Fix misc .c/.h comment typos
[linux-2.6/linux-loongson.git] / drivers / net / e1000 / e1000_hw.c
blob796c4f7d4260da900321bc5452ff4c5a5a72c707
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
34 #include "e1000_hw.h"
36 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
37 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
38 static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
39 static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
40 static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
41 static void e1000_release_software_semaphore(struct e1000_hw *hw);
43 static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
44 static int32_t e1000_check_downshift(struct e1000_hw *hw);
45 static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
46 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
47 static void e1000_clear_vfta(struct e1000_hw *hw);
48 static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
49 static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
50 static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
51 static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
52 static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
53 static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
54 static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
55 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
56 static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
57 static int32_t e1000_get_software_flag(struct e1000_hw *hw);
58 static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
59 static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
60 static int32_t e1000_id_led_init(struct e1000_hw *hw);
61 static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
62 static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
63 static void e1000_init_rx_addrs(struct e1000_hw *hw);
64 static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
65 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
66 static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
67 static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
68 static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
69 static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
70 static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
71 static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
72 static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
73 static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
74 static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
75 static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
76 static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
77 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
78 static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
79 static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
80 static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
81 static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
82 static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
83 static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
84 static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
85 static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
86 static void e1000_release_software_flag(struct e1000_hw *hw);
87 static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
88 static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
89 static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
90 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
91 static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
92 static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
93 static int32_t e1000_set_phy_type(struct e1000_hw *hw);
94 static void e1000_phy_init_script(struct e1000_hw *hw);
95 static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
96 static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
97 static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
98 static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
99 static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
100 static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
101 static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
102 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
103 uint16_t count);
104 static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
105 static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
106 static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
107 uint16_t words, uint16_t *data);
108 static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
109 uint16_t offset, uint16_t words,
110 uint16_t *data);
111 static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
112 static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
113 static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
114 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
115 uint16_t count);
116 static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
117 uint16_t phy_data);
118 static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
119 uint16_t *phy_data);
120 static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
121 static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
122 static void e1000_release_eeprom(struct e1000_hw *hw);
123 static void e1000_standby_eeprom(struct e1000_hw *hw);
124 static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
125 static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
126 static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
127 static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
128 static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
129 static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
130 uint16_t duplex);
131 static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
133 /* IGP cable length table */
134 static const
135 uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
136 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
137 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
138 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
139 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
140 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
141 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
142 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
143 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
145 static const
146 uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
147 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
148 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
149 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
150 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
151 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
152 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
153 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
154 104, 109, 114, 118, 121, 124};
156 /******************************************************************************
157 * Set the phy type member in the hw struct.
159 * hw - Struct containing variables accessed by shared code
160 *****************************************************************************/
161 static int32_t
162 e1000_set_phy_type(struct e1000_hw *hw)
164 DEBUGFUNC("e1000_set_phy_type");
166 if (hw->mac_type == e1000_undefined)
167 return -E1000_ERR_PHY_TYPE;
169 switch (hw->phy_id) {
170 case M88E1000_E_PHY_ID:
171 case M88E1000_I_PHY_ID:
172 case M88E1011_I_PHY_ID:
173 case M88E1111_I_PHY_ID:
174 hw->phy_type = e1000_phy_m88;
175 break;
176 case IGP01E1000_I_PHY_ID:
177 if (hw->mac_type == e1000_82541 ||
178 hw->mac_type == e1000_82541_rev_2 ||
179 hw->mac_type == e1000_82547 ||
180 hw->mac_type == e1000_82547_rev_2) {
181 hw->phy_type = e1000_phy_igp;
182 break;
184 case IGP03E1000_E_PHY_ID:
185 hw->phy_type = e1000_phy_igp_3;
186 break;
187 case IFE_E_PHY_ID:
188 case IFE_PLUS_E_PHY_ID:
189 case IFE_C_E_PHY_ID:
190 hw->phy_type = e1000_phy_ife;
191 break;
192 case GG82563_E_PHY_ID:
193 if (hw->mac_type == e1000_80003es2lan) {
194 hw->phy_type = e1000_phy_gg82563;
195 break;
197 /* Fall Through */
198 default:
199 /* Should never have loaded on this device */
200 hw->phy_type = e1000_phy_undefined;
201 return -E1000_ERR_PHY_TYPE;
204 return E1000_SUCCESS;
207 /******************************************************************************
208 * IGP phy init script - initializes the GbE PHY
210 * hw - Struct containing variables accessed by shared code
211 *****************************************************************************/
212 static void
213 e1000_phy_init_script(struct e1000_hw *hw)
215 uint32_t ret_val;
216 uint16_t phy_saved_data;
218 DEBUGFUNC("e1000_phy_init_script");
220 if (hw->phy_init_script) {
221 msleep(20);
223 /* Save off the current value of register 0x2F5B to be restored at
224 * the end of this routine. */
225 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
227 /* Disabled the PHY transmitter */
228 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
230 msleep(20);
232 e1000_write_phy_reg(hw,0x0000,0x0140);
234 msleep(5);
236 switch (hw->mac_type) {
237 case e1000_82541:
238 case e1000_82547:
239 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
241 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
243 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
245 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
247 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
249 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
251 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
253 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
255 e1000_write_phy_reg(hw, 0x2010, 0x0008);
256 break;
258 case e1000_82541_rev_2:
259 case e1000_82547_rev_2:
260 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
261 break;
262 default:
263 break;
266 e1000_write_phy_reg(hw, 0x0000, 0x3300);
268 msleep(20);
270 /* Now enable the transmitter */
271 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
273 if (hw->mac_type == e1000_82547) {
274 uint16_t fused, fine, coarse;
276 /* Move to analog registers page */
277 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
279 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
280 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
282 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
283 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
285 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
286 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
287 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
288 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
289 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
291 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
292 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
293 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
295 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
296 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
297 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
303 /******************************************************************************
304 * Set the mac type member in the hw struct.
306 * hw - Struct containing variables accessed by shared code
307 *****************************************************************************/
308 int32_t
309 e1000_set_mac_type(struct e1000_hw *hw)
311 DEBUGFUNC("e1000_set_mac_type");
313 switch (hw->device_id) {
314 case E1000_DEV_ID_82542:
315 switch (hw->revision_id) {
316 case E1000_82542_2_0_REV_ID:
317 hw->mac_type = e1000_82542_rev2_0;
318 break;
319 case E1000_82542_2_1_REV_ID:
320 hw->mac_type = e1000_82542_rev2_1;
321 break;
322 default:
323 /* Invalid 82542 revision ID */
324 return -E1000_ERR_MAC_TYPE;
326 break;
327 case E1000_DEV_ID_82543GC_FIBER:
328 case E1000_DEV_ID_82543GC_COPPER:
329 hw->mac_type = e1000_82543;
330 break;
331 case E1000_DEV_ID_82544EI_COPPER:
332 case E1000_DEV_ID_82544EI_FIBER:
333 case E1000_DEV_ID_82544GC_COPPER:
334 case E1000_DEV_ID_82544GC_LOM:
335 hw->mac_type = e1000_82544;
336 break;
337 case E1000_DEV_ID_82540EM:
338 case E1000_DEV_ID_82540EM_LOM:
339 case E1000_DEV_ID_82540EP:
340 case E1000_DEV_ID_82540EP_LOM:
341 case E1000_DEV_ID_82540EP_LP:
342 hw->mac_type = e1000_82540;
343 break;
344 case E1000_DEV_ID_82545EM_COPPER:
345 case E1000_DEV_ID_82545EM_FIBER:
346 hw->mac_type = e1000_82545;
347 break;
348 case E1000_DEV_ID_82545GM_COPPER:
349 case E1000_DEV_ID_82545GM_FIBER:
350 case E1000_DEV_ID_82545GM_SERDES:
351 hw->mac_type = e1000_82545_rev_3;
352 break;
353 case E1000_DEV_ID_82546EB_COPPER:
354 case E1000_DEV_ID_82546EB_FIBER:
355 case E1000_DEV_ID_82546EB_QUAD_COPPER:
356 hw->mac_type = e1000_82546;
357 break;
358 case E1000_DEV_ID_82546GB_COPPER:
359 case E1000_DEV_ID_82546GB_FIBER:
360 case E1000_DEV_ID_82546GB_SERDES:
361 case E1000_DEV_ID_82546GB_PCIE:
362 case E1000_DEV_ID_82546GB_QUAD_COPPER:
363 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
364 hw->mac_type = e1000_82546_rev_3;
365 break;
366 case E1000_DEV_ID_82541EI:
367 case E1000_DEV_ID_82541EI_MOBILE:
368 case E1000_DEV_ID_82541ER_LOM:
369 hw->mac_type = e1000_82541;
370 break;
371 case E1000_DEV_ID_82541ER:
372 case E1000_DEV_ID_82541GI:
373 case E1000_DEV_ID_82541GI_LF:
374 case E1000_DEV_ID_82541GI_MOBILE:
375 hw->mac_type = e1000_82541_rev_2;
376 break;
377 case E1000_DEV_ID_82547EI:
378 case E1000_DEV_ID_82547EI_MOBILE:
379 hw->mac_type = e1000_82547;
380 break;
381 case E1000_DEV_ID_82547GI:
382 hw->mac_type = e1000_82547_rev_2;
383 break;
384 case E1000_DEV_ID_82571EB_COPPER:
385 case E1000_DEV_ID_82571EB_FIBER:
386 case E1000_DEV_ID_82571EB_SERDES:
387 case E1000_DEV_ID_82571EB_QUAD_COPPER:
388 hw->mac_type = e1000_82571;
389 break;
390 case E1000_DEV_ID_82572EI_COPPER:
391 case E1000_DEV_ID_82572EI_FIBER:
392 case E1000_DEV_ID_82572EI_SERDES:
393 case E1000_DEV_ID_82572EI:
394 hw->mac_type = e1000_82572;
395 break;
396 case E1000_DEV_ID_82573E:
397 case E1000_DEV_ID_82573E_IAMT:
398 case E1000_DEV_ID_82573L:
399 hw->mac_type = e1000_82573;
400 break;
401 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
402 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
403 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
404 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
405 hw->mac_type = e1000_80003es2lan;
406 break;
407 case E1000_DEV_ID_ICH8_IGP_M_AMT:
408 case E1000_DEV_ID_ICH8_IGP_AMT:
409 case E1000_DEV_ID_ICH8_IGP_C:
410 case E1000_DEV_ID_ICH8_IFE:
411 case E1000_DEV_ID_ICH8_IGP_M:
412 hw->mac_type = e1000_ich8lan;
413 break;
414 default:
415 /* Should never have loaded on this device */
416 return -E1000_ERR_MAC_TYPE;
419 switch (hw->mac_type) {
420 case e1000_ich8lan:
421 hw->swfwhw_semaphore_present = TRUE;
422 hw->asf_firmware_present = TRUE;
423 break;
424 case e1000_80003es2lan:
425 hw->swfw_sync_present = TRUE;
426 /* fall through */
427 case e1000_82571:
428 case e1000_82572:
429 case e1000_82573:
430 hw->eeprom_semaphore_present = TRUE;
431 /* fall through */
432 case e1000_82541:
433 case e1000_82547:
434 case e1000_82541_rev_2:
435 case e1000_82547_rev_2:
436 hw->asf_firmware_present = TRUE;
437 break;
438 default:
439 break;
442 return E1000_SUCCESS;
445 /*****************************************************************************
446 * Set media type and TBI compatibility.
448 * hw - Struct containing variables accessed by shared code
449 * **************************************************************************/
450 void
451 e1000_set_media_type(struct e1000_hw *hw)
453 uint32_t status;
455 DEBUGFUNC("e1000_set_media_type");
457 if (hw->mac_type != e1000_82543) {
458 /* tbi_compatibility is only valid on 82543 */
459 hw->tbi_compatibility_en = FALSE;
462 switch (hw->device_id) {
463 case E1000_DEV_ID_82545GM_SERDES:
464 case E1000_DEV_ID_82546GB_SERDES:
465 case E1000_DEV_ID_82571EB_SERDES:
466 case E1000_DEV_ID_82572EI_SERDES:
467 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
468 hw->media_type = e1000_media_type_internal_serdes;
469 break;
470 default:
471 switch (hw->mac_type) {
472 case e1000_82542_rev2_0:
473 case e1000_82542_rev2_1:
474 hw->media_type = e1000_media_type_fiber;
475 break;
476 case e1000_ich8lan:
477 case e1000_82573:
478 /* The STATUS_TBIMODE bit is reserved or reused for the this
479 * device.
481 hw->media_type = e1000_media_type_copper;
482 break;
483 default:
484 status = E1000_READ_REG(hw, STATUS);
485 if (status & E1000_STATUS_TBIMODE) {
486 hw->media_type = e1000_media_type_fiber;
487 /* tbi_compatibility not valid on fiber */
488 hw->tbi_compatibility_en = FALSE;
489 } else {
490 hw->media_type = e1000_media_type_copper;
492 break;
497 /******************************************************************************
498 * Reset the transmit and receive units; mask and clear all interrupts.
500 * hw - Struct containing variables accessed by shared code
501 *****************************************************************************/
502 int32_t
503 e1000_reset_hw(struct e1000_hw *hw)
505 uint32_t ctrl;
506 uint32_t ctrl_ext;
507 uint32_t icr;
508 uint32_t manc;
509 uint32_t led_ctrl;
510 uint32_t timeout;
511 uint32_t extcnf_ctrl;
512 int32_t ret_val;
514 DEBUGFUNC("e1000_reset_hw");
516 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
517 if (hw->mac_type == e1000_82542_rev2_0) {
518 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
519 e1000_pci_clear_mwi(hw);
522 if (hw->bus_type == e1000_bus_type_pci_express) {
523 /* Prevent the PCI-E bus from sticking if there is no TLP connection
524 * on the last TLP read/write transaction when MAC is reset.
526 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
527 DEBUGOUT("PCI-E Master disable polling has failed.\n");
531 /* Clear interrupt mask to stop board from generating interrupts */
532 DEBUGOUT("Masking off all interrupts\n");
533 E1000_WRITE_REG(hw, IMC, 0xffffffff);
535 /* Disable the Transmit and Receive units. Then delay to allow
536 * any pending transactions to complete before we hit the MAC with
537 * the global reset.
539 E1000_WRITE_REG(hw, RCTL, 0);
540 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
541 E1000_WRITE_FLUSH(hw);
543 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
544 hw->tbi_compatibility_on = FALSE;
546 /* Delay to allow any outstanding PCI transactions to complete before
547 * resetting the device
549 msleep(10);
551 ctrl = E1000_READ_REG(hw, CTRL);
553 /* Must reset the PHY before resetting the MAC */
554 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
555 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
556 msleep(5);
559 /* Must acquire the MDIO ownership before MAC reset.
560 * Ownership defaults to firmware after a reset. */
561 if (hw->mac_type == e1000_82573) {
562 timeout = 10;
564 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
565 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
567 do {
568 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
569 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
571 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
572 break;
573 else
574 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
576 msleep(2);
577 timeout--;
578 } while (timeout);
581 /* Workaround for ICH8 bit corruption issue in FIFO memory */
582 if (hw->mac_type == e1000_ich8lan) {
583 /* Set Tx and Rx buffer allocation to 8k apiece. */
584 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
585 /* Set Packet Buffer Size to 16k. */
586 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
589 /* Issue a global reset to the MAC. This will reset the chip's
590 * transmit, receive, DMA, and link units. It will not effect
591 * the current PCI configuration. The global reset bit is self-
592 * clearing, and should clear within a microsecond.
594 DEBUGOUT("Issuing a global reset to MAC\n");
596 switch (hw->mac_type) {
597 case e1000_82544:
598 case e1000_82540:
599 case e1000_82545:
600 case e1000_82546:
601 case e1000_82541:
602 case e1000_82541_rev_2:
603 /* These controllers can't ack the 64-bit write when issuing the
604 * reset, so use IO-mapping as a workaround to issue the reset */
605 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
606 break;
607 case e1000_82545_rev_3:
608 case e1000_82546_rev_3:
609 /* Reset is performed on a shadow of the control register */
610 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
611 break;
612 case e1000_ich8lan:
613 if (!hw->phy_reset_disable &&
614 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
615 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
616 * at the same time to make sure the interface between
617 * MAC and the external PHY is reset.
619 ctrl |= E1000_CTRL_PHY_RST;
622 e1000_get_software_flag(hw);
623 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
624 msleep(5);
625 break;
626 default:
627 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
628 break;
631 /* After MAC reset, force reload of EEPROM to restore power-on settings to
632 * device. Later controllers reload the EEPROM automatically, so just wait
633 * for reload to complete.
