2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
50 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
51 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
52 STATIC
void xlog_recover_insert_item_backq(xlog_recover_item_t
**q
,
53 xlog_recover_item_t
*item
);
55 STATIC
void xlog_recover_check_summary(xlog_t
*);
56 STATIC
void xlog_recover_check_ail(xfs_mount_t
*, xfs_log_item_t
*, int);
58 #define xlog_recover_check_summary(log)
59 #define xlog_recover_check_ail(mp, lip, gen)
64 * Sector aligned buffer routines for buffer create/read/write/access
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
77 ASSERT(num_bblks
> 0);
79 if (log
->l_sectbb_log
) {
81 num_bblks
+= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
82 num_bblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, num_bblks
);
84 return xfs_buf_get_noaddr(BBTOB(num_bblks
), log
->l_mp
->m_logdev_targp
);
96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
107 if (log
->l_sectbb_log
) {
108 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
109 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
113 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
116 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
119 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
120 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
122 xfsbdstrat(log
->l_mp
, bp
);
123 if ((error
= xfs_iowait(bp
)))
124 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
125 bp
, XFS_BUF_ADDR(bp
));
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
143 if (log
->l_sectbb_log
) {
144 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
145 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
149 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
151 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
152 XFS_BUF_ZEROFLAGS(bp
);
155 XFS_BUF_PSEMA(bp
, PRIBIO
);
156 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
157 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
159 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
160 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
161 bp
, XFS_BUF_ADDR(bp
));
174 if (!log
->l_sectbb_log
)
175 return XFS_BUF_PTR(bp
);
177 ptr
= XFS_BUF_PTR(bp
) + BBTOB((int)blk_no
& log
->l_sectbb_mask
);
178 ASSERT(XFS_BUF_SIZE(bp
) >=
179 BBTOB(nbblks
+ (blk_no
& log
->l_sectbb_mask
)));
185 * dump debug superblock and log record information
188 xlog_header_check_dump(
190 xlog_rec_header_t
*head
)
194 cmn_err(CE_DEBUG
, "%s: SB : uuid = ", __FUNCTION__
);
195 for (b
= 0; b
< 16; b
++)
196 cmn_err(CE_DEBUG
, "%02x", ((uchar_t
*)&mp
->m_sb
.sb_uuid
)[b
]);
197 cmn_err(CE_DEBUG
, ", fmt = %d\n", XLOG_FMT
);
198 cmn_err(CE_DEBUG
, " log : uuid = ");
199 for (b
= 0; b
< 16; b
++)
200 cmn_err(CE_DEBUG
, "%02x",((uchar_t
*)&head
->h_fs_uuid
)[b
]);
201 cmn_err(CE_DEBUG
, ", fmt = %d\n", INT_GET(head
->h_fmt
, ARCH_CONVERT
));
204 #define xlog_header_check_dump(mp, head)
208 * check log record header for recovery
211 xlog_header_check_recover(
213 xlog_rec_header_t
*head
)
215 ASSERT(INT_GET(head
->h_magicno
, ARCH_CONVERT
) == XLOG_HEADER_MAGIC_NUM
);
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
222 if (unlikely(INT_GET(head
->h_fmt
, ARCH_CONVERT
) != XLOG_FMT
)) {
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp
, head
);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH
, mp
);
228 return XFS_ERROR(EFSCORRUPTED
);
229 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp
, head
);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH
, mp
);
235 return XFS_ERROR(EFSCORRUPTED
);
241 * read the head block of the log and check the header
244 xlog_header_check_mount(
246 xlog_rec_header_t
*head
)
248 ASSERT(INT_GET(head
->h_magicno
, ARCH_CONVERT
) == XLOG_HEADER_MAGIC_NUM
);
250 if (uuid_is_nil(&head
->h_fs_uuid
)) {
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp
, head
);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH
, mp
);
262 return XFS_ERROR(EFSCORRUPTED
);
273 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *));
275 if (XFS_BUF_GETERROR(bp
)) {
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
280 mp
= XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp
, bp
, XFS_BUF_ADDR(bp
));
283 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
285 XFS_BUF_SET_FSPRIVATE(bp
, NULL
);
286 XFS_BUF_CLR_IODONE_FUNC(bp
);
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
297 xlog_find_cycle_start(
300 xfs_daddr_t first_blk
,
301 xfs_daddr_t
*last_blk
,
309 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
310 while (mid_blk
!= first_blk
&& mid_blk
!= *last_blk
) {
311 if ((error
= xlog_bread(log
, mid_blk
, 1, bp
)))
313 offset
= xlog_align(log
, mid_blk
, 1, bp
);
314 mid_cycle
= GET_CYCLE(offset
, ARCH_CONVERT
);
315 if (mid_cycle
== cycle
) {
317 /* last_half_cycle == mid_cycle */
320 /* first_half_cycle == mid_cycle */
322 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
324 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == *last_blk
) ||
325 (mid_blk
== *last_blk
&& mid_blk
-1 == first_blk
));
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
341 xlog_find_verify_cycle(
343 xfs_daddr_t start_blk
,
345 uint stop_on_cycle_no
,
346 xfs_daddr_t
*new_blk
)
352 xfs_caddr_t buf
= NULL
;
355 bufblks
= 1 << ffs(nbblks
);
357 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
358 /* can't get enough memory to do everything in one big buffer */
360 if (bufblks
<= log
->l_sectbb_log
)
364 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
367 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
369 if ((error
= xlog_bread(log
, i
, bcount
, bp
)))
372 buf
= xlog_align(log
, i
, bcount
, bp
);
373 for (j
= 0; j
< bcount
; j
++) {
374 cycle
= GET_CYCLE(buf
, ARCH_CONVERT
);
375 if (cycle
== stop_on_cycle_no
) {
392 * Potentially backup over partial log record write.
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
404 xlog_find_verify_log_record(
406 xfs_daddr_t start_blk
,
407 xfs_daddr_t
*last_blk
,
412 xfs_caddr_t offset
= NULL
;
413 xlog_rec_header_t
*head
= NULL
;
416 int num_blks
= *last_blk
- start_blk
;
419 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
421 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
422 if (!(bp
= xlog_get_bp(log
, 1)))
426 if ((error
= xlog_bread(log
, start_blk
, num_blks
, bp
)))
428 offset
= xlog_align(log
, start_blk
, num_blks
, bp
);
429 offset
+= ((num_blks
- 1) << BBSHIFT
);
432 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
434 /* valid log record not found */
436 "XFS: Log inconsistent (didn't find previous header)");
438 error
= XFS_ERROR(EIO
);
443 if ((error
= xlog_bread(log
, i
, 1, bp
)))
445 offset
= xlog_align(log
, i
, 1, bp
);
448 head
= (xlog_rec_header_t
*)offset
;
450 if (XLOG_HEADER_MAGIC_NUM
==
451 INT_GET(head
->h_magicno
, ARCH_CONVERT
))
459 * We hit the beginning of the physical log & still no header. Return
460 * to caller. If caller can handle a return of -1, then this routine
461 * will be called again for the end of the physical log.
469 * We have the final block of the good log (the first block
470 * of the log record _before_ the head. So we check the uuid.
472 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
476 * We may have found a log record header before we expected one.
477 * last_blk will be the 1st block # with a given cycle #. We may end
478 * up reading an entire log record. In this case, we don't want to
479 * reset last_blk. Only when last_blk points in the middle of a log
480 * record do we update last_blk.
482 if (XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
)) {
483 uint h_size
= INT_GET(head
->h_size
, ARCH_CONVERT
);
485 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
486 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
492 if (*last_blk
- i
+ extra_bblks
493 != BTOBB(INT_GET(head
->h_len
, ARCH_CONVERT
)) + xhdrs
)
502 * Head is defined to be the point of the log where the next log write
503 * write could go. This means that incomplete LR writes at the end are
504 * eliminated when calculating the head. We aren't guaranteed that previous
505 * LR have complete transactions. We only know that a cycle number of
506 * current cycle number -1 won't be present in the log if we start writing
507 * from our current block number.
509 * last_blk contains the block number of the first block with a given
512 * Return: zero if normal, non-zero if error.
517 xfs_daddr_t
*return_head_blk
)
521 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
523 uint first_half_cycle
, last_half_cycle
;
525 int error
, log_bbnum
= log
->l_logBBsize
;
527 /* Is the end of the log device zeroed? */
528 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
529 *return_head_blk
= first_blk
;
531 /* Is the whole lot zeroed? */
533 /* Linux XFS shouldn't generate totally zeroed logs -
534 * mkfs etc write a dummy unmount record to a fresh
535 * log so we can store the uuid in there
537 xlog_warn("XFS: totally zeroed log");
542 xlog_warn("XFS: empty log check failed");
546 first_blk
= 0; /* get cycle # of 1st block */
547 bp
= xlog_get_bp(log
, 1);
550 if ((error
= xlog_bread(log
, 0, 1, bp
)))
552 offset
= xlog_align(log
, 0, 1, bp
);
553 first_half_cycle
= GET_CYCLE(offset
, ARCH_CONVERT
);
555 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
556 if ((error
= xlog_bread(log
, last_blk
, 1, bp
)))
558 offset
= xlog_align(log
, last_blk
, 1, bp
);
559 last_half_cycle
= GET_CYCLE(offset
, ARCH_CONVERT
);
560 ASSERT(last_half_cycle
!= 0);
563 * If the 1st half cycle number is equal to the last half cycle number,
564 * then the entire log is stamped with the same cycle number. In this
565 * case, head_blk can't be set to zero (which makes sense). The below
566 * math doesn't work out properly with head_blk equal to zero. Instead,
567 * we set it to log_bbnum which is an invalid block number, but this
568 * value makes the math correct. If head_blk doesn't changed through
569 * all the tests below, *head_blk is set to zero at the very end rather
570 * than log_bbnum. In a sense, log_bbnum and zero are the same block
571 * in a circular file.
573 if (first_half_cycle
== last_half_cycle
) {
575 * In this case we believe that the entire log should have
576 * cycle number last_half_cycle. We need to scan backwards
577 * from the end verifying that there are no holes still
578 * containing last_half_cycle - 1. If we find such a hole,
579 * then the start of that hole will be the new head. The
580 * simple case looks like
581 * x | x ... | x - 1 | x
582 * Another case that fits this picture would be
583 * x | x + 1 | x ... | x
584 * In this case the head really is somewhere at the end of the
585 * log, as one of the latest writes at the beginning was
588 * x | x + 1 | x ... | x - 1 | x
589 * This is really the combination of the above two cases, and
590 * the head has to end up at the start of the x-1 hole at the
593 * In the 256k log case, we will read from the beginning to the
594 * end of the log and search for cycle numbers equal to x-1.
595 * We don't worry about the x+1 blocks that we encounter,
596 * because we know that they cannot be the head since the log
599 head_blk
= log_bbnum
;
600 stop_on_cycle
= last_half_cycle
- 1;
603 * In this case we want to find the first block with cycle
604 * number matching last_half_cycle. We expect the log to be
607 * The first block with cycle number x (last_half_cycle) will
608 * be where the new head belongs. First we do a binary search
609 * for the first occurrence of last_half_cycle. The binary
610 * search may not be totally accurate, so then we scan back
611 * from there looking for occurrences of last_half_cycle before
612 * us. If that backwards scan wraps around the beginning of
613 * the log, then we look for occurrences of last_half_cycle - 1
614 * at the end of the log. The cases we're looking for look
616 * x + 1 ... | x | x + 1 | x ...
617 * ^ binary search stopped here
619 * x + 1 ... | x ... | x - 1 | x
620 * <---------> less than scan distance
622 stop_on_cycle
= last_half_cycle
;
623 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
624 &head_blk
, last_half_cycle
)))
629 * Now validate the answer. Scan back some number of maximum possible
630 * blocks and make sure each one has the expected cycle number. The
631 * maximum is determined by the total possible amount of buffering
632 * in the in-core log. The following number can be made tighter if
633 * we actually look at the block size of the filesystem.
