SCTP: Use hashed lookup when looking for an association.
[linux-2.6/linux-loongson.git] / drivers / ata / libata-core.c
blobec3ce120a51708ab299d9bd4c22e09e1041356d8
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <linux/io.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
93 int libata_fua = 0;
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
129 * LOCKING:
130 * Inherited from caller.
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
170 * LOCKING:
171 * Inherited from caller.
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
192 static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
215 ATA_CMD_WRITE_EXT,
219 ATA_CMD_WRITE_FUA_EXT
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
230 * LOCKING:
231 * caller.
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
235 u8 cmd;
237 int index, fua, lba48, write;
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
250 } else {
251 tf->protocol = ATA_PROT_DMA;
252 index = 16;
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
260 return -1;
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
268 * LOCKING:
269 * None.
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
275 * RETURNS:
276 * Block address read from @tf.
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
280 u64 block = 0;
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
303 return block;
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
315 * LOCKING:
316 * None.
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
321 * RETURNS:
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
373 tf->hob_nsect = (n_block >> 8) & 0xff;
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
385 tf->nsect = n_block & 0xff;
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
426 return 0;
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
438 * LOCKING:
439 * None.
441 * RETURNS:
442 * Packed xfer_mask.
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
476 static const struct ata_xfer_ent {
477 int shift, bits;
478 u8 base;
479 } ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
493 * LOCKING:
494 * None.
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
514 * Return matching xfer_mask for @xfer_mode.
516 * LOCKING:
517 * None.
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
524 const struct ata_xfer_ent *ent;
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
536 * Return matching xfer_shift for @xfer_mode.
538 * LOCKING:
539 * None.
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
546 const struct ata_xfer_ent *ent;
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
561 * LOCKING:
562 * None.
564 * RETURNS:
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
568 static const char *ata_mode_string(unsigned int xfer_mask)
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
576 "PIO5",
577 "PIO6",
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
581 "MWDMA3",
582 "MWDMA4",
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
592 int highbit;
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
597 return "<n/a>";
600 static const char *sata_spd_string(unsigned int spd)
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
612 void ata_dev_disable(struct ata_device *dev)
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
619 dev->class++;
623 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
645 * For DIPM, we will only enable it for the
646 * min_power setting.
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
680 * we don't have to disable DIPM since IPM flags
681 * disallow transitions to SLUMBER, which effectively
682 * disable DIPM if it does not support PARTIAL
684 break;
685 case NOT_AVAILABLE:
686 case MAX_PERFORMANCE:
687 /* disable all IPM transitions */
688 scontrol |= (0x3 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
694 * we don't have to disable DIPM since IPM flags
695 * disallow all transitions which effectively
696 * disable DIPM anyway.
698 break;
701 /* FIXME: handle SET FEATURES failure */
702 (void) err_mask;
704 return 0;
708 * ata_dev_enable_pm - enable SATA interface power management
709 * @dev: device to enable power management
710 * @policy: the link power management policy
712 * Enable SATA Interface power management. This will enable
713 * Device Interface Power Management (DIPM) for min_power
714 * policy, and then call driver specific callbacks for
715 * enabling Host Initiated Power management.
717 * Locking: Caller.
718 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
720 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
722 int rc = 0;
723 struct ata_port *ap = dev->link->ap;
725 /* set HIPM first, then DIPM */
726 if (ap->ops->enable_pm)
727 rc = ap->ops->enable_pm(ap, policy);
728 if (rc)
729 goto enable_pm_out;
730 rc = ata_dev_set_dipm(dev, policy);
732 enable_pm_out:
733 if (rc)
734 ap->pm_policy = MAX_PERFORMANCE;
735 else
736 ap->pm_policy = policy;
737 return /* rc */; /* hopefully we can use 'rc' eventually */
740 #ifdef CONFIG_PM
742 * ata_dev_disable_pm - disable SATA interface power management
743 * @dev: device to disable power management
745 * Disable SATA Interface power management. This will disable
746 * Device Interface Power Management (DIPM) without changing
747 * policy, call driver specific callbacks for disabling Host
748 * Initiated Power management.
750 * Locking: Caller.
751 * Returns: void
753 static void ata_dev_disable_pm(struct ata_device *dev)
755 struct ata_port *ap = dev->link->ap;
757 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
758 if (ap->ops->disable_pm)
759 ap->ops->disable_pm(ap);
761 #endif /* CONFIG_PM */
763 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
765 ap->pm_policy = policy;
766 ap->link.eh_info.action |= ATA_EHI_LPM;
767 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
768 ata_port_schedule_eh(ap);
771 #ifdef CONFIG_PM
772 static void ata_lpm_enable(struct ata_host *host)
774 struct ata_link *link;
775 struct ata_port *ap;
776 struct ata_device *dev;
777 int i;
779 for (i = 0; i < host->n_ports; i++) {
780 ap = host->ports[i];
781 ata_port_for_each_link(link, ap) {
782 ata_link_for_each_dev(dev, link)
783 ata_dev_disable_pm(dev);
788 static void ata_lpm_disable(struct ata_host *host)
790 int i;
792 for (i = 0; i < host->n_ports; i++) {
793 struct ata_port *ap = host->ports[i];
794 ata_lpm_schedule(ap, ap->pm_policy);
797 #endif /* CONFIG_PM */
801 * ata_devchk - PATA device presence detection
802 * @ap: ATA channel to examine
803 * @device: Device to examine (starting at zero)
805 * This technique was originally described in
806 * Hale Landis's ATADRVR (www.ata-atapi.com), and
807 * later found its way into the ATA/ATAPI spec.
809 * Write a pattern to the ATA shadow registers,
810 * and if a device is present, it will respond by
811 * correctly storing and echoing back the
812 * ATA shadow register contents.
814 * LOCKING:
815 * caller.
818 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
820 struct ata_ioports *ioaddr = &ap->ioaddr;
821 u8 nsect, lbal;
823 ap->ops->dev_select(ap, device);
825 iowrite8(0x55, ioaddr->nsect_addr);
826 iowrite8(0xaa, ioaddr->lbal_addr);
828 iowrite8(0xaa, ioaddr->nsect_addr);
829 iowrite8(0x55, ioaddr->lbal_addr);
831 iowrite8(0x55, ioaddr->nsect_addr);
832 iowrite8(0xaa, ioaddr->lbal_addr);
834 nsect = ioread8(ioaddr->nsect_addr);
835 lbal = ioread8(ioaddr->lbal_addr);
837 if ((nsect == 0x55) && (lbal == 0xaa))
838 return 1; /* we found a device */
840 return 0; /* nothing found */
844 * ata_dev_classify - determine device type based on ATA-spec signature
845 * @tf: ATA taskfile register set for device to be identified
847 * Determine from taskfile register contents whether a device is
848 * ATA or ATAPI, as per "Signature and persistence" section
849 * of ATA/PI spec (volume 1, sect 5.14).
851 * LOCKING:
852 * None.
854 * RETURNS:
855 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
856 * %ATA_DEV_UNKNOWN the event of failure.
858 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
864 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
865 * signatures for ATA and ATAPI devices attached on SerialATA,
866 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
867 * spec has never mentioned about using different signatures
868 * for ATA/ATAPI devices. Then, Serial ATA II: Port
869 * Multiplier specification began to use 0x69/0x96 to identify
870 * port multpliers and 0x3c/0xc3 to identify SEMB device.
871 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
872 * 0x69/0x96 shortly and described them as reserved for
873 * SerialATA.
875 * We follow the current spec and consider that 0x69/0x96
876 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
878 if ((tf->lbam == 0) && (tf->lbah == 0)) {
879 DPRINTK("found ATA device by sig\n");
880 return ATA_DEV_ATA;
883 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
884 DPRINTK("found ATAPI device by sig\n");
885 return ATA_DEV_ATAPI;
888 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
889 DPRINTK("found PMP device by sig\n");
890 return ATA_DEV_PMP;
893 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
894 printk(KERN_INFO "ata: SEMB device ignored\n");
895 return ATA_DEV_SEMB_UNSUP; /* not yet */
898 DPRINTK("unknown device\n");
899 return ATA_DEV_UNKNOWN;
903 * ata_dev_try_classify - Parse returned ATA device signature
904 * @dev: ATA device to classify (starting at zero)
905 * @present: device seems present
906 * @r_err: Value of error register on completion
908 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
909 * an ATA/ATAPI-defined set of values is placed in the ATA
910 * shadow registers, indicating the results of device detection
911 * and diagnostics.
913 * Select the ATA device, and read the values from the ATA shadow
914 * registers. Then parse according to the Error register value,
915 * and the spec-defined values examined by ata_dev_classify().
917 * LOCKING:
918 * caller.
920 * RETURNS:
921 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
923 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
924 u8 *r_err)
926 struct ata_port *ap = dev->link->ap;
927 struct ata_taskfile tf;
928 unsigned int class;
929 u8 err;
931 ap->ops->dev_select(ap, dev->devno);
933 memset(&tf, 0, sizeof(tf));
935 ap->ops->tf_read(ap, &tf);
936 err = tf.feature;
937 if (r_err)
938 *r_err = err;
940 /* see if device passed diags: if master then continue and warn later */
941 if (err == 0 && dev->devno == 0)
942 /* diagnostic fail : do nothing _YET_ */
943 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
944 else if (err == 1)
945 /* do nothing */ ;
946 else if ((dev->devno == 0) && (err == 0x81))
947 /* do nothing */ ;
948 else
949 return ATA_DEV_NONE;
951 /* determine if device is ATA or ATAPI */
952 class = ata_dev_classify(&tf);
954 if (class == ATA_DEV_UNKNOWN) {
955 /* If the device failed diagnostic, it's likely to
956 * have reported incorrect device signature too.
957 * Assume ATA device if the device seems present but
958 * device signature is invalid with diagnostic
959 * failure.
961 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
962 class = ATA_DEV_ATA;
963 else
964 class = ATA_DEV_NONE;
965 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
966 class = ATA_DEV_NONE;
968 return class;
972 * ata_id_string - Convert IDENTIFY DEVICE page into string
973 * @id: IDENTIFY DEVICE results we will examine
974 * @s: string into which data is output
975 * @ofs: offset into identify device page
976 * @len: length of string to return. must be an even number.
978 * The strings in the IDENTIFY DEVICE page are broken up into
979 * 16-bit chunks. Run through the string, and output each
980 * 8-bit chunk linearly, regardless of platform.
982 * LOCKING:
983 * caller.
986 void ata_id_string(const u16 *id, unsigned char *s,
987 unsigned int ofs, unsigned int len)
989 unsigned int c;
991 while (len > 0) {
992 c = id[ofs] >> 8;
993 *s = c;
994 s++;
996 c = id[ofs] & 0xff;
997 *s = c;
998 s++;
1000 ofs++;
1001 len -= 2;
1006 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1007 * @id: IDENTIFY DEVICE results we will examine
1008 * @s: string into which data is output
1009 * @ofs: offset into identify device page
1010 * @len: length of string to return. must be an odd number.
1012 * This function is identical to ata_id_string except that it
1013 * trims trailing spaces and terminates the resulting string with
1014 * null. @len must be actual maximum length (even number) + 1.
1016 * LOCKING:
1017 * caller.
1019 void ata_id_c_string(const u16 *id, unsigned char *s,
1020 unsigned int ofs, unsigned int len)
1022 unsigned char *p;
1024 WARN_ON(!(len & 1));
1026 ata_id_string(id, s, ofs, len - 1);
1028 p = s + strnlen(s, len - 1);
1029 while (p > s && p[-1] == ' ')
1030 p--;
1031 *p = '\0';
1034 static u64 ata_id_n_sectors(const u16 *id)
1036 if (ata_id_has_lba(id)) {
1037 if (ata_id_has_lba48(id))
1038 return ata_id_u64(id, 100);
1039 else
1040 return ata_id_u32(id, 60);
1041 } else {
1042 if (ata_id_current_chs_valid(id))
1043 return ata_id_u32(id, 57);
1044 else
1045 return id[1] * id[3] * id[6];
1049 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1051 u64 sectors = 0;
1053 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1054 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1055 sectors |= (tf->hob_lbal & 0xff) << 24;
1056 sectors |= (tf->lbah & 0xff) << 16;
1057 sectors |= (tf->lbam & 0xff) << 8;
1058 sectors |= (tf->lbal & 0xff);
1060 return ++sectors;
1063 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1065 u64 sectors = 0;
1067 sectors |= (tf->device & 0x0f) << 24;
1068 sectors |= (tf->lbah & 0xff) << 16;
1069 sectors |= (tf->lbam & 0xff) << 8;
1070 sectors |= (tf->lbal & 0xff);
1072 return ++sectors;
1076 * ata_read_native_max_address - Read native max address
1077 * @dev: target device
1078 * @max_sectors: out parameter for the result native max address
1080 * Perform an LBA48 or LBA28 native size query upon the device in
1081 * question.
1083 * RETURNS:
1084 * 0 on success, -EACCES if command is aborted by the drive.
1085 * -EIO on other errors.
1087 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1089 unsigned int err_mask;
1090 struct ata_taskfile tf;
1091 int lba48 = ata_id_has_lba48(dev->id);
1093 ata_tf_init(dev, &tf);
1095 /* always clear all address registers */
1096 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1098 if (lba48) {
1099 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1100 tf.flags |= ATA_TFLAG_LBA48;
1101 } else
1102 tf.command = ATA_CMD_READ_NATIVE_MAX;
1104 tf.protocol |= ATA_PROT_NODATA;
1105 tf.device |= ATA_LBA;
1107 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1108 if (err_mask) {
1109 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1110 "max address (err_mask=0x%x)\n", err_mask);
1111 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1112 return -EACCES;
1113 return -EIO;
1116 if (lba48)
1117 *max_sectors = ata_tf_to_lba48(&tf);
1118 else
1119 *max_sectors = ata_tf_to_lba(&tf);
1120 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1121 (*max_sectors)--;
1122 return 0;
1126 * ata_set_max_sectors - Set max sectors
1127 * @dev: target device
1128 * @new_sectors: new max sectors value to set for the device
1130 * Set max sectors of @dev to @new_sectors.
1132 * RETURNS:
1133 * 0 on success, -EACCES if command is aborted or denied (due to
1134 * previous non-volatile SET_MAX) by the drive. -EIO on other
1135 * errors.
1137 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1139 unsigned int err_mask;
1140 struct ata_taskfile tf;
1141 int lba48 = ata_id_has_lba48(dev->id);
1143 new_sectors--;
1145 ata_tf_init(dev, &tf);
1147 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1149 if (lba48) {
1150 tf.command = ATA_CMD_SET_MAX_EXT;
1151 tf.flags |= ATA_TFLAG_LBA48;
1153 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1154 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1155 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1156 } else {
1157 tf.command = ATA_CMD_SET_MAX;
1159 tf.device |= (new_sectors >> 24) & 0xf;
1162 tf.protocol |= ATA_PROT_NODATA;
1163 tf.device |= ATA_LBA;
1165 tf.lbal = (new_sectors >> 0) & 0xff;
1166 tf.lbam = (new_sectors >> 8) & 0xff;
1167 tf.lbah = (new_sectors >> 16) & 0xff;
1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1170 if (err_mask) {
1171 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1172 "max address (err_mask=0x%x)\n", err_mask);
1173 if (err_mask == AC_ERR_DEV &&
1174 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1175 return -EACCES;
1176 return -EIO;
1179 return 0;
1183 * ata_hpa_resize - Resize a device with an HPA set
1184 * @dev: Device to resize
1186 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1187 * it if required to the full size of the media. The caller must check
1188 * the drive has the HPA feature set enabled.
1190 * RETURNS:
1191 * 0 on success, -errno on failure.
1193 static int ata_hpa_resize(struct ata_device *dev)
1195 struct ata_eh_context *ehc = &dev->link->eh_context;
1196 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1197 u64 sectors = ata_id_n_sectors(dev->id);
1198 u64 native_sectors;
1199 int rc;
1201 /* do we need to do it? */
1202 if (dev->class != ATA_DEV_ATA ||
1203 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1204 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1205 return 0;
1207 /* read native max address */
1208 rc = ata_read_native_max_address(dev, &native_sectors);
1209 if (rc) {
1210 /* If HPA isn't going to be unlocked, skip HPA
1211 * resizing from the next try.
1213 if (!ata_ignore_hpa) {
1214 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1215 "broken, will skip HPA handling\n");
1216 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1218 /* we can continue if device aborted the command */
1219 if (rc == -EACCES)
1220 rc = 0;
1223 return rc;
1226 /* nothing to do? */
1227 if (native_sectors <= sectors || !ata_ignore_hpa) {
1228 if (!print_info || native_sectors == sectors)
1229 return 0;
1231 if (native_sectors > sectors)
1232 ata_dev_printk(dev, KERN_INFO,
1233 "HPA detected: current %llu, native %llu\n",
1234 (unsigned long long)sectors,
1235 (unsigned long long)native_sectors);
1236 else if (native_sectors < sectors)
1237 ata_dev_printk(dev, KERN_WARNING,
1238 "native sectors (%llu) is smaller than "
1239 "sectors (%llu)\n",
1240 (unsigned long long)native_sectors,
1241 (unsigned long long)sectors);
1242 return 0;
1245 /* let's unlock HPA */
1246 rc = ata_set_max_sectors(dev, native_sectors);
1247 if (rc == -EACCES) {
1248 /* if device aborted the command, skip HPA resizing */
1249 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1250 "(%llu -> %llu), skipping HPA handling\n",
1251 (unsigned long long)sectors,
1252 (unsigned long long)native_sectors);
1253 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1254 return 0;
1255 } else if (rc)
1256 return rc;
1258 /* re-read IDENTIFY data */
1259 rc = ata_dev_reread_id(dev, 0);
1260 if (rc) {
1261 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1262 "data after HPA resizing\n");
1263 return rc;
1266 if (print_info) {
1267 u64 new_sectors = ata_id_n_sectors(dev->id);
1268 ata_dev_printk(dev, KERN_INFO,
1269 "HPA unlocked: %llu -> %llu, native %llu\n",
1270 (unsigned long long)sectors,
1271 (unsigned long long)new_sectors,
1272 (unsigned long long)native_sectors);
1275 return 0;
1279 * ata_id_to_dma_mode - Identify DMA mode from id block
1280 * @dev: device to identify
1281 * @unknown: mode to assume if we cannot tell
1283 * Set up the timing values for the device based upon the identify
1284 * reported values for the DMA mode. This function is used by drivers
1285 * which rely upon firmware configured modes, but wish to report the
1286 * mode correctly when possible.
1288 * In addition we emit similarly formatted messages to the default
1289 * ata_dev_set_mode handler, in order to provide consistency of
1290 * presentation.
1293 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1295 unsigned int mask;
1296 u8 mode;
1298 /* Pack the DMA modes */
1299 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1300 if (dev->id[53] & 0x04)
1301 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1303 /* Select the mode in use */
1304 mode = ata_xfer_mask2mode(mask);
1306 if (mode != 0) {
1307 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1308 ata_mode_string(mask));
1309 } else {
1310 /* SWDMA perhaps ? */
1311 mode = unknown;
1312 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1315 /* Configure the device reporting */
1316 dev->xfer_mode = mode;
1317 dev->xfer_shift = ata_xfer_mode2shift(mode);
1321 * ata_noop_dev_select - Select device 0/1 on ATA bus
1322 * @ap: ATA channel to manipulate
1323 * @device: ATA device (numbered from zero) to select
1325 * This function performs no actual function.
1327 * May be used as the dev_select() entry in ata_port_operations.
1329 * LOCKING:
1330 * caller.
1332 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1338 * ata_std_dev_select - Select device 0/1 on ATA bus
1339 * @ap: ATA channel to manipulate
1340 * @device: ATA device (numbered from zero) to select
1342 * Use the method defined in the ATA specification to
1343 * make either device 0, or device 1, active on the
1344 * ATA channel. Works with both PIO and MMIO.
1346 * May be used as the dev_select() entry in ata_port_operations.
1348 * LOCKING:
1349 * caller.
1352 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1354 u8 tmp;
1356 if (device == 0)
1357 tmp = ATA_DEVICE_OBS;
1358 else
1359 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1361 iowrite8(tmp, ap->ioaddr.device_addr);
1362 ata_pause(ap); /* needed; also flushes, for mmio */
1366 * ata_dev_select - Select device 0/1 on ATA bus
1367 * @ap: ATA channel to manipulate
1368 * @device: ATA device (numbered from zero) to select
1369 * @wait: non-zero to wait for Status register BSY bit to clear
1370 * @can_sleep: non-zero if context allows sleeping
1372 * Use the method defined in the ATA specification to
1373 * make either device 0, or device 1, active on the
1374 * ATA channel.
1376 * This is a high-level version of ata_std_dev_select(),
1377 * which additionally provides the services of inserting
1378 * the proper pauses and status polling, where needed.
1380 * LOCKING:
1381 * caller.
1384 void ata_dev_select(struct ata_port *ap, unsigned int device,
1385 unsigned int wait, unsigned int can_sleep)
1387 if (ata_msg_probe(ap))
1388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1389 "device %u, wait %u\n", device, wait);
1391 if (wait)
1392 ata_wait_idle(ap);
1394 ap->ops->dev_select(ap, device);
1396 if (wait) {
1397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1398 msleep(150);
1399 ata_wait_idle(ap);
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
1405 * @id: IDENTIFY DEVICE page to dump
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1408 * page.
1410 * LOCKING:
1411 * caller.
1414 static inline void ata_dump_id(const u16 *id)
1416 DPRINTK("49==0x%04x "
1417 "53==0x%04x "
1418 "63==0x%04x "
1419 "64==0x%04x "
1420 "75==0x%04x \n",
1421 id[49],
1422 id[53],
1423 id[63],
1424 id[64],
1425 id[75]);
1426 DPRINTK("80==0x%04x "
1427 "81==0x%04x "
1428 "82==0x%04x "
1429 "83==0x%04x "
1430 "84==0x%04x \n",
1431 id[80],
1432 id[81],
1433 id[82],
1434 id[83],
1435 id[84]);
1436 DPRINTK("88==0x%04x "
1437 "93==0x%04x\n",
1438 id[88],
1439 id[93]);
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1449 * FIXME: pre IDE drive timing (do we care ?).
1451 * LOCKING:
1452 * None.
1454 * RETURNS:
1455 * Computed xfermask
1457 static unsigned int ata_id_xfermask(const u16 *id)
1459 unsigned int pio_mask, mwdma_mask, udma_mask;
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 pio_mask <<= 3;
1465 pio_mask |= 0x7;
1466 } else {
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1469 * a mask.
1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1472 if (mode < 5) /* Valid PIO range */
1473 pio_mask = (2 << mode) - 1;
1474 else
1475 pio_mask = 1;
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487 if (ata_id_is_cfa(id)) {
1489 * Process compact flash extended modes
1491 int pio = id[163] & 0x7;
1492 int dma = (id[163] >> 3) & 7;
1494 if (pio)
1495 pio_mask |= (1 << 5);
1496 if (pio > 1)
1497 pio_mask |= (1 << 6);
1498 if (dma)
1499 mwdma_mask |= (1 << 3);
1500 if (dma > 1)
1501 mwdma_mask |= (1 << 4);
1504 udma_mask = 0;
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 * ata_port_queue_task - Queue port_task
1513 * @ap: The ata_port to queue port_task for
1514 * @fn: workqueue function to be scheduled
1515 * @data: data for @fn to use
1516 * @delay: delay time for workqueue function
1518 * Schedule @fn(@data) for execution after @delay jiffies using
1519 * port_task. There is one port_task per port and it's the
1520 * user(low level driver)'s responsibility to make sure that only
1521 * one task is active at any given time.
