e1000: rename flow control symbols
[linux-2.6/linux-loongson.git] / drivers / net / e1000 / e1000_hw.c
blobb3e95c1a1dab41be989db943e977d40b1cd827d5
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
34 #include "e1000_hw.h"
36 static int32_t e1000_set_phy_type(struct e1000_hw *hw);
37 static void e1000_phy_init_script(struct e1000_hw *hw);
38 static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
39 static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
40 static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
41 static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
42 static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
43 static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44 static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
45 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
46 uint16_t count);
47 static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
48 static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
49 static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
50 uint16_t words, uint16_t *data);
51 static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
52 uint16_t offset, uint16_t words,
53 uint16_t *data);
54 static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
55 static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56 static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
57 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
58 uint16_t count);
59 static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
60 uint16_t phy_data);
61 static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
62 uint16_t *phy_data);
63 static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
64 static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
65 static void e1000_release_eeprom(struct e1000_hw *hw);
66 static void e1000_standby_eeprom(struct e1000_hw *hw);
67 static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
68 static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
69 static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
70 static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
71 static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
72 static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
73 static int32_t e1000_check_downshift(struct e1000_hw *hw);
74 static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
75 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
76 static void e1000_clear_vfta(struct e1000_hw *hw);
77 static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
78 static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
79 boolean_t link_up);
80 static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
81 static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
82 static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
83 static int32_t e1000_get_cable_length(struct e1000_hw *hw,
84 uint16_t *min_length,
85 uint16_t *max_length);
86 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
87 static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
88 static int32_t e1000_id_led_init(struct e1000_hw * hw);
89 static void e1000_init_rx_addrs(struct e1000_hw *hw);
90 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
91 static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
92 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
93 static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
94 uint16_t words, uint16_t *data);
95 static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
96 static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
97 static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
99 static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
100 uint32_t value);
102 #define E1000_WRITE_REG_IO(a, reg, val) \
103 e1000_write_reg_io((a), E1000_##reg, val)
104 static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
105 uint16_t duplex);
106 static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
108 static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw,
109 uint32_t segment);
110 static int32_t e1000_get_software_flag(struct e1000_hw *hw);
111 static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
112 static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
113 static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
114 static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
115 uint16_t words, uint16_t *data);
116 static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
117 uint8_t* data);
118 static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
119 uint16_t *data);
120 static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
121 uint16_t *data);
122 static void e1000_release_software_flag(struct e1000_hw *hw);
123 static void e1000_release_software_semaphore(struct e1000_hw *hw);
124 static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw,
125 uint32_t no_snoop);
126 static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw,
127 uint32_t index, uint8_t byte);
128 static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
129 uint16_t words, uint16_t *data);
130 static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
131 uint8_t data);
132 static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
133 uint16_t data);
135 /* IGP cable length table */
136 static const
137 uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
138 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
139 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
140 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
141 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
142 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
143 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
144 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
145 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
147 static const
148 uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
149 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
150 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
151 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
152 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
153 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
154 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
155 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
156 104, 109, 114, 118, 121, 124};
159 /******************************************************************************
160 * Set the phy type member in the hw struct.
162 * hw - Struct containing variables accessed by shared code
163 *****************************************************************************/
164 int32_t
165 e1000_set_phy_type(struct e1000_hw *hw)
167 DEBUGFUNC("e1000_set_phy_type");
169 if (hw->mac_type == e1000_undefined)
170 return -E1000_ERR_PHY_TYPE;
172 switch (hw->phy_id) {
173 case M88E1000_E_PHY_ID:
174 case M88E1000_I_PHY_ID:
175 case M88E1011_I_PHY_ID:
176 case M88E1111_I_PHY_ID:
177 hw->phy_type = e1000_phy_m88;
178 break;
179 case IGP01E1000_I_PHY_ID:
180 if (hw->mac_type == e1000_82541 ||
181 hw->mac_type == e1000_82541_rev_2 ||
182 hw->mac_type == e1000_82547 ||
183 hw->mac_type == e1000_82547_rev_2) {
184 hw->phy_type = e1000_phy_igp;
185 break;
187 case IGP03E1000_E_PHY_ID:
188 hw->phy_type = e1000_phy_igp_3;
189 break;
190 case IFE_E_PHY_ID:
191 case IFE_PLUS_E_PHY_ID:
192 case IFE_C_E_PHY_ID:
193 hw->phy_type = e1000_phy_ife;
194 break;
195 case GG82563_E_PHY_ID:
196 if (hw->mac_type == e1000_80003es2lan) {
197 hw->phy_type = e1000_phy_gg82563;
198 break;
200 /* Fall Through */
201 default:
202 /* Should never have loaded on this device */
203 hw->phy_type = e1000_phy_undefined;
204 return -E1000_ERR_PHY_TYPE;
207 return E1000_SUCCESS;
211 /******************************************************************************
212 * IGP phy init script - initializes the GbE PHY
214 * hw - Struct containing variables accessed by shared code
215 *****************************************************************************/
216 static void
217 e1000_phy_init_script(struct e1000_hw *hw)
219 uint32_t ret_val;
220 uint16_t phy_saved_data;
222 DEBUGFUNC("e1000_phy_init_script");
224 if (hw->phy_init_script) {
225 msleep(20);
227 /* Save off the current value of register 0x2F5B to be restored at
228 * the end of this routine. */
229 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
231 /* Disabled the PHY transmitter */
232 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
234 msleep(20);
236 e1000_write_phy_reg(hw,0x0000,0x0140);
238 msleep(5);
240 switch (hw->mac_type) {
241 case e1000_82541:
242 case e1000_82547:
243 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
245 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
247 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
249 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
251 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
253 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
255 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
257 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
259 e1000_write_phy_reg(hw, 0x2010, 0x0008);
260 break;
262 case e1000_82541_rev_2:
263 case e1000_82547_rev_2:
264 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
265 break;
266 default:
267 break;
270 e1000_write_phy_reg(hw, 0x0000, 0x3300);
272 msleep(20);
274 /* Now enable the transmitter */
275 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
277 if (hw->mac_type == e1000_82547) {
278 uint16_t fused, fine, coarse;
280 /* Move to analog registers page */
281 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
283 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
284 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
286 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
287 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
289 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
290 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
291 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
292 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
293 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
295 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
296 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
297 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
299 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
300 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
301 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
307 /******************************************************************************
308 * Set the mac type member in the hw struct.
310 * hw - Struct containing variables accessed by shared code
311 *****************************************************************************/
312 int32_t
313 e1000_set_mac_type(struct e1000_hw *hw)
315 DEBUGFUNC("e1000_set_mac_type");
317 switch (hw->device_id) {
318 case E1000_DEV_ID_82542:
319 switch (hw->revision_id) {
320 case E1000_82542_2_0_REV_ID:
321 hw->mac_type = e1000_82542_rev2_0;
322 break;
323 case E1000_82542_2_1_REV_ID:
324 hw->mac_type = e1000_82542_rev2_1;
325 break;
326 default:
327 /* Invalid 82542 revision ID */
328 return -E1000_ERR_MAC_TYPE;
330 break;
331 case E1000_DEV_ID_82543GC_FIBER:
332 case E1000_DEV_ID_82543GC_COPPER:
333 hw->mac_type = e1000_82543;
334 break;
335 case E1000_DEV_ID_82544EI_COPPER:
336 case E1000_DEV_ID_82544EI_FIBER:
337 case E1000_DEV_ID_82544GC_COPPER:
338 case E1000_DEV_ID_82544GC_LOM:
339 hw->mac_type = e1000_82544;
340 break;
341 case E1000_DEV_ID_82540EM:
342 case E1000_DEV_ID_82540EM_LOM:
343 case E1000_DEV_ID_82540EP:
344 case E1000_DEV_ID_82540EP_LOM:
345 case E1000_DEV_ID_82540EP_LP:
346 hw->mac_type = e1000_82540;
347 break;
348 case E1000_DEV_ID_82545EM_COPPER:
349 case E1000_DEV_ID_82545EM_FIBER:
350 hw->mac_type = e1000_82545;
351 break;
352 case E1000_DEV_ID_82545GM_COPPER:
353 case E1000_DEV_ID_82545GM_FIBER:
354 case E1000_DEV_ID_82545GM_SERDES:
355 hw->mac_type = e1000_82545_rev_3;
356 break;
357 case E1000_DEV_ID_82546EB_COPPER:
358 case E1000_DEV_ID_82546EB_FIBER:
359 case E1000_DEV_ID_82546EB_QUAD_COPPER:
360 hw->mac_type = e1000_82546;
361 break;
362 case E1000_DEV_ID_82546GB_COPPER:
363 case E1000_DEV_ID_82546GB_FIBER:
364 case E1000_DEV_ID_82546GB_SERDES:
365 case E1000_DEV_ID_82546GB_PCIE:
366 case E1000_DEV_ID_82546GB_QUAD_COPPER:
367 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
368 hw->mac_type = e1000_82546_rev_3;
369 break;
370 case E1000_DEV_ID_82541EI:
371 case E1000_DEV_ID_82541EI_MOBILE:
372 case E1000_DEV_ID_82541ER_LOM:
373 hw->mac_type = e1000_82541;
374 break;
375 case E1000_DEV_ID_82541ER:
376 case E1000_DEV_ID_82541GI:
377 case E1000_DEV_ID_82541GI_LF:
378 case E1000_DEV_ID_82541GI_MOBILE:
379 hw->mac_type = e1000_82541_rev_2;
380 break;
381 case E1000_DEV_ID_82547EI:
382 case E1000_DEV_ID_82547EI_MOBILE:
383 hw->mac_type = e1000_82547;
384 break;
385 case E1000_DEV_ID_82547GI:
386 hw->mac_type = e1000_82547_rev_2;
387 break;
388 case E1000_DEV_ID_82571EB_COPPER:
389 case E1000_DEV_ID_82571EB_FIBER:
390 case E1000_DEV_ID_82571EB_SERDES:
391 case E1000_DEV_ID_82571EB_QUAD_COPPER:
392 hw->mac_type = e1000_82571;
393 break;
394 case E1000_DEV_ID_82572EI_COPPER:
395 case E1000_DEV_ID_82572EI_FIBER:
396 case E1000_DEV_ID_82572EI_SERDES:
397 case E1000_DEV_ID_82572EI:
398 hw->mac_type = e1000_82572;
399 break;
400 case E1000_DEV_ID_82573E:
401 case E1000_DEV_ID_82573E_IAMT:
402 case E1000_DEV_ID_82573L:
403 hw->mac_type = e1000_82573;
404 break;
405 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
406 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
407 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
408 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
409 hw->mac_type = e1000_80003es2lan;
410 break;
411 case E1000_DEV_ID_ICH8_IGP_M_AMT:
412 case E1000_DEV_ID_ICH8_IGP_AMT:
413 case E1000_DEV_ID_ICH8_IGP_C:
414 case E1000_DEV_ID_ICH8_IFE:
415 case E1000_DEV_ID_ICH8_IGP_M:
416 hw->mac_type = e1000_ich8lan;
417 break;
418 default:
419 /* Should never have loaded on this device */
420 return -E1000_ERR_MAC_TYPE;
423 switch (hw->mac_type) {
424 case e1000_ich8lan:
425 hw->swfwhw_semaphore_present = TRUE;
426 hw->asf_firmware_present = TRUE;
427 break;
428 case e1000_80003es2lan:
429 hw->swfw_sync_present = TRUE;
430 /* fall through */
431 case e1000_82571:
432 case e1000_82572:
433 case e1000_82573:
434 hw->eeprom_semaphore_present = TRUE;
435 /* fall through */
436 case e1000_82541:
437 case e1000_82547:
438 case e1000_82541_rev_2:
439 case e1000_82547_rev_2:
440 hw->asf_firmware_present = TRUE;
441 break;
442 default:
443 break;
446 return E1000_SUCCESS;
449 /*****************************************************************************
450 * Set media type and TBI compatibility.
452 * hw - Struct containing variables accessed by shared code
453 * **************************************************************************/
454 void
455 e1000_set_media_type(struct e1000_hw *hw)
457 uint32_t status;
459 DEBUGFUNC("e1000_set_media_type");
461 if (hw->mac_type != e1000_82543) {
462 /* tbi_compatibility is only valid on 82543 */
463 hw->tbi_compatibility_en = FALSE;
466 switch (hw->device_id) {
467 case E1000_DEV_ID_82545GM_SERDES:
468 case E1000_DEV_ID_82546GB_SERDES:
469 case E1000_DEV_ID_82571EB_SERDES:
470 case E1000_DEV_ID_82572EI_SERDES:
471 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
472 hw->media_type = e1000_media_type_internal_serdes;
473 break;
474 default:
475 switch (hw->mac_type) {
476 case e1000_82542_rev2_0:
477 case e1000_82542_rev2_1:
478 hw->media_type = e1000_media_type_fiber;
479 break;
480 case e1000_ich8lan:
481 case e1000_82573:
482 /* The STATUS_TBIMODE bit is reserved or reused for the this
483 * device.
485 hw->media_type = e1000_media_type_copper;
486 break;
487 default:
488 status = E1000_READ_REG(hw, STATUS);
489 if (status & E1000_STATUS_TBIMODE) {
490 hw->media_type = e1000_media_type_fiber;
491 /* tbi_compatibility not valid on fiber */
492 hw->tbi_compatibility_en = FALSE;
493 } else {
494 hw->media_type = e1000_media_type_copper;
496 break;
501 /******************************************************************************
502 * Reset the transmit and receive units; mask and clear all interrupts.
504 * hw - Struct containing variables accessed by shared code
505 *****************************************************************************/
506 int32_t
507 e1000_reset_hw(struct e1000_hw *hw)
509 uint32_t ctrl;
510 uint32_t ctrl_ext;
511 uint32_t icr;
512 uint32_t manc;
513 uint32_t led_ctrl;
514 uint32_t timeout;
515 uint32_t extcnf_ctrl;
516 int32_t ret_val;
518 DEBUGFUNC("e1000_reset_hw");
520 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
521 if (hw->mac_type == e1000_82542_rev2_0) {
522 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
523 e1000_pci_clear_mwi(hw);
526 if (hw->bus_type == e1000_bus_type_pci_express) {
527 /* Prevent the PCI-E bus from sticking if there is no TLP connection
528 * on the last TLP read/write transaction when MAC is reset.
530 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
531 DEBUGOUT("PCI-E Master disable polling has failed.\n");
535 /* Clear interrupt mask to stop board from generating interrupts */
536 DEBUGOUT("Masking off all interrupts\n");
537 E1000_WRITE_REG(hw, IMC, 0xffffffff);
539 /* Disable the Transmit and Receive units. Then delay to allow
540 * any pending transactions to complete before we hit the MAC with
541 * the global reset.
543 E1000_WRITE_REG(hw, RCTL, 0);
544 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
545 E1000_WRITE_FLUSH(hw);
547 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
548 hw->tbi_compatibility_on = FALSE;
550 /* Delay to allow any outstanding PCI transactions to complete before
551 * resetting the device
553 msleep(10);
555 ctrl = E1000_READ_REG(hw, CTRL);
557 /* Must reset the PHY before resetting the MAC */
558 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
559 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
560 msleep(5);
563 /* Must acquire the MDIO ownership before MAC reset.
564 * Ownership defaults to firmware after a reset. */
565 if (hw->mac_type == e1000_82573) {
566 timeout = 10;
568 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
569 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
571 do {
572 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
573 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
575 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
576 break;
577 else
578 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
580 msleep(2);
581 timeout--;
582 } while (timeout);
585 /* Workaround for ICH8 bit corruption issue in FIFO memory */
586 if (hw->mac_type == e1000_ich8lan) {
587 /* Set Tx and Rx buffer allocation to 8k apiece. */
588 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
589 /* Set Packet Buffer Size to 16k. */
590 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
593 /* Issue a global reset to the MAC. This will reset the chip's
594 * transmit, receive, DMA, and link units. It will not effect
595 * the current PCI configuration. The global reset bit is self-
596 * clearing, and should clear within a microsecond.
598 DEBUGOUT("Issuing a global reset to MAC\n");
600 switch (hw->mac_type) {
601 case e1000_82544:
602 case e1000_82540:
603 case e1000_82545:
604 case e1000_82546:
605 case e1000_82541:
606 case e1000_82541_rev_2:
607 /* These controllers can't ack the 64-bit write when issuing the
608 * reset, so use IO-mapping as a workaround to issue the reset */
609 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
610 break;
611 case e1000_82545_rev_3:
612 case e1000_82546_rev_3:
613 /* Reset is performed on a shadow of the control register */
614 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
615 break;
616 case e1000_ich8lan:
617 if (!hw->phy_reset_disable &&
618 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
619 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
620 * at the same time to make sure the interface between
621 * MAC and the external PHY is reset.
623 ctrl |= E1000_CTRL_PHY_RST;
626 e1000_get_software_flag(hw);
627 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
628 msleep(5);
629 break;
630 default:
631 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
632 break;
635 /* After MAC reset, force reload of EEPROM to restore power-on settings to
636 * device. Later controllers reload the EEPROM automatically, so just wait
637 * for reload to complete.
639 switch (hw->mac_type) {
640 case e1000_82542_rev2_0:
641 case e1000_82542_rev2_1:
642 case e1000_82543:
643 case e1000_82544:
644 /* Wait for reset to complete */
645 udelay(10);
646 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
647 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
648 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
649 E1000_WRITE_FLUSH(hw);
650 /* Wait for EEPROM reload */
651 msleep(2);
652 break;
653 case e1000_82541:
654 case e1000_82541_rev_2:
655 case e1000_82547:
656 case e1000_82547_rev_2:
657 /* Wait for EEPROM reload */
658 msleep(20);
659 break;
660 case e1000_82573:
661 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
662 udelay(10);
663 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
664 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
665 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
666 E1000_WRITE_FLUSH(hw);
668 /* fall through */
669 case e1000_82571:
670 case e1000_82572:
671 case e1000_ich8lan:
672 case e1000_80003es2lan:
673 ret_val = e1000_get_auto_rd_done(hw);
674 if (ret_val)
675 /* We don't want to continue accessing MAC registers. */
676 return ret_val;
677 break;
678 default:
679 /* Wait for EEPROM reload (it happens automatically) */
680 msleep(5);
681 break;
684 /* Disable HW ARPs on ASF enabled adapters */
685 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
686 manc = E1000_READ_REG(hw, MANC);
687 manc &= ~(E1000_MANC_ARP_EN);
688 E1000_WRITE_REG(hw, MANC, manc);
691 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
692 e1000_phy_init_script(hw);
694 /* Configure activity LED after PHY reset */
695 led_ctrl = E1000_READ_REG(hw, LEDCTL);
696 led_ctrl &= IGP_ACTIVITY_LED_MASK;
697 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
698 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
701 /* Clear interrupt mask to stop board from generating interrupts */
702 DEBUGOUT("Masking off all interrupts\n");
703 E1000_WRITE_REG(hw, IMC, 0xffffffff);
705 /* Clear any pending interrupt events. */
706 icr = E1000_READ_REG(hw, ICR);
708 /* If MWI was previously enabled, reenable it. */
709 if (hw->mac_type == e1000_82542_rev2_0) {
710 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
711 e1000_pci_set_mwi(hw);
714 if (hw->mac_type == e1000_ich8lan) {
715 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
716 kab |= E1000_KABGTXD_BGSQLBIAS;
717 E1000_WRITE_REG(hw, KABGTXD, kab);
720 return E1000_SUCCESS;
723 /******************************************************************************
724 * Performs basic configuration of the adapter.
726 * hw - Struct containing variables accessed by shared code
728 * Assumes that the controller has previously been reset and is in a
729 * post-reset uninitialized state. Initializes the receive address registers,
730 * multicast table, and VLAN filter table. Calls routines to setup link
731 * configuration and flow control settings. Clears all on-chip counters. Leaves
732 * the transmit and receive units disabled and uninitialized.
733 *****************************************************************************/
734 int32_t
735 e1000_init_hw(struct e1000_hw *hw)
737 uint32_t ctrl;
738 uint32_t i;
739 int32_t ret_val;
740 uint16_t pcix_cmd_word;
741 uint16_t pcix_stat_hi_word;
742 uint16_t cmd_mmrbc;
743 uint16_t stat_mmrbc;
744 uint32_t mta_size;
745 uint32_t reg_data;
746 uint32_t ctrl_ext;
748 DEBUGFUNC("e1000_init_hw");
750 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
751 if (hw->mac_type == e1000_ich8lan) {
752 reg_data = E1000_READ_REG(hw, TARC0);
753 reg_data |= 0x30000000;
754 E1000_WRITE_REG(hw, TARC0, reg_data);
756 reg_data = E1000_READ_REG(hw, STATUS);
757 reg_data &= ~0x80000000;
758 E1000_WRITE_REG(hw, STATUS, reg_data);
761 /* Initialize Identification LED */
762 ret_val = e1000_id_led_init(hw);
763 if (ret_val) {
764 DEBUGOUT("Error Initializing Identification LED\n");
765 return ret_val;
768 /* Set the media type and TBI compatibility */
769 e1000_set_media_type(hw);
771 /* Disabling VLAN filtering. */
772 DEBUGOUT("Initializing the IEEE VLAN\n");
773 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
774 if (hw->mac_type != e1000_ich8lan) {
775 if (hw->mac_type < e1000_82545_rev_3)
776 E1000_WRITE_REG(hw, VET, 0);
777 e1000_clear_vfta(hw);
780 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
781 if (hw->mac_type == e1000_82542_rev2_0) {
782 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
783 e1000_pci_clear_mwi(hw);
784 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
785 E1000_WRITE_FLUSH(hw);
786 msleep(5);
789 /* Setup the receive address. This involves initializing all of the Receive
790 * Address Registers (RARs 0 - 15).
792 e1000_init_rx_addrs(hw);
794 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
795 if (hw->mac_type == e1000_82542_rev2_0) {
796 E1000_WRITE_REG(hw, RCTL, 0);
797 E1000_WRITE_FLUSH(hw);
798 msleep(1);
799 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
800 e1000_pci_set_mwi(hw);
803 /* Zero out the Multicast HASH table */
804 DEBUGOUT("Zeroing the MTA\n");
805 mta_size = E1000_MC_TBL_SIZE;
806 if (hw->mac_type == e1000_ich8lan)
807 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
808 for (i = 0; i < mta_size; i++) {
809 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
810 /* use write flush to prevent Memory Write Block (MWB) from
811 * occuring when accessing our register space */
812 E1000_WRITE_FLUSH(hw);
815 /* Set the PCI priority bit correctly in the CTRL register. This
816 * determines if the adapter gives priority to receives, or if it
817 * gives equal priority to transmits and receives. Valid only on
818 * 82542 and 82543 silicon.
820 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
821 ctrl = E1000_READ_REG(hw, CTRL);
822 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
825 switch (hw->mac_type) {
826 case e1000_82545_rev_3:
827 case e1000_82546_rev_3:
828 break;
829 default:
830 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
831 if (hw->bus_type == e1000_bus_type_pcix) {
832 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
833 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
834 &pcix_stat_hi_word);
835 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
836 PCIX_COMMAND_MMRBC_SHIFT;
837 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
838 PCIX_STATUS_HI_MMRBC_SHIFT;
839 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
840 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
841 if (cmd_mmrbc > stat_mmrbc) {
842 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
843 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
844 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
845 &pcix_cmd_word);
848 break;
851 /* More time needed for PHY to initialize */
852 if (hw->mac_type == e1000_ich8lan)
853 msleep(15);
855 /* Call a subroutine to configure the link and setup flow control. */
856 ret_val = e1000_setup_link(hw);
858 /* Set the transmit descriptor write-back policy */
859 if (hw->mac_type > e1000_82544) {
860 ctrl = E1000_READ_REG(hw, TXDCTL);
861 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
862 switch (hw->mac_type) {
863 default:
864 break;
865 case e1000_82571:
866 case e1000_82572:
867 case e1000_82573:
868 case e1000_ich8lan:
869 case e1000_80003es2lan:
870 ctrl |= E1000_TXDCTL_COUNT_DESC;
871 break;
873 E1000_WRITE_REG(hw, TXDCTL, ctrl);
876 if (hw->mac_type == e1000_82573) {
877 e1000_enable_tx_pkt_filtering(hw);
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_80003es2lan:
884 /* Enable retransmit on late collisions */
885 reg_data = E1000_READ_REG(hw, TCTL);
886 reg_data |= E1000_TCTL_RTLC;
887 E1000_WRITE_REG(hw, TCTL, reg_data);
889 /* Configure Gigabit Carry Extend Padding */
890 reg_data = E1000_READ_REG(hw, TCTL_EXT);
891 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
892 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
893 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
895 /* Configure Transmit Inter-Packet Gap */
896 reg_data = E1000_READ_REG(hw, TIPG);
897 reg_data &= ~E1000_TIPG_IPGT_MASK;
898 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
899 E1000_WRITE_REG(hw, TIPG, reg_data);
901 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
902 reg_data &= ~0x00100000;
903 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
904 /* Fall through */
905 case e1000_82571:
906 case e1000_82572:
907 case e1000_ich8lan:
908 ctrl = E1000_READ_REG(hw, TXDCTL1);
909 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
910 if (hw->mac_type >= e1000_82571)
911 ctrl |= E1000_TXDCTL_COUNT_DESC;
912 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
913 break;
917 if (hw->mac_type == e1000_82573) {
918 uint32_t gcr = E1000_READ_REG(hw, GCR);
919 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
920 E1000_WRITE_REG(hw, GCR, gcr);
923 /* Clear all of the statistics registers (clear on read). It is
924 * important that we do this after we have tried to establish link
925 * because the symbol error count will increment wildly if there
926 * is no link.
928 e1000_clear_hw_cntrs(hw);
930 /* ICH8 No-snoop bits are opposite polarity.
931 * Set to snoop by default after reset. */
932 if (hw->mac_type == e1000_ich8lan)
933 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
935 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
936 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
937 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
938 /* Relaxed ordering must be disabled to avoid a parity
939 * error crash in a PCI slot. */
940 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
941 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
944 return ret_val;
947 /******************************************************************************
948 * Adjust SERDES output amplitude based on EEPROM setting.
950 * hw - Struct containing variables accessed by shared code.
951 *****************************************************************************/
952 static int32_t
953 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
955 uint16_t eeprom_data;
956 int32_t ret_val;
958 DEBUGFUNC("e1000_adjust_serdes_amplitude");
960 if (hw->media_type != e1000_media_type_internal_serdes)
961 return E1000_SUCCESS;
963 switch (hw->mac_type) {
964 case e1000_82545_rev_3:
965 case e1000_82546_rev_3:
966 break;
967 default:
968 return E1000_SUCCESS;
971 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
972 if (ret_val) {
973 return ret_val;
976 if (eeprom_data != EEPROM_RESERVED_WORD) {
977 /* Adjust SERDES output amplitude only. */
978 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
979 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
980 if (ret_val)
981 return ret_val;
984 return E1000_SUCCESS;
987 /******************************************************************************
988 * Configures flow control and link settings.
990 * hw - Struct containing variables accessed by shared code
992 * Determines which flow control settings to use. Calls the apropriate media-
993 * specific link configuration function. Configures the flow control settings.
994 * Assuming the adapter has a valid link partner, a valid link should be
995 * established. Assumes the hardware has previously been reset and the
996 * transmitter and receiver are not enabled.
997 *****************************************************************************/
998 int32_t
999 e1000_setup_link(struct e1000_hw *hw)
1001 uint32_t ctrl_ext;
1002 int32_t ret_val;
1003 uint16_t eeprom_data;
1005 DEBUGFUNC("e1000_setup_link");
1007 /* In the case of the phy reset being blocked, we already have a link.
1008 * We do not have to set it up again. */
1009 if (e1000_check_phy_reset_block(hw))
1010 return E1000_SUCCESS;
1012 /* Read and store word 0x0F of the EEPROM. This word contains bits
1013 * that determine the hardware's default PAUSE (flow control) mode,
1014 * a bit that determines whether the HW defaults to enabling or
1015 * disabling auto-negotiation, and the direction of the
1016 * SW defined pins. If there is no SW over-ride of the flow
1017 * control setting, then the variable hw->fc will
1018 * be initialized based on a value in the EEPROM.
1020 if (hw->fc == E1000_FC_DEFAULT) {
1021 switch (hw->mac_type) {
1022 case e1000_ich8lan:
1023 case e1000_82573:
1024 hw->fc = E1000_FC_FULL;
1025 break;
1026 default:
1027 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1028 1, &eeprom_data);
1029 if (ret_val) {
1030 DEBUGOUT("EEPROM Read Error\n");
1031 return -E1000_ERR_EEPROM;
1033 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1034 hw->fc = E1000_FC_NONE;
1035 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1036 EEPROM_WORD0F_ASM_DIR)
1037 hw->fc = E1000_FC_TX_PAUSE;
1038 else
1039 hw->fc = E1000_FC_FULL;
1040 break;
1044 /* We want to save off the original Flow Control configuration just
1045 * in case we get disconnected and then reconnected into a different
1046 * hub or switch with different Flow Control capabilities.
1048 if (hw->mac_type == e1000_82542_rev2_0)
1049 hw->fc &= (~E1000_FC_TX_PAUSE);
1051 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1052 hw->fc &= (~E1000_FC_RX_PAUSE);
1054 hw->original_fc = hw->fc;
1056 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1058 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1059 * polarity value for the SW controlled pins, and setup the
1060 * Extended Device Control reg with that info.
1061 * This is needed because one of the SW controlled pins is used for
1062 * signal detection. So this should be done before e1000_setup_pcs_link()
1063 * or e1000_phy_setup() is called.
1065 if (hw->mac_type == e1000_82543) {
1066 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1067 1, &eeprom_data);
1068 if (ret_val) {
1069 DEBUGOUT("EEPROM Read Error\n");
1070 return -E1000_ERR_EEPROM;
1072 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1073 SWDPIO__EXT_SHIFT);
1074 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1077 /* Call the necessary subroutine to configure the link. */
1078 ret_val = (hw->media_type == e1000_media_type_copper) ?
1079 e1000_setup_copper_link(hw) :
1080 e1000_setup_fiber_serdes_link(hw);
1082 /* Initialize the flow control address, type, and PAUSE timer
1083 * registers to their default values. This is done even if flow
1084 * control is disabled, because it does not hurt anything to
1085 * initialize these registers.
1087 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1089 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1090 if (hw->mac_type != e1000_ich8lan) {
1091 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1092 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1093 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1096 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1098 /* Set the flow control receive threshold registers. Normally,
1099 * these registers will be set to a default threshold that may be
1100 * adjusted later by the driver's runtime code. However, if the
1101 * ability to transmit pause frames in not enabled, then these
1102 * registers will be set to 0.
1104 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1105 E1000_WRITE_REG(hw, FCRTL, 0);
1106 E1000_WRITE_REG(hw, FCRTH, 0);
1107 } else {
1108 /* We need to set up the Receive Threshold high and low water marks
1109 * as well as (optionally) enabling the transmission of XON frames.
1111 if (hw->fc_send_xon) {
1112 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1113 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1114 } else {
1115 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1116 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1119 return ret_val;
1122 /******************************************************************************
1123 * Sets up link for a fiber based or serdes based adapter
1125 * hw - Struct containing variables accessed by shared code
1127 * Manipulates Physical Coding Sublayer functions in order to configure
1128 * link. Assumes the hardware has been previously reset and the transmitter
1129 * and receiver are not enabled.
1130 *****************************************************************************/
1131 static int32_t
1132 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1134 uint32_t ctrl;
1135 uint32_t status;
1136 uint32_t txcw = 0;
1137 uint32_t i;
1138 uint32_t signal = 0;
1139 int32_t ret_val;
1141 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1143 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1144 * until explicitly turned off or a power cycle is performed. A read to
1145 * the register does not indicate its status. Therefore, we ensure
1146 * loopback mode is disabled during initialization.
1148 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1149 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1151 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
1152 * set when the optics detect a signal. On older adapters, it will be
1153 * cleared when there is a signal. This applies to fiber media only.
1154 * If we're on serdes media, adjust the output amplitude to value set in
1155 * the EEPROM.