635 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
636 if (head_blk
>= num_scan_bblks
) {
638 * We are guaranteed that the entire check can be performed
641 start_blk
= head_blk
- num_scan_bblks
;
642 if ((error
= xlog_find_verify_cycle(log
,
643 start_blk
, num_scan_bblks
,
644 stop_on_cycle
, &new_blk
)))
648 } else { /* need to read 2 parts of log */
650 * We are going to scan backwards in the log in two parts.
651 * First we scan the physical end of the log. In this part
652 * of the log, we are looking for blocks with cycle number
653 * last_half_cycle - 1.
654 * If we find one, then we know that the log starts there, as
655 * we've found a hole that didn't get written in going around
656 * the end of the physical log. The simple case for this is
657 * x + 1 ... | x ... | x - 1 | x
658 * <---------> less than scan distance
659 * If all of the blocks at the end of the log have cycle number
660 * last_half_cycle, then we check the blocks at the start of
661 * the log looking for occurrences of last_half_cycle. If we
662 * find one, then our current estimate for the location of the
663 * first occurrence of last_half_cycle is wrong and we move
664 * back to the hole we've found. This case looks like
665 * x + 1 ... | x | x + 1 | x ...
666 * ^ binary search stopped here
667 * Another case we need to handle that only occurs in 256k
669 * x + 1 ... | x ... | x+1 | x ...
670 * ^ binary search stops here
671 * In a 256k log, the scan at the end of the log will see the
672 * x + 1 blocks. We need to skip past those since that is
673 * certainly not the head of the log. By searching for
674 * last_half_cycle-1 we accomplish that.
676 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
677 ASSERT(head_blk
<= INT_MAX
&&
678 (xfs_daddr_t
) num_scan_bblks
- head_blk
>= 0);
679 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
680 num_scan_bblks
- (int)head_blk
,
681 (stop_on_cycle
- 1), &new_blk
)))
689 * Scan beginning of log now. The last part of the physical
690 * log is good. This scan needs to verify that it doesn't find
691 * the last_half_cycle.
694 ASSERT(head_blk
<= INT_MAX
);
695 if ((error
= xlog_find_verify_cycle(log
,
696 start_blk
, (int)head_blk
,
697 stop_on_cycle
, &new_blk
)))
705 * Now we need to make sure head_blk is not pointing to a block in
706 * the middle of a log record.
708 num_scan_bblks
= XLOG_REC_SHIFT(log
);
709 if (head_blk
>= num_scan_bblks
) {
710 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
712 /* start ptr at last block ptr before head_blk */
713 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
714 &head_blk
, 0)) == -1) {
715 error
= XFS_ERROR(EIO
);
721 ASSERT(head_blk
<= INT_MAX
);
722 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
723 &head_blk
, 0)) == -1) {
724 /* We hit the beginning of the log during our search */
725 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
727 ASSERT(start_blk
<= INT_MAX
&&
728 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
729 ASSERT(head_blk
<= INT_MAX
);
730 if ((error
= xlog_find_verify_log_record(log
,
732 (int)head_blk
)) == -1) {
733 error
= XFS_ERROR(EIO
);
737 if (new_blk
!= log_bbnum
)
744 if (head_blk
== log_bbnum
)
745 *return_head_blk
= 0;
747 *return_head_blk
= head_blk
;
749 * When returning here, we have a good block number. Bad block
750 * means that during a previous crash, we didn't have a clean break
751 * from cycle number N to cycle number N-1. In this case, we need
752 * to find the first block with cycle number N-1.
760 xlog_warn("XFS: failed to find log head");
765 * Find the sync block number or the tail of the log.
767 * This will be the block number of the last record to have its
768 * associated buffers synced to disk. Every log record header has
769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
770 * to get a sync block number. The only concern is to figure out which
771 * log record header to believe.
773 * The following algorithm uses the log record header with the largest
774 * lsn. The entire log record does not need to be valid. We only care
775 * that the header is valid.
777 * We could speed up search by using current head_blk buffer, but it is not
783 xfs_daddr_t
*head_blk
,
784 xfs_daddr_t
*tail_blk
)
786 xlog_rec_header_t
*rhead
;
787 xlog_op_header_t
*op_head
;
788 xfs_caddr_t offset
= NULL
;
791 xfs_daddr_t umount_data_blk
;
792 xfs_daddr_t after_umount_blk
;
799 * Find previous log record
801 if ((error
= xlog_find_head(log
, head_blk
)))
804 bp
= xlog_get_bp(log
, 1);
807 if (*head_blk
== 0) { /* special case */
808 if ((error
= xlog_bread(log
, 0, 1, bp
)))
810 offset
= xlog_align(log
, 0, 1, bp
);
811 if (GET_CYCLE(offset
, ARCH_CONVERT
) == 0) {
813 /* leave all other log inited values alone */
819 * Search backwards looking for log record header block
821 ASSERT(*head_blk
< INT_MAX
);
822 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
823 if ((error
= xlog_bread(log
, i
, 1, bp
)))
825 offset
= xlog_align(log
, i
, 1, bp
);
826 if (XLOG_HEADER_MAGIC_NUM
==
827 INT_GET(*(uint
*)offset
, ARCH_CONVERT
)) {
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
839 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
840 if ((error
= xlog_bread(log
, i
, 1, bp
)))
842 offset
= xlog_align(log
, i
, 1, bp
);
843 if (XLOG_HEADER_MAGIC_NUM
==
844 INT_GET(*(uint
*)offset
, ARCH_CONVERT
)) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
853 return XFS_ERROR(EIO
);
856 /* find blk_no of tail of log */
857 rhead
= (xlog_rec_header_t
*)offset
;
858 *tail_blk
= BLOCK_LSN(INT_GET(rhead
->h_tail_lsn
, ARCH_CONVERT
));
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
870 log
->l_prev_block
= i
;
871 log
->l_curr_block
= (int)*head_blk
;
872 log
->l_curr_cycle
= INT_GET(rhead
->h_cycle
, ARCH_CONVERT
);
875 log
->l_tail_lsn
= INT_GET(rhead
->h_tail_lsn
, ARCH_CONVERT
);
876 log
->l_last_sync_lsn
= INT_GET(rhead
->h_lsn
, ARCH_CONVERT
);
877 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
878 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
879 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
880 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
893 if (XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
)) {
894 int h_size
= INT_GET(rhead
->h_size
, ARCH_CONVERT
);
895 int h_version
= INT_GET(rhead
->h_version
, ARCH_CONVERT
);
897 if ((h_version
& XLOG_VERSION_2
) &&
898 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
899 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
900 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
908 after_umount_blk
= (i
+ hblks
+ (int)
909 BTOBB(INT_GET(rhead
->h_len
, ARCH_CONVERT
))) % log
->l_logBBsize
;
910 tail_lsn
= log
->l_tail_lsn
;
911 if (*head_blk
== after_umount_blk
&&
912 INT_GET(rhead
->h_num_logops
, ARCH_CONVERT
) == 1) {
913 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
914 if ((error
= xlog_bread(log
, umount_data_blk
, 1, bp
))) {
917 offset
= xlog_align(log
, umount_data_blk
, 1, bp
);
918 op_head
= (xlog_op_header_t
*)offset
;
919 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
925 ASSIGN_ANY_LSN_HOST(log
->l_tail_lsn
, log
->l_curr_cycle
,
927 ASSIGN_ANY_LSN_HOST(log
->l_last_sync_lsn
, log
->l_curr_cycle
,
929 *tail_blk
= after_umount_blk
;
932 * Note that the unmount was clean. If the unmount
933 * was not clean, we need to know this to rebuild the
934 * superblock counters from the perag headers if we
935 * have a filesystem using non-persistent counters.
937 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
942 * Make sure that there are no blocks in front of the head
943 * with the same cycle number as the head. This can happen
944 * because we allow multiple outstanding log writes concurrently,
945 * and the later writes might make it out before earlier ones.
947 * We use the lsn from before modifying it so that we'll never
948 * overwrite the unmount record after a clean unmount.
950 * Do this only if we are going to recover the filesystem
952 * NOTE: This used to say "if (!readonly)"
953 * However on Linux, we can & do recover a read-only filesystem.
954 * We only skip recovery if NORECOVERY is specified on mount,
955 * in which case we would not be here.
957 * But... if the -device- itself is readonly, just skip this.
958 * We can't recover this device anyway, so it won't matter.
960 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
961 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
969 xlog_warn("XFS: failed to locate log tail");
974 * Is the log zeroed at all?
976 * The last binary search should be changed to perform an X block read
977 * once X becomes small enough. You can then search linearly through
978 * the X blocks. This will cut down on the number of reads we need to do.
980 * If the log is partially zeroed, this routine will pass back the blkno
981 * of the first block with cycle number 0. It won't have a complete LR
985 * 0 => the log is completely written to
986 * -1 => use *blk_no as the first block of the log
987 * >0 => error has occurred
996 uint first_cycle
, last_cycle
;
997 xfs_daddr_t new_blk
, last_blk
, start_blk
;
998 xfs_daddr_t num_scan_bblks
;
999 int error
, log_bbnum
= log
->l_logBBsize
;
1003 /* check totally zeroed log */
1004 bp
= xlog_get_bp(log
, 1);
1007 if ((error
= xlog_bread(log
, 0, 1, bp
)))
1009 offset
= xlog_align(log
, 0, 1, bp
);
1010 first_cycle
= GET_CYCLE(offset
, ARCH_CONVERT
);
1011 if (first_cycle
== 0) { /* completely zeroed log */
1017 /* check partially zeroed log */
1018 if ((error
= xlog_bread(log
, log_bbnum
-1, 1, bp
)))
1020 offset
= xlog_align(log
, log_bbnum
-1, 1, bp
);
1021 last_cycle
= GET_CYCLE(offset
, ARCH_CONVERT
);
1022 if (last_cycle
!= 0) { /* log completely written to */
1025 } else if (first_cycle
!= 1) {
1027 * If the cycle of the last block is zero, the cycle of
1028 * the first block must be 1. If it's not, maybe we're
1029 * not looking at a log... Bail out.
1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 return XFS_ERROR(EINVAL
);
1035 /* we have a partially zeroed log */
1036 last_blk
= log_bbnum
-1;
1037 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1041 * Validate the answer. Because there is no way to guarantee that
1042 * the entire log is made up of log records which are the same size,
1043 * we scan over the defined maximum blocks. At this point, the maximum
1044 * is not chosen to mean anything special. XXXmiken
1046 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1047 ASSERT(num_scan_bblks
<= INT_MAX
);
1049 if (last_blk
< num_scan_bblks
)
1050 num_scan_bblks
= last_blk
;
1051 start_blk
= last_blk
- num_scan_bblks
;
1054 * We search for any instances of cycle number 0 that occur before
1055 * our current estimate of the head. What we're trying to detect is
1056 * 1 ... | 0 | 1 | 0...
1057 * ^ binary search ends here
1059 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1060 (int)num_scan_bblks
, 0, &new_blk
)))
1066 * Potentially backup over partial log record write. We don't need
1067 * to search the end of the log because we know it is zero.
1069 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1070 &last_blk
, 0)) == -1) {
1071 error
= XFS_ERROR(EIO
);
1085 * These are simple subroutines used by xlog_clear_stale_blocks() below
1086 * to initialize a buffer full of empty log record headers and write
1087 * them into the log.
