iwlwifi: document txpower calculations
[linux-2.6/linux-loongson.git] / drivers / net / wireless / iwlwifi / iwl-4965-hw.h
blob4a2fa80acff7c49bc0119de6c200b146c1b09fe8
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
64 * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
65 * Use iwl-4965-commands.h for uCode API definitions.
66 * Use iwl-4965.h for driver implementation definitions.
69 #ifndef __iwl_4965_hw_h__
70 #define __iwl_4965_hw_h__
73 * uCode queue management definitions ...
74 * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
75 * The first queue used for block-ack aggregation is #7 (4965 only).
76 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
78 #define IWL_CMD_QUEUE_NUM 4
79 #define IWL_CMD_FIFO_NUM 4
80 #define IWL_BACK_QUEUE_FIRST_ID 7
82 /* Tx rates */
83 #define IWL_CCK_RATES 4
84 #define IWL_OFDM_RATES 8
85 #define IWL_HT_RATES 16
86 #define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES)
88 /* Time constants */
89 #define SHORT_SLOT_TIME 9
90 #define LONG_SLOT_TIME 20
92 /* RSSI to dBm */
93 #define IWL_RSSI_OFFSET 44
96 * EEPROM related constants, enums, and structures.
100 * EEPROM access time values:
102 * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG,
103 * then clearing (with subsequent read/modify/write) CSR_EEPROM_REG bit
104 * CSR_EEPROM_REG_BIT_CMD (0x2).
105 * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
106 * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
107 * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
109 #define IWL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */
110 #define IWL_EEPROM_ACCESS_DELAY 10 /* uSec */
113 * Regulatory channel usage flags in EEPROM struct iwl4965_eeprom_channel.flags.
115 * IBSS and/or AP operation is allowed *only* on those channels with
116 * (VALID && IBSS && ACTIVE && !RADAR). This restriction is in place because
117 * RADAR detection is not supported by the 4965 driver, but is a
118 * requirement for establishing a new network for legal operation on channels
119 * requiring RADAR detection or restricting ACTIVE scanning.
121 * NOTE: "WIDE" flag does not indicate anything about "FAT" 40 MHz channels.
122 * It only indicates that 20 MHz channel use is supported; FAT channel
123 * usage is indicated by a separate set of regulatory flags for each
124 * FAT channel pair.
126 * NOTE: Using a channel inappropriately will result in a uCode error!
128 enum {
129 EEPROM_CHANNEL_VALID = (1 << 0), /* usable for this SKU/geo */
130 EEPROM_CHANNEL_IBSS = (1 << 1), /* usable as an IBSS channel */
131 /* Bit 2 Reserved */
132 EEPROM_CHANNEL_ACTIVE = (1 << 3), /* active scanning allowed */
133 EEPROM_CHANNEL_RADAR = (1 << 4), /* radar detection required */
134 EEPROM_CHANNEL_WIDE = (1 << 5), /* 20 MHz channel okay */
135 EEPROM_CHANNEL_NARROW = (1 << 6), /* 10 MHz channel (not used) */
136 EEPROM_CHANNEL_DFS = (1 << 7), /* dynamic freq selection candidate */
139 /* SKU Capabilities */
140 #define EEPROM_SKU_CAP_SW_RF_KILL_ENABLE (1 << 0)
141 #define EEPROM_SKU_CAP_HW_RF_KILL_ENABLE (1 << 1)
143 /* *regulatory* channel data format in eeprom, one for each channel.
144 * There are separate entries for FAT (40 MHz) vs. normal (20 MHz) channels. */
145 struct iwl4965_eeprom_channel {
146 u8 flags; /* EEPROM_CHANNEL_* flags copied from EEPROM */
147 s8 max_power_avg; /* max power (dBm) on this chnl, limit 31 */
148 } __attribute__ ((packed));
150 /* 4965 has two radio transmitters (and 3 radio receivers) */
151 #define EEPROM_TX_POWER_TX_CHAINS (2)
153 /* 4965 has room for up to 8 sets of txpower calibration data */
154 #define EEPROM_TX_POWER_BANDS (8)
156 /* 4965 factory calibration measures txpower gain settings for
157 * each of 3 target output levels */
158 #define EEPROM_TX_POWER_MEASUREMENTS (3)
160 /* 4965 driver does not work with txpower calibration version < 5.
161 * Look for this in calib_version member of struct iwl4965_eeprom. */
162 #define EEPROM_TX_POWER_VERSION_NEW (5)
166 * 4965 factory calibration data for one txpower level, on one channel,
167 * measured on one of the 2 tx chains (radio transmitter and associated
168 * antenna). EEPROM contains:
170 * 1) Temperature (degrees Celsius) of device when measurement was made.
172 * 2) Gain table index used to achieve the target measurement power.
173 * This refers to the "well-known" gain tables (see iwl-4965-hw.h).
175 * 3) Actual measured output power, in half-dBm ("34" = 17 dBm).
177 * 4) RF power amplifier detector level measurement (not used).
179 struct iwl4965_eeprom_calib_measure {
180 u8 temperature; /* Device temperature (Celsius) */
181 u8 gain_idx; /* Index into gain table */
182 u8 actual_pow; /* Measured RF output power, half-dBm */
183 s8 pa_det; /* Power amp detector level (not used) */
184 } __attribute__ ((packed));
188 * 4965 measurement set for one channel. EEPROM contains:
190 * 1) Channel number measured
192 * 2) Measurements for each of 3 power levels for each of 2 radio transmitters
193 * (a.k.a. "tx chains") (6 measurements altogether)
195 struct iwl4965_eeprom_calib_ch_info {
196 u8 ch_num;
197 struct iwl4965_eeprom_calib_measure measurements[EEPROM_TX_POWER_TX_CHAINS]
198 [EEPROM_TX_POWER_MEASUREMENTS];
199 } __attribute__ ((packed));
202 * 4965 txpower subband info.
204 * For each frequency subband, EEPROM contains the following:
206 * 1) First and last channels within range of the subband. "0" values
207 * indicate that this sample set is not being used.
209 * 2) Sample measurement sets for 2 channels close to the range endpoints.
211 struct iwl4965_eeprom_calib_subband_info {
212 u8 ch_from; /* channel number of lowest channel in subband */
213 u8 ch_to; /* channel number of highest channel in subband */
214 struct iwl4965_eeprom_calib_ch_info ch1;
215 struct iwl4965_eeprom_calib_ch_info ch2;
216 } __attribute__ ((packed));
220 * 4965 txpower calibration info. EEPROM contains:
222 * 1) Factory-measured saturation power levels (maximum levels at which
223 * tx power amplifier can output a signal without too much distortion).
224 * There is one level for 2.4 GHz band and one for 5 GHz band. These
225 * values apply to all channels within each of the bands.
227 * 2) Factory-measured power supply voltage level. This is assumed to be
228 * constant (i.e. same value applies to all channels/bands) while the
229 * factory measurements are being made.
231 * 3) Up to 8 sets of factory-measured txpower calibration values.
232 * These are for different frequency ranges, since txpower gain
233 * characteristics of the analog radio circuitry vary with frequency.
235 * Not all sets need to be filled with data;
236 * struct iwl4965_eeprom_calib_subband_info contains range of channels
237 * (0 if unused) for each set of data.