1157 ctrl = E1000_READ_REG(hw, CTRL);
1158 if (hw->media_type == e1000_media_type_fiber)
1159 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1161 ret_val = e1000_adjust_serdes_amplitude(hw);
1162 if (ret_val)
1163 return ret_val;
1165 /* Take the link out of reset */
1166 ctrl &= ~(E1000_CTRL_LRST);
1168 /* Adjust VCO speed to improve BER performance */
1169 ret_val = e1000_set_vco_speed(hw);
1170 if (ret_val)
1171 return ret_val;
1173 e1000_config_collision_dist(hw);
1175 /* Check for a software override of the flow control settings, and setup
1176 * the device accordingly. If auto-negotiation is enabled, then software
1177 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1178 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1179 * auto-negotiation is disabled, then software will have to manually
1180 * configure the two flow control enable bits in the CTRL register.
1182 * The possible values of the "fc" parameter are:
1183 * 0: Flow control is completely disabled
1184 * 1: Rx flow control is enabled (we can receive pause frames, but
1185 * not send pause frames).
1186 * 2: Tx flow control is enabled (we can send pause frames but we do
1187 * not support receiving pause frames).
1188 * 3: Both Rx and TX flow control (symmetric) are enabled.
1190 switch (hw->fc) {
1191 case E1000_FC_NONE:
1192 /* Flow control is completely disabled by a software over-ride. */
1193 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1194 break;
1195 case E1000_FC_RX_PAUSE:
1196 /* RX Flow control is enabled and TX Flow control is disabled by a
1197 * software over-ride. Since there really isn't a way to advertise
1198 * that we are capable of RX Pause ONLY, we will advertise that we
1199 * support both symmetric and asymmetric RX PAUSE. Later, we will
1200 * disable the adapter's ability to send PAUSE frames.
1202 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1203 break;
1204 case E1000_FC_TX_PAUSE:
1205 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1206 * software over-ride.
1208 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1209 break;
1210 case E1000_FC_FULL:
1211 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1212 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1213 break;
1214 default:
1215 DEBUGOUT("Flow control param set incorrectly\n");
1216 return -E1000_ERR_CONFIG;
1217 break;
1220 /* Since auto-negotiation is enabled, take the link out of reset (the link
1221 * will be in reset, because we previously reset the chip). This will
1222 * restart auto-negotiation. If auto-neogtiation is successful then the
1223 * link-up status bit will be set and the flow control enable bits (RFCE
1224 * and TFCE) will be set according to their negotiated value.
1226 DEBUGOUT("Auto-negotiation enabled\n");
1228 E1000_WRITE_REG(hw, TXCW, txcw);
1229 E1000_WRITE_REG(hw, CTRL, ctrl);
1230 E1000_WRITE_FLUSH(hw);
1232 hw->txcw = txcw;
1233 msleep(1);
1235 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1236 * indication in the Device Status Register. Time-out if a link isn't
1237 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1238 * less than 500 milliseconds even if the other end is doing it in SW).
1239 * For internal serdes, we just assume a signal is present, then poll.
1241 if (hw->media_type == e1000_media_type_internal_serdes ||
1242 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1243 DEBUGOUT("Looking for Link\n");
1244 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1245 msleep(10);
1246 status = E1000_READ_REG(hw, STATUS);
1247 if (status & E1000_STATUS_LU) break;
1249 if (i == (LINK_UP_TIMEOUT / 10)) {
1250 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1251 hw->autoneg_failed = 1;
1252 /* AutoNeg failed to achieve a link, so we'll call
1253 * e1000_check_for_link. This routine will force the link up if
1254 * we detect a signal. This will allow us to communicate with
1255 * non-autonegotiating link partners.
1257 ret_val = e1000_check_for_link(hw);
1258 if (ret_val) {
1259 DEBUGOUT("Error while checking for link\n");
1260 return ret_val;
1262 hw->autoneg_failed = 0;
1263 } else {
1264 hw->autoneg_failed = 0;
1265 DEBUGOUT("Valid Link Found\n");
1267 } else {
1268 DEBUGOUT("No Signal Detected\n");
1270 return E1000_SUCCESS;
1273 /******************************************************************************
1274 * Make sure we have a valid PHY and change PHY mode before link setup.
1276 * hw - Struct containing variables accessed by shared code
1277 ******************************************************************************/
1278 static int32_t
1279 e1000_copper_link_preconfig(struct e1000_hw *hw)
1281 uint32_t ctrl;
1282 int32_t ret_val;
1283 uint16_t phy_data;
1285 DEBUGFUNC("e1000_copper_link_preconfig");
1287 ctrl = E1000_READ_REG(hw, CTRL);
1288 /* With 82543, we need to force speed and duplex on the MAC equal to what
1289 * the PHY speed and duplex configuration is. In addition, we need to
1290 * perform a hardware reset on the PHY to take it out of reset.
1292 if (hw->mac_type > e1000_82543) {
1293 ctrl |= E1000_CTRL_SLU;
1294 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1295 E1000_WRITE_REG(hw, CTRL, ctrl);
1296 } else {
1297 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1298 E1000_WRITE_REG(hw, CTRL, ctrl);
1299 ret_val = e1000_phy_hw_reset(hw);
1300 if (ret_val)
1301 return ret_val;
1304 /* Make sure we have a valid PHY */
1305 ret_val = e1000_detect_gig_phy(hw);
1306 if (ret_val) {
1307 DEBUGOUT("Error, did not detect valid phy.\n");
1308 return ret_val;
1310 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1312 /* Set PHY to class A mode (if necessary) */
1313 ret_val = e1000_set_phy_mode(hw);
1314 if (ret_val)
1315 return ret_val;
1317 if ((hw->mac_type == e1000_82545_rev_3) ||
1318 (hw->mac_type == e1000_82546_rev_3)) {
1319 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1320 phy_data |= 0x00000008;
1321 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1324 if (hw->mac_type <= e1000_82543 ||
1325 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1326 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1327 hw->phy_reset_disable = FALSE;
1329 return E1000_SUCCESS;
1333 /********************************************************************
1334 * Copper link setup for e1000_phy_igp series.
1336 * hw - Struct containing variables accessed by shared code
1337 *********************************************************************/
1338 static int32_t
1339 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1341 uint32_t led_ctrl;
1342 int32_t ret_val;
1343 uint16_t phy_data;
1345 DEBUGFUNC("e1000_copper_link_igp_setup");
1347 if (hw->phy_reset_disable)
1348 return E1000_SUCCESS;
1350 ret_val = e1000_phy_reset(hw);
1351 if (ret_val) {
1352 DEBUGOUT("Error Resetting the PHY\n");
1353 return ret_val;
1356 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1357 msleep(15);
1358 if (hw->mac_type != e1000_ich8lan) {
1359 /* Configure activity LED after PHY reset */
1360 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1361 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1362 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1363 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1366 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1367 if (hw->phy_type == e1000_phy_igp) {
1368 /* disable lplu d3 during driver init */
1369 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1370 if (ret_val) {
1371 DEBUGOUT("Error Disabling LPLU D3\n");
1372 return ret_val;
1376 /* disable lplu d0 during driver init */
1377 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1378 if (ret_val) {
1379 DEBUGOUT("Error Disabling LPLU D0\n");
1380 return ret_val;
1382 /* Configure mdi-mdix settings */
1383 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1384 if (ret_val)
1385 return ret_val;
1387 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1388 hw->dsp_config_state = e1000_dsp_config_disabled;
1389 /* Force MDI for earlier revs of the IGP PHY */
1390 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1391 hw->mdix = 1;
1393 } else {
1394 hw->dsp_config_state = e1000_dsp_config_enabled;
1395 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1397 switch (hw->mdix) {
1398 case 1:
1399 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1400 break;
1401 case 2:
1402 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1403 break;
1404 case 0:
1405 default:
1406 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1407 break;
1410 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1411 if (ret_val)
1412 return ret_val;
1414 /* set auto-master slave resolution settings */
1415 if (hw->autoneg) {
1416 e1000_ms_type phy_ms_setting = hw->master_slave;
1418 if (hw->ffe_config_state == e1000_ffe_config_active)
1419 hw->ffe_config_state = e1000_ffe_config_enabled;
1421 if (hw->dsp_config_state == e1000_dsp_config_activated)
1422 hw->dsp_config_state = e1000_dsp_config_enabled;
1424 /* when autonegotiation advertisment is only 1000Mbps then we
1425 * should disable SmartSpeed and enable Auto MasterSlave
1426 * resolution as hardware default. */
1427 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1428 /* Disable SmartSpeed */
1429 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1430 &phy_data);
1431 if (ret_val)
1432 return ret_val;
1433 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1434 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1435 phy_data);
1436 if (ret_val)
1437 return ret_val;
1438 /* Set auto Master/Slave resolution process */
1439 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1440 if (ret_val)
1441 return ret_val;
1442 phy_data &= ~CR_1000T_MS_ENABLE;
1443 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1444 if (ret_val)
1445 return ret_val;
1448 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1449 if (ret_val)
1450 return ret_val;
1452 /* load defaults for future use */
1453 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1454 ((phy_data & CR_1000T_MS_VALUE) ?
1455 e1000_ms_force_master :
1456 e1000_ms_force_slave) :
1457 e1000_ms_auto;
1459 switch (phy_ms_setting) {
1460 case e1000_ms_force_master:
1461 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1462 break;
1463 case e1000_ms_force_slave:
1464 phy_data |= CR_1000T_MS_ENABLE;
1465 phy_data &= ~(CR_1000T_MS_VALUE);
1466 break;
1467 case e1000_ms_auto:
1468 phy_data &= ~CR_1000T_MS_ENABLE;
1469 default:
1470 break;
1472 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1473 if (ret_val)
1474 return ret_val;
1477 return E1000_SUCCESS;
1480 /********************************************************************
1481 * Copper link setup for e1000_phy_gg82563 series.
1483 * hw - Struct containing variables accessed by shared code
1484 *********************************************************************/
1485 static int32_t
1486 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1488 int32_t ret_val;
1489 uint16_t phy_data;
1490 uint32_t reg_data;
1492 DEBUGFUNC("e1000_copper_link_ggp_setup");
1494 if (!hw->phy_reset_disable) {
1496 /* Enable CRS on TX for half-duplex operation. */
1497 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1498 &phy_data);
1499 if (ret_val)
1500 return ret_val;
1502 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1503 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1504 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1506 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1507 phy_data);
1508 if (ret_val)
1509 return ret_val;
1511 /* Options:
1512 * MDI/MDI-X = 0 (default)
1513 * 0 - Auto for all speeds
1514 * 1 - MDI mode
1515 * 2 - MDI-X mode
1516 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1518 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1519 if (ret_val)
1520 return ret_val;
1522 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1524 switch (hw->mdix) {
1525 case 1:
1526 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1527 break;
1528 case 2:
1529 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1530 break;
1531 case 0:
1532 default:
1533 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1534 break;
1537 /* Options:
1538 * disable_polarity_correction = 0 (default)
1539 * Automatic Correction for Reversed Cable Polarity
1540 * 0 - Disabled
1541 * 1 - Enabled
1543 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1544 if (hw->disable_polarity_correction == 1)
1545 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1546 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1548 if (ret_val)
1549 return ret_val;
1551 /* SW Reset the PHY so all changes take effect */
1552 ret_val = e1000_phy_reset(hw);
1553 if (ret_val) {
1554 DEBUGOUT("Error Resetting the PHY\n");
1555 return ret_val;
1557 } /* phy_reset_disable */
1559 if (hw->mac_type == e1000_80003es2lan) {
1560 /* Bypass RX and TX FIFO's */
1561 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1562 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1563 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1564 if (ret_val)
1565 return ret_val;
1567 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1568 if (ret_val)
1569 return ret_val;
1571 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1572 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1574 if (ret_val)
1575 return ret_val;
1577 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1578 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1579 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1581 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1582 &phy_data);
1583 if (ret_val)
1584 return ret_val;
1586 /* Do not init these registers when the HW is in IAMT mode, since the
1587 * firmware will have already initialized them. We only initialize
1588 * them if the HW is not in IAMT mode.
1590 if (e1000_check_mng_mode(hw) == FALSE) {
1591 /* Enable Electrical Idle on the PHY */
1592 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1593 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1594 phy_data);
1595 if (ret_val)
1596 return ret_val;
1598 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1599 &phy_data);
1600 if (ret_val)
1601 return ret_val;
1603 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1604 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1605 phy_data);
1607 if (ret_val)
1608 return ret_val;
1611 /* Workaround: Disable padding in Kumeran interface in the MAC
1612 * and in the PHY to avoid CRC errors.
1614 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1615 &phy_data);
1616 if (ret_val)
1617 return ret_val;
1618 phy_data |= GG82563_ICR_DIS_PADDING;
1619 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1620 phy_data);
1621 if (ret_val)
1622 return ret_val;
1625 return E1000_SUCCESS;
1628 /********************************************************************
1629 * Copper link setup for e1000_phy_m88 series.
1631 * hw - Struct containing variables accessed by shared code
1632 *********************************************************************/
1633 static int32_t
1634 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1636 int32_t ret_val;
1637 uint16_t phy_data;
1639 DEBUGFUNC("e1000_copper_link_mgp_setup");
1641 if (hw->phy_reset_disable)
1642 return E1000_SUCCESS;
1644 /* Enable CRS on TX. This must be set for half-duplex operation. */
1645 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1646 if (ret_val)
1647 return ret_val;
1649 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1651 /* Options:
1652 * MDI/MDI-X = 0 (default)
1653 * 0 - Auto for all speeds
1654 * 1 - MDI mode
1655 * 2 - MDI-X mode
1656 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1658 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1660 switch (hw->mdix) {
1661 case 1:
1662 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1663 break;
1664 case 2:
1665 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1666 break;
1667 case 3:
1668 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1669 break;
1670 case 0:
1671 default:
1672 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1673 break;
1676 /* Options:
1677 * disable_polarity_correction = 0 (default)
1678 * Automatic Correction for Reversed Cable Polarity
1679 * 0 - Disabled
1680 * 1 - Enabled
1682 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1683 if (hw->disable_polarity_correction == 1)
1684 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1685 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1686 if (ret_val)
1687 return ret_val;
1689 if (hw->phy_revision < M88E1011_I_REV_4) {
1690 /* Force TX_CLK in the Extended PHY Specific Control Register
1691 * to 25MHz clock.
1693 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1694 if (ret_val)
1695 return ret_val;
1697 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1699 if ((hw->phy_revision == E1000_REVISION_2) &&
1700 (hw->phy_id == M88E1111_I_PHY_ID)) {
1701 /* Vidalia Phy, set the downshift counter to 5x */
1702 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1703 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1704 ret_val = e1000_write_phy_reg(hw,
1705 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1706 if (ret_val)
1707 return ret_val;
1708 } else {
1709 /* Configure Master and Slave downshift values */
1710 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1711 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1712 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1713 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1714 ret_val = e1000_write_phy_reg(hw,
1715 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1716 if (ret_val)
1717 return ret_val;
1721 /* SW Reset the PHY so all changes take effect */
1722 ret_val = e1000_phy_reset(hw);
1723 if (ret_val) {
1724 DEBUGOUT("Error Resetting the PHY\n");
1725 return ret_val;
1728 return E1000_SUCCESS;
1731 /********************************************************************
1732 * Setup auto-negotiation and flow control advertisements,
1733 * and then perform auto-negotiation.
1735 * hw - Struct containing variables accessed by shared code
1736 *********************************************************************/
1737 static int32_t
1738 e1000_copper_link_autoneg(struct e1000_hw *hw)
1740 int32_t ret_val;
1741 uint16_t phy_data;
1743 DEBUGFUNC("e1000_copper_link_autoneg");
1745 /* Perform some bounds checking on the hw->autoneg_advertised
1746 * parameter. If this variable is zero, then set it to the default.
1748 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1750 /* If autoneg_advertised is zero, we assume it was not defaulted
1751 * by the calling code so we set to advertise full capability.
1753 if (hw->autoneg_advertised == 0)
1754 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1756 /* IFE phy only supports 10/100 */
1757 if (hw->phy_type == e1000_phy_ife)
1758 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1760 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1761 ret_val = e1000_phy_setup_autoneg(hw);
1762 if (ret_val) {
1763 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1764 return ret_val;
1766 DEBUGOUT("Restarting Auto-Neg\n");
1768 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1769 * the Auto Neg Restart bit in the PHY control register.
1771 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1772 if (ret_val)
1773 return ret_val;
1775 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1776 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1777 if (ret_val)
1778 return ret_val;
1780 /* Does the user want to wait for Auto-Neg to complete here, or
1781 * check at a later time (for example, callback routine).
1783 if (hw->wait_autoneg_complete) {
1784 ret_val = e1000_wait_autoneg(hw);
1785 if (ret_val) {
1786 DEBUGOUT("Error while waiting for autoneg to complete\n");
1787 return ret_val;
1791 hw->get_link_status = TRUE;
1793 return E1000_SUCCESS;
1796 /******************************************************************************
1797 * Config the MAC and the PHY after link is up.
1798 * 1) Set up the MAC to the current PHY speed/duplex
1799 * if we are on 82543. If we
1800 * are on newer silicon, we only need to configure
1801 * collision distance in the Transmit Control Register.
1802 * 2) Set up flow control on the MAC to that established with
1803 * the link partner.
1804 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1806 * hw - Struct containing variables accessed by shared code
1807 ******************************************************************************/
1808 static int32_t
1809 e1000_copper_link_postconfig(struct e1000_hw *hw)
1811 int32_t ret_val;
1812 DEBUGFUNC("e1000_copper_link_postconfig");
1814 if (hw->mac_type >= e1000_82544) {
1815 e1000_config_collision_dist(hw);
1816 } else {
1817 ret_val = e1000_config_mac_to_phy(hw);
1818 if (ret_val) {
1819 DEBUGOUT("Error configuring MAC to PHY settings\n");
1820 return ret_val;
1823 ret_val = e1000_config_fc_after_link_up(hw);
1824 if (ret_val) {
1825 DEBUGOUT("Error Configuring Flow Control\n");
1826 return ret_val;
1829 /* Config DSP to improve Giga link quality */
1830 if (hw->phy_type == e1000_phy_igp) {
1831 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1832 if (ret_val) {
1833 DEBUGOUT("Error Configuring DSP after link up\n");
1834 return ret_val;
1838 return E1000_SUCCESS;
1841 /******************************************************************************
1842 * Detects which PHY is present and setup the speed and duplex
1844 * hw - Struct containing variables accessed by shared code
1845 ******************************************************************************/
1846 static int32_t
1847 e1000_setup_copper_link(struct e1000_hw *hw)
1849 int32_t ret_val;
1850 uint16_t i;
1851 uint16_t phy_data;
1852 uint16_t reg_data;
1854 DEBUGFUNC("e1000_setup_copper_link");
1856 switch (hw->mac_type) {
1857 case e1000_80003es2lan:
1858 case e1000_ich8lan:
1859 /* Set the mac to wait the maximum time between each
1860 * iteration and increase the max iterations when
1861 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1862 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1863 if (ret_val)
1864 return ret_val;
1865 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1866 if (ret_val)
1867 return ret_val;
1868 reg_data |= 0x3F;
1869 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1870 if (ret_val)
1871 return ret_val;
1872 default:
1873 break;
1876 /* Check if it is a valid PHY and set PHY mode if necessary. */
1877 ret_val = e1000_copper_link_preconfig(hw);
1878 if (ret_val)
1879 return ret_val;
1881 switch (hw->mac_type) {
1882 case e1000_80003es2lan:
1883 /* Kumeran registers are written-only */
1884 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1885 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1886 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1887 reg_data);
1888 if (ret_val)
1889 return ret_val;
1890 break;
1891 default:
1892 break;
1895 if (hw->phy_type == e1000_phy_igp ||
1896 hw->phy_type == e1000_phy_igp_3 ||
1897 hw->phy_type == e1000_phy_igp_2) {
1898 ret_val = e1000_copper_link_igp_setup(hw);
1899 if (ret_val)
1900 return ret_val;
1901 } else if (hw->phy_type == e1000_phy_m88) {
1902 ret_val = e1000_copper_link_mgp_setup(hw);
1903 if (ret_val)
1904 return ret_val;
1905 } else if (hw->phy_type == e1000_phy_gg82563) {
1906 ret_val = e1000_copper_link_ggp_setup(hw);
1907 if (ret_val)
1908 return ret_val;
1911 if (hw->autoneg) {
1912 /* Setup autoneg and flow control advertisement
1913 * and perform autonegotiation */
1914 ret_val = e1000_copper_link_autoneg(hw);
1915 if (ret_val)
1916 return ret_val;
1917 } else {
1918 /* PHY will be set to 10H, 10F, 100H,or 100F
1919 * depending on value from forced_speed_duplex. */
1920 DEBUGOUT("Forcing speed and duplex\n");
1921 ret_val = e1000_phy_force_speed_duplex(hw);
1922 if (ret_val) {
1923 DEBUGOUT("Error Forcing Speed and Duplex\n");
1924 return ret_val;
1928 /* Check link status. Wait up to 100 microseconds for link to become
1929 * valid.
1931 for (i = 0; i < 10; i++) {
1932 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1933 if (ret_val)
1934 return ret_val;
1935 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1936 if (ret_val)
1937 return ret_val;
1939 if (phy_data & MII_SR_LINK_STATUS) {
1940 /* Config the MAC and PHY after link is up */
1941 ret_val = e1000_copper_link_postconfig(hw);
1942 if (ret_val)
1943 return ret_val;
1945 DEBUGOUT("Valid link established!!!\n");
1946 return E1000_SUCCESS;
1948 udelay(10);
1951 DEBUGOUT("Unable to establish link!!!\n");
1952 return E1000_SUCCESS;
1955 /******************************************************************************
1956 * Configure the MAC-to-PHY interface for 10/100Mbps
1958 * hw - Struct containing variables accessed by shared code
1959 ******************************************************************************/
1960 static int32_t
1961 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
1963 int32_t ret_val = E1000_SUCCESS;
1964 uint32_t tipg;
1965 uint16_t reg_data;
1967 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1969 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
1970 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
1971 reg_data);
1972 if (ret_val)
1973 return ret_val;
1975 /* Configure Transmit Inter-Packet Gap */
1976 tipg = E1000_READ_REG(hw, TIPG);
1977 tipg &= ~E1000_TIPG_IPGT_MASK;
1978 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
1979 E1000_WRITE_REG(hw, TIPG, tipg);
1981 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1983 if (ret_val)
1984 return ret_val;
1986 if (duplex == HALF_DUPLEX)
1987 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1988 else
1989 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1991 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1993 return ret_val;
1996 static int32_t
1997 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
1999 int32_t ret_val = E1000_SUCCESS;
2000 uint16_t reg_data;
2001 uint32_t tipg;
2003 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2005 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2006 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2007 reg_data);
2008 if (ret_val)
2009 return ret_val;
2011 /* Configure Transmit Inter-Packet Gap */
2012 tipg = E1000_READ_REG(hw, TIPG);
2013 tipg &= ~E1000_TIPG_IPGT_MASK;
2014 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2015 E1000_WRITE_REG(hw, TIPG, tipg);
2017 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2019 if (ret_val)
2020 return ret_val;
2022 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2023 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2025 return ret_val;
2028 /******************************************************************************
2029 * Configures PHY autoneg and flow control advertisement settings
2031 * hw - Struct containing variables accessed by shared code
2032 ******************************************************************************/
2033 int32_t
2034 e1000_phy_setup_autoneg(struct e1000_hw *hw)
2036 int32_t ret_val;
2037 uint16_t mii_autoneg_adv_reg;
2038 uint16_t mii_1000t_ctrl_reg;
2040 DEBUGFUNC("e1000_phy_setup_autoneg");
2042 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2043 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2044 if (ret_val)
2045 return ret_val;
2047 if (hw->phy_type != e1000_phy_ife) {
2048 /* Read the MII 1000Base-T Control Register (Address 9). */
2049 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2050 if (ret_val)
2051 return ret_val;
2052 } else
2053 mii_1000t_ctrl_reg=0;
2055 /* Need to parse both autoneg_advertised and fc and set up
2056 * the appropriate PHY registers. First we will parse for
2057 * autoneg_advertised software override. Since we can advertise
2058 * a plethora of combinations, we need to check each bit
2059 * individually.
2062 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2063 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2064 * the 1000Base-T Control Register (Address 9).
2066 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2067 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2069 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2071 /* Do we want to advertise 10 Mb Half Duplex? */
2072 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
2073 DEBUGOUT("Advertise 10mb Half duplex\n");
2074 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2077 /* Do we want to advertise 10 Mb Full Duplex? */
2078 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
2079 DEBUGOUT("Advertise 10mb Full duplex\n");
2080 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2083 /* Do we want to advertise 100 Mb Half Duplex? */
2084 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
2085 DEBUGOUT("Advertise 100mb Half duplex\n");
2086 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2089 /* Do we want to advertise 100 Mb Full Duplex? */
2090 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
2091 DEBUGOUT("Advertise 100mb Full duplex\n");
2092 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2095 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2096 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2097 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2100 /* Do we want to advertise 1000 Mb Full Duplex? */
2101 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2102 DEBUGOUT("Advertise 1000mb Full duplex\n");
2103 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2104 if (hw->phy_type == e1000_phy_ife) {
2105 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2109 /* Check for a software override of the flow control settings, and
2110 * setup the PHY advertisement registers accordingly. If
2111 * auto-negotiation is enabled, then software will have to set the
2112 * "PAUSE" bits to the correct value in the Auto-Negotiation
2113 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2115 * The possible values of the "fc" parameter are:
2116 * 0: Flow control is completely disabled
2117 * 1: Rx flow control is enabled (we can receive pause frames
2118 * but not send pause frames).
2119 * 2: Tx flow control is enabled (we can send pause frames
2120 * but we do not support receiving pause frames).
2121 * 3: Both Rx and TX flow control (symmetric) are enabled.
2122 * other: No software override. The flow control configuration
2123 * in the EEPROM is used.
2125 switch (hw->fc) {
2126 case E1000_FC_NONE: /* 0 */
2127 /* Flow control (RX & TX) is completely disabled by a
2128 * software over-ride.
2130 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2131 break;
2132 case E1000_FC_RX_PAUSE: /* 1 */
2133 /* RX Flow control is enabled, and TX Flow control is
2134 * disabled, by a software over-ride.
2136 /* Since there really isn't a way to advertise that we are
2137 * capable of RX Pause ONLY, we will advertise that we
2138 * support both symmetric and asymmetric RX PAUSE. Later
2139 * (in e1000_config_fc_after_link_up) we will disable the
2140 *hw's ability to send PAUSE frames.
2142 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2143 break;
2144 case E1000_FC_TX_PAUSE: /* 2 */
2145 /* TX Flow control is enabled, and RX Flow control is
2146 * disabled, by a software over-ride.
2148 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2149 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2150 break;
2151 case E1000_FC_FULL: /* 3 */
2152 /* Flow control (both RX and TX) is enabled by a software
2153 * over-ride.
2155 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2156 break;
2157 default:
2158 DEBUGOUT("Flow control param set incorrectly\n");
2159 return -E1000_ERR_CONFIG;
2162 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2163 if (ret_val)
2164 return ret_val;
2166 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2168 if (hw->phy_type != e1000_phy_ife) {
2169 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2170 if (ret_val)
2171 return ret_val;
2174 return E1000_SUCCESS;
2177 /******************************************************************************
2178 * Force PHY speed and duplex settings to hw->forced_speed_duplex
2180 * hw - Struct containing variables accessed by shared code
2181 ******************************************************************************/
2182 static int32_t
2183 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2185 uint32_t ctrl;
2186 int32_t ret_val;
2187 uint16_t mii_ctrl_reg;
2188 uint16_t mii_status_reg;
2189 uint16_t phy_data;
2190 uint16_t i;
2192 DEBUGFUNC("e1000_phy_force_speed_duplex");
2194 /* Turn off Flow control if we are forcing speed and duplex. */
2195 hw->fc = E1000_FC_NONE;
2197 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2199 /* Read the Device Control Register. */
2200 ctrl = E1000_READ_REG(hw, CTRL);
2202 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2203 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2204 ctrl &= ~(DEVICE_SPEED_MASK);
2206 /* Clear the Auto Speed Detect Enable bit. */
2207 ctrl &= ~E1000_CTRL_ASDE;
2209 /* Read the MII Control Register. */
2210 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2211 if (ret_val)
2212 return ret_val;
2214 /* We need to disable autoneg in order to force link and duplex. */
2216 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2218 /* Are we forcing Full or Half Duplex? */
2219 if (hw->forced_speed_duplex == e1000_100_full ||
2220 hw->forced_speed_duplex == e1000_10_full) {
2221 /* We want to force full duplex so we SET the full duplex bits in the
2222 * Device and MII Control Registers.
2224 ctrl |= E1000_CTRL_FD;
2225 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2226 DEBUGOUT("Full Duplex\n");
2227 } else {
2228 /* We want to force half duplex so we CLEAR the full duplex bits in
2229 * the Device and MII Control Registers.
2231 ctrl &= ~E1000_CTRL_FD;
2232 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2233 DEBUGOUT("Half Duplex\n");
2236 /* Are we forcing 100Mbps??? */
2237 if (hw->forced_speed_duplex == e1000_100_full ||
2238 hw->forced_speed_duplex == e1000_100_half) {
2239 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2240 ctrl |= E1000_CTRL_SPD_100;
2241 mii_ctrl_reg |= MII_CR_SPEED_100;
2242 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2243 DEBUGOUT("Forcing 100mb ");
2244 } else {
2245 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2246 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2247 mii_ctrl_reg |= MII_CR_SPEED_10;
2248 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2249 DEBUGOUT("Forcing 10mb ");
2252 e1000_config_collision_dist(hw);
2254 /* Write the configured values back to the Device Control Reg. */
2255 E1000_WRITE_REG(hw, CTRL, ctrl);
2257 if ((hw->phy_type == e1000_phy_m88) ||
2258 (hw->phy_type == e1000_phy_gg82563)) {
2259 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2260 if (ret_val)
2261 return ret_val;
2263 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2264 * forced whenever speed are duplex are forced.
2266 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2267 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2268 if (ret_val)
2269 return ret_val;
2271 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2273 /* Need to reset the PHY or these changes will be ignored */
2274 mii_ctrl_reg |= MII_CR_RESET;
2275 /* Disable MDI-X support for 10/100 */
2276 } else if (hw->phy_type == e1000_phy_ife) {
2277 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2278 if (ret_val)
2279 return ret_val;
2281 phy_data &= ~IFE_PMC_AUTO_MDIX;
2282 phy_data &= ~IFE_PMC_FORCE_MDIX;
2284 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2285 if (ret_val)
2286 return ret_val;
2287 } else {
2288 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2289 * forced whenever speed or duplex are forced.
2291 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2292 if (ret_val)
2293 return ret_val;
2295 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2296 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2298 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2299 if (ret_val)
2300 return ret_val;
2303 /* Write back the modified PHY MII control register. */
2304 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2305 if (ret_val)
2306 return ret_val;
2308 udelay(1);
2310 /* The wait_autoneg_complete flag may be a little misleading here.
2311 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2312 * But we do want to delay for a period while forcing only so we
2313 * don't generate false No Link messages. So we will wait here
2314 * only if the user has set wait_autoneg_complete to 1, which is
2315 * the default.
2317 if (hw->wait_autoneg_complete) {
2318 /* We will wait for autoneg to complete. */
2319 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2320 mii_status_reg = 0;
2322 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2323 for (i = PHY_FORCE_TIME; i > 0; i--) {
2324 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2325 * to be set.
2327 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2328 if (ret_val)
2329 return ret_val;
2331 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2332 if (ret_val)
2333 return ret_val;
2335 if (mii_status_reg & MII_SR_LINK_STATUS) break;
2336 msleep(100);
2338 if ((i == 0) &&
2339 ((hw->phy_type == e1000_phy_m88) ||
2340 (hw->phy_type == e1000_phy_gg82563))) {
2341 /* We didn't get link. Reset the DSP and wait again for link. */
2342 ret_val = e1000_phy_reset_dsp(hw);
2343 if (ret_val) {
2344 DEBUGOUT("Error Resetting PHY DSP\n");
2345 return ret_val;
2348 /* This loop will early-out if the link condition has been met. */
2349 for (i = PHY_FORCE_TIME; i > 0; i--) {
2350 if (mii_status_reg & MII_SR_LINK_STATUS) break;
2351 msleep(100);
2352 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2353 * to be set.
2355 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2356 if (ret_val)
2357 return ret_val;
2359 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2360 if (ret_val)
2361 return ret_val;
2365 if (hw->phy_type == e1000_phy_m88) {
2366 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2367 * Extended PHY Specific Control Register to 25MHz clock. This value
2368 * defaults back to a 2.5MHz clock when the PHY is reset.