1098 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1100 memset(buf
, 0, BBSIZE
);
1101 INT_SET(recp
->h_magicno
, ARCH_CONVERT
, XLOG_HEADER_MAGIC_NUM
);
1102 INT_SET(recp
->h_cycle
, ARCH_CONVERT
, cycle
);
1103 INT_SET(recp
->h_version
, ARCH_CONVERT
,
1104 XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
) ? 2 : 1);
1105 ASSIGN_ANY_LSN_DISK(recp
->h_lsn
, cycle
, block
);
1106 ASSIGN_ANY_LSN_DISK(recp
->h_tail_lsn
, tail_cycle
, tail_block
);
1107 INT_SET(recp
->h_fmt
, ARCH_CONVERT
, XLOG_FMT
);
1108 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1112 xlog_write_log_records(
1123 int sectbb
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
1124 int end_block
= start_block
+ blocks
;
1129 bufblks
= 1 << ffs(blocks
);
1130 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1132 if (bufblks
<= log
->l_sectbb_log
)
1136 /* We may need to do a read at the start to fill in part of
1137 * the buffer in the starting sector not covered by the first
1140 balign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, start_block
);
1141 if (balign
!= start_block
) {
1142 if ((error
= xlog_bread(log
, start_block
, 1, bp
))) {
1146 j
= start_block
- balign
;
1149 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1150 int bcount
, endcount
;
1152 bcount
= min(bufblks
, end_block
- start_block
);
1153 endcount
= bcount
- j
;
1155 /* We may need to do a read at the end to fill in part of
1156 * the buffer in the final sector not covered by the write.
1157 * If this is the same sector as the above read, skip it.
1159 ealign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, end_block
);
1160 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1161 offset
= XFS_BUF_PTR(bp
);
1162 balign
= BBTOB(ealign
- start_block
);
1163 XFS_BUF_SET_PTR(bp
, offset
+ balign
, BBTOB(sectbb
));
1164 if ((error
= xlog_bread(log
, ealign
, sectbb
, bp
)))
1166 XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1169 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1170 for (; j
< endcount
; j
++) {
1171 xlog_add_record(log
, offset
, cycle
, i
+j
,
1172 tail_cycle
, tail_block
);
1175 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1178 start_block
+= endcount
;
1186 * This routine is called to blow away any incomplete log writes out
1187 * in front of the log head. We do this so that we won't become confused
1188 * if we come up, write only a little bit more, and then crash again.
1189 * If we leave the partial log records out there, this situation could
1190 * cause us to think those partial writes are valid blocks since they
1191 * have the current cycle number. We get rid of them by overwriting them
1192 * with empty log records with the old cycle number rather than the
1195 * The tail lsn is passed in rather than taken from
1196 * the log so that we will not write over the unmount record after a
1197 * clean unmount in a 512 block log. Doing so would leave the log without
1198 * any valid log records in it until a new one was written. If we crashed
1199 * during that time we would not be able to recover.
1202 xlog_clear_stale_blocks(
1206 int tail_cycle
, head_cycle
;
1207 int tail_block
, head_block
;
1208 int tail_distance
, max_distance
;
1212 tail_cycle
= CYCLE_LSN(tail_lsn
);
1213 tail_block
= BLOCK_LSN(tail_lsn
);
1214 head_cycle
= log
->l_curr_cycle
;
1215 head_block
= log
->l_curr_block
;
1218 * Figure out the distance between the new head of the log
1219 * and the tail. We want to write over any blocks beyond the
1220 * head that we may have written just before the crash, but
1221 * we don't want to overwrite the tail of the log.
1223 if (head_cycle
== tail_cycle
) {
1225 * The tail is behind the head in the physical log,
1226 * so the distance from the head to the tail is the
1227 * distance from the head to the end of the log plus
1228 * the distance from the beginning of the log to the
1231 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1232 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1233 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1234 return XFS_ERROR(EFSCORRUPTED
);
1236 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1239 * The head is behind the tail in the physical log,
1240 * so the distance from the head to the tail is just
1241 * the tail block minus the head block.
1243 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1244 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1245 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1246 return XFS_ERROR(EFSCORRUPTED
);
1248 tail_distance
= tail_block
- head_block
;
1252 * If the head is right up against the tail, we can't clear
1255 if (tail_distance
<= 0) {
1256 ASSERT(tail_distance
== 0);
1260 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1262 * Take the smaller of the maximum amount of outstanding I/O
1263 * we could have and the distance to the tail to clear out.
1264 * We take the smaller so that we don't overwrite the tail and
1265 * we don't waste all day writing from the head to the tail
1268 max_distance
= MIN(max_distance
, tail_distance
);
1270 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1272 * We can stomp all the blocks we need to without
1273 * wrapping around the end of the log. Just do it
1274 * in a single write. Use the cycle number of the
1275 * current cycle minus one so that the log will look like:
1278 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1279 head_block
, max_distance
, tail_cycle
,
1285 * We need to wrap around the end of the physical log in
1286 * order to clear all the blocks. Do it in two separate
1287 * I/Os. The first write should be from the head to the
1288 * end of the physical log, and it should use the current
1289 * cycle number minus one just like above.
1291 distance
= log
->l_logBBsize
- head_block
;
1292 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1293 head_block
, distance
, tail_cycle
,
1300 * Now write the blocks at the start of the physical log.
1301 * This writes the remainder of the blocks we want to clear.
1302 * It uses the current cycle number since we're now on the
1303 * same cycle as the head so that we get:
1304 * n ... n ... | n - 1 ...
1305 * ^^^^^ blocks we're writing
1307 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1308 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1309 tail_cycle
, tail_block
);
1317 /******************************************************************************
1319 * Log recover routines
1321 ******************************************************************************
1324 STATIC xlog_recover_t
*
1325 xlog_recover_find_tid(
1329 xlog_recover_t
*p
= q
;
1332 if (p
->r_log_tid
== tid
)
1340 xlog_recover_put_hashq(
1342 xlog_recover_t
*trans
)
1349 xlog_recover_add_item(
1350 xlog_recover_item_t
**itemq
)
1352 xlog_recover_item_t
*item
;
1354 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1355 xlog_recover_insert_item_backq(itemq
, item
);
1359 xlog_recover_add_to_cont_trans(
1360 xlog_recover_t
*trans
,
1364 xlog_recover_item_t
*item
;
1365 xfs_caddr_t ptr
, old_ptr
;
1368 item
= trans
->r_itemq
;
1370 /* finish copying rest of trans header */
1371 xlog_recover_add_item(&trans
->r_itemq
);
1372 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1373 sizeof(xfs_trans_header_t
) - len
;
1374 memcpy(ptr
, dp
, len
); /* d, s, l */
1377 item
= item
->ri_prev
;
1379 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1380 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1382 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1383 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1384 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1385 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1390 * The next region to add is the start of a new region. It could be
1391 * a whole region or it could be the first part of a new region. Because
1392 * of this, the assumption here is that the type and size fields of all
1393 * format structures fit into the first 32 bits of the structure.
1395 * This works because all regions must be 32 bit aligned. Therefore, we
1396 * either have both fields or we have neither field. In the case we have
1397 * neither field, the data part of the region is zero length. We only have
1398 * a log_op_header and can throw away the header since a new one will appear
1399 * later. If we have at least 4 bytes, then we can determine how many regions
1400 * will appear in the current log item.
1403 xlog_recover_add_to_trans(
1404 xlog_recover_t
*trans
,
1408 xfs_inode_log_format_t
*in_f
; /* any will do */
1409 xlog_recover_item_t
*item
;
1414 item
= trans
->r_itemq
;
1416 ASSERT(*(uint
*)dp
== XFS_TRANS_HEADER_MAGIC
);
1417 if (len
== sizeof(xfs_trans_header_t
))
1418 xlog_recover_add_item(&trans
->r_itemq
);
1419 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1423 ptr
= kmem_alloc(len
, KM_SLEEP
);
1424 memcpy(ptr
, dp
, len
);
1425 in_f
= (xfs_inode_log_format_t
*)ptr
;
1427 if (item
->ri_prev
->ri_total
!= 0 &&
1428 item
->ri_prev
->ri_total
== item
->ri_prev
->ri_cnt
) {
1429 xlog_recover_add_item(&trans
->r_itemq
);
1431 item
= trans
->r_itemq
;
1432 item
= item
->ri_prev
;
1434 if (item
->ri_total
== 0) { /* first region to be added */
1435 item
->ri_total
= in_f
->ilf_size
;
1436 ASSERT(item
->ri_total
<= XLOG_MAX_REGIONS_IN_ITEM
);
1437 item
->ri_buf
= kmem_zalloc((item
->ri_total
*
1438 sizeof(xfs_log_iovec_t
)), KM_SLEEP
);
1440 ASSERT(item
->ri_total
> item
->ri_cnt
);
1441 /* Description region is ri_buf[0] */
1442 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1443 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1449 xlog_recover_new_tid(
1454 xlog_recover_t
*trans
;
1456 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1457 trans
->r_log_tid
= tid
;
1459 xlog_recover_put_hashq(q
, trans
);
1463 xlog_recover_unlink_tid(
1465 xlog_recover_t
*trans
)
1470 ASSERT(trans
!= NULL
);
1476 if (tp
->r_next
== trans
) {
1484 "XFS: xlog_recover_unlink_tid: trans not found");
1486 return XFS_ERROR(EIO
);
1488 tp
->r_next
= tp
->r_next
->r_next
;
1494 xlog_recover_insert_item_backq(
1495 xlog_recover_item_t
**q
,
1496 xlog_recover_item_t
*item
)
1499 item
->ri_prev
= item
->ri_next
= item
;
1503 item
->ri_prev
= (*q
)->ri_prev
;
1504 (*q
)->ri_prev
= item
;
1505 item
->ri_prev
->ri_next
= item
;
1510 xlog_recover_insert_item_frontq(
1511 xlog_recover_item_t
**q
,
1512 xlog_recover_item_t
*item
)
1514 xlog_recover_insert_item_backq(q
, item
);
1519 xlog_recover_reorder_trans(
1520 xlog_recover_t
*trans
)
1522 xlog_recover_item_t
*first_item
, *itemq
, *itemq_next
;
1523 xfs_buf_log_format_t
*buf_f
;
1526 first_item
= itemq
= trans
->r_itemq
;
1527 trans
->r_itemq
= NULL
;
1529 itemq_next
= itemq
->ri_next
;
1530 buf_f
= (xfs_buf_log_format_t
*)itemq
->ri_buf
[0].i_addr
;
1532 switch (ITEM_TYPE(itemq
)) {
1534 flags
= buf_f
->blf_flags
;
1535 if (!(flags
& XFS_BLI_CANCEL
)) {
1536 xlog_recover_insert_item_frontq(&trans
->r_itemq
,
1542 case XFS_LI_QUOTAOFF
:
1545 xlog_recover_insert_item_backq(&trans
->r_itemq
, itemq
);
1549 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1551 return XFS_ERROR(EIO
);
1554 } while (first_item
!= itemq
);
1559 * Build up the table of buf cancel records so that we don't replay
1560 * cancelled data in the second pass. For buffer records that are
1561 * not cancel records, there is nothing to do here so we just return.
1563 * If we get a cancel record which is already in the table, this indicates
1564 * that the buffer was cancelled multiple times. In order to ensure
1565 * that during pass 2 we keep the record in the table until we reach its
1566 * last occurrence in the log, we keep a reference count in the cancel
1567 * record in the table to tell us how many times we expect to see this
1568 * record during the second pass.
1571 xlog_recover_do_buffer_pass1(
1573 xfs_buf_log_format_t
*buf_f
)
1575 xfs_buf_cancel_t
*bcp
;
1576 xfs_buf_cancel_t
*nextp
;
1577 xfs_buf_cancel_t
*prevp
;
1578 xfs_buf_cancel_t
**bucket
;
1579 xfs_daddr_t blkno
= 0;
1583 switch (buf_f
->blf_type
) {
1585 blkno
= buf_f
->blf_blkno
;
1586 len
= buf_f
->blf_len
;
1587 flags
= buf_f
->blf_flags
;
1592 * If this isn't a cancel buffer item, then just return.
1594 if (!(flags
& XFS_BLI_CANCEL
))
1598 * Insert an xfs_buf_cancel record into the hash table of
1599 * them. If there is already an identical record, bump
1600 * its reference count.
