[PATCH] Char: istallion, variables cleanup
[linux-2.6/linux-loongson.git] / drivers / char / istallion.c
blob28e9230e887a257e9d857fc9c23924ad6e0b41e8
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tty.h>
25 #include <linux/tty_flip.h>
26 #include <linux/serial.h>
27 #include <linux/cdk.h>
28 #include <linux/comstats.h>
29 #include <linux/istallion.h>
30 #include <linux/ioport.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/wait.h>
35 #include <linux/eisa.h>
36 #include <linux/ctype.h>
38 #include <asm/io.h>
39 #include <asm/uaccess.h>
41 #include <linux/pci.h>
43 /*****************************************************************************/
46 * Define different board types. Not all of the following board types
47 * are supported by this driver. But I will use the standard "assigned"
48 * board numbers. Currently supported boards are abbreviated as:
49 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
50 * STAL = Stallion.
52 #define BRD_UNKNOWN 0
53 #define BRD_STALLION 1
54 #define BRD_BRUMBY4 2
55 #define BRD_ONBOARD2 3
56 #define BRD_ONBOARD 4
57 #define BRD_ONBOARDE 7
58 #define BRD_ECP 23
59 #define BRD_ECPE 24
60 #define BRD_ECPMC 25
61 #define BRD_ECPPCI 29
63 #define BRD_BRUMBY BRD_BRUMBY4
66 * Define a configuration structure to hold the board configuration.
67 * Need to set this up in the code (for now) with the boards that are
68 * to be configured into the system. This is what needs to be modified
69 * when adding/removing/modifying boards. Each line entry in the
70 * stli_brdconf[] array is a board. Each line contains io/irq/memory
71 * ranges for that board (as well as what type of board it is).
72 * Some examples:
73 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
74 * This line will configure an EasyConnection 8/64 at io address 2a0,
75 * and shared memory address of cc000. Multiple EasyConnection 8/64
76 * boards can share the same shared memory address space. No interrupt
77 * is required for this board type.
78 * Another example:
79 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
80 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
81 * shared memory address of 0x80000000 (2 GByte). Multiple
82 * EasyConnection 8/64 EISA boards can share the same shared memory
83 * address space. No interrupt is required for this board type.
84 * Another example:
85 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
86 * This line will configure an ONboard (ISA type) at io address 240,
87 * and shared memory address of d0000. Multiple ONboards can share
88 * the same shared memory address space. No interrupt required.
89 * Another example:
90 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
91 * This line will configure a Brumby board (any number of ports!) at
92 * io address 360 and shared memory address of c8000. All Brumby boards
93 * configured into a system must have their own separate io and memory
94 * addresses. No interrupt is required.
95 * Another example:
96 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
97 * This line will configure an original Stallion board at io address 330
98 * and shared memory address d0000 (this would only be valid for a "V4.0"
99 * or Rev.O Stallion board). All Stallion boards configured into the
100 * system must have their own separate io and memory addresses. No
101 * interrupt is required.
104 struct stlconf {
105 int brdtype;
106 int ioaddr1;
107 int ioaddr2;
108 unsigned long memaddr;
109 int irq;
110 int irqtype;
113 static unsigned int stli_nrbrds;
115 /* stli_lock must NOT be taken holding brd_lock */
116 static spinlock_t stli_lock; /* TTY logic lock */
117 static spinlock_t brd_lock; /* Board logic lock */
120 * There is some experimental EISA board detection code in this driver.
121 * By default it is disabled, but for those that want to try it out,
122 * then set the define below to be 1.
124 #define STLI_EISAPROBE 0
126 /*****************************************************************************/
129 * Define some important driver characteristics. Device major numbers
130 * allocated as per Linux Device Registry.
132 #ifndef STL_SIOMEMMAJOR
133 #define STL_SIOMEMMAJOR 28
134 #endif
135 #ifndef STL_SERIALMAJOR
136 #define STL_SERIALMAJOR 24
137 #endif
138 #ifndef STL_CALLOUTMAJOR
139 #define STL_CALLOUTMAJOR 25
140 #endif
142 /*****************************************************************************/
145 * Define our local driver identity first. Set up stuff to deal with
146 * all the local structures required by a serial tty driver.
148 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
149 static char *stli_drvname = "istallion";
150 static char *stli_drvversion = "5.6.0";
151 static char *stli_serialname = "ttyE";
153 static struct tty_driver *stli_serial;
156 #define STLI_TXBUFSIZE 4096
159 * Use a fast local buffer for cooked characters. Typically a whole
160 * bunch of cooked characters come in for a port, 1 at a time. So we
161 * save those up into a local buffer, then write out the whole lot
162 * with a large memcpy. Just use 1 buffer for all ports, since its
163 * use it is only need for short periods of time by each port.
165 static char *stli_txcookbuf;
166 static int stli_txcooksize;
167 static int stli_txcookrealsize;
168 static struct tty_struct *stli_txcooktty;
171 * Define a local default termios struct. All ports will be created
172 * with this termios initially. Basically all it defines is a raw port
173 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
175 static struct ktermios stli_deftermios = {
176 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
177 .c_cc = INIT_C_CC,
178 .c_ispeed = 9600,
179 .c_ospeed = 9600,
183 * Define global stats structures. Not used often, and can be
184 * re-used for each stats call.
186 static comstats_t stli_comstats;
187 static combrd_t stli_brdstats;
188 static struct asystats stli_cdkstats;
190 /*****************************************************************************/
192 static struct stlibrd *stli_brds[STL_MAXBRDS];
194 static int stli_shared;
197 * Per board state flags. Used with the state field of the board struct.
198 * Not really much here... All we need to do is keep track of whether
199 * the board has been detected, and whether it is actually running a slave
200 * or not.
202 #define BST_FOUND 0x1
203 #define BST_STARTED 0x2
206 * Define the set of port state flags. These are marked for internal
207 * state purposes only, usually to do with the state of communications
208 * with the slave. Most of them need to be updated atomically, so always
209 * use the bit setting operations (unless protected by cli/sti).
211 #define ST_INITIALIZING 1
212 #define ST_OPENING 2
213 #define ST_CLOSING 3
214 #define ST_CMDING 4
215 #define ST_TXBUSY 5
216 #define ST_RXING 6
217 #define ST_DOFLUSHRX 7
218 #define ST_DOFLUSHTX 8
219 #define ST_DOSIGS 9
220 #define ST_RXSTOP 10
221 #define ST_GETSIGS 11
224 * Define an array of board names as printable strings. Handy for
225 * referencing boards when printing trace and stuff.
227 static char *stli_brdnames[] = {
228 "Unknown",
229 "Stallion",
230 "Brumby",
231 "ONboard-MC",
232 "ONboard",
233 "Brumby",
234 "Brumby",
235 "ONboard-EI",
236 NULL,
237 "ONboard",
238 "ONboard-MC",
239 "ONboard-MC",
240 NULL,
241 NULL,
242 NULL,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 "EasyIO",
249 "EC8/32-AT",
250 "EC8/32-MC",
251 "EC8/64-AT",
252 "EC8/64-EI",
253 "EC8/64-MC",
254 "EC8/32-PCI",
255 "EC8/64-PCI",
256 "EasyIO-PCI",
257 "EC/RA-PCI",
260 /*****************************************************************************/
263 * Define some string labels for arguments passed from the module
264 * load line. These allow for easy board definitions, and easy
265 * modification of the io, memory and irq resoucres.
268 static char *board0[8];
269 static char *board1[8];
270 static char *board2[8];
271 static char *board3[8];
273 static char **stli_brdsp[] = {
274 (char **) &board0,
275 (char **) &board1,
276 (char **) &board2,
277 (char **) &board3
281 * Define a set of common board names, and types. This is used to
282 * parse any module arguments.
285 static struct stlibrdtype {
286 char *name;
287 int type;
288 } stli_brdstr[] = {
289 { "stallion", BRD_STALLION },
290 { "1", BRD_STALLION },
291 { "brumby", BRD_BRUMBY },
292 { "brumby4", BRD_BRUMBY },
293 { "brumby/4", BRD_BRUMBY },
294 { "brumby-4", BRD_BRUMBY },
295 { "brumby8", BRD_BRUMBY },
296 { "brumby/8", BRD_BRUMBY },
297 { "brumby-8", BRD_BRUMBY },
298 { "brumby16", BRD_BRUMBY },
299 { "brumby/16", BRD_BRUMBY },
300 { "brumby-16", BRD_BRUMBY },
301 { "2", BRD_BRUMBY },
302 { "onboard2", BRD_ONBOARD2 },
303 { "onboard-2", BRD_ONBOARD2 },
304 { "onboard/2", BRD_ONBOARD2 },
305 { "onboard-mc", BRD_ONBOARD2 },
306 { "onboard/mc", BRD_ONBOARD2 },
307 { "onboard-mca", BRD_ONBOARD2 },
308 { "onboard/mca", BRD_ONBOARD2 },
309 { "3", BRD_ONBOARD2 },
310 { "onboard", BRD_ONBOARD },
311 { "onboardat", BRD_ONBOARD },
312 { "4", BRD_ONBOARD },
313 { "onboarde", BRD_ONBOARDE },
314 { "onboard-e", BRD_ONBOARDE },
315 { "onboard/e", BRD_ONBOARDE },
316 { "onboard-ei", BRD_ONBOARDE },
317 { "onboard/ei", BRD_ONBOARDE },
318 { "7", BRD_ONBOARDE },
319 { "ecp", BRD_ECP },
320 { "ecpat", BRD_ECP },
321 { "ec8/64", BRD_ECP },
322 { "ec8/64-at", BRD_ECP },
323 { "ec8/64-isa", BRD_ECP },
324 { "23", BRD_ECP },
325 { "ecpe", BRD_ECPE },
326 { "ecpei", BRD_ECPE },
327 { "ec8/64-e", BRD_ECPE },
328 { "ec8/64-ei", BRD_ECPE },
329 { "24", BRD_ECPE },
330 { "ecpmc", BRD_ECPMC },
331 { "ec8/64-mc", BRD_ECPMC },
332 { "ec8/64-mca", BRD_ECPMC },
333 { "25", BRD_ECPMC },
334 { "ecppci", BRD_ECPPCI },
335 { "ec/ra", BRD_ECPPCI },
336 { "ec/ra-pc", BRD_ECPPCI },
337 { "ec/ra-pci", BRD_ECPPCI },
338 { "29", BRD_ECPPCI },
342 * Define the module agruments.
344 MODULE_AUTHOR("Greg Ungerer");
345 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
346 MODULE_LICENSE("GPL");
349 module_param_array(board0, charp, NULL, 0);
350 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
351 module_param_array(board1, charp, NULL, 0);
352 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
353 module_param_array(board2, charp, NULL, 0);
354 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board3, charp, NULL, 0);
356 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
359 * Set up a default memory address table for EISA board probing.
360 * The default addresses are all bellow 1Mbyte, which has to be the
361 * case anyway. They should be safe, since we only read values from
362 * them, and interrupts are disabled while we do it. If the higher
363 * memory support is compiled in then we also try probing around
364 * the 1Gb, 2Gb and 3Gb areas as well...
366 static unsigned long stli_eisamemprobeaddrs[] = {
367 0xc0000, 0xd0000, 0xe0000, 0xf0000,
368 0x80000000, 0x80010000, 0x80020000, 0x80030000,
369 0x40000000, 0x40010000, 0x40020000, 0x40030000,
370 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
371 0xff000000, 0xff010000, 0xff020000, 0xff030000,
374 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
377 * Define the Stallion PCI vendor and device IDs.
379 #ifndef PCI_DEVICE_ID_ECRA
380 #define PCI_DEVICE_ID_ECRA 0x0004
381 #endif
383 static struct pci_device_id istallion_pci_tbl[] = {
384 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
385 { 0 }
387 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
389 static struct pci_driver stli_pcidriver;
391 /*****************************************************************************/
394 * Hardware configuration info for ECP boards. These defines apply
395 * to the directly accessible io ports of the ECP. There is a set of
396 * defines for each ECP board type, ISA, EISA, MCA and PCI.
398 #define ECP_IOSIZE 4
400 #define ECP_MEMSIZE (128 * 1024)
401 #define ECP_PCIMEMSIZE (256 * 1024)
403 #define ECP_ATPAGESIZE (4 * 1024)
404 #define ECP_MCPAGESIZE (4 * 1024)
405 #define ECP_EIPAGESIZE (64 * 1024)
406 #define ECP_PCIPAGESIZE (64 * 1024)
408 #define STL_EISAID 0x8c4e
411 * Important defines for the ISA class of ECP board.
413 #define ECP_ATIREG 0
414 #define ECP_ATCONFR 1
415 #define ECP_ATMEMAR 2
416 #define ECP_ATMEMPR 3
417 #define ECP_ATSTOP 0x1
418 #define ECP_ATINTENAB 0x10
419 #define ECP_ATENABLE 0x20
420 #define ECP_ATDISABLE 0x00
421 #define ECP_ATADDRMASK 0x3f000
422 #define ECP_ATADDRSHFT 12
425 * Important defines for the EISA class of ECP board.
427 #define ECP_EIIREG 0
428 #define ECP_EIMEMARL 1
429 #define ECP_EICONFR 2
430 #define ECP_EIMEMARH 3
431 #define ECP_EIENABLE 0x1
432 #define ECP_EIDISABLE 0x0
433 #define ECP_EISTOP 0x4
434 #define ECP_EIEDGE 0x00
435 #define ECP_EILEVEL 0x80
436 #define ECP_EIADDRMASKL 0x00ff0000
437 #define ECP_EIADDRSHFTL 16
438 #define ECP_EIADDRMASKH 0xff000000
439 #define ECP_EIADDRSHFTH 24
440 #define ECP_EIBRDENAB 0xc84
442 #define ECP_EISAID 0x4
445 * Important defines for the Micro-channel class of ECP board.
446 * (It has a lot in common with the ISA boards.)
448 #define ECP_MCIREG 0
449 #define ECP_MCCONFR 1
450 #define ECP_MCSTOP 0x20
451 #define ECP_MCENABLE 0x80
452 #define ECP_MCDISABLE 0x00
455 * Important defines for the PCI class of ECP board.
456 * (It has a lot in common with the other ECP boards.)
458 #define ECP_PCIIREG 0
459 #define ECP_PCICONFR 1
460 #define ECP_PCISTOP 0x01
463 * Hardware configuration info for ONboard and Brumby boards. These
464 * defines apply to the directly accessible io ports of these boards.
466 #define ONB_IOSIZE 16
467 #define ONB_MEMSIZE (64 * 1024)
468 #define ONB_ATPAGESIZE (64 * 1024)
469 #define ONB_MCPAGESIZE (64 * 1024)
470 #define ONB_EIMEMSIZE (128 * 1024)
471 #define ONB_EIPAGESIZE (64 * 1024)
474 * Important defines for the ISA class of ONboard board.
476 #define ONB_ATIREG 0
477 #define ONB_ATMEMAR 1
478 #define ONB_ATCONFR 2
479 #define ONB_ATSTOP 0x4
480 #define ONB_ATENABLE 0x01
481 #define ONB_ATDISABLE 0x00
482 #define ONB_ATADDRMASK 0xff0000
483 #define ONB_ATADDRSHFT 16
485 #define ONB_MEMENABLO 0
486 #define ONB_MEMENABHI 0x02
489 * Important defines for the EISA class of ONboard board.
491 #define ONB_EIIREG 0
492 #define ONB_EIMEMARL 1
493 #define ONB_EICONFR 2
494 #define ONB_EIMEMARH 3
495 #define ONB_EIENABLE 0x1
496 #define ONB_EIDISABLE 0x0
497 #define ONB_EISTOP 0x4
498 #define ONB_EIEDGE 0x00
499 #define ONB_EILEVEL 0x80
500 #define ONB_EIADDRMASKL 0x00ff0000
501 #define ONB_EIADDRSHFTL 16
502 #define ONB_EIADDRMASKH 0xff000000
503 #define ONB_EIADDRSHFTH 24
504 #define ONB_EIBRDENAB 0xc84
506 #define ONB_EISAID 0x1
509 * Important defines for the Brumby boards. They are pretty simple,
510 * there is not much that is programmably configurable.