1523 * libata core layer takes care of synchronization between
1524 * port_task and EH. ata_port_queue_task() may be ignored for EH
1525 * synchronization.
1527 * LOCKING:
1528 * Inherited from caller.
1530 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1531 unsigned long delay)
1533 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1534 ap->port_task_data = data;
1536 /* may fail if ata_port_flush_task() in progress */
1537 queue_delayed_work(ata_wq, &ap->port_task, delay);
1541 * ata_port_flush_task - Flush port_task
1542 * @ap: The ata_port to flush port_task for
1544 * After this function completes, port_task is guranteed not to
1545 * be running or scheduled.
1547 * LOCKING:
1548 * Kernel thread context (may sleep)
1550 void ata_port_flush_task(struct ata_port *ap)
1552 DPRINTK("ENTER\n");
1554 cancel_rearming_delayed_work(&ap->port_task);
1556 if (ata_msg_ctl(ap))
1557 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1560 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1562 struct completion *waiting = qc->private_data;
1564 complete(waiting);
1568 * ata_exec_internal_sg - execute libata internal command
1569 * @dev: Device to which the command is sent
1570 * @tf: Taskfile registers for the command and the result
1571 * @cdb: CDB for packet command
1572 * @dma_dir: Data tranfer direction of the command
1573 * @sgl: sg list for the data buffer of the command
1574 * @n_elem: Number of sg entries
1575 * @timeout: Timeout in msecs (0 for default)
1577 * Executes libata internal command with timeout. @tf contains
1578 * command on entry and result on return. Timeout and error
1579 * conditions are reported via return value. No recovery action
1580 * is taken after a command times out. It's caller's duty to
1581 * clean up after timeout.
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
1589 unsigned ata_exec_internal_sg(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
1591 int dma_dir, struct scatterlist *sgl,
1592 unsigned int n_elem, unsigned long timeout)
1594 struct ata_link *link = dev->link;
1595 struct ata_port *ap = link->ap;
1596 u8 command = tf->command;
1597 struct ata_queued_cmd *qc;
1598 unsigned int tag, preempted_tag;
1599 u32 preempted_sactive, preempted_qc_active;
1600 int preempted_nr_active_links;
1601 DECLARE_COMPLETION_ONSTACK(wait);
1602 unsigned long flags;
1603 unsigned int err_mask;
1604 int rc;
1606 spin_lock_irqsave(ap->lock, flags);
1608 /* no internal command while frozen */
1609 if (ap->pflags & ATA_PFLAG_FROZEN) {
1610 spin_unlock_irqrestore(ap->lock, flags);
1611 return AC_ERR_SYSTEM;
1614 /* initialize internal qc */
1616 /* XXX: Tag 0 is used for drivers with legacy EH as some
1617 * drivers choke if any other tag is given. This breaks
1618 * ata_tag_internal() test for those drivers. Don't use new
1619 * EH stuff without converting to it.
1621 if (ap->ops->error_handler)
1622 tag = ATA_TAG_INTERNAL;
1623 else
1624 tag = 0;
1626 if (test_and_set_bit(tag, &ap->qc_allocated))
1627 BUG();
1628 qc = __ata_qc_from_tag(ap, tag);
1630 qc->tag = tag;
1631 qc->scsicmd = NULL;
1632 qc->ap = ap;
1633 qc->dev = dev;
1634 ata_qc_reinit(qc);
1636 preempted_tag = link->active_tag;
1637 preempted_sactive = link->sactive;
1638 preempted_qc_active = ap->qc_active;
1639 preempted_nr_active_links = ap->nr_active_links;
1640 link->active_tag = ATA_TAG_POISON;
1641 link->sactive = 0;
1642 ap->qc_active = 0;
1643 ap->nr_active_links = 0;
1645 /* prepare & issue qc */
1646 qc->tf = *tf;
1647 if (cdb)
1648 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1649 qc->flags |= ATA_QCFLAG_RESULT_TF;
1650 qc->dma_dir = dma_dir;
1651 if (dma_dir != DMA_NONE) {
1652 unsigned int i, buflen = 0;
1653 struct scatterlist *sg;
1655 for_each_sg(sgl, sg, n_elem, i)
1656 buflen += sg->length;
1658 ata_sg_init(qc, sgl, n_elem);
1659 qc->nbytes = buflen;
1662 qc->private_data = &wait;
1663 qc->complete_fn = ata_qc_complete_internal;
1665 ata_qc_issue(qc);
1667 spin_unlock_irqrestore(ap->lock, flags);
1669 if (!timeout)
1670 timeout = ata_probe_timeout * 1000 / HZ;
1672 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1674 ata_port_flush_task(ap);
1676 if (!rc) {
1677 spin_lock_irqsave(ap->lock, flags);
1679 /* We're racing with irq here. If we lose, the
1680 * following test prevents us from completing the qc
1681 * twice. If we win, the port is frozen and will be
1682 * cleaned up by ->post_internal_cmd().
1684 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1685 qc->err_mask |= AC_ERR_TIMEOUT;
1687 if (ap->ops->error_handler)
1688 ata_port_freeze(ap);
1689 else
1690 ata_qc_complete(qc);
1692 if (ata_msg_warn(ap))
1693 ata_dev_printk(dev, KERN_WARNING,
1694 "qc timeout (cmd 0x%x)\n", command);
1697 spin_unlock_irqrestore(ap->lock, flags);
1700 /* do post_internal_cmd */
1701 if (ap->ops->post_internal_cmd)
1702 ap->ops->post_internal_cmd(qc);
1704 /* perform minimal error analysis */
1705 if (qc->flags & ATA_QCFLAG_FAILED) {
1706 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1707 qc->err_mask |= AC_ERR_DEV;
1709 if (!qc->err_mask)
1710 qc->err_mask |= AC_ERR_OTHER;
1712 if (qc->err_mask & ~AC_ERR_OTHER)
1713 qc->err_mask &= ~AC_ERR_OTHER;
1716 /* finish up */
1717 spin_lock_irqsave(ap->lock, flags);
1719 *tf = qc->result_tf;
1720 err_mask = qc->err_mask;
1722 ata_qc_free(qc);
1723 link->active_tag = preempted_tag;
1724 link->sactive = preempted_sactive;
1725 ap->qc_active = preempted_qc_active;
1726 ap->nr_active_links = preempted_nr_active_links;
1728 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1729 * Until those drivers are fixed, we detect the condition
1730 * here, fail the command with AC_ERR_SYSTEM and reenable the
1731 * port.
1733 * Note that this doesn't change any behavior as internal
1734 * command failure results in disabling the device in the
1735 * higher layer for LLDDs without new reset/EH callbacks.
1737 * Kill the following code as soon as those drivers are fixed.
1739 if (ap->flags & ATA_FLAG_DISABLED) {
1740 err_mask |= AC_ERR_SYSTEM;
1741 ata_port_probe(ap);
1744 spin_unlock_irqrestore(ap->lock, flags);
1746 return err_mask;
1750 * ata_exec_internal - execute libata internal command
1751 * @dev: Device to which the command is sent
1752 * @tf: Taskfile registers for the command and the result
1753 * @cdb: CDB for packet command
1754 * @dma_dir: Data tranfer direction of the command
1755 * @buf: Data buffer of the command
1756 * @buflen: Length of data buffer
1757 * @timeout: Timeout in msecs (0 for default)
1759 * Wrapper around ata_exec_internal_sg() which takes simple
1760 * buffer instead of sg list.
1762 * LOCKING:
1763 * None. Should be called with kernel context, might sleep.
1765 * RETURNS:
1766 * Zero on success, AC_ERR_* mask on failure
1768 unsigned ata_exec_internal(struct ata_device *dev,
1769 struct ata_taskfile *tf, const u8 *cdb,
1770 int dma_dir, void *buf, unsigned int buflen,
1771 unsigned long timeout)
1773 struct scatterlist *psg = NULL, sg;
1774 unsigned int n_elem = 0;
1776 if (dma_dir != DMA_NONE) {
1777 WARN_ON(!buf);
1778 sg_init_one(&sg, buf, buflen);
1779 psg = &sg;
1780 n_elem++;
1783 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1784 timeout);
1788 * ata_do_simple_cmd - execute simple internal command
1789 * @dev: Device to which the command is sent
1790 * @cmd: Opcode to execute
1792 * Execute a 'simple' command, that only consists of the opcode
1793 * 'cmd' itself, without filling any other registers
1795 * LOCKING:
1796 * Kernel thread context (may sleep).
1798 * RETURNS:
1799 * Zero on success, AC_ERR_* mask on failure
1801 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1803 struct ata_taskfile tf;
1805 ata_tf_init(dev, &tf);
1807 tf.command = cmd;
1808 tf.flags |= ATA_TFLAG_DEVICE;
1809 tf.protocol = ATA_PROT_NODATA;
1811 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1815 * ata_pio_need_iordy - check if iordy needed
1816 * @adev: ATA device
1818 * Check if the current speed of the device requires IORDY. Used
1819 * by various controllers for chip configuration.
1822 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1824 /* Controller doesn't support IORDY. Probably a pointless check
1825 as the caller should know this */
1826 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1827 return 0;
1828 /* PIO3 and higher it is mandatory */
1829 if (adev->pio_mode > XFER_PIO_2)
1830 return 1;
1831 /* We turn it on when possible */
1832 if (ata_id_has_iordy(adev->id))
1833 return 1;
1834 return 0;
1838 * ata_pio_mask_no_iordy - Return the non IORDY mask
1839 * @adev: ATA device
1841 * Compute the highest mode possible if we are not using iordy. Return
1842 * -1 if no iordy mode is available.
1845 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1847 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1849 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1850 /* Is the speed faster than the drive allows non IORDY ? */
1851 if (pio) {
1852 /* This is cycle times not frequency - watch the logic! */
1853 if (pio > 240) /* PIO2 is 240nS per cycle */
1854 return 3 << ATA_SHIFT_PIO;
1855 return 7 << ATA_SHIFT_PIO;
1858 return 3 << ATA_SHIFT_PIO;
1862 * ata_dev_read_id - Read ID data from the specified device
1863 * @dev: target device
1864 * @p_class: pointer to class of the target device (may be changed)
1865 * @flags: ATA_READID_* flags
1866 * @id: buffer to read IDENTIFY data into
1868 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1869 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1870 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1871 * for pre-ATA4 drives.
1873 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1874 * now we abort if we hit that case.
1876 * LOCKING:
1877 * Kernel thread context (may sleep)
1879 * RETURNS:
1880 * 0 on success, -errno otherwise.
1882 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1883 unsigned int flags, u16 *id)
1885 struct ata_port *ap = dev->link->ap;
1886 unsigned int class = *p_class;
1887 struct ata_taskfile tf;
1888 unsigned int err_mask = 0;
1889 const char *reason;
1890 int may_fallback = 1, tried_spinup = 0;
1891 int rc;
1893 if (ata_msg_ctl(ap))
1894 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1896 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1897 retry:
1898 ata_tf_init(dev, &tf);
1900 switch (class) {
1901 case ATA_DEV_ATA:
1902 tf.command = ATA_CMD_ID_ATA;
1903 break;
1904 case ATA_DEV_ATAPI:
1905 tf.command = ATA_CMD_ID_ATAPI;
1906 break;
1907 default:
1908 rc = -ENODEV;
1909 reason = "unsupported class";
1910 goto err_out;
1913 tf.protocol = ATA_PROT_PIO;
1915 /* Some devices choke if TF registers contain garbage. Make
1916 * sure those are properly initialized.
1918 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1920 /* Device presence detection is unreliable on some
1921 * controllers. Always poll IDENTIFY if available.
1923 tf.flags |= ATA_TFLAG_POLLING;
1925 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1926 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1927 if (err_mask) {
1928 if (err_mask & AC_ERR_NODEV_HINT) {
1929 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1930 ap->print_id, dev->devno);
1931 return -ENOENT;
1934 /* Device or controller might have reported the wrong
1935 * device class. Give a shot at the other IDENTIFY if
1936 * the current one is aborted by the device.
1938 if (may_fallback &&
1939 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1940 may_fallback = 0;
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1949 rc = -EIO;
1950 reason = "I/O error";
1951 goto err_out;
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1957 may_fallback = 0;
1959 swap_buf_le16(id, ATA_ID_WORDS);
1961 /* sanity check */
1962 rc = -EINVAL;
1963 reason = "device reports invalid type";
1965 if (class == ATA_DEV_ATA) {
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 goto err_out;
1968 } else {
1969 if (ata_id_is_ata(id))
1970 goto err_out;
1973 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1974 tried_spinup = 1;
1976 * Drive powered-up in standby mode, and requires a specific
1977 * SET_FEATURES spin-up subcommand before it will accept
1978 * anything other than the original IDENTIFY command.
1980 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1981 if (err_mask && id[2] != 0x738c) {
1982 rc = -EIO;
1983 reason = "SPINUP failed";
1984 goto err_out;
1987 * If the drive initially returned incomplete IDENTIFY info,
1988 * we now must reissue the IDENTIFY command.
1990 if (id[2] == 0x37c8)
1991 goto retry;
1994 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1996 * The exact sequence expected by certain pre-ATA4 drives is:
1997 * SRST RESET
1998 * IDENTIFY (optional in early ATA)
1999 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2000 * anything else..
2001 * Some drives were very specific about that exact sequence.
2003 * Note that ATA4 says lba is mandatory so the second check
2004 * shoud never trigger.
2006 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2007 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2008 if (err_mask) {
2009 rc = -EIO;
2010 reason = "INIT_DEV_PARAMS failed";
2011 goto err_out;
2014 /* current CHS translation info (id[53-58]) might be
2015 * changed. reread the identify device info.
2017 flags &= ~ATA_READID_POSTRESET;
2018 goto retry;
2022 *p_class = class;
2024 return 0;
2026 err_out:
2027 if (ata_msg_warn(ap))
2028 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2029 "(%s, err_mask=0x%x)\n", reason, err_mask);
2030 return rc;
2033 static inline u8 ata_dev_knobble(struct ata_device *dev)
2035 struct ata_port *ap = dev->link->ap;
2036 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2039 static void ata_dev_config_ncq(struct ata_device *dev,
2040 char *desc, size_t desc_sz)
2042 struct ata_port *ap = dev->link->ap;
2043 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2045 if (!ata_id_has_ncq(dev->id)) {
2046 desc[0] = '\0';
2047 return;
2049 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2050 snprintf(desc, desc_sz, "NCQ (not used)");
2051 return;
2053 if (ap->flags & ATA_FLAG_NCQ) {
2054 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2055 dev->flags |= ATA_DFLAG_NCQ;
2058 if (hdepth >= ddepth)
2059 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2060 else
2061 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2065 * ata_dev_configure - Configure the specified ATA/ATAPI device
2066 * @dev: Target device to configure
2068 * Configure @dev according to @dev->id. Generic and low-level
2069 * driver specific fixups are also applied.
2071 * LOCKING:
2072 * Kernel thread context (may sleep)
2074 * RETURNS:
2075 * 0 on success, -errno otherwise
2077 int ata_dev_configure(struct ata_device *dev)
2079 struct ata_port *ap = dev->link->ap;
2080 struct ata_eh_context *ehc = &dev->link->eh_context;
2081 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2082 const u16 *id = dev->id;
2083 unsigned int xfer_mask;
2084 char revbuf[7]; /* XYZ-99\0 */
2085 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2086 char modelbuf[ATA_ID_PROD_LEN+1];
2087 int rc;
2089 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2090 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2091 __FUNCTION__);
2092 return 0;
2095 if (ata_msg_probe(ap))
2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2098 /* set horkage */
2099 dev->horkage |= ata_dev_blacklisted(dev);
2101 /* let ACPI work its magic */
2102 rc = ata_acpi_on_devcfg(dev);
2103 if (rc)
2104 return rc;
2106 /* massage HPA, do it early as it might change IDENTIFY data */
2107 rc = ata_hpa_resize(dev);
2108 if (rc)
2109 return rc;
2111 /* print device capabilities */
2112 if (ata_msg_probe(ap))
2113 ata_dev_printk(dev, KERN_DEBUG,
2114 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2115 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2116 __FUNCTION__,
2117 id[49], id[82], id[83], id[84],
2118 id[85], id[86], id[87], id[88]);
2120 /* initialize to-be-configured parameters */
2121 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2122 dev->max_sectors = 0;
2123 dev->cdb_len = 0;
2124 dev->n_sectors = 0;
2125 dev->cylinders = 0;
2126 dev->heads = 0;
2127 dev->sectors = 0;
2130 * common ATA, ATAPI feature tests
2133 /* find max transfer mode; for printk only */
2134 xfer_mask = ata_id_xfermask(id);
2136 if (ata_msg_probe(ap))
2137 ata_dump_id(id);
2139 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2140 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2141 sizeof(fwrevbuf));
2143 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2144 sizeof(modelbuf));
2146 /* ATA-specific feature tests */
2147 if (dev->class == ATA_DEV_ATA) {
2148 if (ata_id_is_cfa(id)) {
2149 if (id[162] & 1) /* CPRM may make this media unusable */
2150 ata_dev_printk(dev, KERN_WARNING,
2151 "supports DRM functions and may "
2152 "not be fully accessable.\n");
2153 snprintf(revbuf, 7, "CFA");
2154 } else
2155 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2157 dev->n_sectors = ata_id_n_sectors(id);
2159 if (dev->id[59] & 0x100)
2160 dev->multi_count = dev->id[59] & 0xff;
2162 if (ata_id_has_lba(id)) {
2163 const char *lba_desc;
2164 char ncq_desc[20];
2166 lba_desc = "LBA";
2167 dev->flags |= ATA_DFLAG_LBA;
2168 if (ata_id_has_lba48(id)) {
2169 dev->flags |= ATA_DFLAG_LBA48;
2170 lba_desc = "LBA48";
2172 if (dev->n_sectors >= (1UL << 28) &&
2173 ata_id_has_flush_ext(id))
2174 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2177 /* config NCQ */
2178 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2180 /* print device info to dmesg */
2181 if (ata_msg_drv(ap) && print_info) {
2182 ata_dev_printk(dev, KERN_INFO,
2183 "%s: %s, %s, max %s\n",
2184 revbuf, modelbuf, fwrevbuf,
2185 ata_mode_string(xfer_mask));
2186 ata_dev_printk(dev, KERN_INFO,
2187 "%Lu sectors, multi %u: %s %s\n",
2188 (unsigned long long)dev->n_sectors,
2189 dev->multi_count, lba_desc, ncq_desc);
2191 } else {
2192 /* CHS */
2194 /* Default translation */
2195 dev->cylinders = id[1];
2196 dev->heads = id[3];
2197 dev->sectors = id[6];
2199 if (ata_id_current_chs_valid(id)) {
2200 /* Current CHS translation is valid. */
2201 dev->cylinders = id[54];
2202 dev->heads = id[55];
2203 dev->sectors = id[56];
2206 /* print device info to dmesg */
2207 if (ata_msg_drv(ap) && print_info) {
2208 ata_dev_printk(dev, KERN_INFO,
2209 "%s: %s, %s, max %s\n",
2210 revbuf, modelbuf, fwrevbuf,
2211 ata_mode_string(xfer_mask));
2212 ata_dev_printk(dev, KERN_INFO,
2213 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2214 (unsigned long long)dev->n_sectors,
2215 dev->multi_count, dev->cylinders,
2216 dev->heads, dev->sectors);
2220 dev->cdb_len = 16;
2223 /* ATAPI-specific feature tests */
2224 else if (dev->class == ATA_DEV_ATAPI) {
2225 const char *cdb_intr_string = "";
2226 const char *atapi_an_string = "";
2227 u32 sntf;
2229 rc = atapi_cdb_len(id);
2230 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2231 if (ata_msg_warn(ap))
2232 ata_dev_printk(dev, KERN_WARNING,
2233 "unsupported CDB len\n");
2234 rc = -EINVAL;
2235 goto err_out_nosup;
2237 dev->cdb_len = (unsigned int) rc;
2239 /* Enable ATAPI AN if both the host and device have
2240 * the support. If PMP is attached, SNTF is required
2241 * to enable ATAPI AN to discern between PHY status
2242 * changed notifications and ATAPI ANs.
2244 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2245 (!ap->nr_pmp_links ||
2246 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2247 unsigned int err_mask;
2249 /* issue SET feature command to turn this on */
2250 err_mask = ata_dev_set_feature(dev,
2251 SETFEATURES_SATA_ENABLE, SATA_AN);
2252 if (err_mask)
2253 ata_dev_printk(dev, KERN_ERR,
2254 "failed to enable ATAPI AN "
2255 "(err_mask=0x%x)\n", err_mask);
2256 else {
2257 dev->flags |= ATA_DFLAG_AN;
2258 atapi_an_string = ", ATAPI AN";
2262 if (ata_id_cdb_intr(dev->id)) {
2263 dev->flags |= ATA_DFLAG_CDB_INTR;
2264 cdb_intr_string = ", CDB intr";
2267 /* print device info to dmesg */
2268 if (ata_msg_drv(ap) && print_info)
2269 ata_dev_printk(dev, KERN_INFO,
2270 "ATAPI: %s, %s, max %s%s%s\n",
2271 modelbuf, fwrevbuf,
2272 ata_mode_string(xfer_mask),
2273 cdb_intr_string, atapi_an_string);
2276 /* determine max_sectors */
2277 dev->max_sectors = ATA_MAX_SECTORS;
2278 if (dev->flags & ATA_DFLAG_LBA48)
2279 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2281 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2282 if (ata_id_has_hipm(dev->id))
2283 dev->flags |= ATA_DFLAG_HIPM;
2284 if (ata_id_has_dipm(dev->id))
2285 dev->flags |= ATA_DFLAG_DIPM;
2288 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2289 /* Let the user know. We don't want to disallow opens for
2290 rescue purposes, or in case the vendor is just a blithering
2291 idiot */
2292 if (print_info) {
2293 ata_dev_printk(dev, KERN_WARNING,
2294 "Drive reports diagnostics failure. This may indicate a drive\n");
2295 ata_dev_printk(dev, KERN_WARNING,
2296 "fault or invalid emulation. Contact drive vendor for information.\n");
2300 /* limit bridge transfers to udma5, 200 sectors */
2301 if (ata_dev_knobble(dev)) {
2302 if (ata_msg_drv(ap) && print_info)
2303 ata_dev_printk(dev, KERN_INFO,
2304 "applying bridge limits\n");
2305 dev->udma_mask &= ATA_UDMA5;
2306 dev->max_sectors = ATA_MAX_SECTORS;
2309 if ((dev->class == ATA_DEV_ATAPI) &&
2310 (atapi_command_packet_set(id) == TYPE_TAPE))
2311 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2313 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2314 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2315 dev->max_sectors);
2317 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2318 dev->horkage |= ATA_HORKAGE_IPM;
2320 /* reset link pm_policy for this port to no pm */
2321 ap->pm_policy = MAX_PERFORMANCE;
2324 if (ap->ops->dev_config)
2325 ap->ops->dev_config(dev);
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2329 __FUNCTION__, ata_chk_status(ap));
2330 return 0;
2332 err_out_nosup:
2333 if (ata_msg_probe(ap))
2334 ata_dev_printk(dev, KERN_DEBUG,
2335 "%s: EXIT, err\n", __FUNCTION__);
2336 return rc;
2340 * ata_cable_40wire - return 40 wire cable type
2341 * @ap: port
2343 * Helper method for drivers which want to hardwire 40 wire cable
2344 * detection.