1602 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1603 XLOG_BC_TABLE_SIZE
];
1605 * If the hash bucket is empty then just insert a new record into
1608 if (*bucket
== NULL
) {
1609 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1611 bcp
->bc_blkno
= blkno
;
1613 bcp
->bc_refcount
= 1;
1614 bcp
->bc_next
= NULL
;
1620 * The hash bucket is not empty, so search for duplicates of our
1621 * record. If we find one them just bump its refcount. If not
1622 * then add us at the end of the list.
1626 while (nextp
!= NULL
) {
1627 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1628 nextp
->bc_refcount
++;
1632 nextp
= nextp
->bc_next
;
1634 ASSERT(prevp
!= NULL
);
1635 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1637 bcp
->bc_blkno
= blkno
;
1639 bcp
->bc_refcount
= 1;
1640 bcp
->bc_next
= NULL
;
1641 prevp
->bc_next
= bcp
;
1645 * Check to see whether the buffer being recovered has a corresponding
1646 * entry in the buffer cancel record table. If it does then return 1
1647 * so that it will be cancelled, otherwise return 0. If the buffer is
1648 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1649 * the refcount on the entry in the table and remove it from the table
1650 * if this is the last reference.
1652 * We remove the cancel record from the table when we encounter its
1653 * last occurrence in the log so that if the same buffer is re-used
1654 * again after its last cancellation we actually replay the changes
1655 * made at that point.
1658 xlog_check_buffer_cancelled(
1664 xfs_buf_cancel_t
*bcp
;
1665 xfs_buf_cancel_t
*prevp
;
1666 xfs_buf_cancel_t
**bucket
;
1668 if (log
->l_buf_cancel_table
== NULL
) {
1670 * There is nothing in the table built in pass one,
1671 * so this buffer must not be cancelled.
1673 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1677 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1678 XLOG_BC_TABLE_SIZE
];
1682 * There is no corresponding entry in the table built
1683 * in pass one, so this buffer has not been cancelled.
1685 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1690 * Search for an entry in the buffer cancel table that
1691 * matches our buffer.
1694 while (bcp
!= NULL
) {
1695 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1697 * We've go a match, so return 1 so that the
1698 * recovery of this buffer is cancelled.
1699 * If this buffer is actually a buffer cancel
1700 * log item, then decrement the refcount on the
1701 * one in the table and remove it if this is the
1704 if (flags
& XFS_BLI_CANCEL
) {
1706 if (bcp
->bc_refcount
== 0) {
1707 if (prevp
== NULL
) {
1708 *bucket
= bcp
->bc_next
;
1710 prevp
->bc_next
= bcp
->bc_next
;
1713 sizeof(xfs_buf_cancel_t
));
1722 * We didn't find a corresponding entry in the table, so
1723 * return 0 so that the buffer is NOT cancelled.
1725 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1730 xlog_recover_do_buffer_pass2(
1732 xfs_buf_log_format_t
*buf_f
)
1734 xfs_daddr_t blkno
= 0;
1738 switch (buf_f
->blf_type
) {
1740 blkno
= buf_f
->blf_blkno
;
1741 flags
= buf_f
->blf_flags
;
1742 len
= buf_f
->blf_len
;
1746 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1750 * Perform recovery for a buffer full of inodes. In these buffers,
1751 * the only data which should be recovered is that which corresponds
1752 * to the di_next_unlinked pointers in the on disk inode structures.
1753 * The rest of the data for the inodes is always logged through the
1754 * inodes themselves rather than the inode buffer and is recovered
1755 * in xlog_recover_do_inode_trans().
1757 * The only time when buffers full of inodes are fully recovered is
1758 * when the buffer is full of newly allocated inodes. In this case
1759 * the buffer will not be marked as an inode buffer and so will be
1760 * sent to xlog_recover_do_reg_buffer() below during recovery.
1763 xlog_recover_do_inode_buffer(
1765 xlog_recover_item_t
*item
,
1767 xfs_buf_log_format_t
*buf_f
)
1775 int next_unlinked_offset
;
1777 xfs_agino_t
*logged_nextp
;
1778 xfs_agino_t
*buffer_nextp
;
1779 unsigned int *data_map
= NULL
;
1780 unsigned int map_size
= 0;
1782 switch (buf_f
->blf_type
) {
1784 data_map
= buf_f
->blf_data_map
;
1785 map_size
= buf_f
->blf_map_size
;
1789 * Set the variables corresponding to the current region to
1790 * 0 so that we'll initialize them on the first pass through
1798 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1799 for (i
= 0; i
< inodes_per_buf
; i
++) {
1800 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1801 offsetof(xfs_dinode_t
, di_next_unlinked
);
1803 while (next_unlinked_offset
>=
1804 (reg_buf_offset
+ reg_buf_bytes
)) {
1806 * The next di_next_unlinked field is beyond
1807 * the current logged region. Find the next
1808 * logged region that contains or is beyond
1809 * the current di_next_unlinked field.
1812 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1815 * If there are no more logged regions in the
1816 * buffer, then we're done.
1822 nbits
= xfs_contig_bits(data_map
, map_size
,
1825 reg_buf_offset
= bit
<< XFS_BLI_SHIFT
;
1826 reg_buf_bytes
= nbits
<< XFS_BLI_SHIFT
;
1831 * If the current logged region starts after the current
1832 * di_next_unlinked field, then move on to the next
1833 * di_next_unlinked field.
1835 if (next_unlinked_offset
< reg_buf_offset
) {
1839 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1840 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLI_CHUNK
) == 0);
1841 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1844 * The current logged region contains a copy of the
1845 * current di_next_unlinked field. Extract its value
1846 * and copy it to the buffer copy.
1848 logged_nextp
= (xfs_agino_t
*)
1849 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1850 (next_unlinked_offset
- reg_buf_offset
));
1851 if (unlikely(*logged_nextp
== 0)) {
1852 xfs_fs_cmn_err(CE_ALERT
, mp
,
1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 XFS_ERRLEVEL_LOW
, mp
);
1857 return XFS_ERROR(EFSCORRUPTED
);
1860 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1861 next_unlinked_offset
);
1862 *buffer_nextp
= *logged_nextp
;
1869 * Perform a 'normal' buffer recovery. Each logged region of the
1870 * buffer should be copied over the corresponding region in the
1871 * given buffer. The bitmap in the buf log format structure indicates
1872 * where to place the logged data.
1876 xlog_recover_do_reg_buffer(
1877 xlog_recover_item_t
*item
,
1879 xfs_buf_log_format_t
*buf_f
)
1884 unsigned int *data_map
= NULL
;
1885 unsigned int map_size
= 0;
1888 switch (buf_f
->blf_type
) {
1890 data_map
= buf_f
->blf_data_map
;
1891 map_size
= buf_f
->blf_map_size
;
1895 i
= 1; /* 0 is the buf format structure */
1897 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1900 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1902 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1903 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLI_CHUNK
== 0);
1904 ASSERT(XFS_BUF_COUNT(bp
) >=
1905 ((uint
)bit
<< XFS_BLI_SHIFT
)+(nbits
<<XFS_BLI_SHIFT
));
1908 * Do a sanity check if this is a dquot buffer. Just checking
1909 * the first dquot in the buffer should do. XXXThis is
1910 * probably a good thing to do for other buf types also.
1913 if (buf_f
->blf_flags
&
1914 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
1915 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1916 item
->ri_buf
[i
].i_addr
,
1917 -1, 0, XFS_QMOPT_DOWARN
,
1918 "dquot_buf_recover");
1921 memcpy(xfs_buf_offset(bp
,
1922 (uint
)bit
<< XFS_BLI_SHIFT
), /* dest */
1923 item
->ri_buf
[i
].i_addr
, /* source */
1924 nbits
<<XFS_BLI_SHIFT
); /* length */
1929 /* Shouldn't be any more regions */
1930 ASSERT(i
== item
->ri_total
);
1934 * Do some primitive error checking on ondisk dquot data structures.
1938 xfs_disk_dquot_t
*ddq
,
1940 uint type
, /* used only when IO_dorepair is true */
1944 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1948 * We can encounter an uninitialized dquot buffer for 2 reasons:
1949 * 1. If we crash while deleting the quotainode(s), and those blks got
1950 * used for user data. This is because we take the path of regular
1951 * file deletion; however, the size field of quotainodes is never
1952 * updated, so all the tricks that we play in itruncate_finish
1953 * don't quite matter.
1955 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956 * But the allocation will be replayed so we'll end up with an
1957 * uninitialized quota block.
1959 * This is all fine; things are still consistent, and we haven't lost
1960 * any quota information. Just don't complain about bad dquot blks.
1962 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
1963 if (flags
& XFS_QMOPT_DOWARN
)
1965 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1966 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1969 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1970 if (flags
& XFS_QMOPT_DOWARN
)
1972 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1973 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1977 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1978 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1979 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1980 if (flags
& XFS_QMOPT_DOWARN
)
1982 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1983 str
, id
, ddq
->d_flags
);
1987 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
1988 if (flags
& XFS_QMOPT_DOWARN
)
1990 "%s : ondisk-dquot 0x%p, ID mismatch: "
1991 "0x%x expected, found id 0x%x",
1992 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
1996 if (!errs
&& ddq
->d_id
) {
1997 if (ddq
->d_blk_softlimit
&&
1998 be64_to_cpu(ddq
->d_bcount
) >=
1999 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2000 if (!ddq
->d_btimer
) {
2001 if (flags
& XFS_QMOPT_DOWARN
)
2003 "%s : Dquot ID 0x%x (0x%p) "
2004 "BLK TIMER NOT STARTED",
2005 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2009 if (ddq
->d_ino_softlimit
&&
2010 be64_to_cpu(ddq
->d_icount
) >=
2011 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2012 if (!ddq
->d_itimer
) {
2013 if (flags
& XFS_QMOPT_DOWARN
)
2015 "%s : Dquot ID 0x%x (0x%p) "
2016 "INODE TIMER NOT STARTED",
2017 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2021 if (ddq
->d_rtb_softlimit
&&
2022 be64_to_cpu(ddq
->d_rtbcount
) >=
2023 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2024 if (!ddq
->d_rtbtimer
) {
2025 if (flags
& XFS_QMOPT_DOWARN
)
2027 "%s : Dquot ID 0x%x (0x%p) "
2028 "RTBLK TIMER NOT STARTED",
2029 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2035 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2038 if (flags
& XFS_QMOPT_DOWARN
)
2039 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2042 * Typically, a repair is only requested by quotacheck.
2045 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2046 memset(d
, 0, sizeof(xfs_dqblk_t
));
2048 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2049 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2050 d
->dd_diskdq
.d_flags
= type
;
2051 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2057 * Perform a dquot buffer recovery.
2058 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2059 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2060 * Else, treat it as a regular buffer and do recovery.
2063 xlog_recover_do_dquot_buffer(
2066 xlog_recover_item_t
*item
,
2068 xfs_buf_log_format_t
*buf_f
)
2073 * Filesystems are required to send in quota flags at mount time.
2075 if (mp
->m_qflags
== 0) {
2080 if (buf_f
->blf_flags
& XFS_BLI_UDQUOT_BUF
)
2081 type
|= XFS_DQ_USER
;
2082 if (buf_f
->blf_flags
& XFS_BLI_PDQUOT_BUF
)
2083 type
|= XFS_DQ_PROJ
;
2084 if (buf_f
->blf_flags
& XFS_BLI_GDQUOT_BUF
)
2085 type
|= XFS_DQ_GROUP
;
2087 * This type of quotas was turned off, so ignore this buffer
2089 if (log
->l_quotaoffs_flag
& type
)
2092 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2096 * This routine replays a modification made to a buffer at runtime.
2097 * There are actually two types of buffer, regular and inode, which
2098 * are handled differently. Inode buffers are handled differently
2099 * in that we only recover a specific set of data from them, namely
2100 * the inode di_next_unlinked fields. This is because all other inode
2101 * data is actually logged via inode records and any data we replay
2102 * here which overlaps that may be stale.