635 switch (hw->mac_type) {
636 case e1000_82542_rev2_0:
637 case e1000_82542_rev2_1:
638 case e1000_82543:
639 case e1000_82544:
640 /* Wait for reset to complete */
641 udelay(10);
642 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
643 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
644 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
645 E1000_WRITE_FLUSH(hw);
646 /* Wait for EEPROM reload */
647 msleep(2);
648 break;
649 case e1000_82541:
650 case e1000_82541_rev_2:
651 case e1000_82547:
652 case e1000_82547_rev_2:
653 /* Wait for EEPROM reload */
654 msleep(20);
655 break;
656 case e1000_82573:
657 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
658 udelay(10);
659 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
660 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
661 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
662 E1000_WRITE_FLUSH(hw);
664 /* fall through */
665 default:
666 /* Auto read done will delay 5ms or poll based on mac type */
667 ret_val = e1000_get_auto_rd_done(hw);
668 if (ret_val)
669 return ret_val;
670 break;
673 /* Disable HW ARPs on ASF enabled adapters */
674 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
675 manc = E1000_READ_REG(hw, MANC);
676 manc &= ~(E1000_MANC_ARP_EN);
677 E1000_WRITE_REG(hw, MANC, manc);
680 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
681 e1000_phy_init_script(hw);
683 /* Configure activity LED after PHY reset */
684 led_ctrl = E1000_READ_REG(hw, LEDCTL);
685 led_ctrl &= IGP_ACTIVITY_LED_MASK;
686 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
687 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
690 /* Clear interrupt mask to stop board from generating interrupts */
691 DEBUGOUT("Masking off all interrupts\n");
692 E1000_WRITE_REG(hw, IMC, 0xffffffff);
694 /* Clear any pending interrupt events. */
695 icr = E1000_READ_REG(hw, ICR);
697 /* If MWI was previously enabled, reenable it. */
698 if (hw->mac_type == e1000_82542_rev2_0) {
699 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
700 e1000_pci_set_mwi(hw);
703 if (hw->mac_type == e1000_ich8lan) {
704 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
705 kab |= E1000_KABGTXD_BGSQLBIAS;
706 E1000_WRITE_REG(hw, KABGTXD, kab);
709 return E1000_SUCCESS;
712 /******************************************************************************
714 * Initialize a number of hardware-dependent bits
716 * hw: Struct containing variables accessed by shared code
718 * This function contains hardware limitation workarounds for PCI-E adapters
720 *****************************************************************************/
721 static void
722 e1000_initialize_hardware_bits(struct e1000_hw *hw)
724 if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
725 /* Settings common to all PCI-express silicon */
726 uint32_t reg_ctrl, reg_ctrl_ext;
727 uint32_t reg_tarc0, reg_tarc1;
728 uint32_t reg_tctl;
729 uint32_t reg_txdctl, reg_txdctl1;
731 /* link autonegotiation/sync workarounds */
732 reg_tarc0 = E1000_READ_REG(hw, TARC0);
733 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
735 /* Enable not-done TX descriptor counting */
736 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
737 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
738 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
739 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
740 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
741 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
743 switch (hw->mac_type) {
744 case e1000_82571:
745 case e1000_82572:
746 /* Clear PHY TX compatible mode bits */
747 reg_tarc1 = E1000_READ_REG(hw, TARC1);
748 reg_tarc1 &= ~((1 << 30)|(1 << 29));
750 /* link autonegotiation/sync workarounds */
751 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
753 /* TX ring control fixes */
754 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
756 /* Multiple read bit is reversed polarity */
757 reg_tctl = E1000_READ_REG(hw, TCTL);
758 if (reg_tctl & E1000_TCTL_MULR)
759 reg_tarc1 &= ~(1 << 28);
760 else
761 reg_tarc1 |= (1 << 28);
763 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
764 break;
765 case e1000_82573:
766 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
767 reg_ctrl_ext &= ~(1 << 23);
768 reg_ctrl_ext |= (1 << 22);
770 /* TX byte count fix */
771 reg_ctrl = E1000_READ_REG(hw, CTRL);
772 reg_ctrl &= ~(1 << 29);
774 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
775 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
776 break;
777 case e1000_80003es2lan:
778 /* improve small packet performace for fiber/serdes */
779 if ((hw->media_type == e1000_media_type_fiber) ||
780 (hw->media_type == e1000_media_type_internal_serdes)) {
781 reg_tarc0 &= ~(1 << 20);
784 /* Multiple read bit is reversed polarity */
785 reg_tctl = E1000_READ_REG(hw, TCTL);
786 reg_tarc1 = E1000_READ_REG(hw, TARC1);
787 if (reg_tctl & E1000_TCTL_MULR)
788 reg_tarc1 &= ~(1 << 28);
789 else
790 reg_tarc1 |= (1 << 28);
792 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
793 break;
794 case e1000_ich8lan:
795 /* Reduce concurrent DMA requests to 3 from 4 */
796 if ((hw->revision_id < 3) ||
797 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
798 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
799 reg_tarc0 |= ((1 << 29)|(1 << 28));
801 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
802 reg_ctrl_ext |= (1 << 22);
803 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
805 /* workaround TX hang with TSO=on */
806 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
808 /* Multiple read bit is reversed polarity */
809 reg_tctl = E1000_READ_REG(hw, TCTL);
810 reg_tarc1 = E1000_READ_REG(hw, TARC1);
811 if (reg_tctl & E1000_TCTL_MULR)
812 reg_tarc1 &= ~(1 << 28);
813 else
814 reg_tarc1 |= (1 << 28);
816 /* workaround TX hang with TSO=on */
817 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
819 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
820 break;
821 default:
822 break;
825 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
829 /******************************************************************************
830 * Performs basic configuration of the adapter.
832 * hw - Struct containing variables accessed by shared code
834 * Assumes that the controller has previously been reset and is in a
835 * post-reset uninitialized state. Initializes the receive address registers,
836 * multicast table, and VLAN filter table. Calls routines to setup link
837 * configuration and flow control settings. Clears all on-chip counters. Leaves
838 * the transmit and receive units disabled and uninitialized.
839 *****************************************************************************/
840 int32_t
841 e1000_init_hw(struct e1000_hw *hw)
843 uint32_t ctrl;
844 uint32_t i;
845 int32_t ret_val;
846 uint16_t pcix_cmd_word;
847 uint16_t pcix_stat_hi_word;
848 uint16_t cmd_mmrbc;
849 uint16_t stat_mmrbc;
850 uint32_t mta_size;
851 uint32_t reg_data;
852 uint32_t ctrl_ext;
854 DEBUGFUNC("e1000_init_hw");
856 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
857 if ((hw->mac_type == e1000_ich8lan) &&
858 ((hw->revision_id < 3) ||
859 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
860 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
861 reg_data = E1000_READ_REG(hw, STATUS);
862 reg_data &= ~0x80000000;
863 E1000_WRITE_REG(hw, STATUS, reg_data);
866 /* Initialize Identification LED */
867 ret_val = e1000_id_led_init(hw);
868 if (ret_val) {
869 DEBUGOUT("Error Initializing Identification LED\n");
870 return ret_val;
873 /* Set the media type and TBI compatibility */
874 e1000_set_media_type(hw);
876 /* Must be called after e1000_set_media_type because media_type is used */
877 e1000_initialize_hardware_bits(hw);
879 /* Disabling VLAN filtering. */
880 DEBUGOUT("Initializing the IEEE VLAN\n");
881 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
882 if (hw->mac_type != e1000_ich8lan) {
883 if (hw->mac_type < e1000_82545_rev_3)
884 E1000_WRITE_REG(hw, VET, 0);
885 e1000_clear_vfta(hw);
888 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
889 if (hw->mac_type == e1000_82542_rev2_0) {
890 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
891 e1000_pci_clear_mwi(hw);
892 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
893 E1000_WRITE_FLUSH(hw);
894 msleep(5);
897 /* Setup the receive address. This involves initializing all of the Receive
898 * Address Registers (RARs 0 - 15).
900 e1000_init_rx_addrs(hw);
902 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
903 if (hw->mac_type == e1000_82542_rev2_0) {
904 E1000_WRITE_REG(hw, RCTL, 0);
905 E1000_WRITE_FLUSH(hw);
906 msleep(1);
907 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
908 e1000_pci_set_mwi(hw);
911 /* Zero out the Multicast HASH table */
912 DEBUGOUT("Zeroing the MTA\n");
913 mta_size = E1000_MC_TBL_SIZE;
914 if (hw->mac_type == e1000_ich8lan)
915 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
916 for (i = 0; i < mta_size; i++) {
917 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
918 /* use write flush to prevent Memory Write Block (MWB) from
919 * occuring when accessing our register space */
920 E1000_WRITE_FLUSH(hw);
923 /* Set the PCI priority bit correctly in the CTRL register. This
924 * determines if the adapter gives priority to receives, or if it
925 * gives equal priority to transmits and receives. Valid only on
926 * 82542 and 82543 silicon.
928 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
929 ctrl = E1000_READ_REG(hw, CTRL);
930 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
933 switch (hw->mac_type) {
934 case e1000_82545_rev_3:
935 case e1000_82546_rev_3:
936 break;
937 default:
938 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
939 if (hw->bus_type == e1000_bus_type_pcix) {
940 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
941 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
942 &pcix_stat_hi_word);
943 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
944 PCIX_COMMAND_MMRBC_SHIFT;
945 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
946 PCIX_STATUS_HI_MMRBC_SHIFT;
947 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
948 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
949 if (cmd_mmrbc > stat_mmrbc) {
950 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
951 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
952 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
953 &pcix_cmd_word);
956 break;
959 /* More time needed for PHY to initialize */
960 if (hw->mac_type == e1000_ich8lan)
961 msleep(15);
963 /* Call a subroutine to configure the link and setup flow control. */
964 ret_val = e1000_setup_link(hw);
966 /* Set the transmit descriptor write-back policy */
967 if (hw->mac_type > e1000_82544) {
968 ctrl = E1000_READ_REG(hw, TXDCTL);
969 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
970 E1000_WRITE_REG(hw, TXDCTL, ctrl);
973 if (hw->mac_type == e1000_82573) {
974 e1000_enable_tx_pkt_filtering(hw);
977 switch (hw->mac_type) {
978 default:
979 break;
980 case e1000_80003es2lan:
981 /* Enable retransmit on late collisions */
982 reg_data = E1000_READ_REG(hw, TCTL);
983 reg_data |= E1000_TCTL_RTLC;
984 E1000_WRITE_REG(hw, TCTL, reg_data);
986 /* Configure Gigabit Carry Extend Padding */
987 reg_data = E1000_READ_REG(hw, TCTL_EXT);
988 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
989 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
990 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
992 /* Configure Transmit Inter-Packet Gap */
993 reg_data = E1000_READ_REG(hw, TIPG);
994 reg_data &= ~E1000_TIPG_IPGT_MASK;
995 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
996 E1000_WRITE_REG(hw, TIPG, reg_data);
998 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
999 reg_data &= ~0x00100000;
1000 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1001 /* Fall through */
1002 case e1000_82571:
1003 case e1000_82572:
1004 case e1000_ich8lan:
1005 ctrl = E1000_READ_REG(hw, TXDCTL1);
1006 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
1007 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1008 break;
1012 if (hw->mac_type == e1000_82573) {
1013 uint32_t gcr = E1000_READ_REG(hw, GCR);
1014 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1015 E1000_WRITE_REG(hw, GCR, gcr);
1018 /* Clear all of the statistics registers (clear on read). It is
1019 * important that we do this after we have tried to establish link
1020 * because the symbol error count will increment wildly if there
1021 * is no link.
1023 e1000_clear_hw_cntrs(hw);
1025 /* ICH8 No-snoop bits are opposite polarity.
1026 * Set to snoop by default after reset. */
1027 if (hw->mac_type == e1000_ich8lan)
1028 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1030 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1031 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1032 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1033 /* Relaxed ordering must be disabled to avoid a parity
1034 * error crash in a PCI slot. */
1035 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1036 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1039 return ret_val;
1042 /******************************************************************************
1043 * Adjust SERDES output amplitude based on EEPROM setting.
1045 * hw - Struct containing variables accessed by shared code.
1046 *****************************************************************************/
1047 static int32_t
1048 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1050 uint16_t eeprom_data;
1051 int32_t ret_val;
1053 DEBUGFUNC("e1000_adjust_serdes_amplitude");
1055 if (hw->media_type != e1000_media_type_internal_serdes)
1056 return E1000_SUCCESS;
1058 switch (hw->mac_type) {
1059 case e1000_82545_rev_3:
1060 case e1000_82546_rev_3:
1061 break;
1062 default:
1063 return E1000_SUCCESS;
1066 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1067 if (ret_val) {
1068 return ret_val;
1071 if (eeprom_data != EEPROM_RESERVED_WORD) {
1072 /* Adjust SERDES output amplitude only. */
1073 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
1074 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
1075 if (ret_val)
1076 return ret_val;
1079 return E1000_SUCCESS;
1082 /******************************************************************************
1083 * Configures flow control and link settings.
1085 * hw - Struct containing variables accessed by shared code
1087 * Determines which flow control settings to use. Calls the apropriate media-
1088 * specific link configuration function. Configures the flow control settings.
1089 * Assuming the adapter has a valid link partner, a valid link should be
1090 * established. Assumes the hardware has previously been reset and the
1091 * transmitter and receiver are not enabled.
1092 *****************************************************************************/
1093 int32_t
1094 e1000_setup_link(struct e1000_hw *hw)
1096 uint32_t ctrl_ext;
1097 int32_t ret_val;
1098 uint16_t eeprom_data;
1100 DEBUGFUNC("e1000_setup_link");
1102 /* In the case of the phy reset being blocked, we already have a link.
1103 * We do not have to set it up again. */
1104 if (e1000_check_phy_reset_block(hw))
1105 return E1000_SUCCESS;
1107 /* Read and store word 0x0F of the EEPROM. This word contains bits
1108 * that determine the hardware's default PAUSE (flow control) mode,
1109 * a bit that determines whether the HW defaults to enabling or
1110 * disabling auto-negotiation, and the direction of the
1111 * SW defined pins. If there is no SW over-ride of the flow
1112 * control setting, then the variable hw->fc will
1113 * be initialized based on a value in the EEPROM.
1115 if (hw->fc == E1000_FC_DEFAULT) {
1116 switch (hw->mac_type) {
1117 case e1000_ich8lan:
1118 case e1000_82573:
1119 hw->fc = E1000_FC_FULL;
1120 break;
1121 default:
1122 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1123 1, &eeprom_data);
1124 if (ret_val) {
1125 DEBUGOUT("EEPROM Read Error\n");
1126 return -E1000_ERR_EEPROM;
1128 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1129 hw->fc = E1000_FC_NONE;
1130 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1131 EEPROM_WORD0F_ASM_DIR)
1132 hw->fc = E1000_FC_TX_PAUSE;
1133 else
1134 hw->fc = E1000_FC_FULL;
1135 break;
1139 /* We want to save off the original Flow Control configuration just
1140 * in case we get disconnected and then reconnected into a different
1141 * hub or switch with different Flow Control capabilities.
1143 if (hw->mac_type == e1000_82542_rev2_0)
1144 hw->fc &= (~E1000_FC_TX_PAUSE);
1146 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1147 hw->fc &= (~E1000_FC_RX_PAUSE);
1149 hw->original_fc = hw->fc;
1151 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1153 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1154 * polarity value for the SW controlled pins, and setup the
1155 * Extended Device Control reg with that info.
1156 * This is needed because one of the SW controlled pins is used for
1157 * signal detection. So this should be done before e1000_setup_pcs_link()
1158 * or e1000_phy_setup() is called.
1160 if (hw->mac_type == e1000_82543) {
1161 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1162 1, &eeprom_data);
1163 if (ret_val) {
1164 DEBUGOUT("EEPROM Read Error\n");
1165 return -E1000_ERR_EEPROM;
1167 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1168 SWDPIO__EXT_SHIFT);
1169 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1172 /* Call the necessary subroutine to configure the link. */
1173 ret_val = (hw->media_type == e1000_media_type_copper) ?
1174 e1000_setup_copper_link(hw) :
1175 e1000_setup_fiber_serdes_link(hw);
1177 /* Initialize the flow control address, type, and PAUSE timer
1178 * registers to their default values. This is done even if flow
1179 * control is disabled, because it does not hurt anything to
1180 * initialize these registers.
1182 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1184 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1185 if (hw->mac_type != e1000_ich8lan) {
1186 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1187 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1188 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1191 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1193 /* Set the flow control receive threshold registers. Normally,
1194 * these registers will be set to a default threshold that may be
1195 * adjusted later by the driver's runtime code. However, if the
1196 * ability to transmit pause frames in not enabled, then these
1197 * registers will be set to 0.
1199 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
1200 E1000_WRITE_REG(hw, FCRTL, 0);
1201 E1000_WRITE_REG(hw, FCRTH, 0);
1202 } else {
1203 /* We need to set up the Receive Threshold high and low water marks
1204 * as well as (optionally) enabling the transmission of XON frames.
1206 if (hw->fc_send_xon) {
1207 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1208 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1209 } else {
1210 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1211 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1214 return ret_val;
1217 /******************************************************************************
1218 * Sets up link for a fiber based or serdes based adapter
1220 * hw - Struct containing variables accessed by shared code
1222 * Manipulates Physical Coding Sublayer functions in order to configure
1223 * link. Assumes the hardware has been previously reset and the transmitter
1224 * and receiver are not enabled.