2370 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2371 if (ret_val)
2372 return ret_val;
2374 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2375 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2376 if (ret_val)
2377 return ret_val;
2379 /* In addition, because of the s/w reset above, we need to enable CRS on
2380 * TX. This must be set for both full and half duplex operation.
2382 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2383 if (ret_val)
2384 return ret_val;
2386 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2387 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2388 if (ret_val)
2389 return ret_val;
2391 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2392 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2393 hw->forced_speed_duplex == e1000_10_half)) {
2394 ret_val = e1000_polarity_reversal_workaround(hw);
2395 if (ret_val)
2396 return ret_val;
2398 } else if (hw->phy_type == e1000_phy_gg82563) {
2399 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2400 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2401 * we're not in a forced 10/duplex configuration. */
2402 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2403 if (ret_val)
2404 return ret_val;
2406 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2407 if ((hw->forced_speed_duplex == e1000_10_full) ||
2408 (hw->forced_speed_duplex == e1000_10_half))
2409 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2410 else
2411 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2413 /* Also due to the reset, we need to enable CRS on Tx. */
2414 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2416 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2417 if (ret_val)
2418 return ret_val;
2420 return E1000_SUCCESS;
2423 /******************************************************************************
2424 * Sets the collision distance in the Transmit Control register
2426 * hw - Struct containing variables accessed by shared code
2428 * Link should have been established previously. Reads the speed and duplex
2429 * information from the Device Status register.
2430 ******************************************************************************/
2431 void
2432 e1000_config_collision_dist(struct e1000_hw *hw)
2434 uint32_t tctl, coll_dist;
2436 DEBUGFUNC("e1000_config_collision_dist");
2438 if (hw->mac_type < e1000_82543)
2439 coll_dist = E1000_COLLISION_DISTANCE_82542;
2440 else
2441 coll_dist = E1000_COLLISION_DISTANCE;
2443 tctl = E1000_READ_REG(hw, TCTL);
2445 tctl &= ~E1000_TCTL_COLD;
2446 tctl |= coll_dist << E1000_COLD_SHIFT;
2448 E1000_WRITE_REG(hw, TCTL, tctl);
2449 E1000_WRITE_FLUSH(hw);
2452 /******************************************************************************
2453 * Sets MAC speed and duplex settings to reflect the those in the PHY
2455 * hw - Struct containing variables accessed by shared code
2456 * mii_reg - data to write to the MII control register
2458 * The contents of the PHY register containing the needed information need to
2459 * be passed in.
2460 ******************************************************************************/
2461 static int32_t
2462 e1000_config_mac_to_phy(struct e1000_hw *hw)
2464 uint32_t ctrl;
2465 int32_t ret_val;
2466 uint16_t phy_data;
2468 DEBUGFUNC("e1000_config_mac_to_phy");
2470 /* 82544 or newer MAC, Auto Speed Detection takes care of
2471 * MAC speed/duplex configuration.*/
2472 if (hw->mac_type >= e1000_82544)
2473 return E1000_SUCCESS;
2475 /* Read the Device Control Register and set the bits to Force Speed
2476 * and Duplex.
2478 ctrl = E1000_READ_REG(hw, CTRL);
2479 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2480 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2482 /* Set up duplex in the Device Control and Transmit Control
2483 * registers depending on negotiated values.
2485 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2486 if (ret_val)
2487 return ret_val;
2489 if (phy_data & M88E1000_PSSR_DPLX)
2490 ctrl |= E1000_CTRL_FD;
2491 else
2492 ctrl &= ~E1000_CTRL_FD;
2494 e1000_config_collision_dist(hw);
2496 /* Set up speed in the Device Control register depending on
2497 * negotiated values.
2499 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2500 ctrl |= E1000_CTRL_SPD_1000;
2501 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2502 ctrl |= E1000_CTRL_SPD_100;
2504 /* Write the configured values back to the Device Control Reg. */
2505 E1000_WRITE_REG(hw, CTRL, ctrl);
2506 return E1000_SUCCESS;
2509 /******************************************************************************
2510 * Forces the MAC's flow control settings.
2512 * hw - Struct containing variables accessed by shared code
2514 * Sets the TFCE and RFCE bits in the device control register to reflect
2515 * the adapter settings. TFCE and RFCE need to be explicitly set by
2516 * software when a Copper PHY is used because autonegotiation is managed
2517 * by the PHY rather than the MAC. Software must also configure these
2518 * bits when link is forced on a fiber connection.
2519 *****************************************************************************/
2520 int32_t
2521 e1000_force_mac_fc(struct e1000_hw *hw)
2523 uint32_t ctrl;
2525 DEBUGFUNC("e1000_force_mac_fc");
2527 /* Get the current configuration of the Device Control Register */
2528 ctrl = E1000_READ_REG(hw, CTRL);
2530 /* Because we didn't get link via the internal auto-negotiation
2531 * mechanism (we either forced link or we got link via PHY
2532 * auto-neg), we have to manually enable/disable transmit an
2533 * receive flow control.
2535 * The "Case" statement below enables/disable flow control
2536 * according to the "hw->fc" parameter.
2538 * The possible values of the "fc" parameter are:
2539 * 0: Flow control is completely disabled
2540 * 1: Rx flow control is enabled (we can receive pause
2541 * frames but not send pause frames).
2542 * 2: Tx flow control is enabled (we can send pause frames
2543 * frames but we do not receive pause frames).
2544 * 3: Both Rx and TX flow control (symmetric) is enabled.
2545 * other: No other values should be possible at this point.
2548 switch (hw->fc) {
2549 case E1000_FC_NONE:
2550 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2551 break;
2552 case E1000_FC_RX_PAUSE:
2553 ctrl &= (~E1000_CTRL_TFCE);
2554 ctrl |= E1000_CTRL_RFCE;
2555 break;
2556 case E1000_FC_TX_PAUSE:
2557 ctrl &= (~E1000_CTRL_RFCE);
2558 ctrl |= E1000_CTRL_TFCE;
2559 break;
2560 case E1000_FC_FULL:
2561 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2562 break;
2563 default:
2564 DEBUGOUT("Flow control param set incorrectly\n");
2565 return -E1000_ERR_CONFIG;
2568 /* Disable TX Flow Control for 82542 (rev 2.0) */
2569 if (hw->mac_type == e1000_82542_rev2_0)
2570 ctrl &= (~E1000_CTRL_TFCE);
2572 E1000_WRITE_REG(hw, CTRL, ctrl);
2573 return E1000_SUCCESS;
2576 /******************************************************************************
2577 * Configures flow control settings after link is established
2579 * hw - Struct containing variables accessed by shared code
2581 * Should be called immediately after a valid link has been established.
2582 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2583 * and autonegotiation is enabled, the MAC flow control settings will be set
2584 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2585 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2586 *****************************************************************************/
2587 static int32_t
2588 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2590 int32_t ret_val;
2591 uint16_t mii_status_reg;
2592 uint16_t mii_nway_adv_reg;
2593 uint16_t mii_nway_lp_ability_reg;
2594 uint16_t speed;
2595 uint16_t duplex;
2597 DEBUGFUNC("e1000_config_fc_after_link_up");
2599 /* Check for the case where we have fiber media and auto-neg failed
2600 * so we had to force link. In this case, we need to force the
2601 * configuration of the MAC to match the "fc" parameter.
2603 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2604 ((hw->media_type == e1000_media_type_internal_serdes) &&
2605 (hw->autoneg_failed)) ||
2606 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2607 ret_val = e1000_force_mac_fc(hw);
2608 if (ret_val) {
2609 DEBUGOUT("Error forcing flow control settings\n");
2610 return ret_val;
2614 /* Check for the case where we have copper media and auto-neg is
2615 * enabled. In this case, we need to check and see if Auto-Neg
2616 * has completed, and if so, how the PHY and link partner has
2617 * flow control configured.
2619 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2620 /* Read the MII Status Register and check to see if AutoNeg
2621 * has completed. We read this twice because this reg has
2622 * some "sticky" (latched) bits.
2624 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2625 if (ret_val)
2626 return ret_val;
2627 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2628 if (ret_val)
2629 return ret_val;
2631 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2632 /* The AutoNeg process has completed, so we now need to
2633 * read both the Auto Negotiation Advertisement Register
2634 * (Address 4) and the Auto_Negotiation Base Page Ability
2635 * Register (Address 5) to determine how flow control was
2636 * negotiated.
2638 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2639 &mii_nway_adv_reg);
2640 if (ret_val)
2641 return ret_val;
2642 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2643 &mii_nway_lp_ability_reg);
2644 if (ret_val)
2645 return ret_val;
2647 /* Two bits in the Auto Negotiation Advertisement Register
2648 * (Address 4) and two bits in the Auto Negotiation Base
2649 * Page Ability Register (Address 5) determine flow control
2650 * for both the PHY and the link partner. The following
2651 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2652 * 1999, describes these PAUSE resolution bits and how flow
2653 * control is determined based upon these settings.
2654 * NOTE: DC = Don't Care
2656 * LOCAL DEVICE | LINK PARTNER
2657 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2658 *-------|---------|-------|---------|--------------------
2659 * 0 | 0 | DC | DC | E1000_FC_NONE
2660 * 0 | 1 | 0 | DC | E1000_FC_NONE
2661 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2662 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2663 * 1 | 0 | 0 | DC | E1000_FC_NONE
2664 * 1 | DC | 1 | DC | E1000_FC_FULL
2665 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2666 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2669 /* Are both PAUSE bits set to 1? If so, this implies
2670 * Symmetric Flow Control is enabled at both ends. The
2671 * ASM_DIR bits are irrelevant per the spec.
2673 * For Symmetric Flow Control:
2675 * LOCAL DEVICE | LINK PARTNER
2676 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2677 *-------|---------|-------|---------|--------------------
2678 * 1 | DC | 1 | DC | E1000_FC_FULL
2681 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2682 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2683 /* Now we need to check if the user selected RX ONLY
2684 * of pause frames. In this case, we had to advertise
2685 * FULL flow control because we could not advertise RX
2686 * ONLY. Hence, we must now check to see if we need to
2687 * turn OFF the TRANSMISSION of PAUSE frames.
2689 if (hw->original_fc == E1000_FC_FULL) {
2690 hw->fc = E1000_FC_FULL;
2691 DEBUGOUT("Flow Control = FULL.\n");
2692 } else {
2693 hw->fc = E1000_FC_RX_PAUSE;
2694 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2697 /* For receiving PAUSE frames ONLY.
2699 * LOCAL DEVICE | LINK PARTNER
2700 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2701 *-------|---------|-------|---------|--------------------
2702 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2705 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2706 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2707 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2708 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2709 hw->fc = E1000_FC_TX_PAUSE;
2710 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2712 /* For transmitting PAUSE frames ONLY.
2714 * LOCAL DEVICE | LINK PARTNER
2715 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2716 *-------|---------|-------|---------|--------------------
2717 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2720 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2721 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2722 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2723 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2724 hw->fc = E1000_FC_RX_PAUSE;
2725 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2727 /* Per the IEEE spec, at this point flow control should be
2728 * disabled. However, we want to consider that we could
2729 * be connected to a legacy switch that doesn't advertise
2730 * desired flow control, but can be forced on the link
2731 * partner. So if we advertised no flow control, that is
2732 * what we will resolve to. If we advertised some kind of
2733 * receive capability (Rx Pause Only or Full Flow Control)
2734 * and the link partner advertised none, we will configure
2735 * ourselves to enable Rx Flow Control only. We can do
2736 * this safely for two reasons: If the link partner really
2737 * didn't want flow control enabled, and we enable Rx, no
2738 * harm done since we won't be receiving any PAUSE frames
2739 * anyway. If the intent on the link partner was to have
2740 * flow control enabled, then by us enabling RX only, we
2741 * can at least receive pause frames and process them.
2742 * This is a good idea because in most cases, since we are
2743 * predominantly a server NIC, more times than not we will
2744 * be asked to delay transmission of packets than asking
2745 * our link partner to pause transmission of frames.
2747 else if ((hw->original_fc == E1000_FC_NONE ||
2748 hw->original_fc == E1000_FC_TX_PAUSE) ||
2749 hw->fc_strict_ieee) {
2750 hw->fc = E1000_FC_NONE;
2751 DEBUGOUT("Flow Control = NONE.\n");
2752 } else {
2753 hw->fc = E1000_FC_RX_PAUSE;
2754 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2757 /* Now we need to do one last check... If we auto-
2758 * negotiated to HALF DUPLEX, flow control should not be
2759 * enabled per IEEE 802.3 spec.
2761 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2762 if (ret_val) {
2763 DEBUGOUT("Error getting link speed and duplex\n");
2764 return ret_val;
2767 if (duplex == HALF_DUPLEX)
2768 hw->fc = E1000_FC_NONE;
2770 /* Now we call a subroutine to actually force the MAC
2771 * controller to use the correct flow control settings.
2773 ret_val = e1000_force_mac_fc(hw);
2774 if (ret_val) {
2775 DEBUGOUT("Error forcing flow control settings\n");
2776 return ret_val;
2778 } else {
2779 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2782 return E1000_SUCCESS;
2785 /******************************************************************************
2786 * Checks to see if the link status of the hardware has changed.
2788 * hw - Struct containing variables accessed by shared code
2790 * Called by any function that needs to check the link status of the adapter.
2791 *****************************************************************************/
2792 int32_t
2793 e1000_check_for_link(struct e1000_hw *hw)
2795 uint32_t rxcw = 0;
2796 uint32_t ctrl;
2797 uint32_t status;
2798 uint32_t rctl;
2799 uint32_t icr;
2800 uint32_t signal = 0;
2801 int32_t ret_val;
2802 uint16_t phy_data;
2804 DEBUGFUNC("e1000_check_for_link");
2806 ctrl = E1000_READ_REG(hw, CTRL);
2807 status = E1000_READ_REG(hw, STATUS);
2809 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2810 * set when the optics detect a signal. On older adapters, it will be
2811 * cleared when there is a signal. This applies to fiber media only.
2813 if ((hw->media_type == e1000_media_type_fiber) ||
2814 (hw->media_type == e1000_media_type_internal_serdes)) {
2815 rxcw = E1000_READ_REG(hw, RXCW);
2817 if (hw->media_type == e1000_media_type_fiber) {
2818 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2819 if (status & E1000_STATUS_LU)
2820 hw->get_link_status = FALSE;
2824 /* If we have a copper PHY then we only want to go out to the PHY
2825 * registers to see if Auto-Neg has completed and/or if our link
2826 * status has changed. The get_link_status flag will be set if we
2827 * receive a Link Status Change interrupt or we have Rx Sequence
2828 * Errors.
2830 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2831 /* First we want to see if the MII Status Register reports
2832 * link. If so, then we want to get the current speed/duplex
2833 * of the PHY.
2834 * Read the register twice since the link bit is sticky.
2836 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2837 if (ret_val)
2838 return ret_val;
2839 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2840 if (ret_val)
2841 return ret_val;
2843 if (phy_data & MII_SR_LINK_STATUS) {
2844 hw->get_link_status = FALSE;
2845 /* Check if there was DownShift, must be checked immediately after
2846 * link-up */
2847 e1000_check_downshift(hw);
2849 /* If we are on 82544 or 82543 silicon and speed/duplex
2850 * are forced to 10H or 10F, then we will implement the polarity
2851 * reversal workaround. We disable interrupts first, and upon
2852 * returning, place the devices interrupt state to its previous
2853 * value except for the link status change interrupt which will
2854 * happen due to the execution of this workaround.
2857 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2858 (!hw->autoneg) &&
2859 (hw->forced_speed_duplex == e1000_10_full ||
2860 hw->forced_speed_duplex == e1000_10_half)) {
2861 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2862 ret_val = e1000_polarity_reversal_workaround(hw);
2863 icr = E1000_READ_REG(hw, ICR);
2864 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2865 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2868 } else {
2869 /* No link detected */
2870 e1000_config_dsp_after_link_change(hw, FALSE);
2871 return 0;
2874 /* If we are forcing speed/duplex, then we simply return since
2875 * we have already determined whether we have link or not.
2877 if (!hw->autoneg) return -E1000_ERR_CONFIG;
2879 /* optimize the dsp settings for the igp phy */
2880 e1000_config_dsp_after_link_change(hw, TRUE);
2882 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2883 * have Si on board that is 82544 or newer, Auto
2884 * Speed Detection takes care of MAC speed/duplex
2885 * configuration. So we only need to configure Collision
2886 * Distance in the MAC. Otherwise, we need to force
2887 * speed/duplex on the MAC to the current PHY speed/duplex
2888 * settings.
2890 if (hw->mac_type >= e1000_82544)
2891 e1000_config_collision_dist(hw);
2892 else {
2893 ret_val = e1000_config_mac_to_phy(hw);
2894 if (ret_val) {
2895 DEBUGOUT("Error configuring MAC to PHY settings\n");
2896 return ret_val;
2900 /* Configure Flow Control now that Auto-Neg has completed. First, we
2901 * need to restore the desired flow control settings because we may
2902 * have had to re-autoneg with a different link partner.
2904 ret_val = e1000_config_fc_after_link_up(hw);
2905 if (ret_val) {
2906 DEBUGOUT("Error configuring flow control\n");
2907 return ret_val;
2910 /* At this point we know that we are on copper and we have
2911 * auto-negotiated link. These are conditions for checking the link
2912 * partner capability register. We use the link speed to determine if
2913 * TBI compatibility needs to be turned on or off. If the link is not
2914 * at gigabit speed, then TBI compatibility is not needed. If we are
2915 * at gigabit speed, we turn on TBI compatibility.
2917 if (hw->tbi_compatibility_en) {
2918 uint16_t speed, duplex;
2919 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2920 if (ret_val) {
2921 DEBUGOUT("Error getting link speed and duplex\n");
2922 return ret_val;
2924 if (speed != SPEED_1000) {
2925 /* If link speed is not set to gigabit speed, we do not need
2926 * to enable TBI compatibility.
2928 if (hw->tbi_compatibility_on) {
2929 /* If we previously were in the mode, turn it off. */
2930 rctl = E1000_READ_REG(hw, RCTL);
2931 rctl &= ~E1000_RCTL_SBP;
2932 E1000_WRITE_REG(hw, RCTL, rctl);
2933 hw->tbi_compatibility_on = FALSE;
2935 } else {
2936 /* If TBI compatibility is was previously off, turn it on. For
2937 * compatibility with a TBI link partner, we will store bad
2938 * packets. Some frames have an additional byte on the end and
2939 * will look like CRC errors to to the hardware.
2941 if (!hw->tbi_compatibility_on) {
2942 hw->tbi_compatibility_on = TRUE;
2943 rctl = E1000_READ_REG(hw, RCTL);
2944 rctl |= E1000_RCTL_SBP;
2945 E1000_WRITE_REG(hw, RCTL, rctl);
2950 /* If we don't have link (auto-negotiation failed or link partner cannot
2951 * auto-negotiate), the cable is plugged in (we have signal), and our
2952 * link partner is not trying to auto-negotiate with us (we are receiving
2953 * idles or data), we need to force link up. We also need to give
2954 * auto-negotiation time to complete, in case the cable was just plugged
2955 * in. The autoneg_failed flag does this.
2957 else if ((((hw->media_type == e1000_media_type_fiber) &&
2958 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2959 (hw->media_type == e1000_media_type_internal_serdes)) &&
2960 (!(status & E1000_STATUS_LU)) &&
2961 (!(rxcw & E1000_RXCW_C))) {
2962 if (hw->autoneg_failed == 0) {
2963 hw->autoneg_failed = 1;
2964 return 0;
2966 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
2968 /* Disable auto-negotiation in the TXCW register */
2969 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2971 /* Force link-up and also force full-duplex. */
2972 ctrl = E1000_READ_REG(hw, CTRL);
2973 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2974 E1000_WRITE_REG(hw, CTRL, ctrl);
2976 /* Configure Flow Control after forcing link up. */
2977 ret_val = e1000_config_fc_after_link_up(hw);
2978 if (ret_val) {
2979 DEBUGOUT("Error configuring flow control\n");
2980 return ret_val;
2983 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2984 * auto-negotiation in the TXCW register and disable forced link in the
2985 * Device Control register in an attempt to auto-negotiate with our link
2986 * partner.
2988 else if (((hw->media_type == e1000_media_type_fiber) ||
2989 (hw->media_type == e1000_media_type_internal_serdes)) &&
2990 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2991 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
2992 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2993 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2995 hw->serdes_link_down = FALSE;
2997 /* If we force link for non-auto-negotiation switch, check link status
2998 * based on MAC synchronization for internal serdes media type.
3000 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3001 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3002 /* SYNCH bit and IV bit are sticky. */
3003 udelay(10);
3004 if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3005 if (!(rxcw & E1000_RXCW_IV)) {
3006 hw->serdes_link_down = FALSE;
3007 DEBUGOUT("SERDES: Link is up.\n");
3009 } else {
3010 hw->serdes_link_down = TRUE;
3011 DEBUGOUT("SERDES: Link is down.\n");
3014 if ((hw->media_type == e1000_media_type_internal_serdes) &&
3015 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3016 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3018 return E1000_SUCCESS;
3021 /******************************************************************************
3022 * Detects the current speed and duplex settings of the hardware.
3024 * hw - Struct containing variables accessed by shared code
3025 * speed - Speed of the connection
3026 * duplex - Duplex setting of the connection
3027 *****************************************************************************/
3028 int32_t
3029 e1000_get_speed_and_duplex(struct e1000_hw *hw,
3030 uint16_t *speed,
3031 uint16_t *duplex)
3033 uint32_t status;
3034 int32_t ret_val;
3035 uint16_t phy_data;
3037 DEBUGFUNC("e1000_get_speed_and_duplex");
3039 if (hw->mac_type >= e1000_82543) {
3040 status = E1000_READ_REG(hw, STATUS);
3041 if (status & E1000_STATUS_SPEED_1000) {
3042 *speed = SPEED_1000;
3043 DEBUGOUT("1000 Mbs, ");
3044 } else if (status & E1000_STATUS_SPEED_100) {
3045 *speed = SPEED_100;
3046 DEBUGOUT("100 Mbs, ");
3047 } else {
3048 *speed = SPEED_10;
3049 DEBUGOUT("10 Mbs, ");
3052 if (status & E1000_STATUS_FD) {
3053 *duplex = FULL_DUPLEX;
3054 DEBUGOUT("Full Duplex\n");
3055 } else {
3056 *duplex = HALF_DUPLEX;
3057 DEBUGOUT(" Half Duplex\n");
3059 } else {
3060 DEBUGOUT("1000 Mbs, Full Duplex\n");
3061 *speed = SPEED_1000;
3062 *duplex = FULL_DUPLEX;
3065 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3066 * if it is operating at half duplex. Here we set the duplex settings to
3067 * match the duplex in the link partner's capabilities.
3069 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3070 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3071 if (ret_val)
3072 return ret_val;
3074 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3075 *duplex = HALF_DUPLEX;
3076 else {
3077 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3078 if (ret_val)
3079 return ret_val;
3080 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3081 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3082 *duplex = HALF_DUPLEX;
3086 if ((hw->mac_type == e1000_80003es2lan) &&
3087 (hw->media_type == e1000_media_type_copper)) {
3088 if (*speed == SPEED_1000)
3089 ret_val = e1000_configure_kmrn_for_1000(hw);
3090 else
3091 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3092 if (ret_val)
3093 return ret_val;
3096 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3097 ret_val = e1000_kumeran_lock_loss_workaround(hw);
3098 if (ret_val)
3099 return ret_val;
3102 return E1000_SUCCESS;
3105 /******************************************************************************
3106 * Blocks until autoneg completes or times out (~4.5 seconds)
3108 * hw - Struct containing variables accessed by shared code
3109 ******************************************************************************/
3110 static int32_t
3111 e1000_wait_autoneg(struct e1000_hw *hw)
3113 int32_t ret_val;
3114 uint16_t i;
3115 uint16_t phy_data;
3117 DEBUGFUNC("e1000_wait_autoneg");
3118 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3120 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3121 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3122 /* Read the MII Status Register and wait for Auto-Neg
3123 * Complete bit to be set.
3125 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3126 if (ret_val)
3127 return ret_val;
3128 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3129 if (ret_val)
3130 return ret_val;
3131 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3132 return E1000_SUCCESS;
3134 msleep(100);
3136 return E1000_SUCCESS;
3139 /******************************************************************************
3140 * Raises the Management Data Clock
3142 * hw - Struct containing variables accessed by shared code
3143 * ctrl - Device control register's current value
3144 ******************************************************************************/
3145 static void
3146 e1000_raise_mdi_clk(struct e1000_hw *hw,
3147 uint32_t *ctrl)
3149 /* Raise the clock input to the Management Data Clock (by setting the MDC
3150 * bit), and then delay 10 microseconds.
3152 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3153 E1000_WRITE_FLUSH(hw);
3154 udelay(10);
3157 /******************************************************************************
3158 * Lowers the Management Data Clock
3160 * hw - Struct containing variables accessed by shared code
3161 * ctrl - Device control register's current value
3162 ******************************************************************************/
3163 static void
3164 e1000_lower_mdi_clk(struct e1000_hw *hw,
3165 uint32_t *ctrl)
3167 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3168 * bit), and then delay 10 microseconds.
3170 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3171 E1000_WRITE_FLUSH(hw);
3172 udelay(10);
3175 /******************************************************************************
3176 * Shifts data bits out to the PHY
3178 * hw - Struct containing variables accessed by shared code
3179 * data - Data to send out to the PHY
3180 * count - Number of bits to shift out
3182 * Bits are shifted out in MSB to LSB order.
3183 ******************************************************************************/
3184 static void
3185 e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3186 uint32_t data,
3187 uint16_t count)
3189 uint32_t ctrl;
3190 uint32_t mask;
3192 /* We need to shift "count" number of bits out to the PHY. So, the value
3193 * in the "data" parameter will be shifted out to the PHY one bit at a
3194 * time. In order to do this, "data" must be broken down into bits.
3196 mask = 0x01;
3197 mask <<= (count - 1);
3199 ctrl = E1000_READ_REG(hw, CTRL);
3201 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3202 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3204 while (mask) {
3205 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3206 * then raising and lowering the Management Data Clock. A "0" is
3207 * shifted out to the PHY by setting the MDIO bit to "0" and then
3208 * raising and lowering the clock.
3210 if (data & mask)
3211 ctrl |= E1000_CTRL_MDIO;
3212 else
3213 ctrl &= ~E1000_CTRL_MDIO;
3215 E1000_WRITE_REG(hw, CTRL, ctrl);
3216 E1000_WRITE_FLUSH(hw);
3218 udelay(10);
3220 e1000_raise_mdi_clk(hw, &ctrl);
3221 e1000_lower_mdi_clk(hw, &ctrl);
3223 mask = mask >> 1;
3227 /******************************************************************************
3228 * Shifts data bits in from the PHY
3230 * hw - Struct containing variables accessed by shared code
3232 * Bits are shifted in in MSB to LSB order.
3233 ******************************************************************************/
3234 static uint16_t
3235 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3237 uint32_t ctrl;
3238 uint16_t data = 0;
3239 uint8_t i;
3241 /* In order to read a register from the PHY, we need to shift in a total
3242 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3243 * to avoid contention on the MDIO pin when a read operation is performed.
3244 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3245 * by raising the input to the Management Data Clock (setting the MDC bit),
3246 * and then reading the value of the MDIO bit.
3248 ctrl = E1000_READ_REG(hw, CTRL);
3250 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3251 ctrl &= ~E1000_CTRL_MDIO_DIR;
3252 ctrl &= ~E1000_CTRL_MDIO;
3254 E1000_WRITE_REG(hw, CTRL, ctrl);
3255 E1000_WRITE_FLUSH(hw);
3257 /* Raise and Lower the clock before reading in the data. This accounts for
3258 * the turnaround bits. The first clock occurred when we clocked out the
3259 * last bit of the Register Address.
3261 e1000_raise_mdi_clk(hw, &ctrl);
3262 e1000_lower_mdi_clk(hw, &ctrl);
3264 for (data = 0, i = 0; i < 16; i++) {
3265 data = data << 1;
3266 e1000_raise_mdi_clk(hw, &ctrl);
3267 ctrl = E1000_READ_REG(hw, CTRL);
3268 /* Check to see if we shifted in a "1". */
3269 if (ctrl & E1000_CTRL_MDIO)
3270 data |= 1;
3271 e1000_lower_mdi_clk(hw, &ctrl);
3274 e1000_raise_mdi_clk(hw, &ctrl);
3275 e1000_lower_mdi_clk(hw, &ctrl);
3277 return data;
3280 static int32_t
3281 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3283 uint32_t swfw_sync = 0;
3284 uint32_t swmask = mask;
3285 uint32_t fwmask = mask << 16;
3286 int32_t timeout = 200;
3288 DEBUGFUNC("e1000_swfw_sync_acquire");
3290 if (hw->swfwhw_semaphore_present)
3291 return e1000_get_software_flag(hw);
3293 if (!hw->swfw_sync_present)
3294 return e1000_get_hw_eeprom_semaphore(hw);
3296 while (timeout) {
3297 if (e1000_get_hw_eeprom_semaphore(hw))
3298 return -E1000_ERR_SWFW_SYNC;
3300 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3301 if (!(swfw_sync & (fwmask | swmask))) {
3302 break;
3305 /* firmware currently using resource (fwmask) */
3306 /* or other software thread currently using resource (swmask) */
3307 e1000_put_hw_eeprom_semaphore(hw);
3308 mdelay(5);
3309 timeout--;
3312 if (!timeout) {
3313 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3314 return -E1000_ERR_SWFW_SYNC;
3317 swfw_sync |= swmask;
3318 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3320 e1000_put_hw_eeprom_semaphore(hw);
3321 return E1000_SUCCESS;
3324 static void
3325 e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3327 uint32_t swfw_sync;
3328 uint32_t swmask = mask;
3330 DEBUGFUNC("e1000_swfw_sync_release");
3332 if (hw->swfwhw_semaphore_present) {
3333 e1000_release_software_flag(hw);
3334 return;
3337 if (!hw->swfw_sync_present) {
3338 e1000_put_hw_eeprom_semaphore(hw);
3339 return;
3342 /* if (e1000_get_hw_eeprom_semaphore(hw))
3343 * return -E1000_ERR_SWFW_SYNC; */
3344 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3345 /* empty */
3347 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3348 swfw_sync &= ~swmask;
3349 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3351 e1000_put_hw_eeprom_semaphore(hw);
3354 /*****************************************************************************
3355 * Reads the value from a PHY register, if the value is on a specific non zero
3356 * page, sets the page first.
3357 * hw - Struct containing variables accessed by shared code
3358 * reg_addr - address of the PHY register to read
3359 ******************************************************************************/
3360 int32_t
3361 e1000_read_phy_reg(struct e1000_hw *hw,
3362 uint32_t reg_addr,
3363 uint16_t *phy_data)
3365 uint32_t ret_val;
3366 uint16_t swfw;
3368 DEBUGFUNC("e1000_read_phy_reg");
3370 if ((hw->mac_type == e1000_80003es2lan) &&
3371 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3372 swfw = E1000_SWFW_PHY1_SM;
3373 } else {
3374 swfw = E1000_SWFW_PHY0_SM;
3376 if (e1000_swfw_sync_acquire(hw, swfw))
3377 return -E1000_ERR_SWFW_SYNC;
3379 if ((hw->phy_type == e1000_phy_igp ||
3380 hw->phy_type == e1000_phy_igp_3 ||
3381 hw->phy_type == e1000_phy_igp_2) &&
3382 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3383 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3384 (uint16_t)reg_addr);
3385 if (ret_val) {
3386 e1000_swfw_sync_release(hw, swfw);
3387 return ret_val;
3389 } else if (hw->phy_type == e1000_phy_gg82563) {
3390 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3391 (hw->mac_type == e1000_80003es2lan)) {
3392 /* Select Configuration Page */
3393 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3394 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3395 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3396 } else {
3397 /* Use Alternative Page Select register to access
3398 * registers 30 and 31
3400 ret_val = e1000_write_phy_reg_ex(hw,
3401 GG82563_PHY_PAGE_SELECT_ALT,
3402 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3405 if (ret_val) {
3406 e1000_swfw_sync_release(hw, swfw);
3407 return ret_val;
3412 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3413 phy_data);
3415 e1000_swfw_sync_release(hw, swfw);
3416 return ret_val;
3419 int32_t
3420 e1000_read_phy_reg_ex(struct e1000_hw *hw,
3421 uint32_t reg_addr,
3422 uint16_t *phy_data)
3424 uint32_t i;
3425 uint32_t mdic = 0;
3426 const uint32_t phy_addr = 1;
3428 DEBUGFUNC("e1000_read_phy_reg_ex");
3430 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3431 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3432 return -E1000_ERR_PARAM;
3435 if (hw->mac_type > e1000_82543) {
3436 /* Set up Op-code, Phy Address, and register address in the MDI
3437 * Control register. The MAC will take care of interfacing with the
3438 * PHY to retrieve the desired data.