2347 int ata_cable_40wire(struct ata_port *ap)
2349 return ATA_CBL_PATA40;
2353 * ata_cable_80wire - return 80 wire cable type
2354 * @ap: port
2356 * Helper method for drivers which want to hardwire 80 wire cable
2357 * detection.
2360 int ata_cable_80wire(struct ata_port *ap)
2362 return ATA_CBL_PATA80;
2366 * ata_cable_unknown - return unknown PATA cable.
2367 * @ap: port
2369 * Helper method for drivers which have no PATA cable detection.
2372 int ata_cable_unknown(struct ata_port *ap)
2374 return ATA_CBL_PATA_UNK;
2378 * ata_cable_sata - return SATA cable type
2379 * @ap: port
2381 * Helper method for drivers which have SATA cables
2384 int ata_cable_sata(struct ata_port *ap)
2386 return ATA_CBL_SATA;
2390 * ata_bus_probe - Reset and probe ATA bus
2391 * @ap: Bus to probe
2393 * Master ATA bus probing function. Initiates a hardware-dependent
2394 * bus reset, then attempts to identify any devices found on
2395 * the bus.
2397 * LOCKING:
2398 * PCI/etc. bus probe sem.
2400 * RETURNS:
2401 * Zero on success, negative errno otherwise.
2404 int ata_bus_probe(struct ata_port *ap)
2406 unsigned int classes[ATA_MAX_DEVICES];
2407 int tries[ATA_MAX_DEVICES];
2408 int rc;
2409 struct ata_device *dev;
2411 ata_port_probe(ap);
2413 ata_link_for_each_dev(dev, &ap->link)
2414 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2416 retry:
2417 ata_link_for_each_dev(dev, &ap->link) {
2418 /* If we issue an SRST then an ATA drive (not ATAPI)
2419 * may change configuration and be in PIO0 timing. If
2420 * we do a hard reset (or are coming from power on)
2421 * this is true for ATA or ATAPI. Until we've set a
2422 * suitable controller mode we should not touch the
2423 * bus as we may be talking too fast.
2425 dev->pio_mode = XFER_PIO_0;
2427 /* If the controller has a pio mode setup function
2428 * then use it to set the chipset to rights. Don't
2429 * touch the DMA setup as that will be dealt with when
2430 * configuring devices.
2432 if (ap->ops->set_piomode)
2433 ap->ops->set_piomode(ap, dev);
2436 /* reset and determine device classes */
2437 ap->ops->phy_reset(ap);
2439 ata_link_for_each_dev(dev, &ap->link) {
2440 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2441 dev->class != ATA_DEV_UNKNOWN)
2442 classes[dev->devno] = dev->class;
2443 else
2444 classes[dev->devno] = ATA_DEV_NONE;
2446 dev->class = ATA_DEV_UNKNOWN;
2449 ata_port_probe(ap);
2451 /* read IDENTIFY page and configure devices. We have to do the identify
2452 specific sequence bass-ackwards so that PDIAG- is released by
2453 the slave device */
2455 ata_link_for_each_dev(dev, &ap->link) {
2456 if (tries[dev->devno])
2457 dev->class = classes[dev->devno];
2459 if (!ata_dev_enabled(dev))
2460 continue;
2462 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2463 dev->id);
2464 if (rc)
2465 goto fail;
2468 /* Now ask for the cable type as PDIAG- should have been released */
2469 if (ap->ops->cable_detect)
2470 ap->cbl = ap->ops->cable_detect(ap);
2472 /* We may have SATA bridge glue hiding here irrespective of the
2473 reported cable types and sensed types */
2474 ata_link_for_each_dev(dev, &ap->link) {
2475 if (!ata_dev_enabled(dev))
2476 continue;
2477 /* SATA drives indicate we have a bridge. We don't know which
2478 end of the link the bridge is which is a problem */
2479 if (ata_id_is_sata(dev->id))
2480 ap->cbl = ATA_CBL_SATA;
2483 /* After the identify sequence we can now set up the devices. We do
2484 this in the normal order so that the user doesn't get confused */
2486 ata_link_for_each_dev(dev, &ap->link) {
2487 if (!ata_dev_enabled(dev))
2488 continue;
2490 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2491 rc = ata_dev_configure(dev);
2492 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2493 if (rc)
2494 goto fail;
2497 /* configure transfer mode */
2498 rc = ata_set_mode(&ap->link, &dev);
2499 if (rc)
2500 goto fail;
2502 ata_link_for_each_dev(dev, &ap->link)
2503 if (ata_dev_enabled(dev))
2504 return 0;
2506 /* no device present, disable port */
2507 ata_port_disable(ap);
2508 return -ENODEV;
2510 fail:
2511 tries[dev->devno]--;
2513 switch (rc) {
2514 case -EINVAL:
2515 /* eeek, something went very wrong, give up */
2516 tries[dev->devno] = 0;
2517 break;
2519 case -ENODEV:
2520 /* give it just one more chance */
2521 tries[dev->devno] = min(tries[dev->devno], 1);
2522 case -EIO:
2523 if (tries[dev->devno] == 1) {
2524 /* This is the last chance, better to slow
2525 * down than lose it.
2527 sata_down_spd_limit(&ap->link);
2528 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2532 if (!tries[dev->devno])
2533 ata_dev_disable(dev);
2535 goto retry;
2539 * ata_port_probe - Mark port as enabled
2540 * @ap: Port for which we indicate enablement
2542 * Modify @ap data structure such that the system
2543 * thinks that the entire port is enabled.
2545 * LOCKING: host lock, or some other form of
2546 * serialization.
2549 void ata_port_probe(struct ata_port *ap)
2551 ap->flags &= ~ATA_FLAG_DISABLED;
2555 * sata_print_link_status - Print SATA link status
2556 * @link: SATA link to printk link status about
2558 * This function prints link speed and status of a SATA link.
2560 * LOCKING:
2561 * None.
2563 void sata_print_link_status(struct ata_link *link)
2565 u32 sstatus, scontrol, tmp;
2567 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2568 return;
2569 sata_scr_read(link, SCR_CONTROL, &scontrol);
2571 if (ata_link_online(link)) {
2572 tmp = (sstatus >> 4) & 0xf;
2573 ata_link_printk(link, KERN_INFO,
2574 "SATA link up %s (SStatus %X SControl %X)\n",
2575 sata_spd_string(tmp), sstatus, scontrol);
2576 } else {
2577 ata_link_printk(link, KERN_INFO,
2578 "SATA link down (SStatus %X SControl %X)\n",
2579 sstatus, scontrol);
2584 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2585 * @ap: SATA port associated with target SATA PHY.
2587 * This function issues commands to standard SATA Sxxx
2588 * PHY registers, to wake up the phy (and device), and
2589 * clear any reset condition.
2591 * LOCKING:
2592 * PCI/etc. bus probe sem.
2595 void __sata_phy_reset(struct ata_port *ap)
2597 struct ata_link *link = &ap->link;
2598 unsigned long timeout = jiffies + (HZ * 5);
2599 u32 sstatus;
2601 if (ap->flags & ATA_FLAG_SATA_RESET) {
2602 /* issue phy wake/reset */
2603 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2604 /* Couldn't find anything in SATA I/II specs, but
2605 * AHCI-1.1 10.4.2 says at least 1 ms. */
2606 mdelay(1);
2608 /* phy wake/clear reset */
2609 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2611 /* wait for phy to become ready, if necessary */
2612 do {
2613 msleep(200);
2614 sata_scr_read(link, SCR_STATUS, &sstatus);
2615 if ((sstatus & 0xf) != 1)
2616 break;
2617 } while (time_before(jiffies, timeout));
2619 /* print link status */
2620 sata_print_link_status(link);
2622 /* TODO: phy layer with polling, timeouts, etc. */
2623 if (!ata_link_offline(link))
2624 ata_port_probe(ap);
2625 else
2626 ata_port_disable(ap);
2628 if (ap->flags & ATA_FLAG_DISABLED)
2629 return;
2631 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2632 ata_port_disable(ap);
2633 return;
2636 ap->cbl = ATA_CBL_SATA;
2640 * sata_phy_reset - Reset SATA bus.
2641 * @ap: SATA port associated with target SATA PHY.
2643 * This function resets the SATA bus, and then probes
2644 * the bus for devices.
2646 * LOCKING:
2647 * PCI/etc. bus probe sem.
2650 void sata_phy_reset(struct ata_port *ap)
2652 __sata_phy_reset(ap);
2653 if (ap->flags & ATA_FLAG_DISABLED)
2654 return;
2655 ata_bus_reset(ap);
2659 * ata_dev_pair - return other device on cable
2660 * @adev: device
2662 * Obtain the other device on the same cable, or if none is
2663 * present NULL is returned
2666 struct ata_device *ata_dev_pair(struct ata_device *adev)
2668 struct ata_link *link = adev->link;
2669 struct ata_device *pair = &link->device[1 - adev->devno];
2670 if (!ata_dev_enabled(pair))
2671 return NULL;
2672 return pair;
2676 * ata_port_disable - Disable port.
2677 * @ap: Port to be disabled.
2679 * Modify @ap data structure such that the system
2680 * thinks that the entire port is disabled, and should
2681 * never attempt to probe or communicate with devices
2682 * on this port.
2684 * LOCKING: host lock, or some other form of
2685 * serialization.
2688 void ata_port_disable(struct ata_port *ap)
2690 ap->link.device[0].class = ATA_DEV_NONE;
2691 ap->link.device[1].class = ATA_DEV_NONE;
2692 ap->flags |= ATA_FLAG_DISABLED;
2696 * sata_down_spd_limit - adjust SATA spd limit downward
2697 * @link: Link to adjust SATA spd limit for
2699 * Adjust SATA spd limit of @link downward. Note that this
2700 * function only adjusts the limit. The change must be applied
2701 * using sata_set_spd().
2703 * LOCKING:
2704 * Inherited from caller.
2706 * RETURNS:
2707 * 0 on success, negative errno on failure
2709 int sata_down_spd_limit(struct ata_link *link)
2711 u32 sstatus, spd, mask;
2712 int rc, highbit;
2714 if (!sata_scr_valid(link))
2715 return -EOPNOTSUPP;
2717 /* If SCR can be read, use it to determine the current SPD.
2718 * If not, use cached value in link->sata_spd.
2720 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2721 if (rc == 0)
2722 spd = (sstatus >> 4) & 0xf;
2723 else
2724 spd = link->sata_spd;
2726 mask = link->sata_spd_limit;
2727 if (mask <= 1)
2728 return -EINVAL;
2730 /* unconditionally mask off the highest bit */
2731 highbit = fls(mask) - 1;
2732 mask &= ~(1 << highbit);
2734 /* Mask off all speeds higher than or equal to the current
2735 * one. Force 1.5Gbps if current SPD is not available.
2737 if (spd > 1)
2738 mask &= (1 << (spd - 1)) - 1;
2739 else
2740 mask &= 1;
2742 /* were we already at the bottom? */
2743 if (!mask)
2744 return -EINVAL;
2746 link->sata_spd_limit = mask;
2748 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2749 sata_spd_string(fls(mask)));
2751 return 0;
2754 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2756 struct ata_link *host_link = &link->ap->link;
2757 u32 limit, target, spd;
2759 limit = link->sata_spd_limit;
2761 /* Don't configure downstream link faster than upstream link.
2762 * It doesn't speed up anything and some PMPs choke on such
2763 * configuration.
2765 if (!ata_is_host_link(link) && host_link->sata_spd)
2766 limit &= (1 << host_link->sata_spd) - 1;
2768 if (limit == UINT_MAX)
2769 target = 0;
2770 else
2771 target = fls(limit);
2773 spd = (*scontrol >> 4) & 0xf;
2774 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2776 return spd != target;
2780 * sata_set_spd_needed - is SATA spd configuration needed
2781 * @link: Link in question
2783 * Test whether the spd limit in SControl matches
2784 * @link->sata_spd_limit. This function is used to determine
2785 * whether hardreset is necessary to apply SATA spd
2786 * configuration.
2788 * LOCKING:
2789 * Inherited from caller.
2791 * RETURNS:
2792 * 1 if SATA spd configuration is needed, 0 otherwise.
2794 int sata_set_spd_needed(struct ata_link *link)
2796 u32 scontrol;
2798 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2799 return 1;
2801 return __sata_set_spd_needed(link, &scontrol);
2805 * sata_set_spd - set SATA spd according to spd limit
2806 * @link: Link to set SATA spd for
2808 * Set SATA spd of @link according to sata_spd_limit.
2810 * LOCKING:
2811 * Inherited from caller.
2813 * RETURNS:
2814 * 0 if spd doesn't need to be changed, 1 if spd has been
2815 * changed. Negative errno if SCR registers are inaccessible.
2817 int sata_set_spd(struct ata_link *link)
2819 u32 scontrol;
2820 int rc;
2822 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2823 return rc;
2825 if (!__sata_set_spd_needed(link, &scontrol))
2826 return 0;
2828 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2829 return rc;
2831 return 1;
2835 * This mode timing computation functionality is ported over from
2836 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2839 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2840 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2841 * for UDMA6, which is currently supported only by Maxtor drives.
2843 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2846 static const struct ata_timing ata_timing[] = {
2848 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2849 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2850 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2851 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2853 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2854 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2855 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2857 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2859 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2861 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2862 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2863 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2867 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2869 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2870 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2871 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2872 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2874 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2875 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2876 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2878 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2880 { 0xFF }
2883 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2884 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2886 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2888 q->setup = EZ(t->setup * 1000, T);
2889 q->act8b = EZ(t->act8b * 1000, T);
2890 q->rec8b = EZ(t->rec8b * 1000, T);
2891 q->cyc8b = EZ(t->cyc8b * 1000, T);
2892 q->active = EZ(t->active * 1000, T);
2893 q->recover = EZ(t->recover * 1000, T);
2894 q->cycle = EZ(t->cycle * 1000, T);
2895 q->udma = EZ(t->udma * 1000, UT);
2898 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899 struct ata_timing *m, unsigned int what)
2901 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2902 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2903 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2904 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2905 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2906 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2908 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2911 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2913 const struct ata_timing *t;
2915 for (t = ata_timing; t->mode != speed; t++)
2916 if (t->mode == 0xFF)
2917 return NULL;
2918 return t;
2921 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2922 struct ata_timing *t, int T, int UT)
2924 const struct ata_timing *s;
2925 struct ata_timing p;
2928 * Find the mode.
2931 if (!(s = ata_timing_find_mode(speed)))
2932 return -EINVAL;
2934 memcpy(t, s, sizeof(*s));
2937 * If the drive is an EIDE drive, it can tell us it needs extended
2938 * PIO/MW_DMA cycle timing.
2941 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2942 memset(&p, 0, sizeof(p));
2943 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2944 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2945 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2946 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2947 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2949 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2953 * Convert the timing to bus clock counts.
2956 ata_timing_quantize(t, t, T, UT);
2959 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2960 * S.M.A.R.T * and some other commands. We have to ensure that the
2961 * DMA cycle timing is slower/equal than the fastest PIO timing.
2964 if (speed > XFER_PIO_6) {
2965 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2966 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2970 * Lengthen active & recovery time so that cycle time is correct.
2973 if (t->act8b + t->rec8b < t->cyc8b) {
2974 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2975 t->rec8b = t->cyc8b - t->act8b;
2978 if (t->active + t->recover < t->cycle) {
2979 t->active += (t->cycle - (t->active + t->recover)) / 2;
2980 t->recover = t->cycle - t->active;
2983 /* In a few cases quantisation may produce enough errors to
2984 leave t->cycle too low for the sum of active and recovery
2985 if so we must correct this */
2986 if (t->active + t->recover > t->cycle)
2987 t->cycle = t->active + t->recover;
2989 return 0;
2993 * ata_down_xfermask_limit - adjust dev xfer masks downward
2994 * @dev: Device to adjust xfer masks
2995 * @sel: ATA_DNXFER_* selector
2997 * Adjust xfer masks of @dev downward. Note that this function
2998 * does not apply the change. Invoking ata_set_mode() afterwards
2999 * will apply the limit.
3001 * LOCKING:
3002 * Inherited from caller.
3004 * RETURNS:
3005 * 0 on success, negative errno on failure
3007 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3009 char buf[32];
3010 unsigned int orig_mask, xfer_mask;
3011 unsigned int pio_mask, mwdma_mask, udma_mask;
3012 int quiet, highbit;
3014 quiet = !!(sel & ATA_DNXFER_QUIET);
3015 sel &= ~ATA_DNXFER_QUIET;
3017 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3018 dev->mwdma_mask,
3019 dev->udma_mask);
3020 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3022 switch (sel) {
3023 case ATA_DNXFER_PIO:
3024 highbit = fls(pio_mask) - 1;
3025 pio_mask &= ~(1 << highbit);
3026 break;
3028 case ATA_DNXFER_DMA:
3029 if (udma_mask) {
3030 highbit = fls(udma_mask) - 1;
3031 udma_mask &= ~(1 << highbit);
3032 if (!udma_mask)
3033 return -ENOENT;
3034 } else if (mwdma_mask) {
3035 highbit = fls(mwdma_mask) - 1;
3036 mwdma_mask &= ~(1 << highbit);
3037 if (!mwdma_mask)
3038 return -ENOENT;
3040 break;
3042 case ATA_DNXFER_40C:
3043 udma_mask &= ATA_UDMA_MASK_40C;
3044 break;
3046 case ATA_DNXFER_FORCE_PIO0:
3047 pio_mask &= 1;
3048 case ATA_DNXFER_FORCE_PIO:
3049 mwdma_mask = 0;
3050 udma_mask = 0;
3051 break;
3053 default:
3054 BUG();
3057 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3059 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3060 return -ENOENT;
3062 if (!quiet) {
3063 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3064 snprintf(buf, sizeof(buf), "%s:%s",
3065 ata_mode_string(xfer_mask),
3066 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3067 else
3068 snprintf(buf, sizeof(buf), "%s",
3069 ata_mode_string(xfer_mask));
3071 ata_dev_printk(dev, KERN_WARNING,
3072 "limiting speed to %s\n", buf);
3075 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3076 &dev->udma_mask);
3078 return 0;
3081 static int ata_dev_set_mode(struct ata_device *dev)
3083 struct ata_eh_context *ehc = &dev->link->eh_context;
3084 unsigned int err_mask;
3085 int rc;
3087 dev->flags &= ~ATA_DFLAG_PIO;
3088 if (dev->xfer_shift == ATA_SHIFT_PIO)
3089 dev->flags |= ATA_DFLAG_PIO;
3091 err_mask = ata_dev_set_xfermode(dev);
3093 /* Old CFA may refuse this command, which is just fine */
3094 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3095 err_mask &= ~AC_ERR_DEV;
3097 /* Some very old devices and some bad newer ones fail any kind of
3098 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3099 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3100 dev->pio_mode <= XFER_PIO_2)
3101 err_mask &= ~AC_ERR_DEV;
3103 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3104 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3105 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3106 dev->dma_mode == XFER_MW_DMA_0 &&
3107 (dev->id[63] >> 8) & 1)
3108 err_mask &= ~AC_ERR_DEV;
3110 if (err_mask) {
3111 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3112 "(err_mask=0x%x)\n", err_mask);
3113 return -EIO;
3116 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3117 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3118 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3119 if (rc)
3120 return rc;
3122 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3123 dev->xfer_shift, (int)dev->xfer_mode);
3125 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3126 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3127 return 0;
3131 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3132 * @link: link on which timings will be programmed
3133 * @r_failed_dev: out paramter for failed device
3135 * Standard implementation of the function used to tune and set
3136 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3137 * ata_dev_set_mode() fails, pointer to the failing device is
3138 * returned in @r_failed_dev.
3140 * LOCKING:
3141 * PCI/etc. bus probe sem.
3143 * RETURNS:
3144 * 0 on success, negative errno otherwise
3147 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3149 struct ata_port *ap = link->ap;
3150 struct ata_device *dev;
3151 int rc = 0, used_dma = 0, found = 0;
3153 /* step 1: calculate xfer_mask */
3154 ata_link_for_each_dev(dev, link) {
3155 unsigned int pio_mask, dma_mask;
3156 unsigned int mode_mask;
3158 if (!ata_dev_enabled(dev))
3159 continue;
3161 mode_mask = ATA_DMA_MASK_ATA;
3162 if (dev->class == ATA_DEV_ATAPI)
3163 mode_mask = ATA_DMA_MASK_ATAPI;
3164 else if (ata_id_is_cfa(dev->id))
3165 mode_mask = ATA_DMA_MASK_CFA;
3167 ata_dev_xfermask(dev);
3169 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3170 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3172 if (libata_dma_mask & mode_mask)
3173 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3174 else
3175 dma_mask = 0;
3177 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3178 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3180 found = 1;
3181 if (dev->dma_mode)
3182 used_dma = 1;
3184 if (!found)
3185 goto out;
3187 /* step 2: always set host PIO timings */
3188 ata_link_for_each_dev(dev, link) {
3189 if (!ata_dev_enabled(dev))
3190 continue;
3192 if (!dev->pio_mode) {
3193 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3194 rc = -EINVAL;
3195 goto out;
3198 dev->xfer_mode = dev->pio_mode;
3199 dev->xfer_shift = ATA_SHIFT_PIO;
3200 if (ap->ops->set_piomode)
3201 ap->ops->set_piomode(ap, dev);
3204 /* step 3: set host DMA timings */
3205 ata_link_for_each_dev(dev, link) {
3206 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3207 continue;
3209 dev->xfer_mode = dev->dma_mode;
3210 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3211 if (ap->ops->set_dmamode)
3212 ap->ops->set_dmamode(ap, dev);
3215 /* step 4: update devices' xfer mode */
3216 ata_link_for_each_dev(dev, link) {
3217 /* don't update suspended devices' xfer mode */
3218 if (!ata_dev_enabled(dev))
3219 continue;
3221 rc = ata_dev_set_mode(dev);
3222 if (rc)
3223 goto out;
3226 /* Record simplex status. If we selected DMA then the other
3227 * host channels are not permitted to do so.
3229 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3230 ap->host->simplex_claimed = ap;
3232 out:
3233 if (rc)
3234 *r_failed_dev = dev;
3235 return rc;
3239 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3240 * @link: link on which timings will be programmed
3241 * @r_failed_dev: out paramter for failed device
3243 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3244 * ata_set_mode() fails, pointer to the failing device is
3245 * returned in @r_failed_dev.
3247 * LOCKING:
3248 * PCI/etc. bus probe sem.
3250 * RETURNS:
3251 * 0 on success, negative errno otherwise
3253 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3255 struct ata_port *ap = link->ap;
3257 /* has private set_mode? */
3258 if (ap->ops->set_mode)
3259 return ap->ops->set_mode(link, r_failed_dev);
3260 return ata_do_set_mode(link, r_failed_dev);
3264 * ata_tf_to_host - issue ATA taskfile to host controller
3265 * @ap: port to which command is being issued
3266 * @tf: ATA taskfile register set
3268 * Issues ATA taskfile register set to ATA host controller,
3269 * with proper synchronization with interrupt handler and
3270 * other threads.