1225 *****************************************************************************/
1226 static int32_t
1227 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1229 uint32_t ctrl;
1230 uint32_t status;
1231 uint32_t txcw = 0;
1232 uint32_t i;
1233 uint32_t signal = 0;
1234 int32_t ret_val;
1236 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1238 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1239 * until explicitly turned off or a power cycle is performed. A read to
1240 * the register does not indicate its status. Therefore, we ensure
1241 * loopback mode is disabled during initialization.
1243 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1244 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1246 /* On adapters with a MAC newer than 82544, SWDP 1 will be
1247 * set when the optics detect a signal. On older adapters, it will be
1248 * cleared when there is a signal. This applies to fiber media only.
1249 * If we're on serdes media, adjust the output amplitude to value
1250 * set in the EEPROM.
1252 ctrl = E1000_READ_REG(hw, CTRL);
1253 if (hw->media_type == e1000_media_type_fiber)
1254 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1256 ret_val = e1000_adjust_serdes_amplitude(hw);
1257 if (ret_val)
1258 return ret_val;
1260 /* Take the link out of reset */
1261 ctrl &= ~(E1000_CTRL_LRST);
1263 /* Adjust VCO speed to improve BER performance */
1264 ret_val = e1000_set_vco_speed(hw);
1265 if (ret_val)
1266 return ret_val;
1268 e1000_config_collision_dist(hw);
1270 /* Check for a software override of the flow control settings, and setup
1271 * the device accordingly. If auto-negotiation is enabled, then software
1272 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1273 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1274 * auto-negotiation is disabled, then software will have to manually
1275 * configure the two flow control enable bits in the CTRL register.
1277 * The possible values of the "fc" parameter are:
1278 * 0: Flow control is completely disabled
1279 * 1: Rx flow control is enabled (we can receive pause frames, but
1280 * not send pause frames).
1281 * 2: Tx flow control is enabled (we can send pause frames but we do
1282 * not support receiving pause frames).
1283 * 3: Both Rx and TX flow control (symmetric) are enabled.
1285 switch (hw->fc) {
1286 case E1000_FC_NONE:
1287 /* Flow control is completely disabled by a software over-ride. */
1288 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1289 break;
1290 case E1000_FC_RX_PAUSE:
1291 /* RX Flow control is enabled and TX Flow control is disabled by a
1292 * software over-ride. Since there really isn't a way to advertise
1293 * that we are capable of RX Pause ONLY, we will advertise that we
1294 * support both symmetric and asymmetric RX PAUSE. Later, we will
1295 * disable the adapter's ability to send PAUSE frames.
1297 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1298 break;
1299 case E1000_FC_TX_PAUSE:
1300 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1301 * software over-ride.
1303 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1304 break;
1305 case E1000_FC_FULL:
1306 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1307 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1308 break;
1309 default:
1310 DEBUGOUT("Flow control param set incorrectly\n");
1311 return -E1000_ERR_CONFIG;
1312 break;
1315 /* Since auto-negotiation is enabled, take the link out of reset (the link
1316 * will be in reset, because we previously reset the chip). This will
1317 * restart auto-negotiation. If auto-neogtiation is successful then the
1318 * link-up status bit will be set and the flow control enable bits (RFCE
1319 * and TFCE) will be set according to their negotiated value.
1321 DEBUGOUT("Auto-negotiation enabled\n");
1323 E1000_WRITE_REG(hw, TXCW, txcw);
1324 E1000_WRITE_REG(hw, CTRL, ctrl);
1325 E1000_WRITE_FLUSH(hw);
1327 hw->txcw = txcw;
1328 msleep(1);
1330 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1331 * indication in the Device Status Register. Time-out if a link isn't
1332 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1333 * less than 500 milliseconds even if the other end is doing it in SW).
1334 * For internal serdes, we just assume a signal is present, then poll.
1336 if (hw->media_type == e1000_media_type_internal_serdes ||
1337 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1338 DEBUGOUT("Looking for Link\n");
1339 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1340 msleep(10);
1341 status = E1000_READ_REG(hw, STATUS);
1342 if (status & E1000_STATUS_LU) break;
1344 if (i == (LINK_UP_TIMEOUT / 10)) {
1345 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1346 hw->autoneg_failed = 1;
1347 /* AutoNeg failed to achieve a link, so we'll call
1348 * e1000_check_for_link. This routine will force the link up if
1349 * we detect a signal. This will allow us to communicate with
1350 * non-autonegotiating link partners.
1352 ret_val = e1000_check_for_link(hw);
1353 if (ret_val) {
1354 DEBUGOUT("Error while checking for link\n");
1355 return ret_val;
1357 hw->autoneg_failed = 0;
1358 } else {
1359 hw->autoneg_failed = 0;
1360 DEBUGOUT("Valid Link Found\n");
1362 } else {
1363 DEBUGOUT("No Signal Detected\n");
1365 return E1000_SUCCESS;
1368 /******************************************************************************
1369 * Make sure we have a valid PHY and change PHY mode before link setup.
1371 * hw - Struct containing variables accessed by shared code
1372 ******************************************************************************/
1373 static int32_t
1374 e1000_copper_link_preconfig(struct e1000_hw *hw)
1376 uint32_t ctrl;
1377 int32_t ret_val;
1378 uint16_t phy_data;
1380 DEBUGFUNC("e1000_copper_link_preconfig");
1382 ctrl = E1000_READ_REG(hw, CTRL);
1383 /* With 82543, we need to force speed and duplex on the MAC equal to what
1384 * the PHY speed and duplex configuration is. In addition, we need to
1385 * perform a hardware reset on the PHY to take it out of reset.
1387 if (hw->mac_type > e1000_82543) {
1388 ctrl |= E1000_CTRL_SLU;
1389 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1390 E1000_WRITE_REG(hw, CTRL, ctrl);
1391 } else {
1392 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1393 E1000_WRITE_REG(hw, CTRL, ctrl);
1394 ret_val = e1000_phy_hw_reset(hw);
1395 if (ret_val)
1396 return ret_val;
1399 /* Make sure we have a valid PHY */
1400 ret_val = e1000_detect_gig_phy(hw);
1401 if (ret_val) {
1402 DEBUGOUT("Error, did not detect valid phy.\n");
1403 return ret_val;
1405 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1407 /* Set PHY to class A mode (if necessary) */
1408 ret_val = e1000_set_phy_mode(hw);
1409 if (ret_val)
1410 return ret_val;
1412 if ((hw->mac_type == e1000_82545_rev_3) ||
1413 (hw->mac_type == e1000_82546_rev_3)) {
1414 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1415 phy_data |= 0x00000008;
1416 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1419 if (hw->mac_type <= e1000_82543 ||
1420 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1421 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1422 hw->phy_reset_disable = FALSE;
1424 return E1000_SUCCESS;
1428 /********************************************************************
1429 * Copper link setup for e1000_phy_igp series.
1431 * hw - Struct containing variables accessed by shared code
1432 *********************************************************************/
1433 static int32_t
1434 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1436 uint32_t led_ctrl;
1437 int32_t ret_val;
1438 uint16_t phy_data;
1440 DEBUGFUNC("e1000_copper_link_igp_setup");
1442 if (hw->phy_reset_disable)
1443 return E1000_SUCCESS;
1445 ret_val = e1000_phy_reset(hw);
1446 if (ret_val) {
1447 DEBUGOUT("Error Resetting the PHY\n");
1448 return ret_val;
1451 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1452 msleep(15);
1453 if (hw->mac_type != e1000_ich8lan) {
1454 /* Configure activity LED after PHY reset */
1455 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1456 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1457 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1458 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1461 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1462 if (hw->phy_type == e1000_phy_igp) {
1463 /* disable lplu d3 during driver init */
1464 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1465 if (ret_val) {
1466 DEBUGOUT("Error Disabling LPLU D3\n");
1467 return ret_val;
1471 /* disable lplu d0 during driver init */
1472 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1473 if (ret_val) {
1474 DEBUGOUT("Error Disabling LPLU D0\n");
1475 return ret_val;
1477 /* Configure mdi-mdix settings */
1478 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1479 if (ret_val)
1480 return ret_val;
1482 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1483 hw->dsp_config_state = e1000_dsp_config_disabled;
1484 /* Force MDI for earlier revs of the IGP PHY */
1485 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1486 hw->mdix = 1;
1488 } else {
1489 hw->dsp_config_state = e1000_dsp_config_enabled;
1490 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1492 switch (hw->mdix) {
1493 case 1:
1494 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1495 break;
1496 case 2:
1497 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1498 break;
1499 case 0:
1500 default:
1501 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1502 break;
1505 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1506 if (ret_val)
1507 return ret_val;
1509 /* set auto-master slave resolution settings */
1510 if (hw->autoneg) {
1511 e1000_ms_type phy_ms_setting = hw->master_slave;
1513 if (hw->ffe_config_state == e1000_ffe_config_active)
1514 hw->ffe_config_state = e1000_ffe_config_enabled;
1516 if (hw->dsp_config_state == e1000_dsp_config_activated)
1517 hw->dsp_config_state = e1000_dsp_config_enabled;
1519 /* when autonegotiation advertisment is only 1000Mbps then we
1520 * should disable SmartSpeed and enable Auto MasterSlave
1521 * resolution as hardware default. */
1522 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1523 /* Disable SmartSpeed */
1524 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1525 &phy_data);
1526 if (ret_val)
1527 return ret_val;
1528 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1529 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1530 phy_data);
1531 if (ret_val)
1532 return ret_val;
1533 /* Set auto Master/Slave resolution process */
1534 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1535 if (ret_val)
1536 return ret_val;
1537 phy_data &= ~CR_1000T_MS_ENABLE;
1538 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1539 if (ret_val)
1540 return ret_val;
1543 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1544 if (ret_val)
1545 return ret_val;
1547 /* load defaults for future use */
1548 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1549 ((phy_data & CR_1000T_MS_VALUE) ?
1550 e1000_ms_force_master :
1551 e1000_ms_force_slave) :
1552 e1000_ms_auto;
1554 switch (phy_ms_setting) {
1555 case e1000_ms_force_master:
1556 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1557 break;
1558 case e1000_ms_force_slave:
1559 phy_data |= CR_1000T_MS_ENABLE;
1560 phy_data &= ~(CR_1000T_MS_VALUE);
1561 break;
1562 case e1000_ms_auto:
1563 phy_data &= ~CR_1000T_MS_ENABLE;
1564 default:
1565 break;
1567 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1568 if (ret_val)
1569 return ret_val;
1572 return E1000_SUCCESS;
1575 /********************************************************************
1576 * Copper link setup for e1000_phy_gg82563 series.
1578 * hw - Struct containing variables accessed by shared code
1579 *********************************************************************/
1580 static int32_t
1581 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1583 int32_t ret_val;
1584 uint16_t phy_data;
1585 uint32_t reg_data;
1587 DEBUGFUNC("e1000_copper_link_ggp_setup");
1589 if (!hw->phy_reset_disable) {
1591 /* Enable CRS on TX for half-duplex operation. */
1592 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1593 &phy_data);
1594 if (ret_val)
1595 return ret_val;
1597 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1598 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1599 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1601 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1602 phy_data);
1603 if (ret_val)
1604 return ret_val;
1606 /* Options:
1607 * MDI/MDI-X = 0 (default)
1608 * 0 - Auto for all speeds
1609 * 1 - MDI mode
1610 * 2 - MDI-X mode
1611 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1613 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
1614 if (ret_val)
1615 return ret_val;
1617 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1619 switch (hw->mdix) {
1620 case 1:
1621 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1622 break;
1623 case 2:
1624 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1625 break;
1626 case 0:
1627 default:
1628 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1629 break;
1632 /* Options:
1633 * disable_polarity_correction = 0 (default)
1634 * Automatic Correction for Reversed Cable Polarity
1635 * 0 - Disabled
1636 * 1 - Enabled
1638 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1639 if (hw->disable_polarity_correction == 1)
1640 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1641 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1643 if (ret_val)
1644 return ret_val;
1646 /* SW Reset the PHY so all changes take effect */
1647 ret_val = e1000_phy_reset(hw);
1648 if (ret_val) {
1649 DEBUGOUT("Error Resetting the PHY\n");
1650 return ret_val;
1652 } /* phy_reset_disable */
1654 if (hw->mac_type == e1000_80003es2lan) {
1655 /* Bypass RX and TX FIFO's */
1656 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1657 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1658 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1659 if (ret_val)
1660 return ret_val;
1662 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1663 if (ret_val)
1664 return ret_val;
1666 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1667 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1669 if (ret_val)
1670 return ret_val;
1672 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1673 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1674 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1676 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1677 &phy_data);
1678 if (ret_val)
1679 return ret_val;
1681 /* Do not init these registers when the HW is in IAMT mode, since the
1682 * firmware will have already initialized them. We only initialize
1683 * them if the HW is not in IAMT mode.
1685 if (e1000_check_mng_mode(hw) == FALSE) {
1686 /* Enable Electrical Idle on the PHY */
1687 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1688 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1689 phy_data);
1690 if (ret_val)
1691 return ret_val;
1693 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1694 &phy_data);
1695 if (ret_val)
1696 return ret_val;
1698 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1699 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1700 phy_data);
1702 if (ret_val)
1703 return ret_val;
1706 /* Workaround: Disable padding in Kumeran interface in the MAC
1707 * and in the PHY to avoid CRC errors.
1709 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1710 &phy_data);
1711 if (ret_val)
1712 return ret_val;
1713 phy_data |= GG82563_ICR_DIS_PADDING;
1714 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1715 phy_data);
1716 if (ret_val)
1717 return ret_val;
1720 return E1000_SUCCESS;
1723 /********************************************************************
1724 * Copper link setup for e1000_phy_m88 series.
1726 * hw - Struct containing variables accessed by shared code
1727 *********************************************************************/
1728 static int32_t
1729 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1731 int32_t ret_val;
1732 uint16_t phy_data;
1734 DEBUGFUNC("e1000_copper_link_mgp_setup");
1736 if (hw->phy_reset_disable)
1737 return E1000_SUCCESS;
1739 /* Enable CRS on TX. This must be set for half-duplex operation. */
1740 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1741 if (ret_val)
1742 return ret_val;
1744 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1746 /* Options:
1747 * MDI/MDI-X = 0 (default)
1748 * 0 - Auto for all speeds
1749 * 1 - MDI mode
1750 * 2 - MDI-X mode
1751 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1753 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1755 switch (hw->mdix) {
1756 case 1:
1757 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1758 break;
1759 case 2:
1760 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1761 break;
1762 case 3:
1763 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1764 break;
1765 case 0:
1766 default:
1767 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1768 break;
1771 /* Options:
1772 * disable_polarity_correction = 0 (default)
1773 * Automatic Correction for Reversed Cable Polarity
1774 * 0 - Disabled
1775 * 1 - Enabled
1777 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1778 if (hw->disable_polarity_correction == 1)
1779 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1780 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1781 if (ret_val)
1782 return ret_val;
1784 if (hw->phy_revision < M88E1011_I_REV_4) {
1785 /* Force TX_CLK in the Extended PHY Specific Control Register
1786 * to 25MHz clock.
1788 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1789 if (ret_val)
1790 return ret_val;
1792 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1794 if ((hw->phy_revision == E1000_REVISION_2) &&
1795 (hw->phy_id == M88E1111_I_PHY_ID)) {
1796 /* Vidalia Phy, set the downshift counter to 5x */
1797 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1798 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1799 ret_val = e1000_write_phy_reg(hw,
1800 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1801 if (ret_val)
1802 return ret_val;
1803 } else {
1804 /* Configure Master and Slave downshift values */
1805 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1806 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1807 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1808 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1809 ret_val = e1000_write_phy_reg(hw,
1810 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1811 if (ret_val)
1812 return ret_val;
1816 /* SW Reset the PHY so all changes take effect */
1817 ret_val = e1000_phy_reset(hw);
1818 if (ret_val) {
1819 DEBUGOUT("Error Resetting the PHY\n");
1820 return ret_val;
1823 return E1000_SUCCESS;
1826 /********************************************************************
1827 * Setup auto-negotiation and flow control advertisements,
1828 * and then perform auto-negotiation.
1830 * hw - Struct containing variables accessed by shared code
1831 *********************************************************************/
1832 static int32_t
1833 e1000_copper_link_autoneg(struct e1000_hw *hw)
1835 int32_t ret_val;
1836 uint16_t phy_data;
1838 DEBUGFUNC("e1000_copper_link_autoneg");
1840 /* Perform some bounds checking on the hw->autoneg_advertised
1841 * parameter. If this variable is zero, then set it to the default.
1843 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1845 /* If autoneg_advertised is zero, we assume it was not defaulted
1846 * by the calling code so we set to advertise full capability.
1848 if (hw->autoneg_advertised == 0)
1849 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1851 /* IFE phy only supports 10/100 */
1852 if (hw->phy_type == e1000_phy_ife)
1853 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1855 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1856 ret_val = e1000_phy_setup_autoneg(hw);
1857 if (ret_val) {
1858 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1859 return ret_val;
1861 DEBUGOUT("Restarting Auto-Neg\n");
1863 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1864 * the Auto Neg Restart bit in the PHY control register.