512 #define BBY_IOSIZE 16
513 #define BBY_MEMSIZE (64 * 1024)
514 #define BBY_PAGESIZE (16 * 1024)
516 #define BBY_ATIREG 0
517 #define BBY_ATCONFR 1
518 #define BBY_ATSTOP 0x4
521 * Important defines for the Stallion boards. They are pretty simple,
522 * there is not much that is programmably configurable.
524 #define STAL_IOSIZE 16
525 #define STAL_MEMSIZE (64 * 1024)
526 #define STAL_PAGESIZE (64 * 1024)
529 * Define the set of status register values for EasyConnection panels.
530 * The signature will return with the status value for each panel. From
531 * this we can determine what is attached to the board - before we have
532 * actually down loaded any code to it.
534 #define ECH_PNLSTATUS 2
535 #define ECH_PNL16PORT 0x20
536 #define ECH_PNLIDMASK 0x07
537 #define ECH_PNLXPID 0x40
538 #define ECH_PNLINTRPEND 0x80
541 * Define some macros to do things to the board. Even those these boards
542 * are somewhat related there is often significantly different ways of
543 * doing some operation on it (like enable, paging, reset, etc). So each
544 * board class has a set of functions which do the commonly required
545 * operations. The macros below basically just call these functions,
546 * generally checking for a NULL function - which means that the board
547 * needs nothing done to it to achieve this operation!
549 #define EBRDINIT(brdp) \
550 if (brdp->init != NULL) \
551 (* brdp->init)(brdp)
553 #define EBRDENABLE(brdp) \
554 if (brdp->enable != NULL) \
555 (* brdp->enable)(brdp);
557 #define EBRDDISABLE(brdp) \
558 if (brdp->disable != NULL) \
559 (* brdp->disable)(brdp);
561 #define EBRDINTR(brdp) \
562 if (brdp->intr != NULL) \
563 (* brdp->intr)(brdp);
565 #define EBRDRESET(brdp) \
566 if (brdp->reset != NULL) \
567 (* brdp->reset)(brdp);
569 #define EBRDGETMEMPTR(brdp,offset) \
570 (* brdp->getmemptr)(brdp, offset, __LINE__)
573 * Define the maximal baud rate, and the default baud base for ports.
575 #define STL_MAXBAUD 460800
576 #define STL_BAUDBASE 115200
577 #define STL_CLOSEDELAY (5 * HZ / 10)
579 /*****************************************************************************/
582 * Define macros to extract a brd or port number from a minor number.
584 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
585 #define MINOR2PORT(min) ((min) & 0x3f)
587 /*****************************************************************************/
590 * Prototype all functions in this driver!
593 static int stli_parsebrd(struct stlconf *confp, char **argp);
594 static int stli_init(void);
595 static int stli_open(struct tty_struct *tty, struct file *filp);
596 static void stli_close(struct tty_struct *tty, struct file *filp);
597 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
598 static void stli_putchar(struct tty_struct *tty, unsigned char ch);
599 static void stli_flushchars(struct tty_struct *tty);
600 static int stli_writeroom(struct tty_struct *tty);
601 static int stli_charsinbuffer(struct tty_struct *tty);
602 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
603 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
604 static void stli_throttle(struct tty_struct *tty);
605 static void stli_unthrottle(struct tty_struct *tty);
606 static void stli_stop(struct tty_struct *tty);
607 static void stli_start(struct tty_struct *tty);
608 static void stli_flushbuffer(struct tty_struct *tty);
609 static void stli_breakctl(struct tty_struct *tty, int state);
610 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
611 static void stli_sendxchar(struct tty_struct *tty, char ch);
612 static void stli_hangup(struct tty_struct *tty);
613 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos);
615 static int stli_brdinit(struct stlibrd *brdp);
616 static int stli_startbrd(struct stlibrd *brdp);
617 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
618 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
619 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
620 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
621 static void stli_poll(unsigned long arg);
622 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
623 static int stli_initopen(struct stlibrd *brdp, struct stliport *portp);
624 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
625 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
626 static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp);
627 static void stli_dohangup(struct work_struct *);
628 static int stli_setport(struct stliport *portp);
629 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
630 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
631 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
633 static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
634 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
635 static long stli_mktiocm(unsigned long sigvalue);
636 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
637 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
638 static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp);
639 static int stli_getbrdstats(combrd_t __user *bp);
640 static int stli_getportstats(struct stliport *portp, comstats_t __user *cp);
641 static int stli_portcmdstats(struct stliport *portp);
642 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
643 static int stli_getportstruct(struct stliport __user *arg);
644 static int stli_getbrdstruct(struct stlibrd __user *arg);
645 static struct stlibrd *stli_allocbrd(void);
647 static void stli_ecpinit(struct stlibrd *brdp);
648 static void stli_ecpenable(struct stlibrd *brdp);
649 static void stli_ecpdisable(struct stlibrd *brdp);
650 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
651 static void stli_ecpreset(struct stlibrd *brdp);
652 static void stli_ecpintr(struct stlibrd *brdp);
653 static void stli_ecpeiinit(struct stlibrd *brdp);
654 static void stli_ecpeienable(struct stlibrd *brdp);
655 static void stli_ecpeidisable(struct stlibrd *brdp);
656 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
657 static void stli_ecpeireset(struct stlibrd *brdp);
658 static void stli_ecpmcenable(struct stlibrd *brdp);
659 static void stli_ecpmcdisable(struct stlibrd *brdp);
660 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
661 static void stli_ecpmcreset(struct stlibrd *brdp);
662 static void stli_ecppciinit(struct stlibrd *brdp);
663 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecppcireset(struct stlibrd *brdp);
666 static void stli_onbinit(struct stlibrd *brdp);
667 static void stli_onbenable(struct stlibrd *brdp);
668 static void stli_onbdisable(struct stlibrd *brdp);
669 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
670 static void stli_onbreset(struct stlibrd *brdp);
671 static void stli_onbeinit(struct stlibrd *brdp);
672 static void stli_onbeenable(struct stlibrd *brdp);
673 static void stli_onbedisable(struct stlibrd *brdp);
674 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
675 static void stli_onbereset(struct stlibrd *brdp);
676 static void stli_bbyinit(struct stlibrd *brdp);
677 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_bbyreset(struct stlibrd *brdp);
679 static void stli_stalinit(struct stlibrd *brdp);
680 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_stalreset(struct stlibrd *brdp);
683 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
685 static int stli_initecp(struct stlibrd *brdp);
686 static int stli_initonb(struct stlibrd *brdp);
687 static int stli_eisamemprobe(struct stlibrd *brdp);
688 static int stli_initports(struct stlibrd *brdp);
690 /*****************************************************************************/
693 * Define the driver info for a user level shared memory device. This
694 * device will work sort of like the /dev/kmem device - except that it
695 * will give access to the shared memory on the Stallion intelligent
696 * board. This is also a very useful debugging tool.
698 static const struct file_operations stli_fsiomem = {
699 .owner = THIS_MODULE,
700 .read = stli_memread,
701 .write = stli_memwrite,
702 .ioctl = stli_memioctl,
705 /*****************************************************************************/
708 * Define a timer_list entry for our poll routine. The slave board
709 * is polled every so often to see if anything needs doing. This is
710 * much cheaper on host cpu than using interrupts. It turns out to
711 * not increase character latency by much either...
713 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
715 static int stli_timeron;
718 * Define the calculation for the timeout routine.
720 #define STLI_TIMEOUT (jiffies + 1)
722 /*****************************************************************************/
724 static struct class *istallion_class;
726 static void stli_cleanup_ports(struct stlibrd *brdp)
728 struct stliport *portp;
729 unsigned int j;
731 for (j = 0; j < STL_MAXPORTS; j++) {
732 portp = brdp->ports[j];
733 if (portp != NULL) {
734 if (portp->tty != NULL)
735 tty_hangup(portp->tty);
736 kfree(portp);
742 * Loadable module initialization stuff.
745 static int __init istallion_module_init(void)
747 stli_init();
748 return 0;
751 /*****************************************************************************/
753 static void __exit istallion_module_exit(void)
755 struct stlibrd *brdp;
756 unsigned int j;
757 int i;
759 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
760 stli_drvversion);
762 pci_unregister_driver(&stli_pcidriver);
764 * Free up all allocated resources used by the ports. This includes
765 * memory and interrupts.
767 if (stli_timeron) {
768 stli_timeron = 0;
769 del_timer_sync(&stli_timerlist);
772 i = tty_unregister_driver(stli_serial);
773 if (i) {
774 printk("STALLION: failed to un-register tty driver, "
775 "errno=%d\n", -i);
776 return;
778 put_tty_driver(stli_serial);
779 for (j = 0; j < 4; j++)
780 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
781 class_destroy(istallion_class);
782 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
783 printk("STALLION: failed to un-register serial memory device, "
784 "errno=%d\n", -i);
786 kfree(stli_txcookbuf);
788 for (j = 0; (j < stli_nrbrds); j++) {
789 if ((brdp = stli_brds[j]) == NULL)
790 continue;
792 stli_cleanup_ports(brdp);
794 iounmap(brdp->membase);
795 if (brdp->iosize > 0)
796 release_region(brdp->iobase, brdp->iosize);
797 kfree(brdp);
798 stli_brds[j] = NULL;
802 module_init(istallion_module_init);
803 module_exit(istallion_module_exit);
805 /*****************************************************************************/
808 * Parse the supplied argument string, into the board conf struct.
811 static int stli_parsebrd(struct stlconf *confp, char **argp)
813 unsigned int i;
814 char *sp;
816 if (argp[0] == NULL || *argp[0] == 0)
817 return 0;
819 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
820 *sp = tolower(*sp);
822 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
823 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
824 break;
826 if (i == ARRAY_SIZE(stli_brdstr)) {
827 printk("STALLION: unknown board name, %s?\n", argp[0]);
828 return 0;
831 confp->brdtype = stli_brdstr[i].type;
832 if (argp[1] != NULL && *argp[1] != 0)
833 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
834 if (argp[2] != NULL && *argp[2] != 0)
835 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
836 return(1);
839 /*****************************************************************************/
841 static int stli_open(struct tty_struct *tty, struct file *filp)
843 struct stlibrd *brdp;
844 struct stliport *portp;
845 unsigned int minordev, brdnr, portnr;
846 int rc;
848 minordev = tty->index;
849 brdnr = MINOR2BRD(minordev);
850 if (brdnr >= stli_nrbrds)
851 return -ENODEV;
852 brdp = stli_brds[brdnr];
853 if (brdp == NULL)
854 return -ENODEV;
855 if ((brdp->state & BST_STARTED) == 0)
856 return -ENODEV;
857 portnr = MINOR2PORT(minordev);
858 if (portnr > brdp->nrports)
859 return -ENODEV;
861 portp = brdp->ports[portnr];
862 if (portp == NULL)
863 return -ENODEV;
864 if (portp->devnr < 1)
865 return -ENODEV;
869 * Check if this port is in the middle of closing. If so then wait
870 * until it is closed then return error status based on flag settings.
871 * The sleep here does not need interrupt protection since the wakeup
872 * for it is done with the same context.
874 if (portp->flags & ASYNC_CLOSING) {
875 interruptible_sleep_on(&portp->close_wait);
876 if (portp->flags & ASYNC_HUP_NOTIFY)
877 return -EAGAIN;
878 return -ERESTARTSYS;
882 * On the first open of the device setup the port hardware, and
883 * initialize the per port data structure. Since initializing the port
884 * requires several commands to the board we will need to wait for any
885 * other open that is already initializing the port.
887 portp->tty = tty;
888 tty->driver_data = portp;
889 portp->refcount++;
891 wait_event_interruptible(portp->raw_wait,
892 !test_bit(ST_INITIALIZING, &portp->state));
893 if (signal_pending(current))
894 return -ERESTARTSYS;
896 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
897 set_bit(ST_INITIALIZING, &portp->state);
898 if ((rc = stli_initopen(brdp, portp)) >= 0) {
899 portp->flags |= ASYNC_INITIALIZED;
900 clear_bit(TTY_IO_ERROR, &tty->flags);
902 clear_bit(ST_INITIALIZING, &portp->state);
903 wake_up_interruptible(&portp->raw_wait);
904 if (rc < 0)
905 return rc;
909 * Check if this port is in the middle of closing. If so then wait
910 * until it is closed then return error status, based on flag settings.
911 * The sleep here does not need interrupt protection since the wakeup
912 * for it is done with the same context.
914 if (portp->flags & ASYNC_CLOSING) {
915 interruptible_sleep_on(&portp->close_wait);
916 if (portp->flags & ASYNC_HUP_NOTIFY)
917 return -EAGAIN;
918 return -ERESTARTSYS;
922 * Based on type of open being done check if it can overlap with any
923 * previous opens still in effect. If we are a normal serial device
924 * then also we might have to wait for carrier.
926 if (!(filp->f_flags & O_NONBLOCK)) {
927 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
928 return rc;
930 portp->flags |= ASYNC_NORMAL_ACTIVE;
931 return 0;
934 /*****************************************************************************/
936 static void stli_close(struct tty_struct *tty, struct file *filp)
938 struct stlibrd *brdp;
939 struct stliport *portp;
940 unsigned long flags;
942 portp = tty->driver_data;
943 if (portp == NULL)
944 return;
946 spin_lock_irqsave(&stli_lock, flags);
947 if (tty_hung_up_p(filp)) {
948 spin_unlock_irqrestore(&stli_lock, flags);
949 return;
951 if ((tty->count == 1) && (portp->refcount != 1))
952 portp->refcount = 1;
953 if (portp->refcount-- > 1) {
954 spin_unlock_irqrestore(&stli_lock, flags);
955 return;
958 portp->flags |= ASYNC_CLOSING;
961 * May want to wait for data to drain before closing. The BUSY flag
962 * keeps track of whether we are still transmitting or not. It is
963 * updated by messages from the slave - indicating when all chars
964 * really have drained.
966 if (tty == stli_txcooktty)
967 stli_flushchars(tty);
968 tty->closing = 1;
969 spin_unlock_irqrestore(&stli_lock, flags);
971 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
972 tty_wait_until_sent(tty, portp->closing_wait);
974 portp->flags &= ~ASYNC_INITIALIZED;
975 brdp = stli_brds[portp->brdnr];
976 stli_rawclose(brdp, portp, 0, 0);
977 if (tty->termios->c_cflag & HUPCL) {
978 stli_mkasysigs(&portp->asig, 0, 0);
979 if (test_bit(ST_CMDING, &portp->state))
980 set_bit(ST_DOSIGS, &portp->state);
981 else
982 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
983 sizeof(asysigs_t), 0);
985 clear_bit(ST_TXBUSY, &portp->state);
986 clear_bit(ST_RXSTOP, &portp->state);
987 set_bit(TTY_IO_ERROR, &tty->flags);
988 if (tty->ldisc.flush_buffer)
989 (tty->ldisc.flush_buffer)(tty);
990 set_bit(ST_DOFLUSHRX, &portp->state);
991 stli_flushbuffer(tty);
993 tty->closing = 0;
994 portp->tty = NULL;
996 if (portp->openwaitcnt) {
997 if (portp->close_delay)
998 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
999 wake_up_interruptible(&portp->open_wait);
1002 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1003 wake_up_interruptible(&portp->close_wait);
1006 /*****************************************************************************/
1009 * Carry out first open operations on a port. This involves a number of
1010 * commands to be sent to the slave. We need to open the port, set the
1011 * notification events, set the initial port settings, get and set the
1012 * initial signal values. We sleep and wait in between each one. But
1013 * this still all happens pretty quickly.
1016 static int stli_initopen(struct stlibrd *brdp, struct stliport *portp)
1018 struct tty_struct *tty;
1019 asynotify_t nt;
1020 asyport_t aport;
1021 int rc;
1023 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1024 return rc;
1026 memset(&nt, 0, sizeof(asynotify_t));
1027 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1028 nt.signal = SG_DCD;
1029 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1030 sizeof(asynotify_t), 0)) < 0)
1031 return rc;
1033 tty = portp->tty;
1034 if (tty == NULL)
1035 return -ENODEV;
1036 stli_mkasyport(portp, &aport, tty->termios);
1037 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1038 sizeof(asyport_t), 0)) < 0)
1039 return rc;
1041 set_bit(ST_GETSIGS, &portp->state);
1042 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1043 sizeof(asysigs_t), 1)) < 0)
1044 return rc;
1045 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1046 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1047 stli_mkasysigs(&portp->asig, 1, 1);
1048 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1049 sizeof(asysigs_t), 0)) < 0)
1050 return rc;
1052 return 0;
1055 /*****************************************************************************/
1058 * Send an open message to the slave. This will sleep waiting for the
1059 * acknowledgement, so must have user context. We need to co-ordinate
1060 * with close events here, since we don't want open and close events
1061 * to overlap.