3272 * LOCKING:
3273 * spin_lock_irqsave(host lock)
3276 static inline void ata_tf_to_host(struct ata_port *ap,
3277 const struct ata_taskfile *tf)
3279 ap->ops->tf_load(ap, tf);
3280 ap->ops->exec_command(ap, tf);
3284 * ata_busy_sleep - sleep until BSY clears, or timeout
3285 * @ap: port containing status register to be polled
3286 * @tmout_pat: impatience timeout
3287 * @tmout: overall timeout
3289 * Sleep until ATA Status register bit BSY clears,
3290 * or a timeout occurs.
3292 * LOCKING:
3293 * Kernel thread context (may sleep).
3295 * RETURNS:
3296 * 0 on success, -errno otherwise.
3298 int ata_busy_sleep(struct ata_port *ap,
3299 unsigned long tmout_pat, unsigned long tmout)
3301 unsigned long timer_start, timeout;
3302 u8 status;
3304 status = ata_busy_wait(ap, ATA_BUSY, 300);
3305 timer_start = jiffies;
3306 timeout = timer_start + tmout_pat;
3307 while (status != 0xff && (status & ATA_BUSY) &&
3308 time_before(jiffies, timeout)) {
3309 msleep(50);
3310 status = ata_busy_wait(ap, ATA_BUSY, 3);
3313 if (status != 0xff && (status & ATA_BUSY))
3314 ata_port_printk(ap, KERN_WARNING,
3315 "port is slow to respond, please be patient "
3316 "(Status 0x%x)\n", status);
3318 timeout = timer_start + tmout;
3319 while (status != 0xff && (status & ATA_BUSY) &&
3320 time_before(jiffies, timeout)) {
3321 msleep(50);
3322 status = ata_chk_status(ap);
3325 if (status == 0xff)
3326 return -ENODEV;
3328 if (status & ATA_BUSY) {
3329 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3330 "(%lu secs, Status 0x%x)\n",
3331 tmout / HZ, status);
3332 return -EBUSY;
3335 return 0;
3339 * ata_wait_after_reset - wait before checking status after reset
3340 * @ap: port containing status register to be polled
3341 * @deadline: deadline jiffies for the operation
3343 * After reset, we need to pause a while before reading status.
3344 * Also, certain combination of controller and device report 0xff
3345 * for some duration (e.g. until SATA PHY is up and running)
3346 * which is interpreted as empty port in ATA world. This
3347 * function also waits for such devices to get out of 0xff
3348 * status.
3350 * LOCKING:
3351 * Kernel thread context (may sleep).
3353 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3355 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3357 if (time_before(until, deadline))
3358 deadline = until;
3360 /* Spec mandates ">= 2ms" before checking status. We wait
3361 * 150ms, because that was the magic delay used for ATAPI
3362 * devices in Hale Landis's ATADRVR, for the period of time
3363 * between when the ATA command register is written, and then
3364 * status is checked. Because waiting for "a while" before
3365 * checking status is fine, post SRST, we perform this magic
3366 * delay here as well.
3368 * Old drivers/ide uses the 2mS rule and then waits for ready.
3370 msleep(150);
3372 /* Wait for 0xff to clear. Some SATA devices take a long time
3373 * to clear 0xff after reset. For example, HHD424020F7SV00
3374 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3375 * than that.
3377 while (1) {
3378 u8 status = ata_chk_status(ap);
3380 if (status != 0xff || time_after(jiffies, deadline))
3381 return;
3383 msleep(50);
3388 * ata_wait_ready - sleep until BSY clears, or timeout
3389 * @ap: port containing status register to be polled
3390 * @deadline: deadline jiffies for the operation
3392 * Sleep until ATA Status register bit BSY clears, or timeout
3393 * occurs.
3395 * LOCKING:
3396 * Kernel thread context (may sleep).
3398 * RETURNS:
3399 * 0 on success, -errno otherwise.
3401 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3403 unsigned long start = jiffies;
3404 int warned = 0;
3406 while (1) {
3407 u8 status = ata_chk_status(ap);
3408 unsigned long now = jiffies;
3410 if (!(status & ATA_BUSY))
3411 return 0;
3412 if (!ata_link_online(&ap->link) && status == 0xff)
3413 return -ENODEV;
3414 if (time_after(now, deadline))
3415 return -EBUSY;
3417 if (!warned && time_after(now, start + 5 * HZ) &&
3418 (deadline - now > 3 * HZ)) {
3419 ata_port_printk(ap, KERN_WARNING,
3420 "port is slow to respond, please be patient "
3421 "(Status 0x%x)\n", status);
3422 warned = 1;
3425 msleep(50);
3429 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3430 unsigned long deadline)
3432 struct ata_ioports *ioaddr = &ap->ioaddr;
3433 unsigned int dev0 = devmask & (1 << 0);
3434 unsigned int dev1 = devmask & (1 << 1);
3435 int rc, ret = 0;
3437 /* if device 0 was found in ata_devchk, wait for its
3438 * BSY bit to clear
3440 if (dev0) {
3441 rc = ata_wait_ready(ap, deadline);
3442 if (rc) {
3443 if (rc != -ENODEV)
3444 return rc;
3445 ret = rc;
3449 /* if device 1 was found in ata_devchk, wait for register
3450 * access briefly, then wait for BSY to clear.
3452 if (dev1) {
3453 int i;
3455 ap->ops->dev_select(ap, 1);
3457 /* Wait for register access. Some ATAPI devices fail
3458 * to set nsect/lbal after reset, so don't waste too
3459 * much time on it. We're gonna wait for !BSY anyway.
3461 for (i = 0; i < 2; i++) {
3462 u8 nsect, lbal;
3464 nsect = ioread8(ioaddr->nsect_addr);
3465 lbal = ioread8(ioaddr->lbal_addr);
3466 if ((nsect == 1) && (lbal == 1))
3467 break;
3468 msleep(50); /* give drive a breather */
3471 rc = ata_wait_ready(ap, deadline);
3472 if (rc) {
3473 if (rc != -ENODEV)
3474 return rc;
3475 ret = rc;
3479 /* is all this really necessary? */
3480 ap->ops->dev_select(ap, 0);
3481 if (dev1)
3482 ap->ops->dev_select(ap, 1);
3483 if (dev0)
3484 ap->ops->dev_select(ap, 0);
3486 return ret;
3489 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3490 unsigned long deadline)
3492 struct ata_ioports *ioaddr = &ap->ioaddr;
3494 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3496 /* software reset. causes dev0 to be selected */
3497 iowrite8(ap->ctl, ioaddr->ctl_addr);
3498 udelay(20); /* FIXME: flush */
3499 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3500 udelay(20); /* FIXME: flush */
3501 iowrite8(ap->ctl, ioaddr->ctl_addr);
3503 /* wait a while before checking status */
3504 ata_wait_after_reset(ap, deadline);
3506 /* Before we perform post reset processing we want to see if
3507 * the bus shows 0xFF because the odd clown forgets the D7
3508 * pulldown resistor.
3510 if (ata_chk_status(ap) == 0xFF)
3511 return -ENODEV;
3513 return ata_bus_post_reset(ap, devmask, deadline);
3517 * ata_bus_reset - reset host port and associated ATA channel
3518 * @ap: port to reset
3520 * This is typically the first time we actually start issuing
3521 * commands to the ATA channel. We wait for BSY to clear, then
3522 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3523 * result. Determine what devices, if any, are on the channel
3524 * by looking at the device 0/1 error register. Look at the signature
3525 * stored in each device's taskfile registers, to determine if
3526 * the device is ATA or ATAPI.
3528 * LOCKING:
3529 * PCI/etc. bus probe sem.
3530 * Obtains host lock.
3532 * SIDE EFFECTS:
3533 * Sets ATA_FLAG_DISABLED if bus reset fails.
3536 void ata_bus_reset(struct ata_port *ap)
3538 struct ata_device *device = ap->link.device;
3539 struct ata_ioports *ioaddr = &ap->ioaddr;
3540 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3541 u8 err;
3542 unsigned int dev0, dev1 = 0, devmask = 0;
3543 int rc;
3545 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3547 /* determine if device 0/1 are present */
3548 if (ap->flags & ATA_FLAG_SATA_RESET)
3549 dev0 = 1;
3550 else {
3551 dev0 = ata_devchk(ap, 0);
3552 if (slave_possible)
3553 dev1 = ata_devchk(ap, 1);
3556 if (dev0)
3557 devmask |= (1 << 0);
3558 if (dev1)
3559 devmask |= (1 << 1);
3561 /* select device 0 again */
3562 ap->ops->dev_select(ap, 0);
3564 /* issue bus reset */
3565 if (ap->flags & ATA_FLAG_SRST) {
3566 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3567 if (rc && rc != -ENODEV)
3568 goto err_out;
3572 * determine by signature whether we have ATA or ATAPI devices
3574 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3575 if ((slave_possible) && (err != 0x81))
3576 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3578 /* is double-select really necessary? */
3579 if (device[1].class != ATA_DEV_NONE)
3580 ap->ops->dev_select(ap, 1);
3581 if (device[0].class != ATA_DEV_NONE)
3582 ap->ops->dev_select(ap, 0);
3584 /* if no devices were detected, disable this port */
3585 if ((device[0].class == ATA_DEV_NONE) &&
3586 (device[1].class == ATA_DEV_NONE))
3587 goto err_out;
3589 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3590 /* set up device control for ATA_FLAG_SATA_RESET */
3591 iowrite8(ap->ctl, ioaddr->ctl_addr);
3594 DPRINTK("EXIT\n");
3595 return;
3597 err_out:
3598 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3599 ata_port_disable(ap);
3601 DPRINTK("EXIT\n");
3605 * sata_link_debounce - debounce SATA phy status
3606 * @link: ATA link to debounce SATA phy status for
3607 * @params: timing parameters { interval, duratinon, timeout } in msec
3608 * @deadline: deadline jiffies for the operation
3610 * Make sure SStatus of @link reaches stable state, determined by
3611 * holding the same value where DET is not 1 for @duration polled
3612 * every @interval, before @timeout. Timeout constraints the
3613 * beginning of the stable state. Because DET gets stuck at 1 on
3614 * some controllers after hot unplugging, this functions waits
3615 * until timeout then returns 0 if DET is stable at 1.
3617 * @timeout is further limited by @deadline. The sooner of the
3618 * two is used.
3620 * LOCKING:
3621 * Kernel thread context (may sleep)
3623 * RETURNS:
3624 * 0 on success, -errno on failure.
3626 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3627 unsigned long deadline)
3629 unsigned long interval_msec = params[0];
3630 unsigned long duration = msecs_to_jiffies(params[1]);
3631 unsigned long last_jiffies, t;
3632 u32 last, cur;
3633 int rc;
3635 t = jiffies + msecs_to_jiffies(params[2]);
3636 if (time_before(t, deadline))
3637 deadline = t;
3639 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3640 return rc;
3641 cur &= 0xf;
3643 last = cur;
3644 last_jiffies = jiffies;
3646 while (1) {
3647 msleep(interval_msec);
3648 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3649 return rc;
3650 cur &= 0xf;
3652 /* DET stable? */
3653 if (cur == last) {
3654 if (cur == 1 && time_before(jiffies, deadline))
3655 continue;
3656 if (time_after(jiffies, last_jiffies + duration))
3657 return 0;
3658 continue;
3661 /* unstable, start over */
3662 last = cur;
3663 last_jiffies = jiffies;
3665 /* Check deadline. If debouncing failed, return
3666 * -EPIPE to tell upper layer to lower link speed.
3668 if (time_after(jiffies, deadline))
3669 return -EPIPE;
3674 * sata_link_resume - resume SATA link
3675 * @link: ATA link to resume SATA
3676 * @params: timing parameters { interval, duratinon, timeout } in msec
3677 * @deadline: deadline jiffies for the operation
3679 * Resume SATA phy @link and debounce it.
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3684 * RETURNS:
3685 * 0 on success, -errno on failure.
3687 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3688 unsigned long deadline)
3690 u32 scontrol;
3691 int rc;
3693 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3694 return rc;
3696 scontrol = (scontrol & 0x0f0) | 0x300;
3698 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3699 return rc;
3701 /* Some PHYs react badly if SStatus is pounded immediately
3702 * after resuming. Delay 200ms before debouncing.
3704 msleep(200);
3706 return sata_link_debounce(link, params, deadline);
3710 * ata_std_prereset - prepare for reset
3711 * @link: ATA link to be reset
3712 * @deadline: deadline jiffies for the operation
3714 * @link is about to be reset. Initialize it. Failure from
3715 * prereset makes libata abort whole reset sequence and give up
3716 * that port, so prereset should be best-effort. It does its
3717 * best to prepare for reset sequence but if things go wrong, it
3718 * should just whine, not fail.
3720 * LOCKING:
3721 * Kernel thread context (may sleep)
3723 * RETURNS:
3724 * 0 on success, -errno otherwise.
3726 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3728 struct ata_port *ap = link->ap;
3729 struct ata_eh_context *ehc = &link->eh_context;
3730 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3731 int rc;
3733 /* handle link resume */
3734 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3735 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3736 ehc->i.action |= ATA_EH_HARDRESET;
3738 /* Some PMPs don't work with only SRST, force hardreset if PMP
3739 * is supported.
3741 if (ap->flags & ATA_FLAG_PMP)
3742 ehc->i.action |= ATA_EH_HARDRESET;
3744 /* if we're about to do hardreset, nothing more to do */
3745 if (ehc->i.action & ATA_EH_HARDRESET)
3746 return 0;
3748 /* if SATA, resume link */
3749 if (ap->flags & ATA_FLAG_SATA) {
3750 rc = sata_link_resume(link, timing, deadline);
3751 /* whine about phy resume failure but proceed */
3752 if (rc && rc != -EOPNOTSUPP)
3753 ata_link_printk(link, KERN_WARNING, "failed to resume "
3754 "link for reset (errno=%d)\n", rc);
3757 /* Wait for !BSY if the controller can wait for the first D2H
3758 * Reg FIS and we don't know that no device is attached.
3760 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3761 rc = ata_wait_ready(ap, deadline);
3762 if (rc && rc != -ENODEV) {
3763 ata_link_printk(link, KERN_WARNING, "device not ready "
3764 "(errno=%d), forcing hardreset\n", rc);
3765 ehc->i.action |= ATA_EH_HARDRESET;
3769 return 0;
3773 * ata_std_softreset - reset host port via ATA SRST
3774 * @link: ATA link to reset
3775 * @classes: resulting classes of attached devices
3776 * @deadline: deadline jiffies for the operation
3778 * Reset host port using ATA SRST.
3780 * LOCKING:
3781 * Kernel thread context (may sleep)
3783 * RETURNS:
3784 * 0 on success, -errno otherwise.
3786 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3787 unsigned long deadline)
3789 struct ata_port *ap = link->ap;
3790 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3791 unsigned int devmask = 0;
3792 int rc;
3793 u8 err;
3795 DPRINTK("ENTER\n");
3797 if (ata_link_offline(link)) {
3798 classes[0] = ATA_DEV_NONE;
3799 goto out;
3802 /* determine if device 0/1 are present */
3803 if (ata_devchk(ap, 0))
3804 devmask |= (1 << 0);
3805 if (slave_possible && ata_devchk(ap, 1))
3806 devmask |= (1 << 1);
3808 /* select device 0 again */
3809 ap->ops->dev_select(ap, 0);
3811 /* issue bus reset */
3812 DPRINTK("about to softreset, devmask=%x\n", devmask);
3813 rc = ata_bus_softreset(ap, devmask, deadline);
3814 /* if link is occupied, -ENODEV too is an error */
3815 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3816 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3817 return rc;
3820 /* determine by signature whether we have ATA or ATAPI devices */
3821 classes[0] = ata_dev_try_classify(&link->device[0],
3822 devmask & (1 << 0), &err);
3823 if (slave_possible && err != 0x81)
3824 classes[1] = ata_dev_try_classify(&link->device[1],
3825 devmask & (1 << 1), &err);
3827 out:
3828 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3829 return 0;
3833 * sata_link_hardreset - reset link via SATA phy reset
3834 * @link: link to reset
3835 * @timing: timing parameters { interval, duratinon, timeout } in msec
3836 * @deadline: deadline jiffies for the operation
3838 * SATA phy-reset @link using DET bits of SControl register.
3840 * LOCKING:
3841 * Kernel thread context (may sleep)
3843 * RETURNS:
3844 * 0 on success, -errno otherwise.
3846 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3847 unsigned long deadline)
3849 u32 scontrol;
3850 int rc;
3852 DPRINTK("ENTER\n");
3854 if (sata_set_spd_needed(link)) {
3855 /* SATA spec says nothing about how to reconfigure
3856 * spd. To be on the safe side, turn off phy during
3857 * reconfiguration. This works for at least ICH7 AHCI
3858 * and Sil3124.
3860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3861 goto out;
3863 scontrol = (scontrol & 0x0f0) | 0x304;
3865 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3866 goto out;
3868 sata_set_spd(link);
3871 /* issue phy wake/reset */
3872 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3873 goto out;
3875 scontrol = (scontrol & 0x0f0) | 0x301;
3877 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3878 goto out;
3880 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3881 * 10.4.2 says at least 1 ms.
3883 msleep(1);
3885 /* bring link back */
3886 rc = sata_link_resume(link, timing, deadline);
3887 out:
3888 DPRINTK("EXIT, rc=%d\n", rc);
3889 return rc;
3893 * sata_std_hardreset - reset host port via SATA phy reset
3894 * @link: link to reset
3895 * @class: resulting class of attached device
3896 * @deadline: deadline jiffies for the operation
3898 * SATA phy-reset host port using DET bits of SControl register,
3899 * wait for !BSY and classify the attached device.
3901 * LOCKING:
3902 * Kernel thread context (may sleep)
3904 * RETURNS:
3905 * 0 on success, -errno otherwise.
3907 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3908 unsigned long deadline)
3910 struct ata_port *ap = link->ap;
3911 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3912 int rc;
3914 DPRINTK("ENTER\n");
3916 /* do hardreset */
3917 rc = sata_link_hardreset(link, timing, deadline);
3918 if (rc) {
3919 ata_link_printk(link, KERN_ERR,
3920 "COMRESET failed (errno=%d)\n", rc);
3921 return rc;
3924 /* TODO: phy layer with polling, timeouts, etc. */
3925 if (ata_link_offline(link)) {
3926 *class = ATA_DEV_NONE;
3927 DPRINTK("EXIT, link offline\n");
3928 return 0;
3931 /* wait a while before checking status */
3932 ata_wait_after_reset(ap, deadline);
3934 /* If PMP is supported, we have to do follow-up SRST. Note
3935 * that some PMPs don't send D2H Reg FIS after hardreset at
3936 * all if the first port is empty. Wait for it just for a
3937 * second and request follow-up SRST.
3939 if (ap->flags & ATA_FLAG_PMP) {
3940 ata_wait_ready(ap, jiffies + HZ);
3941 return -EAGAIN;
3944 rc = ata_wait_ready(ap, deadline);
3945 /* link occupied, -ENODEV too is an error */
3946 if (rc) {
3947 ata_link_printk(link, KERN_ERR,
3948 "COMRESET failed (errno=%d)\n", rc);
3949 return rc;
3952 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3954 *class = ata_dev_try_classify(link->device, 1, NULL);
3956 DPRINTK("EXIT, class=%u\n", *class);
3957 return 0;
3961 * ata_std_postreset - standard postreset callback
3962 * @link: the target ata_link
3963 * @classes: classes of attached devices
3965 * This function is invoked after a successful reset. Note that
3966 * the device might have been reset more than once using
3967 * different reset methods before postreset is invoked.
3969 * LOCKING:
3970 * Kernel thread context (may sleep)
3972 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3974 struct ata_port *ap = link->ap;
3975 u32 serror;
3977 DPRINTK("ENTER\n");
3979 /* print link status */
3980 sata_print_link_status(link);
3982 /* clear SError */
3983 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3984 sata_scr_write(link, SCR_ERROR, serror);
3986 /* is double-select really necessary? */
3987 if (classes[0] != ATA_DEV_NONE)
3988 ap->ops->dev_select(ap, 1);
3989 if (classes[1] != ATA_DEV_NONE)
3990 ap->ops->dev_select(ap, 0);
3992 /* bail out if no device is present */
3993 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3994 DPRINTK("EXIT, no device\n");
3995 return;
3998 /* set up device control */
3999 if (ap->ioaddr.ctl_addr)
4000 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4002 DPRINTK("EXIT\n");
4006 * ata_dev_same_device - Determine whether new ID matches configured device
4007 * @dev: device to compare against
4008 * @new_class: class of the new device
4009 * @new_id: IDENTIFY page of the new device
4011 * Compare @new_class and @new_id against @dev and determine
4012 * whether @dev is the device indicated by @new_class and
4013 * @new_id.
4015 * LOCKING:
4016 * None.
4018 * RETURNS:
4019 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4021 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4022 const u16 *new_id)
4024 const u16 *old_id = dev->id;
4025 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4026 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4028 if (dev->class != new_class) {
4029 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4030 dev->class, new_class);
4031 return 0;
4034 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4035 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4036 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4037 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4039 if (strcmp(model[0], model[1])) {
4040 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4041 "'%s' != '%s'\n", model[0], model[1]);
4042 return 0;
4045 if (strcmp(serial[0], serial[1])) {
4046 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4047 "'%s' != '%s'\n", serial[0], serial[1]);
4048 return 0;
4051 return 1;
4055 * ata_dev_reread_id - Re-read IDENTIFY data
4056 * @dev: target ATA device
4057 * @readid_flags: read ID flags
4059 * Re-read IDENTIFY page and make sure @dev is still attached to
4060 * the port.
4062 * LOCKING:
4063 * Kernel thread context (may sleep)
4065 * RETURNS:
4066 * 0 on success, negative errno otherwise
4068 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4070 unsigned int class = dev->class;
4071 u16 *id = (void *)dev->link->ap->sector_buf;
4072 int rc;
4074 /* read ID data */
4075 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4076 if (rc)
4077 return rc;
4079 /* is the device still there? */
4080 if (!ata_dev_same_device(dev, class, id))
4081 return -ENODEV;
4083 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4084 return 0;
4088 * ata_dev_revalidate - Revalidate ATA device
4089 * @dev: device to revalidate
4090 * @new_class: new class code
4091 * @readid_flags: read ID flags
4093 * Re-read IDENTIFY page, make sure @dev is still attached to the
4094 * port and reconfigure it according to the new IDENTIFY page.