1866 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1867 if (ret_val)
1868 return ret_val;
1870 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1871 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1872 if (ret_val)
1873 return ret_val;
1875 /* Does the user want to wait for Auto-Neg to complete here, or
1876 * check at a later time (for example, callback routine).
1878 if (hw->wait_autoneg_complete) {
1879 ret_val = e1000_wait_autoneg(hw);
1880 if (ret_val) {
1881 DEBUGOUT("Error while waiting for autoneg to complete\n");
1882 return ret_val;
1886 hw->get_link_status = TRUE;
1888 return E1000_SUCCESS;
1891 /******************************************************************************
1892 * Config the MAC and the PHY after link is up.
1893 * 1) Set up the MAC to the current PHY speed/duplex
1894 * if we are on 82543. If we
1895 * are on newer silicon, we only need to configure
1896 * collision distance in the Transmit Control Register.
1897 * 2) Set up flow control on the MAC to that established with
1898 * the link partner.
1899 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1901 * hw - Struct containing variables accessed by shared code
1902 ******************************************************************************/
1903 static int32_t
1904 e1000_copper_link_postconfig(struct e1000_hw *hw)
1906 int32_t ret_val;
1907 DEBUGFUNC("e1000_copper_link_postconfig");
1909 if (hw->mac_type >= e1000_82544) {
1910 e1000_config_collision_dist(hw);
1911 } else {
1912 ret_val = e1000_config_mac_to_phy(hw);
1913 if (ret_val) {
1914 DEBUGOUT("Error configuring MAC to PHY settings\n");
1915 return ret_val;
1918 ret_val = e1000_config_fc_after_link_up(hw);
1919 if (ret_val) {
1920 DEBUGOUT("Error Configuring Flow Control\n");
1921 return ret_val;
1924 /* Config DSP to improve Giga link quality */
1925 if (hw->phy_type == e1000_phy_igp) {
1926 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1927 if (ret_val) {
1928 DEBUGOUT("Error Configuring DSP after link up\n");
1929 return ret_val;
1933 return E1000_SUCCESS;
1936 /******************************************************************************
1937 * Detects which PHY is present and setup the speed and duplex
1939 * hw - Struct containing variables accessed by shared code
1940 ******************************************************************************/
1941 static int32_t
1942 e1000_setup_copper_link(struct e1000_hw *hw)
1944 int32_t ret_val;
1945 uint16_t i;
1946 uint16_t phy_data;
1947 uint16_t reg_data;
1949 DEBUGFUNC("e1000_setup_copper_link");
1951 switch (hw->mac_type) {
1952 case e1000_80003es2lan:
1953 case e1000_ich8lan:
1954 /* Set the mac to wait the maximum time between each
1955 * iteration and increase the max iterations when
1956 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1957 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1958 if (ret_val)
1959 return ret_val;
1960 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1961 if (ret_val)
1962 return ret_val;
1963 reg_data |= 0x3F;
1964 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1965 if (ret_val)
1966 return ret_val;
1967 default:
1968 break;
1971 /* Check if it is a valid PHY and set PHY mode if necessary. */
1972 ret_val = e1000_copper_link_preconfig(hw);
1973 if (ret_val)
1974 return ret_val;
1976 switch (hw->mac_type) {
1977 case e1000_80003es2lan:
1978 /* Kumeran registers are written-only */
1979 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1980 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1981 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1982 reg_data);
1983 if (ret_val)
1984 return ret_val;
1985 break;
1986 default:
1987 break;
1990 if (hw->phy_type == e1000_phy_igp ||
1991 hw->phy_type == e1000_phy_igp_3 ||
1992 hw->phy_type == e1000_phy_igp_2) {
1993 ret_val = e1000_copper_link_igp_setup(hw);
1994 if (ret_val)
1995 return ret_val;
1996 } else if (hw->phy_type == e1000_phy_m88) {
1997 ret_val = e1000_copper_link_mgp_setup(hw);
1998 if (ret_val)
1999 return ret_val;
2000 } else if (hw->phy_type == e1000_phy_gg82563) {
2001 ret_val = e1000_copper_link_ggp_setup(hw);
2002 if (ret_val)
2003 return ret_val;
2006 if (hw->autoneg) {
2007 /* Setup autoneg and flow control advertisement
2008 * and perform autonegotiation */
2009 ret_val = e1000_copper_link_autoneg(hw);
2010 if (ret_val)
2011 return ret_val;
2012 } else {
2013 /* PHY will be set to 10H, 10F, 100H,or 100F
2014 * depending on value from forced_speed_duplex. */
2015 DEBUGOUT("Forcing speed and duplex\n");
2016 ret_val = e1000_phy_force_speed_duplex(hw);
2017 if (ret_val) {
2018 DEBUGOUT("Error Forcing Speed and Duplex\n");
2019 return ret_val;
2023 /* Check link status. Wait up to 100 microseconds for link to become
2024 * valid.
2026 for (i = 0; i < 10; i++) {
2027 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2028 if (ret_val)
2029 return ret_val;
2030 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2031 if (ret_val)
2032 return ret_val;
2034 if (phy_data & MII_SR_LINK_STATUS) {
2035 /* Config the MAC and PHY after link is up */
2036 ret_val = e1000_copper_link_postconfig(hw);
2037 if (ret_val)
2038 return ret_val;
2040 DEBUGOUT("Valid link established!!!\n");
2041 return E1000_SUCCESS;
2043 udelay(10);
2046 DEBUGOUT("Unable to establish link!!!\n");
2047 return E1000_SUCCESS;
2050 /******************************************************************************
2051 * Configure the MAC-to-PHY interface for 10/100Mbps
2053 * hw - Struct containing variables accessed by shared code
2054 ******************************************************************************/
2055 static int32_t
2056 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
2058 int32_t ret_val = E1000_SUCCESS;
2059 uint32_t tipg;
2060 uint16_t reg_data;
2062 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2064 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2065 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2066 reg_data);
2067 if (ret_val)
2068 return ret_val;
2070 /* Configure Transmit Inter-Packet Gap */
2071 tipg = E1000_READ_REG(hw, TIPG);
2072 tipg &= ~E1000_TIPG_IPGT_MASK;
2073 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
2074 E1000_WRITE_REG(hw, TIPG, tipg);
2076 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2078 if (ret_val)
2079 return ret_val;
2081 if (duplex == HALF_DUPLEX)
2082 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2083 else
2084 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2086 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2088 return ret_val;
2091 static int32_t
2092 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
2094 int32_t ret_val = E1000_SUCCESS;
2095 uint16_t reg_data;
2096 uint32_t tipg;
2098 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2100 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2101 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2102 reg_data);
2103 if (ret_val)
2104 return ret_val;
2106 /* Configure Transmit Inter-Packet Gap */
2107 tipg = E1000_READ_REG(hw, TIPG);
2108 tipg &= ~E1000_TIPG_IPGT_MASK;
2109 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2110 E1000_WRITE_REG(hw, TIPG, tipg);
2112 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2114 if (ret_val)
2115 return ret_val;
2117 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2118 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2120 return ret_val;
2123 /******************************************************************************
2124 * Configures PHY autoneg and flow control advertisement settings
2126 * hw - Struct containing variables accessed by shared code
2127 ******************************************************************************/
2128 int32_t
2129 e1000_phy_setup_autoneg(struct e1000_hw *hw)
2131 int32_t ret_val;
2132 uint16_t mii_autoneg_adv_reg;
2133 uint16_t mii_1000t_ctrl_reg;
2135 DEBUGFUNC("e1000_phy_setup_autoneg");
2137 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2138 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
2139 if (ret_val)
2140 return ret_val;
2142 if (hw->phy_type != e1000_phy_ife) {
2143 /* Read the MII 1000Base-T Control Register (Address 9). */
2144 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2145 if (ret_val)
2146 return ret_val;
2147 } else
2148 mii_1000t_ctrl_reg=0;
2150 /* Need to parse both autoneg_advertised and fc and set up
2151 * the appropriate PHY registers. First we will parse for
2152 * autoneg_advertised software override. Since we can advertise
2153 * a plethora of combinations, we need to check each bit
2154 * individually.
2157 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2158 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2159 * the 1000Base-T Control Register (Address 9).
2161 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2162 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2164 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2166 /* Do we want to advertise 10 Mb Half Duplex? */
2167 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
2168 DEBUGOUT("Advertise 10mb Half duplex\n");
2169 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2172 /* Do we want to advertise 10 Mb Full Duplex? */
2173 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
2174 DEBUGOUT("Advertise 10mb Full duplex\n");
2175 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2178 /* Do we want to advertise 100 Mb Half Duplex? */
2179 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
2180 DEBUGOUT("Advertise 100mb Half duplex\n");
2181 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2184 /* Do we want to advertise 100 Mb Full Duplex? */
2185 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
2186 DEBUGOUT("Advertise 100mb Full duplex\n");
2187 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2190 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
2191 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
2192 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2195 /* Do we want to advertise 1000 Mb Full Duplex? */
2196 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
2197 DEBUGOUT("Advertise 1000mb Full duplex\n");
2198 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2199 if (hw->phy_type == e1000_phy_ife) {
2200 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2204 /* Check for a software override of the flow control settings, and
2205 * setup the PHY advertisement registers accordingly. If
2206 * auto-negotiation is enabled, then software will have to set the
2207 * "PAUSE" bits to the correct value in the Auto-Negotiation
2208 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2210 * The possible values of the "fc" parameter are:
2211 * 0: Flow control is completely disabled
2212 * 1: Rx flow control is enabled (we can receive pause frames
2213 * but not send pause frames).
2214 * 2: Tx flow control is enabled (we can send pause frames
2215 * but we do not support receiving pause frames).
2216 * 3: Both Rx and TX flow control (symmetric) are enabled.
2217 * other: No software override. The flow control configuration
2218 * in the EEPROM is used.
2220 switch (hw->fc) {
2221 case E1000_FC_NONE: /* 0 */
2222 /* Flow control (RX & TX) is completely disabled by a
2223 * software over-ride.
2225 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2226 break;
2227 case E1000_FC_RX_PAUSE: /* 1 */
2228 /* RX Flow control is enabled, and TX Flow control is
2229 * disabled, by a software over-ride.
2231 /* Since there really isn't a way to advertise that we are
2232 * capable of RX Pause ONLY, we will advertise that we
2233 * support both symmetric and asymmetric RX PAUSE. Later
2234 * (in e1000_config_fc_after_link_up) we will disable the
2235 *hw's ability to send PAUSE frames.
2237 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2238 break;
2239 case E1000_FC_TX_PAUSE: /* 2 */
2240 /* TX Flow control is enabled, and RX Flow control is
2241 * disabled, by a software over-ride.
2243 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2244 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2245 break;
2246 case E1000_FC_FULL: /* 3 */
2247 /* Flow control (both RX and TX) is enabled by a software
2248 * over-ride.
2250 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2251 break;
2252 default:
2253 DEBUGOUT("Flow control param set incorrectly\n");
2254 return -E1000_ERR_CONFIG;
2257 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
2258 if (ret_val)
2259 return ret_val;
2261 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2263 if (hw->phy_type != e1000_phy_ife) {
2264 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2265 if (ret_val)
2266 return ret_val;
2269 return E1000_SUCCESS;
2272 /******************************************************************************
2273 * Force PHY speed and duplex settings to hw->forced_speed_duplex
2275 * hw - Struct containing variables accessed by shared code
2276 ******************************************************************************/
2277 static int32_t
2278 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2280 uint32_t ctrl;
2281 int32_t ret_val;
2282 uint16_t mii_ctrl_reg;
2283 uint16_t mii_status_reg;
2284 uint16_t phy_data;
2285 uint16_t i;
2287 DEBUGFUNC("e1000_phy_force_speed_duplex");
2289 /* Turn off Flow control if we are forcing speed and duplex. */
2290 hw->fc = E1000_FC_NONE;
2292 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2294 /* Read the Device Control Register. */
2295 ctrl = E1000_READ_REG(hw, CTRL);
2297 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2298 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2299 ctrl &= ~(DEVICE_SPEED_MASK);
2301 /* Clear the Auto Speed Detect Enable bit. */
2302 ctrl &= ~E1000_CTRL_ASDE;
2304 /* Read the MII Control Register. */
2305 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
2306 if (ret_val)
2307 return ret_val;
2309 /* We need to disable autoneg in order to force link and duplex. */
2311 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2313 /* Are we forcing Full or Half Duplex? */
2314 if (hw->forced_speed_duplex == e1000_100_full ||
2315 hw->forced_speed_duplex == e1000_10_full) {
2316 /* We want to force full duplex so we SET the full duplex bits in the
2317 * Device and MII Control Registers.
2319 ctrl |= E1000_CTRL_FD;
2320 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2321 DEBUGOUT("Full Duplex\n");
2322 } else {
2323 /* We want to force half duplex so we CLEAR the full duplex bits in
2324 * the Device and MII Control Registers.
2326 ctrl &= ~E1000_CTRL_FD;
2327 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2328 DEBUGOUT("Half Duplex\n");
2331 /* Are we forcing 100Mbps??? */
2332 if (hw->forced_speed_duplex == e1000_100_full ||
2333 hw->forced_speed_duplex == e1000_100_half) {
2334 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2335 ctrl |= E1000_CTRL_SPD_100;
2336 mii_ctrl_reg |= MII_CR_SPEED_100;
2337 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2338 DEBUGOUT("Forcing 100mb ");
2339 } else {
2340 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2341 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2342 mii_ctrl_reg |= MII_CR_SPEED_10;
2343 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2344 DEBUGOUT("Forcing 10mb ");
2347 e1000_config_collision_dist(hw);
2349 /* Write the configured values back to the Device Control Reg. */
2350 E1000_WRITE_REG(hw, CTRL, ctrl);
2352 if ((hw->phy_type == e1000_phy_m88) ||
2353 (hw->phy_type == e1000_phy_gg82563)) {
2354 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2355 if (ret_val)
2356 return ret_val;
2358 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2359 * forced whenever speed are duplex are forced.
2361 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2362 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2363 if (ret_val)
2364 return ret_val;
2366 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2368 /* Need to reset the PHY or these changes will be ignored */
2369 mii_ctrl_reg |= MII_CR_RESET;
2370 /* Disable MDI-X support for 10/100 */
2371 } else if (hw->phy_type == e1000_phy_ife) {
2372 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2373 if (ret_val)
2374 return ret_val;
2376 phy_data &= ~IFE_PMC_AUTO_MDIX;
2377 phy_data &= ~IFE_PMC_FORCE_MDIX;
2379 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2380 if (ret_val)
2381 return ret_val;
2382 } else {
2383 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2384 * forced whenever speed or duplex are forced.
2386 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2387 if (ret_val)
2388 return ret_val;
2390 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2391 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2393 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2394 if (ret_val)
2395 return ret_val;
2398 /* Write back the modified PHY MII control register. */
2399 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
2400 if (ret_val)
2401 return ret_val;
2403 udelay(1);
2405 /* The wait_autoneg_complete flag may be a little misleading here.
2406 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2407 * But we do want to delay for a period while forcing only so we
2408 * don't generate false No Link messages. So we will wait here
2409 * only if the user has set wait_autoneg_complete to 1, which is
2410 * the default.
2412 if (hw->wait_autoneg_complete) {
2413 /* We will wait for autoneg to complete. */
2414 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2415 mii_status_reg = 0;
2417 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2418 for (i = PHY_FORCE_TIME; i > 0; i--) {
2419 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2420 * to be set.
2422 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2423 if (ret_val)
2424 return ret_val;
2426 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2427 if (ret_val)
2428 return ret_val;
2430 if (mii_status_reg & MII_SR_LINK_STATUS) break;
2431 msleep(100);
2433 if ((i == 0) &&
2434 ((hw->phy_type == e1000_phy_m88) ||
2435 (hw->phy_type == e1000_phy_gg82563))) {
2436 /* We didn't get link. Reset the DSP and wait again for link. */
2437 ret_val = e1000_phy_reset_dsp(hw);
2438 if (ret_val) {
2439 DEBUGOUT("Error Resetting PHY DSP\n");
2440 return ret_val;
2443 /* This loop will early-out if the link condition has been met. */
2444 for (i = PHY_FORCE_TIME; i > 0; i--) {
2445 if (mii_status_reg & MII_SR_LINK_STATUS) break;
2446 msleep(100);
2447 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2448 * to be set.
2450 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2451 if (ret_val)
2452 return ret_val;
2454 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2455 if (ret_val)
2456 return ret_val;
2460 if (hw->phy_type == e1000_phy_m88) {
2461 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2462 * Extended PHY Specific Control Register to 25MHz clock. This value
2463 * defaults back to a 2.5MHz clock when the PHY is reset.
2465 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2466 if (ret_val)
2467 return ret_val;
2469 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2470 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2471 if (ret_val)
2472 return ret_val;
2474 /* In addition, because of the s/w reset above, we need to enable CRS on
2475 * TX. This must be set for both full and half duplex operation.