239 struct iwl4965_eeprom_calib_info {
240 u8 saturation_power24; /* half-dBm (e.g. "34" = 17 dBm) */
241 u8 saturation_power52; /* half-dBm */
242 s16 voltage; /* signed */
243 struct iwl4965_eeprom_calib_subband_info band_info[EEPROM_TX_POWER_BANDS];
244 } __attribute__ ((packed));
248 * 4965 EEPROM map
250 struct iwl4965_eeprom {
251 u8 reserved0[16];
252 #define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */
253 u16 device_id; /* abs.ofs: 16 */
254 u8 reserved1[2];
255 #define EEPROM_PMC (2*0x0A) /* 2 bytes */
256 u16 pmc; /* abs.ofs: 20 */
257 u8 reserved2[20];
258 #define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */
259 u8 mac_address[6]; /* abs.ofs: 42 */
260 u8 reserved3[58];
261 #define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */
262 u16 board_revision; /* abs.ofs: 106 */
263 u8 reserved4[11];
264 #define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */
265 u8 board_pba_number[9]; /* abs.ofs: 119 */
266 u8 reserved5[8];
267 #define EEPROM_VERSION (2*0x44) /* 2 bytes */
268 u16 version; /* abs.ofs: 136 */
269 #define EEPROM_SKU_CAP (2*0x45) /* 1 bytes */
270 u8 sku_cap; /* abs.ofs: 138 */
271 #define EEPROM_LEDS_MODE (2*0x45+1) /* 1 bytes */
272 u8 leds_mode; /* abs.ofs: 139 */
273 #define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */
274 u16 oem_mode;
275 #define EEPROM_WOWLAN_MODE (2*0x47) /* 2 bytes */
276 u16 wowlan_mode; /* abs.ofs: 142 */
277 #define EEPROM_LEDS_TIME_INTERVAL (2*0x48) /* 2 bytes */
278 u16 leds_time_interval; /* abs.ofs: 144 */
279 #define EEPROM_LEDS_OFF_TIME (2*0x49) /* 1 bytes */
280 u8 leds_off_time; /* abs.ofs: 146 */
281 #define EEPROM_LEDS_ON_TIME (2*0x49+1) /* 1 bytes */
282 u8 leds_on_time; /* abs.ofs: 147 */
283 #define EEPROM_ALMGOR_M_VERSION (2*0x4A) /* 1 bytes */
284 u8 almgor_m_version; /* abs.ofs: 148 */
285 #define EEPROM_ANTENNA_SWITCH_TYPE (2*0x4A+1) /* 1 bytes */
286 u8 antenna_switch_type; /* abs.ofs: 149 */
287 u8 reserved6[8];
288 #define EEPROM_4965_BOARD_REVISION (2*0x4F) /* 2 bytes */
289 u16 board_revision_4965; /* abs.ofs: 158 */
290 u8 reserved7[13];
291 #define EEPROM_4965_BOARD_PBA (2*0x56+1) /* 9 bytes */
292 u8 board_pba_number_4965[9]; /* abs.ofs: 173 */
293 u8 reserved8[10];
294 #define EEPROM_REGULATORY_SKU_ID (2*0x60) /* 4 bytes */
295 u8 sku_id[4]; /* abs.ofs: 192 */
298 * Per-channel regulatory data.
300 * Each channel that *might* be supported by 3945 or 4965 has a fixed location
301 * in EEPROM containing EEPROM_CHANNEL_* usage flags (LSB) and max regulatory
302 * txpower (MSB).
304 * Entries immediately below are for 20 MHz channel width. FAT (40 MHz)
305 * channels (only for 4965, not supported by 3945) appear later in the EEPROM.
307 * 2.4 GHz channels 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
309 #define EEPROM_REGULATORY_BAND_1 (2*0x62) /* 2 bytes */
310 u16 band_1_count; /* abs.ofs: 196 */
311 #define EEPROM_REGULATORY_BAND_1_CHANNELS (2*0x63) /* 28 bytes */
312 struct iwl4965_eeprom_channel band_1_channels[14]; /* abs.ofs: 196 */
315 * 4.9 GHz channels 183, 184, 185, 187, 188, 189, 192, 196,
316 * 5.0 GHz channels 7, 8, 11, 12, 16
317 * (4915-5080MHz) (none of these is ever supported)
319 #define EEPROM_REGULATORY_BAND_2 (2*0x71) /* 2 bytes */
320 u16 band_2_count; /* abs.ofs: 226 */
321 #define EEPROM_REGULATORY_BAND_2_CHANNELS (2*0x72) /* 26 bytes */
322 struct iwl4965_eeprom_channel band_2_channels[13]; /* abs.ofs: 228 */
325 * 5.2 GHz channels 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
326 * (5170-5320MHz)
328 #define EEPROM_REGULATORY_BAND_3 (2*0x7F) /* 2 bytes */
329 u16 band_3_count; /* abs.ofs: 254 */
330 #define EEPROM_REGULATORY_BAND_3_CHANNELS (2*0x80) /* 24 bytes */
331 struct iwl4965_eeprom_channel band_3_channels[12]; /* abs.ofs: 256 */
334 * 5.5 GHz channels 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
335 * (5500-5700MHz)
337 #define EEPROM_REGULATORY_BAND_4 (2*0x8C) /* 2 bytes */
338 u16 band_4_count; /* abs.ofs: 280 */
339 #define EEPROM_REGULATORY_BAND_4_CHANNELS (2*0x8D) /* 22 bytes */
340 struct iwl4965_eeprom_channel band_4_channels[11]; /* abs.ofs: 282 */
343 * 5.7 GHz channels 145, 149, 153, 157, 161, 165
344 * (5725-5825MHz)
346 #define EEPROM_REGULATORY_BAND_5 (2*0x98) /* 2 bytes */
347 u16 band_5_count; /* abs.ofs: 304 */
348 #define EEPROM_REGULATORY_BAND_5_CHANNELS (2*0x99) /* 12 bytes */
349 struct iwl4965_eeprom_channel band_5_channels[6]; /* abs.ofs: 306 */
351 u8 reserved10[2];
355 * 2.4 GHz FAT channels 1 (5), 2 (6), 3 (7), 4 (8), 5 (9), 6 (10), 7 (11)
357 * The channel listed is the center of the lower 20 MHz half of the channel.
358 * The overall center frequency is actually 2 channels (10 MHz) above that,
359 * and the upper half of each FAT channel is centered 4 channels (20 MHz) away
360 * from the lower half; e.g. the upper half of FAT channel 1 is channel 5,
361 * and the overall FAT channel width centers on channel 3.
363 * NOTE: The RXON command uses 20 MHz channel numbers to specify the
364 * control channel to which to tune. RXON also specifies whether the
365 * control channel is the upper or lower half of a FAT channel.
367 * NOTE: 4965 does not support FAT channels on 2.4 GHz.
369 #define EEPROM_REGULATORY_BAND_24_FAT_CHANNELS (2*0xA0) /* 14 bytes */
370 struct iwl4965_eeprom_channel band_24_channels[7]; /* abs.ofs: 320 */
371 u8 reserved11[2];
374 * 5.2 GHz FAT channels 36 (40), 44 (48), 52 (56), 60 (64),
375 * 100 (104), 108 (112), 116 (120), 124 (128), 132 (136), 149 (153), 157 (161)
377 #define EEPROM_REGULATORY_BAND_52_FAT_CHANNELS (2*0xA8) /* 22 bytes */
378 struct iwl4965_eeprom_channel band_52_channels[11]; /* abs.ofs: 336 */
379 u8 reserved12[6];
382 * 4965 driver requires txpower calibration format version 5 or greater.