4096 * LOCKING:
4097 * Kernel thread context (may sleep)
4099 * RETURNS:
4100 * 0 on success, negative errno otherwise
4102 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4103 unsigned int readid_flags)
4105 u64 n_sectors = dev->n_sectors;
4106 int rc;
4108 if (!ata_dev_enabled(dev))
4109 return -ENODEV;
4111 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4112 if (ata_class_enabled(new_class) &&
4113 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4114 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4115 dev->class, new_class);
4116 rc = -ENODEV;
4117 goto fail;
4120 /* re-read ID */
4121 rc = ata_dev_reread_id(dev, readid_flags);
4122 if (rc)
4123 goto fail;
4125 /* configure device according to the new ID */
4126 rc = ata_dev_configure(dev);
4127 if (rc)
4128 goto fail;
4130 /* verify n_sectors hasn't changed */
4131 if (dev->class == ATA_DEV_ATA && n_sectors &&
4132 dev->n_sectors != n_sectors) {
4133 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4134 "%llu != %llu\n",
4135 (unsigned long long)n_sectors,
4136 (unsigned long long)dev->n_sectors);
4138 /* restore original n_sectors */
4139 dev->n_sectors = n_sectors;
4141 rc = -ENODEV;
4142 goto fail;
4145 return 0;
4147 fail:
4148 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4149 return rc;
4152 struct ata_blacklist_entry {
4153 const char *model_num;
4154 const char *model_rev;
4155 unsigned long horkage;
4158 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4159 /* Devices with DMA related problems under Linux */
4160 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4161 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4164 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4165 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4166 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4167 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4168 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4169 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4170 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4171 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4172 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4173 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4174 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4175 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4176 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4177 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4178 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4179 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4180 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4181 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4182 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4183 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4184 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4185 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4186 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4187 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4188 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4189 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4190 /* Odd clown on sil3726/4726 PMPs */
4191 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4192 ATA_HORKAGE_SKIP_PM },
4194 /* Weird ATAPI devices */
4195 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4197 /* Devices we expect to fail diagnostics */
4199 /* Devices where NCQ should be avoided */
4200 /* NCQ is slow */
4201 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4202 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4203 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4204 /* NCQ is broken */
4205 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4206 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4207 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4208 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4209 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4211 /* Blacklist entries taken from Silicon Image 3124/3132
4212 Windows driver .inf file - also several Linux problem reports */
4213 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4214 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4215 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4216 /* Drives which do spurious command completion */
4217 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4218 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4219 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4220 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4221 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4222 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4223 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4224 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4225 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4226 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4227 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4228 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4229 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4230 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4231 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4232 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
4234 /* devices which puke on READ_NATIVE_MAX */
4235 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4236 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4237 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4238 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4240 /* Devices which report 1 sector over size HPA */
4241 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4242 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4244 /* Devices which get the IVB wrong */
4245 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4246 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4248 /* End Marker */
4252 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4254 const char *p;
4255 int len;
4258 * check for trailing wildcard: *\0
4260 p = strchr(patt, wildchar);
4261 if (p && ((*(p + 1)) == 0))
4262 len = p - patt;
4263 else {
4264 len = strlen(name);
4265 if (!len) {
4266 if (!*patt)
4267 return 0;
4268 return -1;
4272 return strncmp(patt, name, len);
4275 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4277 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4278 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4279 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4281 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4282 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4284 while (ad->model_num) {
4285 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4286 if (ad->model_rev == NULL)
4287 return ad->horkage;
4288 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4289 return ad->horkage;
4291 ad++;
4293 return 0;
4296 static int ata_dma_blacklisted(const struct ata_device *dev)
4298 /* We don't support polling DMA.
4299 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4300 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4302 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4303 (dev->flags & ATA_DFLAG_CDB_INTR))
4304 return 1;
4305 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4309 * ata_is_40wire - check drive side detection
4310 * @dev: device
4312 * Perform drive side detection decoding, allowing for device vendors
4313 * who can't follow the documentation.
4316 static int ata_is_40wire(struct ata_device *dev)
4318 if (dev->horkage & ATA_HORKAGE_IVB)
4319 return ata_drive_40wire_relaxed(dev->id);
4320 return ata_drive_40wire(dev->id);
4324 * ata_dev_xfermask - Compute supported xfermask of the given device
4325 * @dev: Device to compute xfermask for
4327 * Compute supported xfermask of @dev and store it in
4328 * dev->*_mask. This function is responsible for applying all
4329 * known limits including host controller limits, device
4330 * blacklist, etc...
4332 * LOCKING:
4333 * None.
4335 static void ata_dev_xfermask(struct ata_device *dev)
4337 struct ata_link *link = dev->link;
4338 struct ata_port *ap = link->ap;
4339 struct ata_host *host = ap->host;
4340 unsigned long xfer_mask;
4342 /* controller modes available */
4343 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4344 ap->mwdma_mask, ap->udma_mask);
4346 /* drive modes available */
4347 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4348 dev->mwdma_mask, dev->udma_mask);
4349 xfer_mask &= ata_id_xfermask(dev->id);
4352 * CFA Advanced TrueIDE timings are not allowed on a shared
4353 * cable
4355 if (ata_dev_pair(dev)) {
4356 /* No PIO5 or PIO6 */
4357 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4358 /* No MWDMA3 or MWDMA 4 */
4359 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4362 if (ata_dma_blacklisted(dev)) {
4363 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4364 ata_dev_printk(dev, KERN_WARNING,
4365 "device is on DMA blacklist, disabling DMA\n");
4368 if ((host->flags & ATA_HOST_SIMPLEX) &&
4369 host->simplex_claimed && host->simplex_claimed != ap) {
4370 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4371 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4372 "other device, disabling DMA\n");
4375 if (ap->flags & ATA_FLAG_NO_IORDY)
4376 xfer_mask &= ata_pio_mask_no_iordy(dev);
4378 if (ap->ops->mode_filter)
4379 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4381 /* Apply cable rule here. Don't apply it early because when
4382 * we handle hot plug the cable type can itself change.
4383 * Check this last so that we know if the transfer rate was
4384 * solely limited by the cable.
4385 * Unknown or 80 wire cables reported host side are checked
4386 * drive side as well. Cases where we know a 40wire cable
4387 * is used safely for 80 are not checked here.
4389 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4390 /* UDMA/44 or higher would be available */
4391 if ((ap->cbl == ATA_CBL_PATA40) ||
4392 (ata_is_40wire(dev) &&
4393 (ap->cbl == ATA_CBL_PATA_UNK ||
4394 ap->cbl == ATA_CBL_PATA80))) {
4395 ata_dev_printk(dev, KERN_WARNING,
4396 "limited to UDMA/33 due to 40-wire cable\n");
4397 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4400 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4401 &dev->mwdma_mask, &dev->udma_mask);
4405 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4406 * @dev: Device to which command will be sent
4408 * Issue SET FEATURES - XFER MODE command to device @dev
4409 * on port @ap.
4411 * LOCKING:
4412 * PCI/etc. bus probe sem.
4414 * RETURNS:
4415 * 0 on success, AC_ERR_* mask otherwise.
4418 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4420 struct ata_taskfile tf;
4421 unsigned int err_mask;
4423 /* set up set-features taskfile */
4424 DPRINTK("set features - xfer mode\n");
4426 /* Some controllers and ATAPI devices show flaky interrupt
4427 * behavior after setting xfer mode. Use polling instead.
4429 ata_tf_init(dev, &tf);
4430 tf.command = ATA_CMD_SET_FEATURES;
4431 tf.feature = SETFEATURES_XFER;
4432 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4433 tf.protocol = ATA_PROT_NODATA;
4434 tf.nsect = dev->xfer_mode;
4436 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4438 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4439 return err_mask;
4442 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4443 * @dev: Device to which command will be sent
4444 * @enable: Whether to enable or disable the feature
4445 * @feature: The sector count represents the feature to set
4447 * Issue SET FEATURES - SATA FEATURES command to device @dev
4448 * on port @ap with sector count
4450 * LOCKING:
4451 * PCI/etc. bus probe sem.
4453 * RETURNS:
4454 * 0 on success, AC_ERR_* mask otherwise.
4456 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4457 u8 feature)
4459 struct ata_taskfile tf;
4460 unsigned int err_mask;
4462 /* set up set-features taskfile */
4463 DPRINTK("set features - SATA features\n");
4465 ata_tf_init(dev, &tf);
4466 tf.command = ATA_CMD_SET_FEATURES;
4467 tf.feature = enable;
4468 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4469 tf.protocol = ATA_PROT_NODATA;
4470 tf.nsect = feature;
4472 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4474 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4475 return err_mask;
4479 * ata_dev_init_params - Issue INIT DEV PARAMS command
4480 * @dev: Device to which command will be sent
4481 * @heads: Number of heads (taskfile parameter)
4482 * @sectors: Number of sectors (taskfile parameter)
4484 * LOCKING:
4485 * Kernel thread context (may sleep)
4487 * RETURNS:
4488 * 0 on success, AC_ERR_* mask otherwise.
4490 static unsigned int ata_dev_init_params(struct ata_device *dev,
4491 u16 heads, u16 sectors)
4493 struct ata_taskfile tf;
4494 unsigned int err_mask;
4496 /* Number of sectors per track 1-255. Number of heads 1-16 */
4497 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4498 return AC_ERR_INVALID;
4500 /* set up init dev params taskfile */
4501 DPRINTK("init dev params \n");
4503 ata_tf_init(dev, &tf);
4504 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4505 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4506 tf.protocol = ATA_PROT_NODATA;
4507 tf.nsect = sectors;
4508 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4510 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4511 /* A clean abort indicates an original or just out of spec drive
4512 and we should continue as we issue the setup based on the
4513 drive reported working geometry */
4514 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4515 err_mask = 0;
4517 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4518 return err_mask;
4522 * ata_sg_clean - Unmap DMA memory associated with command
4523 * @qc: Command containing DMA memory to be released
4525 * Unmap all mapped DMA memory associated with this command.
4527 * LOCKING:
4528 * spin_lock_irqsave(host lock)
4530 void ata_sg_clean(struct ata_queued_cmd *qc)
4532 struct ata_port *ap = qc->ap;
4533 struct scatterlist *sg = qc->__sg;
4534 int dir = qc->dma_dir;
4535 void *pad_buf = NULL;
4537 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4538 WARN_ON(sg == NULL);
4540 if (qc->flags & ATA_QCFLAG_SINGLE)
4541 WARN_ON(qc->n_elem > 1);
4543 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4545 /* if we padded the buffer out to 32-bit bound, and data
4546 * xfer direction is from-device, we must copy from the
4547 * pad buffer back into the supplied buffer
4549 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4550 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4552 if (qc->flags & ATA_QCFLAG_SG) {
4553 if (qc->n_elem)
4554 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4555 /* restore last sg */
4556 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4557 if (pad_buf) {
4558 struct scatterlist *psg = &qc->pad_sgent;
4559 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4560 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4561 kunmap_atomic(addr, KM_IRQ0);
4563 } else {
4564 if (qc->n_elem)
4565 dma_unmap_single(ap->dev,
4566 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4567 dir);
4568 /* restore sg */
4569 sg->length += qc->pad_len;
4570 if (pad_buf)
4571 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4572 pad_buf, qc->pad_len);
4575 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4576 qc->__sg = NULL;
4580 * ata_fill_sg - Fill PCI IDE PRD table
4581 * @qc: Metadata associated with taskfile to be transferred
4583 * Fill PCI IDE PRD (scatter-gather) table with segments
4584 * associated with the current disk command.
4586 * LOCKING:
4587 * spin_lock_irqsave(host lock)
4590 static void ata_fill_sg(struct ata_queued_cmd *qc)
4592 struct ata_port *ap = qc->ap;
4593 struct scatterlist *sg;
4594 unsigned int idx;
4596 WARN_ON(qc->__sg == NULL);
4597 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4599 idx = 0;
4600 ata_for_each_sg(sg, qc) {
4601 u32 addr, offset;
4602 u32 sg_len, len;
4604 /* determine if physical DMA addr spans 64K boundary.
4605 * Note h/w doesn't support 64-bit, so we unconditionally
4606 * truncate dma_addr_t to u32.
4608 addr = (u32) sg_dma_address(sg);
4609 sg_len = sg_dma_len(sg);
4611 while (sg_len) {
4612 offset = addr & 0xffff;
4613 len = sg_len;
4614 if ((offset + sg_len) > 0x10000)
4615 len = 0x10000 - offset;
4617 ap->prd[idx].addr = cpu_to_le32(addr);
4618 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4619 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4621 idx++;
4622 sg_len -= len;
4623 addr += len;
4627 if (idx)
4628 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4632 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4633 * @qc: Metadata associated with taskfile to be transferred
4635 * Fill PCI IDE PRD (scatter-gather) table with segments
4636 * associated with the current disk command. Perform the fill
4637 * so that we avoid writing any length 64K records for
4638 * controllers that don't follow the spec.
4640 * LOCKING:
4641 * spin_lock_irqsave(host lock)
4644 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4646 struct ata_port *ap = qc->ap;
4647 struct scatterlist *sg;
4648 unsigned int idx;
4650 WARN_ON(qc->__sg == NULL);
4651 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4653 idx = 0;
4654 ata_for_each_sg(sg, qc) {
4655 u32 addr, offset;
4656 u32 sg_len, len, blen;
4658 /* determine if physical DMA addr spans 64K boundary.
4659 * Note h/w doesn't support 64-bit, so we unconditionally
4660 * truncate dma_addr_t to u32.
4662 addr = (u32) sg_dma_address(sg);
4663 sg_len = sg_dma_len(sg);
4665 while (sg_len) {
4666 offset = addr & 0xffff;
4667 len = sg_len;
4668 if ((offset + sg_len) > 0x10000)
4669 len = 0x10000 - offset;
4671 blen = len & 0xffff;
4672 ap->prd[idx].addr = cpu_to_le32(addr);
4673 if (blen == 0) {
4674 /* Some PATA chipsets like the CS5530 can't
4675 cope with 0x0000 meaning 64K as the spec says */
4676 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4677 blen = 0x8000;
4678 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4680 ap->prd[idx].flags_len = cpu_to_le32(blen);
4681 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4683 idx++;
4684 sg_len -= len;
4685 addr += len;
4689 if (idx)
4690 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4694 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4695 * @qc: Metadata associated with taskfile to check
4697 * Allow low-level driver to filter ATA PACKET commands, returning
4698 * a status indicating whether or not it is OK to use DMA for the
4699 * supplied PACKET command.
4701 * LOCKING:
4702 * spin_lock_irqsave(host lock)
4704 * RETURNS: 0 when ATAPI DMA can be used
4705 * nonzero otherwise
4707 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4709 struct ata_port *ap = qc->ap;
4711 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4712 * few ATAPI devices choke on such DMA requests.
4714 if (unlikely(qc->nbytes & 15))
4715 return 1;
4717 if (ap->ops->check_atapi_dma)
4718 return ap->ops->check_atapi_dma(qc);
4720 return 0;
4724 * ata_std_qc_defer - Check whether a qc needs to be deferred
4725 * @qc: ATA command in question
4727 * Non-NCQ commands cannot run with any other command, NCQ or
4728 * not. As upper layer only knows the queue depth, we are
4729 * responsible for maintaining exclusion. This function checks
4730 * whether a new command @qc can be issued.
4732 * LOCKING:
4733 * spin_lock_irqsave(host lock)
4735 * RETURNS:
4736 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4738 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4740 struct ata_link *link = qc->dev->link;
4742 if (qc->tf.protocol == ATA_PROT_NCQ) {
4743 if (!ata_tag_valid(link->active_tag))
4744 return 0;
4745 } else {
4746 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4747 return 0;
4750 return ATA_DEFER_LINK;
4754 * ata_qc_prep - Prepare taskfile for submission
4755 * @qc: Metadata associated with taskfile to be prepared
4757 * Prepare ATA taskfile for submission.
4759 * LOCKING:
4760 * spin_lock_irqsave(host lock)
4762 void ata_qc_prep(struct ata_queued_cmd *qc)
4764 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4765 return;
4767 ata_fill_sg(qc);
4771 * ata_dumb_qc_prep - Prepare taskfile for submission
4772 * @qc: Metadata associated with taskfile to be prepared
4774 * Prepare ATA taskfile for submission.
4776 * LOCKING:
4777 * spin_lock_irqsave(host lock)
4779 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4781 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4782 return;
4784 ata_fill_sg_dumb(qc);
4787 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4790 * ata_sg_init_one - Associate command with memory buffer
4791 * @qc: Command to be associated
4792 * @buf: Memory buffer
4793 * @buflen: Length of memory buffer, in bytes.
4795 * Initialize the data-related elements of queued_cmd @qc
4796 * to point to a single memory buffer, @buf of byte length @buflen.
4798 * LOCKING:
4799 * spin_lock_irqsave(host lock)
4802 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4804 qc->flags |= ATA_QCFLAG_SINGLE;
4806 qc->__sg = &qc->sgent;
4807 qc->n_elem = 1;
4808 qc->orig_n_elem = 1;
4809 qc->buf_virt = buf;
4810 qc->nbytes = buflen;
4811 qc->cursg = qc->__sg;
4813 sg_init_one(&qc->sgent, buf, buflen);
4817 * ata_sg_init - Associate command with scatter-gather table.
4818 * @qc: Command to be associated
4819 * @sg: Scatter-gather table.
4820 * @n_elem: Number of elements in s/g table.
4822 * Initialize the data-related elements of queued_cmd @qc
4823 * to point to a scatter-gather table @sg, containing @n_elem
4824 * elements.
4826 * LOCKING:
4827 * spin_lock_irqsave(host lock)
4830 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4831 unsigned int n_elem)
4833 qc->flags |= ATA_QCFLAG_SG;
4834 qc->__sg = sg;
4835 qc->n_elem = n_elem;
4836 qc->orig_n_elem = n_elem;
4837 qc->cursg = qc->__sg;
4841 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4842 * @qc: Command with memory buffer to be mapped.
4844 * DMA-map the memory buffer associated with queued_cmd @qc.
4846 * LOCKING:
4847 * spin_lock_irqsave(host lock)
4849 * RETURNS:
4850 * Zero on success, negative on error.
4853 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4855 struct ata_port *ap = qc->ap;
4856 int dir = qc->dma_dir;
4857 struct scatterlist *sg = qc->__sg;
4858 dma_addr_t dma_address;
4859 int trim_sg = 0;
4861 /* we must lengthen transfers to end on a 32-bit boundary */
4862 qc->pad_len = sg->length & 3;
4863 if (qc->pad_len) {
4864 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4865 struct scatterlist *psg = &qc->pad_sgent;
4867 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4869 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4871 if (qc->tf.flags & ATA_TFLAG_WRITE)
4872 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4873 qc->pad_len);
4875 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4876 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4877 /* trim sg */
4878 sg->length -= qc->pad_len;
4879 if (sg->length == 0)
4880 trim_sg = 1;
4882 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4883 sg->length, qc->pad_len);
4886 if (trim_sg) {
4887 qc->n_elem--;
4888 goto skip_map;
4891 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4892 sg->length, dir);
4893 if (dma_mapping_error(dma_address)) {
4894 /* restore sg */
4895 sg->length += qc->pad_len;
4896 return -1;
4899 sg_dma_address(sg) = dma_address;
4900 sg_dma_len(sg) = sg->length;
4902 skip_map:
4903 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4904 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4906 return 0;
4910 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4911 * @qc: Command with scatter-gather table to be mapped.
4913 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4915 * LOCKING:
4916 * spin_lock_irqsave(host lock)
4918 * RETURNS:
4919 * Zero on success, negative on error.
4923 static int ata_sg_setup(struct ata_queued_cmd *qc)
4925 struct ata_port *ap = qc->ap;
4926 struct scatterlist *sg = qc->__sg;
4927 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4928 int n_elem, pre_n_elem, dir, trim_sg = 0;
4930 VPRINTK("ENTER, ata%u\n", ap->print_id);
4931 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4933 /* we must lengthen transfers to end on a 32-bit boundary */
4934 qc->pad_len = lsg->length & 3;
4935 if (qc->pad_len) {
4936 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4937 struct scatterlist *psg = &qc->pad_sgent;
4938 unsigned int offset;
4940 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4942 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4945 * psg->page/offset are used to copy to-be-written
4946 * data in this function or read data in ata_sg_clean.
4948 offset = lsg->offset + lsg->length - qc->pad_len;
4949 sg_init_table(psg, 1);
4950 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4951 qc->pad_len, offset_in_page(offset));
4953 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4954 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4955 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4956 kunmap_atomic(addr, KM_IRQ0);
4959 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4960 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4961 /* trim last sg */
4962 lsg->length -= qc->pad_len;
4963 if (lsg->length == 0)
4964 trim_sg = 1;
4966 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4967 qc->n_elem - 1, lsg->length, qc->pad_len);
4970 pre_n_elem = qc->n_elem;
4971 if (trim_sg && pre_n_elem)
4972 pre_n_elem--;
4974 if (!pre_n_elem) {
4975 n_elem = 0;
4976 goto skip_map;
4979 dir = qc->dma_dir;
4980 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4981 if (n_elem < 1) {
4982 /* restore last sg */
4983 lsg->length += qc->pad_len;
4984 return -1;
4987 DPRINTK("%d sg elements mapped\n", n_elem);
4989 skip_map:
4990 qc->n_elem = n_elem;
4992 return 0;
4996 * swap_buf_le16 - swap halves of 16-bit words in place
4997 * @buf: Buffer to swap
4998 * @buf_words: Number of 16-bit words in buffer.
5000 * Swap halves of 16-bit words if needed to convert from
5001 * little-endian byte order to native cpu byte order, or
5002 * vice-versa.
5004 * LOCKING:
5005 * Inherited from caller.
5007 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5009 #ifdef __BIG_ENDIAN
5010 unsigned int i;
5012 for (i = 0; i < buf_words; i++)
5013 buf[i] = le16_to_cpu(buf[i]);
5014 #endif /* __BIG_ENDIAN */
5018 * ata_data_xfer - Transfer data by PIO
5019 * @adev: device to target
5020 * @buf: data buffer
5021 * @buflen: buffer length
5022 * @write_data: read/write
5024 * Transfer data from/to the device data register by PIO.
5026 * LOCKING:
5027 * Inherited from caller.
5029 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
5030 unsigned int buflen, int write_data)
5032 struct ata_port *ap = adev->link->ap;
5033 unsigned int words = buflen >> 1;
5035 /* Transfer multiple of 2 bytes */
5036 if (write_data)
5037 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
5038 else
5039 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5041 /* Transfer trailing 1 byte, if any. */
5042 if (unlikely(buflen & 0x01)) {
5043 u16 align_buf[1] = { 0 };
5044 unsigned char *trailing_buf = buf + buflen - 1;
5046 if (write_data) {
5047 memcpy(align_buf, trailing_buf, 1);
5048 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5049 } else {
5050 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5051 memcpy(trailing_buf, align_buf, 1);
5057 * ata_data_xfer_noirq - Transfer data by PIO
5058 * @adev: device to target
5059 * @buf: data buffer
5060 * @buflen: buffer length
5061 * @write_data: read/write
5063 * Transfer data from/to the device data register by PIO. Do the
5064 * transfer with interrupts disabled.
5066 * LOCKING:
5067 * Inherited from caller.
5069 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5070 unsigned int buflen, int write_data)
5072 unsigned long flags;
5073 local_irq_save(flags);
5074 ata_data_xfer(adev, buf, buflen, write_data);
5075 local_irq_restore(flags);
5080 * ata_pio_sector - Transfer a sector of data.
5081 * @qc: Command on going
5083 * Transfer qc->sect_size bytes of data from/to the ATA device.
5085 * LOCKING:
5086 * Inherited from caller.
5089 static void ata_pio_sector(struct ata_queued_cmd *qc)
5091 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5092 struct ata_port *ap = qc->ap;
5093 struct page *page;
5094 unsigned int offset;
5095 unsigned char *buf;
5097 if (qc->curbytes == qc->nbytes - qc->sect_size)
5098 ap->hsm_task_state = HSM_ST_LAST;
5100 page = sg_page(qc->cursg);
5101 offset = qc->cursg->offset + qc->cursg_ofs;
5103 /* get the current page and offset */
5104 page = nth_page(page, (offset >> PAGE_SHIFT));
5105 offset %= PAGE_SIZE;
5107 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5109 if (PageHighMem(page)) {
5110 unsigned long flags;
5112 /* FIXME: use a bounce buffer */
5113 local_irq_save(flags);
5114 buf = kmap_atomic(page, KM_IRQ0);
5116 /* do the actual data transfer */
5117 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5119 kunmap_atomic(buf, KM_IRQ0);
5120 local_irq_restore(flags);
5121 } else {
5122 buf = page_address(page);
5123 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5126 qc->curbytes += qc->sect_size;
5127 qc->cursg_ofs += qc->sect_size;
5129 if (qc->cursg_ofs == qc->cursg->length) {
5130 qc->cursg = sg_next(qc->cursg);
5131 qc->cursg_ofs = 0;
5136 * ata_pio_sectors - Transfer one or many sectors.
