: 2048k
2484 * 512MB: 2896k
2485 * 1024MB: 4096k
2486 * 2048MB: 5792k
2487 * 4096MB: 8192k
2488 * 8192MB: 11584k
2489 * 16384MB: 16384k
2491 static int __init init_per_zone_pages_min(void)
2493 unsigned long lowmem_kbytes;
2495 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2497 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2498 if (min_free_kbytes < 128)
2499 min_free_kbytes = 128;
2500 if (min_free_kbytes > 65536)
2501 min_free_kbytes = 65536;
2502 setup_per_zone_pages_min();
2503 setup_per_zone_lowmem_reserve();
2504 return 0;
2506 module_init(init_per_zone_pages_min)
2509 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2510 * that we can call two helper functions whenever min_free_kbytes
2511 * changes.
2513 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2514 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2516 proc_dointvec(table, write, file, buffer, length, ppos);
2517 setup_per_zone_pages_min();
2518 return 0;
2522 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2523 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2524 * whenever sysctl_lowmem_reserve_ratio changes.
2526 * The reserve ratio obviously has absolutely no relation with the
2527 * pages_min watermarks. The lowmem reserve ratio can only make sense
2528 * if in function of the boot time zone sizes.
2530 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2531 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2533 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2534 setup_per_zone_lowmem_reserve();
2535 return 0;
2538 __initdata int hashdist = HASHDIST_DEFAULT;
2540 #ifdef CONFIG_NUMA
2541 static int __init set_hashdist(char *str)
2543 if (!str)
2544 return 0;
2545 hashdist = simple_strtoul(str, &str, 0);
2546 return 1;
2548 __setup("hashdist=", set_hashdist);
2549 #endif
2552 * allocate a large system hash table from bootmem
2553 * - it is assumed that the hash table must contain an exact power-of-2
2554 * quantity of entries
2555 * - limit is the number of hash buckets, not the total allocation size
2557 void *__init alloc_large_system_hash(const char *tablename,
2558 unsigned long bucketsize,
2559 unsigned long numentries,
2560 int scale,
2561 int flags,
2562 unsigned int *_hash_shift,
2563 unsigned int *_hash_mask,
2564 unsigned long limit)
2566 unsigned long long max = limit;
2567 unsigned long log2qty, size;
2568 void *table = NULL;
2570 /* allow the kernel cmdline to have a say */
2571 if (!numentries) {
2572 /* round applicable memory size up to nearest megabyte */
2573 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2574 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2575 numentries >>= 20 - PAGE_SHIFT;
2576 numentries <<= 20 - PAGE_SHIFT;
2578 /* limit to 1 bucket per 2^scale bytes of low memory */
2579 if (scale > PAGE_SHIFT)
2580 numentries >>= (scale - PAGE_SHIFT);
2581 else
2582 numentries <<= (PAGE_SHIFT - scale);
2584 /* rounded up to nearest power of 2 in size */
2585 numentries = 1UL << (long_log2(numentries) + 1);
2587 /* limit allocation size to 1/16 total memory by default */
2588 if (max == 0) {
2589 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2590 do_div(max, bucketsize);
2593 if (numentries > max)
2594 numentries = max;
2596 log2qty = long_log2(numentries);
2598 do {
2599 size = bucketsize << log2qty;
2600 if (flags & HASH_EARLY)
2601 table = alloc_bootmem(size);
2602 else if (hashdist)
2603 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2604 else {
2605 unsigned long order;
2606 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2608 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2610 } while (!table && size > PAGE_SIZE && --log2qty);
2612 if (!table)
2613 panic("Failed to allocate %s hash table\n", tablename);
2615 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2616 tablename,
2617 (1U << log2qty),
2618 long_log2(size) - PAGE_SHIFT,
2619 size);
2621 if (_hash_shift)
2622 *_hash_shift = log2qty;
2623 if (_hash_mask)
2624 *_hash_mask = (1 << log2qty) - 1;
2626 return table;