2104 * When meta-data buffers are freed at run time we log a buffer item
2105 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2106 * of the buffer in the log should not be replayed at recovery time.
2107 * This is so that if the blocks covered by the buffer are reused for
2108 * file data before we crash we don't end up replaying old, freed
2109 * meta-data into a user's file.
2111 * To handle the cancellation of buffer log items, we make two passes
2112 * over the log during recovery. During the first we build a table of
2113 * those buffers which have been cancelled, and during the second we
2114 * only replay those buffers which do not have corresponding cancel
2115 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2116 * for more details on the implementation of the table of cancel records.
2119 xlog_recover_do_buffer_trans(
2121 xlog_recover_item_t
*item
,
2124 xfs_buf_log_format_t
*buf_f
;
2133 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2135 if (pass
== XLOG_RECOVER_PASS1
) {
2137 * In this pass we're only looking for buf items
2138 * with the XFS_BLI_CANCEL bit set.
2140 xlog_recover_do_buffer_pass1(log
, buf_f
);
2144 * In this pass we want to recover all the buffers
2145 * which have not been cancelled and are not
2146 * cancellation buffers themselves. The routine
2147 * we call here will tell us whether or not to
2148 * continue with the replay of this buffer.
2150 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2155 switch (buf_f
->blf_type
) {
2157 blkno
= buf_f
->blf_blkno
;
2158 len
= buf_f
->blf_len
;
2159 flags
= buf_f
->blf_flags
;
2162 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2163 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2164 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2165 log
->l_mp
->m_logname
: "internal");
2166 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2167 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2168 return XFS_ERROR(EFSCORRUPTED
);
2172 if (flags
& XFS_BLI_INODE_BUF
) {
2173 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, blkno
, len
,
2176 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, 0);
2178 if (XFS_BUF_ISERROR(bp
)) {
2179 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2181 error
= XFS_BUF_GETERROR(bp
);
2187 if (flags
& XFS_BLI_INODE_BUF
) {
2188 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2190 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
2191 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2193 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2196 return XFS_ERROR(error
);
2199 * Perform delayed write on the buffer. Asynchronous writes will be
2200 * slower when taking into account all the buffers to be flushed.
2202 * Also make sure that only inode buffers with good sizes stay in
2203 * the buffer cache. The kernel moves inodes in buffers of 1 block
2204 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2205 * buffers in the log can be a different size if the log was generated
2206 * by an older kernel using unclustered inode buffers or a newer kernel
2207 * running with a different inode cluster size. Regardless, if the
2208 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2209 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2210 * the buffer out of the buffer cache so that the buffer won't
2211 * overlap with future reads of those inodes.
2213 if (XFS_DINODE_MAGIC
==
2214 INT_GET(*((__uint16_t
*)(xfs_buf_offset(bp
, 0))), ARCH_CONVERT
) &&
2215 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2216 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2218 error
= xfs_bwrite(mp
, bp
);
2220 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) == NULL
||
2221 XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*) == mp
);
2222 XFS_BUF_SET_FSPRIVATE(bp
, mp
);
2223 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2224 xfs_bdwrite(mp
, bp
);
2231 xlog_recover_do_inode_trans(
2233 xlog_recover_item_t
*item
,
2236 xfs_inode_log_format_t
*in_f
;
2248 xfs_icdinode_t
*dicp
;
2251 if (pass
== XLOG_RECOVER_PASS1
) {
2255 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2256 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2258 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2259 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2261 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2265 ino
= in_f
->ilf_ino
;
2267 if (ITEM_TYPE(item
) == XFS_LI_INODE
) {
2268 imap
.im_blkno
= (xfs_daddr_t
)in_f
->ilf_blkno
;
2269 imap
.im_len
= in_f
->ilf_len
;
2270 imap
.im_boffset
= in_f
->ilf_boffset
;
2273 * It's an old inode format record. We don't know where
2274 * its cluster is located on disk, and we can't allow
2275 * xfs_imap() to figure it out because the inode btrees
2276 * are not ready to be used. Therefore do not pass the
2277 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2278 * us only the single block in which the inode lives
2279 * rather than its cluster, so we must make sure to
2280 * invalidate the buffer when we write it out below.
2283 xfs_imap(log
->l_mp
, NULL
, ino
, &imap
, 0);
2287 * Inode buffers can be freed, look out for it,
2288 * and do not replay the inode.
2290 if (xlog_check_buffer_cancelled(log
, imap
.im_blkno
, imap
.im_len
, 0)) {
2295 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, imap
.im_blkno
, imap
.im_len
,
2297 if (XFS_BUF_ISERROR(bp
)) {
2298 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2300 error
= XFS_BUF_GETERROR(bp
);
2305 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2306 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
2309 * Make sure the place we're flushing out to really looks
2312 if (unlikely(be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
)) {
2314 xfs_fs_cmn_err(CE_ALERT
, mp
,
2315 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2317 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2318 XFS_ERRLEVEL_LOW
, mp
);
2319 error
= EFSCORRUPTED
;
2322 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2323 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2325 xfs_fs_cmn_err(CE_ALERT
, mp
,
2326 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2328 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2329 XFS_ERRLEVEL_LOW
, mp
);
2330 error
= EFSCORRUPTED
;
2334 /* Skip replay when the on disk inode is newer than the log one */
2335 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_core
.di_flushiter
)) {
2337 * Deal with the wrap case, DI_MAX_FLUSH is less
2338 * than smaller numbers
2340 if (be16_to_cpu(dip
->di_core
.di_flushiter
) == DI_MAX_FLUSH
&&
2341 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2349 /* Take the opportunity to reset the flush iteration count */
2350 dicp
->di_flushiter
= 0;
2352 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2353 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2354 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2355 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2356 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2358 xfs_fs_cmn_err(CE_ALERT
, mp
,
2359 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2360 item
, dip
, bp
, ino
);
2361 error
= EFSCORRUPTED
;
2364 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2365 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2366 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2367 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2368 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2369 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2371 xfs_fs_cmn_err(CE_ALERT
, mp
,
2372 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2373 item
, dip
, bp
, ino
);
2374 error
= EFSCORRUPTED
;
2378 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2379 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2380 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2382 xfs_fs_cmn_err(CE_ALERT
, mp
,
2383 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2385 dicp
->di_nextents
+ dicp
->di_anextents
,
2387 error
= EFSCORRUPTED
;
2390 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2391 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2392 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2394 xfs_fs_cmn_err(CE_ALERT
, mp
,
2395 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2396 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2397 error
= EFSCORRUPTED
;
2400 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(xfs_dinode_core_t
))) {
2401 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2402 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2404 xfs_fs_cmn_err(CE_ALERT
, mp
,
2405 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2406 item
->ri_buf
[1].i_len
, item
);
2407 error
= EFSCORRUPTED
;
2411 /* The core is in in-core format */
2412 xfs_dinode_to_disk(&dip
->di_core
,
2413 (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2415 /* the rest is in on-disk format */
2416 if (item
->ri_buf
[1].i_len
> sizeof(xfs_dinode_core_t
)) {
2417 memcpy((xfs_caddr_t
) dip
+ sizeof(xfs_dinode_core_t
),
2418 item
->ri_buf
[1].i_addr
+ sizeof(xfs_dinode_core_t
),
2419 item
->ri_buf
[1].i_len
- sizeof(xfs_dinode_core_t
));
2422 fields
= in_f
->ilf_fields
;
2423 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2425 dip
->di_u
.di_dev
= cpu_to_be32(in_f
->ilf_u
.ilfu_rdev
);
2428 dip
->di_u
.di_muuid
= in_f
->ilf_u
.ilfu_uuid
;
2432 if (in_f
->ilf_size
== 2)
2433 goto write_inode_buffer
;
2434 len
= item
->ri_buf
[2].i_len
;
2435 src
= item
->ri_buf
[2].i_addr
;
2436 ASSERT(in_f
->ilf_size
<= 4);
2437 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2438 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2439 (len
== in_f
->ilf_dsize
));
2441 switch (fields
& XFS_ILOG_DFORK
) {
2442 case XFS_ILOG_DDATA
:
2444 memcpy(&dip
->di_u
, src
, len
);
2447 case XFS_ILOG_DBROOT
:
2448 xfs_bmbt_to_bmdr((xfs_bmbt_block_t
*)src
, len
,
2449 &(dip
->di_u
.di_bmbt
),
2450 XFS_DFORK_DSIZE(dip
, mp
));
2455 * There are no data fork flags set.
2457 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2462 * If we logged any attribute data, recover it. There may or
2463 * may not have been any other non-core data logged in this
2466 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2467 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2472 len
= item
->ri_buf
[attr_index
].i_len
;
2473 src
= item
->ri_buf
[attr_index
].i_addr
;
2474 ASSERT(len
== in_f
->ilf_asize
);
2476 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2477 case XFS_ILOG_ADATA
:
2479 dest
= XFS_DFORK_APTR(dip
);
2480 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2481 memcpy(dest
, src
, len
);
2484 case XFS_ILOG_ABROOT
:
2485 dest
= XFS_DFORK_APTR(dip
);
2486 xfs_bmbt_to_bmdr((xfs_bmbt_block_t
*)src
, len
,
2487 (xfs_bmdr_block_t
*)dest
,
2488 XFS_DFORK_ASIZE(dip
, mp
));
2492 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2501 if (ITEM_TYPE(item
) == XFS_LI_INODE
) {
2502 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) == NULL
||
2503 XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*) == mp
);
2504 XFS_BUF_SET_FSPRIVATE(bp
, mp
);
2505 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2506 xfs_bdwrite(mp
, bp
);
2509 error
= xfs_bwrite(mp
, bp
);
2514 kmem_free(in_f
, sizeof(*in_f
));
2515 return XFS_ERROR(error
);
2519 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2520 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2524 xlog_recover_do_quotaoff_trans(
2526 xlog_recover_item_t
*item
,
2529 xfs_qoff_logformat_t
*qoff_f
;
2531 if (pass
== XLOG_RECOVER_PASS2
) {
2535 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2539 * The logitem format's flag tells us if this was user quotaoff,
2540 * group/project quotaoff or both.
2542 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2543 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2544 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2545 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2546 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2547 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2553 * Recover a dquot record
2556 xlog_recover_do_dquot_trans(
2558 xlog_recover_item_t
*item
,
2563 struct xfs_disk_dquot
*ddq
, *recddq
;
2565 xfs_dq_logformat_t
*dq_f
;
2568 if (pass
== XLOG_RECOVER_PASS1
) {
2574 * Filesystems are required to send in quota flags at mount time.
2576 if (mp
->m_qflags
== 0)
2579 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2582 * This type of quotas was turned off, so ignore this record.
2584 type
= INT_GET(recddq
->d_flags
, ARCH_CONVERT
) &
2585 (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2587 if (log
->l_quotaoffs_flag
& type
)
2591 * At this point we know that quota was _not_ turned off.
2592 * Since the mount flags are not indicating to us otherwise, this
2593 * must mean that quota is on, and the dquot needs to be replayed.
2594 * Remember that we may not have fully recovered the superblock yet,
2595 * so we can't do the usual trick of looking at the SB quota bits.
2597 * The other possibility, of course, is that the quota subsystem was
2598 * removed since the last mount - ENOSYS.
2600 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2602 if ((error
= xfs_qm_dqcheck(recddq
,
2604 0, XFS_QMOPT_DOWARN
,
2605 "xlog_recover_do_dquot_trans (log copy)"))) {
2606 return XFS_ERROR(EIO
);
2608 ASSERT(dq_f
->qlf_len
== 1);
2610 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2612 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2615 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2616 bp
, dq_f
->qlf_blkno
);
2620 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2623 * At least the magic num portion should be on disk because this
2624 * was among a chunk of dquots created earlier, and we did some
2625 * minimal initialization then.