5137 * @qc: Command on going
5139 * Transfer one or many sectors of data from/to the
5140 * ATA device for the DRQ request.
5142 * LOCKING:
5143 * Inherited from caller.
5146 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5148 if (is_multi_taskfile(&qc->tf)) {
5149 /* READ/WRITE MULTIPLE */
5150 unsigned int nsect;
5152 WARN_ON(qc->dev->multi_count == 0);
5154 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5155 qc->dev->multi_count);
5156 while (nsect--)
5157 ata_pio_sector(qc);
5158 } else
5159 ata_pio_sector(qc);
5161 ata_altstatus(qc->ap); /* flush */
5165 * atapi_send_cdb - Write CDB bytes to hardware
5166 * @ap: Port to which ATAPI device is attached.
5167 * @qc: Taskfile currently active
5169 * When device has indicated its readiness to accept
5170 * a CDB, this function is called. Send the CDB.
5172 * LOCKING:
5173 * caller.
5176 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5178 /* send SCSI cdb */
5179 DPRINTK("send cdb\n");
5180 WARN_ON(qc->dev->cdb_len < 12);
5182 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5183 ata_altstatus(ap); /* flush */
5185 switch (qc->tf.protocol) {
5186 case ATA_PROT_ATAPI:
5187 ap->hsm_task_state = HSM_ST;
5188 break;
5189 case ATA_PROT_ATAPI_NODATA:
5190 ap->hsm_task_state = HSM_ST_LAST;
5191 break;
5192 case ATA_PROT_ATAPI_DMA:
5193 ap->hsm_task_state = HSM_ST_LAST;
5194 /* initiate bmdma */
5195 ap->ops->bmdma_start(qc);
5196 break;
5201 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5202 * @qc: Command on going
5203 * @bytes: number of bytes
5205 * Transfer Transfer data from/to the ATAPI device.
5207 * LOCKING:
5208 * Inherited from caller.
5212 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5214 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5215 struct scatterlist *sg = qc->__sg;
5216 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5217 struct ata_port *ap = qc->ap;
5218 struct page *page;
5219 unsigned char *buf;
5220 unsigned int offset, count;
5221 int no_more_sg = 0;
5223 if (qc->curbytes + bytes >= qc->nbytes)
5224 ap->hsm_task_state = HSM_ST_LAST;
5226 next_sg:
5227 if (unlikely(no_more_sg)) {
5229 * The end of qc->sg is reached and the device expects
5230 * more data to transfer. In order not to overrun qc->sg
5231 * and fulfill length specified in the byte count register,
5232 * - for read case, discard trailing data from the device
5233 * - for write case, padding zero data to the device
5235 u16 pad_buf[1] = { 0 };
5236 unsigned int words = bytes >> 1;
5237 unsigned int i;
5239 if (words) /* warning if bytes > 1 */
5240 ata_dev_printk(qc->dev, KERN_WARNING,
5241 "%u bytes trailing data\n", bytes);
5243 for (i = 0; i < words; i++)
5244 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5246 ap->hsm_task_state = HSM_ST_LAST;
5247 return;
5250 sg = qc->cursg;
5252 page = sg_page(sg);
5253 offset = sg->offset + qc->cursg_ofs;
5255 /* get the current page and offset */
5256 page = nth_page(page, (offset >> PAGE_SHIFT));
5257 offset %= PAGE_SIZE;
5259 /* don't overrun current sg */
5260 count = min(sg->length - qc->cursg_ofs, bytes);
5262 /* don't cross page boundaries */
5263 count = min(count, (unsigned int)PAGE_SIZE - offset);
5265 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5267 if (PageHighMem(page)) {
5268 unsigned long flags;
5270 /* FIXME: use bounce buffer */
5271 local_irq_save(flags);
5272 buf = kmap_atomic(page, KM_IRQ0);
5274 /* do the actual data transfer */
5275 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5277 kunmap_atomic(buf, KM_IRQ0);
5278 local_irq_restore(flags);
5279 } else {
5280 buf = page_address(page);
5281 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5284 bytes -= count;
5285 qc->curbytes += count;
5286 qc->cursg_ofs += count;
5288 if (qc->cursg_ofs == sg->length) {
5289 if (qc->cursg == lsg)
5290 no_more_sg = 1;
5292 qc->cursg = sg_next(qc->cursg);
5293 qc->cursg_ofs = 0;
5296 if (bytes)
5297 goto next_sg;
5301 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5302 * @qc: Command on going
5304 * Transfer Transfer data from/to the ATAPI device.
5306 * LOCKING:
5307 * Inherited from caller.
5310 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5312 struct ata_port *ap = qc->ap;
5313 struct ata_device *dev = qc->dev;
5314 unsigned int ireason, bc_lo, bc_hi, bytes;
5315 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5317 /* Abuse qc->result_tf for temp storage of intermediate TF
5318 * here to save some kernel stack usage.
5319 * For normal completion, qc->result_tf is not relevant. For
5320 * error, qc->result_tf is later overwritten by ata_qc_complete().
5321 * So, the correctness of qc->result_tf is not affected.
5323 ap->ops->tf_read(ap, &qc->result_tf);
5324 ireason = qc->result_tf.nsect;
5325 bc_lo = qc->result_tf.lbam;
5326 bc_hi = qc->result_tf.lbah;
5327 bytes = (bc_hi << 8) | bc_lo;
5329 /* shall be cleared to zero, indicating xfer of data */
5330 if (ireason & (1 << 0))
5331 goto err_out;
5333 /* make sure transfer direction matches expected */
5334 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5335 if (do_write != i_write)
5336 goto err_out;
5338 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5340 __atapi_pio_bytes(qc, bytes);
5341 ata_altstatus(ap); /* flush */
5343 return;
5345 err_out:
5346 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5347 qc->err_mask |= AC_ERR_HSM;
5348 ap->hsm_task_state = HSM_ST_ERR;
5352 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5353 * @ap: the target ata_port
5354 * @qc: qc on going
5356 * RETURNS:
5357 * 1 if ok in workqueue, 0 otherwise.
5360 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5362 if (qc->tf.flags & ATA_TFLAG_POLLING)
5363 return 1;
5365 if (ap->hsm_task_state == HSM_ST_FIRST) {
5366 if (qc->tf.protocol == ATA_PROT_PIO &&
5367 (qc->tf.flags & ATA_TFLAG_WRITE))
5368 return 1;
5370 if (is_atapi_taskfile(&qc->tf) &&
5371 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5372 return 1;
5375 return 0;
5379 * ata_hsm_qc_complete - finish a qc running on standard HSM
5380 * @qc: Command to complete
5381 * @in_wq: 1 if called from workqueue, 0 otherwise
5383 * Finish @qc which is running on standard HSM.
5385 * LOCKING:
5386 * If @in_wq is zero, spin_lock_irqsave(host lock).
5387 * Otherwise, none on entry and grabs host lock.
5389 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5391 struct ata_port *ap = qc->ap;
5392 unsigned long flags;
5394 if (ap->ops->error_handler) {
5395 if (in_wq) {
5396 spin_lock_irqsave(ap->lock, flags);
5398 /* EH might have kicked in while host lock is
5399 * released.
5401 qc = ata_qc_from_tag(ap, qc->tag);
5402 if (qc) {
5403 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5404 ap->ops->irq_on(ap);
5405 ata_qc_complete(qc);
5406 } else
5407 ata_port_freeze(ap);
5410 spin_unlock_irqrestore(ap->lock, flags);
5411 } else {
5412 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5413 ata_qc_complete(qc);
5414 else
5415 ata_port_freeze(ap);
5417 } else {
5418 if (in_wq) {
5419 spin_lock_irqsave(ap->lock, flags);
5420 ap->ops->irq_on(ap);
5421 ata_qc_complete(qc);
5422 spin_unlock_irqrestore(ap->lock, flags);
5423 } else
5424 ata_qc_complete(qc);
5429 * ata_hsm_move - move the HSM to the next state.
5430 * @ap: the target ata_port
5431 * @qc: qc on going
5432 * @status: current device status
5433 * @in_wq: 1 if called from workqueue, 0 otherwise
5435 * RETURNS:
5436 * 1 when poll next status needed, 0 otherwise.
5438 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5439 u8 status, int in_wq)
5441 unsigned long flags = 0;
5442 int poll_next;
5444 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5446 /* Make sure ata_qc_issue_prot() does not throw things
5447 * like DMA polling into the workqueue. Notice that
5448 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5450 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5452 fsm_start:
5453 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5454 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5456 switch (ap->hsm_task_state) {
5457 case HSM_ST_FIRST:
5458 /* Send first data block or PACKET CDB */
5460 /* If polling, we will stay in the work queue after
5461 * sending the data. Otherwise, interrupt handler
5462 * takes over after sending the data.
5464 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5466 /* check device status */
5467 if (unlikely((status & ATA_DRQ) == 0)) {
5468 /* handle BSY=0, DRQ=0 as error */
5469 if (likely(status & (ATA_ERR | ATA_DF)))
5470 /* device stops HSM for abort/error */
5471 qc->err_mask |= AC_ERR_DEV;
5472 else
5473 /* HSM violation. Let EH handle this */
5474 qc->err_mask |= AC_ERR_HSM;
5476 ap->hsm_task_state = HSM_ST_ERR;
5477 goto fsm_start;
5480 /* Device should not ask for data transfer (DRQ=1)
5481 * when it finds something wrong.
5482 * We ignore DRQ here and stop the HSM by
5483 * changing hsm_task_state to HSM_ST_ERR and
5484 * let the EH abort the command or reset the device.
5486 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5487 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5488 "error, dev_stat 0x%X\n", status);
5489 qc->err_mask |= AC_ERR_HSM;
5490 ap->hsm_task_state = HSM_ST_ERR;
5491 goto fsm_start;
5494 /* Send the CDB (atapi) or the first data block (ata pio out).
5495 * During the state transition, interrupt handler shouldn't
5496 * be invoked before the data transfer is complete and
5497 * hsm_task_state is changed. Hence, the following locking.
5499 if (in_wq)
5500 spin_lock_irqsave(ap->lock, flags);
5502 if (qc->tf.protocol == ATA_PROT_PIO) {
5503 /* PIO data out protocol.
5504 * send first data block.
5507 /* ata_pio_sectors() might change the state
5508 * to HSM_ST_LAST. so, the state is changed here
5509 * before ata_pio_sectors().
5511 ap->hsm_task_state = HSM_ST;
5512 ata_pio_sectors(qc);
5513 } else
5514 /* send CDB */
5515 atapi_send_cdb(ap, qc);
5517 if (in_wq)
5518 spin_unlock_irqrestore(ap->lock, flags);
5520 /* if polling, ata_pio_task() handles the rest.
5521 * otherwise, interrupt handler takes over from here.
5523 break;
5525 case HSM_ST:
5526 /* complete command or read/write the data register */
5527 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5528 /* ATAPI PIO protocol */
5529 if ((status & ATA_DRQ) == 0) {
5530 /* No more data to transfer or device error.
5531 * Device error will be tagged in HSM_ST_LAST.
5533 ap->hsm_task_state = HSM_ST_LAST;
5534 goto fsm_start;
5537 /* Device should not ask for data transfer (DRQ=1)
5538 * when it finds something wrong.
5539 * We ignore DRQ here and stop the HSM by
5540 * changing hsm_task_state to HSM_ST_ERR and
5541 * let the EH abort the command or reset the device.
5543 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5544 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5545 "device error, dev_stat 0x%X\n",
5546 status);
5547 qc->err_mask |= AC_ERR_HSM;
5548 ap->hsm_task_state = HSM_ST_ERR;
5549 goto fsm_start;
5552 atapi_pio_bytes(qc);
5554 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5555 /* bad ireason reported by device */
5556 goto fsm_start;
5558 } else {
5559 /* ATA PIO protocol */
5560 if (unlikely((status & ATA_DRQ) == 0)) {
5561 /* handle BSY=0, DRQ=0 as error */
5562 if (likely(status & (ATA_ERR | ATA_DF)))
5563 /* device stops HSM for abort/error */
5564 qc->err_mask |= AC_ERR_DEV;
5565 else
5566 /* HSM violation. Let EH handle this.
5567 * Phantom devices also trigger this
5568 * condition. Mark hint.
5570 qc->err_mask |= AC_ERR_HSM |
5571 AC_ERR_NODEV_HINT;
5573 ap->hsm_task_state = HSM_ST_ERR;
5574 goto fsm_start;
5577 /* For PIO reads, some devices may ask for
5578 * data transfer (DRQ=1) alone with ERR=1.
5579 * We respect DRQ here and transfer one
5580 * block of junk data before changing the
5581 * hsm_task_state to HSM_ST_ERR.
5583 * For PIO writes, ERR=1 DRQ=1 doesn't make
5584 * sense since the data block has been
5585 * transferred to the device.
5587 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5588 /* data might be corrputed */
5589 qc->err_mask |= AC_ERR_DEV;
5591 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5592 ata_pio_sectors(qc);
5593 status = ata_wait_idle(ap);
5596 if (status & (ATA_BUSY | ATA_DRQ))
5597 qc->err_mask |= AC_ERR_HSM;
5599 /* ata_pio_sectors() might change the
5600 * state to HSM_ST_LAST. so, the state
5601 * is changed after ata_pio_sectors().
5603 ap->hsm_task_state = HSM_ST_ERR;
5604 goto fsm_start;
5607 ata_pio_sectors(qc);
5609 if (ap->hsm_task_state == HSM_ST_LAST &&
5610 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5611 /* all data read */
5612 status = ata_wait_idle(ap);
5613 goto fsm_start;
5617 poll_next = 1;
5618 break;
5620 case HSM_ST_LAST:
5621 if (unlikely(!ata_ok(status))) {
5622 qc->err_mask |= __ac_err_mask(status);
5623 ap->hsm_task_state = HSM_ST_ERR;
5624 goto fsm_start;
5627 /* no more data to transfer */
5628 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5629 ap->print_id, qc->dev->devno, status);
5631 WARN_ON(qc->err_mask);
5633 ap->hsm_task_state = HSM_ST_IDLE;
5635 /* complete taskfile transaction */
5636 ata_hsm_qc_complete(qc, in_wq);
5638 poll_next = 0;
5639 break;
5641 case HSM_ST_ERR:
5642 /* make sure qc->err_mask is available to
5643 * know what's wrong and recover
5645 WARN_ON(qc->err_mask == 0);
5647 ap->hsm_task_state = HSM_ST_IDLE;
5649 /* complete taskfile transaction */
5650 ata_hsm_qc_complete(qc, in_wq);
5652 poll_next = 0;
5653 break;
5654 default:
5655 poll_next = 0;
5656 BUG();
5659 return poll_next;
5662 static void ata_pio_task(struct work_struct *work)
5664 struct ata_port *ap =
5665 container_of(work, struct ata_port, port_task.work);
5666 struct ata_queued_cmd *qc = ap->port_task_data;
5667 u8 status;
5668 int poll_next;
5670 fsm_start:
5671 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5674 * This is purely heuristic. This is a fast path.
5675 * Sometimes when we enter, BSY will be cleared in
5676 * a chk-status or two. If not, the drive is probably seeking
5677 * or something. Snooze for a couple msecs, then
5678 * chk-status again. If still busy, queue delayed work.
5680 status = ata_busy_wait(ap, ATA_BUSY, 5);
5681 if (status & ATA_BUSY) {
5682 msleep(2);
5683 status = ata_busy_wait(ap, ATA_BUSY, 10);
5684 if (status & ATA_BUSY) {
5685 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5686 return;
5690 /* move the HSM */
5691 poll_next = ata_hsm_move(ap, qc, status, 1);
5693 /* another command or interrupt handler
5694 * may be running at this point.
5696 if (poll_next)
5697 goto fsm_start;
5701 * ata_qc_new - Request an available ATA command, for queueing
5702 * @ap: Port associated with device @dev
5703 * @dev: Device from whom we request an available command structure
5705 * LOCKING:
5706 * None.
5709 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5711 struct ata_queued_cmd *qc = NULL;
5712 unsigned int i;
5714 /* no command while frozen */
5715 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5716 return NULL;
5718 /* the last tag is reserved for internal command. */
5719 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5720 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5721 qc = __ata_qc_from_tag(ap, i);
5722 break;
5725 if (qc)
5726 qc->tag = i;
5728 return qc;
5732 * ata_qc_new_init - Request an available ATA command, and initialize it
5733 * @dev: Device from whom we request an available command structure
5735 * LOCKING:
5736 * None.
5739 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5741 struct ata_port *ap = dev->link->ap;
5742 struct ata_queued_cmd *qc;
5744 qc = ata_qc_new(ap);
5745 if (qc) {
5746 qc->scsicmd = NULL;
5747 qc->ap = ap;
5748 qc->dev = dev;
5750 ata_qc_reinit(qc);
5753 return qc;
5757 * ata_qc_free - free unused ata_queued_cmd
5758 * @qc: Command to complete
5760 * Designed to free unused ata_queued_cmd object
5761 * in case something prevents using it.
5763 * LOCKING:
5764 * spin_lock_irqsave(host lock)
5766 void ata_qc_free(struct ata_queued_cmd *qc)
5768 struct ata_port *ap = qc->ap;
5769 unsigned int tag;
5771 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5773 qc->flags = 0;
5774 tag = qc->tag;
5775 if (likely(ata_tag_valid(tag))) {
5776 qc->tag = ATA_TAG_POISON;
5777 clear_bit(tag, &ap->qc_allocated);
5781 void __ata_qc_complete(struct ata_queued_cmd *qc)
5783 struct ata_port *ap = qc->ap;
5784 struct ata_link *link = qc->dev->link;
5786 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5787 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5789 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5790 ata_sg_clean(qc);
5792 /* command should be marked inactive atomically with qc completion */
5793 if (qc->tf.protocol == ATA_PROT_NCQ) {
5794 link->sactive &= ~(1 << qc->tag);
5795 if (!link->sactive)
5796 ap->nr_active_links--;
5797 } else {
5798 link->active_tag = ATA_TAG_POISON;
5799 ap->nr_active_links--;
5802 /* clear exclusive status */
5803 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5804 ap->excl_link == link))
5805 ap->excl_link = NULL;
5807 /* atapi: mark qc as inactive to prevent the interrupt handler
5808 * from completing the command twice later, before the error handler
5809 * is called. (when rc != 0 and atapi request sense is needed)
5811 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5812 ap->qc_active &= ~(1 << qc->tag);
5814 /* call completion callback */
5815 qc->complete_fn(qc);
5818 static void fill_result_tf(struct ata_queued_cmd *qc)
5820 struct ata_port *ap = qc->ap;
5822 qc->result_tf.flags = qc->tf.flags;
5823 ap->ops->tf_read(ap, &qc->result_tf);
5827 * ata_qc_complete - Complete an active ATA command
5828 * @qc: Command to complete
5829 * @err_mask: ATA Status register contents
5831 * Indicate to the mid and upper layers that an ATA
5832 * command has completed, with either an ok or not-ok status.
5834 * LOCKING:
5835 * spin_lock_irqsave(host lock)
5837 void ata_qc_complete(struct ata_queued_cmd *qc)
5839 struct ata_port *ap = qc->ap;
5841 /* XXX: New EH and old EH use different mechanisms to
5842 * synchronize EH with regular execution path.
5844 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5845 * Normal execution path is responsible for not accessing a
5846 * failed qc. libata core enforces the rule by returning NULL
5847 * from ata_qc_from_tag() for failed qcs.
5849 * Old EH depends on ata_qc_complete() nullifying completion
5850 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5851 * not synchronize with interrupt handler. Only PIO task is
5852 * taken care of.
5854 if (ap->ops->error_handler) {
5855 struct ata_device *dev = qc->dev;
5856 struct ata_eh_info *ehi = &dev->link->eh_info;
5858 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5860 if (unlikely(qc->err_mask))
5861 qc->flags |= ATA_QCFLAG_FAILED;
5863 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5864 if (!ata_tag_internal(qc->tag)) {
5865 /* always fill result TF for failed qc */
5866 fill_result_tf(qc);
5867 ata_qc_schedule_eh(qc);
5868 return;
5872 /* read result TF if requested */
5873 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5874 fill_result_tf(qc);
5876 /* Some commands need post-processing after successful
5877 * completion.
5879 switch (qc->tf.command) {
5880 case ATA_CMD_SET_FEATURES:
5881 if (qc->tf.feature != SETFEATURES_WC_ON &&
5882 qc->tf.feature != SETFEATURES_WC_OFF)
5883 break;
5884 /* fall through */
5885 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5886 case ATA_CMD_SET_MULTI: /* multi_count changed */
5887 /* revalidate device */
5888 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5889 ata_port_schedule_eh(ap);
5890 break;
5892 case ATA_CMD_SLEEP:
5893 dev->flags |= ATA_DFLAG_SLEEPING;
5894 break;
5897 __ata_qc_complete(qc);
5898 } else {
5899 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5900 return;
5902 /* read result TF if failed or requested */
5903 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5904 fill_result_tf(qc);
5906 __ata_qc_complete(qc);
5911 * ata_qc_complete_multiple - Complete multiple qcs successfully
5912 * @ap: port in question
5913 * @qc_active: new qc_active mask
5914 * @finish_qc: LLDD callback invoked before completing a qc
5916 * Complete in-flight commands. This functions is meant to be
5917 * called from low-level driver's interrupt routine to complete
5918 * requests normally. ap->qc_active and @qc_active is compared
5919 * and commands are completed accordingly.
5921 * LOCKING:
5922 * spin_lock_irqsave(host lock)
5924 * RETURNS:
5925 * Number of completed commands on success, -errno otherwise.
5927 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5928 void (*finish_qc)(struct ata_queued_cmd *))
5930 int nr_done = 0;
5931 u32 done_mask;
5932 int i;
5934 done_mask = ap->qc_active ^ qc_active;
5936 if (unlikely(done_mask & qc_active)) {
5937 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5938 "(%08x->%08x)\n", ap->qc_active, qc_active);
5939 return -EINVAL;
5942 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5943 struct ata_queued_cmd *qc;
5945 if (!(done_mask & (1 << i)))
5946 continue;
5948 if ((qc = ata_qc_from_tag(ap, i))) {
5949 if (finish_qc)
5950 finish_qc(qc);
5951 ata_qc_complete(qc);
5952 nr_done++;
5956 return nr_done;
5959 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5961 struct ata_port *ap = qc->ap;
5963 switch (qc->tf.protocol) {
5964 case ATA_PROT_NCQ:
5965 case ATA_PROT_DMA:
5966 case ATA_PROT_ATAPI_DMA:
5967 return 1;
5969 case ATA_PROT_ATAPI:
5970 case ATA_PROT_PIO:
5971 if (ap->flags & ATA_FLAG_PIO_DMA)
5972 return 1;
5974 /* fall through */
5976 default:
5977 return 0;
5980 /* never reached */
5984 * ata_qc_issue - issue taskfile to device
5985 * @qc: command to issue to device
5987 * Prepare an ATA command to submission to device.