2477 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2478 if (ret_val)
2479 return ret_val;
2481 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2482 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2483 if (ret_val)
2484 return ret_val;
2486 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2487 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2488 hw->forced_speed_duplex == e1000_10_half)) {
2489 ret_val = e1000_polarity_reversal_workaround(hw);
2490 if (ret_val)
2491 return ret_val;
2493 } else if (hw->phy_type == e1000_phy_gg82563) {
2494 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2495 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2496 * we're not in a forced 10/duplex configuration. */
2497 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2498 if (ret_val)
2499 return ret_val;
2501 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2502 if ((hw->forced_speed_duplex == e1000_10_full) ||
2503 (hw->forced_speed_duplex == e1000_10_half))
2504 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2505 else
2506 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2508 /* Also due to the reset, we need to enable CRS on Tx. */
2509 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2511 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2512 if (ret_val)
2513 return ret_val;
2515 return E1000_SUCCESS;
2518 /******************************************************************************
2519 * Sets the collision distance in the Transmit Control register
2521 * hw - Struct containing variables accessed by shared code
2523 * Link should have been established previously. Reads the speed and duplex
2524 * information from the Device Status register.
2525 ******************************************************************************/
2526 void
2527 e1000_config_collision_dist(struct e1000_hw *hw)
2529 uint32_t tctl, coll_dist;
2531 DEBUGFUNC("e1000_config_collision_dist");
2533 if (hw->mac_type < e1000_82543)
2534 coll_dist = E1000_COLLISION_DISTANCE_82542;
2535 else
2536 coll_dist = E1000_COLLISION_DISTANCE;
2538 tctl = E1000_READ_REG(hw, TCTL);
2540 tctl &= ~E1000_TCTL_COLD;
2541 tctl |= coll_dist << E1000_COLD_SHIFT;
2543 E1000_WRITE_REG(hw, TCTL, tctl);
2544 E1000_WRITE_FLUSH(hw);
2547 /******************************************************************************
2548 * Sets MAC speed and duplex settings to reflect the those in the PHY
2550 * hw - Struct containing variables accessed by shared code
2551 * mii_reg - data to write to the MII control register
2553 * The contents of the PHY register containing the needed information need to
2554 * be passed in.
2555 ******************************************************************************/
2556 static int32_t
2557 e1000_config_mac_to_phy(struct e1000_hw *hw)
2559 uint32_t ctrl;
2560 int32_t ret_val;
2561 uint16_t phy_data;
2563 DEBUGFUNC("e1000_config_mac_to_phy");
2565 /* 82544 or newer MAC, Auto Speed Detection takes care of
2566 * MAC speed/duplex configuration.*/
2567 if (hw->mac_type >= e1000_82544)
2568 return E1000_SUCCESS;
2570 /* Read the Device Control Register and set the bits to Force Speed
2571 * and Duplex.
2573 ctrl = E1000_READ_REG(hw, CTRL);
2574 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2575 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2577 /* Set up duplex in the Device Control and Transmit Control
2578 * registers depending on negotiated values.
2580 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2581 if (ret_val)
2582 return ret_val;
2584 if (phy_data & M88E1000_PSSR_DPLX)
2585 ctrl |= E1000_CTRL_FD;
2586 else
2587 ctrl &= ~E1000_CTRL_FD;
2589 e1000_config_collision_dist(hw);
2591 /* Set up speed in the Device Control register depending on
2592 * negotiated values.
2594 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2595 ctrl |= E1000_CTRL_SPD_1000;
2596 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2597 ctrl |= E1000_CTRL_SPD_100;
2599 /* Write the configured values back to the Device Control Reg. */
2600 E1000_WRITE_REG(hw, CTRL, ctrl);
2601 return E1000_SUCCESS;
2604 /******************************************************************************
2605 * Forces the MAC's flow control settings.
2607 * hw - Struct containing variables accessed by shared code
2609 * Sets the TFCE and RFCE bits in the device control register to reflect
2610 * the adapter settings. TFCE and RFCE need to be explicitly set by
2611 * software when a Copper PHY is used because autonegotiation is managed
2612 * by the PHY rather than the MAC. Software must also configure these
2613 * bits when link is forced on a fiber connection.
2614 *****************************************************************************/
2615 int32_t
2616 e1000_force_mac_fc(struct e1000_hw *hw)
2618 uint32_t ctrl;
2620 DEBUGFUNC("e1000_force_mac_fc");
2622 /* Get the current configuration of the Device Control Register */
2623 ctrl = E1000_READ_REG(hw, CTRL);
2625 /* Because we didn't get link via the internal auto-negotiation
2626 * mechanism (we either forced link or we got link via PHY
2627 * auto-neg), we have to manually enable/disable transmit an
2628 * receive flow control.
2630 * The "Case" statement below enables/disable flow control
2631 * according to the "hw->fc" parameter.
2633 * The possible values of the "fc" parameter are:
2634 * 0: Flow control is completely disabled
2635 * 1: Rx flow control is enabled (we can receive pause
2636 * frames but not send pause frames).
2637 * 2: Tx flow control is enabled (we can send pause frames
2638 * frames but we do not receive pause frames).
2639 * 3: Both Rx and TX flow control (symmetric) is enabled.
2640 * other: No other values should be possible at this point.
2643 switch (hw->fc) {
2644 case E1000_FC_NONE:
2645 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2646 break;
2647 case E1000_FC_RX_PAUSE:
2648 ctrl &= (~E1000_CTRL_TFCE);
2649 ctrl |= E1000_CTRL_RFCE;
2650 break;
2651 case E1000_FC_TX_PAUSE:
2652 ctrl &= (~E1000_CTRL_RFCE);
2653 ctrl |= E1000_CTRL_TFCE;
2654 break;
2655 case E1000_FC_FULL:
2656 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2657 break;
2658 default:
2659 DEBUGOUT("Flow control param set incorrectly\n");
2660 return -E1000_ERR_CONFIG;
2663 /* Disable TX Flow Control for 82542 (rev 2.0) */
2664 if (hw->mac_type == e1000_82542_rev2_0)
2665 ctrl &= (~E1000_CTRL_TFCE);
2667 E1000_WRITE_REG(hw, CTRL, ctrl);
2668 return E1000_SUCCESS;
2671 /******************************************************************************
2672 * Configures flow control settings after link is established
2674 * hw - Struct containing variables accessed by shared code
2676 * Should be called immediately after a valid link has been established.
2677 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2678 * and autonegotiation is enabled, the MAC flow control settings will be set
2679 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2680 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2681 *****************************************************************************/
2682 static int32_t
2683 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2685 int32_t ret_val;
2686 uint16_t mii_status_reg;
2687 uint16_t mii_nway_adv_reg;
2688 uint16_t mii_nway_lp_ability_reg;
2689 uint16_t speed;
2690 uint16_t duplex;
2692 DEBUGFUNC("e1000_config_fc_after_link_up");
2694 /* Check for the case where we have fiber media and auto-neg failed
2695 * so we had to force link. In this case, we need to force the
2696 * configuration of the MAC to match the "fc" parameter.
2698 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2699 ((hw->media_type == e1000_media_type_internal_serdes) &&
2700 (hw->autoneg_failed)) ||
2701 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2702 ret_val = e1000_force_mac_fc(hw);
2703 if (ret_val) {
2704 DEBUGOUT("Error forcing flow control settings\n");
2705 return ret_val;
2709 /* Check for the case where we have copper media and auto-neg is
2710 * enabled. In this case, we need to check and see if Auto-Neg
2711 * has completed, and if so, how the PHY and link partner has
2712 * flow control configured.
2714 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2715 /* Read the MII Status Register and check to see if AutoNeg
2716 * has completed. We read this twice because this reg has
2717 * some "sticky" (latched) bits.
2719 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2720 if (ret_val)
2721 return ret_val;
2722 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2723 if (ret_val)
2724 return ret_val;
2726 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2727 /* The AutoNeg process has completed, so we now need to
2728 * read both the Auto Negotiation Advertisement Register
2729 * (Address 4) and the Auto_Negotiation Base Page Ability
2730 * Register (Address 5) to determine how flow control was
2731 * negotiated.
2733 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2734 &mii_nway_adv_reg);
2735 if (ret_val)
2736 return ret_val;
2737 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2738 &mii_nway_lp_ability_reg);
2739 if (ret_val)
2740 return ret_val;
2742 /* Two bits in the Auto Negotiation Advertisement Register
2743 * (Address 4) and two bits in the Auto Negotiation Base
2744 * Page Ability Register (Address 5) determine flow control
2745 * for both the PHY and the link partner. The following
2746 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2747 * 1999, describes these PAUSE resolution bits and how flow
2748 * control is determined based upon these settings.
2749 * NOTE: DC = Don't Care
2751 * LOCAL DEVICE | LINK PARTNER
2752 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2753 *-------|---------|-------|---------|--------------------
2754 * 0 | 0 | DC | DC | E1000_FC_NONE
2755 * 0 | 1 | 0 | DC | E1000_FC_NONE
2756 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2757 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2758 * 1 | 0 | 0 | DC | E1000_FC_NONE
2759 * 1 | DC | 1 | DC | E1000_FC_FULL
2760 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2761 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2764 /* Are both PAUSE bits set to 1? If so, this implies
2765 * Symmetric Flow Control is enabled at both ends. The
2766 * ASM_DIR bits are irrelevant per the spec.
2768 * For Symmetric Flow Control:
2770 * LOCAL DEVICE | LINK PARTNER
2771 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2772 *-------|---------|-------|---------|--------------------
2773 * 1 | DC | 1 | DC | E1000_FC_FULL
2776 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2777 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2778 /* Now we need to check if the user selected RX ONLY
2779 * of pause frames. In this case, we had to advertise
2780 * FULL flow control because we could not advertise RX
2781 * ONLY. Hence, we must now check to see if we need to
2782 * turn OFF the TRANSMISSION of PAUSE frames.
2784 if (hw->original_fc == E1000_FC_FULL) {
2785 hw->fc = E1000_FC_FULL;
2786 DEBUGOUT("Flow Control = FULL.\n");
2787 } else {
2788 hw->fc = E1000_FC_RX_PAUSE;
2789 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2792 /* For receiving PAUSE frames ONLY.
2794 * LOCAL DEVICE | LINK PARTNER
2795 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2796 *-------|---------|-------|---------|--------------------
2797 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2800 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2801 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2802 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2803 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2804 hw->fc = E1000_FC_TX_PAUSE;
2805 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2807 /* For transmitting PAUSE frames ONLY.
2809 * LOCAL DEVICE | LINK PARTNER
2810 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2811 *-------|---------|-------|---------|--------------------
2812 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2815 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2816 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2817 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2818 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2819 hw->fc = E1000_FC_RX_PAUSE;
2820 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2822 /* Per the IEEE spec, at this point flow control should be
2823 * disabled. However, we want to consider that we could
2824 * be connected to a legacy switch that doesn't advertise
2825 * desired flow control, but can be forced on the link
2826 * partner. So if we advertised no flow control, that is
2827 * what we will resolve to. If we advertised some kind of
2828 * receive capability (Rx Pause Only or Full Flow Control)
2829 * and the link partner advertised none, we will configure
2830 * ourselves to enable Rx Flow Control only. We can do
2831 * this safely for two reasons: If the link partner really
2832 * didn't want flow control enabled, and we enable Rx, no
2833 * harm done since we won't be receiving any PAUSE frames
2834 * anyway. If the intent on the link partner was to have
2835 * flow control enabled, then by us enabling RX only, we
2836 * can at least receive pause frames and process them.
2837 * This is a good idea because in most cases, since we are
2838 * predominantly a server NIC, more times than not we will
2839 * be asked to delay transmission of packets than asking
2840 * our link partner to pause transmission of frames.
2842 else if ((hw->original_fc == E1000_FC_NONE ||
2843 hw->original_fc == E1000_FC_TX_PAUSE) ||
2844 hw->fc_strict_ieee) {
2845 hw->fc = E1000_FC_NONE;
2846 DEBUGOUT("Flow Control = NONE.\n");
2847 } else {
2848 hw->fc = E1000_FC_RX_PAUSE;
2849 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2852 /* Now we need to do one last check... If we auto-
2853 * negotiated to HALF DUPLEX, flow control should not be
2854 * enabled per IEEE 802.3 spec.
2856 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2857 if (ret_val) {
2858 DEBUGOUT("Error getting link speed and duplex\n");
2859 return ret_val;
2862 if (duplex == HALF_DUPLEX)
2863 hw->fc = E1000_FC_NONE;
2865 /* Now we call a subroutine to actually force the MAC
2866 * controller to use the correct flow control settings.
2868 ret_val = e1000_force_mac_fc(hw);
2869 if (ret_val) {
2870 DEBUGOUT("Error forcing flow control settings\n");
2871 return ret_val;
2873 } else {
2874 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
2877 return E1000_SUCCESS;
2880 /******************************************************************************
2881 * Checks to see if the link status of the hardware has changed.
2883 * hw - Struct containing variables accessed by shared code
2885 * Called by any function that needs to check the link status of the adapter.
2886 *****************************************************************************/
2887 int32_t
2888 e1000_check_for_link(struct e1000_hw *hw)
2890 uint32_t rxcw = 0;
2891 uint32_t ctrl;
2892 uint32_t status;
2893 uint32_t rctl;
2894 uint32_t icr;
2895 uint32_t signal = 0;
2896 int32_t ret_val;
2897 uint16_t phy_data;
2899 DEBUGFUNC("e1000_check_for_link");
2901 ctrl = E1000_READ_REG(hw, CTRL);
2902 status = E1000_READ_REG(hw, STATUS);
2904 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2905 * set when the optics detect a signal. On older adapters, it will be
2906 * cleared when there is a signal. This applies to fiber media only.
2908 if ((hw->media_type == e1000_media_type_fiber) ||
2909 (hw->media_type == e1000_media_type_internal_serdes)) {
2910 rxcw = E1000_READ_REG(hw, RXCW);
2912 if (hw->media_type == e1000_media_type_fiber) {
2913 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2914 if (status & E1000_STATUS_LU)
2915 hw->get_link_status = FALSE;
2919 /* If we have a copper PHY then we only want to go out to the PHY
2920 * registers to see if Auto-Neg has completed and/or if our link
2921 * status has changed. The get_link_status flag will be set if we
2922 * receive a Link Status Change interrupt or we have Rx Sequence
2923 * Errors.
2925 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2926 /* First we want to see if the MII Status Register reports
2927 * link. If so, then we want to get the current speed/duplex
2928 * of the PHY.
2929 * Read the register twice since the link bit is sticky.
2931 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2932 if (ret_val)
2933 return ret_val;
2934 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2935 if (ret_val)
2936 return ret_val;
2938 if (phy_data & MII_SR_LINK_STATUS) {
2939 hw->get_link_status = FALSE;
2940 /* Check if there was DownShift, must be checked immediately after
2941 * link-up */
2942 e1000_check_downshift(hw);
2944 /* If we are on 82544 or 82543 silicon and speed/duplex
2945 * are forced to 10H or 10F, then we will implement the polarity
2946 * reversal workaround. We disable interrupts first, and upon
2947 * returning, place the devices interrupt state to its previous
2948 * value except for the link status change interrupt which will
2949 * happen due to the execution of this workaround.
2952 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2953 (!hw->autoneg) &&
2954 (hw->forced_speed_duplex == e1000_10_full ||
2955 hw->forced_speed_duplex == e1000_10_half)) {
2956 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2957 ret_val = e1000_polarity_reversal_workaround(hw);
2958 icr = E1000_READ_REG(hw, ICR);
2959 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2960 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2963 } else {
2964 /* No link detected */
2965 e1000_config_dsp_after_link_change(hw, FALSE);
2966 return 0;
2969 /* If we are forcing speed/duplex, then we simply return since
2970 * we have already determined whether we have link or not.
2972 if (!hw->autoneg) return -E1000_ERR_CONFIG;
2974 /* optimize the dsp settings for the igp phy */
2975 e1000_config_dsp_after_link_change(hw, TRUE);
2977 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2978 * have Si on board that is 82544 or newer, Auto
2979 * Speed Detection takes care of MAC speed/duplex
2980 * configuration. So we only need to configure Collision
2981 * Distance in the MAC. Otherwise, we need to force
2982 * speed/duplex on the MAC to the current PHY speed/duplex
2983 * settings.
2985 if (hw->mac_type >= e1000_82544)
2986 e1000_config_collision_dist(hw);
2987 else {
2988 ret_val = e1000_config_mac_to_phy(hw);
2989 if (ret_val) {
2990 DEBUGOUT("Error configuring MAC to PHY settings\n");
2991 return ret_val;
2995 /* Configure Flow Control now that Auto-Neg has completed. First, we
2996 * need to restore the desired flow control settings because we may
2997 * have had to re-autoneg with a different link partner.
2999 ret_val = e1000_config_fc_after_link_up(hw);
3000 if (ret_val) {
3001 DEBUGOUT("Error configuring flow control\n");
3002 return ret_val;
3005 /* At this point we know that we are on copper and we have
3006 * auto-negotiated link. These are conditions for checking the link
3007 * partner capability register. We use the link speed to determine if
3008 * TBI compatibility needs to be turned on or off. If the link is not
3009 * at gigabit speed, then TBI compatibility is not needed. If we are
3010 * at gigabit speed, we turn on TBI compatibility.