1064 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1066 cdkhdr_t __iomem *hdrp;
1067 cdkctrl_t __iomem *cp;
1068 unsigned char __iomem *bits;
1069 unsigned long flags;
1070 int rc;
1073 * Send a message to the slave to open this port.
1077 * Slave is already closing this port. This can happen if a hangup
1078 * occurs on this port. So we must wait until it is complete. The
1079 * order of opens and closes may not be preserved across shared
1080 * memory, so we must wait until it is complete.
1082 wait_event_interruptible(portp->raw_wait,
1083 !test_bit(ST_CLOSING, &portp->state));
1084 if (signal_pending(current)) {
1085 return -ERESTARTSYS;
1089 * Everything is ready now, so write the open message into shared
1090 * memory. Once the message is in set the service bits to say that
1091 * this port wants service.
1093 spin_lock_irqsave(&brd_lock, flags);
1094 EBRDENABLE(brdp);
1095 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1096 writel(arg, &cp->openarg);
1097 writeb(1, &cp->open);
1098 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1099 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1100 portp->portidx;
1101 writeb(readb(bits) | portp->portbit, bits);
1102 EBRDDISABLE(brdp);
1104 if (wait == 0) {
1105 spin_unlock_irqrestore(&brd_lock, flags);
1106 return 0;
1110 * Slave is in action, so now we must wait for the open acknowledgment
1111 * to come back.
1113 rc = 0;
1114 set_bit(ST_OPENING, &portp->state);
1115 spin_unlock_irqrestore(&brd_lock, flags);
1117 wait_event_interruptible(portp->raw_wait,
1118 !test_bit(ST_OPENING, &portp->state));
1119 if (signal_pending(current))
1120 rc = -ERESTARTSYS;
1122 if ((rc == 0) && (portp->rc != 0))
1123 rc = -EIO;
1124 return rc;
1127 /*****************************************************************************/
1130 * Send a close message to the slave. Normally this will sleep waiting
1131 * for the acknowledgement, but if wait parameter is 0 it will not. If
1132 * wait is true then must have user context (to sleep).
1135 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1137 cdkhdr_t __iomem *hdrp;
1138 cdkctrl_t __iomem *cp;
1139 unsigned char __iomem *bits;
1140 unsigned long flags;
1141 int rc;
1144 * Slave is already closing this port. This can happen if a hangup
1145 * occurs on this port.
1147 if (wait) {
1148 wait_event_interruptible(portp->raw_wait,
1149 !test_bit(ST_CLOSING, &portp->state));
1150 if (signal_pending(current)) {
1151 return -ERESTARTSYS;
1156 * Write the close command into shared memory.
1158 spin_lock_irqsave(&brd_lock, flags);
1159 EBRDENABLE(brdp);
1160 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1161 writel(arg, &cp->closearg);
1162 writeb(1, &cp->close);
1163 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1164 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1165 portp->portidx;
1166 writeb(readb(bits) |portp->portbit, bits);
1167 EBRDDISABLE(brdp);
1169 set_bit(ST_CLOSING, &portp->state);
1170 spin_unlock_irqrestore(&brd_lock, flags);
1172 if (wait == 0)
1173 return 0;
1176 * Slave is in action, so now we must wait for the open acknowledgment
1177 * to come back.
1179 rc = 0;
1180 wait_event_interruptible(portp->raw_wait,
1181 !test_bit(ST_CLOSING, &portp->state));
1182 if (signal_pending(current))
1183 rc = -ERESTARTSYS;
1185 if ((rc == 0) && (portp->rc != 0))
1186 rc = -EIO;
1187 return rc;
1190 /*****************************************************************************/
1193 * Send a command to the slave and wait for the response. This must
1194 * have user context (it sleeps). This routine is generic in that it
1195 * can send any type of command. Its purpose is to wait for that command
1196 * to complete (as opposed to initiating the command then returning).
1199 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1201 wait_event_interruptible(portp->raw_wait,
1202 !test_bit(ST_CMDING, &portp->state));
1203 if (signal_pending(current))
1204 return -ERESTARTSYS;
1206 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1208 wait_event_interruptible(portp->raw_wait,
1209 !test_bit(ST_CMDING, &portp->state));
1210 if (signal_pending(current))
1211 return -ERESTARTSYS;
1213 if (portp->rc != 0)
1214 return -EIO;
1215 return 0;
1218 /*****************************************************************************/
1221 * Send the termios settings for this port to the slave. This sleeps
1222 * waiting for the command to complete - so must have user context.
1225 static int stli_setport(struct stliport *portp)
1227 struct stlibrd *brdp;
1228 asyport_t aport;
1230 if (portp == NULL)
1231 return -ENODEV;
1232 if (portp->tty == NULL)
1233 return -ENODEV;
1234 if (portp->brdnr >= stli_nrbrds)
1235 return -ENODEV;
1236 brdp = stli_brds[portp->brdnr];
1237 if (brdp == NULL)
1238 return -ENODEV;
1240 stli_mkasyport(portp, &aport, portp->tty->termios);
1241 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1244 /*****************************************************************************/
1247 * Possibly need to wait for carrier (DCD signal) to come high. Say
1248 * maybe because if we are clocal then we don't need to wait...
1251 static int stli_waitcarrier(struct stlibrd *brdp, struct stliport *portp, struct file *filp)
1253 unsigned long flags;
1254 int rc, doclocal;
1256 rc = 0;
1257 doclocal = 0;
1259 if (portp->tty->termios->c_cflag & CLOCAL)
1260 doclocal++;
1262 spin_lock_irqsave(&stli_lock, flags);
1263 portp->openwaitcnt++;
1264 if (! tty_hung_up_p(filp))
1265 portp->refcount--;
1266 spin_unlock_irqrestore(&stli_lock, flags);
1268 for (;;) {
1269 stli_mkasysigs(&portp->asig, 1, 1);
1270 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1271 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1272 break;
1273 if (tty_hung_up_p(filp) ||
1274 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1275 if (portp->flags & ASYNC_HUP_NOTIFY)
1276 rc = -EBUSY;
1277 else
1278 rc = -ERESTARTSYS;
1279 break;
1281 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1282 (doclocal || (portp->sigs & TIOCM_CD))) {
1283 break;
1285 if (signal_pending(current)) {
1286 rc = -ERESTARTSYS;
1287 break;
1289 interruptible_sleep_on(&portp->open_wait);
1292 spin_lock_irqsave(&stli_lock, flags);
1293 if (! tty_hung_up_p(filp))
1294 portp->refcount++;
1295 portp->openwaitcnt--;
1296 spin_unlock_irqrestore(&stli_lock, flags);
1298 return rc;
1301 /*****************************************************************************/
1304 * Write routine. Take the data and put it in the shared memory ring
1305 * queue. If port is not already sending chars then need to mark the
1306 * service bits for this port.
1309 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1311 cdkasy_t __iomem *ap;
1312 cdkhdr_t __iomem *hdrp;
1313 unsigned char __iomem *bits;
1314 unsigned char __iomem *shbuf;
1315 unsigned char *chbuf;
1316 struct stliport *portp;
1317 struct stlibrd *brdp;
1318 unsigned int len, stlen, head, tail, size;
1319 unsigned long flags;
1321 if (tty == stli_txcooktty)
1322 stli_flushchars(tty);
1323 portp = tty->driver_data;
1324 if (portp == NULL)
1325 return 0;
1326 if (portp->brdnr >= stli_nrbrds)
1327 return 0;
1328 brdp = stli_brds[portp->brdnr];
1329 if (brdp == NULL)
1330 return 0;
1331 chbuf = (unsigned char *) buf;
1334 * All data is now local, shove as much as possible into shared memory.
1336 spin_lock_irqsave(&brd_lock, flags);
1337 EBRDENABLE(brdp);
1338 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1339 head = (unsigned int) readw(&ap->txq.head);
1340 tail = (unsigned int) readw(&ap->txq.tail);
1341 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1342 tail = (unsigned int) readw(&ap->txq.tail);
1343 size = portp->txsize;
1344 if (head >= tail) {
1345 len = size - (head - tail) - 1;
1346 stlen = size - head;
1347 } else {
1348 len = tail - head - 1;
1349 stlen = len;
1352 len = min(len, (unsigned int)count);
1353 count = 0;
1354 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1356 while (len > 0) {
1357 stlen = min(len, stlen);
1358 memcpy_toio(shbuf + head, chbuf, stlen);
1359 chbuf += stlen;
1360 len -= stlen;
1361 count += stlen;
1362 head += stlen;
1363 if (head >= size) {
1364 head = 0;
1365 stlen = tail;
1369 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1370 writew(head, &ap->txq.head);
1371 if (test_bit(ST_TXBUSY, &portp->state)) {
1372 if (readl(&ap->changed.data) & DT_TXEMPTY)
1373 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1375 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1376 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1377 portp->portidx;
1378 writeb(readb(bits) | portp->portbit, bits);
1379 set_bit(ST_TXBUSY, &portp->state);
1380 EBRDDISABLE(brdp);
1381 spin_unlock_irqrestore(&brd_lock, flags);
1383 return(count);
1386 /*****************************************************************************/
1389 * Output a single character. We put it into a temporary local buffer
1390 * (for speed) then write out that buffer when the flushchars routine
1391 * is called. There is a safety catch here so that if some other port
1392 * writes chars before the current buffer has been, then we write them
1393 * first them do the new ports.
1396 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1398 if (tty != stli_txcooktty) {
1399 if (stli_txcooktty != NULL)
1400 stli_flushchars(stli_txcooktty);
1401 stli_txcooktty = tty;
1404 stli_txcookbuf[stli_txcooksize++] = ch;
1407 /*****************************************************************************/
1410 * Transfer characters from the local TX cooking buffer to the board.
1411 * We sort of ignore the tty that gets passed in here. We rely on the
1412 * info stored with the TX cook buffer to tell us which port to flush
1413 * the data on. In any case we clean out the TX cook buffer, for re-use
1414 * by someone else.
1417 static void stli_flushchars(struct tty_struct *tty)
1419 cdkhdr_t __iomem *hdrp;
1420 unsigned char __iomem *bits;
1421 cdkasy_t __iomem *ap;
1422 struct tty_struct *cooktty;
1423 struct stliport *portp;
1424 struct stlibrd *brdp;
1425 unsigned int len, stlen, head, tail, size, count, cooksize;
1426 unsigned char *buf;
1427 unsigned char __iomem *shbuf;
1428 unsigned long flags;
1430 cooksize = stli_txcooksize;
1431 cooktty = stli_txcooktty;
1432 stli_txcooksize = 0;
1433 stli_txcookrealsize = 0;
1434 stli_txcooktty = NULL;
1436 if (tty == NULL)
1437 return;
1438 if (cooktty == NULL)
1439 return;
1440 if (tty != cooktty)
1441 tty = cooktty;
1442 if (cooksize == 0)
1443 return;
1445 portp = tty->driver_data;
1446 if (portp == NULL)
1447 return;
1448 if (portp->brdnr >= stli_nrbrds)
1449 return;
1450 brdp = stli_brds[portp->brdnr];
1451 if (brdp == NULL)
1452 return;
1454 spin_lock_irqsave(&brd_lock, flags);
1455 EBRDENABLE(brdp);
1457 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1458 head = (unsigned int) readw(&ap->txq.head);
1459 tail = (unsigned int) readw(&ap->txq.tail);
1460 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1461 tail = (unsigned int) readw(&ap->txq.tail);
1462 size = portp->txsize;
1463 if (head >= tail) {
1464 len = size - (head - tail) - 1;
1465 stlen = size - head;
1466 } else {
1467 len = tail - head - 1;
1468 stlen = len;
1471 len = min(len, cooksize);
1472 count = 0;
1473 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1474 buf = stli_txcookbuf;
1476 while (len > 0) {
1477 stlen = min(len, stlen);
1478 memcpy_toio(shbuf + head, buf, stlen);
1479 buf += stlen;
1480 len -= stlen;
1481 count += stlen;
1482 head += stlen;
1483 if (head >= size) {
1484 head = 0;
1485 stlen = tail;
1489 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1490 writew(head, &ap->txq.head);
1492 if (test_bit(ST_TXBUSY, &portp->state)) {
1493 if (readl(&ap->changed.data) & DT_TXEMPTY)
1494 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1496 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1497 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1498 portp->portidx;
1499 writeb(readb(bits) | portp->portbit, bits);
1500 set_bit(ST_TXBUSY, &portp->state);
1502 EBRDDISABLE(brdp);
1503 spin_unlock_irqrestore(&brd_lock, flags);
1506 /*****************************************************************************/
1508 static int stli_writeroom(struct tty_struct *tty)
1510 cdkasyrq_t __iomem *rp;
1511 struct stliport *portp;
1512 struct stlibrd *brdp;
1513 unsigned int head, tail, len;
1514 unsigned long flags;
1516 if (tty == stli_txcooktty) {
1517 if (stli_txcookrealsize != 0) {
1518 len = stli_txcookrealsize - stli_txcooksize;
1519 return len;
1523 portp = tty->driver_data;
1524 if (portp == NULL)
1525 return 0;
1526 if (portp->brdnr >= stli_nrbrds)
1527 return 0;
1528 brdp = stli_brds[portp->brdnr];
1529 if (brdp == NULL)
1530 return 0;
1532 spin_lock_irqsave(&brd_lock, flags);
1533 EBRDENABLE(brdp);
1534 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1535 head = (unsigned int) readw(&rp->head);
1536 tail = (unsigned int) readw(&rp->tail);
1537 if (tail != ((unsigned int) readw(&rp->tail)))
1538 tail = (unsigned int) readw(&rp->tail);
1539 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1540 len--;
1541 EBRDDISABLE(brdp);
1542 spin_unlock_irqrestore(&brd_lock, flags);
1544 if (tty == stli_txcooktty) {
1545 stli_txcookrealsize = len;
1546 len -= stli_txcooksize;
1548 return len;
1551 /*****************************************************************************/
1554 * Return the number of characters in the transmit buffer. Normally we
1555 * will return the number of chars in the shared memory ring queue.
1556 * We need to kludge around the case where the shared memory buffer is
1557 * empty but not all characters have drained yet, for this case just
1558 * return that there is 1 character in the buffer!
1561 static int stli_charsinbuffer(struct tty_struct *tty)
1563 cdkasyrq_t __iomem *rp;
1564 struct stliport *portp;
1565 struct stlibrd *brdp;
1566 unsigned int head, tail, len;
1567 unsigned long flags;
1569 if (tty == stli_txcooktty)
1570 stli_flushchars(tty);
1571 portp = tty->driver_data;
1572 if (portp == NULL)
1573 return 0;
1574 if (portp->brdnr >= stli_nrbrds)
1575 return 0;
1576 brdp = stli_brds[portp->brdnr];
1577 if (brdp == NULL)
1578 return 0;
1580 spin_lock_irqsave(&brd_lock, flags);
1581 EBRDENABLE(brdp);
1582 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1583 head = (unsigned int) readw(&rp->head);
1584 tail = (unsigned int) readw(&rp->tail);
1585 if (tail != ((unsigned int) readw(&rp->tail)))
1586 tail = (unsigned int) readw(&rp->tail);
1587 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1588 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1589 len = 1;
1590 EBRDDISABLE(brdp);
1591 spin_unlock_irqrestore(&brd_lock, flags);
1593 return len;
1596 /*****************************************************************************/
1599 * Generate the serial struct info.