2627 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2628 "xlog_recover_do_dquot_trans")) {
2630 return XFS_ERROR(EIO
);
2633 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2635 ASSERT(dq_f
->qlf_size
== 2);
2636 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) == NULL
||
2637 XFS_BUF_FSPRIVATE(bp
, xfs_mount_t
*) == mp
);
2638 XFS_BUF_SET_FSPRIVATE(bp
, mp
);
2639 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2640 xfs_bdwrite(mp
, bp
);
2646 * This routine is called to create an in-core extent free intent
2647 * item from the efi format structure which was logged on disk.
2648 * It allocates an in-core efi, copies the extents from the format
2649 * structure into it, and adds the efi to the AIL with the given
2653 xlog_recover_do_efi_trans(
2655 xlog_recover_item_t
*item
,
2661 xfs_efi_log_item_t
*efip
;
2662 xfs_efi_log_format_t
*efi_formatp
;
2665 if (pass
== XLOG_RECOVER_PASS1
) {
2669 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2672 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2673 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2674 &(efip
->efi_format
)))) {
2675 xfs_efi_item_free(efip
);
2678 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2679 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2683 * xfs_trans_update_ail() drops the AIL lock.
2685 xfs_trans_update_ail(mp
, (xfs_log_item_t
*)efip
, lsn
, s
);
2691 * This routine is called when an efd format structure is found in
2692 * a committed transaction in the log. It's purpose is to cancel
2693 * the corresponding efi if it was still in the log. To do this
2694 * it searches the AIL for the efi with an id equal to that in the
2695 * efd format structure. If we find it, we remove the efi from the
2699 xlog_recover_do_efd_trans(
2701 xlog_recover_item_t
*item
,
2705 xfs_efd_log_format_t
*efd_formatp
;
2706 xfs_efi_log_item_t
*efip
= NULL
;
2707 xfs_log_item_t
*lip
;
2712 if (pass
== XLOG_RECOVER_PASS1
) {
2716 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2717 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2718 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2719 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2720 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2721 efi_id
= efd_formatp
->efd_efi_id
;
2724 * Search for the efi with the id in the efd format structure
2729 lip
= xfs_trans_first_ail(mp
, &gen
);
2730 while (lip
!= NULL
) {
2731 if (lip
->li_type
== XFS_LI_EFI
) {
2732 efip
= (xfs_efi_log_item_t
*)lip
;
2733 if (efip
->efi_format
.efi_id
== efi_id
) {
2735 * xfs_trans_delete_ail() drops the
2738 xfs_trans_delete_ail(mp
, lip
, s
);
2742 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
2746 * If we found it, then free it up. If it wasn't there, it
2747 * must have been overwritten in the log. Oh well.
2750 xfs_efi_item_free(efip
);
2757 * Perform the transaction
2759 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2760 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2763 xlog_recover_do_trans(
2765 xlog_recover_t
*trans
,
2769 xlog_recover_item_t
*item
, *first_item
;
2771 if ((error
= xlog_recover_reorder_trans(trans
)))
2773 first_item
= item
= trans
->r_itemq
;
2776 * we don't need to worry about the block number being
2777 * truncated in > 1 TB buffers because in user-land,
2778 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2779 * the blknos will get through the user-mode buffer
2780 * cache properly. The only bad case is o32 kernels
2781 * where xfs_daddr_t is 32-bits but mount will warn us
2782 * off a > 1 TB filesystem before we get here.
2784 if ((ITEM_TYPE(item
) == XFS_LI_BUF
)) {
2785 if ((error
= xlog_recover_do_buffer_trans(log
, item
,
2788 } else if ((ITEM_TYPE(item
) == XFS_LI_INODE
)) {
2789 if ((error
= xlog_recover_do_inode_trans(log
, item
,
2792 } else if (ITEM_TYPE(item
) == XFS_LI_EFI
) {
2793 if ((error
= xlog_recover_do_efi_trans(log
, item
, trans
->r_lsn
,
2796 } else if (ITEM_TYPE(item
) == XFS_LI_EFD
) {
2797 xlog_recover_do_efd_trans(log
, item
, pass
);
2798 } else if (ITEM_TYPE(item
) == XFS_LI_DQUOT
) {
2799 if ((error
= xlog_recover_do_dquot_trans(log
, item
,
2802 } else if ((ITEM_TYPE(item
) == XFS_LI_QUOTAOFF
)) {
2803 if ((error
= xlog_recover_do_quotaoff_trans(log
, item
,
2807 xlog_warn("XFS: xlog_recover_do_trans");
2809 error
= XFS_ERROR(EIO
);
2812 item
= item
->ri_next
;
2813 } while (first_item
!= item
);
2819 * Free up any resources allocated by the transaction
2821 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2824 xlog_recover_free_trans(
2825 xlog_recover_t
*trans
)
2827 xlog_recover_item_t
*first_item
, *item
, *free_item
;
2830 item
= first_item
= trans
->r_itemq
;
2833 item
= item
->ri_next
;
2834 /* Free the regions in the item. */
2835 for (i
= 0; i
< free_item
->ri_cnt
; i
++) {
2836 kmem_free(free_item
->ri_buf
[i
].i_addr
,
2837 free_item
->ri_buf
[i
].i_len
);
2839 /* Free the item itself */
2840 kmem_free(free_item
->ri_buf
,
2841 (free_item
->ri_total
* sizeof(xfs_log_iovec_t
)));
2842 kmem_free(free_item
, sizeof(xlog_recover_item_t
));
2843 } while (first_item
!= item
);
2844 /* Free the transaction recover structure */
2845 kmem_free(trans
, sizeof(xlog_recover_t
));
2849 xlog_recover_commit_trans(
2852 xlog_recover_t
*trans
,
2857 if ((error
= xlog_recover_unlink_tid(q
, trans
)))
2859 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2861 xlog_recover_free_trans(trans
); /* no error */
2866 xlog_recover_unmount_trans(
2867 xlog_recover_t
*trans
)
2869 /* Do nothing now */
2870 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2875 * There are two valid states of the r_state field. 0 indicates that the
2876 * transaction structure is in a normal state. We have either seen the
2877 * start of the transaction or the last operation we added was not a partial
2878 * operation. If the last operation we added to the transaction was a
2879 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2881 * NOTE: skip LRs with 0 data length.
2884 xlog_recover_process_data(
2886 xlog_recover_t
*rhash
[],
2887 xlog_rec_header_t
*rhead
,
2893 xlog_op_header_t
*ohead
;
2894 xlog_recover_t
*trans
;
2900 lp
= dp
+ INT_GET(rhead
->h_len
, ARCH_CONVERT
);
2901 num_logops
= INT_GET(rhead
->h_num_logops
, ARCH_CONVERT
);
2903 /* check the log format matches our own - else we can't recover */
2904 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2905 return (XFS_ERROR(EIO
));
2907 while ((dp
< lp
) && num_logops
) {
2908 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2909 ohead
= (xlog_op_header_t
*)dp
;
2910 dp
+= sizeof(xlog_op_header_t
);
2911 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2912 ohead
->oh_clientid
!= XFS_LOG
) {
2914 "XFS: xlog_recover_process_data: bad clientid");
2916 return (XFS_ERROR(EIO
));
2918 tid
= INT_GET(ohead
->oh_tid
, ARCH_CONVERT
);
2919 hash
= XLOG_RHASH(tid
);
2920 trans
= xlog_recover_find_tid(rhash
[hash
], tid
);
2921 if (trans
== NULL
) { /* not found; add new tid */
2922 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2923 xlog_recover_new_tid(&rhash
[hash
], tid
,
2924 INT_GET(rhead
->h_lsn
, ARCH_CONVERT
));
2926 ASSERT(dp
+INT_GET(ohead
->oh_len
, ARCH_CONVERT
) <= lp
);
2927 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2928 if (flags
& XLOG_WAS_CONT_TRANS
)
2929 flags
&= ~XLOG_CONTINUE_TRANS
;
2931 case XLOG_COMMIT_TRANS
:
2932 error
= xlog_recover_commit_trans(log
,
2933 &rhash
[hash
], trans
, pass
);
2935 case XLOG_UNMOUNT_TRANS
:
2936 error
= xlog_recover_unmount_trans(trans
);
2938 case XLOG_WAS_CONT_TRANS
:
2939 error
= xlog_recover_add_to_cont_trans(trans
,
2940 dp
, INT_GET(ohead
->oh_len
,
2943 case XLOG_START_TRANS
:
2945 "XFS: xlog_recover_process_data: bad transaction");
2947 error
= XFS_ERROR(EIO
);
2950 case XLOG_CONTINUE_TRANS
:
2951 error
= xlog_recover_add_to_trans(trans
,
2952 dp
, INT_GET(ohead
->oh_len
,
2957 "XFS: xlog_recover_process_data: bad flag");
2959 error
= XFS_ERROR(EIO
);
2965 dp
+= INT_GET(ohead
->oh_len
, ARCH_CONVERT
);
2972 * Process an extent free intent item that was recovered from
2973 * the log. We need to free the extents that it describes.
2976 xlog_recover_process_efi(
2978 xfs_efi_log_item_t
*efip
)
2980 xfs_efd_log_item_t
*efdp
;
2984 xfs_fsblock_t startblock_fsb
;
2986 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
2989 * First check the validity of the extents described by the
2990 * EFI. If any are bad, then assume that all are bad and
2991 * just toss the EFI.
2993 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2994 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2995 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2996 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2997 if ((startblock_fsb
== 0) ||
2998 (extp
->ext_len
== 0) ||
2999 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3000 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3002 * This will pull the EFI from the AIL and
3003 * free the memory associated with it.
3005 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3010 tp
= xfs_trans_alloc(mp
, 0);
3011 xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3012 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3014 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3015 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3016 xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3017 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3021 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3022 xfs_trans_commit(tp
, 0);
3026 * Verify that once we've encountered something other than an EFI
3027 * in the AIL that there are no more EFIs in the AIL.
3031 xlog_recover_check_ail(
3033 xfs_log_item_t
*lip
,
3039 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3040 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
3042 * The check will be bogus if we restart from the
3043 * beginning of the AIL, so ASSERT that we don't.
3044 * We never should since we're holding the AIL lock
3047 ASSERT(gen
== orig_gen
);
3048 } while (lip
!= NULL
);
3053 * When this is called, all of the EFIs which did not have
3054 * corresponding EFDs should be in the AIL. What we do now
3055 * is free the extents associated with each one.
3057 * Since we process the EFIs in normal transactions, they
3058 * will be removed at some point after the commit. This prevents
3059 * us from just walking down the list processing each one.
3060 * We'll use a flag in the EFI to skip those that we've already
3061 * processed and use the AIL iteration mechanism's generation
3062 * count to try to speed this up at least a bit.
3064 * When we start, we know that the EFIs are the only things in
3065 * the AIL. As we process them, however, other items are added
3066 * to the AIL. Since everything added to the AIL must come after
3067 * everything already in the AIL, we stop processing as soon as
3068 * we see something other than an EFI in the AIL.
3071 xlog_recover_process_efis(
3074 xfs_log_item_t
*lip
;
3075 xfs_efi_log_item_t
*efip
;
3083 lip
= xfs_trans_first_ail(mp
, &gen
);
3084 while (lip
!= NULL
) {
3086 * We're done when we see something other than an EFI.
3088 if (lip
->li_type
!= XFS_LI_EFI
) {
3089 xlog_recover_check_ail(mp
, lip
, gen
);
3094 * Skip EFIs that we've already processed.
3096 efip
= (xfs_efi_log_item_t
*)lip
;
3097 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3098 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
3103 xlog_recover_process_efi(mp
, efip
);
3105 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, NULL
);
3111 * This routine performs a transaction to null out a bad inode pointer
3112 * in an agi unlinked inode hash bucket.