383 * Driver does not work with txpower calibration version < 5.
384 * This value is simply a 16-bit number, no major/minor versions here.
386 #define EEPROM_CALIB_VERSION_OFFSET (2*0xB6) /* 2 bytes */
387 u16 calib_version; /* abs.ofs: 364 */
388 u8 reserved13[2];
389 u8 reserved14[96]; /* abs.ofs: 368 */
392 * 4965 Txpower calibration data.
394 #define EEPROM_IWL_CALIB_TXPOWER_OFFSET (2*0xE8) /* 48 bytes */
395 struct iwl4965_eeprom_calib_info calib_info; /* abs.ofs: 464 */
397 u8 reserved16[140]; /* fill out to full 1024 byte block */
400 } __attribute__ ((packed));
402 #define IWL_EEPROM_IMAGE_SIZE 1024
404 /* End of EEPROM */
406 #include "iwl-4965-commands.h"
408 #define PCI_LINK_CTRL 0x0F0
409 #define PCI_POWER_SOURCE 0x0C8
410 #define PCI_REG_WUM8 0x0E8
411 #define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
413 /*=== CSR (control and status registers) ===*/
414 #define CSR_BASE (0x000)
416 #define CSR_SW_VER (CSR_BASE+0x000)
417 #define CSR_HW_IF_CONFIG_REG (CSR_BASE+0x000) /* hardware interface config */
418 #define CSR_INT_COALESCING (CSR_BASE+0x004) /* accum ints, 32-usec units */
419 #define CSR_INT (CSR_BASE+0x008) /* host interrupt status/ack */
420 #define CSR_INT_MASK (CSR_BASE+0x00c) /* host interrupt enable */
421 #define CSR_FH_INT_STATUS (CSR_BASE+0x010) /* busmaster int status/ack*/
422 #define CSR_GPIO_IN (CSR_BASE+0x018) /* read external chip pins */
423 #define CSR_RESET (CSR_BASE+0x020) /* busmaster enable, NMI, etc*/
424 #define CSR_GP_CNTRL (CSR_BASE+0x024)
427 * Hardware revision info
428 * Bit fields:
429 * 31-8: Reserved
430 * 7-4: Type of device: 0x0 = 4965, 0xd = 3945
431 * 3-2: Revision step: 0 = A, 1 = B, 2 = C, 3 = D
432 * 1-0: "Dash" value, as in A-1, etc.
434 * NOTE: Revision step affects calculation of CCK txpower for 4965.
436 #define CSR_HW_REV (CSR_BASE+0x028)
438 /* EEPROM reads */
439 #define CSR_EEPROM_REG (CSR_BASE+0x02c)
440 #define CSR_EEPROM_GP (CSR_BASE+0x030)
441 #define CSR_GP_UCODE (CSR_BASE+0x044)
442 #define CSR_UCODE_DRV_GP1 (CSR_BASE+0x054)
443 #define CSR_UCODE_DRV_GP1_SET (CSR_BASE+0x058)
444 #define CSR_UCODE_DRV_GP1_CLR (CSR_BASE+0x05c)
445 #define CSR_UCODE_DRV_GP2 (CSR_BASE+0x060)
446 #define CSR_GIO_CHICKEN_BITS (CSR_BASE+0x100)
449 * Indicates hardware rev, to determine CCK backoff for txpower calculation.
450 * Bit fields:
451 * 3-2: 0 = A, 1 = B, 2 = C, 3 = D step
453 #define CSR_HW_REV_WA_REG (CSR_BASE+0x22C)
455 /* interrupt flags in INTA, set by uCode or hardware (e.g. dma),
456 * acknowledged (reset) by host writing "1" to flagged bits. */
457 #define CSR_INT_BIT_FH_RX (1<<31) /* Rx DMA, cmd responses, FH_INT[17:16] */
458 #define CSR_INT_BIT_HW_ERR (1<<29) /* DMA hardware error FH_INT[31] */
459 #define CSR_INT_BIT_DNLD (1<<28) /* uCode Download */
460 #define CSR_INT_BIT_FH_TX (1<<27) /* Tx DMA FH_INT[1:0] */
461 #define CSR_INT_BIT_MAC_CLK_ACTV (1<<26) /* NIC controller's clock toggled on/off */
462 #define CSR_INT_BIT_SW_ERR (1<<25) /* uCode error */
463 #define CSR_INT_BIT_RF_KILL (1<<7) /* HW RFKILL switch GP_CNTRL[27] toggled */
464 #define CSR_INT_BIT_CT_KILL (1<<6) /* Critical temp (chip too hot) rfkill */
465 #define CSR_INT_BIT_SW_RX (1<<3) /* Rx, command responses, 3945 */
466 #define CSR_INT_BIT_WAKEUP (1<<1) /* NIC controller waking up (pwr mgmt) */
467 #define CSR_INT_BIT_ALIVE (1<<0) /* uCode interrupts once it initializes */
469 #define CSR_INI_SET_MASK (CSR_INT_BIT_FH_RX | \
470 CSR_INT_BIT_HW_ERR | \
471 CSR_INT_BIT_FH_TX | \
472 CSR_INT_BIT_SW_ERR | \
473 CSR_INT_BIT_RF_KILL | \
474 CSR_INT_BIT_SW_RX | \
475 CSR_INT_BIT_WAKEUP | \
476 CSR_INT_BIT_ALIVE)
478 /* interrupt flags in FH (flow handler) (PCI busmaster DMA) */
479 #define CSR_FH_INT_BIT_ERR (1<<31) /* Error */
480 #define CSR_FH_INT_BIT_HI_PRIOR (1<<30) /* High priority Rx, bypass coalescing */
481 #define CSR_FH_INT_BIT_RX_CHNL1 (1<<17) /* Rx channel 1 */
482 #define CSR_FH_INT_BIT_RX_CHNL0 (1<<16) /* Rx channel 0 */
483 #define CSR_FH_INT_BIT_TX_CHNL1 (1<<1) /* Tx channel 1 */
484 #define CSR_FH_INT_BIT_TX_CHNL0 (1<<0) /* Tx channel 0 */
486 #define CSR_FH_INT_RX_MASK (CSR_FH_INT_BIT_HI_PRIOR | \
487 CSR_FH_INT_BIT_RX_CHNL1 | \
488 CSR_FH_INT_BIT_RX_CHNL0)
490 #define CSR_FH_INT_TX_MASK (CSR_FH_INT_BIT_TX_CHNL1 | \
491 CSR_FH_INT_BIT_TX_CHNL0)
494 /* RESET */
495 #define CSR_RESET_REG_FLAG_NEVO_RESET (0x00000001)
496 #define CSR_RESET_REG_FLAG_FORCE_NMI (0x00000002)
497 #define CSR_RESET_REG_FLAG_SW_RESET (0x00000080)
498 #define CSR_RESET_REG_FLAG_MASTER_DISABLED (0x00000100)
499 #define CSR_RESET_REG_FLAG_STOP_MASTER (0x00000200)
501 /* GP (general purpose) CONTROL */
502 #define CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY (0x00000001)
503 #define CSR_GP_CNTRL_REG_FLAG_INIT_DONE (0x00000004)
504 #define CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ (0x00000008)
505 #define CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP (0x00000010)
507 #define CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN (0x00000001)
509 #define CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE (0x07000000)
510 #define CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE (0x04000000)
511 #define CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW (0x08000000)
514 /* EEPROM REG */
515 #define CSR_EEPROM_REG_READ_VALID_MSK (0x00000001)
516 #define CSR_EEPROM_REG_BIT_CMD (0x00000002)
518 /* EEPROM GP */
519 #define CSR_EEPROM_GP_VALID_MSK (0x00000006)
520 #define CSR_EEPROM_GP_BAD_SIGNATURE (0x00000000)
521 #define CSR_EEPROM_GP_IF_OWNER_MSK (0x00000180)
523 /* UCODE DRV GP */
524 #define CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP (0x00000001)
525 #define CSR_UCODE_SW_BIT_RFKILL (0x00000002)
526 #define CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED (0x00000004)
527 #define CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT (0x00000008)
529 /* GPIO */
530 #define CSR_GPIO_IN_BIT_AUX_POWER (0x00000200)
531 #define CSR_GPIO_IN_VAL_VAUX_PWR_SRC (0x00000000)
532 #define CSR_GPIO_IN_VAL_VMAIN_PWR_SRC CSR_GPIO_IN_BIT_AUX_POWER
534 /* GI Chicken Bits */
535 #define CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX (0x00800000)
536 #define CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER (0x20000000)
538 /*=== HBUS (Host-side Bus) ===*/
539 #define HBUS_BASE (0x400)
542 * Registers for accessing device's internal SRAM memory (e.g. SCD SRAM
543 * structures, error log, event log, verifying uCode load).