3440 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3441 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3442 (E1000_MDIC_OP_READ));
3444 E1000_WRITE_REG(hw, MDIC, mdic);
3446 /* Poll the ready bit to see if the MDI read completed */
3447 for (i = 0; i < 64; i++) {
3448 udelay(50);
3449 mdic = E1000_READ_REG(hw, MDIC);
3450 if (mdic & E1000_MDIC_READY) break;
3452 if (!(mdic & E1000_MDIC_READY)) {
3453 DEBUGOUT("MDI Read did not complete\n");
3454 return -E1000_ERR_PHY;
3456 if (mdic & E1000_MDIC_ERROR) {
3457 DEBUGOUT("MDI Error\n");
3458 return -E1000_ERR_PHY;
3460 *phy_data = (uint16_t) mdic;
3461 } else {
3462 /* We must first send a preamble through the MDIO pin to signal the
3463 * beginning of an MII instruction. This is done by sending 32
3464 * consecutive "1" bits.
3466 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3468 /* Now combine the next few fields that are required for a read
3469 * operation. We use this method instead of calling the
3470 * e1000_shift_out_mdi_bits routine five different times. The format of
3471 * a MII read instruction consists of a shift out of 14 bits and is
3472 * defined as follows:
3473 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3474 * followed by a shift in of 18 bits. This first two bits shifted in
3475 * are TurnAround bits used to avoid contention on the MDIO pin when a
3476 * READ operation is performed. These two bits are thrown away
3477 * followed by a shift in of 16 bits which contains the desired data.
3479 mdic = ((reg_addr) | (phy_addr << 5) |
3480 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3482 e1000_shift_out_mdi_bits(hw, mdic, 14);
3484 /* Now that we've shifted out the read command to the MII, we need to
3485 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3486 * register address.
3488 *phy_data = e1000_shift_in_mdi_bits(hw);
3490 return E1000_SUCCESS;
3493 /******************************************************************************
3494 * Writes a value to a PHY register
3496 * hw - Struct containing variables accessed by shared code
3497 * reg_addr - address of the PHY register to write
3498 * data - data to write to the PHY
3499 ******************************************************************************/
3500 int32_t
3501 e1000_write_phy_reg(struct e1000_hw *hw,
3502 uint32_t reg_addr,
3503 uint16_t phy_data)
3505 uint32_t ret_val;
3506 uint16_t swfw;
3508 DEBUGFUNC("e1000_write_phy_reg");
3510 if ((hw->mac_type == e1000_80003es2lan) &&
3511 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3512 swfw = E1000_SWFW_PHY1_SM;
3513 } else {
3514 swfw = E1000_SWFW_PHY0_SM;
3516 if (e1000_swfw_sync_acquire(hw, swfw))
3517 return -E1000_ERR_SWFW_SYNC;
3519 if ((hw->phy_type == e1000_phy_igp ||
3520 hw->phy_type == e1000_phy_igp_3 ||
3521 hw->phy_type == e1000_phy_igp_2) &&
3522 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3523 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3524 (uint16_t)reg_addr);
3525 if (ret_val) {
3526 e1000_swfw_sync_release(hw, swfw);
3527 return ret_val;
3529 } else if (hw->phy_type == e1000_phy_gg82563) {
3530 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3531 (hw->mac_type == e1000_80003es2lan)) {
3532 /* Select Configuration Page */
3533 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3534 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3535 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3536 } else {
3537 /* Use Alternative Page Select register to access
3538 * registers 30 and 31
3540 ret_val = e1000_write_phy_reg_ex(hw,
3541 GG82563_PHY_PAGE_SELECT_ALT,
3542 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3545 if (ret_val) {
3546 e1000_swfw_sync_release(hw, swfw);
3547 return ret_val;
3552 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3553 phy_data);
3555 e1000_swfw_sync_release(hw, swfw);
3556 return ret_val;
3559 int32_t
3560 e1000_write_phy_reg_ex(struct e1000_hw *hw,
3561 uint32_t reg_addr,
3562 uint16_t phy_data)
3564 uint32_t i;
3565 uint32_t mdic = 0;
3566 const uint32_t phy_addr = 1;
3568 DEBUGFUNC("e1000_write_phy_reg_ex");
3570 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3571 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3572 return -E1000_ERR_PARAM;
3575 if (hw->mac_type > e1000_82543) {
3576 /* Set up Op-code, Phy Address, register address, and data intended
3577 * for the PHY register in the MDI Control register. The MAC will take
3578 * care of interfacing with the PHY to send the desired data.
3580 mdic = (((uint32_t) phy_data) |
3581 (reg_addr << E1000_MDIC_REG_SHIFT) |
3582 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3583 (E1000_MDIC_OP_WRITE));
3585 E1000_WRITE_REG(hw, MDIC, mdic);
3587 /* Poll the ready bit to see if the MDI read completed */
3588 for (i = 0; i < 641; i++) {
3589 udelay(5);
3590 mdic = E1000_READ_REG(hw, MDIC);
3591 if (mdic & E1000_MDIC_READY) break;
3593 if (!(mdic & E1000_MDIC_READY)) {
3594 DEBUGOUT("MDI Write did not complete\n");
3595 return -E1000_ERR_PHY;
3597 } else {
3598 /* We'll need to use the SW defined pins to shift the write command
3599 * out to the PHY. We first send a preamble to the PHY to signal the
3600 * beginning of the MII instruction. This is done by sending 32
3601 * consecutive "1" bits.
3603 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3605 /* Now combine the remaining required fields that will indicate a
3606 * write operation. We use this method instead of calling the
3607 * e1000_shift_out_mdi_bits routine for each field in the command. The
3608 * format of a MII write instruction is as follows:
3609 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3611 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3612 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3613 mdic <<= 16;
3614 mdic |= (uint32_t) phy_data;
3616 e1000_shift_out_mdi_bits(hw, mdic, 32);
3619 return E1000_SUCCESS;
3622 static int32_t
3623 e1000_read_kmrn_reg(struct e1000_hw *hw,
3624 uint32_t reg_addr,
3625 uint16_t *data)
3627 uint32_t reg_val;
3628 uint16_t swfw;
3629 DEBUGFUNC("e1000_read_kmrn_reg");
3631 if ((hw->mac_type == e1000_80003es2lan) &&
3632 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3633 swfw = E1000_SWFW_PHY1_SM;
3634 } else {
3635 swfw = E1000_SWFW_PHY0_SM;
3637 if (e1000_swfw_sync_acquire(hw, swfw))
3638 return -E1000_ERR_SWFW_SYNC;
3640 /* Write register address */
3641 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3642 E1000_KUMCTRLSTA_OFFSET) |
3643 E1000_KUMCTRLSTA_REN;
3644 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3645 udelay(2);
3647 /* Read the data returned */
3648 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3649 *data = (uint16_t)reg_val;
3651 e1000_swfw_sync_release(hw, swfw);
3652 return E1000_SUCCESS;
3655 static int32_t
3656 e1000_write_kmrn_reg(struct e1000_hw *hw,
3657 uint32_t reg_addr,
3658 uint16_t data)
3660 uint32_t reg_val;
3661 uint16_t swfw;
3662 DEBUGFUNC("e1000_write_kmrn_reg");
3664 if ((hw->mac_type == e1000_80003es2lan) &&
3665 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3666 swfw = E1000_SWFW_PHY1_SM;
3667 } else {
3668 swfw = E1000_SWFW_PHY0_SM;
3670 if (e1000_swfw_sync_acquire(hw, swfw))
3671 return -E1000_ERR_SWFW_SYNC;
3673 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3674 E1000_KUMCTRLSTA_OFFSET) | data;
3675 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3676 udelay(2);
3678 e1000_swfw_sync_release(hw, swfw);
3679 return E1000_SUCCESS;
3682 /******************************************************************************
3683 * Returns the PHY to the power-on reset state
3685 * hw - Struct containing variables accessed by shared code
3686 ******************************************************************************/
3687 int32_t
3688 e1000_phy_hw_reset(struct e1000_hw *hw)
3690 uint32_t ctrl, ctrl_ext;
3691 uint32_t led_ctrl;
3692 int32_t ret_val;
3693 uint16_t swfw;
3695 DEBUGFUNC("e1000_phy_hw_reset");
3697 /* In the case of the phy reset being blocked, it's not an error, we
3698 * simply return success without performing the reset. */
3699 ret_val = e1000_check_phy_reset_block(hw);
3700 if (ret_val)
3701 return E1000_SUCCESS;
3703 DEBUGOUT("Resetting Phy...\n");
3705 if (hw->mac_type > e1000_82543) {
3706 if ((hw->mac_type == e1000_80003es2lan) &&
3707 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3708 swfw = E1000_SWFW_PHY1_SM;
3709 } else {
3710 swfw = E1000_SWFW_PHY0_SM;
3712 if (e1000_swfw_sync_acquire(hw, swfw)) {
3713 e1000_release_software_semaphore(hw);
3714 return -E1000_ERR_SWFW_SYNC;
3716 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3717 * bit. Then, take it out of reset.
3718 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3719 * and deassert. For e1000_82571 hardware and later, we instead delay
3720 * for 50us between and 10ms after the deassertion.
3722 ctrl = E1000_READ_REG(hw, CTRL);
3723 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3724 E1000_WRITE_FLUSH(hw);
3726 if (hw->mac_type < e1000_82571)
3727 msleep(10);
3728 else
3729 udelay(100);
3731 E1000_WRITE_REG(hw, CTRL, ctrl);
3732 E1000_WRITE_FLUSH(hw);
3734 if (hw->mac_type >= e1000_82571)
3735 mdelay(10);
3736 e1000_swfw_sync_release(hw, swfw);
3737 } else {
3738 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3739 * bit to put the PHY into reset. Then, take it out of reset.
3741 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3742 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3743 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3744 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3745 E1000_WRITE_FLUSH(hw);
3746 msleep(10);
3747 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3748 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3749 E1000_WRITE_FLUSH(hw);
3751 udelay(150);
3753 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3754 /* Configure activity LED after PHY reset */
3755 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3756 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3757 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3758 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3761 /* Wait for FW to finish PHY configuration. */
3762 ret_val = e1000_get_phy_cfg_done(hw);
3763 if (ret_val != E1000_SUCCESS)
3764 return ret_val;
3765 e1000_release_software_semaphore(hw);
3767 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3768 ret_val = e1000_init_lcd_from_nvm(hw);
3770 return ret_val;
3773 /******************************************************************************
3774 * Resets the PHY
3776 * hw - Struct containing variables accessed by shared code
3778 * Sets bit 15 of the MII Control regiser
3779 ******************************************************************************/
3780 int32_t
3781 e1000_phy_reset(struct e1000_hw *hw)
3783 int32_t ret_val;
3784 uint16_t phy_data;
3786 DEBUGFUNC("e1000_phy_reset");
3788 /* In the case of the phy reset being blocked, it's not an error, we
3789 * simply return success without performing the reset. */
3790 ret_val = e1000_check_phy_reset_block(hw);
3791 if (ret_val)
3792 return E1000_SUCCESS;
3794 switch (hw->mac_type) {
3795 case e1000_82541_rev_2:
3796 case e1000_82571:
3797 case e1000_82572:
3798 case e1000_ich8lan:
3799 ret_val = e1000_phy_hw_reset(hw);
3800 if (ret_val)
3801 return ret_val;
3803 break;
3804 default:
3805 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3806 if (ret_val)
3807 return ret_val;
3809 phy_data |= MII_CR_RESET;
3810 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3811 if (ret_val)
3812 return ret_val;
3814 udelay(1);
3815 break;
3818 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3819 e1000_phy_init_script(hw);
3821 return E1000_SUCCESS;
3824 /******************************************************************************
3825 * Work-around for 82566 power-down: on D3 entry-
3826 * 1) disable gigabit link
3827 * 2) write VR power-down enable
3828 * 3) read it back
3829 * if successful continue, else issue LCD reset and repeat
3831 * hw - struct containing variables accessed by shared code
3832 ******************************************************************************/
3833 void
3834 e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3836 int32_t reg;
3837 uint16_t phy_data;
3838 int32_t retry = 0;
3840 DEBUGFUNC("e1000_phy_powerdown_workaround");
3842 if (hw->phy_type != e1000_phy_igp_3)
3843 return;
3845 do {
3846 /* Disable link */
3847 reg = E1000_READ_REG(hw, PHY_CTRL);
3848 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3849 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3851 /* Write VR power-down enable */
3852 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3853 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3854 IGP3_VR_CTRL_MODE_SHUT);
3856 /* Read it back and test */
3857 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3858 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3859 break;
3861 /* Issue PHY reset and repeat at most one more time */
3862 reg = E1000_READ_REG(hw, CTRL);
3863 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3864 retry++;
3865 } while (retry);
3867 return;
3871 /******************************************************************************
3872 * Work-around for 82566 Kumeran PCS lock loss:
3873 * On link status change (i.e. PCI reset, speed change) and link is up and
3874 * speed is gigabit-
3875 * 0) if workaround is optionally disabled do nothing
3876 * 1) wait 1ms for Kumeran link to come up
3877 * 2) check Kumeran Diagnostic register PCS lock loss bit
3878 * 3) if not set the link is locked (all is good), otherwise...
3879 * 4) reset the PHY
3880 * 5) repeat up to 10 times
3881 * Note: this is only called for IGP3 copper when speed is 1gb.
3883 * hw - struct containing variables accessed by shared code
3884 ******************************************************************************/
3885 static int32_t
3886 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3888 int32_t ret_val;
3889 int32_t reg;
3890 int32_t cnt;
3891 uint16_t phy_data;
3893 if (hw->kmrn_lock_loss_workaround_disabled)
3894 return E1000_SUCCESS;
3896 /* Make sure link is up before proceeding. If not just return.
3897 * Attempting this while link is negotiating fouled up link
3898 * stability */
3899 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3900 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3902 if (phy_data & MII_SR_LINK_STATUS) {
3903 for (cnt = 0; cnt < 10; cnt++) {
3904 /* read once to clear */
3905 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3906 if (ret_val)
3907 return ret_val;
3908 /* and again to get new status */
3909 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3910 if (ret_val)
3911 return ret_val;
3913 /* check for PCS lock */
3914 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3915 return E1000_SUCCESS;
3917 /* Issue PHY reset */
3918 e1000_phy_hw_reset(hw);
3919 mdelay(5);
3921 /* Disable GigE link negotiation */
3922 reg = E1000_READ_REG(hw, PHY_CTRL);
3923 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3924 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926 /* unable to acquire PCS lock */
3927 return E1000_ERR_PHY;
3930 return E1000_SUCCESS;
3933 /******************************************************************************
3934 * Probes the expected PHY address for known PHY IDs
3936 * hw - Struct containing variables accessed by shared code
3937 ******************************************************************************/
3938 int32_t
3939 e1000_detect_gig_phy(struct e1000_hw *hw)
3941 int32_t phy_init_status, ret_val;
3942 uint16_t phy_id_high, phy_id_low;
3943 boolean_t match = FALSE;
3945 DEBUGFUNC("e1000_detect_gig_phy");
3947 /* The 82571 firmware may still be configuring the PHY. In this
3948 * case, we cannot access the PHY until the configuration is done. So
3949 * we explicitly set the PHY values. */
3950 if (hw->mac_type == e1000_82571 ||
3951 hw->mac_type == e1000_82572) {
3952 hw->phy_id = IGP01E1000_I_PHY_ID;
3953 hw->phy_type = e1000_phy_igp_2;
3954 return E1000_SUCCESS;
3957 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
3958 * around that forces PHY page 0 to be set or the reads fail. The rest of
3959 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
3960 * So for ESB-2 we need to have this set so our reads won't fail. If the
3961 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
3962 * this out as well. */
3963 if (hw->mac_type == e1000_80003es2lan)
3964 hw->phy_type = e1000_phy_gg82563;
3966 /* Read the PHY ID Registers to identify which PHY is onboard. */
3967 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3968 if (ret_val)
3969 return ret_val;
3971 hw->phy_id = (uint32_t) (phy_id_high << 16);
3972 udelay(20);
3973 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3974 if (ret_val)
3975 return ret_val;
3977 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
3978 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
3980 switch (hw->mac_type) {
3981 case e1000_82543:
3982 if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
3983 break;
3984 case e1000_82544:
3985 if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
3986 break;
3987 case e1000_82540:
3988 case e1000_82545:
3989 case e1000_82545_rev_3:
3990 case e1000_82546:
3991 case e1000_82546_rev_3:
3992 if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
3993 break;
3994 case e1000_82541:
3995 case e1000_82541_rev_2:
3996 case e1000_82547:
3997 case e1000_82547_rev_2:
3998 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
3999 break;
4000 case e1000_82573:
4001 if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
4002 break;
4003 case e1000_80003es2lan:
4004 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
4005 break;
4006 case e1000_ich8lan:
4007 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4008 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4009 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4010 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4011 break;
4012 default:
4013 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4014 return -E1000_ERR_CONFIG;
4016 phy_init_status = e1000_set_phy_type(hw);
4018 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4019 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4020 return E1000_SUCCESS;
4022 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4023 return -E1000_ERR_PHY;
4026 /******************************************************************************
4027 * Resets the PHY's DSP
4029 * hw - Struct containing variables accessed by shared code
4030 ******************************************************************************/
4031 static int32_t
4032 e1000_phy_reset_dsp(struct e1000_hw *hw)
4034 int32_t ret_val;
4035 DEBUGFUNC("e1000_phy_reset_dsp");
4037 do {
4038 if (hw->phy_type != e1000_phy_gg82563) {
4039 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4040 if (ret_val) break;
4042 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4043 if (ret_val) break;
4044 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4045 if (ret_val) break;
4046 ret_val = E1000_SUCCESS;
4047 } while (0);
4049 return ret_val;
4052 /******************************************************************************
4053 * Get PHY information from various PHY registers for igp PHY only.
4055 * hw - Struct containing variables accessed by shared code
4056 * phy_info - PHY information structure
4057 ******************************************************************************/
4058 static int32_t
4059 e1000_phy_igp_get_info(struct e1000_hw *hw,
4060 struct e1000_phy_info *phy_info)
4062 int32_t ret_val;
4063 uint16_t phy_data, polarity, min_length, max_length, average;
4065 DEBUGFUNC("e1000_phy_igp_get_info");
4067 /* The downshift status is checked only once, after link is established,
4068 * and it stored in the hw->speed_downgraded parameter. */
4069 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4071 /* IGP01E1000 does not need to support it. */
4072 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4074 /* IGP01E1000 always correct polarity reversal */
4075 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4077 /* Check polarity status */
4078 ret_val = e1000_check_polarity(hw, &polarity);
4079 if (ret_val)
4080 return ret_val;
4082 phy_info->cable_polarity = polarity;
4084 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4085 if (ret_val)
4086 return ret_val;
4088 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
4089 IGP01E1000_PSSR_MDIX_SHIFT;
4091 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4092 IGP01E1000_PSSR_SPEED_1000MBPS) {
4093 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4094 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4095 if (ret_val)
4096 return ret_val;
4098 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4099 SR_1000T_LOCAL_RX_STATUS_SHIFT;
4100 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4101 SR_1000T_REMOTE_RX_STATUS_SHIFT;
4103 /* Get cable length */
4104 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4105 if (ret_val)
4106 return ret_val;
4108 /* Translate to old method */
4109 average = (max_length + min_length) / 2;
4111 if (average <= e1000_igp_cable_length_50)
4112 phy_info->cable_length = e1000_cable_length_50;
4113 else if (average <= e1000_igp_cable_length_80)
4114 phy_info->cable_length = e1000_cable_length_50_80;
4115 else if (average <= e1000_igp_cable_length_110)
4116 phy_info->cable_length = e1000_cable_length_80_110;
4117 else if (average <= e1000_igp_cable_length_140)
4118 phy_info->cable_length = e1000_cable_length_110_140;
4119 else
4120 phy_info->cable_length = e1000_cable_length_140;
4123 return E1000_SUCCESS;
4126 /******************************************************************************
4127 * Get PHY information from various PHY registers for ife PHY only.
4129 * hw - Struct containing variables accessed by shared code
4130 * phy_info - PHY information structure
4131 ******************************************************************************/
4132 static int32_t
4133 e1000_phy_ife_get_info(struct e1000_hw *hw,
4134 struct e1000_phy_info *phy_info)
4136 int32_t ret_val;
4137 uint16_t phy_data, polarity;
4139 DEBUGFUNC("e1000_phy_ife_get_info");
4141 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4142 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4144 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4145 if (ret_val)
4146 return ret_val;
4147 phy_info->polarity_correction =
4148 (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4149 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
4151 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4152 ret_val = e1000_check_polarity(hw, &polarity);
4153 if (ret_val)
4154 return ret_val;
4155 } else {
4156 /* Polarity is forced. */
4157 polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
4158 IFE_PSC_FORCE_POLARITY_SHIFT;
4160 phy_info->cable_polarity = polarity;
4162 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4163 if (ret_val)
4164 return ret_val;
4166 phy_info->mdix_mode =
4167 (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4168 IFE_PMC_MDIX_MODE_SHIFT;
4170 return E1000_SUCCESS;
4173 /******************************************************************************
4174 * Get PHY information from various PHY registers fot m88 PHY only.
4176 * hw - Struct containing variables accessed by shared code
4177 * phy_info - PHY information structure
4178 ******************************************************************************/
4179 static int32_t
4180 e1000_phy_m88_get_info(struct e1000_hw *hw,
4181 struct e1000_phy_info *phy_info)
4183 int32_t ret_val;
4184 uint16_t phy_data, polarity;
4186 DEBUGFUNC("e1000_phy_m88_get_info");
4188 /* The downshift status is checked only once, after link is established,
4189 * and it stored in the hw->speed_downgraded parameter. */
4190 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4192 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4193 if (ret_val)
4194 return ret_val;
4196 phy_info->extended_10bt_distance =
4197 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4198 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
4199 phy_info->polarity_correction =
4200 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4201 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
4203 /* Check polarity status */
4204 ret_val = e1000_check_polarity(hw, &polarity);
4205 if (ret_val)
4206 return ret_val;
4207 phy_info->cable_polarity = polarity;
4209 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4210 if (ret_val)
4211 return ret_val;
4213 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
4214 M88E1000_PSSR_MDIX_SHIFT;
4216 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4217 /* Cable Length Estimation and Local/Remote Receiver Information
4218 * are only valid at 1000 Mbps.
4220 if (hw->phy_type != e1000_phy_gg82563) {
4221 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4222 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4223 } else {
4224 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4225 &phy_data);
4226 if (ret_val)
4227 return ret_val;
4229 phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
4232 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4233 if (ret_val)
4234 return ret_val;
4236 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4237 SR_1000T_LOCAL_RX_STATUS_SHIFT;
4239 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4240 SR_1000T_REMOTE_RX_STATUS_SHIFT;
4243 return E1000_SUCCESS;
4246 /******************************************************************************
4247 * Get PHY information from various PHY registers
4249 * hw - Struct containing variables accessed by shared code
4250 * phy_info - PHY information structure
4251 ******************************************************************************/
4252 int32_t
4253 e1000_phy_get_info(struct e1000_hw *hw,
4254 struct e1000_phy_info *phy_info)
4256 int32_t ret_val;
4257 uint16_t phy_data;
4259 DEBUGFUNC("e1000_phy_get_info");
4261 phy_info->cable_length = e1000_cable_length_undefined;
4262 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4263 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4264 phy_info->downshift = e1000_downshift_undefined;
4265 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4266 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4267 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4268 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4270 if (hw->media_type != e1000_media_type_copper) {
4271 DEBUGOUT("PHY info is only valid for copper media\n");
4272 return -E1000_ERR_CONFIG;
4275 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4276 if (ret_val)
4277 return ret_val;
4279 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4280 if (ret_val)
4281 return ret_val;
4283 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4284 DEBUGOUT("PHY info is only valid if link is up\n");
4285 return -E1000_ERR_CONFIG;
4288 if (hw->phy_type == e1000_phy_igp ||
4289 hw->phy_type == e1000_phy_igp_3 ||
4290 hw->phy_type == e1000_phy_igp_2)
4291 return e1000_phy_igp_get_info(hw, phy_info);
4292 else if (hw->phy_type == e1000_phy_ife)
4293 return e1000_phy_ife_get_info(hw, phy_info);
4294 else
4295 return e1000_phy_m88_get_info(hw, phy_info);
4298 int32_t
4299 e1000_validate_mdi_setting(struct e1000_hw *hw)
4301 DEBUGFUNC("e1000_validate_mdi_settings");
4303 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4304 DEBUGOUT("Invalid MDI setting detected\n");
4305 hw->mdix = 1;
4306 return -E1000_ERR_CONFIG;
4308 return E1000_SUCCESS;
4312 /******************************************************************************
4313 * Sets up eeprom variables in the hw struct. Must be called after mac_type
4314 * is configured. Additionally, if this is ICH8, the flash controller GbE
4315 * registers must be mapped, or this will crash.
4317 * hw - Struct containing variables accessed by shared code
4318 *****************************************************************************/
4319 int32_t
4320 e1000_init_eeprom_params(struct e1000_hw *hw)
4322 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4323 uint32_t eecd = E1000_READ_REG(hw, EECD);
4324 int32_t ret_val = E1000_SUCCESS;
4325 uint16_t eeprom_size;
4327 DEBUGFUNC("e1000_init_eeprom_params");
4329 switch (hw->mac_type) {
4330 case e1000_82542_rev2_0:
4331 case e1000_82542_rev2_1:
4332 case e1000_82543:
4333 case e1000_82544:
4334 eeprom->type = e1000_eeprom_microwire;
4335 eeprom->word_size = 64;
4336 eeprom->opcode_bits = 3;
4337 eeprom->address_bits = 6;
4338 eeprom->delay_usec = 50;
4339 eeprom->use_eerd = FALSE;
4340 eeprom->use_eewr = FALSE;
4341 break;
4342 case e1000_82540:
4343 case e1000_82545:
4344 case e1000_82545_rev_3:
4345 case e1000_82546:
4346 case e1000_82546_rev_3:
4347 eeprom->type = e1000_eeprom_microwire;
4348 eeprom->opcode_bits = 3;
4349 eeprom->delay_usec = 50;
4350 if (eecd & E1000_EECD_SIZE) {
4351 eeprom->word_size = 256;
4352 eeprom->address_bits = 8;
4353 } else {
4354 eeprom->word_size = 64;
4355 eeprom->address_bits = 6;
4357 eeprom->use_eerd = FALSE;
4358 eeprom->use_eewr = FALSE;
4359 break;
4360 case e1000_82541:
4361 case e1000_82541_rev_2:
4362 case e1000_82547:
4363 case e1000_82547_rev_2:
4364 if (eecd & E1000_EECD_TYPE) {
4365 eeprom->type = e1000_eeprom_spi;
4366 eeprom->opcode_bits = 8;
4367 eeprom->delay_usec = 1;
4368 if (eecd & E1000_EECD_ADDR_BITS) {
4369 eeprom->page_size = 32;
4370 eeprom->address_bits = 16;
4371 } else {
4372 eeprom->page_size = 8;
4373 eeprom->address_bits = 8;
4375 } else {
4376 eeprom->type = e1000_eeprom_microwire;
4377 eeprom->opcode_bits = 3;
4378 eeprom->delay_usec = 50;
4379 if (eecd & E1000_EECD_ADDR_BITS) {
4380 eeprom->word_size = 256;
4381 eeprom->address_bits = 8;
4382 } else {
4383 eeprom->word_size = 64;
4384 eeprom->address_bits = 6;
4387 eeprom->use_eerd = FALSE;
4388 eeprom->use_eewr = FALSE;
4389 break;
4390 case e1000_82571:
4391 case e1000_82572:
4392 eeprom->type = e1000_eeprom_spi;
4393 eeprom->opcode_bits = 8;
4394 eeprom->delay_usec = 1;
4395 if (eecd & E1000_EECD_ADDR_BITS) {
4396 eeprom->page_size = 32;
4397 eeprom->address_bits = 16;
4398 } else {
4399 eeprom->page_size = 8;
4400 eeprom->address_bits = 8;
4402 eeprom->use_eerd = FALSE;
4403 eeprom->use_eewr = FALSE;
4404 break;
4405 case e1000_82573:
4406 eeprom->type = e1000_eeprom_spi;
4407 eeprom->opcode_bits = 8;
4408 eeprom->delay_usec = 1;
4409 if (eecd & E1000_EECD_ADDR_BITS) {
4410 eeprom->page_size = 32;
4411 eeprom->address_bits = 16;
4412 } else {
4413 eeprom->page_size = 8;
4414 eeprom->address_bits = 8;
4416 eeprom->use_eerd = TRUE;
4417 eeprom->use_eewr = TRUE;
4418 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4419 eeprom->type = e1000_eeprom_flash;
4420 eeprom->word_size = 2048;
4422 /* Ensure that the Autonomous FLASH update bit is cleared due to
4423 * Flash update issue on parts which use a FLASH for NVM. */
4424 eecd &= ~E1000_EECD_AUPDEN;
4425 E1000_WRITE_REG(hw, EECD, eecd);
4427 break;
4428 case e1000_80003es2lan:
4429 eeprom->type = e1000_eeprom_spi;
4430 eeprom->opcode_bits = 8;
4431 eeprom->delay_usec = 1;
4432 if (eecd & E1000_EECD_ADDR_BITS) {
4433 eeprom->page_size = 32;
4434 eeprom->address_bits = 16;
4435 } else {
4436 eeprom->page_size = 8;
4437 eeprom->address_bits = 8;
4439 eeprom->use_eerd = TRUE;
4440 eeprom->use_eewr = FALSE;
4441 break;
4442 case e1000_ich8lan:
4444 int32_t i = 0;
4445 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4447 eeprom->type = e1000_eeprom_ich8;
4448 eeprom->use_eerd = FALSE;
4449 eeprom->use_eewr = FALSE;
4450 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4452 /* Zero the shadow RAM structure. But don't load it from NVM
4453 * so as to save time for driver init */
4454 if (hw->eeprom_shadow_ram != NULL) {
4455 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4456 hw->eeprom_shadow_ram[i].modified = FALSE;
4457 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4461 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4462 ICH8_FLASH_SECTOR_SIZE;
4464 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4465 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4466 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4467 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4469 break;
4471 default:
4472 break;
4475 if (eeprom->type == e1000_eeprom_spi) {
4476 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4477 * 32KB (incremented by powers of 2).
4479 if (hw->mac_type <= e1000_82547_rev_2) {
4480 /* Set to default value for initial eeprom read. */
4481 eeprom->word_size = 64;
4482 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4483 if (ret_val)
4484 return ret_val;
4485 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4486 /* 256B eeprom size was not supported in earlier hardware, so we
4487 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4488 * is never the result used in the shifting logic below. */
4489 if (eeprom_size)
4490 eeprom_size++;
4491 } else {
4492 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4493 E1000_EECD_SIZE_EX_SHIFT);
4496 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
4498 return ret_val;
4501 /******************************************************************************
4502 * Raises the EEPROM's clock input.
4504 * hw - Struct containing variables accessed by shared code
4505 * eecd - EECD's current value
4506 *****************************************************************************/
4507 static void
4508 e1000_raise_ee_clk(struct e1000_hw *hw,
4509 uint32_t *eecd)
4511 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4512 * wait <delay> microseconds.
4514 *eecd = *eecd | E1000_EECD_SK;
4515 E1000_WRITE_REG(hw, EECD, *eecd);
4516 E1000_WRITE_FLUSH(hw);
4517 udelay(hw->eeprom.delay_usec);
4520 /******************************************************************************
4521 * Lowers the EEPROM's clock input.