1602 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1604 struct serial_struct sio;
1605 struct stlibrd *brdp;
1607 memset(&sio, 0, sizeof(struct serial_struct));
1608 sio.type = PORT_UNKNOWN;
1609 sio.line = portp->portnr;
1610 sio.irq = 0;
1611 sio.flags = portp->flags;
1612 sio.baud_base = portp->baud_base;
1613 sio.close_delay = portp->close_delay;
1614 sio.closing_wait = portp->closing_wait;
1615 sio.custom_divisor = portp->custom_divisor;
1616 sio.xmit_fifo_size = 0;
1617 sio.hub6 = 0;
1619 brdp = stli_brds[portp->brdnr];
1620 if (brdp != NULL)
1621 sio.port = brdp->iobase;
1623 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1624 -EFAULT : 0;
1627 /*****************************************************************************/
1630 * Set port according to the serial struct info.
1631 * At this point we do not do any auto-configure stuff, so we will
1632 * just quietly ignore any requests to change irq, etc.
1635 static int stli_setserial(struct stliport *portp, struct serial_struct __user *sp)
1637 struct serial_struct sio;
1638 int rc;
1640 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1641 return -EFAULT;
1642 if (!capable(CAP_SYS_ADMIN)) {
1643 if ((sio.baud_base != portp->baud_base) ||
1644 (sio.close_delay != portp->close_delay) ||
1645 ((sio.flags & ~ASYNC_USR_MASK) !=
1646 (portp->flags & ~ASYNC_USR_MASK)))
1647 return -EPERM;
1650 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1651 (sio.flags & ASYNC_USR_MASK);
1652 portp->baud_base = sio.baud_base;
1653 portp->close_delay = sio.close_delay;
1654 portp->closing_wait = sio.closing_wait;
1655 portp->custom_divisor = sio.custom_divisor;
1657 if ((rc = stli_setport(portp)) < 0)
1658 return rc;
1659 return 0;
1662 /*****************************************************************************/
1664 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1666 struct stliport *portp = tty->driver_data;
1667 struct stlibrd *brdp;
1668 int rc;
1670 if (portp == NULL)
1671 return -ENODEV;
1672 if (portp->brdnr >= stli_nrbrds)
1673 return 0;
1674 brdp = stli_brds[portp->brdnr];
1675 if (brdp == NULL)
1676 return 0;
1677 if (tty->flags & (1 << TTY_IO_ERROR))
1678 return -EIO;
1680 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1681 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1682 return rc;
1684 return stli_mktiocm(portp->asig.sigvalue);
1687 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1688 unsigned int set, unsigned int clear)
1690 struct stliport *portp = tty->driver_data;
1691 struct stlibrd *brdp;
1692 int rts = -1, dtr = -1;
1694 if (portp == NULL)
1695 return -ENODEV;
1696 if (portp->brdnr >= stli_nrbrds)
1697 return 0;
1698 brdp = stli_brds[portp->brdnr];
1699 if (brdp == NULL)
1700 return 0;
1701 if (tty->flags & (1 << TTY_IO_ERROR))
1702 return -EIO;
1704 if (set & TIOCM_RTS)
1705 rts = 1;
1706 if (set & TIOCM_DTR)
1707 dtr = 1;
1708 if (clear & TIOCM_RTS)
1709 rts = 0;
1710 if (clear & TIOCM_DTR)
1711 dtr = 0;
1713 stli_mkasysigs(&portp->asig, dtr, rts);
1715 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1716 sizeof(asysigs_t), 0);
1719 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1721 struct stliport *portp;
1722 struct stlibrd *brdp;
1723 unsigned int ival;
1724 int rc;
1725 void __user *argp = (void __user *)arg;
1727 portp = tty->driver_data;
1728 if (portp == NULL)
1729 return -ENODEV;
1730 if (portp->brdnr >= stli_nrbrds)
1731 return 0;
1732 brdp = stli_brds[portp->brdnr];
1733 if (brdp == NULL)
1734 return 0;
1736 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1737 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1738 if (tty->flags & (1 << TTY_IO_ERROR))
1739 return -EIO;
1742 rc = 0;
1744 switch (cmd) {
1745 case TIOCGSOFTCAR:
1746 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1747 (unsigned __user *) arg);
1748 break;
1749 case TIOCSSOFTCAR:
1750 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
1751 tty->termios->c_cflag =
1752 (tty->termios->c_cflag & ~CLOCAL) |
1753 (ival ? CLOCAL : 0);
1754 break;
1755 case TIOCGSERIAL:
1756 rc = stli_getserial(portp, argp);
1757 break;
1758 case TIOCSSERIAL:
1759 rc = stli_setserial(portp, argp);
1760 break;
1761 case STL_GETPFLAG:
1762 rc = put_user(portp->pflag, (unsigned __user *)argp);
1763 break;
1764 case STL_SETPFLAG:
1765 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1766 stli_setport(portp);
1767 break;
1768 case COM_GETPORTSTATS:
1769 rc = stli_getportstats(portp, argp);
1770 break;
1771 case COM_CLRPORTSTATS:
1772 rc = stli_clrportstats(portp, argp);
1773 break;
1774 case TIOCSERCONFIG:
1775 case TIOCSERGWILD:
1776 case TIOCSERSWILD:
1777 case TIOCSERGETLSR:
1778 case TIOCSERGSTRUCT:
1779 case TIOCSERGETMULTI:
1780 case TIOCSERSETMULTI:
1781 default:
1782 rc = -ENOIOCTLCMD;
1783 break;
1786 return rc;
1789 /*****************************************************************************/
1792 * This routine assumes that we have user context and can sleep.
1793 * Looks like it is true for the current ttys implementation..!!
1796 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1798 struct stliport *portp;
1799 struct stlibrd *brdp;
1800 struct ktermios *tiosp;
1801 asyport_t aport;
1803 if (tty == NULL)
1804 return;
1805 portp = tty->driver_data;
1806 if (portp == NULL)
1807 return;
1808 if (portp->brdnr >= stli_nrbrds)
1809 return;
1810 brdp = stli_brds[portp->brdnr];
1811 if (brdp == NULL)
1812 return;
1814 tiosp = tty->termios;
1815 if ((tiosp->c_cflag == old->c_cflag) &&
1816 (tiosp->c_iflag == old->c_iflag))
1817 return;
1819 stli_mkasyport(portp, &aport, tiosp);
1820 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1821 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1822 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1823 sizeof(asysigs_t), 0);
1824 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1825 tty->hw_stopped = 0;
1826 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1827 wake_up_interruptible(&portp->open_wait);
1830 /*****************************************************************************/
1833 * Attempt to flow control who ever is sending us data. We won't really
1834 * do any flow control action here. We can't directly, and even if we
1835 * wanted to we would have to send a command to the slave. The slave
1836 * knows how to flow control, and will do so when its buffers reach its
1837 * internal high water marks. So what we will do is set a local state
1838 * bit that will stop us sending any RX data up from the poll routine
1839 * (which is the place where RX data from the slave is handled).
1842 static void stli_throttle(struct tty_struct *tty)
1844 struct stliport *portp = tty->driver_data;
1845 if (portp == NULL)
1846 return;
1847 set_bit(ST_RXSTOP, &portp->state);
1850 /*****************************************************************************/
1853 * Unflow control the device sending us data... That means that all
1854 * we have to do is clear the RXSTOP state bit. The next poll call
1855 * will then be able to pass the RX data back up.
1858 static void stli_unthrottle(struct tty_struct *tty)
1860 struct stliport *portp = tty->driver_data;
1861 if (portp == NULL)
1862 return;
1863 clear_bit(ST_RXSTOP, &portp->state);
1866 /*****************************************************************************/
1869 * Stop the transmitter.
1872 static void stli_stop(struct tty_struct *tty)
1876 /*****************************************************************************/
1879 * Start the transmitter again.
1882 static void stli_start(struct tty_struct *tty)
1886 /*****************************************************************************/
1889 * Scheduler called hang up routine. This is called from the scheduler,
1890 * not direct from the driver "poll" routine. We can't call it there
1891 * since the real local hangup code will enable/disable the board and
1892 * other things that we can't do while handling the poll. Much easier
1893 * to deal with it some time later (don't really care when, hangups
1894 * aren't that time critical).
1897 static void stli_dohangup(struct work_struct *ugly_api)
1899 struct stliport *portp = container_of(ugly_api, struct stliport, tqhangup);
1900 if (portp->tty != NULL) {
1901 tty_hangup(portp->tty);
1905 /*****************************************************************************/
1908 * Hangup this port. This is pretty much like closing the port, only
1909 * a little more brutal. No waiting for data to drain. Shutdown the
1910 * port and maybe drop signals. This is rather tricky really. We want
1911 * to close the port as well.
1914 static void stli_hangup(struct tty_struct *tty)
1916 struct stliport *portp;
1917 struct stlibrd *brdp;
1918 unsigned long flags;
1920 portp = tty->driver_data;
1921 if (portp == NULL)
1922 return;
1923 if (portp->brdnr >= stli_nrbrds)
1924 return;
1925 brdp = stli_brds[portp->brdnr];
1926 if (brdp == NULL)
1927 return;
1929 portp->flags &= ~ASYNC_INITIALIZED;
1931 if (!test_bit(ST_CLOSING, &portp->state))
1932 stli_rawclose(brdp, portp, 0, 0);
1934 spin_lock_irqsave(&stli_lock, flags);
1935 if (tty->termios->c_cflag & HUPCL) {
1936 stli_mkasysigs(&portp->asig, 0, 0);
1937 if (test_bit(ST_CMDING, &portp->state)) {
1938 set_bit(ST_DOSIGS, &portp->state);
1939 set_bit(ST_DOFLUSHTX, &portp->state);
1940 set_bit(ST_DOFLUSHRX, &portp->state);
1941 } else {
1942 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
1943 &portp->asig, sizeof(asysigs_t), 0);
1947 clear_bit(ST_TXBUSY, &portp->state);
1948 clear_bit(ST_RXSTOP, &portp->state);
1949 set_bit(TTY_IO_ERROR, &tty->flags);
1950 portp->tty = NULL;
1951 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1952 portp->refcount = 0;
1953 spin_unlock_irqrestore(&stli_lock, flags);
1955 wake_up_interruptible(&portp->open_wait);
1958 /*****************************************************************************/
1961 * Flush characters from the lower buffer. We may not have user context
1962 * so we cannot sleep waiting for it to complete. Also we need to check
1963 * if there is chars for this port in the TX cook buffer, and flush them
1964 * as well.
1967 static void stli_flushbuffer(struct tty_struct *tty)
1969 struct stliport *portp;
1970 struct stlibrd *brdp;
1971 unsigned long ftype, flags;
1973 portp = tty->driver_data;
1974 if (portp == NULL)
1975 return;
1976 if (portp->brdnr >= stli_nrbrds)
1977 return;
1978 brdp = stli_brds[portp->brdnr];
1979 if (brdp == NULL)
1980 return;
1982 spin_lock_irqsave(&brd_lock, flags);
1983 if (tty == stli_txcooktty) {
1984 stli_txcooktty = NULL;
1985 stli_txcooksize = 0;
1986 stli_txcookrealsize = 0;
1988 if (test_bit(ST_CMDING, &portp->state)) {
1989 set_bit(ST_DOFLUSHTX, &portp->state);
1990 } else {
1991 ftype = FLUSHTX;
1992 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1993 ftype |= FLUSHRX;
1994 clear_bit(ST_DOFLUSHRX, &portp->state);
1996 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1998 spin_unlock_irqrestore(&brd_lock, flags);
1999 tty_wakeup(tty);
2002 /*****************************************************************************/
2004 static void stli_breakctl(struct tty_struct *tty, int state)
2006 struct stlibrd *brdp;
2007 struct stliport *portp;
2008 long arg;
2010 portp = tty->driver_data;
2011 if (portp == NULL)
2012 return;
2013 if (portp->brdnr >= stli_nrbrds)
2014 return;
2015 brdp = stli_brds[portp->brdnr];
2016 if (brdp == NULL)
2017 return;
2019 arg = (state == -1) ? BREAKON : BREAKOFF;
2020 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2023 /*****************************************************************************/
2025 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2027 struct stliport *portp;
2028 unsigned long tend;
2030 if (tty == NULL)
2031 return;
2032 portp = tty->driver_data;
2033 if (portp == NULL)
2034 return;
2036 if (timeout == 0)
2037 timeout = HZ;
2038 tend = jiffies + timeout;
2040 while (test_bit(ST_TXBUSY, &portp->state)) {
2041 if (signal_pending(current))
2042 break;
2043 msleep_interruptible(20);
2044 if (time_after_eq(jiffies, tend))
2045 break;
2049 /*****************************************************************************/
2051 static void stli_sendxchar(struct tty_struct *tty, char ch)
2053 struct stlibrd *brdp;
2054 struct stliport *portp;
2055 asyctrl_t actrl;
2057 portp = tty->driver_data;
2058 if (portp == NULL)
2059 return;
2060 if (portp->brdnr >= stli_nrbrds)
2061 return;
2062 brdp = stli_brds[portp->brdnr];
2063 if (brdp == NULL)
2064 return;
2066 memset(&actrl, 0, sizeof(asyctrl_t));
2067 if (ch == STOP_CHAR(tty)) {
2068 actrl.rxctrl = CT_STOPFLOW;
2069 } else if (ch == START_CHAR(tty)) {
2070 actrl.rxctrl = CT_STARTFLOW;
2071 } else {
2072 actrl.txctrl = CT_SENDCHR;
2073 actrl.tximdch = ch;
2075 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2078 /*****************************************************************************/
2080 #define MAXLINE 80
2083 * Format info for a specified port. The line is deliberately limited
2084 * to 80 characters. (If it is too long it will be truncated, if too
2085 * short then padded with spaces).
2088 static int stli_portinfo(struct stlibrd *brdp, struct stliport *portp, int portnr, char *pos)
2090 char *sp, *uart;
2091 int rc, cnt;
2093 rc = stli_portcmdstats(portp);
2095 uart = "UNKNOWN";
2096 if (brdp->state & BST_STARTED) {
2097 switch (stli_comstats.hwid) {
2098 case 0: uart = "2681"; break;
2099 case 1: uart = "SC26198"; break;
2100 default:uart = "CD1400"; break;
2104 sp = pos;
2105 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2107 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2108 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2109 (int) stli_comstats.rxtotal);
2111 if (stli_comstats.rxframing)
2112 sp += sprintf(sp, " fe:%d",
2113 (int) stli_comstats.rxframing);
2114 if (stli_comstats.rxparity)
2115 sp += sprintf(sp, " pe:%d",
2116 (int) stli_comstats.rxparity);
2117 if (stli_comstats.rxbreaks)
2118 sp += sprintf(sp, " brk:%d",
2119 (int) stli_comstats.rxbreaks);
2120 if (stli_comstats.rxoverrun)
2121 sp += sprintf(sp, " oe:%d",
2122 (int) stli_comstats.rxoverrun);
2124 cnt = sprintf(sp, "%s%s%s%s%s ",
2125 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2126 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2127 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2128 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2129 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2130 *sp = ' ';
2131 sp += cnt;
2134 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2135 *sp++ = ' ';
2136 if (cnt >= MAXLINE)
2137 pos[(MAXLINE - 2)] = '+';
2138 pos[(MAXLINE - 1)] = '\n';
2140 return(MAXLINE);
2143 /*****************************************************************************/
2146 * Port info, read from the /proc file system.
2149 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2151 struct stlibrd *brdp;
2152 struct stliport *portp;
2153 unsigned int brdnr, portnr, totalport;
2154 int curoff, maxoff;
2155 char *pos;
2157 pos = page;
2158 totalport = 0;
2159 curoff = 0;
2161 if (off == 0) {
2162 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2163 stli_drvversion);
2164 while (pos < (page + MAXLINE - 1))
2165 *pos++ = ' ';
2166 *pos++ = '\n';
2168 curoff = MAXLINE;
2171 * We scan through for each board, panel and port. The offset is
2172 * calculated on the fly, and irrelevant ports are skipped.
2174 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2175 brdp = stli_brds[brdnr];
2176 if (brdp == NULL)
2177 continue;
2178 if (brdp->state == 0)
2179 continue;
2181 maxoff = curoff + (brdp->nrports * MAXLINE);
2182 if (off >= maxoff) {
2183 curoff = maxoff;
2184 continue;
2187 totalport = brdnr * STL_MAXPORTS;
2188 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2189 totalport++) {
2190 portp = brdp->ports[portnr];
2191 if (portp == NULL)
2192 continue;
2193 if (off >= (curoff += MAXLINE))
2194 continue;
2195 if ((pos - page + MAXLINE) > count)
2196 goto stli_readdone;
2197 pos += stli_portinfo(brdp, portp, totalport, pos);
2201 *eof = 1;
2203 stli_readdone:
2204 *start = page;
2205 return(pos - page);
2208 /*****************************************************************************/
2211 * Generic send command routine. This will send a message to the slave,
2212 * of the specified type with the specified argument. Must be very
2213 * careful of data that will be copied out from shared memory -
2214 * containing command results. The command completion is all done from
2215 * a poll routine that does not have user context. Therefore you cannot
2216 * copy back directly into user space, or to the kernel stack of a
2217 * process. This routine does not sleep, so can be called from anywhere.