544 * First write to address register, then read from or write to data register
545 * to complete the job. Once the address register is set up, accesses to
546 * data registers auto-increment the address by one dword.
547 * Bit usage for address registers (read or write):
548 * 0-31: memory address within device
550 #define HBUS_TARG_MEM_RADDR (HBUS_BASE+0x00c)
551 #define HBUS_TARG_MEM_WADDR (HBUS_BASE+0x010)
552 #define HBUS_TARG_MEM_WDAT (HBUS_BASE+0x018)
553 #define HBUS_TARG_MEM_RDAT (HBUS_BASE+0x01c)
556 * Registers for accessing device's internal peripheral registers
557 * (e.g. SCD, BSM, etc.). First write to address register,
558 * then read from or write to data register to complete the job.
559 * Bit usage for address registers (read or write):
560 * 0-15: register address (offset) within device
561 * 24-25: (# bytes - 1) to read or write (e.g. 3 for dword)
563 #define HBUS_TARG_PRPH_WADDR (HBUS_BASE+0x044)
564 #define HBUS_TARG_PRPH_RADDR (HBUS_BASE+0x048)
565 #define HBUS_TARG_PRPH_WDAT (HBUS_BASE+0x04c)
566 #define HBUS_TARG_PRPH_RDAT (HBUS_BASE+0x050)
569 * Per-Tx-queue write pointer (index, really!) (3945 and 4965).
570 * Indicates index to next TFD that driver will fill (1 past latest filled).
571 * Bit usage:
572 * 0-7: queue write index (0-255)
573 * 11-8: queue selector (0-15)
575 #define HBUS_TARG_WRPTR (HBUS_BASE+0x060)
577 #define HBUS_TARG_MBX_C (HBUS_BASE+0x030)
579 /*=== FH (data Flow Handler) ===*/
580 #define FH_BASE (0x800)
582 #define FH_RSCSR_CHNL0_WPTR (FH_RSCSR_CHNL0_RBDCB_WPTR_REG)
584 /* RSSR */
585 #define FH_RSSR_CTRL (FH_RSSR_TABLE+0x000)
586 #define FH_RSSR_STATUS (FH_RSSR_TABLE+0x004)
587 /* TCSR */
588 #define FH_TCSR(_channel) (FH_TCSR_TABLE+(_channel)*0x20)
589 #define FH_TCSR_CONFIG(_channel) (FH_TCSR(_channel)+0x00)
590 #define FH_TCSR_CREDIT(_channel) (FH_TCSR(_channel)+0x04)
591 #define FH_TCSR_BUFF_STTS(_channel) (FH_TCSR(_channel)+0x08)
592 /* TSSR */
593 #define FH_TSSR_CBB_BASE (FH_TSSR_TABLE+0x000)
594 #define FH_TSSR_MSG_CONFIG (FH_TSSR_TABLE+0x008)
595 #define FH_TSSR_TX_STATUS (FH_TSSR_TABLE+0x010)
598 #define HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED (0x00000004)
600 #define TFD_QUEUE_SIZE_MAX (256)
602 #define IWL_NUM_SCAN_RATES (2)
604 #define IWL_DEFAULT_TX_RETRY 15
606 #define RX_QUEUE_SIZE 256
607 #define RX_QUEUE_MASK 255
608 #define RX_QUEUE_SIZE_LOG 8
610 #define TFD_TX_CMD_SLOTS 256
611 #define TFD_CMD_SLOTS 32
613 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl4965_cmd) - \
614 sizeof(struct iwl4965_cmd_meta))
617 * RX related structures and functions
619 #define RX_FREE_BUFFERS 64
620 #define RX_LOW_WATERMARK 8
622 /* Size of one Rx buffer in host DRAM */
623 #define IWL_RX_BUF_SIZE (4 * 1024)
625 /* Sizes and addresses for instruction and data memory (SRAM) in
626 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
627 #define RTC_INST_LOWER_BOUND (0x000000)
628 #define KDR_RTC_INST_UPPER_BOUND (0x018000)
630 #define RTC_DATA_LOWER_BOUND (0x800000)
631 #define KDR_RTC_DATA_UPPER_BOUND (0x80A000)
633 #define KDR_RTC_INST_SIZE (KDR_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
634 #define KDR_RTC_DATA_SIZE (KDR_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
636 #define IWL_MAX_INST_SIZE KDR_RTC_INST_SIZE
637 #define IWL_MAX_DATA_SIZE KDR_RTC_DATA_SIZE
639 /* Size of uCode instruction memory in bootstrap state machine */
640 #define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
642 static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
644 return (addr >= RTC_DATA_LOWER_BOUND) &&
645 (addr < KDR_RTC_DATA_UPPER_BOUND);
648 /********************* START TEMPERATURE *************************************/
651 * 4965 temperature calculation.
653 * The driver must calculate the device temperature before calculating
654 * a txpower setting (amplifier gain is temperature dependent). The
655 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
656 * values used for the life of the driver, and one of which (R4) is the
657 * real-time temperature indicator.
659 * uCode provides all 4 values to the driver via the "initialize alive"
660 * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
661 * image loads, uCode updates the R4 value via statistics notifications
662 * (see STATISTICS_NOTIFICATION), which occur after each received beacon
663 * when associated, or can be requested via REPLY_STATISTICS_CMD.
665 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
666 * must sign-extend to 32 bits before applying formula below.
668 * Formula:
670 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
672 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
673 * an additional correction, which should be centered around 0 degrees
674 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
675 * centering the 97/100 correction around 0 degrees K.