3012 if (hw->tbi_compatibility_en) {
3013 uint16_t speed, duplex;
3014 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3015 if (ret_val) {
3016 DEBUGOUT("Error getting link speed and duplex\n");
3017 return ret_val;
3019 if (speed != SPEED_1000) {
3020 /* If link speed is not set to gigabit speed, we do not need
3021 * to enable TBI compatibility.
3023 if (hw->tbi_compatibility_on) {
3024 /* If we previously were in the mode, turn it off. */
3025 rctl = E1000_READ_REG(hw, RCTL);
3026 rctl &= ~E1000_RCTL_SBP;
3027 E1000_WRITE_REG(hw, RCTL, rctl);
3028 hw->tbi_compatibility_on = FALSE;
3030 } else {
3031 /* If TBI compatibility is was previously off, turn it on. For
3032 * compatibility with a TBI link partner, we will store bad
3033 * packets. Some frames have an additional byte on the end and
3034 * will look like CRC errors to to the hardware.
3036 if (!hw->tbi_compatibility_on) {
3037 hw->tbi_compatibility_on = TRUE;
3038 rctl = E1000_READ_REG(hw, RCTL);
3039 rctl |= E1000_RCTL_SBP;
3040 E1000_WRITE_REG(hw, RCTL, rctl);
3045 /* If we don't have link (auto-negotiation failed or link partner cannot
3046 * auto-negotiate), the cable is plugged in (we have signal), and our
3047 * link partner is not trying to auto-negotiate with us (we are receiving
3048 * idles or data), we need to force link up. We also need to give
3049 * auto-negotiation time to complete, in case the cable was just plugged
3050 * in. The autoneg_failed flag does this.
3052 else if ((((hw->media_type == e1000_media_type_fiber) &&
3053 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
3054 (hw->media_type == e1000_media_type_internal_serdes)) &&
3055 (!(status & E1000_STATUS_LU)) &&
3056 (!(rxcw & E1000_RXCW_C))) {
3057 if (hw->autoneg_failed == 0) {
3058 hw->autoneg_failed = 1;
3059 return 0;
3061 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
3063 /* Disable auto-negotiation in the TXCW register */
3064 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3066 /* Force link-up and also force full-duplex. */
3067 ctrl = E1000_READ_REG(hw, CTRL);
3068 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3069 E1000_WRITE_REG(hw, CTRL, ctrl);
3071 /* Configure Flow Control after forcing link up. */
3072 ret_val = e1000_config_fc_after_link_up(hw);
3073 if (ret_val) {
3074 DEBUGOUT("Error configuring flow control\n");
3075 return ret_val;
3078 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3079 * auto-negotiation in the TXCW register and disable forced link in the
3080 * Device Control register in an attempt to auto-negotiate with our link
3081 * partner.
3083 else if (((hw->media_type == e1000_media_type_fiber) ||
3084 (hw->media_type == e1000_media_type_internal_serdes)) &&
3085 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3086 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
3087 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3088 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3090 hw->serdes_link_down = FALSE;
3092 /* If we force link for non-auto-negotiation switch, check link status
3093 * based on MAC synchronization for internal serdes media type.
3095 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3096 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3097 /* SYNCH bit and IV bit are sticky. */
3098 udelay(10);
3099 if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3100 if (!(rxcw & E1000_RXCW_IV)) {
3101 hw->serdes_link_down = FALSE;
3102 DEBUGOUT("SERDES: Link is up.\n");
3104 } else {
3105 hw->serdes_link_down = TRUE;
3106 DEBUGOUT("SERDES: Link is down.\n");
3109 if ((hw->media_type == e1000_media_type_internal_serdes) &&
3110 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
3111 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3113 return E1000_SUCCESS;
3116 /******************************************************************************
3117 * Detects the current speed and duplex settings of the hardware.
3119 * hw - Struct containing variables accessed by shared code
3120 * speed - Speed of the connection
3121 * duplex - Duplex setting of the connection
3122 *****************************************************************************/
3123 int32_t
3124 e1000_get_speed_and_duplex(struct e1000_hw *hw,
3125 uint16_t *speed,
3126 uint16_t *duplex)
3128 uint32_t status;
3129 int32_t ret_val;
3130 uint16_t phy_data;
3132 DEBUGFUNC("e1000_get_speed_and_duplex");
3134 if (hw->mac_type >= e1000_82543) {
3135 status = E1000_READ_REG(hw, STATUS);
3136 if (status & E1000_STATUS_SPEED_1000) {
3137 *speed = SPEED_1000;
3138 DEBUGOUT("1000 Mbs, ");
3139 } else if (status & E1000_STATUS_SPEED_100) {
3140 *speed = SPEED_100;
3141 DEBUGOUT("100 Mbs, ");
3142 } else {
3143 *speed = SPEED_10;
3144 DEBUGOUT("10 Mbs, ");
3147 if (status & E1000_STATUS_FD) {
3148 *duplex = FULL_DUPLEX;
3149 DEBUGOUT("Full Duplex\n");
3150 } else {
3151 *duplex = HALF_DUPLEX;
3152 DEBUGOUT(" Half Duplex\n");
3154 } else {
3155 DEBUGOUT("1000 Mbs, Full Duplex\n");
3156 *speed = SPEED_1000;
3157 *duplex = FULL_DUPLEX;
3160 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3161 * if it is operating at half duplex. Here we set the duplex settings to
3162 * match the duplex in the link partner's capabilities.
3164 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3165 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3166 if (ret_val)
3167 return ret_val;
3169 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3170 *duplex = HALF_DUPLEX;
3171 else {
3172 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
3173 if (ret_val)
3174 return ret_val;
3175 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
3176 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3177 *duplex = HALF_DUPLEX;
3181 if ((hw->mac_type == e1000_80003es2lan) &&
3182 (hw->media_type == e1000_media_type_copper)) {
3183 if (*speed == SPEED_1000)
3184 ret_val = e1000_configure_kmrn_for_1000(hw);
3185 else
3186 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3187 if (ret_val)
3188 return ret_val;
3191 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3192 ret_val = e1000_kumeran_lock_loss_workaround(hw);
3193 if (ret_val)
3194 return ret_val;
3197 return E1000_SUCCESS;
3200 /******************************************************************************
3201 * Blocks until autoneg completes or times out (~4.5 seconds)
3203 * hw - Struct containing variables accessed by shared code
3204 ******************************************************************************/
3205 static int32_t
3206 e1000_wait_autoneg(struct e1000_hw *hw)
3208 int32_t ret_val;
3209 uint16_t i;
3210 uint16_t phy_data;
3212 DEBUGFUNC("e1000_wait_autoneg");
3213 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3215 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3216 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3217 /* Read the MII Status Register and wait for Auto-Neg
3218 * Complete bit to be set.
3220 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3221 if (ret_val)
3222 return ret_val;
3223 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3224 if (ret_val)
3225 return ret_val;
3226 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3227 return E1000_SUCCESS;
3229 msleep(100);
3231 return E1000_SUCCESS;
3234 /******************************************************************************
3235 * Raises the Management Data Clock
3237 * hw - Struct containing variables accessed by shared code
3238 * ctrl - Device control register's current value
3239 ******************************************************************************/
3240 static void
3241 e1000_raise_mdi_clk(struct e1000_hw *hw,
3242 uint32_t *ctrl)
3244 /* Raise the clock input to the Management Data Clock (by setting the MDC
3245 * bit), and then delay 10 microseconds.
3247 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3248 E1000_WRITE_FLUSH(hw);
3249 udelay(10);
3252 /******************************************************************************
3253 * Lowers the Management Data Clock
3255 * hw - Struct containing variables accessed by shared code
3256 * ctrl - Device control register's current value
3257 ******************************************************************************/
3258 static void
3259 e1000_lower_mdi_clk(struct e1000_hw *hw,
3260 uint32_t *ctrl)
3262 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3263 * bit), and then delay 10 microseconds.
3265 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3266 E1000_WRITE_FLUSH(hw);
3267 udelay(10);
3270 /******************************************************************************
3271 * Shifts data bits out to the PHY
3273 * hw - Struct containing variables accessed by shared code
3274 * data - Data to send out to the PHY
3275 * count - Number of bits to shift out
3277 * Bits are shifted out in MSB to LSB order.
3278 ******************************************************************************/
3279 static void
3280 e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3281 uint32_t data,
3282 uint16_t count)
3284 uint32_t ctrl;
3285 uint32_t mask;
3287 /* We need to shift "count" number of bits out to the PHY. So, the value
3288 * in the "data" parameter will be shifted out to the PHY one bit at a
3289 * time. In order to do this, "data" must be broken down into bits.
3291 mask = 0x01;
3292 mask <<= (count - 1);
3294 ctrl = E1000_READ_REG(hw, CTRL);
3296 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3297 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3299 while (mask) {
3300 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3301 * then raising and lowering the Management Data Clock. A "0" is
3302 * shifted out to the PHY by setting the MDIO bit to "0" and then
3303 * raising and lowering the clock.
3305 if (data & mask)
3306 ctrl |= E1000_CTRL_MDIO;
3307 else
3308 ctrl &= ~E1000_CTRL_MDIO;
3310 E1000_WRITE_REG(hw, CTRL, ctrl);
3311 E1000_WRITE_FLUSH(hw);
3313 udelay(10);
3315 e1000_raise_mdi_clk(hw, &ctrl);
3316 e1000_lower_mdi_clk(hw, &ctrl);
3318 mask = mask >> 1;
3322 /******************************************************************************
3323 * Shifts data bits in from the PHY
3325 * hw - Struct containing variables accessed by shared code
3327 * Bits are shifted in in MSB to LSB order.
3328 ******************************************************************************/
3329 static uint16_t
3330 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3332 uint32_t ctrl;
3333 uint16_t data = 0;
3334 uint8_t i;
3336 /* In order to read a register from the PHY, we need to shift in a total
3337 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3338 * to avoid contention on the MDIO pin when a read operation is performed.
3339 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3340 * by raising the input to the Management Data Clock (setting the MDC bit),
3341 * and then reading the value of the MDIO bit.
3343 ctrl = E1000_READ_REG(hw, CTRL);
3345 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3346 ctrl &= ~E1000_CTRL_MDIO_DIR;
3347 ctrl &= ~E1000_CTRL_MDIO;
3349 E1000_WRITE_REG(hw, CTRL, ctrl);
3350 E1000_WRITE_FLUSH(hw);
3352 /* Raise and Lower the clock before reading in the data. This accounts for
3353 * the turnaround bits. The first clock occurred when we clocked out the
3354 * last bit of the Register Address.
3356 e1000_raise_mdi_clk(hw, &ctrl);
3357 e1000_lower_mdi_clk(hw, &ctrl);
3359 for (data = 0, i = 0; i < 16; i++) {
3360 data = data << 1;
3361 e1000_raise_mdi_clk(hw, &ctrl);
3362 ctrl = E1000_READ_REG(hw, CTRL);
3363 /* Check to see if we shifted in a "1". */
3364 if (ctrl & E1000_CTRL_MDIO)
3365 data |= 1;
3366 e1000_lower_mdi_clk(hw, &ctrl);
3369 e1000_raise_mdi_clk(hw, &ctrl);
3370 e1000_lower_mdi_clk(hw, &ctrl);
3372 return data;
3375 static int32_t
3376 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3378 uint32_t swfw_sync = 0;
3379 uint32_t swmask = mask;
3380 uint32_t fwmask = mask << 16;
3381 int32_t timeout = 200;
3383 DEBUGFUNC("e1000_swfw_sync_acquire");
3385 if (hw->swfwhw_semaphore_present)
3386 return e1000_get_software_flag(hw);
3388 if (!hw->swfw_sync_present)
3389 return e1000_get_hw_eeprom_semaphore(hw);
3391 while (timeout) {
3392 if (e1000_get_hw_eeprom_semaphore(hw))
3393 return -E1000_ERR_SWFW_SYNC;
3395 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3396 if (!(swfw_sync & (fwmask | swmask))) {
3397 break;
3400 /* firmware currently using resource (fwmask) */
3401 /* or other software thread currently using resource (swmask) */
3402 e1000_put_hw_eeprom_semaphore(hw);
3403 mdelay(5);
3404 timeout--;
3407 if (!timeout) {
3408 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3409 return -E1000_ERR_SWFW_SYNC;
3412 swfw_sync |= swmask;
3413 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3415 e1000_put_hw_eeprom_semaphore(hw);
3416 return E1000_SUCCESS;
3419 static void
3420 e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3422 uint32_t swfw_sync;
3423 uint32_t swmask = mask;
3425 DEBUGFUNC("e1000_swfw_sync_release");
3427 if (hw->swfwhw_semaphore_present) {
3428 e1000_release_software_flag(hw);
3429 return;
3432 if (!hw->swfw_sync_present) {
3433 e1000_put_hw_eeprom_semaphore(hw);
3434 return;
3437 /* if (e1000_get_hw_eeprom_semaphore(hw))
3438 * return -E1000_ERR_SWFW_SYNC; */
3439 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3440 /* empty */
3442 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3443 swfw_sync &= ~swmask;
3444 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3446 e1000_put_hw_eeprom_semaphore(hw);
3449 /*****************************************************************************
3450 * Reads the value from a PHY register, if the value is on a specific non zero
3451 * page, sets the page first.
3452 * hw - Struct containing variables accessed by shared code
3453 * reg_addr - address of the PHY register to read
3454 ******************************************************************************/
3455 int32_t
3456 e1000_read_phy_reg(struct e1000_hw *hw,
3457 uint32_t reg_addr,
3458 uint16_t *phy_data)
3460 uint32_t ret_val;
3461 uint16_t swfw;
3463 DEBUGFUNC("e1000_read_phy_reg");
3465 if ((hw->mac_type == e1000_80003es2lan) &&
3466 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3467 swfw = E1000_SWFW_PHY1_SM;
3468 } else {
3469 swfw = E1000_SWFW_PHY0_SM;
3471 if (e1000_swfw_sync_acquire(hw, swfw))
3472 return -E1000_ERR_SWFW_SYNC;
3474 if ((hw->phy_type == e1000_phy_igp ||
3475 hw->phy_type == e1000_phy_igp_3 ||
3476 hw->phy_type == e1000_phy_igp_2) &&
3477 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3478 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3479 (uint16_t)reg_addr);
3480 if (ret_val) {
3481 e1000_swfw_sync_release(hw, swfw);
3482 return ret_val;
3484 } else if (hw->phy_type == e1000_phy_gg82563) {
3485 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3486 (hw->mac_type == e1000_80003es2lan)) {
3487 /* Select Configuration Page */
3488 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3489 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3490 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3491 } else {
3492 /* Use Alternative Page Select register to access
3493 * registers 30 and 31
3495 ret_val = e1000_write_phy_reg_ex(hw,
3496 GG82563_PHY_PAGE_SELECT_ALT,
3497 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3500 if (ret_val) {
3501 e1000_swfw_sync_release(hw, swfw);
3502 return ret_val;
3507 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3508 phy_data);
3510 e1000_swfw_sync_release(hw, swfw);
3511 return ret_val;
3514 static int32_t
3515 e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3516 uint16_t *phy_data)
3518 uint32_t i;
3519 uint32_t mdic = 0;
3520 const uint32_t phy_addr = 1;
3522 DEBUGFUNC("e1000_read_phy_reg_ex");
3524 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3525 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3526 return -E1000_ERR_PARAM;
3529 if (hw->mac_type > e1000_82543) {
3530 /* Set up Op-code, Phy Address, and register address in the MDI
3531 * Control register. The MAC will take care of interfacing with the
3532 * PHY to retrieve the desired data.
3534 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3535 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3536 (E1000_MDIC_OP_READ));
3538 E1000_WRITE_REG(hw, MDIC, mdic);
3540 /* Poll the ready bit to see if the MDI read completed */
3541 for (i = 0; i < 64; i++) {
3542 udelay(50);
3543 mdic = E1000_READ_REG(hw, MDIC);
3544 if (mdic & E1000_MDIC_READY) break;
3546 if (!(mdic & E1000_MDIC_READY)) {
3547 DEBUGOUT("MDI Read did not complete\n");
3548 return -E1000_ERR_PHY;
3550 if (mdic & E1000_MDIC_ERROR) {
3551 DEBUGOUT("MDI Error\n");
3552 return -E1000_ERR_PHY;
3554 *phy_data = (uint16_t) mdic;
3555 } else {
3556 /* We must first send a preamble through the MDIO pin to signal the
3557 * beginning of an MII instruction. This is done by sending 32
3558 * consecutive "1" bits.
3560 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3562 /* Now combine the next few fields that are required for a read
3563 * operation. We use this method instead of calling the
3564 * e1000_shift_out_mdi_bits routine five different times. The format of
3565 * a MII read instruction consists of a shift out of 14 bits and is
3566 * defined as follows:
3567 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3568 * followed by a shift in of 18 bits. This first two bits shifted in
3569 * are TurnAround bits used to avoid contention on the MDIO pin when a
3570 * READ operation is performed. These two bits are thrown away
3571 * followed by a shift in of 16 bits which contains the desired data.