4523 * hw - Struct containing variables accessed by shared code
4524 * eecd - EECD's current value
4525 *****************************************************************************/
4526 static void
4527 e1000_lower_ee_clk(struct e1000_hw *hw,
4528 uint32_t *eecd)
4530 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4531 * wait 50 microseconds.
4533 *eecd = *eecd & ~E1000_EECD_SK;
4534 E1000_WRITE_REG(hw, EECD, *eecd);
4535 E1000_WRITE_FLUSH(hw);
4536 udelay(hw->eeprom.delay_usec);
4539 /******************************************************************************
4540 * Shift data bits out to the EEPROM.
4542 * hw - Struct containing variables accessed by shared code
4543 * data - data to send to the EEPROM
4544 * count - number of bits to shift out
4545 *****************************************************************************/
4546 static void
4547 e1000_shift_out_ee_bits(struct e1000_hw *hw,
4548 uint16_t data,
4549 uint16_t count)
4551 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4552 uint32_t eecd;
4553 uint32_t mask;
4555 /* We need to shift "count" bits out to the EEPROM. So, value in the
4556 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4557 * In order to do this, "data" must be broken down into bits.
4559 mask = 0x01 << (count - 1);
4560 eecd = E1000_READ_REG(hw, EECD);
4561 if (eeprom->type == e1000_eeprom_microwire) {
4562 eecd &= ~E1000_EECD_DO;
4563 } else if (eeprom->type == e1000_eeprom_spi) {
4564 eecd |= E1000_EECD_DO;
4566 do {
4567 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4568 * and then raising and then lowering the clock (the SK bit controls
4569 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4570 * by setting "DI" to "0" and then raising and then lowering the clock.
4572 eecd &= ~E1000_EECD_DI;
4574 if (data & mask)
4575 eecd |= E1000_EECD_DI;
4577 E1000_WRITE_REG(hw, EECD, eecd);
4578 E1000_WRITE_FLUSH(hw);
4580 udelay(eeprom->delay_usec);
4582 e1000_raise_ee_clk(hw, &eecd);
4583 e1000_lower_ee_clk(hw, &eecd);
4585 mask = mask >> 1;
4587 } while (mask);
4589 /* We leave the "DI" bit set to "0" when we leave this routine. */
4590 eecd &= ~E1000_EECD_DI;
4591 E1000_WRITE_REG(hw, EECD, eecd);
4594 /******************************************************************************
4595 * Shift data bits in from the EEPROM
4597 * hw - Struct containing variables accessed by shared code
4598 *****************************************************************************/
4599 static uint16_t
4600 e1000_shift_in_ee_bits(struct e1000_hw *hw,
4601 uint16_t count)
4603 uint32_t eecd;
4604 uint32_t i;
4605 uint16_t data;
4607 /* In order to read a register from the EEPROM, we need to shift 'count'
4608 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4609 * input to the EEPROM (setting the SK bit), and then reading the value of
4610 * the "DO" bit. During this "shifting in" process the "DI" bit should
4611 * always be clear.
4614 eecd = E1000_READ_REG(hw, EECD);
4616 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4617 data = 0;
4619 for (i = 0; i < count; i++) {
4620 data = data << 1;
4621 e1000_raise_ee_clk(hw, &eecd);
4623 eecd = E1000_READ_REG(hw, EECD);
4625 eecd &= ~(E1000_EECD_DI);
4626 if (eecd & E1000_EECD_DO)
4627 data |= 1;
4629 e1000_lower_ee_clk(hw, &eecd);
4632 return data;
4635 /******************************************************************************
4636 * Prepares EEPROM for access
4638 * hw - Struct containing variables accessed by shared code
4640 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4641 * function should be called before issuing a command to the EEPROM.
4642 *****************************************************************************/
4643 static int32_t
4644 e1000_acquire_eeprom(struct e1000_hw *hw)
4646 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4647 uint32_t eecd, i=0;
4649 DEBUGFUNC("e1000_acquire_eeprom");
4651 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4652 return -E1000_ERR_SWFW_SYNC;
4653 eecd = E1000_READ_REG(hw, EECD);
4655 if (hw->mac_type != e1000_82573) {
4656 /* Request EEPROM Access */
4657 if (hw->mac_type > e1000_82544) {
4658 eecd |= E1000_EECD_REQ;
4659 E1000_WRITE_REG(hw, EECD, eecd);
4660 eecd = E1000_READ_REG(hw, EECD);
4661 while ((!(eecd & E1000_EECD_GNT)) &&
4662 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4663 i++;
4664 udelay(5);
4665 eecd = E1000_READ_REG(hw, EECD);
4667 if (!(eecd & E1000_EECD_GNT)) {
4668 eecd &= ~E1000_EECD_REQ;
4669 E1000_WRITE_REG(hw, EECD, eecd);
4670 DEBUGOUT("Could not acquire EEPROM grant\n");
4671 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4672 return -E1000_ERR_EEPROM;
4677 /* Setup EEPROM for Read/Write */
4679 if (eeprom->type == e1000_eeprom_microwire) {
4680 /* Clear SK and DI */
4681 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4682 E1000_WRITE_REG(hw, EECD, eecd);
4684 /* Set CS */
4685 eecd |= E1000_EECD_CS;
4686 E1000_WRITE_REG(hw, EECD, eecd);
4687 } else if (eeprom->type == e1000_eeprom_spi) {
4688 /* Clear SK and CS */
4689 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4690 E1000_WRITE_REG(hw, EECD, eecd);
4691 udelay(1);
4694 return E1000_SUCCESS;
4697 /******************************************************************************
4698 * Returns EEPROM to a "standby" state
4700 * hw - Struct containing variables accessed by shared code
4701 *****************************************************************************/
4702 static void
4703 e1000_standby_eeprom(struct e1000_hw *hw)
4705 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4706 uint32_t eecd;
4708 eecd = E1000_READ_REG(hw, EECD);
4710 if (eeprom->type == e1000_eeprom_microwire) {
4711 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4712 E1000_WRITE_REG(hw, EECD, eecd);
4713 E1000_WRITE_FLUSH(hw);
4714 udelay(eeprom->delay_usec);
4716 /* Clock high */
4717 eecd |= E1000_EECD_SK;
4718 E1000_WRITE_REG(hw, EECD, eecd);
4719 E1000_WRITE_FLUSH(hw);
4720 udelay(eeprom->delay_usec);
4722 /* Select EEPROM */
4723 eecd |= E1000_EECD_CS;
4724 E1000_WRITE_REG(hw, EECD, eecd);
4725 E1000_WRITE_FLUSH(hw);
4726 udelay(eeprom->delay_usec);
4728 /* Clock low */
4729 eecd &= ~E1000_EECD_SK;
4730 E1000_WRITE_REG(hw, EECD, eecd);
4731 E1000_WRITE_FLUSH(hw);
4732 udelay(eeprom->delay_usec);
4733 } else if (eeprom->type == e1000_eeprom_spi) {
4734 /* Toggle CS to flush commands */
4735 eecd |= E1000_EECD_CS;
4736 E1000_WRITE_REG(hw, EECD, eecd);
4737 E1000_WRITE_FLUSH(hw);
4738 udelay(eeprom->delay_usec);
4739 eecd &= ~E1000_EECD_CS;
4740 E1000_WRITE_REG(hw, EECD, eecd);
4741 E1000_WRITE_FLUSH(hw);
4742 udelay(eeprom->delay_usec);
4746 /******************************************************************************
4747 * Terminates a command by inverting the EEPROM's chip select pin
4749 * hw - Struct containing variables accessed by shared code
4750 *****************************************************************************/
4751 static void
4752 e1000_release_eeprom(struct e1000_hw *hw)
4754 uint32_t eecd;
4756 DEBUGFUNC("e1000_release_eeprom");
4758 eecd = E1000_READ_REG(hw, EECD);
4760 if (hw->eeprom.type == e1000_eeprom_spi) {
4761 eecd |= E1000_EECD_CS; /* Pull CS high */
4762 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4764 E1000_WRITE_REG(hw, EECD, eecd);
4766 udelay(hw->eeprom.delay_usec);
4767 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
4768 /* cleanup eeprom */
4770 /* CS on Microwire is active-high */
4771 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4773 E1000_WRITE_REG(hw, EECD, eecd);
4775 /* Rising edge of clock */
4776 eecd |= E1000_EECD_SK;
4777 E1000_WRITE_REG(hw, EECD, eecd);
4778 E1000_WRITE_FLUSH(hw);
4779 udelay(hw->eeprom.delay_usec);
4781 /* Falling edge of clock */
4782 eecd &= ~E1000_EECD_SK;
4783 E1000_WRITE_REG(hw, EECD, eecd);
4784 E1000_WRITE_FLUSH(hw);
4785 udelay(hw->eeprom.delay_usec);
4788 /* Stop requesting EEPROM access */
4789 if (hw->mac_type > e1000_82544) {
4790 eecd &= ~E1000_EECD_REQ;
4791 E1000_WRITE_REG(hw, EECD, eecd);
4794 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4797 /******************************************************************************
4798 * Reads a 16 bit word from the EEPROM.
4800 * hw - Struct containing variables accessed by shared code
4801 *****************************************************************************/
4802 int32_t
4803 e1000_spi_eeprom_ready(struct e1000_hw *hw)
4805 uint16_t retry_count = 0;
4806 uint8_t spi_stat_reg;
4808 DEBUGFUNC("e1000_spi_eeprom_ready");
4810 /* Read "Status Register" repeatedly until the LSB is cleared. The
4811 * EEPROM will signal that the command has been completed by clearing
4812 * bit 0 of the internal status register. If it's not cleared within
4813 * 5 milliseconds, then error out.
4815 retry_count = 0;
4816 do {
4817 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4818 hw->eeprom.opcode_bits);
4819 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4820 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4821 break;
4823 udelay(5);
4824 retry_count += 5;
4826 e1000_standby_eeprom(hw);
4827 } while (retry_count < EEPROM_MAX_RETRY_SPI);
4829 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4830 * only 0-5mSec on 5V devices)
4832 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
4833 DEBUGOUT("SPI EEPROM Status error\n");
4834 return -E1000_ERR_EEPROM;
4837 return E1000_SUCCESS;
4840 /******************************************************************************
4841 * Reads a 16 bit word from the EEPROM.
4843 * hw - Struct containing variables accessed by shared code
4844 * offset - offset of word in the EEPROM to read
4845 * data - word read from the EEPROM
4846 * words - number of words to read
4847 *****************************************************************************/
4848 int32_t
4849 e1000_read_eeprom(struct e1000_hw *hw,
4850 uint16_t offset,
4851 uint16_t words,
4852 uint16_t *data)
4854 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4855 uint32_t i = 0;
4856 int32_t ret_val;
4858 DEBUGFUNC("e1000_read_eeprom");
4860 /* A check for invalid values: offset too large, too many words, and not
4861 * enough words.
4863 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4864 (words == 0)) {
4865 DEBUGOUT("\"words\" parameter out of bounds\n");
4866 return -E1000_ERR_EEPROM;
4869 /* FLASH reads without acquiring the semaphore are safe */
4870 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4871 hw->eeprom.use_eerd == FALSE) {
4872 switch (hw->mac_type) {
4873 case e1000_80003es2lan:
4874 break;
4875 default:
4876 /* Prepare the EEPROM for reading */
4877 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4878 return -E1000_ERR_EEPROM;
4879 break;
4883 if (eeprom->use_eerd == TRUE) {
4884 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
4885 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
4886 (hw->mac_type != e1000_82573))
4887 e1000_release_eeprom(hw);
4888 return ret_val;
4891 if (eeprom->type == e1000_eeprom_ich8)
4892 return e1000_read_eeprom_ich8(hw, offset, words, data);
4894 if (eeprom->type == e1000_eeprom_spi) {
4895 uint16_t word_in;
4896 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
4898 if (e1000_spi_eeprom_ready(hw)) {
4899 e1000_release_eeprom(hw);
4900 return -E1000_ERR_EEPROM;
4903 e1000_standby_eeprom(hw);
4905 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4906 if ((eeprom->address_bits == 8) && (offset >= 128))
4907 read_opcode |= EEPROM_A8_OPCODE_SPI;
4909 /* Send the READ command (opcode + addr) */
4910 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4911 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
4913 /* Read the data. The address of the eeprom internally increments with
4914 * each byte (spi) being read, saving on the overhead of eeprom setup
4915 * and tear-down. The address counter will roll over if reading beyond
4916 * the size of the eeprom, thus allowing the entire memory to be read
4917 * starting from any offset. */
4918 for (i = 0; i < words; i++) {
4919 word_in = e1000_shift_in_ee_bits(hw, 16);
4920 data[i] = (word_in >> 8) | (word_in << 8);
4922 } else if (eeprom->type == e1000_eeprom_microwire) {
4923 for (i = 0; i < words; i++) {
4924 /* Send the READ command (opcode + addr) */
4925 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4926 eeprom->opcode_bits);
4927 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
4928 eeprom->address_bits);
4930 /* Read the data. For microwire, each word requires the overhead
4931 * of eeprom setup and tear-down. */
4932 data[i] = e1000_shift_in_ee_bits(hw, 16);
4933 e1000_standby_eeprom(hw);
4937 /* End this read operation */
4938 e1000_release_eeprom(hw);
4940 return E1000_SUCCESS;
4943 /******************************************************************************
4944 * Reads a 16 bit word from the EEPROM using the EERD register.
4946 * hw - Struct containing variables accessed by shared code
4947 * offset - offset of word in the EEPROM to read
4948 * data - word read from the EEPROM
4949 * words - number of words to read
4950 *****************************************************************************/
4951 static int32_t
4952 e1000_read_eeprom_eerd(struct e1000_hw *hw,
4953 uint16_t offset,
4954 uint16_t words,
4955 uint16_t *data)
4957 uint32_t i, eerd = 0;
4958 int32_t error = 0;
4960 for (i = 0; i < words; i++) {
4961 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
4962 E1000_EEPROM_RW_REG_START;
4964 E1000_WRITE_REG(hw, EERD, eerd);
4965 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
4967 if (error) {
4968 break;
4970 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
4974 return error;
4977 /******************************************************************************
4978 * Writes a 16 bit word from the EEPROM using the EEWR register.
4980 * hw - Struct containing variables accessed by shared code
4981 * offset - offset of word in the EEPROM to read
4982 * data - word read from the EEPROM
4983 * words - number of words to read
4984 *****************************************************************************/
4985 static int32_t
4986 e1000_write_eeprom_eewr(struct e1000_hw *hw,
4987 uint16_t offset,
4988 uint16_t words,
4989 uint16_t *data)
4991 uint32_t register_value = 0;
4992 uint32_t i = 0;
4993 int32_t error = 0;
4995 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4996 return -E1000_ERR_SWFW_SYNC;
4998 for (i = 0; i < words; i++) {
4999 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5000 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5001 E1000_EEPROM_RW_REG_START;
5003 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5004 if (error) {
5005 break;
5008 E1000_WRITE_REG(hw, EEWR, register_value);
5010 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5012 if (error) {
5013 break;
5017 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5018 return error;
5021 /******************************************************************************
5022 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5024 * hw - Struct containing variables accessed by shared code
5025 *****************************************************************************/
5026 static int32_t
5027 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5029 uint32_t attempts = 100000;
5030 uint32_t i, reg = 0;
5031 int32_t done = E1000_ERR_EEPROM;
5033 for (i = 0; i < attempts; i++) {
5034 if (eerd == E1000_EEPROM_POLL_READ)
5035 reg = E1000_READ_REG(hw, EERD);
5036 else
5037 reg = E1000_READ_REG(hw, EEWR);
5039 if (reg & E1000_EEPROM_RW_REG_DONE) {
5040 done = E1000_SUCCESS;
5041 break;
5043 udelay(5);
5046 return done;
5049 /***************************************************************************
5050 * Description: Determines if the onboard NVM is FLASH or EEPROM.
5052 * hw - Struct containing variables accessed by shared code
5053 ****************************************************************************/
5054 static boolean_t
5055 e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5057 uint32_t eecd = 0;
5059 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5061 if (hw->mac_type == e1000_ich8lan)
5062 return FALSE;
5064 if (hw->mac_type == e1000_82573) {
5065 eecd = E1000_READ_REG(hw, EECD);
5067 /* Isolate bits 15 & 16 */
5068 eecd = ((eecd >> 15) & 0x03);
5070 /* If both bits are set, device is Flash type */
5071 if (eecd == 0x03) {
5072 return FALSE;
5075 return TRUE;
5078 /******************************************************************************
5079 * Verifies that the EEPROM has a valid checksum
5081 * hw - Struct containing variables accessed by shared code
5083 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5084 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5085 * valid.
5086 *****************************************************************************/
5087 int32_t
5088 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5090 uint16_t checksum = 0;
5091 uint16_t i, eeprom_data;
5093 DEBUGFUNC("e1000_validate_eeprom_checksum");
5095 if ((hw->mac_type == e1000_82573) &&
5096 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5097 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5098 * 10h-12h. Checksum may need to be fixed. */
5099 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5100 if ((eeprom_data & 0x10) == 0) {
5101 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5102 * has already been fixed. If the checksum is still wrong and this
5103 * bit is a 1, we need to return bad checksum. Otherwise, we need
5104 * to set this bit to a 1 and update the checksum. */
5105 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5106 if ((eeprom_data & 0x8000) == 0) {
5107 eeprom_data |= 0x8000;
5108 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5109 e1000_update_eeprom_checksum(hw);
5114 if (hw->mac_type == e1000_ich8lan) {
5115 /* Drivers must allocate the shadow ram structure for the
5116 * EEPROM checksum to be updated. Otherwise, this bit as well
5117 * as the checksum must both be set correctly for this
5118 * validation to pass.
5120 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5121 if ((eeprom_data & 0x40) == 0) {
5122 eeprom_data |= 0x40;
5123 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5124 e1000_update_eeprom_checksum(hw);
5128 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5129 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5130 DEBUGOUT("EEPROM Read Error\n");
5131 return -E1000_ERR_EEPROM;
5133 checksum += eeprom_data;
5136 if (checksum == (uint16_t) EEPROM_SUM)
5137 return E1000_SUCCESS;
5138 else {
5139 DEBUGOUT("EEPROM Checksum Invalid\n");
5140 return -E1000_ERR_EEPROM;
5144 /******************************************************************************
5145 * Calculates the EEPROM checksum and writes it to the EEPROM
5147 * hw - Struct containing variables accessed by shared code
5149 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5150 * Writes the difference to word offset 63 of the EEPROM.
5151 *****************************************************************************/
5152 int32_t
5153 e1000_update_eeprom_checksum(struct e1000_hw *hw)
5155 uint32_t ctrl_ext;
5156 uint16_t checksum = 0;
5157 uint16_t i, eeprom_data;
5159 DEBUGFUNC("e1000_update_eeprom_checksum");
5161 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5162 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5163 DEBUGOUT("EEPROM Read Error\n");
5164 return -E1000_ERR_EEPROM;
5166 checksum += eeprom_data;
5168 checksum = (uint16_t) EEPROM_SUM - checksum;
5169 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5170 DEBUGOUT("EEPROM Write Error\n");
5171 return -E1000_ERR_EEPROM;
5172 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5173 e1000_commit_shadow_ram(hw);
5174 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5175 e1000_commit_shadow_ram(hw);
5176 /* Reload the EEPROM, or else modifications will not appear
5177 * until after next adapter reset. */
5178 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5179 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5180 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5181 msleep(10);
5183 return E1000_SUCCESS;
5186 /******************************************************************************
5187 * Parent function for writing words to the different EEPROM types.
5189 * hw - Struct containing variables accessed by shared code
5190 * offset - offset within the EEPROM to be written to
5191 * words - number of words to write
5192 * data - 16 bit word to be written to the EEPROM
5194 * If e1000_update_eeprom_checksum is not called after this function, the
5195 * EEPROM will most likely contain an invalid checksum.
5196 *****************************************************************************/
5197 int32_t
5198 e1000_write_eeprom(struct e1000_hw *hw,
5199 uint16_t offset,
5200 uint16_t words,
5201 uint16_t *data)
5203 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5204 int32_t status = 0;
5206 DEBUGFUNC("e1000_write_eeprom");
5208 /* A check for invalid values: offset too large, too many words, and not
5209 * enough words.
5211 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5212 (words == 0)) {
5213 DEBUGOUT("\"words\" parameter out of bounds\n");
5214 return -E1000_ERR_EEPROM;
5217 /* 82573 writes only through eewr */
5218 if (eeprom->use_eewr == TRUE)
5219 return e1000_write_eeprom_eewr(hw, offset, words, data);
5221 if (eeprom->type == e1000_eeprom_ich8)
5222 return e1000_write_eeprom_ich8(hw, offset, words, data);
5224 /* Prepare the EEPROM for writing */
5225 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5226 return -E1000_ERR_EEPROM;
5228 if (eeprom->type == e1000_eeprom_microwire) {
5229 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5230 } else {
5231 status = e1000_write_eeprom_spi(hw, offset, words, data);
5232 msleep(10);
5235 /* Done with writing */
5236 e1000_release_eeprom(hw);
5238 return status;
5241 /******************************************************************************
5242 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5244 * hw - Struct containing variables accessed by shared code
5245 * offset - offset within the EEPROM to be written to
5246 * words - number of words to write
5247 * data - pointer to array of 8 bit words to be written to the EEPROM
5249 *****************************************************************************/
5250 int32_t
5251 e1000_write_eeprom_spi(struct e1000_hw *hw,
5252 uint16_t offset,
5253 uint16_t words,
5254 uint16_t *data)
5256 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5257 uint16_t widx = 0;
5259 DEBUGFUNC("e1000_write_eeprom_spi");
5261 while (widx < words) {
5262 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5264 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5266 e1000_standby_eeprom(hw);
5268 /* Send the WRITE ENABLE command (8 bit opcode ) */
5269 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5270 eeprom->opcode_bits);
5272 e1000_standby_eeprom(hw);
5274 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5275 if ((eeprom->address_bits == 8) && (offset >= 128))
5276 write_opcode |= EEPROM_A8_OPCODE_SPI;
5278 /* Send the Write command (8-bit opcode + addr) */
5279 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5281 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5282 eeprom->address_bits);
5284 /* Send the data */
5286 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5287 while (widx < words) {
5288 uint16_t word_out = data[widx];
5289 word_out = (word_out >> 8) | (word_out << 8);
5290 e1000_shift_out_ee_bits(hw, word_out, 16);
5291 widx++;
5293 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5294 * operation, while the smaller eeproms are capable of an 8-byte
5295 * PAGE WRITE operation. Break the inner loop to pass new address
5297 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
5298 e1000_standby_eeprom(hw);
5299 break;
5304 return E1000_SUCCESS;
5307 /******************************************************************************
5308 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5310 * hw - Struct containing variables accessed by shared code
5311 * offset - offset within the EEPROM to be written to
5312 * words - number of words to write
5313 * data - pointer to array of 16 bit words to be written to the EEPROM
5315 *****************************************************************************/
5316 int32_t
5317 e1000_write_eeprom_microwire(struct e1000_hw *hw,
5318 uint16_t offset,
5319 uint16_t words,
5320 uint16_t *data)
5322 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5323 uint32_t eecd;
5324 uint16_t words_written = 0;
5325 uint16_t i = 0;
5327 DEBUGFUNC("e1000_write_eeprom_microwire");
5329 /* Send the write enable command to the EEPROM (3-bit opcode plus
5330 * 6/8-bit dummy address beginning with 11). It's less work to include
5331 * the 11 of the dummy address as part of the opcode than it is to shift
5332 * it over the correct number of bits for the address. This puts the
5333 * EEPROM into write/erase mode.
5335 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5336 (uint16_t)(eeprom->opcode_bits + 2));
5338 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5340 /* Prepare the EEPROM */
5341 e1000_standby_eeprom(hw);
5343 while (words_written < words) {
5344 /* Send the Write command (3-bit opcode + addr) */
5345 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5346 eeprom->opcode_bits);
5348 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5349 eeprom->address_bits);
5351 /* Send the data */
5352 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5354 /* Toggle the CS line. This in effect tells the EEPROM to execute
5355 * the previous command.
5357 e1000_standby_eeprom(hw);
5359 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5360 * signal that the command has been completed by raising the DO signal.
5361 * If DO does not go high in 10 milliseconds, then error out.
5363 for (i = 0; i < 200; i++) {
5364 eecd = E1000_READ_REG(hw, EECD);
5365 if (eecd & E1000_EECD_DO) break;
5366 udelay(50);
5368 if (i == 200) {
5369 DEBUGOUT("EEPROM Write did not complete\n");
5370 return -E1000_ERR_EEPROM;
5373 /* Recover from write */
5374 e1000_standby_eeprom(hw);
5376 words_written++;
5379 /* Send the write disable command to the EEPROM (3-bit opcode plus
5380 * 6/8-bit dummy address beginning with 10). It's less work to include
5381 * the 10 of the dummy address as part of the opcode than it is to shift
5382 * it over the correct number of bits for the address. This takes the
5383 * EEPROM out of write/erase mode.
5385 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5386 (uint16_t)(eeprom->opcode_bits + 2));
5388 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5390 return E1000_SUCCESS;
5393 /******************************************************************************
5394 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5395 * in the eeprom cache and the non modified values in the currently active bank
5396 * to the new bank.
5398 * hw - Struct containing variables accessed by shared code
5399 * offset - offset of word in the EEPROM to read
5400 * data - word read from the EEPROM
5401 * words - number of words to read
5402 *****************************************************************************/
5403 static int32_t
5404 e1000_commit_shadow_ram(struct e1000_hw *hw)
5406 uint32_t attempts = 100000;
5407 uint32_t eecd = 0;
5408 uint32_t flop = 0;
5409 uint32_t i = 0;
5410 int32_t error = E1000_SUCCESS;
5411 uint32_t old_bank_offset = 0;
5412 uint32_t new_bank_offset = 0;
5413 uint32_t sector_retries = 0;
5414 uint8_t low_byte = 0;
5415 uint8_t high_byte = 0;
5416 uint8_t temp_byte = 0;
5417 boolean_t sector_write_failed = FALSE;
5419 if (hw->mac_type == e1000_82573) {
5420 /* The flop register will be used to determine if flash type is STM */
5421 flop = E1000_READ_REG(hw, FLOP);
5422 for (i=0; i < attempts; i++) {
5423 eecd = E1000_READ_REG(hw, EECD);
5424 if ((eecd & E1000_EECD_FLUPD) == 0) {
5425 break;
5427 udelay(5);
5430 if (i == attempts) {
5431 return -E1000_ERR_EEPROM;
5434 /* If STM opcode located in bits 15:8 of flop, reset firmware */
5435 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5436 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5439 /* Perform the flash update */
5440 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5442 for (i=0; i < attempts; i++) {
5443 eecd = E1000_READ_REG(hw, EECD);
5444 if ((eecd & E1000_EECD_FLUPD) == 0) {
5445 break;
5447 udelay(5);
5450 if (i == attempts) {
5451 return -E1000_ERR_EEPROM;
5455 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5456 /* We're writing to the opposite bank so if we're on bank 1,
5457 * write to bank 0 etc. We also need to erase the segment that
5458 * is going to be written */
5459 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5460 new_bank_offset = hw->flash_bank_size * 2;
5461 old_bank_offset = 0;
5462 e1000_erase_ich8_4k_segment(hw, 1);
5463 } else {
5464 old_bank_offset = hw->flash_bank_size * 2;
5465 new_bank_offset = 0;
5466 e1000_erase_ich8_4k_segment(hw, 0);
5469 do {
5470 sector_write_failed = FALSE;
5471 /* Loop for every byte in the shadow RAM,
5472 * which is in units of words. */
5473 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5474 /* Determine whether to write the value stored
5475 * in the other NVM bank or a modified value stored
5476 * in the shadow RAM */
5477 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5478 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5479 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5480 &temp_byte);
5481 udelay(100);
5482 error = e1000_verify_write_ich8_byte(hw,
5483 (i << 1) + new_bank_offset,
5484 low_byte);
5485 if (error != E1000_SUCCESS)
5486 sector_write_failed = TRUE;
5487 high_byte =
5488 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5489 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5490 &temp_byte);
5491 udelay(100);
5492 } else {
5493 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5494 &low_byte);
5495 udelay(100);
5496 error = e1000_verify_write_ich8_byte(hw,
5497 (i << 1) + new_bank_offset, low_byte);
5498 if (error != E1000_SUCCESS)
5499 sector_write_failed = TRUE;
5500 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5501 &high_byte);
5504 /* If the word is 0x13, then make sure the signature bits
5505 * (15:14) are 11b until the commit has completed.
5506 * This will allow us to write 10b which indicates the
5507 * signature is valid. We want to do this after the write
5508 * has completed so that we don't mark the segment valid
5509 * while the write is still in progress */
5510 if (i == E1000_ICH8_NVM_SIG_WORD)
5511 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5513 error = e1000_verify_write_ich8_byte(hw,
5514 (i << 1) + new_bank_offset + 1, high_byte);
5515 if (error != E1000_SUCCESS)
5516 sector_write_failed = TRUE;
5518 if (sector_write_failed == FALSE) {
5519 /* Clear the now not used entry in the cache */
5520 hw->eeprom_shadow_ram[i].modified = FALSE;
5521 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5525 /* Don't bother writing the segment valid bits if sector
5526 * programming failed. */
5527 if (sector_write_failed == FALSE) {
5528 /* Finally validate the new segment by setting bit 15:14
5529 * to 10b in word 0x13 , this can be done without an
5530 * erase as well since these bits are 11 to start with
5531 * and we need to change bit 14 to 0b */
5532 e1000_read_ich8_byte(hw,
5533 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5534 &high_byte);
5535 high_byte &= 0xBF;
5536 error = e1000_verify_write_ich8_byte(hw,
5537 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5538 high_byte);
5539 if (error != E1000_SUCCESS)
5540 sector_write_failed = TRUE;
5542 /* And invalidate the previously valid segment by setting
5543 * its signature word (0x13) high_byte to 0b. This can be
5544 * done without an erase because flash erase sets all bits
5545 * to 1's. We can write 1's to 0's without an erase */
5546 error = e1000_verify_write_ich8_byte(hw,
5547 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
5549 if (error != E1000_SUCCESS)
5550 sector_write_failed = TRUE;
5552 } while (++sector_retries < 10 && sector_write_failed == TRUE);
5555 return error;
5558 /******************************************************************************
5559 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5560 * second function of dual function devices
5562 * hw - Struct containing variables accessed by shared code
5563 *****************************************************************************/
5564 int32_t
5565 e1000_read_mac_addr(struct e1000_hw * hw)
5567 uint16_t offset;
5568 uint16_t eeprom_data, i;
5570 DEBUGFUNC("e1000_read_mac_addr");
5572 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5573 offset = i >> 1;
5574 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5575 DEBUGOUT("EEPROM Read Error\n");
5576 return -E1000_ERR_EEPROM;
5578 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5579 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5582 switch (hw->mac_type) {
5583 default:
5584 break;
5585 case e1000_82546:
5586 case e1000_82546_rev_3:
5587 case e1000_82571:
5588 case e1000_80003es2lan:
5589 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
5590 hw->perm_mac_addr[5] ^= 0x01;
5591 break;
5594 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
5595 hw->mac_addr[i] = hw->perm_mac_addr[i];
5596 return E1000_SUCCESS;
5599 /******************************************************************************
5600 * Initializes receive address filters.
5602 * hw - Struct containing variables accessed by shared code
5604 * Places the MAC address in receive address register 0 and clears the rest
5605 * of the receive addresss registers. Clears the multicast table. Assumes
5606 * the receiver is in reset when the routine is called.
5607 *****************************************************************************/
5608 static void
5609 e1000_init_rx_addrs(struct e1000_hw *hw)
5611 uint32_t i;
5612 uint32_t rar_num;
5614 DEBUGFUNC("e1000_init_rx_addrs");
5616 /* Setup the receive address. */
5617 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5619 e1000_rar_set(hw, hw->mac_addr, 0);
5621 rar_num = E1000_RAR_ENTRIES;
5623 /* Reserve a spot for the Locally Administered Address to work around
5624 * an 82571 issue in which a reset on one port will reload the MAC on
5625 * the other port. */
5626 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5627 rar_num -= 1;
5628 if (hw->mac_type == e1000_ich8lan)
5629 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5631 /* Zero out the other 15 receive addresses. */
5632 DEBUGOUT("Clearing RAR[1-15]\n");
5633 for (i = 1; i < rar_num; i++) {
5634 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5635 E1000_WRITE_FLUSH(hw);
5636 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5637 E1000_WRITE_FLUSH(hw);
5641 /******************************************************************************
5642 * Updates the MAC's list of multicast addresses.