2219 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2220 * entry point)
2223 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2225 cdkhdr_t __iomem *hdrp;
2226 cdkctrl_t __iomem *cp;
2227 unsigned char __iomem *bits;
2228 unsigned long flags;
2230 spin_lock_irqsave(&brd_lock, flags);
2232 if (test_bit(ST_CMDING, &portp->state)) {
2233 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2234 (int) cmd);
2235 spin_unlock_irqrestore(&brd_lock, flags);
2236 return;
2239 EBRDENABLE(brdp);
2240 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2241 if (size > 0) {
2242 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2243 if (copyback) {
2244 portp->argp = arg;
2245 portp->argsize = size;
2248 writel(0, &cp->status);
2249 writel(cmd, &cp->cmd);
2250 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2251 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2252 portp->portidx;
2253 writeb(readb(bits) | portp->portbit, bits);
2254 set_bit(ST_CMDING, &portp->state);
2255 EBRDDISABLE(brdp);
2256 spin_unlock_irqrestore(&brd_lock, flags);
2259 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2261 unsigned long flags;
2263 spin_lock_irqsave(&brd_lock, flags);
2264 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2265 spin_unlock_irqrestore(&brd_lock, flags);
2268 /*****************************************************************************/
2271 * Read data from shared memory. This assumes that the shared memory
2272 * is enabled and that interrupts are off. Basically we just empty out
2273 * the shared memory buffer into the tty buffer. Must be careful to
2274 * handle the case where we fill up the tty buffer, but still have
2275 * more chars to unload.
2278 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2280 cdkasyrq_t __iomem *rp;
2281 char __iomem *shbuf;
2282 struct tty_struct *tty;
2283 unsigned int head, tail, size;
2284 unsigned int len, stlen;
2286 if (test_bit(ST_RXSTOP, &portp->state))
2287 return;
2288 tty = portp->tty;
2289 if (tty == NULL)
2290 return;
2292 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2293 head = (unsigned int) readw(&rp->head);
2294 if (head != ((unsigned int) readw(&rp->head)))
2295 head = (unsigned int) readw(&rp->head);
2296 tail = (unsigned int) readw(&rp->tail);
2297 size = portp->rxsize;
2298 if (head >= tail) {
2299 len = head - tail;
2300 stlen = len;
2301 } else {
2302 len = size - (tail - head);
2303 stlen = size - tail;
2306 len = tty_buffer_request_room(tty, len);
2308 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2310 while (len > 0) {
2311 unsigned char *cptr;
2313 stlen = min(len, stlen);
2314 tty_prepare_flip_string(tty, &cptr, stlen);
2315 memcpy_fromio(cptr, shbuf + tail, stlen);
2316 len -= stlen;
2317 tail += stlen;
2318 if (tail >= size) {
2319 tail = 0;
2320 stlen = head;
2323 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2324 writew(tail, &rp->tail);
2326 if (head != tail)
2327 set_bit(ST_RXING, &portp->state);
2329 tty_schedule_flip(tty);
2332 /*****************************************************************************/
2335 * Set up and carry out any delayed commands. There is only a small set
2336 * of slave commands that can be done "off-level". So it is not too
2337 * difficult to deal with them here.
2340 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2342 int cmd;
2344 if (test_bit(ST_DOSIGS, &portp->state)) {
2345 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2346 test_bit(ST_DOFLUSHRX, &portp->state))
2347 cmd = A_SETSIGNALSF;
2348 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2349 cmd = A_SETSIGNALSFTX;
2350 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2351 cmd = A_SETSIGNALSFRX;
2352 else
2353 cmd = A_SETSIGNALS;
2354 clear_bit(ST_DOFLUSHTX, &portp->state);
2355 clear_bit(ST_DOFLUSHRX, &portp->state);
2356 clear_bit(ST_DOSIGS, &portp->state);
2357 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2358 sizeof(asysigs_t));
2359 writel(0, &cp->status);
2360 writel(cmd, &cp->cmd);
2361 set_bit(ST_CMDING, &portp->state);
2362 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2363 test_bit(ST_DOFLUSHRX, &portp->state)) {
2364 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2365 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2366 clear_bit(ST_DOFLUSHTX, &portp->state);
2367 clear_bit(ST_DOFLUSHRX, &portp->state);
2368 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2369 writel(0, &cp->status);
2370 writel(A_FLUSH, &cp->cmd);
2371 set_bit(ST_CMDING, &portp->state);
2375 /*****************************************************************************/
2378 * Host command service checking. This handles commands or messages
2379 * coming from the slave to the host. Must have board shared memory
2380 * enabled and interrupts off when called. Notice that by servicing the
2381 * read data last we don't need to change the shared memory pointer
2382 * during processing (which is a slow IO operation).
2383 * Return value indicates if this port is still awaiting actions from
2384 * the slave (like open, command, or even TX data being sent). If 0
2385 * then port is still busy, otherwise no longer busy.
2388 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2390 cdkasy_t __iomem *ap;
2391 cdkctrl_t __iomem *cp;
2392 struct tty_struct *tty;
2393 asynotify_t nt;
2394 unsigned long oldsigs;
2395 int rc, donerx;
2397 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2398 cp = &ap->ctrl;
2401 * Check if we are waiting for an open completion message.
2403 if (test_bit(ST_OPENING, &portp->state)) {
2404 rc = readl(&cp->openarg);
2405 if (readb(&cp->open) == 0 && rc != 0) {
2406 if (rc > 0)
2407 rc--;
2408 writel(0, &cp->openarg);
2409 portp->rc = rc;
2410 clear_bit(ST_OPENING, &portp->state);
2411 wake_up_interruptible(&portp->raw_wait);
2416 * Check if we are waiting for a close completion message.
2418 if (test_bit(ST_CLOSING, &portp->state)) {
2419 rc = (int) readl(&cp->closearg);
2420 if (readb(&cp->close) == 0 && rc != 0) {
2421 if (rc > 0)
2422 rc--;
2423 writel(0, &cp->closearg);
2424 portp->rc = rc;
2425 clear_bit(ST_CLOSING, &portp->state);
2426 wake_up_interruptible(&portp->raw_wait);
2431 * Check if we are waiting for a command completion message. We may
2432 * need to copy out the command results associated with this command.
2434 if (test_bit(ST_CMDING, &portp->state)) {
2435 rc = readl(&cp->status);
2436 if (readl(&cp->cmd) == 0 && rc != 0) {
2437 if (rc > 0)
2438 rc--;
2439 if (portp->argp != NULL) {
2440 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2441 portp->argsize);
2442 portp->argp = NULL;
2444 writel(0, &cp->status);
2445 portp->rc = rc;
2446 clear_bit(ST_CMDING, &portp->state);
2447 stli_dodelaycmd(portp, cp);
2448 wake_up_interruptible(&portp->raw_wait);
2453 * Check for any notification messages ready. This includes lots of
2454 * different types of events - RX chars ready, RX break received,
2455 * TX data low or empty in the slave, modem signals changed state.
2457 donerx = 0;
2459 if (ap->notify) {
2460 nt = ap->changed;
2461 ap->notify = 0;
2462 tty = portp->tty;
2464 if (nt.signal & SG_DCD) {
2465 oldsigs = portp->sigs;
2466 portp->sigs = stli_mktiocm(nt.sigvalue);
2467 clear_bit(ST_GETSIGS, &portp->state);
2468 if ((portp->sigs & TIOCM_CD) &&
2469 ((oldsigs & TIOCM_CD) == 0))
2470 wake_up_interruptible(&portp->open_wait);
2471 if ((oldsigs & TIOCM_CD) &&
2472 ((portp->sigs & TIOCM_CD) == 0)) {
2473 if (portp->flags & ASYNC_CHECK_CD) {
2474 if (tty)
2475 schedule_work(&portp->tqhangup);
2480 if (nt.data & DT_TXEMPTY)
2481 clear_bit(ST_TXBUSY, &portp->state);
2482 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2483 if (tty != NULL) {
2484 tty_wakeup(tty);
2485 EBRDENABLE(brdp);
2486 wake_up_interruptible(&tty->write_wait);
2490 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2491 if (tty != NULL) {
2492 tty_insert_flip_char(tty, 0, TTY_BREAK);
2493 if (portp->flags & ASYNC_SAK) {
2494 do_SAK(tty);
2495 EBRDENABLE(brdp);
2497 tty_schedule_flip(tty);
2501 if (nt.data & DT_RXBUSY) {
2502 donerx++;
2503 stli_read(brdp, portp);
2508 * It might seem odd that we are checking for more RX chars here.
2509 * But, we need to handle the case where the tty buffer was previously
2510 * filled, but we had more characters to pass up. The slave will not
2511 * send any more RX notify messages until the RX buffer has been emptied.
2512 * But it will leave the service bits on (since the buffer is not empty).
2513 * So from here we can try to process more RX chars.
2515 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2516 clear_bit(ST_RXING, &portp->state);
2517 stli_read(brdp, portp);
2520 return((test_bit(ST_OPENING, &portp->state) ||
2521 test_bit(ST_CLOSING, &portp->state) ||
2522 test_bit(ST_CMDING, &portp->state) ||
2523 test_bit(ST_TXBUSY, &portp->state) ||
2524 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2527 /*****************************************************************************/
2530 * Service all ports on a particular board. Assumes that the boards
2531 * shared memory is enabled, and that the page pointer is pointed
2532 * at the cdk header structure.
2535 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2537 struct stliport *portp;
2538 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2539 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2540 unsigned char __iomem *slavep;
2541 int bitpos, bitat, bitsize;
2542 int channr, nrdevs, slavebitchange;
2544 bitsize = brdp->bitsize;
2545 nrdevs = brdp->nrdevs;
2548 * Check if slave wants any service. Basically we try to do as
2549 * little work as possible here. There are 2 levels of service
2550 * bits. So if there is nothing to do we bail early. We check
2551 * 8 service bits at a time in the inner loop, so we can bypass
2552 * the lot if none of them want service.
2554 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2555 bitsize);
2557 memset(&slavebits[0], 0, bitsize);
2558 slavebitchange = 0;
2560 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2561 if (hostbits[bitpos] == 0)
2562 continue;
2563 channr = bitpos * 8;
2564 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2565 if (hostbits[bitpos] & bitat) {
2566 portp = brdp->ports[(channr - 1)];
2567 if (stli_hostcmd(brdp, portp)) {
2568 slavebitchange++;
2569 slavebits[bitpos] |= bitat;
2576 * If any of the ports are no longer busy then update them in the
2577 * slave request bits. We need to do this after, since a host port
2578 * service may initiate more slave requests.
2580 if (slavebitchange) {
2581 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2582 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2583 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2584 if (readb(slavebits + bitpos))
2585 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2590 /*****************************************************************************/
2593 * Driver poll routine. This routine polls the boards in use and passes
2594 * messages back up to host when necessary. This is actually very
2595 * CPU efficient, since we will always have the kernel poll clock, it
2596 * adds only a few cycles when idle (since board service can be
2597 * determined very easily), but when loaded generates no interrupts
2598 * (with their expensive associated context change).
2601 static void stli_poll(unsigned long arg)
2603 cdkhdr_t __iomem *hdrp;
2604 struct stlibrd *brdp;
2605 unsigned int brdnr;
2607 stli_timerlist.expires = STLI_TIMEOUT;
2608 add_timer(&stli_timerlist);
2611 * Check each board and do any servicing required.
2613 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2614 brdp = stli_brds[brdnr];
2615 if (brdp == NULL)
2616 continue;
2617 if ((brdp->state & BST_STARTED) == 0)
2618 continue;
2620 spin_lock(&brd_lock);
2621 EBRDENABLE(brdp);
2622 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2623 if (readb(&hdrp->hostreq))
2624 stli_brdpoll(brdp, hdrp);
2625 EBRDDISABLE(brdp);
2626 spin_unlock(&brd_lock);
2630 /*****************************************************************************/
2633 * Translate the termios settings into the port setting structure of
2634 * the slave.
2637 static void stli_mkasyport(struct stliport *portp, asyport_t *pp, struct ktermios *tiosp)
2639 memset(pp, 0, sizeof(asyport_t));
2642 * Start of by setting the baud, char size, parity and stop bit info.
2644 pp->baudout = tty_get_baud_rate(portp->tty);
2645 if ((tiosp->c_cflag & CBAUD) == B38400) {
2646 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2647 pp->baudout = 57600;
2648 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2649 pp->baudout = 115200;
2650 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2651 pp->baudout = 230400;
2652 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2653 pp->baudout = 460800;
2654 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2655 pp->baudout = (portp->baud_base / portp->custom_divisor);
2657 if (pp->baudout > STL_MAXBAUD)
2658 pp->baudout = STL_MAXBAUD;
2659 pp->baudin = pp->baudout;
2661 switch (tiosp->c_cflag & CSIZE) {
2662 case CS5:
2663 pp->csize = 5;
2664 break;
2665 case CS6:
2666 pp->csize = 6;
2667 break;
2668 case CS7:
2669 pp->csize = 7;
2670 break;
2671 default:
2672 pp->csize = 8;
2673 break;
2676 if (tiosp->c_cflag & CSTOPB)
2677 pp->stopbs = PT_STOP2;
2678 else
2679 pp->stopbs = PT_STOP1;
2681 if (tiosp->c_cflag & PARENB) {
2682 if (tiosp->c_cflag & PARODD)
2683 pp->parity = PT_ODDPARITY;
2684 else
2685 pp->parity = PT_EVENPARITY;
2686 } else {
2687 pp->parity = PT_NOPARITY;
2691 * Set up any flow control options enabled.
2693 if (tiosp->c_iflag & IXON) {
2694 pp->flow |= F_IXON;
2695 if (tiosp->c_iflag & IXANY)
2696 pp->flow |= F_IXANY;
2698 if (tiosp->c_cflag & CRTSCTS)
2699 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2701 pp->startin = tiosp->c_cc[VSTART];
2702 pp->stopin = tiosp->c_cc[VSTOP];
2703 pp->startout = tiosp->c_cc[VSTART];
2704 pp->stopout = tiosp->c_cc[VSTOP];
2707 * Set up the RX char marking mask with those RX error types we must
2708 * catch. We can get the slave to help us out a little here, it will
2709 * ignore parity errors and breaks for us, and mark parity errors in
2710 * the data stream.
2712 if (tiosp->c_iflag & IGNPAR)
2713 pp->iflag |= FI_IGNRXERRS;
2714 if (tiosp->c_iflag & IGNBRK)
2715 pp->iflag |= FI_IGNBREAK;
2717 portp->rxmarkmsk = 0;
2718 if (tiosp->c_iflag & (INPCK | PARMRK))
2719 pp->iflag |= FI_1MARKRXERRS;
2720 if (tiosp->c_iflag & BRKINT)
2721 portp->rxmarkmsk |= BRKINT;
2724 * Set up clocal processing as required.
2726 if (tiosp->c_cflag & CLOCAL)
2727 portp->flags &= ~ASYNC_CHECK_CD;
2728 else
2729 portp->flags |= ASYNC_CHECK_CD;
2732 * Transfer any persistent flags into the asyport structure.
2734 pp->pflag = (portp->pflag & 0xffff);
2735 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2736 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2737 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2740 /*****************************************************************************/
2743 * Construct a slave signals structure for setting the DTR and RTS
2744 * signals as specified.
2747 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2749 memset(sp, 0, sizeof(asysigs_t));
2750 if (dtr >= 0) {
2751 sp->signal |= SG_DTR;
2752 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2754 if (rts >= 0) {
2755 sp->signal |= SG_RTS;
2756 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2760 /*****************************************************************************/
2763 * Convert the signals returned from the slave into a local TIOCM type
2764 * signals value. We keep them locally in TIOCM format.