677 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
678 * temperature with factory-measured temperatures when calculating txpower
679 * settings.
681 #define TEMPERATURE_CALIB_KELVIN_OFFSET 8
682 #define TEMPERATURE_CALIB_A_VAL 259
684 /* Limit range of calculated temperature to be between these Kelvin values */
685 #define IWL_TX_POWER_TEMPERATURE_MIN (263)
686 #define IWL_TX_POWER_TEMPERATURE_MAX (410)
688 #define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
689 (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
690 ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
692 /********************* END TEMPERATURE ***************************************/
694 /********************* START TXPOWER *****************************************/
697 * 4965 txpower calculations rely on information from three sources:
699 * 1) EEPROM
700 * 2) "initialize" alive notification
701 * 3) statistics notifications
703 * EEPROM data consists of:
705 * 1) Regulatory information (max txpower and channel usage flags) is provided
706 * separately for each channel that can possibly supported by 4965.
707 * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
708 * (legacy) channels.
710 * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
711 * for locations in EEPROM.
713 * 2) Factory txpower calibration information is provided separately for
714 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
715 * but 5 GHz has several sub-bands.
717 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
719 * See struct iwl4965_eeprom_calib_info (and the tree of structures
720 * contained within it) for format, and struct iwl4965_eeprom for
721 * locations in EEPROM.
723 * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
724 * consists of:
726 * 1) Temperature calculation parameters.
728 * 2) Power supply voltage measurement.
730 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
732 * Statistics notifications deliver:
734 * 1) Current values for temperature param R4.
738 * To calculate a txpower setting for a given desired target txpower, channel,
739 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
740 * support MIMO and transmit diversity), driver must do the following:
742 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
743 * Do not exceed regulatory limit; reduce target txpower if necessary.
745 * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
746 * 2 transmitters will be used simultaneously; driver must reduce the
747 * regulatory limit by 3 dB (half-power) for each transmitter, so the
748 * combined total output of the 2 transmitters is within regulatory limits.
751 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
752 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
753 * reduce target txpower if necessary.
755 * Backoff values below are in 1/2 dB units (equivalent to steps in
756 * txpower gain tables):
758 * OFDM 6 - 36 MBit: 10 steps (5 dB)
759 * OFDM 48 MBit: 15 steps (7.5 dB)
760 * OFDM 54 MBit: 17 steps (8.5 dB)
761 * OFDM 60 MBit: 20 steps (10 dB)
762 * CCK all rates: 10 steps (5 dB)
764 * Backoff values apply to saturation txpower on a per-transmitter basis;
765 * when using MIMO (2 transmitters), each transmitter uses the same
766 * saturation level provided in EEPROM, and the same backoff values;
767 * no reduction (such as with regulatory txpower limits) is required.
769 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
770 * widths and 40 Mhz (.11n fat) channel widths; there is no separate
771 * factory measurement for fat channels.
773 * The result of this step is the final target txpower. The rest of
774 * the steps figure out the proper settings for the device to achieve
775 * that target txpower.
778 * 3) Determine (EEPROM) calibration subband for the target channel, by
779 * comparing against first and last channels in each subband
780 * (see struct iwl4965_eeprom_calib_subband_info).
783 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
784 * referencing the 2 factory-measured (sample) channels within the subband.
786 * Interpolation is based on difference between target channel's frequency
787 * and the sample channels' frequencies. Since channel numbers are based
788 * on frequency (5 MHz between each channel number), this is equivalent
789 * to interpolating based on channel number differences.
791 * Note that the sample channels may or may not be the channels at the
792 * edges of the subband. The target channel may be "outside" of the
793 * span of the sampled channels.
795 * Driver may choose the pair (for 2 Tx chains) of measurements (see
796 * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
797 * txpower comes closest to the desired txpower. Usually, though,
798 * the middle set of measurements is closest to the regulatory limits,
799 * and is therefore a good choice for all txpower calculations (this
800 * assumes that high accuracy is needed for maximizing legal txpower,
801 * while lower txpower configurations do not need as much accuracy).
803 * Driver should interpolate both members of the chosen measurement pair,
804 * i.e. for both Tx chains (radio transmitters), unless the driver knows
805 * that only one of the chains will be used (e.g. only one tx antenna
806 * connected, but this should be unusual). The rate scaling algorithm
807 * switches antennas to find best performance, so both Tx chains will
808 * be used (although only one at a time) even for non-MIMO transmissions.
810 * Driver should interpolate factory values for temperature, gain table
811 * index, and actual power. The power amplifier detector values are
812 * not used by the driver.
814 * Sanity check: If the target channel happens to be one of the sample
815 * channels, the results should agree with the sample channel's
816 * measurements!
819 * 5) Find difference between desired txpower and (interpolated)
820 * factory-measured txpower. Using (interpolated) factory gain table index
821 * (shown elsewhere) as a starting point, adjust this index lower to
822 * increase txpower, or higher to decrease txpower, until the target
823 * txpower is reached. Each step in the gain table is 1/2 dB.
825 * For example, if factory measured txpower is 16 dBm, and target txpower
826 * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
827 * by 3 dB.
830 * 6) Find difference between current device temperature and (interpolated)
831 * factory-measured temperature for sub-band. Factory values are in
832 * degrees Celsius. To calculate current temperature, see comments for
833 * "4965 temperature calculation".
835 * If current temperature is higher than factory temperature, driver must
836 * increase gain (lower gain table index), and vice versa.
838 * Temperature affects gain differently for different channels:
840 * 2.4 GHz all channels: 3.5 degrees per half-dB step
841 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
842 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
844 * NOTE: Temperature can increase rapidly when transmitting, especially
845 * with heavy traffic at high txpowers. Driver should update
846 * temperature calculations often under these conditions to
847 * maintain strong txpower in the face of rising temperature.
850 * 7) Find difference between current power supply voltage indicator
851 * (from "initialize alive") and factory-measured power supply voltage
852 * indicator (EEPROM).
854 * If the current voltage is higher (indicator is lower) than factory
855 * voltage, gain should be reduced (gain table index increased) by:
857 * (eeprom - current) / 7
859 * If the current voltage is lower (indicator is higher) than factory
860 * voltage, gain should be increased (gain table index decreased) by:
862 * 2 * (current - eeprom) / 7
864 * If number of index steps in either direction turns out to be > 2,
865 * something is wrong ... just use 0.
867 * NOTE: Voltage compensation is independent of band/channel.
869 * NOTE: "Initialize" uCode measures current voltage, which is assumed
870 * to be constant after this initial measurement. Voltage
871 * compensation for txpower (number of steps in gain table)
872 * may be calculated once and used until the next uCode bootload.
875 * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
876 * adjust txpower for each transmitter chain, so txpower is balanced
877 * between the two chains. There are 5 pairs of tx_atten[group][chain]
878 * values in "initialize alive", one pair for each of 5 channel ranges:
880 * Group 0: 5 GHz channel 34-43
881 * Group 1: 5 GHz channel 44-70
882 * Group 2: 5 GHz channel 71-124
883 * Group 3: 5 GHz channel 125-200
884 * Group 4: 2.4 GHz all channels
886 * Add the tx_atten[group][chain] value to the index for the target chain.