5644 * hw - Struct containing variables accessed by shared code
5645 * mc_addr_list - the list of new multicast addresses
5646 * mc_addr_count - number of addresses
5647 * pad - number of bytes between addresses in the list
5648 * rar_used_count - offset where to start adding mc addresses into the RAR's
5650 * The given list replaces any existing list. Clears the last 15 receive
5651 * address registers and the multicast table. Uses receive address registers
5652 * for the first 15 multicast addresses, and hashes the rest into the
5653 * multicast table.
5654 *****************************************************************************/
5655 #if 0
5656 void
5657 e1000_mc_addr_list_update(struct e1000_hw *hw,
5658 uint8_t *mc_addr_list,
5659 uint32_t mc_addr_count,
5660 uint32_t pad,
5661 uint32_t rar_used_count)
5663 uint32_t hash_value;
5664 uint32_t i;
5665 uint32_t num_rar_entry;
5666 uint32_t num_mta_entry;
5668 DEBUGFUNC("e1000_mc_addr_list_update");
5670 /* Set the new number of MC addresses that we are being requested to use. */
5671 hw->num_mc_addrs = mc_addr_count;
5673 /* Clear RAR[1-15] */
5674 DEBUGOUT(" Clearing RAR[1-15]\n");
5675 num_rar_entry = E1000_RAR_ENTRIES;
5676 if (hw->mac_type == e1000_ich8lan)
5677 num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
5678 /* Reserve a spot for the Locally Administered Address to work around
5679 * an 82571 issue in which a reset on one port will reload the MAC on
5680 * the other port. */
5681 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5682 num_rar_entry -= 1;
5684 for (i = rar_used_count; i < num_rar_entry; i++) {
5685 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5686 E1000_WRITE_FLUSH(hw);
5687 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5688 E1000_WRITE_FLUSH(hw);
5691 /* Clear the MTA */
5692 DEBUGOUT(" Clearing MTA\n");
5693 num_mta_entry = E1000_NUM_MTA_REGISTERS;
5694 if (hw->mac_type == e1000_ich8lan)
5695 num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
5696 for (i = 0; i < num_mta_entry; i++) {
5697 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
5698 E1000_WRITE_FLUSH(hw);
5701 /* Add the new addresses */
5702 for (i = 0; i < mc_addr_count; i++) {
5703 DEBUGOUT(" Adding the multicast addresses:\n");
5704 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
5705 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
5706 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
5707 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
5708 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
5709 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
5710 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
5712 hash_value = e1000_hash_mc_addr(hw,
5713 mc_addr_list +
5714 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
5716 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
5718 /* Place this multicast address in the RAR if there is room, *
5719 * else put it in the MTA
5721 if (rar_used_count < num_rar_entry) {
5722 e1000_rar_set(hw,
5723 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
5724 rar_used_count);
5725 rar_used_count++;
5726 } else {
5727 e1000_mta_set(hw, hash_value);
5730 DEBUGOUT("MC Update Complete\n");
5732 #endif /* 0 */
5734 /******************************************************************************
5735 * Hashes an address to determine its location in the multicast table
5737 * hw - Struct containing variables accessed by shared code
5738 * mc_addr - the multicast address to hash
5739 *****************************************************************************/
5740 uint32_t
5741 e1000_hash_mc_addr(struct e1000_hw *hw,
5742 uint8_t *mc_addr)
5744 uint32_t hash_value = 0;
5746 /* The portion of the address that is used for the hash table is
5747 * determined by the mc_filter_type setting.
5749 switch (hw->mc_filter_type) {
5750 /* [0] [1] [2] [3] [4] [5]
5751 * 01 AA 00 12 34 56
5752 * LSB MSB
5754 case 0:
5755 if (hw->mac_type == e1000_ich8lan) {
5756 /* [47:38] i.e. 0x158 for above example address */
5757 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5758 } else {
5759 /* [47:36] i.e. 0x563 for above example address */
5760 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5762 break;
5763 case 1:
5764 if (hw->mac_type == e1000_ich8lan) {
5765 /* [46:37] i.e. 0x2B1 for above example address */
5766 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5767 } else {
5768 /* [46:35] i.e. 0xAC6 for above example address */
5769 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5771 break;
5772 case 2:
5773 if (hw->mac_type == e1000_ich8lan) {
5774 /*[45:36] i.e. 0x163 for above example address */
5775 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5776 } else {
5777 /* [45:34] i.e. 0x5D8 for above example address */
5778 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5780 break;
5781 case 3:
5782 if (hw->mac_type == e1000_ich8lan) {
5783 /* [43:34] i.e. 0x18D for above example address */
5784 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5785 } else {
5786 /* [43:32] i.e. 0x634 for above example address */
5787 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5789 break;
5792 hash_value &= 0xFFF;
5793 if (hw->mac_type == e1000_ich8lan)
5794 hash_value &= 0x3FF;
5796 return hash_value;
5799 /******************************************************************************
5800 * Sets the bit in the multicast table corresponding to the hash value.
5802 * hw - Struct containing variables accessed by shared code
5803 * hash_value - Multicast address hash value
5804 *****************************************************************************/
5805 void
5806 e1000_mta_set(struct e1000_hw *hw,
5807 uint32_t hash_value)
5809 uint32_t hash_bit, hash_reg;
5810 uint32_t mta;
5811 uint32_t temp;
5813 /* The MTA is a register array of 128 32-bit registers.
5814 * It is treated like an array of 4096 bits. We want to set
5815 * bit BitArray[hash_value]. So we figure out what register
5816 * the bit is in, read it, OR in the new bit, then write
5817 * back the new value. The register is determined by the
5818 * upper 7 bits of the hash value and the bit within that
5819 * register are determined by the lower 5 bits of the value.
5821 hash_reg = (hash_value >> 5) & 0x7F;
5822 if (hw->mac_type == e1000_ich8lan)
5823 hash_reg &= 0x1F;
5824 hash_bit = hash_value & 0x1F;
5826 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5828 mta |= (1 << hash_bit);
5830 /* If we are on an 82544 and we are trying to write an odd offset
5831 * in the MTA, save off the previous entry before writing and
5832 * restore the old value after writing.
5834 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5835 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5836 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5837 E1000_WRITE_FLUSH(hw);
5838 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5839 E1000_WRITE_FLUSH(hw);
5840 } else {
5841 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5842 E1000_WRITE_FLUSH(hw);
5846 /******************************************************************************
5847 * Puts an ethernet address into a receive address register.
5849 * hw - Struct containing variables accessed by shared code
5850 * addr - Address to put into receive address register
5851 * index - Receive address register to write
5852 *****************************************************************************/
5853 void
5854 e1000_rar_set(struct e1000_hw *hw,
5855 uint8_t *addr,
5856 uint32_t index)
5858 uint32_t rar_low, rar_high;
5860 /* HW expects these in little endian so we reverse the byte order
5861 * from network order (big endian) to little endian
5863 rar_low = ((uint32_t) addr[0] |
5864 ((uint32_t) addr[1] << 8) |
5865 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
5866 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
5868 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5869 * unit hang.
5871 * Description:
5872 * If there are any Rx frames queued up or otherwise present in the HW
5873 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5874 * hang. To work around this issue, we have to disable receives and
5875 * flush out all Rx frames before we enable RSS. To do so, we modify we
5876 * redirect all Rx traffic to manageability and then reset the HW.
5877 * This flushes away Rx frames, and (since the redirections to
5878 * manageability persists across resets) keeps new ones from coming in
5879 * while we work. Then, we clear the Address Valid AV bit for all MAC
5880 * addresses and undo the re-direction to manageability.
5881 * Now, frames are coming in again, but the MAC won't accept them, so
5882 * far so good. We now proceed to initialize RSS (if necessary) and
5883 * configure the Rx unit. Last, we re-enable the AV bits and continue
5884 * on our merry way.
5886 switch (hw->mac_type) {
5887 case e1000_82571:
5888 case e1000_82572:
5889 case e1000_80003es2lan:
5890 if (hw->leave_av_bit_off == TRUE)
5891 break;
5892 default:
5893 /* Indicate to hardware the Address is Valid. */
5894 rar_high |= E1000_RAH_AV;
5895 break;
5898 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5899 E1000_WRITE_FLUSH(hw);
5900 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5901 E1000_WRITE_FLUSH(hw);
5904 /******************************************************************************
5905 * Writes a value to the specified offset in the VLAN filter table.
5907 * hw - Struct containing variables accessed by shared code
5908 * offset - Offset in VLAN filer table to write
5909 * value - Value to write into VLAN filter table
5910 *****************************************************************************/
5911 void
5912 e1000_write_vfta(struct e1000_hw *hw,
5913 uint32_t offset,
5914 uint32_t value)
5916 uint32_t temp;
5918 if (hw->mac_type == e1000_ich8lan)
5919 return;
5921 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5922 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5923 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5924 E1000_WRITE_FLUSH(hw);
5925 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5926 E1000_WRITE_FLUSH(hw);
5927 } else {
5928 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5929 E1000_WRITE_FLUSH(hw);
5933 /******************************************************************************
5934 * Clears the VLAN filer table
5936 * hw - Struct containing variables accessed by shared code
5937 *****************************************************************************/
5938 static void
5939 e1000_clear_vfta(struct e1000_hw *hw)
5941 uint32_t offset;
5942 uint32_t vfta_value = 0;
5943 uint32_t vfta_offset = 0;
5944 uint32_t vfta_bit_in_reg = 0;
5946 if (hw->mac_type == e1000_ich8lan)
5947 return;
5949 if (hw->mac_type == e1000_82573) {
5950 if (hw->mng_cookie.vlan_id != 0) {
5951 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5952 * ID. The following operations determine which 32b entry
5953 * (i.e. offset) into the array we want to set the VLAN ID
5954 * (i.e. bit) of the manageability unit. */
5955 vfta_offset = (hw->mng_cookie.vlan_id >>
5956 E1000_VFTA_ENTRY_SHIFT) &
5957 E1000_VFTA_ENTRY_MASK;
5958 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5959 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5962 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5963 /* If the offset we want to clear is the same offset of the
5964 * manageability VLAN ID, then clear all bits except that of the
5965 * manageability unit */
5966 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5967 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5968 E1000_WRITE_FLUSH(hw);
5972 static int32_t
5973 e1000_id_led_init(struct e1000_hw * hw)
5975 uint32_t ledctl;
5976 const uint32_t ledctl_mask = 0x000000FF;
5977 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5978 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5979 uint16_t eeprom_data, i, temp;
5980 const uint16_t led_mask = 0x0F;
5982 DEBUGFUNC("e1000_id_led_init");
5984 if (hw->mac_type < e1000_82540) {
5985 /* Nothing to do */
5986 return E1000_SUCCESS;
5989 ledctl = E1000_READ_REG(hw, LEDCTL);
5990 hw->ledctl_default = ledctl;
5991 hw->ledctl_mode1 = hw->ledctl_default;
5992 hw->ledctl_mode2 = hw->ledctl_default;
5994 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
5995 DEBUGOUT("EEPROM Read Error\n");
5996 return -E1000_ERR_EEPROM;
5999 if ((hw->mac_type == e1000_82573) &&
6000 (eeprom_data == ID_LED_RESERVED_82573))
6001 eeprom_data = ID_LED_DEFAULT_82573;
6002 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6003 (eeprom_data == ID_LED_RESERVED_FFFF)) {
6004 if (hw->mac_type == e1000_ich8lan)
6005 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6006 else
6007 eeprom_data = ID_LED_DEFAULT;
6009 for (i = 0; i < 4; i++) {
6010 temp = (eeprom_data >> (i << 2)) & led_mask;
6011 switch (temp) {
6012 case ID_LED_ON1_DEF2:
6013 case ID_LED_ON1_ON2:
6014 case ID_LED_ON1_OFF2:
6015 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6016 hw->ledctl_mode1 |= ledctl_on << (i << 3);
6017 break;
6018 case ID_LED_OFF1_DEF2:
6019 case ID_LED_OFF1_ON2:
6020 case ID_LED_OFF1_OFF2:
6021 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6022 hw->ledctl_mode1 |= ledctl_off << (i << 3);
6023 break;
6024 default:
6025 /* Do nothing */
6026 break;
6028 switch (temp) {
6029 case ID_LED_DEF1_ON2:
6030 case ID_LED_ON1_ON2:
6031 case ID_LED_OFF1_ON2:
6032 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6033 hw->ledctl_mode2 |= ledctl_on << (i << 3);
6034 break;
6035 case ID_LED_DEF1_OFF2:
6036 case ID_LED_ON1_OFF2:
6037 case ID_LED_OFF1_OFF2:
6038 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6039 hw->ledctl_mode2 |= ledctl_off << (i << 3);
6040 break;
6041 default:
6042 /* Do nothing */
6043 break;
6046 return E1000_SUCCESS;
6049 /******************************************************************************
6050 * Prepares SW controlable LED for use and saves the current state of the LED.
6052 * hw - Struct containing variables accessed by shared code
6053 *****************************************************************************/
6054 int32_t
6055 e1000_setup_led(struct e1000_hw *hw)
6057 uint32_t ledctl;
6058 int32_t ret_val = E1000_SUCCESS;
6060 DEBUGFUNC("e1000_setup_led");
6062 switch (hw->mac_type) {
6063 case e1000_82542_rev2_0:
6064 case e1000_82542_rev2_1:
6065 case e1000_82543:
6066 case e1000_82544:
6067 /* No setup necessary */
6068 break;
6069 case e1000_82541:
6070 case e1000_82547:
6071 case e1000_82541_rev_2:
6072 case e1000_82547_rev_2:
6073 /* Turn off PHY Smart Power Down (if enabled) */
6074 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6075 &hw->phy_spd_default);
6076 if (ret_val)
6077 return ret_val;
6078 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6079 (uint16_t)(hw->phy_spd_default &
6080 ~IGP01E1000_GMII_SPD));
6081 if (ret_val)
6082 return ret_val;
6083 /* Fall Through */
6084 default:
6085 if (hw->media_type == e1000_media_type_fiber) {
6086 ledctl = E1000_READ_REG(hw, LEDCTL);
6087 /* Save current LEDCTL settings */
6088 hw->ledctl_default = ledctl;
6089 /* Turn off LED0 */
6090 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6091 E1000_LEDCTL_LED0_BLINK |
6092 E1000_LEDCTL_LED0_MODE_MASK);
6093 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6094 E1000_LEDCTL_LED0_MODE_SHIFT);
6095 E1000_WRITE_REG(hw, LEDCTL, ledctl);
6096 } else if (hw->media_type == e1000_media_type_copper)
6097 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6098 break;
6101 return E1000_SUCCESS;
6105 /******************************************************************************
6106 * Used on 82571 and later Si that has LED blink bits.
6107 * Callers must use their own timer and should have already called
6108 * e1000_id_led_init()
6109 * Call e1000_cleanup led() to stop blinking
6111 * hw - Struct containing variables accessed by shared code
6112 *****************************************************************************/
6113 int32_t
6114 e1000_blink_led_start(struct e1000_hw *hw)
6116 int16_t i;
6117 uint32_t ledctl_blink = 0;
6119 DEBUGFUNC("e1000_id_led_blink_on");
6121 if (hw->mac_type < e1000_82571) {
6122 /* Nothing to do */
6123 return E1000_SUCCESS;
6125 if (hw->media_type == e1000_media_type_fiber) {
6126 /* always blink LED0 for PCI-E fiber */
6127 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6128 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6129 } else {
6130 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6131 ledctl_blink = hw->ledctl_mode2;
6132 for (i=0; i < 4; i++)
6133 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6134 E1000_LEDCTL_MODE_LED_ON)
6135 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6138 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6140 return E1000_SUCCESS;
6143 /******************************************************************************
6144 * Restores the saved state of the SW controlable LED.
6146 * hw - Struct containing variables accessed by shared code
6147 *****************************************************************************/
6148 int32_t
6149 e1000_cleanup_led(struct e1000_hw *hw)
6151 int32_t ret_val = E1000_SUCCESS;
6153 DEBUGFUNC("e1000_cleanup_led");
6155 switch (hw->mac_type) {
6156 case e1000_82542_rev2_0:
6157 case e1000_82542_rev2_1:
6158 case e1000_82543:
6159 case e1000_82544:
6160 /* No cleanup necessary */
6161 break;
6162 case e1000_82541:
6163 case e1000_82547:
6164 case e1000_82541_rev_2:
6165 case e1000_82547_rev_2:
6166 /* Turn on PHY Smart Power Down (if previously enabled) */
6167 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6168 hw->phy_spd_default);
6169 if (ret_val)
6170 return ret_val;
6171 /* Fall Through */
6172 default:
6173 if (hw->phy_type == e1000_phy_ife) {
6174 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6175 break;
6177 /* Restore LEDCTL settings */
6178 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6179 break;
6182 return E1000_SUCCESS;
6185 /******************************************************************************
6186 * Turns on the software controllable LED
6188 * hw - Struct containing variables accessed by shared code
6189 *****************************************************************************/
6190 int32_t
6191 e1000_led_on(struct e1000_hw *hw)
6193 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6195 DEBUGFUNC("e1000_led_on");
6197 switch (hw->mac_type) {
6198 case e1000_82542_rev2_0:
6199 case e1000_82542_rev2_1:
6200 case e1000_82543:
6201 /* Set SW Defineable Pin 0 to turn on the LED */
6202 ctrl |= E1000_CTRL_SWDPIN0;
6203 ctrl |= E1000_CTRL_SWDPIO0;
6204 break;
6205 case e1000_82544:
6206 if (hw->media_type == e1000_media_type_fiber) {
6207 /* Set SW Defineable Pin 0 to turn on the LED */
6208 ctrl |= E1000_CTRL_SWDPIN0;
6209 ctrl |= E1000_CTRL_SWDPIO0;
6210 } else {
6211 /* Clear SW Defineable Pin 0 to turn on the LED */
6212 ctrl &= ~E1000_CTRL_SWDPIN0;
6213 ctrl |= E1000_CTRL_SWDPIO0;
6215 break;
6216 default:
6217 if (hw->media_type == e1000_media_type_fiber) {
6218 /* Clear SW Defineable Pin 0 to turn on the LED */
6219 ctrl &= ~E1000_CTRL_SWDPIN0;
6220 ctrl |= E1000_CTRL_SWDPIO0;
6221 } else if (hw->phy_type == e1000_phy_ife) {
6222 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6223 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6224 } else if (hw->media_type == e1000_media_type_copper) {
6225 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6226 return E1000_SUCCESS;
6228 break;
6231 E1000_WRITE_REG(hw, CTRL, ctrl);
6233 return E1000_SUCCESS;
6236 /******************************************************************************
6237 * Turns off the software controllable LED
6239 * hw - Struct containing variables accessed by shared code
6240 *****************************************************************************/
6241 int32_t
6242 e1000_led_off(struct e1000_hw *hw)
6244 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6246 DEBUGFUNC("e1000_led_off");
6248 switch (hw->mac_type) {
6249 case e1000_82542_rev2_0:
6250 case e1000_82542_rev2_1:
6251 case e1000_82543:
6252 /* Clear SW Defineable Pin 0 to turn off the LED */
6253 ctrl &= ~E1000_CTRL_SWDPIN0;
6254 ctrl |= E1000_CTRL_SWDPIO0;
6255 break;
6256 case e1000_82544:
6257 if (hw->media_type == e1000_media_type_fiber) {
6258 /* Clear SW Defineable Pin 0 to turn off the LED */
6259 ctrl &= ~E1000_CTRL_SWDPIN0;
6260 ctrl |= E1000_CTRL_SWDPIO0;
6261 } else {
6262 /* Set SW Defineable Pin 0 to turn off the LED */
6263 ctrl |= E1000_CTRL_SWDPIN0;
6264 ctrl |= E1000_CTRL_SWDPIO0;
6266 break;
6267 default:
6268 if (hw->media_type == e1000_media_type_fiber) {
6269 /* Set SW Defineable Pin 0 to turn off the LED */
6270 ctrl |= E1000_CTRL_SWDPIN0;
6271 ctrl |= E1000_CTRL_SWDPIO0;
6272 } else if (hw->phy_type == e1000_phy_ife) {
6273 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6274 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6275 } else if (hw->media_type == e1000_media_type_copper) {
6276 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6277 return E1000_SUCCESS;
6279 break;
6282 E1000_WRITE_REG(hw, CTRL, ctrl);
6284 return E1000_SUCCESS;
6287 /******************************************************************************
6288 * Clears all hardware statistics counters.
6290 * hw - Struct containing variables accessed by shared code
6291 *****************************************************************************/
6292 void
6293 e1000_clear_hw_cntrs(struct e1000_hw *hw)
6295 volatile uint32_t temp;
6297 temp = E1000_READ_REG(hw, CRCERRS);
6298 temp = E1000_READ_REG(hw, SYMERRS);
6299 temp = E1000_READ_REG(hw, MPC);
6300 temp = E1000_READ_REG(hw, SCC);
6301 temp = E1000_READ_REG(hw, ECOL);
6302 temp = E1000_READ_REG(hw, MCC);
6303 temp = E1000_READ_REG(hw, LATECOL);
6304 temp = E1000_READ_REG(hw, COLC);
6305 temp = E1000_READ_REG(hw, DC);
6306 temp = E1000_READ_REG(hw, SEC);
6307 temp = E1000_READ_REG(hw, RLEC);
6308 temp = E1000_READ_REG(hw, XONRXC);
6309 temp = E1000_READ_REG(hw, XONTXC);
6310 temp = E1000_READ_REG(hw, XOFFRXC);
6311 temp = E1000_READ_REG(hw, XOFFTXC);
6312 temp = E1000_READ_REG(hw, FCRUC);
6314 if (hw->mac_type != e1000_ich8lan) {
6315 temp = E1000_READ_REG(hw, PRC64);
6316 temp = E1000_READ_REG(hw, PRC127);
6317 temp = E1000_READ_REG(hw, PRC255);
6318 temp = E1000_READ_REG(hw, PRC511);
6319 temp = E1000_READ_REG(hw, PRC1023);
6320 temp = E1000_READ_REG(hw, PRC1522);
6323 temp = E1000_READ_REG(hw, GPRC);
6324 temp = E1000_READ_REG(hw, BPRC);
6325 temp = E1000_READ_REG(hw, MPRC);
6326 temp = E1000_READ_REG(hw, GPTC);
6327 temp = E1000_READ_REG(hw, GORCL);
6328 temp = E1000_READ_REG(hw, GORCH);
6329 temp = E1000_READ_REG(hw, GOTCL);
6330 temp = E1000_READ_REG(hw, GOTCH);
6331 temp = E1000_READ_REG(hw, RNBC);
6332 temp = E1000_READ_REG(hw, RUC);
6333 temp = E1000_READ_REG(hw, RFC);
6334 temp = E1000_READ_REG(hw, ROC);
6335 temp = E1000_READ_REG(hw, RJC);
6336 temp = E1000_READ_REG(hw, TORL);
6337 temp = E1000_READ_REG(hw, TORH);
6338 temp = E1000_READ_REG(hw, TOTL);
6339 temp = E1000_READ_REG(hw, TOTH);
6340 temp = E1000_READ_REG(hw, TPR);
6341 temp = E1000_READ_REG(hw, TPT);
6343 if (hw->mac_type != e1000_ich8lan) {
6344 temp = E1000_READ_REG(hw, PTC64);
6345 temp = E1000_READ_REG(hw, PTC127);
6346 temp = E1000_READ_REG(hw, PTC255);
6347 temp = E1000_READ_REG(hw, PTC511);
6348 temp = E1000_READ_REG(hw, PTC1023);
6349 temp = E1000_READ_REG(hw, PTC1522);
6352 temp = E1000_READ_REG(hw, MPTC);
6353 temp = E1000_READ_REG(hw, BPTC);
6355 if (hw->mac_type < e1000_82543) return;
6357 temp = E1000_READ_REG(hw, ALGNERRC);
6358 temp = E1000_READ_REG(hw, RXERRC);
6359 temp = E1000_READ_REG(hw, TNCRS);
6360 temp = E1000_READ_REG(hw, CEXTERR);
6361 temp = E1000_READ_REG(hw, TSCTC);
6362 temp = E1000_READ_REG(hw, TSCTFC);
6364 if (hw->mac_type <= e1000_82544) return;
6366 temp = E1000_READ_REG(hw, MGTPRC);
6367 temp = E1000_READ_REG(hw, MGTPDC);
6368 temp = E1000_READ_REG(hw, MGTPTC);
6370 if (hw->mac_type <= e1000_82547_rev_2) return;
6372 temp = E1000_READ_REG(hw, IAC);
6373 temp = E1000_READ_REG(hw, ICRXOC);
6375 if (hw->mac_type == e1000_ich8lan) return;
6377 temp = E1000_READ_REG(hw, ICRXPTC);
6378 temp = E1000_READ_REG(hw, ICRXATC);
6379 temp = E1000_READ_REG(hw, ICTXPTC);
6380 temp = E1000_READ_REG(hw, ICTXATC);
6381 temp = E1000_READ_REG(hw, ICTXQEC);
6382 temp = E1000_READ_REG(hw, ICTXQMTC);
6383 temp = E1000_READ_REG(hw, ICRXDMTC);
6386 /******************************************************************************
6387 * Resets Adaptive IFS to its default state.
6389 * hw - Struct containing variables accessed by shared code
6391 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6392 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6393 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6394 * before calling this function.
6395 *****************************************************************************/
6396 void
6397 e1000_reset_adaptive(struct e1000_hw *hw)
6399 DEBUGFUNC("e1000_reset_adaptive");
6401 if (hw->adaptive_ifs) {
6402 if (!hw->ifs_params_forced) {
6403 hw->current_ifs_val = 0;
6404 hw->ifs_min_val = IFS_MIN;
6405 hw->ifs_max_val = IFS_MAX;
6406 hw->ifs_step_size = IFS_STEP;
6407 hw->ifs_ratio = IFS_RATIO;
6409 hw->in_ifs_mode = FALSE;
6410 E1000_WRITE_REG(hw, AIT, 0);
6411 } else {
6412 DEBUGOUT("Not in Adaptive IFS mode!\n");
6416 /******************************************************************************
6417 * Called during the callback/watchdog routine to update IFS value based on
6418 * the ratio of transmits to collisions.
6420 * hw - Struct containing variables accessed by shared code
6421 * tx_packets - Number of transmits since last callback
6422 * total_collisions - Number of collisions since last callback
6423 *****************************************************************************/
6424 void
6425 e1000_update_adaptive(struct e1000_hw *hw)
6427 DEBUGFUNC("e1000_update_adaptive");
6429 if (hw->adaptive_ifs) {
6430 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6431 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
6432 hw->in_ifs_mode = TRUE;
6433 if (hw->current_ifs_val < hw->ifs_max_val) {
6434 if (hw->current_ifs_val == 0)
6435 hw->current_ifs_val = hw->ifs_min_val;
6436 else
6437 hw->current_ifs_val += hw->ifs_step_size;
6438 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6441 } else {
6442 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6443 hw->current_ifs_val = 0;
6444 hw->in_ifs_mode = FALSE;
6445 E1000_WRITE_REG(hw, AIT, 0);
6448 } else {
6449 DEBUGOUT("Not in Adaptive IFS mode!\n");
6453 /******************************************************************************
6454 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6456 * hw - Struct containing variables accessed by shared code
6457 * frame_len - The length of the frame in question
6458 * mac_addr - The Ethernet destination address of the frame in question
6459 *****************************************************************************/
6460 void
6461 e1000_tbi_adjust_stats(struct e1000_hw *hw,
6462 struct e1000_hw_stats *stats,
6463 uint32_t frame_len,
6464 uint8_t *mac_addr)
6466 uint64_t carry_bit;
6468 /* First adjust the frame length. */
6469 frame_len--;
6470 /* We need to adjust the statistics counters, since the hardware
6471 * counters overcount this packet as a CRC error and undercount
6472 * the packet as a good packet
6474 /* This packet should not be counted as a CRC error. */
6475 stats->crcerrs--;
6476 /* This packet does count as a Good Packet Received. */
6477 stats->gprc++;
6479 /* Adjust the Good Octets received counters */
6480 carry_bit = 0x80000000 & stats->gorcl;
6481 stats->gorcl += frame_len;
6482 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6483 * Received Count) was one before the addition,
6484 * AND it is zero after, then we lost the carry out,
6485 * need to add one to Gorch (Good Octets Received Count High).
6486 * This could be simplified if all environments supported
6487 * 64-bit integers.
6489 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
6490 stats->gorch++;
6491 /* Is this a broadcast or multicast? Check broadcast first,
6492 * since the test for a multicast frame will test positive on
6493 * a broadcast frame.
6495 if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
6496 /* Broadcast packet */
6497 stats->bprc++;
6498 else if (*mac_addr & 0x01)
6499 /* Multicast packet */
6500 stats->mprc++;
6502 if (frame_len == hw->max_frame_size) {
6503 /* In this case, the hardware has overcounted the number of
6504 * oversize frames.
6506 if (stats->roc > 0)
6507 stats->roc--;
6510 /* Adjust the bin counters when the extra byte put the frame in the
6511 * wrong bin. Remember that the frame_len was adjusted above.
6513 if (frame_len == 64) {
6514 stats->prc64++;
6515 stats->prc127--;
6516 } else if (frame_len == 127) {
6517 stats->prc127++;
6518 stats->prc255--;
6519 } else if (frame_len == 255) {
6520 stats->prc255++;
6521 stats->prc511--;
6522 } else if (frame_len == 511) {
6523 stats->prc511++;
6524 stats->prc1023--;
6525 } else if (frame_len == 1023) {
6526 stats->prc1023++;
6527 stats->prc1522--;
6528 } else if (frame_len == 1522) {
6529 stats->prc1522++;
6533 /******************************************************************************
6534 * Gets the current PCI bus type, speed, and width of the hardware
6536 * hw - Struct containing variables accessed by shared code
6537 *****************************************************************************/
6538 void
6539 e1000_get_bus_info(struct e1000_hw *hw)
6541 uint32_t status;
6543 switch (hw->mac_type) {
6544 case e1000_82542_rev2_0:
6545 case e1000_82542_rev2_1:
6546 hw->bus_type = e1000_bus_type_unknown;
6547 hw->bus_speed = e1000_bus_speed_unknown;
6548 hw->bus_width = e1000_bus_width_unknown;
6549 break;
6550 case e1000_82572:
6551 case e1000_82573:
6552 hw->bus_type = e1000_bus_type_pci_express;
6553 hw->bus_speed = e1000_bus_speed_2500;
6554 hw->bus_width = e1000_bus_width_pciex_1;
6555 break;
6556 case e1000_82571:
6557 case e1000_ich8lan:
6558 case e1000_80003es2lan:
6559 hw->bus_type = e1000_bus_type_pci_express;
6560 hw->bus_speed = e1000_bus_speed_2500;
6561 hw->bus_width = e1000_bus_width_pciex_4;
6562 break;
6563 default:
6564 status = E1000_READ_REG(hw, STATUS);
6565 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6566 e1000_bus_type_pcix : e1000_bus_type_pci;
6568 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6569 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6570 e1000_bus_speed_66 : e1000_bus_speed_120;
6571 } else if (hw->bus_type == e1000_bus_type_pci) {
6572 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6573 e1000_bus_speed_66 : e1000_bus_speed_33;
6574 } else {
6575 switch (status & E1000_STATUS_PCIX_SPEED) {
6576 case E1000_STATUS_PCIX_SPEED_66:
6577 hw->bus_speed = e1000_bus_speed_66;
6578 break;
6579 case E1000_STATUS_PCIX_SPEED_100:
6580 hw->bus_speed = e1000_bus_speed_100;
6581 break;
6582 case E1000_STATUS_PCIX_SPEED_133:
6583 hw->bus_speed = e1000_bus_speed_133;
6584 break;
6585 default:
6586 hw->bus_speed = e1000_bus_speed_reserved;
6587 break;
6590 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6591 e1000_bus_width_64 : e1000_bus_width_32;
6592 break;
6595 /******************************************************************************
6596 * Reads a value from one of the devices registers using port I/O (as opposed
6597 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6599 * hw - Struct containing variables accessed by shared code
6600 * offset - offset to read from
6601 *****************************************************************************/
6602 #if 0
6603 uint32_t
6604 e1000_read_reg_io(struct e1000_hw *hw,
6605 uint32_t offset)
6607 unsigned long io_addr = hw->io_base;
6608 unsigned long io_data = hw->io_base + 4;
6610 e1000_io_write(hw, io_addr, offset);
6611 return e1000_io_read(hw, io_data);
6613 #endif /* 0 */
6615 /******************************************************************************
6616 * Writes a value to one of the devices registers using port I/O (as opposed to
6617 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6619 * hw - Struct containing variables accessed by shared code
6620 * offset - offset to write to
6621 * value - value to write
6622 *****************************************************************************/
6623 static void
6624 e1000_write_reg_io(struct e1000_hw *hw,
6625 uint32_t offset,
6626 uint32_t value)
6628 unsigned long io_addr = hw->io_base;
6629 unsigned long io_data = hw->io_base + 4;
6631 e1000_io_write(hw, io_addr, offset);
6632 e1000_io_write(hw, io_data, value);
6636 /******************************************************************************
6637 * Estimates the cable length.