2767 static long stli_mktiocm(unsigned long sigvalue)
2769 long tiocm = 0;
2770 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2771 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2772 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2773 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2774 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2775 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2776 return(tiocm);
2779 /*****************************************************************************/
2782 * All panels and ports actually attached have been worked out. All
2783 * we need to do here is set up the appropriate per port data structures.
2786 static int stli_initports(struct stlibrd *brdp)
2788 struct stliport *portp;
2789 unsigned int i, panelnr, panelport;
2791 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2792 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2793 if (!portp) {
2794 printk("STALLION: failed to allocate port structure\n");
2795 continue;
2798 portp->magic = STLI_PORTMAGIC;
2799 portp->portnr = i;
2800 portp->brdnr = brdp->brdnr;
2801 portp->panelnr = panelnr;
2802 portp->baud_base = STL_BAUDBASE;
2803 portp->close_delay = STL_CLOSEDELAY;
2804 portp->closing_wait = 30 * HZ;
2805 INIT_WORK(&portp->tqhangup, stli_dohangup);
2806 init_waitqueue_head(&portp->open_wait);
2807 init_waitqueue_head(&portp->close_wait);
2808 init_waitqueue_head(&portp->raw_wait);
2809 panelport++;
2810 if (panelport >= brdp->panels[panelnr]) {
2811 panelport = 0;
2812 panelnr++;
2814 brdp->ports[i] = portp;
2817 return 0;
2820 /*****************************************************************************/
2823 * All the following routines are board specific hardware operations.
2826 static void stli_ecpinit(struct stlibrd *brdp)
2828 unsigned long memconf;
2830 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2831 udelay(10);
2832 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2833 udelay(100);
2835 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2836 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2839 /*****************************************************************************/
2841 static void stli_ecpenable(struct stlibrd *brdp)
2843 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2846 /*****************************************************************************/
2848 static void stli_ecpdisable(struct stlibrd *brdp)
2850 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2853 /*****************************************************************************/
2855 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2857 void __iomem *ptr;
2858 unsigned char val;
2860 if (offset > brdp->memsize) {
2861 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2862 "range at line=%d(%d), brd=%d\n",
2863 (int) offset, line, __LINE__, brdp->brdnr);
2864 ptr = NULL;
2865 val = 0;
2866 } else {
2867 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2868 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2870 outb(val, (brdp->iobase + ECP_ATMEMPR));
2871 return(ptr);
2874 /*****************************************************************************/
2876 static void stli_ecpreset(struct stlibrd *brdp)
2878 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2879 udelay(10);
2880 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2881 udelay(500);
2884 /*****************************************************************************/
2886 static void stli_ecpintr(struct stlibrd *brdp)
2888 outb(0x1, brdp->iobase);
2891 /*****************************************************************************/
2894 * The following set of functions act on ECP EISA boards.
2897 static void stli_ecpeiinit(struct stlibrd *brdp)
2899 unsigned long memconf;
2901 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2902 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2903 udelay(10);
2904 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2905 udelay(500);
2907 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2908 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2909 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2910 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2913 /*****************************************************************************/
2915 static void stli_ecpeienable(struct stlibrd *brdp)
2917 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2920 /*****************************************************************************/
2922 static void stli_ecpeidisable(struct stlibrd *brdp)
2924 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2927 /*****************************************************************************/
2929 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2931 void __iomem *ptr;
2932 unsigned char val;
2934 if (offset > brdp->memsize) {
2935 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2936 "range at line=%d(%d), brd=%d\n",
2937 (int) offset, line, __LINE__, brdp->brdnr);
2938 ptr = NULL;
2939 val = 0;
2940 } else {
2941 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2942 if (offset < ECP_EIPAGESIZE)
2943 val = ECP_EIENABLE;
2944 else
2945 val = ECP_EIENABLE | 0x40;
2947 outb(val, (brdp->iobase + ECP_EICONFR));
2948 return(ptr);
2951 /*****************************************************************************/
2953 static void stli_ecpeireset(struct stlibrd *brdp)
2955 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2956 udelay(10);
2957 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2958 udelay(500);
2961 /*****************************************************************************/
2964 * The following set of functions act on ECP MCA boards.
2967 static void stli_ecpmcenable(struct stlibrd *brdp)
2969 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2972 /*****************************************************************************/
2974 static void stli_ecpmcdisable(struct stlibrd *brdp)
2976 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2979 /*****************************************************************************/
2981 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2983 void __iomem *ptr;
2984 unsigned char val;
2986 if (offset > brdp->memsize) {
2987 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2988 "range at line=%d(%d), brd=%d\n",
2989 (int) offset, line, __LINE__, brdp->brdnr);
2990 ptr = NULL;
2991 val = 0;
2992 } else {
2993 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2994 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2996 outb(val, (brdp->iobase + ECP_MCCONFR));
2997 return(ptr);
3000 /*****************************************************************************/
3002 static void stli_ecpmcreset(struct stlibrd *brdp)
3004 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3005 udelay(10);
3006 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3007 udelay(500);
3010 /*****************************************************************************/
3013 * The following set of functions act on ECP PCI boards.
3016 static void stli_ecppciinit(struct stlibrd *brdp)
3018 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3019 udelay(10);
3020 outb(0, (brdp->iobase + ECP_PCICONFR));
3021 udelay(500);
3024 /*****************************************************************************/
3026 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3028 void __iomem *ptr;
3029 unsigned char val;
3031 if (offset > brdp->memsize) {
3032 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3033 "range at line=%d(%d), board=%d\n",
3034 (int) offset, line, __LINE__, brdp->brdnr);
3035 ptr = NULL;
3036 val = 0;
3037 } else {
3038 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3039 val = (offset / ECP_PCIPAGESIZE) << 1;
3041 outb(val, (brdp->iobase + ECP_PCICONFR));
3042 return(ptr);
3045 /*****************************************************************************/
3047 static void stli_ecppcireset(struct stlibrd *brdp)
3049 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3050 udelay(10);
3051 outb(0, (brdp->iobase + ECP_PCICONFR));
3052 udelay(500);
3055 /*****************************************************************************/
3058 * The following routines act on ONboards.
3061 static void stli_onbinit(struct stlibrd *brdp)
3063 unsigned long memconf;
3065 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3066 udelay(10);
3067 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3068 mdelay(1000);
3070 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3071 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3072 outb(0x1, brdp->iobase);
3073 mdelay(1);
3076 /*****************************************************************************/
3078 static void stli_onbenable(struct stlibrd *brdp)
3080 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3083 /*****************************************************************************/
3085 static void stli_onbdisable(struct stlibrd *brdp)
3087 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3090 /*****************************************************************************/
3092 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3094 void __iomem *ptr;
3096 if (offset > brdp->memsize) {
3097 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3098 "range at line=%d(%d), brd=%d\n",
3099 (int) offset, line, __LINE__, brdp->brdnr);
3100 ptr = NULL;
3101 } else {
3102 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3104 return(ptr);
3107 /*****************************************************************************/
3109 static void stli_onbreset(struct stlibrd *brdp)
3111 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3112 udelay(10);
3113 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3114 mdelay(1000);
3117 /*****************************************************************************/
3120 * The following routines act on ONboard EISA.
3123 static void stli_onbeinit(struct stlibrd *brdp)
3125 unsigned long memconf;
3127 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3128 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3129 udelay(10);
3130 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3131 mdelay(1000);
3133 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3134 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3135 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3136 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3137 outb(0x1, brdp->iobase);
3138 mdelay(1);
3141 /*****************************************************************************/
3143 static void stli_onbeenable(struct stlibrd *brdp)
3145 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3148 /*****************************************************************************/
3150 static void stli_onbedisable(struct stlibrd *brdp)
3152 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3155 /*****************************************************************************/
3157 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3159 void __iomem *ptr;
3160 unsigned char val;
3162 if (offset > brdp->memsize) {
3163 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3164 "range at line=%d(%d), brd=%d\n",
3165 (int) offset, line, __LINE__, brdp->brdnr);
3166 ptr = NULL;
3167 val = 0;
3168 } else {
3169 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3170 if (offset < ONB_EIPAGESIZE)
3171 val = ONB_EIENABLE;
3172 else
3173 val = ONB_EIENABLE | 0x40;
3175 outb(val, (brdp->iobase + ONB_EICONFR));
3176 return(ptr);
3179 /*****************************************************************************/
3181 static void stli_onbereset(struct stlibrd *brdp)
3183 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3184 udelay(10);
3185 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3186 mdelay(1000);
3189 /*****************************************************************************/
3192 * The following routines act on Brumby boards.
3195 static void stli_bbyinit(struct stlibrd *brdp)
3197 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3198 udelay(10);
3199 outb(0, (brdp->iobase + BBY_ATCONFR));
3200 mdelay(1000);
3201 outb(0x1, brdp->iobase);
3202 mdelay(1);
3205 /*****************************************************************************/
3207 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3209 void __iomem *ptr;
3210 unsigned char val;
3212 BUG_ON(offset > brdp->memsize);
3214 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3215 val = (unsigned char) (offset / BBY_PAGESIZE);
3216 outb(val, (brdp->iobase + BBY_ATCONFR));
3217 return(ptr);
3220 /*****************************************************************************/
3222 static void stli_bbyreset(struct stlibrd *brdp)
3224 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3225 udelay(10);
3226 outb(0, (brdp->iobase + BBY_ATCONFR));
3227 mdelay(1000);
3230 /*****************************************************************************/
3233 * The following routines act on original old Stallion boards.
3236 static void stli_stalinit(struct stlibrd *brdp)
3238 outb(0x1, brdp->iobase);
3239 mdelay(1000);
3242 /*****************************************************************************/
3244 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
3246 BUG_ON(offset > brdp->memsize);
3247 return brdp->membase + (offset % STAL_PAGESIZE);
3250 /*****************************************************************************/
3252 static void stli_stalreset(struct stlibrd *brdp)
3254 u32 __iomem *vecp;
3256 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3257 writel(0xffff0000, vecp);
3258 outb(0, brdp->iobase);
3259 mdelay(1000);
3262 /*****************************************************************************/
3265 * Try to find an ECP board and initialize it. This handles only ECP
3266 * board types.
3269 static int stli_initecp(struct stlibrd *brdp)
3271 cdkecpsig_t sig;
3272 cdkecpsig_t __iomem *sigsp;
3273 unsigned int status, nxtid;
3274 char *name;
3275 int panelnr, nrports;
3277 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3278 return -EIO;
3280 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3282 release_region(brdp->iobase, brdp->iosize);
3283 return -ENODEV;
3286 brdp->iosize = ECP_IOSIZE;
3289 * Based on the specific board type setup the common vars to access
3290 * and enable shared memory. Set all board specific information now
3291 * as well.
3293 switch (brdp->brdtype) {
3294 case BRD_ECP:
3295 brdp->memsize = ECP_MEMSIZE;
3296 brdp->pagesize = ECP_ATPAGESIZE;
3297 brdp->init = stli_ecpinit;
3298 brdp->enable = stli_ecpenable;
3299 brdp->reenable = stli_ecpenable;
3300 brdp->disable = stli_ecpdisable;
3301 brdp->getmemptr = stli_ecpgetmemptr;
3302 brdp->intr = stli_ecpintr;
3303 brdp->reset = stli_ecpreset;
3304 name = "serial(EC8/64)";
3305 break;
3307 case BRD_ECPE:
3308 brdp->memsize = ECP_MEMSIZE;
3309 brdp->pagesize = ECP_EIPAGESIZE;
3310 brdp->init = stli_ecpeiinit;
3311 brdp->enable = stli_ecpeienable;
3312 brdp->reenable = stli_ecpeienable;
3313 brdp->disable = stli_ecpeidisable;
3314 brdp->getmemptr = stli_ecpeigetmemptr;
3315 brdp->intr = stli_ecpintr;
3316 brdp->reset = stli_ecpeireset;
3317 name = "serial(EC8/64-EI)";
3318 break;
3320 case BRD_ECPMC:
3321 brdp->memsize = ECP_MEMSIZE;
3322 brdp->pagesize = ECP_MCPAGESIZE;
3323 brdp->init = NULL;
3324 brdp->enable = stli_ecpmcenable;
3325 brdp->reenable = stli_ecpmcenable;
3326 brdp->disable = stli_ecpmcdisable;
3327 brdp->getmemptr = stli_ecpmcgetmemptr;
3328 brdp->intr = stli_ecpintr;
3329 brdp->reset = stli_ecpmcreset;
3330 name = "serial(EC8/64-MCA)";
3331 break;
3333 case BRD_ECPPCI:
3334 brdp->memsize = ECP_PCIMEMSIZE;
3335 brdp->pagesize = ECP_PCIPAGESIZE;
3336 brdp->init = stli_ecppciinit;
3337 brdp->enable = NULL;
3338 brdp->reenable = NULL;
3339 brdp->disable = NULL;
3340 brdp->getmemptr = stli_ecppcigetmemptr;
3341 brdp->intr = stli_ecpintr;
3342 brdp->reset = stli_ecppcireset;
3343 name = "serial(EC/RA-PCI)";
3344 break;
3346 default:
3347 release_region(brdp->iobase, brdp->iosize);
3348 return -EINVAL;
3352 * The per-board operations structure is all set up, so now let's go
3353 * and get the board operational. Firstly initialize board configuration
3354 * registers. Set the memory mapping info so we can get at the boards
3355 * shared memory.
3357 EBRDINIT(brdp);
3359 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3360 if (brdp->membase == NULL)
3362 release_region(brdp->iobase, brdp->iosize);
3363 return -ENOMEM;
3367 * Now that all specific code is set up, enable the shared memory and
3368 * look for the a signature area that will tell us exactly what board
3369 * this is, and what it is connected to it.
3371 EBRDENABLE(brdp);
3372 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3373 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3374 EBRDDISABLE(brdp);
3376 if (sig.magic != cpu_to_le32(ECP_MAGIC))
3378 release_region(brdp->iobase, brdp->iosize);
3379 iounmap(brdp->membase);
3380 brdp->membase = NULL;
3381 return -ENODEV;
3385 * Scan through the signature looking at the panels connected to the
3386 * board. Calculate the total number of ports as we go.
3388 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3389 status = sig.panelid[nxtid];
3390 if ((status & ECH_PNLIDMASK) != nxtid)
3391 break;
3393 brdp->panelids[panelnr] = status;
3394 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3395 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3396 nxtid++;
3397 brdp->panels[panelnr] = nrports;
3398 brdp->nrports += nrports;
3399 nxtid++;
3400 brdp->nrpanels++;
3404 brdp->state |= BST_FOUND;
3405 return 0;
3408 /*****************************************************************************/
3411 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3412 * This handles only these board types.
3415 static int stli_initonb(struct stlibrd *brdp)
3417 cdkonbsig_t sig;
3418 cdkonbsig_t __iomem *sigsp;
3419 char *name;
3420 int i;
3423 * Do a basic sanity check on the IO and memory addresses.
3425 if (brdp->iobase == 0 || brdp->memaddr == 0)
3426 return -ENODEV;
3428 brdp->iosize = ONB_IOSIZE;
3430 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3431 return -EIO;
3434 * Based on the specific board type setup the common vars to access
3435 * and enable shared memory. Set all board specific information now
3436 * as well.