887 * The values are signed, but are in pairs of 0 and a non-negative number,
888 * so as to reduce gain (if necessary) of the "hotter" channel. This
889 * avoids any need to double-check for regulatory compliance after
890 * this step.
893 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
894 * value to the index:
896 * Hardware rev B: 9 steps (4.5 dB)
897 * Hardware rev C: 5 steps (2.5 dB)
899 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
900 * bits [3:2], 1 = B, 2 = C.
902 * NOTE: This compensation is in addition to any saturation backoff that
903 * might have been applied in an earlier step.
906 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
908 * Limit the adjusted index to stay within the table!
911 * 11) Read gain table entries for DSP and radio gain, place into appropriate
912 * location(s) in command (struct iwl4965_txpowertable_cmd).
915 /* Limit range of txpower output target to be between these values */
916 #define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
917 #define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
920 * When MIMO is used (2 transmitters operating simultaneously), driver should
921 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
922 * for the device. That is, use half power for each transmitter, so total
923 * txpower is within regulatory limits.
925 * The value "6" represents number of steps in gain table to reduce power 3 dB.
926 * Each step is 1/2 dB.
928 #define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
931 * CCK gain compensation.
933 * When calculating txpowers for CCK, after making sure that the target power
934 * is within regulatory and saturation limits, driver must additionally
935 * back off gain by adding these values to the gain table index.
937 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
938 * bits [3:2], 1 = B, 2 = C.
940 #define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
941 #define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
944 * 4965 power supply voltage compensation for txpower
946 #define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
949 * Gain tables.
951 * The following tables contain pair of values for setting txpower, i.e.
952 * gain settings for the output of the device's digital signal processor (DSP),
953 * and for the analog gain structure of the transmitter.
955 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
956 * are *relative* steps, not indications of absolute output power. Output
957 * power varies with temperature, voltage, and channel frequency, and also
958 * requires consideration of average power (to satisfy regulatory constraints),
959 * and peak power (to avoid distortion of the output signal).
961 * Each entry contains two values:
962 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
963 * linear value that multiplies the output of the digital signal processor,
964 * before being sent to the analog radio.
965 * 2) Radio gain. This sets the analog gain of the radio Tx path.
966 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
968 * EEPROM contains factory calibration data for txpower. This maps actual
969 * measured txpower levels to gain settings in the "well known" tables
970 * below ("well-known" means here that both factory calibration *and* the
971 * driver work with the same table).
973 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
974 * has an extension (into negative indexes), in case the driver needs to
975 * boost power setting for high device temperatures (higher than would be
976 * present during factory calibration). A 5 Ghz EEPROM index of "40"
977 * corresponds to the 49th entry in the table used by the driver.
979 #define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
980 #define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
983 * 2.4 GHz gain table
985 * Index Dsp gain Radio gain
986 * 0 110 0x3f (highest gain)
987 * 1 104 0x3f
988 * 2 98 0x3f
989 * 3 110 0x3e
990 * 4 104 0x3e
991 * 5 98 0x3e
992 * 6 110 0x3d
993 * 7 104 0x3d
994 * 8 98 0x3d
995 * 9 110 0x3c
996 * 10 104 0x3c
997 * 11 98 0x3c
998 * 12 110 0x3b
999 * 13 104 0x3b
1000 * 14 98 0x3b
1001 * 15 110 0x3a
1002 * 16 104 0x3a
1003 * 17 98 0x3a
1004 * 18 110 0x39
1005 * 19 104 0x39
1006 * 20 98 0x39
1007 * 21 110 0x38
1008 * 22 104 0x38
1009 * 23 98 0x38
1010 * 24 110 0x37
1011 * 25 104 0x37
1012 * 26 98 0x37
1013 * 27 110 0x36
1014 * 28 104 0x36
1015 * 29 98 0x36
1016 * 30 110 0x35
1017 * 31 104 0x35
1018 * 32 98 0x35
1019 * 33 110 0x34
1020 * 34 104 0x34
1021 * 35 98 0x34
1022 * 36 110 0x33
1023 * 37 104 0x33
1024 * 38 98 0x33
1025 * 39 110 0x32
1026 * 40 104 0x32
1027 * 41 98 0x32
1028 * 42 110 0x31
1029 * 43 104 0x31
1030 * 44 98 0x31
1031 * 45 110 0x30
1032 * 46 104 0x30
1033 * 47 98 0x30
1034 * 48 110 0x6
1035 * 49 104 0x6
1036 * 50 98 0x6
1037 * 51 110 0x5
1038 * 52 104 0x5
1039 * 53 98 0x5
1040 * 54 110 0x4
1041 * 55 104 0x4
1042 * 56 98 0x4
1043 * 57 110 0x3
1044 * 58 104 0x3
1045 * 59 98 0x3
1046 * 60 110 0x2
1047 * 61 104 0x2
1048 * 62 98 0x2
1049 * 63 110 0x1
1050 * 64 104 0x1
1051 * 65 98 0x1
1052 * 66 110 0x0
1053 * 67 104 0x0
1054 * 68 98 0x0
1055 * 69 97 0
1056 * 70 96 0
1057 * 71 95 0
1058 * 72 94 0
1059 * 73 93 0
1060 * 74 92 0
1061 * 75 91 0
1062 * 76 90 0
1063 * 77 89 0
1064 * 78 88 0
1065 * 79 87 0
1066 * 80 86 0
1067 * 81 85 0
1068 * 82 84 0
1069 * 83 83 0
1070 * 84 82 0
1071 * 85 81 0
1072 * 86 80 0
1073 * 87 79 0
1074 * 88 78 0
1075 * 89 77 0
1076 * 90 76 0
1077 * 91 75 0
1078 * 92 74 0
1079 * 93 73 0
1080 * 94 72 0
1081 * 95 71 0
1082 * 96 70 0
1083 * 97 69 0
1084 * 98 68 0
1088 * 5 GHz gain table
1090 * Index Dsp gain Radio gain
1091 * -9 123 0x3F (highest gain)
1092 * -8 117 0x3F
1093 * -7 110 0x3F
1094 * -6 104 0x3F
1095 * -5 98 0x3F
1096 * -4 110 0x3E
1097 * -3 104 0x3E
1098 * -2 98 0x3E
1099 * -1 110 0x3D
1100 * 0 104 0x3D
1101 * 1 98 0x3D
1102 * 2 110 0x3C
1103 * 3 104 0x3C
1104 * 4 98 0x3C
1105 * 5 110 0x3B
1106 * 6 104 0x3B
1107 * 7 98 0x3B
1108 * 8 110 0x3A
1109 * 9 104 0x3A
1110 * 10 98 0x3A
1111 * 11 110 0x39
1112 * 12 104 0x39
1113 * 13 98 0x39
1114 * 14 110 0x38
1115 * 15 104 0x38
1116 * 16 98 0x38
1117 * 17 110 0x37
1118 * 18 104 0x37
1119 * 19 98 0x37
1120 * 20 110 0x36
1121 * 21 104 0x36
1122 * 22 98 0x36
1123 * 23 110 0x35
1124 * 24 104 0x35
1125 * 25 98 0x35
1126 * 26 110 0x34
1127 * 27 104 0x34
1128 * 28 98 0x34
1129 * 29 110 0x33
1130 * 30 104 0x33
1131 * 31 98 0x33
1132 * 32 110 0x32
1133 * 33 104 0x32
1134 * 34 98 0x32
1135 * 35 110 0x31
1136 * 36 104 0x31
1137 * 37 98 0x31
1138 * 38 110 0x30
1139 * 39 104 0x30
1140 * 40 98 0x30
1141 * 41 110 0x25
1142 * 42 104 0x25
1143 * 43 98 0x25
1144 * 44 110 0x24
1145 * 45 104 0x24
1146 * 46 98 0x24
1147 * 47 110 0x23
1148 * 48 104 0x23
1149 * 49 98 0x23
1150 * 50 110 0x22
1151 * 51 104 0x18
1152 * 52 98 0x18
1153 * 53 110 0x17
1154 * 54 104 0x17
1155 * 55 98 0x17
1156 * 56 110 0x16
1157 * 57 104 0x16
1158 * 58 98 0x16
1159 * 59 110 0x15
1160 * 60 104 0x15
1161 * 61 98 0x15
1162 * 62 110 0x14
1163 * 63 104 0x14
1164 * 64 98 0x14
1165 * 65 110 0x13
1166 * 66 104 0x13
1167 * 67 98 0x13
1168 * 68 110 0x12
1169 * 69 104 0x08
1170 * 70 98 0x08
1171 * 71 110 0x07
1172 * 72 104 0x07
1173 * 73 98 0x07
1174 * 74 110 0x06
1175 * 75 104 0x06
1176 * 76 98 0x06
1177 * 77 110 0x05
1178 * 78 104 0x05
1179 * 79 98 0x05
1180 * 80 110 0x04
1181 * 81 104 0x04
1182 * 82 98 0x04
1183 * 83 110 0x03
1184 * 84 104 0x03
1185 * 85 98 0x03
1186 * 86 110 0x02
1187 * 87 104 0x02
1188 * 88 98 0x02
1189 * 89 110 0x01
1190 * 90 104 0x01
1191 * 91 98 0x01
1192 * 92 110 0x00
1193 * 93 104 0x00
1194 * 94 98 0x00
1195 * 95 93 0x00
1196 * 96 88 0x00
1197 * 97 83 0x00
1198 * 98 78 0x00
1203 * Sanity checks and default values for EEPROM regulatory levels.