6639 * hw - Struct containing variables accessed by shared code
6640 * min_length - The estimated minimum length
6641 * max_length - The estimated maximum length
6643 * returns: - E1000_ERR_XXX
6644 * E1000_SUCCESS
6646 * This function always returns a ranged length (minimum & maximum).
6647 * So for M88 phy's, this function interprets the one value returned from the
6648 * register to the minimum and maximum range.
6649 * For IGP phy's, the function calculates the range by the AGC registers.
6650 *****************************************************************************/
6651 static int32_t
6652 e1000_get_cable_length(struct e1000_hw *hw,
6653 uint16_t *min_length,
6654 uint16_t *max_length)
6656 int32_t ret_val;
6657 uint16_t agc_value = 0;
6658 uint16_t i, phy_data;
6659 uint16_t cable_length;
6661 DEBUGFUNC("e1000_get_cable_length");
6663 *min_length = *max_length = 0;
6665 /* Use old method for Phy older than IGP */
6666 if (hw->phy_type == e1000_phy_m88) {
6668 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6669 &phy_data);
6670 if (ret_val)
6671 return ret_val;
6672 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6673 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6675 /* Convert the enum value to ranged values */
6676 switch (cable_length) {
6677 case e1000_cable_length_50:
6678 *min_length = 0;
6679 *max_length = e1000_igp_cable_length_50;
6680 break;
6681 case e1000_cable_length_50_80:
6682 *min_length = e1000_igp_cable_length_50;
6683 *max_length = e1000_igp_cable_length_80;
6684 break;
6685 case e1000_cable_length_80_110:
6686 *min_length = e1000_igp_cable_length_80;
6687 *max_length = e1000_igp_cable_length_110;
6688 break;
6689 case e1000_cable_length_110_140:
6690 *min_length = e1000_igp_cable_length_110;
6691 *max_length = e1000_igp_cable_length_140;
6692 break;
6693 case e1000_cable_length_140:
6694 *min_length = e1000_igp_cable_length_140;
6695 *max_length = e1000_igp_cable_length_170;
6696 break;
6697 default:
6698 return -E1000_ERR_PHY;
6699 break;
6701 } else if (hw->phy_type == e1000_phy_gg82563) {
6702 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6703 &phy_data);
6704 if (ret_val)
6705 return ret_val;
6706 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6708 switch (cable_length) {
6709 case e1000_gg_cable_length_60:
6710 *min_length = 0;
6711 *max_length = e1000_igp_cable_length_60;
6712 break;
6713 case e1000_gg_cable_length_60_115:
6714 *min_length = e1000_igp_cable_length_60;
6715 *max_length = e1000_igp_cable_length_115;
6716 break;
6717 case e1000_gg_cable_length_115_150:
6718 *min_length = e1000_igp_cable_length_115;
6719 *max_length = e1000_igp_cable_length_150;
6720 break;
6721 case e1000_gg_cable_length_150:
6722 *min_length = e1000_igp_cable_length_150;
6723 *max_length = e1000_igp_cable_length_180;
6724 break;
6725 default:
6726 return -E1000_ERR_PHY;
6727 break;
6729 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6730 uint16_t cur_agc_value;
6731 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6732 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6733 {IGP01E1000_PHY_AGC_A,
6734 IGP01E1000_PHY_AGC_B,
6735 IGP01E1000_PHY_AGC_C,
6736 IGP01E1000_PHY_AGC_D};
6737 /* Read the AGC registers for all channels */
6738 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6740 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6741 if (ret_val)
6742 return ret_val;
6744 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6746 /* Value bound check. */
6747 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6748 (cur_agc_value == 0))
6749 return -E1000_ERR_PHY;
6751 agc_value += cur_agc_value;
6753 /* Update minimal AGC value. */
6754 if (min_agc_value > cur_agc_value)
6755 min_agc_value = cur_agc_value;
6758 /* Remove the minimal AGC result for length < 50m */
6759 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6760 agc_value -= min_agc_value;
6762 /* Get the average length of the remaining 3 channels */
6763 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6764 } else {
6765 /* Get the average length of all the 4 channels. */
6766 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6769 /* Set the range of the calculated length. */
6770 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6771 IGP01E1000_AGC_RANGE) > 0) ?
6772 (e1000_igp_cable_length_table[agc_value] -
6773 IGP01E1000_AGC_RANGE) : 0;
6774 *max_length = e1000_igp_cable_length_table[agc_value] +
6775 IGP01E1000_AGC_RANGE;
6776 } else if (hw->phy_type == e1000_phy_igp_2 ||
6777 hw->phy_type == e1000_phy_igp_3) {
6778 uint16_t cur_agc_index, max_agc_index = 0;
6779 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6780 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6781 {IGP02E1000_PHY_AGC_A,
6782 IGP02E1000_PHY_AGC_B,
6783 IGP02E1000_PHY_AGC_C,
6784 IGP02E1000_PHY_AGC_D};
6785 /* Read the AGC registers for all channels */
6786 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6787 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6788 if (ret_val)
6789 return ret_val;
6791 /* Getting bits 15:9, which represent the combination of course and
6792 * fine gain values. The result is a number that can be put into
6793 * the lookup table to obtain the approximate cable length. */
6794 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6795 IGP02E1000_AGC_LENGTH_MASK;
6797 /* Array index bound check. */
6798 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6799 (cur_agc_index == 0))
6800 return -E1000_ERR_PHY;
6802 /* Remove min & max AGC values from calculation. */
6803 if (e1000_igp_2_cable_length_table[min_agc_index] >
6804 e1000_igp_2_cable_length_table[cur_agc_index])
6805 min_agc_index = cur_agc_index;
6806 if (e1000_igp_2_cable_length_table[max_agc_index] <
6807 e1000_igp_2_cable_length_table[cur_agc_index])
6808 max_agc_index = cur_agc_index;
6810 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6813 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6814 e1000_igp_2_cable_length_table[max_agc_index]);
6815 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6817 /* Calculate cable length with the error range of +/- 10 meters. */
6818 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6819 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6820 *max_length = agc_value + IGP02E1000_AGC_RANGE;
6823 return E1000_SUCCESS;
6826 /******************************************************************************
6827 * Check the cable polarity
6829 * hw - Struct containing variables accessed by shared code
6830 * polarity - output parameter : 0 - Polarity is not reversed
6831 * 1 - Polarity is reversed.
6833 * returns: - E1000_ERR_XXX
6834 * E1000_SUCCESS
6836 * For phy's older then IGP, this function simply reads the polarity bit in the
6837 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6838 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6839 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6840 * IGP01E1000_PHY_PCS_INIT_REG.
6841 *****************************************************************************/
6842 static int32_t
6843 e1000_check_polarity(struct e1000_hw *hw,
6844 uint16_t *polarity)
6846 int32_t ret_val;
6847 uint16_t phy_data;
6849 DEBUGFUNC("e1000_check_polarity");
6851 if ((hw->phy_type == e1000_phy_m88) ||
6852 (hw->phy_type == e1000_phy_gg82563)) {
6853 /* return the Polarity bit in the Status register. */
6854 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6855 &phy_data);
6856 if (ret_val)
6857 return ret_val;
6858 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
6859 M88E1000_PSSR_REV_POLARITY_SHIFT;
6860 } else if (hw->phy_type == e1000_phy_igp ||
6861 hw->phy_type == e1000_phy_igp_3 ||
6862 hw->phy_type == e1000_phy_igp_2) {
6863 /* Read the Status register to check the speed */
6864 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6865 &phy_data);
6866 if (ret_val)
6867 return ret_val;
6869 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6870 * find the polarity status */
6871 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6872 IGP01E1000_PSSR_SPEED_1000MBPS) {
6874 /* Read the GIG initialization PCS register (0x00B4) */
6875 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6876 &phy_data);
6877 if (ret_val)
6878 return ret_val;
6880 /* Check the polarity bits */
6881 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
6882 } else {
6883 /* For 10 Mbps, read the polarity bit in the status register. (for
6884 * 100 Mbps this bit is always 0) */
6885 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
6887 } else if (hw->phy_type == e1000_phy_ife) {
6888 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6889 &phy_data);
6890 if (ret_val)
6891 return ret_val;
6892 *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
6893 IFE_PESC_POLARITY_REVERSED_SHIFT;
6895 return E1000_SUCCESS;
6898 /******************************************************************************
6899 * Check if Downshift occured
6901 * hw - Struct containing variables accessed by shared code
6902 * downshift - output parameter : 0 - No Downshift ocured.
6903 * 1 - Downshift ocured.
6905 * returns: - E1000_ERR_XXX
6906 * E1000_SUCCESS
6908 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6909 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6910 * Link Health register. In IGP this bit is latched high, so the driver must
6911 * read it immediately after link is established.
6912 *****************************************************************************/
6913 static int32_t
6914 e1000_check_downshift(struct e1000_hw *hw)
6916 int32_t ret_val;
6917 uint16_t phy_data;
6919 DEBUGFUNC("e1000_check_downshift");
6921 if (hw->phy_type == e1000_phy_igp ||
6922 hw->phy_type == e1000_phy_igp_3 ||
6923 hw->phy_type == e1000_phy_igp_2) {
6924 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6925 &phy_data);
6926 if (ret_val)
6927 return ret_val;
6929 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6930 } else if ((hw->phy_type == e1000_phy_m88) ||
6931 (hw->phy_type == e1000_phy_gg82563)) {
6932 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6933 &phy_data);
6934 if (ret_val)
6935 return ret_val;
6937 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6938 M88E1000_PSSR_DOWNSHIFT_SHIFT;
6939 } else if (hw->phy_type == e1000_phy_ife) {
6940 /* e1000_phy_ife supports 10/100 speed only */
6941 hw->speed_downgraded = FALSE;
6944 return E1000_SUCCESS;
6947 /*****************************************************************************
6949 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6950 * gigabit link is achieved to improve link quality.
6952 * hw: Struct containing variables accessed by shared code
6954 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6955 * E1000_SUCCESS at any other case.
6957 ****************************************************************************/
6959 static int32_t
6960 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6961 boolean_t link_up)
6963 int32_t ret_val;
6964 uint16_t phy_data, phy_saved_data, speed, duplex, i;
6965 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6966 {IGP01E1000_PHY_AGC_PARAM_A,
6967 IGP01E1000_PHY_AGC_PARAM_B,
6968 IGP01E1000_PHY_AGC_PARAM_C,
6969 IGP01E1000_PHY_AGC_PARAM_D};
6970 uint16_t min_length, max_length;
6972 DEBUGFUNC("e1000_config_dsp_after_link_change");
6974 if (hw->phy_type != e1000_phy_igp)
6975 return E1000_SUCCESS;
6977 if (link_up) {
6978 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6979 if (ret_val) {
6980 DEBUGOUT("Error getting link speed and duplex\n");
6981 return ret_val;
6984 if (speed == SPEED_1000) {
6986 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
6987 if (ret_val)
6988 return ret_val;
6990 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
6991 min_length >= e1000_igp_cable_length_50) {
6993 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6994 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
6995 &phy_data);
6996 if (ret_val)
6997 return ret_val;
6999 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7001 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7002 phy_data);
7003 if (ret_val)
7004 return ret_val;
7006 hw->dsp_config_state = e1000_dsp_config_activated;
7009 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
7010 (min_length < e1000_igp_cable_length_50)) {
7012 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7013 uint32_t idle_errs = 0;
7015 /* clear previous idle error counts */
7016 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7017 &phy_data);
7018 if (ret_val)
7019 return ret_val;
7021 for (i = 0; i < ffe_idle_err_timeout; i++) {
7022 udelay(1000);
7023 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7024 &phy_data);
7025 if (ret_val)
7026 return ret_val;
7028 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
7029 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
7030 hw->ffe_config_state = e1000_ffe_config_active;
7032 ret_val = e1000_write_phy_reg(hw,
7033 IGP01E1000_PHY_DSP_FFE,
7034 IGP01E1000_PHY_DSP_FFE_CM_CP);
7035 if (ret_val)
7036 return ret_val;
7037 break;
7040 if (idle_errs)
7041 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7045 } else {
7046 if (hw->dsp_config_state == e1000_dsp_config_activated) {
7047 /* Save off the current value of register 0x2F5B to be restored at
7048 * the end of the routines. */
7049 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7051 if (ret_val)
7052 return ret_val;
7054 /* Disable the PHY transmitter */
7055 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7057 if (ret_val)
7058 return ret_val;
7060 mdelay(20);
7062 ret_val = e1000_write_phy_reg(hw, 0x0000,
7063 IGP01E1000_IEEE_FORCE_GIGA);
7064 if (ret_val)
7065 return ret_val;
7066 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7067 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
7068 if (ret_val)
7069 return ret_val;
7071 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7072 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7074 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7075 if (ret_val)
7076 return ret_val;
7079 ret_val = e1000_write_phy_reg(hw, 0x0000,
7080 IGP01E1000_IEEE_RESTART_AUTONEG);
7081 if (ret_val)
7082 return ret_val;
7084 mdelay(20);
7086 /* Now enable the transmitter */
7087 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7089 if (ret_val)
7090 return ret_val;
7092 hw->dsp_config_state = e1000_dsp_config_enabled;
7095 if (hw->ffe_config_state == e1000_ffe_config_active) {
7096 /* Save off the current value of register 0x2F5B to be restored at
7097 * the end of the routines. */
7098 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7100 if (ret_val)
7101 return ret_val;
7103 /* Disable the PHY transmitter */
7104 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7106 if (ret_val)
7107 return ret_val;
7109 mdelay(20);
7111 ret_val = e1000_write_phy_reg(hw, 0x0000,
7112 IGP01E1000_IEEE_FORCE_GIGA);
7113 if (ret_val)
7114 return ret_val;
7115 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7116 IGP01E1000_PHY_DSP_FFE_DEFAULT);
7117 if (ret_val)
7118 return ret_val;
7120 ret_val = e1000_write_phy_reg(hw, 0x0000,
7121 IGP01E1000_IEEE_RESTART_AUTONEG);
7122 if (ret_val)
7123 return ret_val;
7125 mdelay(20);
7127 /* Now enable the transmitter */
7128 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7130 if (ret_val)
7131 return ret_val;
7133 hw->ffe_config_state = e1000_ffe_config_enabled;
7136 return E1000_SUCCESS;
7139 /*****************************************************************************
7140 * Set PHY to class A mode
7141 * Assumes the following operations will follow to enable the new class mode.
7142 * 1. Do a PHY soft reset
7143 * 2. Restart auto-negotiation or force link.
7145 * hw - Struct containing variables accessed by shared code
7146 ****************************************************************************/
7147 static int32_t
7148 e1000_set_phy_mode(struct e1000_hw *hw)
7150 int32_t ret_val;
7151 uint16_t eeprom_data;
7153 DEBUGFUNC("e1000_set_phy_mode");
7155 if ((hw->mac_type == e1000_82545_rev_3) &&
7156 (hw->media_type == e1000_media_type_copper)) {
7157 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7158 if (ret_val) {
7159 return ret_val;
7162 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7163 (eeprom_data & EEPROM_PHY_CLASS_A)) {
7164 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7165 if (ret_val)
7166 return ret_val;
7167 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7168 if (ret_val)
7169 return ret_val;
7171 hw->phy_reset_disable = FALSE;
7175 return E1000_SUCCESS;
7178 /*****************************************************************************
7180 * This function sets the lplu state according to the active flag. When
7181 * activating lplu this function also disables smart speed and vise versa.
7182 * lplu will not be activated unless the device autonegotiation advertisment
7183 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7184 * hw: Struct containing variables accessed by shared code
7185 * active - true to enable lplu false to disable lplu.
7187 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7188 * E1000_SUCCESS at any other case.
7190 ****************************************************************************/
7192 static int32_t
7193 e1000_set_d3_lplu_state(struct e1000_hw *hw,
7194 boolean_t active)
7196 uint32_t phy_ctrl = 0;
7197 int32_t ret_val;
7198 uint16_t phy_data;
7199 DEBUGFUNC("e1000_set_d3_lplu_state");
7201 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7202 && hw->phy_type != e1000_phy_igp_3)
7203 return E1000_SUCCESS;
7205 /* During driver activity LPLU should not be used or it will attain link
7206 * from the lowest speeds starting from 10Mbps. The capability is used for
7207 * Dx transitions and states */
7208 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7209 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7210 if (ret_val)
7211 return ret_val;
7212 } else if (hw->mac_type == e1000_ich8lan) {
7213 /* MAC writes into PHY register based on the state transition
7214 * and start auto-negotiation. SW driver can overwrite the settings
7215 * in CSR PHY power control E1000_PHY_CTRL register. */
7216 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7217 } else {
7218 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7219 if (ret_val)
7220 return ret_val;
7223 if (!active) {
7224 if (hw->mac_type == e1000_82541_rev_2 ||
7225 hw->mac_type == e1000_82547_rev_2) {
7226 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7227 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7228 if (ret_val)
7229 return ret_val;
7230 } else {
7231 if (hw->mac_type == e1000_ich8lan) {
7232 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7233 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7234 } else {
7235 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7236 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7237 phy_data);
7238 if (ret_val)
7239 return ret_val;
7243 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7244 * Dx states where the power conservation is most important. During
7245 * driver activity we should enable SmartSpeed, so performance is
7246 * maintained. */
7247 if (hw->smart_speed == e1000_smart_speed_on) {
7248 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7249 &phy_data);
7250 if (ret_val)
7251 return ret_val;
7253 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7254 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7255 phy_data);
7256 if (ret_val)
7257 return ret_val;
7258 } else if (hw->smart_speed == e1000_smart_speed_off) {
7259 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7260 &phy_data);
7261 if (ret_val)
7262 return ret_val;
7264 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7265 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7266 phy_data);
7267 if (ret_val)
7268 return ret_val;
7271 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7272 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7273 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7275 if (hw->mac_type == e1000_82541_rev_2 ||
7276 hw->mac_type == e1000_82547_rev_2) {
7277 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7278 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7279 if (ret_val)
7280 return ret_val;
7281 } else {
7282 if (hw->mac_type == e1000_ich8lan) {
7283 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7284 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7285 } else {
7286 phy_data |= IGP02E1000_PM_D3_LPLU;
7287 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7288 phy_data);
7289 if (ret_val)
7290 return ret_val;
7294 /* When LPLU is enabled we should disable SmartSpeed */
7295 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7296 if (ret_val)
7297 return ret_val;
7299 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7300 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7301 if (ret_val)
7302 return ret_val;
7305 return E1000_SUCCESS;
7308 /*****************************************************************************
7310 * This function sets the lplu d0 state according to the active flag. When
7311 * activating lplu this function also disables smart speed and vise versa.
7312 * lplu will not be activated unless the device autonegotiation advertisment
7313 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7314 * hw: Struct containing variables accessed by shared code
7315 * active - true to enable lplu false to disable lplu.
7317 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7318 * E1000_SUCCESS at any other case.
7320 ****************************************************************************/
7322 static int32_t
7323 e1000_set_d0_lplu_state(struct e1000_hw *hw,
7324 boolean_t active)
7326 uint32_t phy_ctrl = 0;
7327 int32_t ret_val;
7328 uint16_t phy_data;
7329 DEBUGFUNC("e1000_set_d0_lplu_state");
7331 if (hw->mac_type <= e1000_82547_rev_2)
7332 return E1000_SUCCESS;
7334 if (hw->mac_type == e1000_ich8lan) {
7335 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7336 } else {
7337 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7338 if (ret_val)
7339 return ret_val;
7342 if (!active) {
7343 if (hw->mac_type == e1000_ich8lan) {
7344 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7345 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7346 } else {
7347 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7348 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7349 if (ret_val)
7350 return ret_val;
7353 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7354 * Dx states where the power conservation is most important. During
7355 * driver activity we should enable SmartSpeed, so performance is
7356 * maintained. */
7357 if (hw->smart_speed == e1000_smart_speed_on) {
7358 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7359 &phy_data);
7360 if (ret_val)
7361 return ret_val;
7363 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7364 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7365 phy_data);
7366 if (ret_val)
7367 return ret_val;
7368 } else if (hw->smart_speed == e1000_smart_speed_off) {
7369 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7370 &phy_data);
7371 if (ret_val)
7372 return ret_val;
7374 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7375 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7376 phy_data);
7377 if (ret_val)
7378 return ret_val;
7382 } else {
7384 if (hw->mac_type == e1000_ich8lan) {
7385 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7386 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7387 } else {
7388 phy_data |= IGP02E1000_PM_D0_LPLU;
7389 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7390 if (ret_val)
7391 return ret_val;
7394 /* When LPLU is enabled we should disable SmartSpeed */
7395 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7396 if (ret_val)
7397 return ret_val;
7399 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7400 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7401 if (ret_val)
7402 return ret_val;
7405 return E1000_SUCCESS;
7408 /******************************************************************************
7409 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7411 * hw - Struct containing variables accessed by shared code
7412 *****************************************************************************/
7413 static int32_t
7414 e1000_set_vco_speed(struct e1000_hw *hw)
7416 int32_t ret_val;
7417 uint16_t default_page = 0;
7418 uint16_t phy_data;
7420 DEBUGFUNC("e1000_set_vco_speed");
7422 switch (hw->mac_type) {
7423 case e1000_82545_rev_3:
7424 case e1000_82546_rev_3:
7425 break;
7426 default:
7427 return E1000_SUCCESS;
7430 /* Set PHY register 30, page 5, bit 8 to 0 */
7432 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7433 if (ret_val)
7434 return ret_val;
7436 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7437 if (ret_val)
7438 return ret_val;
7440 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7441 if (ret_val)
7442 return ret_val;
7444 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7445 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7446 if (ret_val)
7447 return ret_val;
7449 /* Set PHY register 30, page 4, bit 11 to 1 */
7451 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7452 if (ret_val)
7453 return ret_val;
7455 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7456 if (ret_val)
7457 return ret_val;
7459 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7460 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7461 if (ret_val)
7462 return ret_val;
7464 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7465 if (ret_val)
7466 return ret_val;
7468 return E1000_SUCCESS;
7472 /*****************************************************************************
7473 * This function reads the cookie from ARC ram.
7475 * returns: - E1000_SUCCESS .
7476 ****************************************************************************/
7477 int32_t
7478 e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7480 uint8_t i;
7481 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7482 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7484 length = (length >> 2);
7485 offset = (offset >> 2);
7487 for (i = 0; i < length; i++) {
7488 *((uint32_t *) buffer + i) =
7489 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7491 return E1000_SUCCESS;
7495 /*****************************************************************************
7496 * This function checks whether the HOST IF is enabled for command operaton
7497 * and also checks whether the previous command is completed.
7498 * It busy waits in case of previous command is not completed.
7500 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7501 * timeout
7502 * - E1000_SUCCESS for success.
7503 ****************************************************************************/
7504 static int32_t
7505 e1000_mng_enable_host_if(struct e1000_hw * hw)
7507 uint32_t hicr;
7508 uint8_t i;
7510 /* Check that the host interface is enabled. */
7511 hicr = E1000_READ_REG(hw, HICR);
7512 if ((hicr & E1000_HICR_EN) == 0) {
7513 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7514 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7516 /* check the previous command is completed */
7517 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7518 hicr = E1000_READ_REG(hw, HICR);
7519 if (!(hicr & E1000_HICR_C))
7520 break;
7521 mdelay(1);
7524 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7525 DEBUGOUT("Previous command timeout failed .\n");
7526 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7528 return E1000_SUCCESS;
7531 /*****************************************************************************
7532 * This function writes the buffer content at the offset given on the host if.
7533 * It also does alignment considerations to do the writes in most efficient way.
7534 * Also fills up the sum of the buffer in *buffer parameter.
7536 * returns - E1000_SUCCESS for success.
7537 ****************************************************************************/
7538 static int32_t
7539 e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7540 uint16_t length, uint16_t offset, uint8_t *sum)
7542 uint8_t *tmp;
7543 uint8_t *bufptr = buffer;
7544 uint32_t data = 0;
7545 uint16_t remaining, i, j, prev_bytes;
7547 /* sum = only sum of the data and it is not checksum */
7549 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7550 return -E1000_ERR_PARAM;
7553 tmp = (uint8_t *)&data;
7554 prev_bytes = offset & 0x3;
7555 offset &= 0xFFFC;
7556 offset >>= 2;
7558 if (prev_bytes) {
7559 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7560 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7561 *(tmp + j) = *bufptr++;
7562 *sum += *(tmp + j);
7564 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7565 length -= j - prev_bytes;
7566 offset++;
7569 remaining = length & 0x3;
7570 length -= remaining;
7572 /* Calculate length in DWORDs */
7573 length >>= 2;
7575 /* The device driver writes the relevant command block into the
7576 * ram area. */
7577 for (i = 0; i < length; i++) {
7578 for (j = 0; j < sizeof(uint32_t); j++) {
7579 *(tmp + j) = *bufptr++;
7580 *sum += *(tmp + j);
7583 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7585 if (remaining) {
7586 for (j = 0; j < sizeof(uint32_t); j++) {
7587 if (j < remaining)
7588 *(tmp + j) = *bufptr++;
7589 else
7590 *(tmp + j) = 0;
7592 *sum += *(tmp + j);
7594 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7597 return E1000_SUCCESS;
7601 /*****************************************************************************
7602 * This function writes the command header after does the checksum calculation.
7604 * returns - E1000_SUCCESS for success.
7605 ****************************************************************************/
7606 static int32_t
7607 e1000_mng_write_cmd_header(struct e1000_hw * hw,
7608 struct e1000_host_mng_command_header * hdr)
7610 uint16_t i;
7611 uint8_t sum;
7612 uint8_t *buffer;
7614 /* Write the whole command header structure which includes sum of
7615 * the buffer */
7617 uint16_t length = sizeof(struct e1000_host_mng_command_header);
7619 sum = hdr->checksum;
7620 hdr->checksum = 0;
7622 buffer = (uint8_t *) hdr;
7623 i = length;
7624 while (i--)
7625 sum += buffer[i];
7627 hdr->checksum = 0 - sum;
7629 length >>= 2;
7630 /* The device driver writes the relevant command block into the ram area. */
7631 for (i = 0; i < length; i++) {
7632 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7633 E1000_WRITE_FLUSH(hw);
7636 return E1000_SUCCESS;
7640 /*****************************************************************************
7641 * This function indicates to ARC that a new command is pending which completes
7642 * one write operation by the driver.
7644 * returns - E1000_SUCCESS for success.
7645 ****************************************************************************/
7646 static int32_t
7647 e1000_mng_write_commit(struct e1000_hw * hw)
7649 uint32_t hicr;
7651 hicr = E1000_READ_REG(hw, HICR);
7652 /* Setting this bit tells the ARC that a new command is pending. */
7653 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7655 return E1000_SUCCESS;
7659 /*****************************************************************************
7660 * This function checks the mode of the firmware.
7662 * returns - TRUE when the mode is IAMT or FALSE.
7663 ****************************************************************************/
7664 boolean_t
7665 e1000_check_mng_mode(struct e1000_hw *hw)
7667 uint32_t fwsm;
7669 fwsm = E1000_READ_REG(hw, FWSM);
7671 if (hw->mac_type == e1000_ich8lan) {
7672 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7673 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7674 return TRUE;
7675 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7676 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7677 return TRUE;
7679 return FALSE;
7683 /*****************************************************************************
7684 * This function writes the dhcp info .
7685 ****************************************************************************/
7686 int32_t
7687 e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7688 uint16_t length)
7690 int32_t ret_val;
7691 struct e1000_host_mng_command_header hdr;
7693 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7694 hdr.command_length = length;
7695 hdr.reserved1 = 0;
7696 hdr.reserved2 = 0;
7697 hdr.checksum = 0;
7699 ret_val = e1000_mng_enable_host_if(hw);
7700 if (ret_val == E1000_SUCCESS) {
7701 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7702 &(hdr.checksum));
7703 if (ret_val == E1000_SUCCESS) {
7704 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7705 if (ret_val == E1000_SUCCESS)
7706 ret_val = e1000_mng_write_commit(hw);
7709 return ret_val;
7713 /*****************************************************************************
7714 * This function calculates the checksum.
7716 * returns - checksum of buffer contents.
7717 ****************************************************************************/
7718 uint8_t
7719 e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7721 uint8_t sum = 0;
7722 uint32_t i;
7724 if (!buffer)
7725 return 0;
7727 for (i=0; i < length; i++)
7728 sum += buffer[i];
7730 return (uint8_t) (0 - sum);
7733 /*****************************************************************************
7734 * This function checks whether tx pkt filtering needs to be enabled or not.
7736 * returns - TRUE for packet filtering or FALSE.
7737 ****************************************************************************/
7738 boolean_t
7739 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7741 /* called in init as well as watchdog timer functions */
7743 int32_t ret_val, checksum;
7744 boolean_t tx_filter = FALSE;
7745 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7746 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7748 if (e1000_check_mng_mode(hw)) {
7749 ret_val = e1000_mng_enable_host_if(hw);
7750 if (ret_val == E1000_SUCCESS) {
7751 ret_val = e1000_host_if_read_cookie(hw, buffer);
7752 if (ret_val == E1000_SUCCESS) {
7753 checksum = hdr->checksum;
7754 hdr->checksum = 0;
7755 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7756 checksum == e1000_calculate_mng_checksum((char *)buffer,
7757 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7758 if (hdr->status &
7759 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7760 tx_filter = TRUE;
7761 } else
7762 tx_filter = TRUE;
7763 } else
7764 tx_filter = TRUE;
7768 hw->tx_pkt_filtering = tx_filter;
7769 return tx_filter;
7772 /******************************************************************************
7773 * Verifies the hardware needs to allow ARPs to be processed by the host
7775 * hw - Struct containing variables accessed by shared code
7777 * returns: - TRUE/FALSE
7779 *****************************************************************************/
7780 uint32_t
7781 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7783 uint32_t manc;
7784 uint32_t fwsm, factps;
7786 if (hw->asf_firmware_present) {
7787 manc = E1000_READ_REG(hw, MANC);
7789 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7790 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7791 return FALSE;
7792 if (e1000_arc_subsystem_valid(hw) == TRUE) {
7793 fwsm = E1000_READ_REG(hw, FWSM);
7794 factps = E1000_READ_REG(hw, FACTPS);
7796 if (((fwsm & E1000_FWSM_MODE_MASK) ==
7797 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
7798 (factps & E1000_FACTPS_MNGCG))
7799 return TRUE;
7800 } else
7801 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7802 return TRUE;
7804 return FALSE;
7807 static int32_t
7808 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7810 int32_t ret_val;
7811 uint16_t mii_status_reg;
7812 uint16_t i;
7814 /* Polarity reversal workaround for forced 10F/10H links. */
7816 /* Disable the transmitter on the PHY */
7818 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7819 if (ret_val)
7820 return ret_val;
7821 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7822 if (ret_val)
7823 return ret_val;
7825 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7826 if (ret_val)
7827 return ret_val;
7829 /* This loop will early-out if the NO link condition has been met. */
7830 for (i = PHY_FORCE_TIME; i > 0; i--) {
7831 /* Read the MII Status Register and wait for Link Status bit
7832 * to be clear.