3115 xlog_recover_clear_agi_bucket(
3117 xfs_agnumber_t agno
,
3126 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3127 xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
), 0, 0, 0);
3129 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
3130 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
3131 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
3133 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3137 agi
= XFS_BUF_TO_AGI(agibp
);
3138 if (be32_to_cpu(agi
->agi_magicnum
) != XFS_AGI_MAGIC
) {
3139 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3143 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3144 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3145 (sizeof(xfs_agino_t
) * bucket
);
3146 xfs_trans_log_buf(tp
, agibp
, offset
,
3147 (offset
+ sizeof(xfs_agino_t
) - 1));
3149 (void) xfs_trans_commit(tp
, 0);
3153 * xlog_iunlink_recover
3155 * This is called during recovery to process any inodes which
3156 * we unlinked but not freed when the system crashed. These
3157 * inodes will be on the lists in the AGI blocks. What we do
3158 * here is scan all the AGIs and fully truncate and free any
3159 * inodes found on the lists. Each inode is removed from the
3160 * lists when it has been fully truncated and is freed. The
3161 * freeing of the inode and its removal from the list must be
3165 xlog_recover_process_iunlinks(
3169 xfs_agnumber_t agno
;
3184 * Prevent any DMAPI event from being sent while in this function.
3186 mp_dmevmask
= mp
->m_dmevmask
;
3189 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3191 * Find the agi for this ag.
3193 agibp
= xfs_buf_read(mp
->m_ddev_targp
,
3194 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
3195 XFS_FSS_TO_BB(mp
, 1), 0);
3196 if (XFS_BUF_ISERROR(agibp
)) {
3197 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3199 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)));
3201 agi
= XFS_BUF_TO_AGI(agibp
);
3202 ASSERT(XFS_AGI_MAGIC
== be32_to_cpu(agi
->agi_magicnum
));
3204 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3206 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3207 while (agino
!= NULLAGINO
) {
3210 * Release the agi buffer so that it can
3211 * be acquired in the normal course of the
3212 * transaction to truncate and free the inode.
3214 xfs_buf_relse(agibp
);
3216 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3217 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3218 ASSERT(error
|| (ip
!= NULL
));
3222 * Get the on disk inode to find the
3223 * next inode in the bucket.
3225 error
= xfs_itobp(mp
, NULL
, ip
, &dip
,
3227 ASSERT(error
|| (dip
!= NULL
));
3231 ASSERT(ip
->i_d
.di_nlink
== 0);
3233 /* setup for the next pass */
3234 agino
= be32_to_cpu(
3235 dip
->di_next_unlinked
);
3238 * Prevent any DMAPI event from
3239 * being sent when the
3240 * reference on the inode is
3243 ip
->i_d
.di_dmevmask
= 0;
3246 * If this is a new inode, handle
3247 * it specially. Otherwise,
3248 * just drop our reference to the
3249 * inode. If there are no
3250 * other references, this will
3252 * xfs_inactive() which will
3253 * truncate the file and free
3256 if (ip
->i_d
.di_mode
== 0)
3257 xfs_iput_new(ip
, 0);
3259 VN_RELE(XFS_ITOV(ip
));
3262 * We can't read in the inode
3263 * this bucket points to, or
3264 * this inode is messed up. Just
3265 * ditch this bucket of inodes. We
3266 * will lose some inodes and space,
3267 * but at least we won't hang. Call
3268 * xlog_recover_clear_agi_bucket()
3269 * to perform a transaction to clear
3270 * the inode pointer in the bucket.
3272 xlog_recover_clear_agi_bucket(mp
, agno
,
3279 * Reacquire the agibuffer and continue around
3282 agibp
= xfs_buf_read(mp
->m_ddev_targp
,
3283 XFS_AG_DADDR(mp
, agno
,
3285 XFS_FSS_TO_BB(mp
, 1), 0);
3286 if (XFS_BUF_ISERROR(agibp
)) {
3288 "xlog_recover_process_iunlinks(#2)",
3290 XFS_AG_DADDR(mp
, agno
,
3291 XFS_AGI_DADDR(mp
)));
3293 agi
= XFS_BUF_TO_AGI(agibp
);
3294 ASSERT(XFS_AGI_MAGIC
== be32_to_cpu(
3295 agi
->agi_magicnum
));
3300 * Release the buffer for the current agi so we can
3301 * go on to the next one.
3303 xfs_buf_relse(agibp
);
3306 mp
->m_dmevmask
= mp_dmevmask
;
3312 xlog_pack_data_checksum(
3314 xlog_in_core_t
*iclog
,
3321 up
= (uint
*)iclog
->ic_datap
;
3322 /* divide length by 4 to get # words */
3323 for (i
= 0; i
< (size
>> 2); i
++) {
3324 chksum
^= INT_GET(*up
, ARCH_CONVERT
);
3327 INT_SET(iclog
->ic_header
.h_chksum
, ARCH_CONVERT
, chksum
);
3330 #define xlog_pack_data_checksum(log, iclog, size)
3334 * Stamp cycle number in every block
3339 xlog_in_core_t
*iclog
,
3343 int size
= iclog
->ic_offset
+ roundoff
;
3346 xlog_in_core_2_t
*xhdr
;
3348 xlog_pack_data_checksum(log
, iclog
, size
);
3350 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3352 dp
= iclog
->ic_datap
;
3353 for (i
= 0; i
< BTOBB(size
) &&
3354 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3355 iclog
->ic_header
.h_cycle_data
[i
] = *(uint
*)dp
;
3356 *(uint
*)dp
= cycle_lsn
;
3360 if (XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
)) {
3361 xhdr
= (xlog_in_core_2_t
*)&iclog
->ic_header
;
3362 for ( ; i
< BTOBB(size
); i
++) {
3363 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3364 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3365 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(uint
*)dp
;
3366 *(uint
*)dp
= cycle_lsn
;
3370 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3371 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3376 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3378 xlog_unpack_data_checksum(
3379 xlog_rec_header_t
*rhead
,
3383 uint
*up
= (uint
*)dp
;
3387 /* divide length by 4 to get # words */
3388 for (i
=0; i
< INT_GET(rhead
->h_len
, ARCH_CONVERT
) >> 2; i
++) {
3389 chksum
^= INT_GET(*up
, ARCH_CONVERT
);
3392 if (chksum
!= INT_GET(rhead
->h_chksum
, ARCH_CONVERT
)) {
3393 if (rhead
->h_chksum
||
3394 ((log
->l_flags
& XLOG_CHKSUM_MISMATCH
) == 0)) {
3396 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3397 INT_GET(rhead
->h_chksum
, ARCH_CONVERT
), chksum
);
3399 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3400 if (XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
)) {
3402 "XFS: LogR this is a LogV2 filesystem\n");
3404 log
->l_flags
|= XLOG_CHKSUM_MISMATCH
;
3409 #define xlog_unpack_data_checksum(rhead, dp, log)
3414 xlog_rec_header_t
*rhead
,
3419 xlog_in_core_2_t
*xhdr
;
3421 for (i
= 0; i
< BTOBB(INT_GET(rhead
->h_len
, ARCH_CONVERT
)) &&
3422 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3423 *(uint
*)dp
= *(uint
*)&rhead
->h_cycle_data
[i
];
3427 if (XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
)) {
3428 xhdr
= (xlog_in_core_2_t
*)rhead
;
3429 for ( ; i
< BTOBB(INT_GET(rhead
->h_len
, ARCH_CONVERT
)); i
++) {
3430 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3431 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3432 *(uint
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3437 xlog_unpack_data_checksum(rhead
, dp
, log
);
3441 xlog_valid_rec_header(
3443 xlog_rec_header_t
*rhead
,
3449 (INT_GET(rhead
->h_magicno
, ARCH_CONVERT
) !=
3450 XLOG_HEADER_MAGIC_NUM
))) {
3451 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3452 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3453 return XFS_ERROR(EFSCORRUPTED
);
3456 (!rhead
->h_version
||
3457 (INT_GET(rhead
->h_version
, ARCH_CONVERT
) &
3458 (~XLOG_VERSION_OKBITS
)) != 0))) {
3459 xlog_warn("XFS: %s: unrecognised log version (%d).",
3460 __FUNCTION__
, INT_GET(rhead
->h_version
, ARCH_CONVERT
));
3461 return XFS_ERROR(EIO
);
3464 /* LR body must have data or it wouldn't have been written */
3465 hlen
= INT_GET(rhead
->h_len
, ARCH_CONVERT
);
3466 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3467 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3468 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3469 return XFS_ERROR(EFSCORRUPTED
);
3471 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3472 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3473 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3474 return XFS_ERROR(EFSCORRUPTED
);
3480 * Read the log from tail to head and process the log records found.
3481 * Handle the two cases where the tail and head are in the same cycle
3482 * and where the active portion of the log wraps around the end of
3483 * the physical log separately. The pass parameter is passed through
3484 * to the routines called to process the data and is not looked at
3488 xlog_do_recovery_pass(
3490 xfs_daddr_t head_blk
,
3491 xfs_daddr_t tail_blk
,
3494 xlog_rec_header_t
*rhead
;
3496 xfs_caddr_t bufaddr
, offset
;
3497 xfs_buf_t
*hbp
, *dbp
;
3498 int error
= 0, h_size
;
3499 int bblks
, split_bblks
;
3500 int hblks
, split_hblks
, wrapped_hblks
;
3501 xlog_recover_t
*rhash
[XLOG_RHASH_SIZE
];
3503 ASSERT(head_blk
!= tail_blk
);
3506 * Read the header of the tail block and get the iclog buffer size from
3507 * h_size. Use this to tell how many sectors make up the log header.
3509 if (XFS_SB_VERSION_HASLOGV2(&log
->l_mp
->m_sb
)) {
3511 * When using variable length iclogs, read first sector of
3512 * iclog header and extract the header size from it. Get a
3513 * new hbp that is the correct size.
3515 hbp
= xlog_get_bp(log
, 1);
3518 if ((error
= xlog_bread(log
, tail_blk
, 1, hbp
)))
3520 offset
= xlog_align(log
, tail_blk
, 1, hbp
);
3521 rhead
= (xlog_rec_header_t
*)offset
;
3522 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3525 h_size
= INT_GET(rhead
->h_size
, ARCH_CONVERT
);
3526 if ((INT_GET(rhead
->h_version
, ARCH_CONVERT
)
3527 & XLOG_VERSION_2
) &&
3528 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3529 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3530 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3533 hbp
= xlog_get_bp(log
, hblks
);
3538 ASSERT(log
->l_sectbb_log
== 0);
3540 hbp
= xlog_get_bp(log
, 1);
3541 h_size
= XLOG_BIG_RECORD_BSIZE
;
3546 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3552 memset(rhash
, 0, sizeof(rhash
));
3553 if (tail_blk
<= head_blk
) {
3554 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3555 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3557 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3558 rhead
= (xlog_rec_header_t
*)offset
;
3559 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3563 /* blocks in data section */
3564 bblks
= (int)BTOBB(INT_GET(rhead
->h_len
, ARCH_CONVERT
));
3565 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
);
3568 offset
= xlog_align(log
, blk_no
+ hblks
, bblks
, dbp
);
3569 xlog_unpack_data(rhead
, offset
, log
);
3570 if ((error
= xlog_recover_process_data(log
,
3571 rhash
, rhead
, offset
, pass
)))
3573 blk_no
+= bblks
+ hblks
;
3577 * Perform recovery around the end of the physical log.
3578 * When the head is not on the same cycle number as the tail,
3579 * we can't do a sequential recovery as above.
3582 while (blk_no
< log
->l_logBBsize
) {
3584 * Check for header wrapping around physical end-of-log
3589 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3590 /* Read header in one read */
3591 error
= xlog_bread(log
, blk_no
, hblks
, hbp
);
3594 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3596 /* This LR is split across physical log end */
3597 if (blk_no
!= log
->l_logBBsize
) {
3598 /* some data before physical log end */
3599 ASSERT(blk_no
<= INT_MAX
);
3600 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3601 ASSERT(split_hblks
> 0);
3602 if ((error
= xlog_bread(log
, blk_no
,
3605 offset
= xlog_align(log
, blk_no
,
3609 * Note: this black magic still works with
3610 * large sector sizes (non-512) only because:
3611 * - we increased the buffer size originally
3612 * by 1 sector giving us enough extra space
3613 * for the second read;
3614 * - the log start is guaranteed to be sector
3616 * - we read the log end (LR header start)
3617 * _first_, then the log start (LR header end)
3618 * - order is important.