5988 * This includes mapping the data into a DMA-able
5989 * area, filling in the S/G table, and finally
5990 * writing the taskfile to hardware, starting the command.
5992 * LOCKING:
5993 * spin_lock_irqsave(host lock)
5995 void ata_qc_issue(struct ata_queued_cmd *qc)
5997 struct ata_port *ap = qc->ap;
5998 struct ata_link *link = qc->dev->link;
6000 /* Make sure only one non-NCQ command is outstanding. The
6001 * check is skipped for old EH because it reuses active qc to
6002 * request ATAPI sense.
6004 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
6006 if (qc->tf.protocol == ATA_PROT_NCQ) {
6007 WARN_ON(link->sactive & (1 << qc->tag));
6009 if (!link->sactive)
6010 ap->nr_active_links++;
6011 link->sactive |= 1 << qc->tag;
6012 } else {
6013 WARN_ON(link->sactive);
6015 ap->nr_active_links++;
6016 link->active_tag = qc->tag;
6019 qc->flags |= ATA_QCFLAG_ACTIVE;
6020 ap->qc_active |= 1 << qc->tag;
6022 if (ata_should_dma_map(qc)) {
6023 if (qc->flags & ATA_QCFLAG_SG) {
6024 if (ata_sg_setup(qc))
6025 goto sg_err;
6026 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6027 if (ata_sg_setup_one(qc))
6028 goto sg_err;
6030 } else {
6031 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6034 /* if device is sleeping, schedule softreset and abort the link */
6035 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6036 link->eh_info.action |= ATA_EH_SOFTRESET;
6037 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6038 ata_link_abort(link);
6039 return;
6042 ap->ops->qc_prep(qc);
6044 qc->err_mask |= ap->ops->qc_issue(qc);
6045 if (unlikely(qc->err_mask))
6046 goto err;
6047 return;
6049 sg_err:
6050 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6051 qc->err_mask |= AC_ERR_SYSTEM;
6052 err:
6053 ata_qc_complete(qc);
6057 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6058 * @qc: command to issue to device
6060 * Using various libata functions and hooks, this function
6061 * starts an ATA command. ATA commands are grouped into
6062 * classes called "protocols", and issuing each type of protocol
6063 * is slightly different.
6065 * May be used as the qc_issue() entry in ata_port_operations.
6067 * LOCKING:
6068 * spin_lock_irqsave(host lock)
6070 * RETURNS:
6071 * Zero on success, AC_ERR_* mask on failure
6074 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6076 struct ata_port *ap = qc->ap;
6078 /* Use polling pio if the LLD doesn't handle
6079 * interrupt driven pio and atapi CDB interrupt.
6081 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6082 switch (qc->tf.protocol) {
6083 case ATA_PROT_PIO:
6084 case ATA_PROT_NODATA:
6085 case ATA_PROT_ATAPI:
6086 case ATA_PROT_ATAPI_NODATA:
6087 qc->tf.flags |= ATA_TFLAG_POLLING;
6088 break;
6089 case ATA_PROT_ATAPI_DMA:
6090 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6091 /* see ata_dma_blacklisted() */
6092 BUG();
6093 break;
6094 default:
6095 break;
6099 /* select the device */
6100 ata_dev_select(ap, qc->dev->devno, 1, 0);
6102 /* start the command */
6103 switch (qc->tf.protocol) {
6104 case ATA_PROT_NODATA:
6105 if (qc->tf.flags & ATA_TFLAG_POLLING)
6106 ata_qc_set_polling(qc);
6108 ata_tf_to_host(ap, &qc->tf);
6109 ap->hsm_task_state = HSM_ST_LAST;
6111 if (qc->tf.flags & ATA_TFLAG_POLLING)
6112 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6114 break;
6116 case ATA_PROT_DMA:
6117 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6119 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6120 ap->ops->bmdma_setup(qc); /* set up bmdma */
6121 ap->ops->bmdma_start(qc); /* initiate bmdma */
6122 ap->hsm_task_state = HSM_ST_LAST;
6123 break;
6125 case ATA_PROT_PIO:
6126 if (qc->tf.flags & ATA_TFLAG_POLLING)
6127 ata_qc_set_polling(qc);
6129 ata_tf_to_host(ap, &qc->tf);
6131 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6132 /* PIO data out protocol */
6133 ap->hsm_task_state = HSM_ST_FIRST;
6134 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6136 /* always send first data block using
6137 * the ata_pio_task() codepath.
6139 } else {
6140 /* PIO data in protocol */
6141 ap->hsm_task_state = HSM_ST;
6143 if (qc->tf.flags & ATA_TFLAG_POLLING)
6144 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6146 /* if polling, ata_pio_task() handles the rest.
6147 * otherwise, interrupt handler takes over from here.
6151 break;
6153 case ATA_PROT_ATAPI:
6154 case ATA_PROT_ATAPI_NODATA:
6155 if (qc->tf.flags & ATA_TFLAG_POLLING)
6156 ata_qc_set_polling(qc);
6158 ata_tf_to_host(ap, &qc->tf);
6160 ap->hsm_task_state = HSM_ST_FIRST;
6162 /* send cdb by polling if no cdb interrupt */
6163 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6164 (qc->tf.flags & ATA_TFLAG_POLLING))
6165 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6166 break;
6168 case ATA_PROT_ATAPI_DMA:
6169 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6171 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6172 ap->ops->bmdma_setup(qc); /* set up bmdma */
6173 ap->hsm_task_state = HSM_ST_FIRST;
6175 /* send cdb by polling if no cdb interrupt */
6176 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6177 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6178 break;
6180 default:
6181 WARN_ON(1);
6182 return AC_ERR_SYSTEM;
6185 return 0;
6189 * ata_host_intr - Handle host interrupt for given (port, task)
6190 * @ap: Port on which interrupt arrived (possibly...)
6191 * @qc: Taskfile currently active in engine
6193 * Handle host interrupt for given queued command. Currently,
6194 * only DMA interrupts are handled. All other commands are
6195 * handled via polling with interrupts disabled (nIEN bit).
6197 * LOCKING:
6198 * spin_lock_irqsave(host lock)
6200 * RETURNS:
6201 * One if interrupt was handled, zero if not (shared irq).
6204 inline unsigned int ata_host_intr(struct ata_port *ap,
6205 struct ata_queued_cmd *qc)
6207 struct ata_eh_info *ehi = &ap->link.eh_info;
6208 u8 status, host_stat = 0;
6210 VPRINTK("ata%u: protocol %d task_state %d\n",
6211 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6213 /* Check whether we are expecting interrupt in this state */
6214 switch (ap->hsm_task_state) {
6215 case HSM_ST_FIRST:
6216 /* Some pre-ATAPI-4 devices assert INTRQ
6217 * at this state when ready to receive CDB.
6220 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6221 * The flag was turned on only for atapi devices.
6222 * No need to check is_atapi_taskfile(&qc->tf) again.
6224 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6225 goto idle_irq;
6226 break;
6227 case HSM_ST_LAST:
6228 if (qc->tf.protocol == ATA_PROT_DMA ||
6229 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6230 /* check status of DMA engine */
6231 host_stat = ap->ops->bmdma_status(ap);
6232 VPRINTK("ata%u: host_stat 0x%X\n",
6233 ap->print_id, host_stat);
6235 /* if it's not our irq... */
6236 if (!(host_stat & ATA_DMA_INTR))
6237 goto idle_irq;
6239 /* before we do anything else, clear DMA-Start bit */
6240 ap->ops->bmdma_stop(qc);
6242 if (unlikely(host_stat & ATA_DMA_ERR)) {
6243 /* error when transfering data to/from memory */
6244 qc->err_mask |= AC_ERR_HOST_BUS;
6245 ap->hsm_task_state = HSM_ST_ERR;
6248 break;
6249 case HSM_ST:
6250 break;
6251 default:
6252 goto idle_irq;
6255 /* check altstatus */
6256 status = ata_altstatus(ap);
6257 if (status & ATA_BUSY)
6258 goto idle_irq;
6260 /* check main status, clearing INTRQ */
6261 status = ata_chk_status(ap);
6262 if (unlikely(status & ATA_BUSY))
6263 goto idle_irq;
6265 /* ack bmdma irq events */
6266 ap->ops->irq_clear(ap);
6268 ata_hsm_move(ap, qc, status, 0);
6270 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6271 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6272 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6274 return 1; /* irq handled */
6276 idle_irq:
6277 ap->stats.idle_irq++;
6279 #ifdef ATA_IRQ_TRAP
6280 if ((ap->stats.idle_irq % 1000) == 0) {
6281 ata_chk_status(ap);
6282 ap->ops->irq_clear(ap);
6283 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6284 return 1;
6286 #endif
6287 return 0; /* irq not handled */
6291 * ata_interrupt - Default ATA host interrupt handler
6292 * @irq: irq line (unused)
6293 * @dev_instance: pointer to our ata_host information structure
6295 * Default interrupt handler for PCI IDE devices. Calls
6296 * ata_host_intr() for each port that is not disabled.
6298 * LOCKING:
6299 * Obtains host lock during operation.
6301 * RETURNS:
6302 * IRQ_NONE or IRQ_HANDLED.
6305 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6307 struct ata_host *host = dev_instance;
6308 unsigned int i;
6309 unsigned int handled = 0;
6310 unsigned long flags;
6312 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6313 spin_lock_irqsave(&host->lock, flags);
6315 for (i = 0; i < host->n_ports; i++) {
6316 struct ata_port *ap;
6318 ap = host->ports[i];
6319 if (ap &&
6320 !(ap->flags & ATA_FLAG_DISABLED)) {
6321 struct ata_queued_cmd *qc;
6323 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6324 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6325 (qc->flags & ATA_QCFLAG_ACTIVE))
6326 handled |= ata_host_intr(ap, qc);
6330 spin_unlock_irqrestore(&host->lock, flags);
6332 return IRQ_RETVAL(handled);
6336 * sata_scr_valid - test whether SCRs are accessible
6337 * @link: ATA link to test SCR accessibility for
6339 * Test whether SCRs are accessible for @link.
6341 * LOCKING:
6342 * None.
6344 * RETURNS:
6345 * 1 if SCRs are accessible, 0 otherwise.
6347 int sata_scr_valid(struct ata_link *link)
6349 struct ata_port *ap = link->ap;
6351 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6355 * sata_scr_read - read SCR register of the specified port
6356 * @link: ATA link to read SCR for
6357 * @reg: SCR to read
6358 * @val: Place to store read value
6360 * Read SCR register @reg of @link into *@val. This function is
6361 * guaranteed to succeed if @link is ap->link, the cable type of
6362 * the port is SATA and the port implements ->scr_read.
6364 * LOCKING:
6365 * None if @link is ap->link. Kernel thread context otherwise.
6367 * RETURNS:
6368 * 0 on success, negative errno on failure.
6370 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6372 if (ata_is_host_link(link)) {
6373 struct ata_port *ap = link->ap;
6375 if (sata_scr_valid(link))
6376 return ap->ops->scr_read(ap, reg, val);
6377 return -EOPNOTSUPP;
6380 return sata_pmp_scr_read(link, reg, val);
6384 * sata_scr_write - write SCR register of the specified port
6385 * @link: ATA link to write SCR for
6386 * @reg: SCR to write
6387 * @val: value to write
6389 * Write @val to SCR register @reg of @link. This function is
6390 * guaranteed to succeed if @link is ap->link, the cable type of
6391 * the port is SATA and the port implements ->scr_read.
6393 * LOCKING:
6394 * None if @link is ap->link. Kernel thread context otherwise.
6396 * RETURNS:
6397 * 0 on success, negative errno on failure.
6399 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6401 if (ata_is_host_link(link)) {
6402 struct ata_port *ap = link->ap;
6404 if (sata_scr_valid(link))
6405 return ap->ops->scr_write(ap, reg, val);
6406 return -EOPNOTSUPP;
6409 return sata_pmp_scr_write(link, reg, val);
6413 * sata_scr_write_flush - write SCR register of the specified port and flush
6414 * @link: ATA link to write SCR for
6415 * @reg: SCR to write
6416 * @val: value to write
6418 * This function is identical to sata_scr_write() except that this
6419 * function performs flush after writing to the register.
6421 * LOCKING:
6422 * None if @link is ap->link. Kernel thread context otherwise.
6424 * RETURNS:
6425 * 0 on success, negative errno on failure.
6427 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6429 if (ata_is_host_link(link)) {
6430 struct ata_port *ap = link->ap;
6431 int rc;
6433 if (sata_scr_valid(link)) {
6434 rc = ap->ops->scr_write(ap, reg, val);
6435 if (rc == 0)
6436 rc = ap->ops->scr_read(ap, reg, &val);
6437 return rc;
6439 return -EOPNOTSUPP;
6442 return sata_pmp_scr_write(link, reg, val);
6446 * ata_link_online - test whether the given link is online
6447 * @link: ATA link to test
6449 * Test whether @link is online. Note that this function returns
6450 * 0 if online status of @link cannot be obtained, so
6451 * ata_link_online(link) != !ata_link_offline(link).
6453 * LOCKING:
6454 * None.
6456 * RETURNS:
6457 * 1 if the port online status is available and online.
6459 int ata_link_online(struct ata_link *link)
6461 u32 sstatus;
6463 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6464 (sstatus & 0xf) == 0x3)
6465 return 1;
6466 return 0;
6470 * ata_link_offline - test whether the given link is offline
6471 * @link: ATA link to test
6473 * Test whether @link is offline. Note that this function
6474 * returns 0 if offline status of @link cannot be obtained, so
6475 * ata_link_online(link) != !ata_link_offline(link).
6477 * LOCKING:
6478 * None.
6480 * RETURNS:
6481 * 1 if the port offline status is available and offline.
6483 int ata_link_offline(struct ata_link *link)
6485 u32 sstatus;
6487 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6488 (sstatus & 0xf) != 0x3)
6489 return 1;
6490 return 0;
6493 int ata_flush_cache(struct ata_device *dev)
6495 unsigned int err_mask;
6496 u8 cmd;
6498 if (!ata_try_flush_cache(dev))
6499 return 0;
6501 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6502 cmd = ATA_CMD_FLUSH_EXT;
6503 else
6504 cmd = ATA_CMD_FLUSH;
6506 /* This is wrong. On a failed flush we get back the LBA of the lost
6507 sector and we should (assuming it wasn't aborted as unknown) issue
6508 a further flush command to continue the writeback until it
6509 does not error */
6510 err_mask = ata_do_simple_cmd(dev, cmd);
6511 if (err_mask) {
6512 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6513 return -EIO;
6516 return 0;
6519 #ifdef CONFIG_PM
6520 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6521 unsigned int action, unsigned int ehi_flags,
6522 int wait)
6524 unsigned long flags;
6525 int i, rc;
6527 for (i = 0; i < host->n_ports; i++) {
6528 struct ata_port *ap = host->ports[i];
6529 struct ata_link *link;
6531 /* Previous resume operation might still be in
6532 * progress. Wait for PM_PENDING to clear.
6534 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6535 ata_port_wait_eh(ap);
6536 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6539 /* request PM ops to EH */
6540 spin_lock_irqsave(ap->lock, flags);
6542 ap->pm_mesg = mesg;
6543 if (wait) {
6544 rc = 0;
6545 ap->pm_result = &rc;
6548 ap->pflags |= ATA_PFLAG_PM_PENDING;
6549 __ata_port_for_each_link(link, ap) {
6550 link->eh_info.action |= action;
6551 link->eh_info.flags |= ehi_flags;
6554 ata_port_schedule_eh(ap);
6556 spin_unlock_irqrestore(ap->lock, flags);
6558 /* wait and check result */
6559 if (wait) {
6560 ata_port_wait_eh(ap);
6561 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6562 if (rc)
6563 return rc;
6567 return 0;
6571 * ata_host_suspend - suspend host
6572 * @host: host to suspend
6573 * @mesg: PM message
6575 * Suspend @host. Actual operation is performed by EH. This
6576 * function requests EH to perform PM operations and waits for EH
6577 * to finish.
6579 * LOCKING:
6580 * Kernel thread context (may sleep).
6582 * RETURNS:
6583 * 0 on success, -errno on failure.
6585 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6587 int rc;
6590 * disable link pm on all ports before requesting
6591 * any pm activity
6593 ata_lpm_enable(host);
6595 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6596 if (rc == 0)
6597 host->dev->power.power_state = mesg;
6598 return rc;
6602 * ata_host_resume - resume host
6603 * @host: host to resume
6605 * Resume @host. Actual operation is performed by EH. This
6606 * function requests EH to perform PM operations and returns.
6607 * Note that all resume operations are performed parallely.
6609 * LOCKING:
6610 * Kernel thread context (may sleep).
6612 void ata_host_resume(struct ata_host *host)
6614 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6615 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6616 host->dev->power.power_state = PMSG_ON;
6618 /* reenable link pm */
6619 ata_lpm_disable(host);
6621 #endif
6624 * ata_port_start - Set port up for dma.
6625 * @ap: Port to initialize
6627 * Called just after data structures for each port are
6628 * initialized. Allocates space for PRD table.
6630 * May be used as the port_start() entry in ata_port_operations.
6632 * LOCKING:
6633 * Inherited from caller.
6635 int ata_port_start(struct ata_port *ap)
6637 struct device *dev = ap->dev;
6638 int rc;
6640 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6641 GFP_KERNEL);
6642 if (!ap->prd)
6643 return -ENOMEM;
6645 rc = ata_pad_alloc(ap, dev);
6646 if (rc)
6647 return rc;
6649 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6650 (unsigned long long)ap->prd_dma);
6651 return 0;
6655 * ata_dev_init - Initialize an ata_device structure
6656 * @dev: Device structure to initialize
6658 * Initialize @dev in preparation for probing.
6660 * LOCKING:
6661 * Inherited from caller.
6663 void ata_dev_init(struct ata_device *dev)
6665 struct ata_link *link = dev->link;
6666 struct ata_port *ap = link->ap;
6667 unsigned long flags;
6669 /* SATA spd limit is bound to the first device */
6670 link->sata_spd_limit = link->hw_sata_spd_limit;
6671 link->sata_spd = 0;
6673 /* High bits of dev->flags are used to record warm plug
6674 * requests which occur asynchronously. Synchronize using
6675 * host lock.
6677 spin_lock_irqsave(ap->lock, flags);
6678 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6679 dev->horkage = 0;
6680 spin_unlock_irqrestore(ap->lock, flags);
6682 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6683 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6684 dev->pio_mask = UINT_MAX;
6685 dev->mwdma_mask = UINT_MAX;
6686 dev->udma_mask = UINT_MAX;
6690 * ata_link_init - Initialize an ata_link structure
6691 * @ap: ATA port link is attached to
6692 * @link: Link structure to initialize
6693 * @pmp: Port multiplier port number
6695 * Initialize @link.
6697 * LOCKING:
6698 * Kernel thread context (may sleep)
6700 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6702 int i;
6704 /* clear everything except for devices */
6705 memset(link, 0, offsetof(struct ata_link, device[0]));
6707 link->ap = ap;
6708 link->pmp = pmp;
6709 link->active_tag = ATA_TAG_POISON;
6710 link->hw_sata_spd_limit = UINT_MAX;
6712 /* can't use iterator, ap isn't initialized yet */
6713 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6714 struct ata_device *dev = &link->device[i];
6716 dev->link = link;
6717 dev->devno = dev - link->device;
6718 ata_dev_init(dev);
6723 * sata_link_init_spd - Initialize link->sata_spd_limit
6724 * @link: Link to configure sata_spd_limit for
6726 * Initialize @link->[hw_]sata_spd_limit to the currently
6727 * configured value.
6729 * LOCKING:
6730 * Kernel thread context (may sleep).
6732 * RETURNS:
6733 * 0 on success, -errno on failure.
6735 int sata_link_init_spd(struct ata_link *link)
6737 u32 scontrol, spd;
6738 int rc;
6740 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6741 if (rc)
6742 return rc;
6744 spd = (scontrol >> 4) & 0xf;
6745 if (spd)
6746 link->hw_sata_spd_limit &= (1 << spd) - 1;
6748 link->sata_spd_limit = link->hw_sata_spd_limit;
6750 return 0;
6754 * ata_port_alloc - allocate and initialize basic ATA port resources
6755 * @host: ATA host this allocated port belongs to
6757 * Allocate and initialize basic ATA port resources.
6759 * RETURNS:
6760 * Allocate ATA port on success, NULL on failure.
6762 * LOCKING:
6763 * Inherited from calling layer (may sleep).
6765 struct ata_port *ata_port_alloc(struct ata_host *host)
6767 struct ata_port *ap;
6769 DPRINTK("ENTER\n");
6771 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6772 if (!ap)
6773 return NULL;
6775 ap->pflags |= ATA_PFLAG_INITIALIZING;
6776 ap->lock = &host->lock;
6777 ap->flags = ATA_FLAG_DISABLED;
6778 ap->print_id = -1;
6779 ap->ctl = ATA_DEVCTL_OBS;
6780 ap->host = host;
6781 ap->dev = host->dev;
6782 ap->last_ctl = 0xFF;
6784 #if defined(ATA_VERBOSE_DEBUG)
6785 /* turn on all debugging levels */
6786 ap->msg_enable = 0x00FF;
6787 #elif defined(ATA_DEBUG)
6788 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6789 #else
6790 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6791 #endif
6793 INIT_DELAYED_WORK(&ap->port_task, NULL);
6794 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6795 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6796 INIT_LIST_HEAD(&ap->eh_done_q);
6797 init_waitqueue_head(&ap->eh_wait_q);
6798 init_timer_deferrable(&ap->fastdrain_timer);
6799 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6800 ap->fastdrain_timer.data = (unsigned long)ap;
6802 ap->cbl = ATA_CBL_NONE;
6804 ata_link_init(ap, &ap->link, 0);
6806 #ifdef ATA_IRQ_TRAP
6807 ap->stats.unhandled_irq = 1;
6808 ap->stats.idle_irq = 1;
6809 #endif
6810 return ap;
6813 static void ata_host_release(struct device *gendev, void *res)
6815 struct ata_host *host = dev_get_drvdata(gendev);
6816 int i;
6818 for (i = 0; i < host->n_ports; i++) {
6819 struct ata_port *ap = host->ports[i];
6821 if (!ap)
6822 continue;
6824 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6825 ap->ops->port_stop(ap);
6828 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6829 host->ops->host_stop(host);
6831 for (i = 0; i < host->n_ports; i++) {
6832 struct ata_port *ap = host->ports[i];
6834 if (!ap)
6835 continue;
6837 if (ap->scsi_host)
6838 scsi_host_put(ap->scsi_host);
6840 kfree(ap->pmp_link);
6841 kfree(ap);
6842 host->ports[i] = NULL;
6845 dev_set_drvdata(gendev, NULL);
6849 * ata_host_alloc - allocate and init basic ATA host resources
6850 * @dev: generic device this host is associated with
6851 * @max_ports: maximum number of ATA ports associated with this host
6853 * Allocate and initialize basic ATA host resources. LLD calls
6854 * this function to allocate a host, initializes it fully and
6855 * attaches it using ata_host_register().
6857 * @max_ports ports are allocated and host->n_ports is
6858 * initialized to @max_ports. The caller is allowed to decrease
6859 * host->n_ports before calling ata_host_register(). The unused
6860 * ports will be automatically freed on registration.
6862 * RETURNS:
6863 * Allocate ATA host on success, NULL on failure.
6865 * LOCKING:
6866 * Inherited from calling layer (may sleep).