3438 switch (brdp->brdtype) {
3439 case BRD_ONBOARD:
3440 case BRD_ONBOARD2:
3441 brdp->memsize = ONB_MEMSIZE;
3442 brdp->pagesize = ONB_ATPAGESIZE;
3443 brdp->init = stli_onbinit;
3444 brdp->enable = stli_onbenable;
3445 brdp->reenable = stli_onbenable;
3446 brdp->disable = stli_onbdisable;
3447 brdp->getmemptr = stli_onbgetmemptr;
3448 brdp->intr = stli_ecpintr;
3449 brdp->reset = stli_onbreset;
3450 if (brdp->memaddr > 0x100000)
3451 brdp->enabval = ONB_MEMENABHI;
3452 else
3453 brdp->enabval = ONB_MEMENABLO;
3454 name = "serial(ONBoard)";
3455 break;
3457 case BRD_ONBOARDE:
3458 brdp->memsize = ONB_EIMEMSIZE;
3459 brdp->pagesize = ONB_EIPAGESIZE;
3460 brdp->init = stli_onbeinit;
3461 brdp->enable = stli_onbeenable;
3462 brdp->reenable = stli_onbeenable;
3463 brdp->disable = stli_onbedisable;
3464 brdp->getmemptr = stli_onbegetmemptr;
3465 brdp->intr = stli_ecpintr;
3466 brdp->reset = stli_onbereset;
3467 name = "serial(ONBoard/E)";
3468 break;
3470 case BRD_BRUMBY4:
3471 brdp->memsize = BBY_MEMSIZE;
3472 brdp->pagesize = BBY_PAGESIZE;
3473 brdp->init = stli_bbyinit;
3474 brdp->enable = NULL;
3475 brdp->reenable = NULL;
3476 brdp->disable = NULL;
3477 brdp->getmemptr = stli_bbygetmemptr;
3478 brdp->intr = stli_ecpintr;
3479 brdp->reset = stli_bbyreset;
3480 name = "serial(Brumby)";
3481 break;
3483 case BRD_STALLION:
3484 brdp->memsize = STAL_MEMSIZE;
3485 brdp->pagesize = STAL_PAGESIZE;
3486 brdp->init = stli_stalinit;
3487 brdp->enable = NULL;
3488 brdp->reenable = NULL;
3489 brdp->disable = NULL;
3490 brdp->getmemptr = stli_stalgetmemptr;
3491 brdp->intr = stli_ecpintr;
3492 brdp->reset = stli_stalreset;
3493 name = "serial(Stallion)";
3494 break;
3496 default:
3497 release_region(brdp->iobase, brdp->iosize);
3498 return -EINVAL;
3502 * The per-board operations structure is all set up, so now let's go
3503 * and get the board operational. Firstly initialize board configuration
3504 * registers. Set the memory mapping info so we can get at the boards
3505 * shared memory.
3507 EBRDINIT(brdp);
3509 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3510 if (brdp->membase == NULL)
3512 release_region(brdp->iobase, brdp->iosize);
3513 return -ENOMEM;
3517 * Now that all specific code is set up, enable the shared memory and
3518 * look for the a signature area that will tell us exactly what board
3519 * this is, and how many ports.
3521 EBRDENABLE(brdp);
3522 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3523 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3524 EBRDDISABLE(brdp);
3526 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3527 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3528 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3529 sig.magic3 != cpu_to_le16(ONB_MAGIC3))
3531 release_region(brdp->iobase, brdp->iosize);
3532 iounmap(brdp->membase);
3533 brdp->membase = NULL;
3534 return -ENODEV;
3538 * Scan through the signature alive mask and calculate how many ports
3539 * there are on this board.
3541 brdp->nrpanels = 1;
3542 if (sig.amask1) {
3543 brdp->nrports = 32;
3544 } else {
3545 for (i = 0; (i < 16); i++) {
3546 if (((sig.amask0 << i) & 0x8000) == 0)
3547 break;
3549 brdp->nrports = i;
3551 brdp->panels[0] = brdp->nrports;
3554 brdp->state |= BST_FOUND;
3555 return 0;
3558 /*****************************************************************************/
3561 * Start up a running board. This routine is only called after the
3562 * code has been down loaded to the board and is operational. It will
3563 * read in the memory map, and get the show on the road...
3566 static int stli_startbrd(struct stlibrd *brdp)
3568 cdkhdr_t __iomem *hdrp;
3569 cdkmem_t __iomem *memp;
3570 cdkasy_t __iomem *ap;
3571 unsigned long flags;
3572 unsigned int portnr, nrdevs, i;
3573 struct stliport *portp;
3574 int rc = 0;
3575 u32 memoff;
3577 spin_lock_irqsave(&brd_lock, flags);
3578 EBRDENABLE(brdp);
3579 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3580 nrdevs = hdrp->nrdevs;
3582 #if 0
3583 printk("%s(%d): CDK version %d.%d.%d --> "
3584 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3585 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3586 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3587 readl(&hdrp->slavep));
3588 #endif
3590 if (nrdevs < (brdp->nrports + 1)) {
3591 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3592 "all devices, devices=%d\n", nrdevs);
3593 brdp->nrports = nrdevs - 1;
3595 brdp->nrdevs = nrdevs;
3596 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3597 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3598 brdp->bitsize = (nrdevs + 7) / 8;
3599 memoff = readl(&hdrp->memp);
3600 if (memoff > brdp->memsize) {
3601 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3602 rc = -EIO;
3603 goto stli_donestartup;
3605 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3606 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3607 printk(KERN_ERR "STALLION: no slave control device found\n");
3608 goto stli_donestartup;
3610 memp++;
3613 * Cycle through memory allocation of each port. We are guaranteed to
3614 * have all ports inside the first page of slave window, so no need to
3615 * change pages while reading memory map.
3617 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3618 if (readw(&memp->dtype) != TYP_ASYNC)
3619 break;
3620 portp = brdp->ports[portnr];
3621 if (portp == NULL)
3622 break;
3623 portp->devnr = i;
3624 portp->addr = readl(&memp->offset);
3625 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3626 portp->portidx = (unsigned char) (i / 8);
3627 portp->portbit = (unsigned char) (0x1 << (i % 8));
3630 writeb(0xff, &hdrp->slavereq);
3633 * For each port setup a local copy of the RX and TX buffer offsets
3634 * and sizes. We do this separate from the above, because we need to
3635 * move the shared memory page...
3637 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3638 portp = brdp->ports[portnr];
3639 if (portp == NULL)
3640 break;
3641 if (portp->addr == 0)
3642 break;
3643 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3644 if (ap != NULL) {
3645 portp->rxsize = readw(&ap->rxq.size);
3646 portp->txsize = readw(&ap->txq.size);
3647 portp->rxoffset = readl(&ap->rxq.offset);
3648 portp->txoffset = readl(&ap->txq.offset);
3652 stli_donestartup:
3653 EBRDDISABLE(brdp);
3654 spin_unlock_irqrestore(&brd_lock, flags);
3656 if (rc == 0)
3657 brdp->state |= BST_STARTED;
3659 if (! stli_timeron) {
3660 stli_timeron++;
3661 stli_timerlist.expires = STLI_TIMEOUT;
3662 add_timer(&stli_timerlist);
3665 return rc;
3668 /*****************************************************************************/
3671 * Probe and initialize the specified board.
3674 static int __devinit stli_brdinit(struct stlibrd *brdp)
3676 stli_brds[brdp->brdnr] = brdp;
3678 switch (brdp->brdtype) {
3679 case BRD_ECP:
3680 case BRD_ECPE:
3681 case BRD_ECPMC:
3682 case BRD_ECPPCI:
3683 stli_initecp(brdp);
3684 break;
3685 case BRD_ONBOARD:
3686 case BRD_ONBOARDE:
3687 case BRD_ONBOARD2:
3688 case BRD_BRUMBY4:
3689 case BRD_STALLION:
3690 stli_initonb(brdp);
3691 break;
3692 default:
3693 printk(KERN_ERR "STALLION: board=%d is unknown board "
3694 "type=%d\n", brdp->brdnr, brdp->brdtype);
3695 return -ENODEV;
3698 if ((brdp->state & BST_FOUND) == 0) {
3699 printk(KERN_ERR "STALLION: %s board not found, board=%d "
3700 "io=%x mem=%x\n",
3701 stli_brdnames[brdp->brdtype], brdp->brdnr,
3702 brdp->iobase, (int) brdp->memaddr);
3703 return -ENODEV;
3706 stli_initports(brdp);
3707 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3708 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3709 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3710 brdp->nrpanels, brdp->nrports);
3711 return 0;
3714 /*****************************************************************************/
3717 * Probe around trying to find where the EISA boards shared memory
3718 * might be. This is a bit if hack, but it is the best we can do.
3721 static int stli_eisamemprobe(struct stlibrd *brdp)
3723 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3724 cdkonbsig_t onbsig, __iomem *onbsigp;
3725 int i, foundit;
3728 * First up we reset the board, to get it into a known state. There
3729 * is only 2 board types here we need to worry about. Don;t use the
3730 * standard board init routine here, it programs up the shared
3731 * memory address, and we don't know it yet...
3733 if (brdp->brdtype == BRD_ECPE) {
3734 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3735 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3736 udelay(10);
3737 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3738 udelay(500);
3739 stli_ecpeienable(brdp);
3740 } else if (brdp->brdtype == BRD_ONBOARDE) {
3741 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3742 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3743 udelay(10);
3744 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3745 mdelay(100);
3746 outb(0x1, brdp->iobase);
3747 mdelay(1);
3748 stli_onbeenable(brdp);
3749 } else {
3750 return -ENODEV;
3753 foundit = 0;
3754 brdp->memsize = ECP_MEMSIZE;
3757 * Board shared memory is enabled, so now we have a poke around and
3758 * see if we can find it.
3760 for (i = 0; (i < stli_eisamempsize); i++) {
3761 brdp->memaddr = stli_eisamemprobeaddrs[i];
3762 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3763 if (brdp->membase == NULL)
3764 continue;
3766 if (brdp->brdtype == BRD_ECPE) {
3767 ecpsigp = stli_ecpeigetmemptr(brdp,
3768 CDK_SIGADDR, __LINE__);
3769 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3770 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3771 foundit = 1;
3772 } else {
3773 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3774 CDK_SIGADDR, __LINE__);
3775 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3776 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3777 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3778 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3779 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3780 foundit = 1;
3783 iounmap(brdp->membase);
3784 if (foundit)
3785 break;
3789 * Regardless of whether we found the shared memory or not we must
3790 * disable the region. After that return success or failure.
3792 if (brdp->brdtype == BRD_ECPE)
3793 stli_ecpeidisable(brdp);
3794 else
3795 stli_onbedisable(brdp);
3797 if (! foundit) {
3798 brdp->memaddr = 0;
3799 brdp->membase = NULL;
3800 printk(KERN_ERR "STALLION: failed to probe shared memory "
3801 "region for %s in EISA slot=%d\n",
3802 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3803 return -ENODEV;
3805 return 0;
3808 static int stli_getbrdnr(void)
3810 unsigned int i;
3812 for (i = 0; i < STL_MAXBRDS; i++) {
3813 if (!stli_brds[i]) {
3814 if (i >= stli_nrbrds)
3815 stli_nrbrds = i + 1;
3816 return i;
3819 return -1;
3822 /*****************************************************************************/
3825 * Probe around and try to find any EISA boards in system. The biggest
3826 * problem here is finding out what memory address is associated with
3827 * an EISA board after it is found. The registers of the ECPE and
3828 * ONboardE are not readable - so we can't read them from there. We
3829 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3830 * actually have any way to find out the real value. The best we can
3831 * do is go probing around in the usual places hoping we can find it.
3834 static int stli_findeisabrds(void)
3836 struct stlibrd *brdp;
3837 unsigned int iobase, eid, i;
3838 int brdnr;
3841 * Firstly check if this is an EISA system. If this is not an EISA system then
3842 * don't bother going any further!
3844 if (EISA_bus)
3845 return 0;
3848 * Looks like an EISA system, so go searching for EISA boards.
3850 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3851 outb(0xff, (iobase + 0xc80));
3852 eid = inb(iobase + 0xc80);
3853 eid |= inb(iobase + 0xc81) << 8;
3854 if (eid != STL_EISAID)
3855 continue;
3858 * We have found a board. Need to check if this board was
3859 * statically configured already (just in case!).
3861 for (i = 0; (i < STL_MAXBRDS); i++) {
3862 brdp = stli_brds[i];
3863 if (brdp == NULL)
3864 continue;
3865 if (brdp->iobase == iobase)
3866 break;
3868 if (i < STL_MAXBRDS)
3869 continue;
3872 * We have found a Stallion board and it is not configured already.
3873 * Allocate a board structure and initialize it.
3875 if ((brdp = stli_allocbrd()) == NULL)
3876 return -ENOMEM;
3877 brdnr = stli_getbrdnr();
3878 if (brdnr < 0)
3879 return -ENOMEM;
3880 brdp->brdnr = (unsigned int)brdnr;
3881 eid = inb(iobase + 0xc82);
3882 if (eid == ECP_EISAID)
3883 brdp->brdtype = BRD_ECPE;
3884 else if (eid == ONB_EISAID)
3885 brdp->brdtype = BRD_ONBOARDE;
3886 else
3887 brdp->brdtype = BRD_UNKNOWN;
3888 brdp->iobase = iobase;
3889 outb(0x1, (iobase + 0xc84));
3890 if (stli_eisamemprobe(brdp))
3891 outb(0, (iobase + 0xc84));
3892 stli_brdinit(brdp);
3895 return 0;
3898 /*****************************************************************************/
3901 * Find the next available board number that is free.
3904 /*****************************************************************************/
3907 * We have a Stallion board. Allocate a board structure and
3908 * initialize it. Read its IO and MEMORY resources from PCI
3909 * configuration space.
3912 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3913 const struct pci_device_id *ent)
3915 struct stlibrd *brdp;
3916 int brdnr, retval = -EIO;
3918 retval = pci_enable_device(pdev);
3919 if (retval)
3920 goto err;
3921 brdp = stli_allocbrd();
3922 if (brdp == NULL) {
3923 retval = -ENOMEM;
3924 goto err;
3926 brdnr = stli_getbrdnr();
3927 if (brdnr < 0) { /* TODO: locking */
3928 printk(KERN_INFO "STALLION: too many boards found, "
3929 "maximum supported %d\n", STL_MAXBRDS);
3930 retval = -EIO;
3931 goto err_fr;
3933 brdp->brdnr = (unsigned int)brdnr;
3934 brdp->brdtype = BRD_ECPPCI;
3936 * We have all resources from the board, so lets setup the actual
3937 * board structure now.
3939 brdp->iobase = pci_resource_start(pdev, 3);
3940 brdp->memaddr = pci_resource_start(pdev, 2);
3941 retval = stli_brdinit(brdp);
3942 if (retval)
3943 goto err_fr;
3945 pci_set_drvdata(pdev, brdp);
3947 return 0;
3948 err_fr:
3949 kfree(brdp);
3950 err:
3951 return retval;
3954 static void stli_pciremove(struct pci_dev *pdev)
3956 struct stlibrd *brdp = pci_get_drvdata(pdev);
3958 stli_cleanup_ports(brdp);
3960 iounmap(brdp->membase);
3961 if (brdp->iosize > 0)
3962 release_region(brdp->iobase, brdp->iosize);
3964 stli_brds[brdp->brdnr] = NULL;
3965 kfree(brdp);
3968 static struct pci_driver stli_pcidriver = {
3969 .name = "istallion",
3970 .id_table = istallion_pci_tbl,
3971 .probe = stli_pciprobe,
3972 .remove = __devexit_p(stli_pciremove)
3974 /*****************************************************************************/
3977 * Allocate a new board structure. Fill out the basic info in it.
3980 static struct stlibrd *stli_allocbrd(void)
3982 struct stlibrd *brdp;
3984 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3985 if (!brdp) {
3986 printk(KERN_ERR "STALLION: failed to allocate memory "
3987 "(size=%Zd)\n", sizeof(struct stlibrd));
3988 return NULL;
3990 brdp->magic = STLI_BOARDMAGIC;
3991 return brdp;
3994 /*****************************************************************************/
3997 * Scan through all the boards in the configuration and see what we
3998 * can find.
4001 static int stli_initbrds(void)
4003 struct stlibrd *brdp, *nxtbrdp;
4004 struct stlconf conf;
4005 unsigned int i, j;
4006 int retval;
4008 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
4009 stli_nrbrds++) {
4010 memset(&conf, 0, sizeof(conf));
4011 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
4012 continue;
4013 if ((brdp = stli_allocbrd()) == NULL)
4014 continue;
4015 brdp->brdnr = stli_nrbrds;
4016 brdp->brdtype = conf.brdtype;
4017 brdp->iobase = conf.ioaddr1;
4018 brdp->memaddr = conf.memaddr;
4019 stli_brdinit(brdp);
4022 if (STLI_EISAPROBE)
4023 stli_findeisabrds();
4025 retval = pci_register_driver(&stli_pcidriver);
4026 /* TODO: check retval and do something */
4029 * All found boards are initialized. Now for a little optimization, if
4030 * no boards are sharing the "shared memory" regions then we can just
4031 * leave them all enabled. This is in fact the usual case.