1204 * If EEPROM values fall outside MIN/MAX range, use default values.
1206 * Regulatory limits refer to the maximum average txpower allowed by
1207 * regulatory agencies in the geographies in which the device is meant
1208 * to be operated. These limits are SKU-specific (i.e. geography-specific),
1209 * and channel-specific; each channel has an individual regulatory limit
1210 * listed in the EEPROM.
1212 * Units are in half-dBm (i.e. "34" means 17 dBm).
1214 #define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
1215 #define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
1216 #define IWL_TX_POWER_REGULATORY_MIN (0)
1217 #define IWL_TX_POWER_REGULATORY_MAX (34)
1220 * Sanity checks and default values for EEPROM saturation levels.
1221 * If EEPROM values fall outside MIN/MAX range, use default values.
1223 * Saturation is the highest level that the output power amplifier can produce
1224 * without significant clipping distortion. This is a "peak" power level.
1225 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
1226 * require differing amounts of backoff, relative to their average power output,
1227 * in order to avoid clipping distortion.
1229 * Driver must make sure that it is violating neither the saturation limit,
1230 * nor the regulatory limit, when calculating Tx power settings for various
1231 * rates.
1233 * Units are in half-dBm (i.e. "38" means 19 dBm).
1235 #define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
1236 #define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
1237 #define IWL_TX_POWER_SATURATION_MIN (20)
1238 #define IWL_TX_POWER_SATURATION_MAX (50)
1241 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
1242 * and thermal Txpower calibration.
1244 * When calculating txpower, driver must compensate for current device
1245 * temperature; higher temperature requires higher gain. Driver must calculate
1246 * current temperature (see "4965 temperature calculation"), then compare vs.
1247 * factory calibration temperature in EEPROM; if current temperature is higher
1248 * than factory temperature, driver must *increase* gain by proportions shown
1249 * in table below. If current temperature is lower than factory, driver must
1250 * *decrease* gain.
1252 * Different frequency ranges require different compensation, as shown below.
1254 /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
1255 #define CALIB_IWL_TX_ATTEN_GR1_FCH 34
1256 #define CALIB_IWL_TX_ATTEN_GR1_LCH 43
1258 /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
1259 #define CALIB_IWL_TX_ATTEN_GR2_FCH 44
1260 #define CALIB_IWL_TX_ATTEN_GR2_LCH 70
1262 /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
1263 #define CALIB_IWL_TX_ATTEN_GR3_FCH 71
1264 #define CALIB_IWL_TX_ATTEN_GR3_LCH 124
1266 /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
1267 #define CALIB_IWL_TX_ATTEN_GR4_FCH 125
1268 #define CALIB_IWL_TX_ATTEN_GR4_LCH 200
1270 /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
1271 #define CALIB_IWL_TX_ATTEN_GR5_FCH 1
1272 #define CALIB_IWL_TX_ATTEN_GR5_LCH 20
1274 enum {
1275 CALIB_CH_GROUP_1 = 0,
1276 CALIB_CH_GROUP_2 = 1,
1277 CALIB_CH_GROUP_3 = 2,
1278 CALIB_CH_GROUP_4 = 3,
1279 CALIB_CH_GROUP_5 = 4,
1280 CALIB_CH_GROUP_MAX
1283 /********************* END TXPOWER *****************************************/
1285 /* Flow Handler Definitions */
1287 /**********************/
1288 /* Addresses */
1289 /**********************/
1291 #define FH_MEM_LOWER_BOUND (0x1000)
1292 #define FH_MEM_UPPER_BOUND (0x1EF0)
1294 #define IWL_FH_REGS_LOWER_BOUND (0x1000)
1295 #define IWL_FH_REGS_UPPER_BOUND (0x2000)
1297 #define IWL_FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C)
1299 /* CBBC Area - Circular buffers base address cache pointers table */
1300 #define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
1301 #define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10)
1302 /* queues 0 - 15 */
1303 #define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
1305 /* RSCSR Area */
1306 #define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0)
1307 #define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
1308 #define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND)
1310 #define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0)
1311 #define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004)
1312 #define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008)
1314 /* RCSR Area - Registers address map */
1315 #define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
1316 #define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0)
1317 #define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND)
1319 #define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0)
1321 /* RSSR Area - Rx shared ctrl & status registers */
1322 #define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40)
1323 #define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
1324 #define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND)
1325 #define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004)
1326 #define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV (FH_MEM_RSSR_LOWER_BOUND + 0x008)
1328 /* TCSR */
1329 #define IWL_FH_TCSR_LOWER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xD00)
1330 #define IWL_FH_TCSR_UPPER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xE60)
1332 #define IWL_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
1333 (IWL_FH_TCSR_LOWER_BOUND + 0x20 * _chnl)
1335 /* TSSR Area - Tx shared status registers */
1336 /* TSSR */
1337 #define IWL_FH_TSSR_LOWER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xEA0)
1338 #define IWL_FH_TSSR_UPPER_BOUND (IWL_FH_REGS_LOWER_BOUND + 0xEC0)
1340 #define IWL_FH_TSSR_TX_STATUS_REG (IWL_FH_TSSR_LOWER_BOUND + 0x010)
1342 #define IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) \
1343 ((1 << (_chnl)) << 24)
1344 #define IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl) \