7835 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7836 if (ret_val)
7837 return ret_val;
7839 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7840 if (ret_val)
7841 return ret_val;
7843 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7844 mdelay(100);
7847 /* Recommended delay time after link has been lost */
7848 mdelay(1000);
7850 /* Now we will re-enable th transmitter on the PHY */
7852 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7853 if (ret_val)
7854 return ret_val;
7855 mdelay(50);
7856 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7857 if (ret_val)
7858 return ret_val;
7859 mdelay(50);
7860 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7861 if (ret_val)
7862 return ret_val;
7863 mdelay(50);
7864 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7865 if (ret_val)
7866 return ret_val;
7868 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7869 if (ret_val)
7870 return ret_val;
7872 /* This loop will early-out if the link condition has been met. */
7873 for (i = PHY_FORCE_TIME; i > 0; i--) {
7874 /* Read the MII Status Register and wait for Link Status bit
7875 * to be set.
7878 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7879 if (ret_val)
7880 return ret_val;
7882 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7883 if (ret_val)
7884 return ret_val;
7886 if (mii_status_reg & MII_SR_LINK_STATUS) break;
7887 mdelay(100);
7889 return E1000_SUCCESS;
7892 /***************************************************************************
7894 * Disables PCI-Express master access.
7896 * hw: Struct containing variables accessed by shared code
7898 * returns: - none.
7900 ***************************************************************************/
7901 static void
7902 e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7904 uint32_t ctrl;
7906 DEBUGFUNC("e1000_set_pci_express_master_disable");
7908 if (hw->bus_type != e1000_bus_type_pci_express)
7909 return;
7911 ctrl = E1000_READ_REG(hw, CTRL);
7912 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7913 E1000_WRITE_REG(hw, CTRL, ctrl);
7916 /***************************************************************************
7918 * Enables PCI-Express master access.
7920 * hw: Struct containing variables accessed by shared code
7922 * returns: - none.
7924 ***************************************************************************/
7925 #if 0
7926 void
7927 e1000_enable_pciex_master(struct e1000_hw *hw)
7929 uint32_t ctrl;
7931 DEBUGFUNC("e1000_enable_pciex_master");
7933 if (hw->bus_type != e1000_bus_type_pci_express)
7934 return;
7936 ctrl = E1000_READ_REG(hw, CTRL);
7937 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
7938 E1000_WRITE_REG(hw, CTRL, ctrl);
7940 #endif /* 0 */
7942 /*******************************************************************************
7944 * Disables PCI-Express master access and verifies there are no pending requests
7946 * hw: Struct containing variables accessed by shared code
7948 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7949 * caused the master requests to be disabled.
7950 * E1000_SUCCESS master requests disabled.
7952 ******************************************************************************/
7953 int32_t
7954 e1000_disable_pciex_master(struct e1000_hw *hw)
7956 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7958 DEBUGFUNC("e1000_disable_pciex_master");
7960 if (hw->bus_type != e1000_bus_type_pci_express)
7961 return E1000_SUCCESS;
7963 e1000_set_pci_express_master_disable(hw);
7965 while (timeout) {
7966 if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7967 break;
7968 else
7969 udelay(100);
7970 timeout--;
7973 if (!timeout) {
7974 DEBUGOUT("Master requests are pending.\n");
7975 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7978 return E1000_SUCCESS;
7981 /*******************************************************************************
7983 * Check for EEPROM Auto Read bit done.
7985 * hw: Struct containing variables accessed by shared code
7987 * returns: - E1000_ERR_RESET if fail to reset MAC
7988 * E1000_SUCCESS at any other case.
7990 ******************************************************************************/
7991 static int32_t
7992 e1000_get_auto_rd_done(struct e1000_hw *hw)
7994 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
7996 DEBUGFUNC("e1000_get_auto_rd_done");
7998 switch (hw->mac_type) {
7999 default:
8000 msleep(5);
8001 break;
8002 case e1000_82571:
8003 case e1000_82572:
8004 case e1000_82573:
8005 case e1000_80003es2lan:
8006 case e1000_ich8lan:
8007 while (timeout) {
8008 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
8009 break;
8010 else msleep(1);
8011 timeout--;
8014 if (!timeout) {
8015 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8016 return -E1000_ERR_RESET;
8018 break;
8021 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8022 * Need to wait for PHY configuration completion before accessing NVM
8023 * and PHY. */
8024 if (hw->mac_type == e1000_82573)
8025 msleep(25);
8027 return E1000_SUCCESS;
8030 /***************************************************************************
8031 * Checks if the PHY configuration is done
8033 * hw: Struct containing variables accessed by shared code
8035 * returns: - E1000_ERR_RESET if fail to reset MAC
8036 * E1000_SUCCESS at any other case.
8038 ***************************************************************************/
8039 static int32_t
8040 e1000_get_phy_cfg_done(struct e1000_hw *hw)
8042 int32_t timeout = PHY_CFG_TIMEOUT;
8043 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8045 DEBUGFUNC("e1000_get_phy_cfg_done");
8047 switch (hw->mac_type) {
8048 default:
8049 mdelay(10);
8050 break;
8051 case e1000_80003es2lan:
8052 /* Separate *_CFG_DONE_* bit for each port */
8053 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8054 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8055 /* Fall Through */
8056 case e1000_82571:
8057 case e1000_82572:
8058 while (timeout) {
8059 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8060 break;
8061 else
8062 msleep(1);
8063 timeout--;
8066 if (!timeout) {
8067 DEBUGOUT("MNG configuration cycle has not completed.\n");
8068 return -E1000_ERR_RESET;
8070 break;
8073 return E1000_SUCCESS;
8076 /***************************************************************************
8078 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8079 * adapter or Eeprom access.
8081 * hw: Struct containing variables accessed by shared code
8083 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8084 * E1000_SUCCESS at any other case.
8086 ***************************************************************************/
8087 static int32_t
8088 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8090 int32_t timeout;
8091 uint32_t swsm;
8093 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8095 if (!hw->eeprom_semaphore_present)
8096 return E1000_SUCCESS;
8098 if (hw->mac_type == e1000_80003es2lan) {
8099 /* Get the SW semaphore. */
8100 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8101 return -E1000_ERR_EEPROM;
8104 /* Get the FW semaphore. */
8105 timeout = hw->eeprom.word_size + 1;
8106 while (timeout) {
8107 swsm = E1000_READ_REG(hw, SWSM);
8108 swsm |= E1000_SWSM_SWESMBI;
8109 E1000_WRITE_REG(hw, SWSM, swsm);
8110 /* if we managed to set the bit we got the semaphore. */
8111 swsm = E1000_READ_REG(hw, SWSM);
8112 if (swsm & E1000_SWSM_SWESMBI)
8113 break;
8115 udelay(50);
8116 timeout--;
8119 if (!timeout) {
8120 /* Release semaphores */
8121 e1000_put_hw_eeprom_semaphore(hw);
8122 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8123 return -E1000_ERR_EEPROM;
8126 return E1000_SUCCESS;
8129 /***************************************************************************
8130 * This function clears HW semaphore bits.
8132 * hw: Struct containing variables accessed by shared code
8134 * returns: - None.
8136 ***************************************************************************/
8137 static void
8138 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8140 uint32_t swsm;
8142 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8144 if (!hw->eeprom_semaphore_present)
8145 return;
8147 swsm = E1000_READ_REG(hw, SWSM);
8148 if (hw->mac_type == e1000_80003es2lan) {
8149 /* Release both semaphores. */
8150 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8151 } else
8152 swsm &= ~(E1000_SWSM_SWESMBI);
8153 E1000_WRITE_REG(hw, SWSM, swsm);
8156 /***************************************************************************
8158 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8160 * hw: Struct containing variables accessed by shared code
8162 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8163 * E1000_SUCCESS at any other case.
8165 ***************************************************************************/
8166 static int32_t
8167 e1000_get_software_semaphore(struct e1000_hw *hw)
8169 int32_t timeout = hw->eeprom.word_size + 1;
8170 uint32_t swsm;
8172 DEBUGFUNC("e1000_get_software_semaphore");
8174 if (hw->mac_type != e1000_80003es2lan)
8175 return E1000_SUCCESS;
8177 while (timeout) {
8178 swsm = E1000_READ_REG(hw, SWSM);
8179 /* If SMBI bit cleared, it is now set and we hold the semaphore */
8180 if (!(swsm & E1000_SWSM_SMBI))
8181 break;
8182 mdelay(1);
8183 timeout--;
8186 if (!timeout) {
8187 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8188 return -E1000_ERR_RESET;
8191 return E1000_SUCCESS;
8194 /***************************************************************************
8196 * Release semaphore bit (SMBI).
8198 * hw: Struct containing variables accessed by shared code
8200 ***************************************************************************/
8201 static void
8202 e1000_release_software_semaphore(struct e1000_hw *hw)
8204 uint32_t swsm;
8206 DEBUGFUNC("e1000_release_software_semaphore");
8208 if (hw->mac_type != e1000_80003es2lan)
8209 return;
8211 swsm = E1000_READ_REG(hw, SWSM);
8212 /* Release the SW semaphores.*/
8213 swsm &= ~E1000_SWSM_SMBI;
8214 E1000_WRITE_REG(hw, SWSM, swsm);
8217 /******************************************************************************
8218 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8219 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8220 * the caller to figure out how to deal with it.
8222 * hw - Struct containing variables accessed by shared code
8224 * returns: - E1000_BLK_PHY_RESET
8225 * E1000_SUCCESS
8227 *****************************************************************************/
8228 int32_t
8229 e1000_check_phy_reset_block(struct e1000_hw *hw)
8231 uint32_t manc = 0;
8232 uint32_t fwsm = 0;
8234 if (hw->mac_type == e1000_ich8lan) {
8235 fwsm = E1000_READ_REG(hw, FWSM);
8236 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8237 : E1000_BLK_PHY_RESET;
8240 if (hw->mac_type > e1000_82547_rev_2)
8241 manc = E1000_READ_REG(hw, MANC);
8242 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8243 E1000_BLK_PHY_RESET : E1000_SUCCESS;
8246 static uint8_t
8247 e1000_arc_subsystem_valid(struct e1000_hw *hw)
8249 uint32_t fwsm;
8251 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8252 * may not be provided a DMA clock when no manageability features are
8253 * enabled. We do not want to perform any reads/writes to these registers
8254 * if this is the case. We read FWSM to determine the manageability mode.
8256 switch (hw->mac_type) {
8257 case e1000_82571:
8258 case e1000_82572:
8259 case e1000_82573:
8260 case e1000_80003es2lan:
8261 fwsm = E1000_READ_REG(hw, FWSM);
8262 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8263 return TRUE;
8264 break;
8265 case e1000_ich8lan:
8266 return TRUE;
8267 default:
8268 break;
8270 return FALSE;
8274 /******************************************************************************
8275 * Configure PCI-Ex no-snoop
8277 * hw - Struct containing variables accessed by shared code.
8278 * no_snoop - Bitmap of no-snoop events.
8280 * returns: E1000_SUCCESS
8282 *****************************************************************************/
8283 static int32_t
8284 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8286 uint32_t gcr_reg = 0;
8288 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8290 if (hw->bus_type == e1000_bus_type_unknown)
8291 e1000_get_bus_info(hw);
8293 if (hw->bus_type != e1000_bus_type_pci_express)
8294 return E1000_SUCCESS;
8296 if (no_snoop) {
8297 gcr_reg = E1000_READ_REG(hw, GCR);
8298 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8299 gcr_reg |= no_snoop;
8300 E1000_WRITE_REG(hw, GCR, gcr_reg);
8302 if (hw->mac_type == e1000_ich8lan) {
8303 uint32_t ctrl_ext;
8305 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8307 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8308 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8309 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8312 return E1000_SUCCESS;
8315 /***************************************************************************
8317 * Get software semaphore FLAG bit (SWFLAG).
8318 * SWFLAG is used to synchronize the access to all shared resource between
8319 * SW, FW and HW.
8321 * hw: Struct containing variables accessed by shared code
8323 ***************************************************************************/
8324 static int32_t
8325 e1000_get_software_flag(struct e1000_hw *hw)
8327 int32_t timeout = PHY_CFG_TIMEOUT;
8328 uint32_t extcnf_ctrl;
8330 DEBUGFUNC("e1000_get_software_flag");
8332 if (hw->mac_type == e1000_ich8lan) {
8333 while (timeout) {
8334 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8335 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8336 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8338 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8339 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8340 break;
8341 mdelay(1);
8342 timeout--;
8345 if (!timeout) {
8346 DEBUGOUT("FW or HW locks the resource too long.\n");
8347 return -E1000_ERR_CONFIG;
8351 return E1000_SUCCESS;
8354 /***************************************************************************
8356 * Release software semaphore FLAG bit (SWFLAG).
8357 * SWFLAG is used to synchronize the access to all shared resource between
8358 * SW, FW and HW.
8360 * hw: Struct containing variables accessed by shared code
8362 ***************************************************************************/
8363 static void
8364 e1000_release_software_flag(struct e1000_hw *hw)
8366 uint32_t extcnf_ctrl;
8368 DEBUGFUNC("e1000_release_software_flag");
8370 if (hw->mac_type == e1000_ich8lan) {
8371 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8372 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8373 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8376 return;
8379 /***************************************************************************
8381 * Disable dynamic power down mode in ife PHY.
8382 * It can be used to workaround band-gap problem.
8384 * hw: Struct containing variables accessed by shared code
8386 ***************************************************************************/
8387 #if 0
8388 int32_t
8389 e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
8391 uint16_t phy_data;
8392 int32_t ret_val = E1000_SUCCESS;
8394 DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
8396 if (hw->phy_type == e1000_phy_ife) {
8397 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8398 if (ret_val)
8399 return ret_val;
8401 phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8402 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8405 return ret_val;
8407 #endif /* 0 */
8409 /***************************************************************************
8411 * Enable dynamic power down mode in ife PHY.
8412 * It can be used to workaround band-gap problem.
8414 * hw: Struct containing variables accessed by shared code
8416 ***************************************************************************/
8417 #if 0
8418 int32_t
8419 e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
8421 uint16_t phy_data;
8422 int32_t ret_val = E1000_SUCCESS;
8424 DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
8426 if (hw->phy_type == e1000_phy_ife) {
8427 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8428 if (ret_val)
8429 return ret_val;
8431 phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8432 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8435 return ret_val;
8437 #endif /* 0 */
8439 /******************************************************************************
8440 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8441 * register.
8443 * hw - Struct containing variables accessed by shared code
8444 * offset - offset of word in the EEPROM to read
8445 * data - word read from the EEPROM
8446 * words - number of words to read
8447 *****************************************************************************/
8448 static int32_t
8449 e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8450 uint16_t *data)
8452 int32_t error = E1000_SUCCESS;
8453 uint32_t flash_bank = 0;
8454 uint32_t act_offset = 0;
8455 uint32_t bank_offset = 0;
8456 uint16_t word = 0;
8457 uint16_t i = 0;
8459 /* We need to know which is the valid flash bank. In the event
8460 * that we didn't allocate eeprom_shadow_ram, we may not be
8461 * managing flash_bank. So it cannot be trusted and needs
8462 * to be updated with each read.
8464 /* Value of bit 22 corresponds to the flash bank we're on. */
8465 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8467 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8468 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8470 error = e1000_get_software_flag(hw);
8471 if (error != E1000_SUCCESS)
8472 return error;
8474 for (i = 0; i < words; i++) {
8475 if (hw->eeprom_shadow_ram != NULL &&
8476 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8477 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8478 } else {
8479 /* The NVM part needs a byte offset, hence * 2 */
8480 act_offset = bank_offset + ((offset + i) * 2);
8481 error = e1000_read_ich8_word(hw, act_offset, &word);
8482 if (error != E1000_SUCCESS)
8483 break;
8484 data[i] = word;
8488 e1000_release_software_flag(hw);
8490 return error;
8493 /******************************************************************************
8494 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8495 * register. Actually, writes are written to the shadow ram cache in the hw
8496 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8497 * the NVM, which occurs when the NVM checksum is updated.
8499 * hw - Struct containing variables accessed by shared code
8500 * offset - offset of word in the EEPROM to write
8501 * words - number of words to write
8502 * data - words to write to the EEPROM
8503 *****************************************************************************/
8504 static int32_t
8505 e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8506 uint16_t *data)
8508 uint32_t i = 0;
8509 int32_t error = E1000_SUCCESS;
8511 error = e1000_get_software_flag(hw);
8512 if (error != E1000_SUCCESS)
8513 return error;
8515 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8516 * allocated. Subsequent reads to the modified words are read from
8517 * this cached structure as well. Writes will only go into this
8518 * cached structure unless it's followed by a call to
8519 * e1000_update_eeprom_checksum() where it will commit the changes
8520 * and clear the "modified" field.
8522 if (hw->eeprom_shadow_ram != NULL) {
8523 for (i = 0; i < words; i++) {
8524 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8525 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8526 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8527 } else {
8528 error = -E1000_ERR_EEPROM;
8529 break;
8532 } else {
8533 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8534 * as they don't perform any NVM writes. An attempt in doing so
8535 * will result in this error.
8537 error = -E1000_ERR_EEPROM;
8540 e1000_release_software_flag(hw);
8542 return error;
8545 /******************************************************************************
8546 * This function does initial flash setup so that a new read/write/erase cycle
8547 * can be started.
8549 * hw - The pointer to the hw structure
8550 ****************************************************************************/
8551 static int32_t
8552 e1000_ich8_cycle_init(struct e1000_hw *hw)
8554 union ich8_hws_flash_status hsfsts;
8555 int32_t error = E1000_ERR_EEPROM;
8556 int32_t i = 0;
8558 DEBUGFUNC("e1000_ich8_cycle_init");
8560 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8562 /* May be check the Flash Des Valid bit in Hw status */
8563 if (hsfsts.hsf_status.fldesvalid == 0) {
8564 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8565 return error;
8568 /* Clear FCERR in Hw status by writing 1 */
8569 /* Clear DAEL in Hw status by writing a 1 */
8570 hsfsts.hsf_status.flcerr = 1;
8571 hsfsts.hsf_status.dael = 1;
8573 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8575 /* Either we should have a hardware SPI cycle in progress bit to check
8576 * against, in order to start a new cycle or FDONE bit should be changed
8577 * in the hardware so that it is 1 after harware reset, which can then be
8578 * used as an indication whether a cycle is in progress or has been
8579 * completed .. we should also have some software semaphore mechanism to
8580 * guard FDONE or the cycle in progress bit so that two threads access to
8581 * those bits can be sequentiallized or a way so that 2 threads dont
8582 * start the cycle at the same time */
8584 if (hsfsts.hsf_status.flcinprog == 0) {
8585 /* There is no cycle running at present, so we can start a cycle */
8586 /* Begin by setting Flash Cycle Done. */
8587 hsfsts.hsf_status.flcdone = 1;
8588 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8589 error = E1000_SUCCESS;
8590 } else {
8591 /* otherwise poll for sometime so the current cycle has a chance
8592 * to end before giving up. */
8593 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8594 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8595 if (hsfsts.hsf_status.flcinprog == 0) {
8596 error = E1000_SUCCESS;
8597 break;
8599 udelay(1);
8601 if (error == E1000_SUCCESS) {
8602 /* Successful in waiting for previous cycle to timeout,
8603 * now set the Flash Cycle Done. */
8604 hsfsts.hsf_status.flcdone = 1;
8605 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8606 } else {
8607 DEBUGOUT("Flash controller busy, cannot get access");
8610 return error;
8613 /******************************************************************************
8614 * This function starts a flash cycle and waits for its completion
8616 * hw - The pointer to the hw structure
8617 ****************************************************************************/
8618 static int32_t
8619 e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8621 union ich8_hws_flash_ctrl hsflctl;
8622 union ich8_hws_flash_status hsfsts;
8623 int32_t error = E1000_ERR_EEPROM;
8624 uint32_t i = 0;
8626 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8627 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8628 hsflctl.hsf_ctrl.flcgo = 1;
8629 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8631 /* wait till FDONE bit is set to 1 */
8632 do {
8633 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8634 if (hsfsts.hsf_status.flcdone == 1)
8635 break;
8636 udelay(1);
8637 i++;
8638 } while (i < timeout);
8639 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8640 error = E1000_SUCCESS;
8642 return error;
8645 /******************************************************************************
8646 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8648 * hw - The pointer to the hw structure
8649 * index - The index of the byte or word to read.
8650 * size - Size of data to read, 1=byte 2=word
8651 * data - Pointer to the word to store the value read.
8652 *****************************************************************************/
8653 static int32_t
8654 e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8655 uint32_t size, uint16_t* data)
8657 union ich8_hws_flash_status hsfsts;
8658 union ich8_hws_flash_ctrl hsflctl;
8659 uint32_t flash_linear_address;
8660 uint32_t flash_data = 0;
8661 int32_t error = -E1000_ERR_EEPROM;
8662 int32_t count = 0;
8664 DEBUGFUNC("e1000_read_ich8_data");
8666 if (size < 1 || size > 2 || data == 0x0 ||
8667 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8668 return error;
8670 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8671 hw->flash_base_addr;
8673 do {
8674 udelay(1);
8675 /* Steps */
8676 error = e1000_ich8_cycle_init(hw);
8677 if (error != E1000_SUCCESS)
8678 break;
8680 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8681 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8682 hsflctl.hsf_ctrl.fldbcount = size - 1;
8683 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8684 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8686 /* Write the last 24 bits of index into Flash Linear address field in
8687 * Flash Address */
8688 /* TODO: TBD maybe check the index against the size of flash */
8690 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8692 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8694 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8695 * sequence a few more times, else read in (shift in) the Flash Data0,
8696 * the order is least significant byte first msb to lsb */
8697 if (error == E1000_SUCCESS) {
8698 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8699 if (size == 1) {
8700 *data = (uint8_t)(flash_data & 0x000000FF);
8701 } else if (size == 2) {
8702 *data = (uint16_t)(flash_data & 0x0000FFFF);
8704 break;
8705 } else {
8706 /* If we've gotten here, then things are probably completely hosed,
8707 * but if the error condition is detected, it won't hurt to give
8708 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8710 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8711 if (hsfsts.hsf_status.flcerr == 1) {
8712 /* Repeat for some time before giving up. */
8713 continue;
8714 } else if (hsfsts.hsf_status.flcdone == 0) {
8715 DEBUGOUT("Timeout error - flash cycle did not complete.");
8716 break;
8719 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8721 return error;
8724 /******************************************************************************
8725 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8727 * hw - The pointer to the hw structure
8728 * index - The index of the byte/word to read.
8729 * size - Size of data to read, 1=byte 2=word
8730 * data - The byte(s) to write to the NVM.
8731 *****************************************************************************/
8732 static int32_t
8733 e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8734 uint16_t data)
8736 union ich8_hws_flash_status hsfsts;
8737 union ich8_hws_flash_ctrl hsflctl;
8738 uint32_t flash_linear_address;
8739 uint32_t flash_data = 0;
8740 int32_t error = -E1000_ERR_EEPROM;
8741 int32_t count = 0;
8743 DEBUGFUNC("e1000_write_ich8_data");
8745 if (size < 1 || size > 2 || data > size * 0xff ||
8746 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8747 return error;
8749 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8750 hw->flash_base_addr;
8752 do {
8753 udelay(1);
8754 /* Steps */
8755 error = e1000_ich8_cycle_init(hw);
8756 if (error != E1000_SUCCESS)
8757 break;
8759 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8760 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8761 hsflctl.hsf_ctrl.fldbcount = size -1;
8762 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8763 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8765 /* Write the last 24 bits of index into Flash Linear address field in
8766 * Flash Address */
8767 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8769 if (size == 1)
8770 flash_data = (uint32_t)data & 0x00FF;
8771 else
8772 flash_data = (uint32_t)data;
8774 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8776 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8777 * sequence a few more times else done */
8778 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8779 if (error == E1000_SUCCESS) {
8780 break;
8781 } else {
8782 /* If we're here, then things are most likely completely hosed,
8783 * but if the error condition is detected, it won't hurt to give
8784 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8786 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8787 if (hsfsts.hsf_status.flcerr == 1) {
8788 /* Repeat for some time before giving up. */
8789 continue;
8790 } else if (hsfsts.hsf_status.flcdone == 0) {
8791 DEBUGOUT("Timeout error - flash cycle did not complete.");
8792 break;
8795 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8797 return error;
8800 /******************************************************************************
8801 * Reads a single byte from the NVM using the ICH8 flash access registers.
8803 * hw - pointer to e1000_hw structure
8804 * index - The index of the byte to read.
8805 * data - Pointer to a byte to store the value read.
8806 *****************************************************************************/
8807 static int32_t
8808 e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8810 int32_t status = E1000_SUCCESS;
8811 uint16_t word = 0;
8813 status = e1000_read_ich8_data(hw, index, 1, &word);
8814 if (status == E1000_SUCCESS) {
8815 *data = (uint8_t)word;
8818 return status;
8821 /******************************************************************************
8822 * Writes a single byte to the NVM using the ICH8 flash access registers.
8823 * Performs verification by reading back the value and then going through
8824 * a retry algorithm before giving up.
8826 * hw - pointer to e1000_hw structure
8827 * index - The index of the byte to write.
8828 * byte - The byte to write to the NVM.
8829 *****************************************************************************/
8830 static int32_t
8831 e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8833 int32_t error = E1000_SUCCESS;
8834 int32_t program_retries;
8835 uint8_t temp_byte;
8837 e1000_write_ich8_byte(hw, index, byte);
8838 udelay(100);
8840 for (program_retries = 0; program_retries < 100; program_retries++) {
8841 e1000_read_ich8_byte(hw, index, &temp_byte);
8842 if (temp_byte == byte)
8843 break;
8844 udelay(10);
8845 e1000_write_ich8_byte(hw, index, byte);
8846 udelay(100);
8848 if (program_retries == 100)
8849 error = E1000_ERR_EEPROM;
8851 return error;
8854 /******************************************************************************
8855 * Writes a single byte to the NVM using the ICH8 flash access registers.
8857 * hw - pointer to e1000_hw structure
8858 * index - The index of the byte to read.
8859 * data - The byte to write to the NVM.
8860 *****************************************************************************/
8861 static int32_t
8862 e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8864 int32_t status = E1000_SUCCESS;
8865 uint16_t word = (uint16_t)data;
8867 status = e1000_write_ich8_data(hw, index, 1, word);
8869 return status;
8872 /******************************************************************************
8873 * Reads a word from the NVM using the ICH8 flash access registers.
8875 * hw - pointer to e1000_hw structure
8876 * index - The starting byte index of the word to read.
8877 * data - Pointer to a word to store the value read.
8878 *****************************************************************************/
8879 static int32_t
8880 e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8882 int32_t status = E1000_SUCCESS;
8883 status = e1000_read_ich8_data(hw, index, 2, data);
8884 return status;
8887 /******************************************************************************
8888 * Writes a word to the NVM using the ICH8 flash access registers.
8890 * hw - pointer to e1000_hw structure
8891 * index - The starting byte index of the word to read.
8892 * data - The word to write to the NVM.
8893 *****************************************************************************/
8894 #if 0
8895 int32_t
8896 e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
8898 int32_t status = E1000_SUCCESS;
8899 status = e1000_write_ich8_data(hw, index, 2, data);
8900 return status;
8902 #endif /* 0 */
8904 /******************************************************************************
8905 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
8906 * segment N is 4096 * N + flash_reg_addr.
8908 * hw - pointer to e1000_hw structure
8909 * segment - 0 for first segment, 1 for second segment, etc.
8910 *****************************************************************************/
8911 static int32_t
8912 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
8914 union ich8_hws_flash_status hsfsts;
8915 union ich8_hws_flash_ctrl hsflctl;
8916 uint32_t flash_linear_address;
8917 int32_t count = 0;
8918 int32_t error = E1000_ERR_EEPROM;
8919 int32_t iteration, seg_size;
8920 int32_t sector_size;
8921 int32_t j = 0;
8922 int32_t error_flag = 0;
8924 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8926 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8927 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8928 * consecutive sectors. The start index for the nth Hw sector can be
8929 * calculated as = segment * 4096 + n * 256
8930 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8931 * The start index for the nth Hw sector can be calculated
8932 * as = segment * 4096
8933 * 10: Error condition
8934 * 11: The Hw sector size is much bigger than the size asked to
8935 * erase...error condition */
8936 if (hsfsts.hsf_status.berasesz == 0x0) {
8937 /* Hw sector size 256 */
8938 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
8939 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8940 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8941 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
8942 iteration = 1;
8943 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8944 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
8945 iteration = 1;
8946 } else {
8947 return error;
8950 for (j = 0; j < iteration ; j++) {
8951 do {
8952 count++;
8953 /* Steps */
8954 error = e1000_ich8_cycle_init(hw);
8955 if (error != E1000_SUCCESS) {
8956 error_flag = 1;
8957 break;
8960 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8961 * Control */
8962 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8963 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8964 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8966 /* Write the last 24 bits of an index within the block into Flash
8967 * Linear address field in Flash Address. This probably needs to
8968 * be calculated here based off the on-chip segment size and the
8969 * software segment size assumed (4K) */
8970 /* TBD */
8971 flash_linear_address = segment * sector_size + j * seg_size;
8972 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
8973 flash_linear_address += hw->flash_base_addr;
8975 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8977 error = e1000_ich8_flash_cycle(hw, 1000000);
8978 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8979 * sequence a few more times else Done */
8980 if (error == E1000_SUCCESS) {
8981 break;
8982 } else {
8983 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8984 if (hsfsts.hsf_status.flcerr == 1) {
8985 /* repeat for some time before giving up */
8986 continue;
8987 } else if (hsfsts.hsf_status.flcdone == 0) {
8988 error_flag = 1;
8989 break;
8992 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8993 if (error_flag == 1)
8994 break;
8996 if (error_flag != 1)
8997 error = E1000_SUCCESS;
8998 return error;
9001 /******************************************************************************
9003 * Reverse duplex setting without breaking the link.
9005 * hw: Struct containing variables accessed by shared code
9007 *****************************************************************************/
9008 #if 0
9009 int32_t
9010 e1000_duplex_reversal(struct e1000_hw *hw)
9012 int32_t ret_val;
9013 uint16_t phy_data;
9015 if (hw->phy_type != e1000_phy_igp_3)
9016 return E1000_SUCCESS;
9018 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
9019 if (ret_val)
9020 return ret_val;
9022 phy_data ^= MII_CR_FULL_DUPLEX;
9024 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
9025 if (ret_val)
9026 return ret_val;
9028 ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
9029 if (ret_val)
9030 return ret_val;
9032 phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
9033 ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
9035 return ret_val;
9037 #endif /* 0 */
9039 static int32_t
9040 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
9041 uint32_t cnf_base_addr, uint32_t cnf_size)
9043 uint32_t ret_val = E1000_SUCCESS;
9044 uint16_t word_addr, reg_data, reg_addr;
9045 uint16_t i;
9047 /* cnf_base_addr is in DWORD */
9048 word_addr = (uint16_t)(cnf_base_addr << 1);
9050 /* cnf_size is returned in size of dwords */
9051 for (i = 0; i < cnf_size; i++) {
9052 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
9053 if (ret_val)
9054 return ret_val;
9056 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
9057 if (ret_val)
9058 return ret_val;
9060 ret_val = e1000_get_software_flag(hw);
9061 if (ret_val != E1000_SUCCESS)
9062 return ret_val;
9064 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
9066 e1000_release_software_flag(hw);
9069 return ret_val;
9073 static int32_t
9074 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
9076 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
9078 if (hw->phy_type != e1000_phy_igp_3)
9079 return E1000_SUCCESS;
9081 /* Check if SW needs configure the PHY */
9082 reg_data = E1000_READ_REG(hw, FEXTNVM);
9083 if (!(reg_data & FEXTNVM_SW_CONFIG))
9084 return E1000_SUCCESS;
9086 /* Wait for basic configuration completes before proceeding*/
9087 loop = 0;
9088 do {
9089 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
9090 udelay(100);
9091 loop++;
9092 } while ((!reg_data) && (loop < 50));
9094 /* Clear the Init Done bit for the next init event */
9095 reg_data = E1000_READ_REG(hw, STATUS);
9096 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
9097 E1000_WRITE_REG(hw, STATUS, reg_data);
9099 /* Make sure HW does not configure LCD from PHY extended configuration
9100 before SW configuration */
9101 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9102 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9103 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9104 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9105 cnf_size >>= 16;
9106 if (cnf_size) {
9107 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9108 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9109 /* cnf_base_addr is in DWORD */
9110 cnf_base_addr >>= 16;
9112 /* Configure LCD from extended configuration region. */
9113 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9114 cnf_size);
9115 if (ret_val)
9116 return ret_val;
9120 return E1000_SUCCESS;