4033 stli_shared = 0;
4034 if (stli_nrbrds > 1) {
4035 for (i = 0; (i < stli_nrbrds); i++) {
4036 brdp = stli_brds[i];
4037 if (brdp == NULL)
4038 continue;
4039 for (j = i + 1; (j < stli_nrbrds); j++) {
4040 nxtbrdp = stli_brds[j];
4041 if (nxtbrdp == NULL)
4042 continue;
4043 if ((brdp->membase >= nxtbrdp->membase) &&
4044 (brdp->membase <= (nxtbrdp->membase +
4045 nxtbrdp->memsize - 1))) {
4046 stli_shared++;
4047 break;
4053 if (stli_shared == 0) {
4054 for (i = 0; (i < stli_nrbrds); i++) {
4055 brdp = stli_brds[i];
4056 if (brdp == NULL)
4057 continue;
4058 if (brdp->state & BST_FOUND) {
4059 EBRDENABLE(brdp);
4060 brdp->enable = NULL;
4061 brdp->disable = NULL;
4066 return 0;
4069 /*****************************************************************************/
4072 * Code to handle an "staliomem" read operation. This device is the
4073 * contents of the board shared memory. It is used for down loading
4074 * the slave image (and debugging :-)
4077 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4079 unsigned long flags;
4080 void __iomem *memptr;
4081 struct stlibrd *brdp;
4082 unsigned int brdnr;
4083 int size, n;
4084 void *p;
4085 loff_t off = *offp;
4087 brdnr = iminor(fp->f_path.dentry->d_inode);
4088 if (brdnr >= stli_nrbrds)
4089 return -ENODEV;
4090 brdp = stli_brds[brdnr];
4091 if (brdp == NULL)
4092 return -ENODEV;
4093 if (brdp->state == 0)
4094 return -ENODEV;
4095 if (off >= brdp->memsize || off + count < off)
4096 return 0;
4098 size = min(count, (size_t)(brdp->memsize - off));
4101 * Copy the data a page at a time
4104 p = (void *)__get_free_page(GFP_KERNEL);
4105 if(p == NULL)
4106 return -ENOMEM;
4108 while (size > 0) {
4109 spin_lock_irqsave(&brd_lock, flags);
4110 EBRDENABLE(brdp);
4111 memptr = EBRDGETMEMPTR(brdp, off);
4112 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4113 n = min(n, (int)PAGE_SIZE);
4114 memcpy_fromio(p, memptr, n);
4115 EBRDDISABLE(brdp);
4116 spin_unlock_irqrestore(&brd_lock, flags);
4117 if (copy_to_user(buf, p, n)) {
4118 count = -EFAULT;
4119 goto out;
4121 off += n;
4122 buf += n;
4123 size -= n;
4125 out:
4126 *offp = off;
4127 free_page((unsigned long)p);
4128 return count;
4131 /*****************************************************************************/
4134 * Code to handle an "staliomem" write operation. This device is the
4135 * contents of the board shared memory. It is used for down loading
4136 * the slave image (and debugging :-)
4138 * FIXME: copy under lock
4141 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4143 unsigned long flags;
4144 void __iomem *memptr;
4145 struct stlibrd *brdp;
4146 char __user *chbuf;
4147 unsigned int brdnr;
4148 int size, n;
4149 void *p;
4150 loff_t off = *offp;
4152 brdnr = iminor(fp->f_path.dentry->d_inode);
4154 if (brdnr >= stli_nrbrds)
4155 return -ENODEV;
4156 brdp = stli_brds[brdnr];
4157 if (brdp == NULL)
4158 return -ENODEV;
4159 if (brdp->state == 0)
4160 return -ENODEV;
4161 if (off >= brdp->memsize || off + count < off)
4162 return 0;
4164 chbuf = (char __user *) buf;
4165 size = min(count, (size_t)(brdp->memsize - off));
4168 * Copy the data a page at a time
4171 p = (void *)__get_free_page(GFP_KERNEL);
4172 if(p == NULL)
4173 return -ENOMEM;
4175 while (size > 0) {
4176 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4177 n = min(n, (int)PAGE_SIZE);
4178 if (copy_from_user(p, chbuf, n)) {
4179 if (count == 0)
4180 count = -EFAULT;
4181 goto out;
4183 spin_lock_irqsave(&brd_lock, flags);
4184 EBRDENABLE(brdp);
4185 memptr = EBRDGETMEMPTR(brdp, off);
4186 memcpy_toio(memptr, p, n);
4187 EBRDDISABLE(brdp);
4188 spin_unlock_irqrestore(&brd_lock, flags);
4189 off += n;
4190 chbuf += n;
4191 size -= n;
4193 out:
4194 free_page((unsigned long) p);
4195 *offp = off;
4196 return count;
4199 /*****************************************************************************/
4202 * Return the board stats structure to user app.
4205 static int stli_getbrdstats(combrd_t __user *bp)
4207 struct stlibrd *brdp;
4208 unsigned int i;
4210 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4211 return -EFAULT;
4212 if (stli_brdstats.brd >= STL_MAXBRDS)
4213 return -ENODEV;
4214 brdp = stli_brds[stli_brdstats.brd];
4215 if (brdp == NULL)
4216 return -ENODEV;
4218 memset(&stli_brdstats, 0, sizeof(combrd_t));
4219 stli_brdstats.brd = brdp->brdnr;
4220 stli_brdstats.type = brdp->brdtype;
4221 stli_brdstats.hwid = 0;
4222 stli_brdstats.state = brdp->state;
4223 stli_brdstats.ioaddr = brdp->iobase;
4224 stli_brdstats.memaddr = brdp->memaddr;
4225 stli_brdstats.nrpanels = brdp->nrpanels;
4226 stli_brdstats.nrports = brdp->nrports;
4227 for (i = 0; (i < brdp->nrpanels); i++) {
4228 stli_brdstats.panels[i].panel = i;
4229 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4230 stli_brdstats.panels[i].nrports = brdp->panels[i];
4233 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4234 return -EFAULT;
4235 return 0;
4238 /*****************************************************************************/
4241 * Resolve the referenced port number into a port struct pointer.
4244 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4245 unsigned int portnr)
4247 struct stlibrd *brdp;
4248 unsigned int i;
4250 if (brdnr >= STL_MAXBRDS)
4251 return NULL;
4252 brdp = stli_brds[brdnr];
4253 if (brdp == NULL)
4254 return NULL;
4255 for (i = 0; (i < panelnr); i++)
4256 portnr += brdp->panels[i];
4257 if (portnr >= brdp->nrports)
4258 return NULL;
4259 return brdp->ports[portnr];
4262 /*****************************************************************************/
4265 * Return the port stats structure to user app. A NULL port struct
4266 * pointer passed in means that we need to find out from the app
4267 * what port to get stats for (used through board control device).
4270 static int stli_portcmdstats(struct stliport *portp)
4272 unsigned long flags;
4273 struct stlibrd *brdp;
4274 int rc;
4276 memset(&stli_comstats, 0, sizeof(comstats_t));
4278 if (portp == NULL)
4279 return -ENODEV;
4280 brdp = stli_brds[portp->brdnr];
4281 if (brdp == NULL)
4282 return -ENODEV;
4284 if (brdp->state & BST_STARTED) {
4285 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4286 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4287 return rc;
4288 } else {
4289 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4292 stli_comstats.brd = portp->brdnr;
4293 stli_comstats.panel = portp->panelnr;
4294 stli_comstats.port = portp->portnr;
4295 stli_comstats.state = portp->state;
4296 stli_comstats.flags = portp->flags;
4298 spin_lock_irqsave(&brd_lock, flags);
4299 if (portp->tty != NULL) {
4300 if (portp->tty->driver_data == portp) {
4301 stli_comstats.ttystate = portp->tty->flags;
4302 stli_comstats.rxbuffered = -1;
4303 if (portp->tty->termios != NULL) {
4304 stli_comstats.cflags = portp->tty->termios->c_cflag;
4305 stli_comstats.iflags = portp->tty->termios->c_iflag;
4306 stli_comstats.oflags = portp->tty->termios->c_oflag;
4307 stli_comstats.lflags = portp->tty->termios->c_lflag;
4311 spin_unlock_irqrestore(&brd_lock, flags);
4313 stli_comstats.txtotal = stli_cdkstats.txchars;
4314 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4315 stli_comstats.txbuffered = stli_cdkstats.txringq;
4316 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4317 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4318 stli_comstats.rxparity = stli_cdkstats.parity;
4319 stli_comstats.rxframing = stli_cdkstats.framing;
4320 stli_comstats.rxlost = stli_cdkstats.ringover;
4321 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4322 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4323 stli_comstats.txxon = stli_cdkstats.txstart;
4324 stli_comstats.txxoff = stli_cdkstats.txstop;
4325 stli_comstats.rxxon = stli_cdkstats.rxstart;
4326 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4327 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4328 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4329 stli_comstats.modem = stli_cdkstats.dcdcnt;
4330 stli_comstats.hwid = stli_cdkstats.hwid;
4331 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4333 return 0;
4336 /*****************************************************************************/
4339 * Return the port stats structure to user app. A NULL port struct
4340 * pointer passed in means that we need to find out from the app
4341 * what port to get stats for (used through board control device).
4344 static int stli_getportstats(struct stliport *portp, comstats_t __user *cp)
4346 struct stlibrd *brdp;
4347 int rc;
4349 if (!portp) {
4350 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4351 return -EFAULT;
4352 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4353 stli_comstats.port);
4354 if (!portp)
4355 return -ENODEV;
4358 brdp = stli_brds[portp->brdnr];
4359 if (!brdp)
4360 return -ENODEV;
4362 if ((rc = stli_portcmdstats(portp)) < 0)
4363 return rc;
4365 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4366 -EFAULT : 0;
4369 /*****************************************************************************/
4372 * Clear the port stats structure. We also return it zeroed out...
4375 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4377 struct stlibrd *brdp;
4378 int rc;
4380 if (!portp) {
4381 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4382 return -EFAULT;
4383 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4384 stli_comstats.port);
4385 if (!portp)
4386 return -ENODEV;
4389 brdp = stli_brds[portp->brdnr];
4390 if (!brdp)
4391 return -ENODEV;
4393 if (brdp->state & BST_STARTED) {
4394 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4395 return rc;
4398 memset(&stli_comstats, 0, sizeof(comstats_t));
4399 stli_comstats.brd = portp->brdnr;
4400 stli_comstats.panel = portp->panelnr;
4401 stli_comstats.port = portp->portnr;
4403 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4404 return -EFAULT;
4405 return 0;
4408 /*****************************************************************************/
4411 * Return the entire driver ports structure to a user app.
4414 static int stli_getportstruct(struct stliport __user *arg)
4416 struct stliport stli_dummyport;
4417 struct stliport *portp;
4419 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4420 return -EFAULT;
4421 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4422 stli_dummyport.portnr);
4423 if (!portp)
4424 return -ENODEV;
4425 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4426 return -EFAULT;
4427 return 0;
4430 /*****************************************************************************/
4433 * Return the entire driver board structure to a user app.
4436 static int stli_getbrdstruct(struct stlibrd __user *arg)
4438 struct stlibrd stli_dummybrd;
4439 struct stlibrd *brdp;
4441 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4442 return -EFAULT;
4443 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4444 return -ENODEV;
4445 brdp = stli_brds[stli_dummybrd.brdnr];
4446 if (!brdp)
4447 return -ENODEV;
4448 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4449 return -EFAULT;
4450 return 0;
4453 /*****************************************************************************/
4456 * The "staliomem" device is also required to do some special operations on
4457 * the board. We need to be able to send an interrupt to the board,
4458 * reset it, and start/stop it.
4461 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4463 struct stlibrd *brdp;
4464 int brdnr, rc, done;
4465 void __user *argp = (void __user *)arg;
4468 * First up handle the board independent ioctls.
4470 done = 0;
4471 rc = 0;
4473 switch (cmd) {
4474 case COM_GETPORTSTATS:
4475 rc = stli_getportstats(NULL, argp);
4476 done++;
4477 break;
4478 case COM_CLRPORTSTATS:
4479 rc = stli_clrportstats(NULL, argp);
4480 done++;
4481 break;
4482 case COM_GETBRDSTATS:
4483 rc = stli_getbrdstats(argp);
4484 done++;
4485 break;
4486 case COM_READPORT:
4487 rc = stli_getportstruct(argp);
4488 done++;
4489 break;
4490 case COM_READBOARD:
4491 rc = stli_getbrdstruct(argp);
4492 done++;
4493 break;
4496 if (done)
4497 return rc;
4500 * Now handle the board specific ioctls. These all depend on the
4501 * minor number of the device they were called from.
4503 brdnr = iminor(ip);
4504 if (brdnr >= STL_MAXBRDS)
4505 return -ENODEV;
4506 brdp = stli_brds[brdnr];
4507 if (!brdp)
4508 return -ENODEV;
4509 if (brdp->state == 0)
4510 return -ENODEV;
4512 switch (cmd) {
4513 case STL_BINTR:
4514 EBRDINTR(brdp);
4515 break;
4516 case STL_BSTART:
4517 rc = stli_startbrd(brdp);
4518 break;
4519 case STL_BSTOP:
4520 brdp->state &= ~BST_STARTED;
4521 break;
4522 case STL_BRESET:
4523 brdp->state &= ~BST_STARTED;
4524 EBRDRESET(brdp);
4525 if (stli_shared == 0) {
4526 if (brdp->reenable != NULL)
4527 (* brdp->reenable)(brdp);
4529 break;
4530 default:
4531 rc = -ENOIOCTLCMD;
4532 break;
4534 return rc;
4537 static const struct tty_operations stli_ops = {
4538 .open = stli_open,
4539 .close = stli_close,
4540 .write = stli_write,
4541 .put_char = stli_putchar,
4542 .flush_chars = stli_flushchars,
4543 .write_room = stli_writeroom,
4544 .chars_in_buffer = stli_charsinbuffer,
4545 .ioctl = stli_ioctl,
4546 .set_termios = stli_settermios,
4547 .throttle = stli_throttle,
4548 .unthrottle = stli_unthrottle,
4549 .stop = stli_stop,
4550 .start = stli_start,
4551 .hangup = stli_hangup,
4552 .flush_buffer = stli_flushbuffer,
4553 .break_ctl = stli_breakctl,
4554 .wait_until_sent = stli_waituntilsent,
4555 .send_xchar = stli_sendxchar,
4556 .read_proc = stli_readproc,
4557 .tiocmget = stli_tiocmget,
4558 .tiocmset = stli_tiocmset,
4561 /*****************************************************************************/
4563 static int __init stli_init(void)
4565 int i;
4566 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4568 spin_lock_init(&stli_lock);
4569 spin_lock_init(&brd_lock);
4571 stli_initbrds();
4573 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4574 if (!stli_serial)
4575 return -ENOMEM;
4578 * Allocate a temporary write buffer.
4580 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4581 if (!stli_txcookbuf)
4582 printk(KERN_ERR "STALLION: failed to allocate memory "
4583 "(size=%d)\n", STLI_TXBUFSIZE);
4586 * Set up a character driver for the shared memory region. We need this
4587 * to down load the slave code image. Also it is a useful debugging tool.
4589 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
4590 printk(KERN_ERR "STALLION: failed to register serial memory "
4591 "device\n");
4593 istallion_class = class_create(THIS_MODULE, "staliomem");
4594 for (i = 0; i < 4; i++)
4595 class_device_create(istallion_class, NULL,
4596 MKDEV(STL_SIOMEMMAJOR, i),
4597 NULL, "staliomem%d", i);
4600 * Set up the tty driver structure and register us as a driver.
4602 stli_serial->owner = THIS_MODULE;
4603 stli_serial->driver_name = stli_drvname;
4604 stli_serial->name = stli_serialname;
4605 stli_serial->major = STL_SERIALMAJOR;
4606 stli_serial->minor_start = 0;
4607 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4608 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4609 stli_serial->init_termios = stli_deftermios;
4610 stli_serial->flags = TTY_DRIVER_REAL_RAW;
4611 tty_set_operations(stli_serial, &stli_ops);
4613 if (tty_register_driver(stli_serial)) {
4614 put_tty_driver(stli_serial);
4615 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4616 return -EBUSY;
4618 return 0;
4621 /*****************************************************************************/