1345 ((1 << (_chnl)) << 16)
1347 #define IWL_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) \
1348 (IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) | \
1349 IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl))
1351 #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008)
1353 #define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
1355 /* RCSR: channel 0 rx_config register defines */
1357 #define FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT (20)
1359 #define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
1361 #define IWL_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
1363 /* RCSR channel 0 config register values */
1364 #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
1366 #define SCD_WIN_SIZE 64
1367 #define SCD_FRAME_LIMIT 64
1369 /* SRAM structures */
1370 #define SCD_CONTEXT_DATA_OFFSET 0x380
1371 #define SCD_TX_STTS_BITMAP_OFFSET 0x400
1372 #define SCD_TRANSLATE_TBL_OFFSET 0x500
1373 #define SCD_CONTEXT_QUEUE_OFFSET(x) (SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
1374 #define SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
1375 ((SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
1377 #define SCD_TXFACT_REG_TXFIFO_MASK(lo, hi) \
1378 ((1<<(hi))|((1<<(hi))-(1<<(lo))))
1380 #define SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
1381 #define SCD_QUEUE_STTS_REG_POS_TXF (1)
1382 #define SCD_QUEUE_STTS_REG_POS_WSL (5)
1383 #define SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
1384 #define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
1385 #define SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
1387 #define SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
1388 #define SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
1390 #define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
1391 #define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
1393 #define CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R (0x00000010)
1394 #define CSR_HW_IF_CONFIG_REG_MSK_BOARD_VER (0x00000C00)
1395 #define CSR_HW_IF_CONFIG_REG_BIT_MAC_SI (0x00000100)
1396 #define CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI (0x00000200)
1397 #define CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM (0x00200000)
1399 static inline u8 iwl4965_hw_get_rate(__le32 rate_n_flags)
1401 return le32_to_cpu(rate_n_flags) & 0xFF;
1403 static inline u16 iwl4965_hw_get_rate_n_flags(__le32 rate_n_flags)
1405 return le32_to_cpu(rate_n_flags) & 0xFFFF;
1407 static inline __le32 iwl4965_hw_set_rate_n_flags(u8 rate, u16 flags)
1409 return cpu_to_le32(flags|(u16)rate);
1412 struct iwl4965_tfd_frame_data {
1413 __le32 tb1_addr;
1415 __le32 val1;
1416 /* __le32 ptb1_32_35:4; */
1417 #define IWL_tb1_addr_hi_POS 0
1418 #define IWL_tb1_addr_hi_LEN 4
1419 #define IWL_tb1_addr_hi_SYM val1
1420 /* __le32 tb_len1:12; */
1421 #define IWL_tb1_len_POS 4
1422 #define IWL_tb1_len_LEN 12
1423 #define IWL_tb1_len_SYM val1
1424 /* __le32 ptb2_0_15:16; */
1425 #define IWL_tb2_addr_lo16_POS 16
1426 #define IWL_tb2_addr_lo16_LEN 16
1427 #define IWL_tb2_addr_lo16_SYM val1
1429 __le32 val2;
1430 /* __le32 ptb2_16_35:20; */
1431 #define IWL_tb2_addr_hi20_POS 0
1432 #define IWL_tb2_addr_hi20_LEN 20
1433 #define IWL_tb2_addr_hi20_SYM val2
1434 /* __le32 tb_len2:12; */
1435 #define IWL_tb2_len_POS 20
1436 #define IWL_tb2_len_LEN 12
1437 #define IWL_tb2_len_SYM val2
1438 } __attribute__ ((packed));
1440 struct iwl4965_tfd_frame {
1441 __le32 val0;
1442 /* __le32 rsvd1:24; */
1443 /* __le32 num_tbs:5; */
1444 #define IWL_num_tbs_POS 24
1445 #define IWL_num_tbs_LEN 5
1446 #define IWL_num_tbs_SYM val0
1447 /* __le32 rsvd2:1; */
1448 /* __le32 padding:2; */
1449 struct iwl4965_tfd_frame_data pa[10];
1450 __le32 reserved;
1451 } __attribute__ ((packed));
1453 #define IWL4965_MAX_WIN_SIZE 64
1454 #define IWL4965_QUEUE_SIZE 256
1455 #define IWL4965_NUM_FIFOS 7
1456 #define IWL_MAX_NUM_QUEUES 16
1458 struct iwl4965_queue_byte_cnt_entry {
1459 __le16 val;
1460 /* __le16 byte_cnt:12; */
1461 #define IWL_byte_cnt_POS 0
1462 #define IWL_byte_cnt_LEN 12
1463 #define IWL_byte_cnt_SYM val
1464 /* __le16 rsvd:4; */
1465 } __attribute__ ((packed));
1467 struct iwl4965_sched_queue_byte_cnt_tbl {
1468 struct iwl4965_queue_byte_cnt_entry tfd_offset[IWL4965_QUEUE_SIZE +
1469 IWL4965_MAX_WIN_SIZE];
1470 u8 dont_care[1024 -
1471 (IWL4965_QUEUE_SIZE + IWL4965_MAX_WIN_SIZE) *
1472 sizeof(__le16)];
1473 } __attribute__ ((packed));
1475 /* Base physical address of iwl4965_shared is provided to KDR_SCD_DRAM_BASE_ADDR
1476 * and &iwl4965_shared.val0 is provided to FH_RSCSR_CHNL0_STTS_WPTR_REG */
1477 struct iwl4965_shared {
1478 struct iwl4965_sched_queue_byte_cnt_tbl
1479 queues_byte_cnt_tbls[IWL_MAX_NUM_QUEUES];
1480 __le32 val0;
1482 /* __le32 rb_closed_stts_rb_num:12; */
1483 #define IWL_rb_closed_stts_rb_num_POS 0
1484 #define IWL_rb_closed_stts_rb_num_LEN 12
1485 #define IWL_rb_closed_stts_rb_num_SYM val0
1486 /* __le32 rsrv1:4; */
1487 /* __le32 rb_closed_stts_rx_frame_num:12; */
1488 #define IWL_rb_closed_stts_rx_frame_num_POS 16
1489 #define IWL_rb_closed_stts_rx_frame_num_LEN 12
1490 #define IWL_rb_closed_stts_rx_frame_num_SYM val0
1491 /* __le32 rsrv2:4; */
1493 __le32 val1;
1494 /* __le32 frame_finished_stts_rb_num:12; */
1495 #define IWL_frame_finished_stts_rb_num_POS 0
1496 #define IWL_frame_finished_stts_rb_num_LEN 12
1497 #define IWL_frame_finished_stts_rb_num_SYM val1
1498 /* __le32 rsrv3:4; */
1499 /* __le32 frame_finished_stts_rx_frame_num:12; */
1500 #define IWL_frame_finished_stts_rx_frame_num_POS 16
1501 #define IWL_frame_finished_stts_rx_frame_num_LEN 12
1502 #define IWL_frame_finished_stts_rx_frame_num_SYM val1
1503 /* __le32 rsrv4:4; */
1505 __le32 padding1; /* so that allocation will be aligned to 16B */
1506 __le32 padding2;
1507 } __attribute__ ((packed));
1509 #endif /* __iwl4965_4965_hw_h__ */