6868 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6870 struct ata_host *host;
6871 size_t sz;
6872 int i;
6874 DPRINTK("ENTER\n");
6876 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6877 return NULL;
6879 /* alloc a container for our list of ATA ports (buses) */
6880 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6881 /* alloc a container for our list of ATA ports (buses) */
6882 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6883 if (!host)
6884 goto err_out;
6886 devres_add(dev, host);
6887 dev_set_drvdata(dev, host);
6889 spin_lock_init(&host->lock);
6890 host->dev = dev;
6891 host->n_ports = max_ports;
6893 /* allocate ports bound to this host */
6894 for (i = 0; i < max_ports; i++) {
6895 struct ata_port *ap;
6897 ap = ata_port_alloc(host);
6898 if (!ap)
6899 goto err_out;
6901 ap->port_no = i;
6902 host->ports[i] = ap;
6905 devres_remove_group(dev, NULL);
6906 return host;
6908 err_out:
6909 devres_release_group(dev, NULL);
6910 return NULL;
6914 * ata_host_alloc_pinfo - alloc host and init with port_info array
6915 * @dev: generic device this host is associated with
6916 * @ppi: array of ATA port_info to initialize host with
6917 * @n_ports: number of ATA ports attached to this host
6919 * Allocate ATA host and initialize with info from @ppi. If NULL
6920 * terminated, @ppi may contain fewer entries than @n_ports. The
6921 * last entry will be used for the remaining ports.
6923 * RETURNS:
6924 * Allocate ATA host on success, NULL on failure.
6926 * LOCKING:
6927 * Inherited from calling layer (may sleep).
6929 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6930 const struct ata_port_info * const * ppi,
6931 int n_ports)
6933 const struct ata_port_info *pi;
6934 struct ata_host *host;
6935 int i, j;
6937 host = ata_host_alloc(dev, n_ports);
6938 if (!host)
6939 return NULL;
6941 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6942 struct ata_port *ap = host->ports[i];
6944 if (ppi[j])
6945 pi = ppi[j++];
6947 ap->pio_mask = pi->pio_mask;
6948 ap->mwdma_mask = pi->mwdma_mask;
6949 ap->udma_mask = pi->udma_mask;
6950 ap->flags |= pi->flags;
6951 ap->link.flags |= pi->link_flags;
6952 ap->ops = pi->port_ops;
6954 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6955 host->ops = pi->port_ops;
6956 if (!host->private_data && pi->private_data)
6957 host->private_data = pi->private_data;
6960 return host;
6964 * ata_host_start - start and freeze ports of an ATA host
6965 * @host: ATA host to start ports for
6967 * Start and then freeze ports of @host. Started status is
6968 * recorded in host->flags, so this function can be called
6969 * multiple times. Ports are guaranteed to get started only
6970 * once. If host->ops isn't initialized yet, its set to the
6971 * first non-dummy port ops.
6973 * LOCKING:
6974 * Inherited from calling layer (may sleep).
6976 * RETURNS:
6977 * 0 if all ports are started successfully, -errno otherwise.
6979 int ata_host_start(struct ata_host *host)
6981 int i, rc;
6983 if (host->flags & ATA_HOST_STARTED)
6984 return 0;
6986 for (i = 0; i < host->n_ports; i++) {
6987 struct ata_port *ap = host->ports[i];
6989 if (!host->ops && !ata_port_is_dummy(ap))
6990 host->ops = ap->ops;
6992 if (ap->ops->port_start) {
6993 rc = ap->ops->port_start(ap);
6994 if (rc) {
6995 ata_port_printk(ap, KERN_ERR, "failed to "
6996 "start port (errno=%d)\n", rc);
6997 goto err_out;
7001 ata_eh_freeze_port(ap);
7004 host->flags |= ATA_HOST_STARTED;
7005 return 0;
7007 err_out:
7008 while (--i >= 0) {
7009 struct ata_port *ap = host->ports[i];
7011 if (ap->ops->port_stop)
7012 ap->ops->port_stop(ap);
7014 return rc;
7018 * ata_sas_host_init - Initialize a host struct
7019 * @host: host to initialize
7020 * @dev: device host is attached to
7021 * @flags: host flags
7022 * @ops: port_ops
7024 * LOCKING:
7025 * PCI/etc. bus probe sem.
7028 /* KILLME - the only user left is ipr */
7029 void ata_host_init(struct ata_host *host, struct device *dev,
7030 unsigned long flags, const struct ata_port_operations *ops)
7032 spin_lock_init(&host->lock);
7033 host->dev = dev;
7034 host->flags = flags;
7035 host->ops = ops;
7039 * ata_host_register - register initialized ATA host
7040 * @host: ATA host to register
7041 * @sht: template for SCSI host
7043 * Register initialized ATA host. @host is allocated using
7044 * ata_host_alloc() and fully initialized by LLD. This function
7045 * starts ports, registers @host with ATA and SCSI layers and
7046 * probe registered devices.
7048 * LOCKING:
7049 * Inherited from calling layer (may sleep).
7051 * RETURNS:
7052 * 0 on success, -errno otherwise.
7054 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7056 int i, rc;
7058 /* host must have been started */
7059 if (!(host->flags & ATA_HOST_STARTED)) {
7060 dev_printk(KERN_ERR, host->dev,
7061 "BUG: trying to register unstarted host\n");
7062 WARN_ON(1);
7063 return -EINVAL;
7066 /* Blow away unused ports. This happens when LLD can't
7067 * determine the exact number of ports to allocate at
7068 * allocation time.
7070 for (i = host->n_ports; host->ports[i]; i++)
7071 kfree(host->ports[i]);
7073 /* give ports names and add SCSI hosts */
7074 for (i = 0; i < host->n_ports; i++)
7075 host->ports[i]->print_id = ata_print_id++;
7077 rc = ata_scsi_add_hosts(host, sht);
7078 if (rc)
7079 return rc;
7081 /* associate with ACPI nodes */
7082 ata_acpi_associate(host);
7084 /* set cable, sata_spd_limit and report */
7085 for (i = 0; i < host->n_ports; i++) {
7086 struct ata_port *ap = host->ports[i];
7087 unsigned long xfer_mask;
7089 /* set SATA cable type if still unset */
7090 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7091 ap->cbl = ATA_CBL_SATA;
7093 /* init sata_spd_limit to the current value */
7094 sata_link_init_spd(&ap->link);
7096 /* print per-port info to dmesg */
7097 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7098 ap->udma_mask);
7100 if (!ata_port_is_dummy(ap)) {
7101 ata_port_printk(ap, KERN_INFO,
7102 "%cATA max %s %s\n",
7103 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7104 ata_mode_string(xfer_mask),
7105 ap->link.eh_info.desc);
7106 ata_ehi_clear_desc(&ap->link.eh_info);
7107 } else
7108 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7111 /* perform each probe synchronously */
7112 DPRINTK("probe begin\n");
7113 for (i = 0; i < host->n_ports; i++) {
7114 struct ata_port *ap = host->ports[i];
7115 int rc;
7117 /* probe */
7118 if (ap->ops->error_handler) {
7119 struct ata_eh_info *ehi = &ap->link.eh_info;
7120 unsigned long flags;
7122 ata_port_probe(ap);
7124 /* kick EH for boot probing */
7125 spin_lock_irqsave(ap->lock, flags);
7127 ehi->probe_mask =
7128 (1 << ata_link_max_devices(&ap->link)) - 1;
7129 ehi->action |= ATA_EH_SOFTRESET;
7130 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7132 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7133 ap->pflags |= ATA_PFLAG_LOADING;
7134 ata_port_schedule_eh(ap);
7136 spin_unlock_irqrestore(ap->lock, flags);
7138 /* wait for EH to finish */
7139 ata_port_wait_eh(ap);
7140 } else {
7141 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7142 rc = ata_bus_probe(ap);
7143 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7145 if (rc) {
7146 /* FIXME: do something useful here?
7147 * Current libata behavior will
7148 * tear down everything when
7149 * the module is removed
7150 * or the h/w is unplugged.
7156 /* probes are done, now scan each port's disk(s) */
7157 DPRINTK("host probe begin\n");
7158 for (i = 0; i < host->n_ports; i++) {
7159 struct ata_port *ap = host->ports[i];
7161 ata_scsi_scan_host(ap, 1);
7162 ata_lpm_schedule(ap, ap->pm_policy);
7165 return 0;
7169 * ata_host_activate - start host, request IRQ and register it
7170 * @host: target ATA host
7171 * @irq: IRQ to request
7172 * @irq_handler: irq_handler used when requesting IRQ
7173 * @irq_flags: irq_flags used when requesting IRQ
7174 * @sht: scsi_host_template to use when registering the host
7176 * After allocating an ATA host and initializing it, most libata
7177 * LLDs perform three steps to activate the host - start host,
7178 * request IRQ and register it. This helper takes necessasry
7179 * arguments and performs the three steps in one go.
7181 * LOCKING:
7182 * Inherited from calling layer (may sleep).
7184 * RETURNS:
7185 * 0 on success, -errno otherwise.
7187 int ata_host_activate(struct ata_host *host, int irq,
7188 irq_handler_t irq_handler, unsigned long irq_flags,
7189 struct scsi_host_template *sht)
7191 int i, rc;
7193 rc = ata_host_start(host);
7194 if (rc)
7195 return rc;
7197 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7198 dev_driver_string(host->dev), host);
7199 if (rc)
7200 return rc;
7202 for (i = 0; i < host->n_ports; i++)
7203 ata_port_desc(host->ports[i], "irq %d", irq);
7205 rc = ata_host_register(host, sht);
7206 /* if failed, just free the IRQ and leave ports alone */
7207 if (rc)
7208 devm_free_irq(host->dev, irq, host);
7210 return rc;
7214 * ata_port_detach - Detach ATA port in prepration of device removal
7215 * @ap: ATA port to be detached
7217 * Detach all ATA devices and the associated SCSI devices of @ap;
7218 * then, remove the associated SCSI host. @ap is guaranteed to
7219 * be quiescent on return from this function.
7221 * LOCKING:
7222 * Kernel thread context (may sleep).
7224 static void ata_port_detach(struct ata_port *ap)
7226 unsigned long flags;
7227 struct ata_link *link;
7228 struct ata_device *dev;
7230 if (!ap->ops->error_handler)
7231 goto skip_eh;
7233 /* tell EH we're leaving & flush EH */
7234 spin_lock_irqsave(ap->lock, flags);
7235 ap->pflags |= ATA_PFLAG_UNLOADING;
7236 spin_unlock_irqrestore(ap->lock, flags);
7238 ata_port_wait_eh(ap);
7240 /* EH is now guaranteed to see UNLOADING, so no new device
7241 * will be attached. Disable all existing devices.
7243 spin_lock_irqsave(ap->lock, flags);
7245 ata_port_for_each_link(link, ap) {
7246 ata_link_for_each_dev(dev, link)
7247 ata_dev_disable(dev);
7250 spin_unlock_irqrestore(ap->lock, flags);
7252 /* Final freeze & EH. All in-flight commands are aborted. EH
7253 * will be skipped and retrials will be terminated with bad
7254 * target.
7256 spin_lock_irqsave(ap->lock, flags);
7257 ata_port_freeze(ap); /* won't be thawed */
7258 spin_unlock_irqrestore(ap->lock, flags);
7260 ata_port_wait_eh(ap);
7261 cancel_rearming_delayed_work(&ap->hotplug_task);
7263 skip_eh:
7264 /* remove the associated SCSI host */
7265 scsi_remove_host(ap->scsi_host);
7269 * ata_host_detach - Detach all ports of an ATA host
7270 * @host: Host to detach
7272 * Detach all ports of @host.
7274 * LOCKING:
7275 * Kernel thread context (may sleep).
7277 void ata_host_detach(struct ata_host *host)
7279 int i;
7281 for (i = 0; i < host->n_ports; i++)
7282 ata_port_detach(host->ports[i]);
7286 * ata_std_ports - initialize ioaddr with standard port offsets.
7287 * @ioaddr: IO address structure to be initialized
7289 * Utility function which initializes data_addr, error_addr,
7290 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7291 * device_addr, status_addr, and command_addr to standard offsets
7292 * relative to cmd_addr.
7294 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7297 void ata_std_ports(struct ata_ioports *ioaddr)
7299 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7300 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7301 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7302 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7303 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7304 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7305 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7306 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7307 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7308 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7312 #ifdef CONFIG_PCI
7315 * ata_pci_remove_one - PCI layer callback for device removal
7316 * @pdev: PCI device that was removed
7318 * PCI layer indicates to libata via this hook that hot-unplug or
7319 * module unload event has occurred. Detach all ports. Resource
7320 * release is handled via devres.
7322 * LOCKING:
7323 * Inherited from PCI layer (may sleep).
7325 void ata_pci_remove_one(struct pci_dev *pdev)
7327 struct device *dev = &pdev->dev;
7328 struct ata_host *host = dev_get_drvdata(dev);
7330 ata_host_detach(host);
7333 /* move to PCI subsystem */
7334 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7336 unsigned long tmp = 0;
7338 switch (bits->width) {
7339 case 1: {
7340 u8 tmp8 = 0;
7341 pci_read_config_byte(pdev, bits->reg, &tmp8);
7342 tmp = tmp8;
7343 break;
7345 case 2: {
7346 u16 tmp16 = 0;
7347 pci_read_config_word(pdev, bits->reg, &tmp16);
7348 tmp = tmp16;
7349 break;
7351 case 4: {
7352 u32 tmp32 = 0;
7353 pci_read_config_dword(pdev, bits->reg, &tmp32);
7354 tmp = tmp32;
7355 break;
7358 default:
7359 return -EINVAL;
7362 tmp &= bits->mask;
7364 return (tmp == bits->val) ? 1 : 0;
7367 #ifdef CONFIG_PM
7368 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7370 pci_save_state(pdev);
7371 pci_disable_device(pdev);
7373 if (mesg.event == PM_EVENT_SUSPEND)
7374 pci_set_power_state(pdev, PCI_D3hot);
7377 int ata_pci_device_do_resume(struct pci_dev *pdev)
7379 int rc;
7381 pci_set_power_state(pdev, PCI_D0);
7382 pci_restore_state(pdev);
7384 rc = pcim_enable_device(pdev);
7385 if (rc) {
7386 dev_printk(KERN_ERR, &pdev->dev,
7387 "failed to enable device after resume (%d)\n", rc);
7388 return rc;
7391 pci_set_master(pdev);
7392 return 0;
7395 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7397 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7398 int rc = 0;
7400 rc = ata_host_suspend(host, mesg);
7401 if (rc)
7402 return rc;
7404 ata_pci_device_do_suspend(pdev, mesg);
7406 return 0;
7409 int ata_pci_device_resume(struct pci_dev *pdev)
7411 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7412 int rc;
7414 rc = ata_pci_device_do_resume(pdev);
7415 if (rc == 0)
7416 ata_host_resume(host);
7417 return rc;
7419 #endif /* CONFIG_PM */
7421 #endif /* CONFIG_PCI */
7424 static int __init ata_init(void)
7426 ata_probe_timeout *= HZ;
7427 ata_wq = create_workqueue("ata");
7428 if (!ata_wq)
7429 return -ENOMEM;
7431 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7432 if (!ata_aux_wq) {
7433 destroy_workqueue(ata_wq);
7434 return -ENOMEM;
7437 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7438 return 0;
7441 static void __exit ata_exit(void)
7443 destroy_workqueue(ata_wq);
7444 destroy_workqueue(ata_aux_wq);
7447 subsys_initcall(ata_init);
7448 module_exit(ata_exit);
7450 static unsigned long ratelimit_time;
7451 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7453 int ata_ratelimit(void)
7455 int rc;
7456 unsigned long flags;
7458 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7460 if (time_after(jiffies, ratelimit_time)) {
7461 rc = 1;
7462 ratelimit_time = jiffies + (HZ/5);
7463 } else
7464 rc = 0;
7466 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7468 return rc;
7472 * ata_wait_register - wait until register value changes
7473 * @reg: IO-mapped register
7474 * @mask: Mask to apply to read register value
7475 * @val: Wait condition
7476 * @interval_msec: polling interval in milliseconds
7477 * @timeout_msec: timeout in milliseconds
7479 * Waiting for some bits of register to change is a common
7480 * operation for ATA controllers. This function reads 32bit LE
7481 * IO-mapped register @reg and tests for the following condition.
7483 * (*@reg & mask) != val
7485 * If the condition is met, it returns; otherwise, the process is
7486 * repeated after @interval_msec until timeout.
7488 * LOCKING:
7489 * Kernel thread context (may sleep)
7491 * RETURNS:
7492 * The final register value.
7494 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7495 unsigned long interval_msec,
7496 unsigned long timeout_msec)
7498 unsigned long timeout;
7499 u32 tmp;
7501 tmp = ioread32(reg);
7503 /* Calculate timeout _after_ the first read to make sure
7504 * preceding writes reach the controller before starting to
7505 * eat away the timeout.
7507 timeout = jiffies + (timeout_msec * HZ) / 1000;
7509 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7510 msleep(interval_msec);
7511 tmp = ioread32(reg);
7514 return tmp;
7518 * Dummy port_ops
7520 static void ata_dummy_noret(struct ata_port *ap) { }
7521 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7522 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7524 static u8 ata_dummy_check_status(struct ata_port *ap)
7526 return ATA_DRDY;
7529 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7531 return AC_ERR_SYSTEM;
7534 const struct ata_port_operations ata_dummy_port_ops = {
7535 .check_status = ata_dummy_check_status,
7536 .check_altstatus = ata_dummy_check_status,
7537 .dev_select = ata_noop_dev_select,
7538 .qc_prep = ata_noop_qc_prep,
7539 .qc_issue = ata_dummy_qc_issue,
7540 .freeze = ata_dummy_noret,
7541 .thaw = ata_dummy_noret,
7542 .error_handler = ata_dummy_noret,
7543 .post_internal_cmd = ata_dummy_qc_noret,
7544 .irq_clear = ata_dummy_noret,
7545 .port_start = ata_dummy_ret0,
7546 .port_stop = ata_dummy_noret,
7549 const struct ata_port_info ata_dummy_port_info = {
7550 .port_ops = &ata_dummy_port_ops,
7554 * libata is essentially a library of internal helper functions for
7555 * low-level ATA host controller drivers. As such, the API/ABI is
7556 * likely to change as new drivers are added and updated.
7557 * Do not depend on ABI/API stability.
7559 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7560 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7561 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7562 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7563 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7564 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7565 EXPORT_SYMBOL_GPL(ata_std_ports);
7566 EXPORT_SYMBOL_GPL(ata_host_init);
7567 EXPORT_SYMBOL_GPL(ata_host_alloc);
7568 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7569 EXPORT_SYMBOL_GPL(ata_host_start);
7570 EXPORT_SYMBOL_GPL(ata_host_register);
7571 EXPORT_SYMBOL_GPL(ata_host_activate);
7572 EXPORT_SYMBOL_GPL(ata_host_detach);
7573 EXPORT_SYMBOL_GPL(ata_sg_init);
7574 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7575 EXPORT_SYMBOL_GPL(ata_hsm_move);
7576 EXPORT_SYMBOL_GPL(ata_qc_complete);
7577 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7578 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7579 EXPORT_SYMBOL_GPL(ata_tf_load);
7580 EXPORT_SYMBOL_GPL(ata_tf_read);
7581 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7582 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7583 EXPORT_SYMBOL_GPL(sata_print_link_status);
7584 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7585 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7586 EXPORT_SYMBOL_GPL(ata_check_status);
7587 EXPORT_SYMBOL_GPL(ata_altstatus);
7588 EXPORT_SYMBOL_GPL(ata_exec_command);
7589 EXPORT_SYMBOL_GPL(ata_port_start);
7590 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7591 EXPORT_SYMBOL_GPL(ata_interrupt);
7592 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7593 EXPORT_SYMBOL_GPL(ata_data_xfer);
7594 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7595 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7596 EXPORT_SYMBOL_GPL(ata_qc_prep);
7597 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7598 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7599 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7600 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7601 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7602 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7603 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7604 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7605 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7606 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7607 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7608 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7609 EXPORT_SYMBOL_GPL(ata_port_probe);
7610 EXPORT_SYMBOL_GPL(ata_dev_disable);
7611 EXPORT_SYMBOL_GPL(sata_set_spd);
7612 EXPORT_SYMBOL_GPL(sata_link_debounce);
7613 EXPORT_SYMBOL_GPL(sata_link_resume);
7614 EXPORT_SYMBOL_GPL(sata_phy_reset);
7615 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7616 EXPORT_SYMBOL_GPL(ata_bus_reset);
7617 EXPORT_SYMBOL_GPL(ata_std_prereset);
7618 EXPORT_SYMBOL_GPL(ata_std_softreset);
7619 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7620 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7621 EXPORT_SYMBOL_GPL(ata_std_postreset);
7622 EXPORT_SYMBOL_GPL(ata_dev_classify);
7623 EXPORT_SYMBOL_GPL(ata_dev_pair);
7624 EXPORT_SYMBOL_GPL(ata_port_disable);
7625 EXPORT_SYMBOL_GPL(ata_ratelimit);
7626 EXPORT_SYMBOL_GPL(ata_wait_register);
7627 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7628 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7629 EXPORT_SYMBOL_GPL(ata_wait_ready);
7630 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7631 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7632 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7633 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7634 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7635 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7636 EXPORT_SYMBOL_GPL(ata_host_intr);
7637 EXPORT_SYMBOL_GPL(sata_scr_valid);
7638 EXPORT_SYMBOL_GPL(sata_scr_read);
7639 EXPORT_SYMBOL_GPL(sata_scr_write);
7640 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7641 EXPORT_SYMBOL_GPL(ata_link_online);
7642 EXPORT_SYMBOL_GPL(ata_link_offline);
7643 #ifdef CONFIG_PM
7644 EXPORT_SYMBOL_GPL(ata_host_suspend);
7645 EXPORT_SYMBOL_GPL(ata_host_resume);
7646 #endif /* CONFIG_PM */
7647 EXPORT_SYMBOL_GPL(ata_id_string);
7648 EXPORT_SYMBOL_GPL(ata_id_c_string);
7649 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7650 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7652 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7653 EXPORT_SYMBOL_GPL(ata_timing_compute);
7654 EXPORT_SYMBOL_GPL(ata_timing_merge);
7656 #ifdef CONFIG_PCI
7657 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7658 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7659 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7660 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7661 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7662 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7663 #ifdef CONFIG_PM
7664 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7665 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7666 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7667 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7668 #endif /* CONFIG_PM */
7669 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7670 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7671 #endif /* CONFIG_PCI */
7673 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7674 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7675 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7676 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7677 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7679 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7680 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7681 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7682 EXPORT_SYMBOL_GPL(ata_port_desc);
7683 #ifdef CONFIG_PCI
7684 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7685 #endif /* CONFIG_PCI */
7686 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7687 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7688 EXPORT_SYMBOL_GPL(ata_link_abort);
7689 EXPORT_SYMBOL_GPL(ata_port_abort);
7690 EXPORT_SYMBOL_GPL(ata_port_freeze);
7691 EXPORT_SYMBOL_GPL(sata_async_notification);
7692 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7693 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7694 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7695 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7696 EXPORT_SYMBOL_GPL(ata_do_eh);
7697 EXPORT_SYMBOL_GPL(ata_irq_on);
7698 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7700 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7701 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7702 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7703 EXPORT_SYMBOL_GPL(ata_cable_sata);