3573 mdic = ((reg_addr) | (phy_addr << 5) |
3574 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3576 e1000_shift_out_mdi_bits(hw, mdic, 14);
3578 /* Now that we've shifted out the read command to the MII, we need to
3579 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3580 * register address.
3582 *phy_data = e1000_shift_in_mdi_bits(hw);
3584 return E1000_SUCCESS;
3587 /******************************************************************************
3588 * Writes a value to a PHY register
3590 * hw - Struct containing variables accessed by shared code
3591 * reg_addr - address of the PHY register to write
3592 * data - data to write to the PHY
3593 ******************************************************************************/
3594 int32_t
3595 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
3596 uint16_t phy_data)
3598 uint32_t ret_val;
3599 uint16_t swfw;
3601 DEBUGFUNC("e1000_write_phy_reg");
3603 if ((hw->mac_type == e1000_80003es2lan) &&
3604 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3605 swfw = E1000_SWFW_PHY1_SM;
3606 } else {
3607 swfw = E1000_SWFW_PHY0_SM;
3609 if (e1000_swfw_sync_acquire(hw, swfw))
3610 return -E1000_ERR_SWFW_SYNC;
3612 if ((hw->phy_type == e1000_phy_igp ||
3613 hw->phy_type == e1000_phy_igp_3 ||
3614 hw->phy_type == e1000_phy_igp_2) &&
3615 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3616 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3617 (uint16_t)reg_addr);
3618 if (ret_val) {
3619 e1000_swfw_sync_release(hw, swfw);
3620 return ret_val;
3622 } else if (hw->phy_type == e1000_phy_gg82563) {
3623 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3624 (hw->mac_type == e1000_80003es2lan)) {
3625 /* Select Configuration Page */
3626 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3627 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3628 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3629 } else {
3630 /* Use Alternative Page Select register to access
3631 * registers 30 and 31
3633 ret_val = e1000_write_phy_reg_ex(hw,
3634 GG82563_PHY_PAGE_SELECT_ALT,
3635 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3638 if (ret_val) {
3639 e1000_swfw_sync_release(hw, swfw);
3640 return ret_val;
3645 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3646 phy_data);
3648 e1000_swfw_sync_release(hw, swfw);
3649 return ret_val;
3652 static int32_t
3653 e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3654 uint16_t phy_data)
3656 uint32_t i;
3657 uint32_t mdic = 0;
3658 const uint32_t phy_addr = 1;
3660 DEBUGFUNC("e1000_write_phy_reg_ex");
3662 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3663 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3664 return -E1000_ERR_PARAM;
3667 if (hw->mac_type > e1000_82543) {
3668 /* Set up Op-code, Phy Address, register address, and data intended
3669 * for the PHY register in the MDI Control register. The MAC will take
3670 * care of interfacing with the PHY to send the desired data.
3672 mdic = (((uint32_t) phy_data) |
3673 (reg_addr << E1000_MDIC_REG_SHIFT) |
3674 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3675 (E1000_MDIC_OP_WRITE));
3677 E1000_WRITE_REG(hw, MDIC, mdic);
3679 /* Poll the ready bit to see if the MDI read completed */
3680 for (i = 0; i < 641; i++) {
3681 udelay(5);
3682 mdic = E1000_READ_REG(hw, MDIC);
3683 if (mdic & E1000_MDIC_READY) break;
3685 if (!(mdic & E1000_MDIC_READY)) {
3686 DEBUGOUT("MDI Write did not complete\n");
3687 return -E1000_ERR_PHY;
3689 } else {
3690 /* We'll need to use the SW defined pins to shift the write command
3691 * out to the PHY. We first send a preamble to the PHY to signal the
3692 * beginning of the MII instruction. This is done by sending 32
3693 * consecutive "1" bits.
3695 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3697 /* Now combine the remaining required fields that will indicate a
3698 * write operation. We use this method instead of calling the
3699 * e1000_shift_out_mdi_bits routine for each field in the command. The
3700 * format of a MII write instruction is as follows:
3701 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3703 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3704 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3705 mdic <<= 16;
3706 mdic |= (uint32_t) phy_data;
3708 e1000_shift_out_mdi_bits(hw, mdic, 32);
3711 return E1000_SUCCESS;
3714 static int32_t
3715 e1000_read_kmrn_reg(struct e1000_hw *hw,
3716 uint32_t reg_addr,
3717 uint16_t *data)
3719 uint32_t reg_val;
3720 uint16_t swfw;
3721 DEBUGFUNC("e1000_read_kmrn_reg");
3723 if ((hw->mac_type == e1000_80003es2lan) &&
3724 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3725 swfw = E1000_SWFW_PHY1_SM;
3726 } else {
3727 swfw = E1000_SWFW_PHY0_SM;
3729 if (e1000_swfw_sync_acquire(hw, swfw))
3730 return -E1000_ERR_SWFW_SYNC;
3732 /* Write register address */
3733 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3734 E1000_KUMCTRLSTA_OFFSET) |
3735 E1000_KUMCTRLSTA_REN;
3736 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3737 udelay(2);
3739 /* Read the data returned */
3740 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3741 *data = (uint16_t)reg_val;
3743 e1000_swfw_sync_release(hw, swfw);
3744 return E1000_SUCCESS;
3747 static int32_t
3748 e1000_write_kmrn_reg(struct e1000_hw *hw,
3749 uint32_t reg_addr,
3750 uint16_t data)
3752 uint32_t reg_val;
3753 uint16_t swfw;
3754 DEBUGFUNC("e1000_write_kmrn_reg");
3756 if ((hw->mac_type == e1000_80003es2lan) &&
3757 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3758 swfw = E1000_SWFW_PHY1_SM;
3759 } else {
3760 swfw = E1000_SWFW_PHY0_SM;
3762 if (e1000_swfw_sync_acquire(hw, swfw))
3763 return -E1000_ERR_SWFW_SYNC;
3765 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3766 E1000_KUMCTRLSTA_OFFSET) | data;
3767 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3768 udelay(2);
3770 e1000_swfw_sync_release(hw, swfw);
3771 return E1000_SUCCESS;
3774 /******************************************************************************
3775 * Returns the PHY to the power-on reset state
3777 * hw - Struct containing variables accessed by shared code
3778 ******************************************************************************/
3779 int32_t
3780 e1000_phy_hw_reset(struct e1000_hw *hw)
3782 uint32_t ctrl, ctrl_ext;
3783 uint32_t led_ctrl;
3784 int32_t ret_val;
3785 uint16_t swfw;
3787 DEBUGFUNC("e1000_phy_hw_reset");
3789 /* In the case of the phy reset being blocked, it's not an error, we
3790 * simply return success without performing the reset. */
3791 ret_val = e1000_check_phy_reset_block(hw);
3792 if (ret_val)
3793 return E1000_SUCCESS;
3795 DEBUGOUT("Resetting Phy...\n");
3797 if (hw->mac_type > e1000_82543) {
3798 if ((hw->mac_type == e1000_80003es2lan) &&
3799 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3800 swfw = E1000_SWFW_PHY1_SM;
3801 } else {
3802 swfw = E1000_SWFW_PHY0_SM;
3804 if (e1000_swfw_sync_acquire(hw, swfw)) {
3805 DEBUGOUT("Unable to acquire swfw sync\n");
3806 return -E1000_ERR_SWFW_SYNC;
3808 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3809 * bit. Then, take it out of reset.
3810 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
3811 * and deassert. For e1000_82571 hardware and later, we instead delay
3812 * for 50us between and 10ms after the deassertion.
3814 ctrl = E1000_READ_REG(hw, CTRL);
3815 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3816 E1000_WRITE_FLUSH(hw);
3818 if (hw->mac_type < e1000_82571)
3819 msleep(10);
3820 else
3821 udelay(100);
3823 E1000_WRITE_REG(hw, CTRL, ctrl);
3824 E1000_WRITE_FLUSH(hw);
3826 if (hw->mac_type >= e1000_82571)
3827 mdelay(10);
3829 e1000_swfw_sync_release(hw, swfw);
3830 } else {
3831 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3832 * bit to put the PHY into reset. Then, take it out of reset.
3834 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3835 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3836 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3837 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3838 E1000_WRITE_FLUSH(hw);
3839 msleep(10);
3840 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3841 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3842 E1000_WRITE_FLUSH(hw);
3844 udelay(150);
3846 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3847 /* Configure activity LED after PHY reset */
3848 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3849 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3850 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3851 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3854 /* Wait for FW to finish PHY configuration. */
3855 ret_val = e1000_get_phy_cfg_done(hw);
3856 if (ret_val != E1000_SUCCESS)
3857 return ret_val;
3858 e1000_release_software_semaphore(hw);
3860 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3861 ret_val = e1000_init_lcd_from_nvm(hw);
3863 return ret_val;
3866 /******************************************************************************
3867 * Resets the PHY
3869 * hw - Struct containing variables accessed by shared code
3871 * Sets bit 15 of the MII Control register
3872 ******************************************************************************/
3873 int32_t
3874 e1000_phy_reset(struct e1000_hw *hw)
3876 int32_t ret_val;
3877 uint16_t phy_data;
3879 DEBUGFUNC("e1000_phy_reset");
3881 /* In the case of the phy reset being blocked, it's not an error, we
3882 * simply return success without performing the reset. */
3883 ret_val = e1000_check_phy_reset_block(hw);
3884 if (ret_val)
3885 return E1000_SUCCESS;
3887 switch (hw->phy_type) {
3888 case e1000_phy_igp:
3889 case e1000_phy_igp_2:
3890 case e1000_phy_igp_3:
3891 case e1000_phy_ife:
3892 ret_val = e1000_phy_hw_reset(hw);
3893 if (ret_val)
3894 return ret_val;
3895 break;
3896 default:
3897 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3898 if (ret_val)
3899 return ret_val;
3901 phy_data |= MII_CR_RESET;
3902 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3903 if (ret_val)
3904 return ret_val;
3906 udelay(1);
3907 break;
3910 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3911 e1000_phy_init_script(hw);
3913 return E1000_SUCCESS;
3916 /******************************************************************************
3917 * Work-around for 82566 power-down: on D3 entry-
3918 * 1) disable gigabit link
3919 * 2) write VR power-down enable
3920 * 3) read it back
3921 * if successful continue, else issue LCD reset and repeat
3923 * hw - struct containing variables accessed by shared code
3924 ******************************************************************************/
3925 void
3926 e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3928 int32_t reg;
3929 uint16_t phy_data;
3930 int32_t retry = 0;
3932 DEBUGFUNC("e1000_phy_powerdown_workaround");
3934 if (hw->phy_type != e1000_phy_igp_3)
3935 return;
3937 do {
3938 /* Disable link */
3939 reg = E1000_READ_REG(hw, PHY_CTRL);
3940 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3941 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3943 /* Write VR power-down enable */
3944 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3945 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3946 IGP3_VR_CTRL_MODE_SHUT);
3948 /* Read it back and test */
3949 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3950 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3951 break;
3953 /* Issue PHY reset and repeat at most one more time */
3954 reg = E1000_READ_REG(hw, CTRL);
3955 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3956 retry++;
3957 } while (retry);
3959 return;
3963 /******************************************************************************
3964 * Work-around for 82566 Kumeran PCS lock loss:
3965 * On link status change (i.e. PCI reset, speed change) and link is up and
3966 * speed is gigabit-
3967 * 0) if workaround is optionally disabled do nothing
3968 * 1) wait 1ms for Kumeran link to come up
3969 * 2) check Kumeran Diagnostic register PCS lock loss bit
3970 * 3) if not set the link is locked (all is good), otherwise...
3971 * 4) reset the PHY
3972 * 5) repeat up to 10 times
3973 * Note: this is only called for IGP3 copper when speed is 1gb.
3975 * hw - struct containing variables accessed by shared code
3976 ******************************************************************************/
3977 static int32_t
3978 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3980 int32_t ret_val;
3981 int32_t reg;
3982 int32_t cnt;
3983 uint16_t phy_data;
3985 if (hw->kmrn_lock_loss_workaround_disabled)
3986 return E1000_SUCCESS;
3988 /* Make sure link is up before proceeding. If not just return.
3989 * Attempting this while link is negotiating fouled up link
3990 * stability */
3991 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3992 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3994 if (phy_data & MII_SR_LINK_STATUS) {
3995 for (cnt = 0; cnt < 10; cnt++) {
3996 /* read once to clear */
3997 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3998 if (ret_val)
3999 return ret_val;
4000 /* and again to get new status */
4001 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4002 if (ret_val)
4003 return ret_val;
4005 /* check for PCS lock */
4006 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4007 return E1000_SUCCESS;
4009 /* Issue PHY reset */
4010 e1000_phy_hw_reset(hw);
4011 mdelay(5);
4013 /* Disable GigE link negotiation */
4014 reg = E1000_READ_REG(hw, PHY_CTRL);
4015 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
4016 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4018 /* unable to acquire PCS lock */
4019 return E1000_ERR_PHY;
4022 return E1000_SUCCESS;
4025 /******************************************************************************
4026 * Probes the expected PHY address for known PHY IDs
4028 * hw - Struct containing variables accessed by shared code
4029 ******************************************************************************/
4030 static int32_t
4031 e1000_detect_gig_phy(struct e1000_hw *hw)
4033 int32_t phy_init_status, ret_val;
4034 uint16_t phy_id_high, phy_id_low;
4035 boolean_t match = FALSE;
4037 DEBUGFUNC("e1000_detect_gig_phy");
4039 if (hw->phy_id != 0)
4040 return E1000_SUCCESS;
4042 /* The 82571 firmware may still be configuring the PHY. In this
4043 * case, we cannot access the PHY until the configuration is done. So
4044 * we explicitly set the PHY values. */
4045 if (hw->mac_type == e1000_82571 ||
4046 hw->mac_type == e1000_82572) {
4047 hw->phy_id = IGP01E1000_I_PHY_ID;
4048 hw->phy_type = e1000_phy_igp_2;
4049 return E1000_SUCCESS;
4052 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4053 * around that forces PHY page 0 to be set or the reads fail. The rest of
4054 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4055 * So for ESB-2 we need to have this set so our reads won't fail. If the
4056 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4057 * this out as well. */
4058 if (hw->mac_type == e1000_80003es2lan)
4059 hw->phy_type = e1000_phy_gg82563;
4061 /* Read the PHY ID Registers to identify which PHY is onboard. */
4062 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4063 if (ret_val)
4064 return ret_val;
4066 hw->phy_id = (uint32_t) (phy_id_high << 16);
4067 udelay(20);
4068 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4069 if (ret_val)
4070 return ret_val;
4072 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4073 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4075 switch (hw->mac_type) {
4076 case e1000_82543:
4077 if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
4078 break;
4079 case e1000_82544:
4080 if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
4081 break;
4082 case e1000_82540:
4083 case e1000_82545:
4084 case e1000_82545_rev_3:
4085 case e1000_82546:
4086 case e1000_82546_rev_3:
4087 if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
4088 break;
4089 case e1000_82541:
4090 case e1000_82541_rev_2:
4091 case e1000_82547:
4092 case e1000_82547_rev_2:
4093 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
4094 break;
4095 case e1000_82573:
4096 if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
4097 break;
4098 case e1000_80003es2lan:
4099 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
4100 break;
4101 case e1000_ich8lan:
4102 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4103 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4104 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4105 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4106 break;
4107 default:
4108 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4109 return -E1000_ERR_CONFIG;
4111 phy_init_status = e1000_set_phy_type(hw);
4113 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4114 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4115 return E1000_SUCCESS;
4117 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4118 return -E1000_ERR_PHY;
4121 /******************************************************************************
4122 * Resets the PHY's DSP
4124 * hw - Struct containing variables accessed by shared code
4125 ******************************************************************************/
4126 static int32_t
4127 e1000_phy_reset_dsp(struct e1000_hw *hw)
4129 int32_t ret_val;
4130 DEBUGFUNC("e1000_phy_reset_dsp");
4132 do {
4133 if (hw->phy_type != e1000_phy_gg82563) {
4134 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
4135 if (ret_val) break;
4137 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
4138 if (ret_val) break;
4139 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
4140 if (ret_val) break;
4141 ret_val = E1000_SUCCESS;
4142 } while (0);
4144 return ret_val;
4147 /******************************************************************************
4148 * Get PHY information from various PHY registers for igp PHY only.