3620 bufaddr
= XFS_BUF_PTR(hbp
);
3621 XFS_BUF_SET_PTR(hbp
,
3622 bufaddr
+ BBTOB(split_hblks
),
3623 BBTOB(hblks
- split_hblks
));
3624 wrapped_hblks
= hblks
- split_hblks
;
3625 error
= xlog_bread(log
, 0, wrapped_hblks
, hbp
);
3628 XFS_BUF_SET_PTR(hbp
, bufaddr
, BBTOB(hblks
));
3630 offset
= xlog_align(log
, 0,
3631 wrapped_hblks
, hbp
);
3633 rhead
= (xlog_rec_header_t
*)offset
;
3634 error
= xlog_valid_rec_header(log
, rhead
,
3635 split_hblks
? blk_no
: 0);
3639 bblks
= (int)BTOBB(INT_GET(rhead
->h_len
, ARCH_CONVERT
));
3642 /* Read in data for log record */
3643 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3644 error
= xlog_bread(log
, blk_no
, bblks
, dbp
);
3647 offset
= xlog_align(log
, blk_no
, bblks
, dbp
);
3649 /* This log record is split across the
3650 * physical end of log */
3653 if (blk_no
!= log
->l_logBBsize
) {
3654 /* some data is before the physical
3656 ASSERT(!wrapped_hblks
);
3657 ASSERT(blk_no
<= INT_MAX
);
3659 log
->l_logBBsize
- (int)blk_no
;
3660 ASSERT(split_bblks
> 0);
3661 if ((error
= xlog_bread(log
, blk_no
,
3664 offset
= xlog_align(log
, blk_no
,
3668 * Note: this black magic still works with
3669 * large sector sizes (non-512) only because:
3670 * - we increased the buffer size originally
3671 * by 1 sector giving us enough extra space
3672 * for the second read;
3673 * - the log start is guaranteed to be sector
3675 * - we read the log end (LR header start)
3676 * _first_, then the log start (LR header end)
3677 * - order is important.
3679 bufaddr
= XFS_BUF_PTR(dbp
);
3680 XFS_BUF_SET_PTR(dbp
,
3681 bufaddr
+ BBTOB(split_bblks
),
3682 BBTOB(bblks
- split_bblks
));
3683 if ((error
= xlog_bread(log
, wrapped_hblks
,
3684 bblks
- split_bblks
, dbp
)))
3686 XFS_BUF_SET_PTR(dbp
, bufaddr
, h_size
);
3688 offset
= xlog_align(log
, wrapped_hblks
,
3689 bblks
- split_bblks
, dbp
);
3691 xlog_unpack_data(rhead
, offset
, log
);
3692 if ((error
= xlog_recover_process_data(log
, rhash
,
3693 rhead
, offset
, pass
)))
3698 ASSERT(blk_no
>= log
->l_logBBsize
);
3699 blk_no
-= log
->l_logBBsize
;
3701 /* read first part of physical log */
3702 while (blk_no
< head_blk
) {
3703 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3705 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3706 rhead
= (xlog_rec_header_t
*)offset
;
3707 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3710 bblks
= (int)BTOBB(INT_GET(rhead
->h_len
, ARCH_CONVERT
));
3711 if ((error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
)))
3713 offset
= xlog_align(log
, blk_no
+hblks
, bblks
, dbp
);
3714 xlog_unpack_data(rhead
, offset
, log
);
3715 if ((error
= xlog_recover_process_data(log
, rhash
,
3716 rhead
, offset
, pass
)))
3718 blk_no
+= bblks
+ hblks
;
3730 * Do the recovery of the log. We actually do this in two phases.
3731 * The two passes are necessary in order to implement the function
3732 * of cancelling a record written into the log. The first pass
3733 * determines those things which have been cancelled, and the
3734 * second pass replays log items normally except for those which
3735 * have been cancelled. The handling of the replay and cancellations
3736 * takes place in the log item type specific routines.
3738 * The table of items which have cancel records in the log is allocated
3739 * and freed at this level, since only here do we know when all of
3740 * the log recovery has been completed.
3743 xlog_do_log_recovery(
3745 xfs_daddr_t head_blk
,
3746 xfs_daddr_t tail_blk
)
3750 ASSERT(head_blk
!= tail_blk
);
3753 * First do a pass to find all of the cancelled buf log items.
3754 * Store them in the buf_cancel_table for use in the second pass.
3756 log
->l_buf_cancel_table
=
3757 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3758 sizeof(xfs_buf_cancel_t
*),
3760 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3761 XLOG_RECOVER_PASS1
);
3763 kmem_free(log
->l_buf_cancel_table
,
3764 XLOG_BC_TABLE_SIZE
* sizeof(xfs_buf_cancel_t
*));
3765 log
->l_buf_cancel_table
= NULL
;
3769 * Then do a second pass to actually recover the items in the log.
3770 * When it is complete free the table of buf cancel items.
3772 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3773 XLOG_RECOVER_PASS2
);
3778 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3779 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3783 kmem_free(log
->l_buf_cancel_table
,
3784 XLOG_BC_TABLE_SIZE
* sizeof(xfs_buf_cancel_t
*));
3785 log
->l_buf_cancel_table
= NULL
;
3791 * Do the actual recovery
3796 xfs_daddr_t head_blk
,
3797 xfs_daddr_t tail_blk
)
3804 * First replay the images in the log.
3806 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3811 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3814 * If IO errors happened during recovery, bail out.
3816 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3821 * We now update the tail_lsn since much of the recovery has completed
3822 * and there may be space available to use. If there were no extent
3823 * or iunlinks, we can free up the entire log and set the tail_lsn to
3824 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3825 * lsn of the last known good LR on disk. If there are extent frees
3826 * or iunlinks they will have some entries in the AIL; so we look at
3827 * the AIL to determine how to set the tail_lsn.
3829 xlog_assign_tail_lsn(log
->l_mp
);
3832 * Now that we've finished replaying all buffer and inode
3833 * updates, re-read in the superblock.
3835 bp
= xfs_getsb(log
->l_mp
, 0);
3837 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3838 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3840 XFS_BUF_UNASYNC(bp
);
3841 xfsbdstrat(log
->l_mp
, bp
);
3842 if ((error
= xfs_iowait(bp
))) {
3843 xfs_ioerror_alert("xlog_do_recover",
3844 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3850 /* Convert superblock from on-disk format */
3851 sbp
= &log
->l_mp
->m_sb
;
3852 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3853 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3854 ASSERT(XFS_SB_GOOD_VERSION(sbp
));
3857 /* We've re-read the superblock so re-initialize per-cpu counters */
3858 xfs_icsb_reinit_counters(log
->l_mp
);
3860 xlog_recover_check_summary(log
);
3862 /* Normal transactions can now occur */
3863 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3868 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3870 * Return error or zero.
3876 xfs_daddr_t head_blk
, tail_blk
;
3879 /* find the tail of the log */
3880 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3883 if (tail_blk
!= head_blk
) {
3884 /* There used to be a comment here:
3886 * disallow recovery on read-only mounts. note -- mount
3887 * checks for ENOSPC and turns it into an intelligent
3889 * ...but this is no longer true. Now, unless you specify
3890 * NORECOVERY (in which case this function would never be
3891 * called), we just go ahead and recover. We do this all
3892 * under the vfs layer, so we can get away with it unless
3893 * the device itself is read-only, in which case we fail.
3895 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3900 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3901 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3902 log
->l_mp
->m_logname
: "internal");
3904 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3905 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3911 * In the first part of recovery we replay inodes and buffers and build
3912 * up the list of extent free items which need to be processed. Here
3913 * we process the extent free items and clean up the on disk unlinked
3914 * inode lists. This is separated from the first part of recovery so
3915 * that the root and real-time bitmap inodes can be read in from disk in
3916 * between the two stages. This is necessary so that we can free space
3917 * in the real-time portion of the file system.
3920 xlog_recover_finish(
3925 * Now we're ready to do the transactions needed for the
3926 * rest of recovery. Start with completing all the extent
3927 * free intent records and then process the unlinked inode
3928 * lists. At this point, we essentially run in normal mode
3929 * except that we're still performing recovery actions
3930 * rather than accepting new requests.
3932 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3933 xlog_recover_process_efis(log
);
3935 * Sync the log to get all the EFIs out of the AIL.
3936 * This isn't absolutely necessary, but it helps in
3937 * case the unlink transactions would have problems
3938 * pushing the EFIs out of the way.
3940 xfs_log_force(log
->l_mp
, (xfs_lsn_t
)0,
3941 (XFS_LOG_FORCE
| XFS_LOG_SYNC
));
3943 if ( (mfsi_flags
& XFS_MFSI_NOUNLINK
) == 0 ) {
3944 xlog_recover_process_iunlinks(log
);
3947 xlog_recover_check_summary(log
);
3950 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3951 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3952 log
->l_mp
->m_logname
: "internal");
3953 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3956 "!Ending clean XFS mount for filesystem: %s\n",
3957 log
->l_mp
->m_fsname
);
3965 * Read all of the agf and agi counters and check that they
3966 * are consistent with the superblock counters.
3969 xlog_recover_check_summary(
3977 xfs_daddr_t agfdaddr
;
3978 xfs_daddr_t agidaddr
;
3980 #ifdef XFS_LOUD_RECOVERY
3983 xfs_agnumber_t agno
;
3984 __uint64_t freeblks
;
3993 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3994 agfdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGF_DADDR(mp
));
3995 agfbp
= xfs_buf_read(mp
->m_ddev_targp
, agfdaddr
,
3996 XFS_FSS_TO_BB(mp
, 1), 0);
3997 if (XFS_BUF_ISERROR(agfbp
)) {
3998 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
3999 mp
, agfbp
, agfdaddr
);
4001 agfp
= XFS_BUF_TO_AGF(agfbp
);
4002 ASSERT(XFS_AGF_MAGIC
== be32_to_cpu(agfp
->agf_magicnum
));
4003 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp
->agf_versionnum
)));
4004 ASSERT(be32_to_cpu(agfp
->agf_seqno
) == agno
);
4006 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
4007 be32_to_cpu(agfp
->agf_flcount
);
4008 xfs_buf_relse(agfbp
);
4010 agidaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
4011 agibp
= xfs_buf_read(mp
->m_ddev_targp
, agidaddr
,
4012 XFS_FSS_TO_BB(mp
, 1), 0);
4013 if (XFS_BUF_ISERROR(agibp
)) {
4014 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4015 mp
, agibp
, agidaddr
);
4017 agip
= XFS_BUF_TO_AGI(agibp
);
4018 ASSERT(XFS_AGI_MAGIC
== be32_to_cpu(agip
->agi_magicnum
));
4019 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip
->agi_versionnum
)));
4020 ASSERT(be32_to_cpu(agip
->agi_seqno
) == agno
);
4022 itotal
+= be32_to_cpu(agip
->agi_count
);
4023 ifree
+= be32_to_cpu(agip
->agi_freecount
);
4024 xfs_buf_relse(agibp
);
4027 sbbp
= xfs_getsb(mp
, 0);
4028 #ifdef XFS_LOUD_RECOVERY
4030 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(sbbp
));
4032 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4033 sbp
->sb_icount
, itotal
);
4035 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4036 sbp
->sb_ifree
, ifree
);
4038 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4039 sbp
->sb_fdblocks
, freeblks
);
4042 * This is turned off until I account for the allocation
4043 * btree blocks which live in free space.
4045 ASSERT(sbp
->sb_icount
== itotal
);
4046 ASSERT(sbp
->sb_ifree
== ifree
);
4047 ASSERT(sbp
->sb_fdblocks
== freeblks
);
4050 xfs_buf_relse(sbbp
);