4150 * hw - Struct containing variables accessed by shared code
4151 * phy_info - PHY information structure
4152 ******************************************************************************/
4153 static int32_t
4154 e1000_phy_igp_get_info(struct e1000_hw *hw,
4155 struct e1000_phy_info *phy_info)
4157 int32_t ret_val;
4158 uint16_t phy_data, min_length, max_length, average;
4159 e1000_rev_polarity polarity;
4161 DEBUGFUNC("e1000_phy_igp_get_info");
4163 /* The downshift status is checked only once, after link is established,
4164 * and it stored in the hw->speed_downgraded parameter. */
4165 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4167 /* IGP01E1000 does not need to support it. */
4168 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4170 /* IGP01E1000 always correct polarity reversal */
4171 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4173 /* Check polarity status */
4174 ret_val = e1000_check_polarity(hw, &polarity);
4175 if (ret_val)
4176 return ret_val;
4178 phy_info->cable_polarity = polarity;
4180 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
4181 if (ret_val)
4182 return ret_val;
4184 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4185 IGP01E1000_PSSR_MDIX_SHIFT);
4187 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
4188 IGP01E1000_PSSR_SPEED_1000MBPS) {
4189 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4190 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4191 if (ret_val)
4192 return ret_val;
4194 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4195 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4196 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4197 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4198 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4199 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4201 /* Get cable length */
4202 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
4203 if (ret_val)
4204 return ret_val;
4206 /* Translate to old method */
4207 average = (max_length + min_length) / 2;
4209 if (average <= e1000_igp_cable_length_50)
4210 phy_info->cable_length = e1000_cable_length_50;
4211 else if (average <= e1000_igp_cable_length_80)
4212 phy_info->cable_length = e1000_cable_length_50_80;
4213 else if (average <= e1000_igp_cable_length_110)
4214 phy_info->cable_length = e1000_cable_length_80_110;
4215 else if (average <= e1000_igp_cable_length_140)
4216 phy_info->cable_length = e1000_cable_length_110_140;
4217 else
4218 phy_info->cable_length = e1000_cable_length_140;
4221 return E1000_SUCCESS;
4224 /******************************************************************************
4225 * Get PHY information from various PHY registers for ife PHY only.
4227 * hw - Struct containing variables accessed by shared code
4228 * phy_info - PHY information structure
4229 ******************************************************************************/
4230 static int32_t
4231 e1000_phy_ife_get_info(struct e1000_hw *hw,
4232 struct e1000_phy_info *phy_info)
4234 int32_t ret_val;
4235 uint16_t phy_data;
4236 e1000_rev_polarity polarity;
4238 DEBUGFUNC("e1000_phy_ife_get_info");
4240 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4241 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4243 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4244 if (ret_val)
4245 return ret_val;
4246 phy_info->polarity_correction =
4247 ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4248 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4249 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4251 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4252 ret_val = e1000_check_polarity(hw, &polarity);
4253 if (ret_val)
4254 return ret_val;
4255 } else {
4256 /* Polarity is forced. */
4257 polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4258 IFE_PSC_FORCE_POLARITY_SHIFT) ?
4259 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
4261 phy_info->cable_polarity = polarity;
4263 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4264 if (ret_val)
4265 return ret_val;
4267 phy_info->mdix_mode = (e1000_auto_x_mode)
4268 ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4269 IFE_PMC_MDIX_MODE_SHIFT);
4271 return E1000_SUCCESS;
4274 /******************************************************************************
4275 * Get PHY information from various PHY registers fot m88 PHY only.
4277 * hw - Struct containing variables accessed by shared code
4278 * phy_info - PHY information structure
4279 ******************************************************************************/
4280 static int32_t
4281 e1000_phy_m88_get_info(struct e1000_hw *hw,
4282 struct e1000_phy_info *phy_info)
4284 int32_t ret_val;
4285 uint16_t phy_data;
4286 e1000_rev_polarity polarity;
4288 DEBUGFUNC("e1000_phy_m88_get_info");
4290 /* The downshift status is checked only once, after link is established,
4291 * and it stored in the hw->speed_downgraded parameter. */
4292 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4294 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
4295 if (ret_val)
4296 return ret_val;
4298 phy_info->extended_10bt_distance =
4299 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4300 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4301 e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4303 phy_info->polarity_correction =
4304 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4305 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4306 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
4308 /* Check polarity status */
4309 ret_val = e1000_check_polarity(hw, &polarity);
4310 if (ret_val)
4311 return ret_val;
4312 phy_info->cable_polarity = polarity;
4314 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
4315 if (ret_val)
4316 return ret_val;
4318 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4319 M88E1000_PSSR_MDIX_SHIFT);
4321 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4322 /* Cable Length Estimation and Local/Remote Receiver Information
4323 * are only valid at 1000 Mbps.
4325 if (hw->phy_type != e1000_phy_gg82563) {
4326 phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4327 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4328 } else {
4329 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4330 &phy_data);
4331 if (ret_val)
4332 return ret_val;
4334 phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
4337 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
4338 if (ret_val)
4339 return ret_val;
4341 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4342 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4343 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4344 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4345 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4346 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4350 return E1000_SUCCESS;
4353 /******************************************************************************
4354 * Get PHY information from various PHY registers
4356 * hw - Struct containing variables accessed by shared code
4357 * phy_info - PHY information structure
4358 ******************************************************************************/
4359 int32_t
4360 e1000_phy_get_info(struct e1000_hw *hw,
4361 struct e1000_phy_info *phy_info)
4363 int32_t ret_val;
4364 uint16_t phy_data;
4366 DEBUGFUNC("e1000_phy_get_info");
4368 phy_info->cable_length = e1000_cable_length_undefined;
4369 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4370 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4371 phy_info->downshift = e1000_downshift_undefined;
4372 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4373 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4374 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4375 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4377 if (hw->media_type != e1000_media_type_copper) {
4378 DEBUGOUT("PHY info is only valid for copper media\n");
4379 return -E1000_ERR_CONFIG;
4382 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4383 if (ret_val)
4384 return ret_val;
4386 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
4387 if (ret_val)
4388 return ret_val;
4390 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
4391 DEBUGOUT("PHY info is only valid if link is up\n");
4392 return -E1000_ERR_CONFIG;
4395 if (hw->phy_type == e1000_phy_igp ||
4396 hw->phy_type == e1000_phy_igp_3 ||
4397 hw->phy_type == e1000_phy_igp_2)
4398 return e1000_phy_igp_get_info(hw, phy_info);
4399 else if (hw->phy_type == e1000_phy_ife)
4400 return e1000_phy_ife_get_info(hw, phy_info);
4401 else
4402 return e1000_phy_m88_get_info(hw, phy_info);
4405 int32_t
4406 e1000_validate_mdi_setting(struct e1000_hw *hw)
4408 DEBUGFUNC("e1000_validate_mdi_settings");
4410 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
4411 DEBUGOUT("Invalid MDI setting detected\n");
4412 hw->mdix = 1;
4413 return -E1000_ERR_CONFIG;
4415 return E1000_SUCCESS;
4419 /******************************************************************************
4420 * Sets up eeprom variables in the hw struct. Must be called after mac_type
4421 * is configured. Additionally, if this is ICH8, the flash controller GbE
4422 * registers must be mapped, or this will crash.
4424 * hw - Struct containing variables accessed by shared code
4425 *****************************************************************************/
4426 int32_t
4427 e1000_init_eeprom_params(struct e1000_hw *hw)
4429 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4430 uint32_t eecd = E1000_READ_REG(hw, EECD);
4431 int32_t ret_val = E1000_SUCCESS;
4432 uint16_t eeprom_size;
4434 DEBUGFUNC("e1000_init_eeprom_params");
4436 switch (hw->mac_type) {
4437 case e1000_82542_rev2_0:
4438 case e1000_82542_rev2_1:
4439 case e1000_82543:
4440 case e1000_82544:
4441 eeprom->type = e1000_eeprom_microwire;
4442 eeprom->word_size = 64;
4443 eeprom->opcode_bits = 3;
4444 eeprom->address_bits = 6;
4445 eeprom->delay_usec = 50;
4446 eeprom->use_eerd = FALSE;
4447 eeprom->use_eewr = FALSE;
4448 break;
4449 case e1000_82540:
4450 case e1000_82545:
4451 case e1000_82545_rev_3:
4452 case e1000_82546:
4453 case e1000_82546_rev_3:
4454 eeprom->type = e1000_eeprom_microwire;
4455 eeprom->opcode_bits = 3;
4456 eeprom->delay_usec = 50;
4457 if (eecd & E1000_EECD_SIZE) {
4458 eeprom->word_size = 256;
4459 eeprom->address_bits = 8;
4460 } else {
4461 eeprom->word_size = 64;
4462 eeprom->address_bits = 6;
4464 eeprom->use_eerd = FALSE;
4465 eeprom->use_eewr = FALSE;
4466 break;
4467 case e1000_82541:
4468 case e1000_82541_rev_2:
4469 case e1000_82547:
4470 case e1000_82547_rev_2:
4471 if (eecd & E1000_EECD_TYPE) {
4472 eeprom->type = e1000_eeprom_spi;
4473 eeprom->opcode_bits = 8;
4474 eeprom->delay_usec = 1;
4475 if (eecd & E1000_EECD_ADDR_BITS) {
4476 eeprom->page_size = 32;
4477 eeprom->address_bits = 16;
4478 } else {
4479 eeprom->page_size = 8;
4480 eeprom->address_bits = 8;
4482 } else {
4483 eeprom->type = e1000_eeprom_microwire;
4484 eeprom->opcode_bits = 3;
4485 eeprom->delay_usec = 50;
4486 if (eecd & E1000_EECD_ADDR_BITS) {
4487 eeprom->word_size = 256;
4488 eeprom->address_bits = 8;
4489 } else {
4490 eeprom->word_size = 64;
4491 eeprom->address_bits = 6;
4494 eeprom->use_eerd = FALSE;
4495 eeprom->use_eewr = FALSE;
4496 break;
4497 case e1000_82571:
4498 case e1000_82572:
4499 eeprom->type = e1000_eeprom_spi;
4500 eeprom->opcode_bits = 8;
4501 eeprom->delay_usec = 1;
4502 if (eecd & E1000_EECD_ADDR_BITS) {
4503 eeprom->page_size = 32;
4504 eeprom->address_bits = 16;
4505 } else {
4506 eeprom->page_size = 8;
4507 eeprom->address_bits = 8;
4509 eeprom->use_eerd = FALSE;
4510 eeprom->use_eewr = FALSE;
4511 break;
4512 case e1000_82573:
4513 eeprom->type = e1000_eeprom_spi;
4514 eeprom->opcode_bits = 8;
4515 eeprom->delay_usec = 1;
4516 if (eecd & E1000_EECD_ADDR_BITS) {
4517 eeprom->page_size = 32;
4518 eeprom->address_bits = 16;
4519 } else {
4520 eeprom->page_size = 8;
4521 eeprom->address_bits = 8;
4523 eeprom->use_eerd = TRUE;
4524 eeprom->use_eewr = TRUE;
4525 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
4526 eeprom->type = e1000_eeprom_flash;
4527 eeprom->word_size = 2048;
4529 /* Ensure that the Autonomous FLASH update bit is cleared due to
4530 * Flash update issue on parts which use a FLASH for NVM. */
4531 eecd &= ~E1000_EECD_AUPDEN;
4532 E1000_WRITE_REG(hw, EECD, eecd);
4534 break;
4535 case e1000_80003es2lan:
4536 eeprom->type = e1000_eeprom_spi;
4537 eeprom->opcode_bits = 8;
4538 eeprom->delay_usec = 1;
4539 if (eecd & E1000_EECD_ADDR_BITS) {
4540 eeprom->page_size = 32;
4541 eeprom->address_bits = 16;
4542 } else {
4543 eeprom->page_size = 8;
4544 eeprom->address_bits = 8;
4546 eeprom->use_eerd = TRUE;
4547 eeprom->use_eewr = FALSE;
4548 break;
4549 case e1000_ich8lan:
4551 int32_t i = 0;
4552 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4554 eeprom->type = e1000_eeprom_ich8;
4555 eeprom->use_eerd = FALSE;
4556 eeprom->use_eewr = FALSE;
4557 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4559 /* Zero the shadow RAM structure. But don't load it from NVM
4560 * so as to save time for driver init */
4561 if (hw->eeprom_shadow_ram != NULL) {
4562 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4563 hw->eeprom_shadow_ram[i].modified = FALSE;
4564 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4568 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4569 ICH8_FLASH_SECTOR_SIZE;
4571 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4572 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4573 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4574 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4576 break;
4578 default:
4579 break;
4582 if (eeprom->type == e1000_eeprom_spi) {
4583 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4584 * 32KB (incremented by powers of 2).
4586 if (hw->mac_type <= e1000_82547_rev_2) {
4587 /* Set to default value for initial eeprom read. */
4588 eeprom->word_size = 64;
4589 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
4590 if (ret_val)
4591 return ret_val;
4592 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4593 /* 256B eeprom size was not supported in earlier hardware, so we
4594 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4595 * is never the result used in the shifting logic below. */
4596 if (eeprom_size)
4597 eeprom_size++;
4598 } else {
4599 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4600 E1000_EECD_SIZE_EX_SHIFT);
4603 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
4605 return ret_val;
4608 /******************************************************************************
4609 * Raises the EEPROM's clock input.
4611 * hw - Struct containing variables accessed by shared code
4612 * eecd - EECD's current value
4613 *****************************************************************************/
4614 static void
4615 e1000_raise_ee_clk(struct e1000_hw *hw,
4616 uint32_t *eecd)
4618 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4619 * wait <delay> microseconds.
4621 *eecd = *eecd | E1000_EECD_SK;
4622 E1000_WRITE_REG(hw, EECD, *eecd);
4623 E1000_WRITE_FLUSH(hw);
4624 udelay(hw->eeprom.delay_usec);
4627 /******************************************************************************
4628 * Lowers the EEPROM's clock input.
4630 * hw - Struct containing variables accessed by shared code
4631 * eecd - EECD's current value
4632 *****************************************************************************/
4633 static void
4634 e1000_lower_ee_clk(struct e1000_hw *hw,
4635 uint32_t *eecd)
4637 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4638 * wait 50 microseconds.
4640 *eecd = *eecd & ~E1000_EECD_SK;
4641 E1000_WRITE_REG(hw, EECD, *eecd);
4642 E1000_WRITE_FLUSH(hw);
4643 udelay(hw->eeprom.delay_usec);
4646 /******************************************************************************
4647 * Shift data bits out to the EEPROM.
4649 * hw - Struct containing variables accessed by shared code
4650 * data - data to send to the EEPROM
4651 * count - number of bits to shift out
4652 *****************************************************************************/
4653 static void
4654 e1000_shift_out_ee_bits(struct e1000_hw *hw,
4655 uint16_t data,
4656 uint16_t count)
4658 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4659 uint32_t eecd;
4660 uint32_t mask;
4662 /* We need to shift "count" bits out to the EEPROM. So, value in the
4663 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4664 * In order to do this, "data" must be broken down into bits.
4666 mask = 0x01 << (count - 1);
4667 eecd = E1000_READ_REG(hw, EECD);
4668 if (eeprom->type == e1000_eeprom_microwire) {
4669 eecd &= ~E1000_EECD_DO;
4670 } else if (eeprom->type == e1000_eeprom_spi) {
4671 eecd |= E1000_EECD_DO;
4673 do {
4674 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4675 * and then raising and then lowering the clock (the SK bit controls
4676 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4677 * by setting "DI" to "0" and then raising and then lowering the clock.
4679 eecd &= ~E1000_EECD_DI;
4681 if (data & mask)
4682 eecd |= E1000_EECD_DI;
4684 E1000_WRITE_REG(hw, EECD, eecd);
4685 E1000_WRITE_FLUSH(hw);
4687 udelay(eeprom->delay_usec);
4689 e1000_raise_ee_clk(hw, &eecd);
4690 e1000_lower_ee_clk(hw, &eecd);
4692 mask = mask >> 1;
4694 } while (mask);
4696 /* We leave the "DI" bit set to "0" when we leave this routine. */
4697 eecd &= ~E1000_EECD_DI;
4698 E1000_WRITE_REG(hw, EECD, eecd);
4701 /******************************************************************************
4702 * Shift data bits in from the EEPROM
4704 * hw - Struct containing variables accessed by shared code
4705 *****************************************************************************/
4706 static uint16_t
4707 e1000_shift_in_ee_bits(struct e1000_hw *hw,
4708 uint16_t count)
4710 uint32_t eecd;
4711 uint32_t i;
4712 uint16_t data;
4714 /* In order to read a register from the EEPROM, we need to shift 'count'
4715 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4716 * input to the EEPROM (setting the SK bit), and then reading the value of
4717 * the "DO" bit. During this "shifting in" process the "DI" bit should
4718 * always be clear.
4721 eecd = E1000_READ_REG(hw, EECD);
4723 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4724 data = 0;
4726 for (i = 0; i < count; i++) {
4727 data = data << 1;
4728 e1000_raise_ee_clk(hw, &eecd);
4730 eecd = E1000_READ_REG(hw, EECD);
4732 eecd &= ~(E1000_EECD_DI);
4733 if (eecd & E1000_EECD_DO)
4734 data |= 1;
4736 e1000_lower_ee_clk(hw, &eecd);
4739 return data;
4742 /******************************************************************************
4743 * Prepares EEPROM for access
4745 * hw - Struct containing variables accessed by shared code
4747 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4748 * function should be called before issuing a command to the EEPROM.
4749 *****************************************************************************/
4750 static int32_t
4751 e1000_acquire_eeprom(struct e1000_hw *hw)
4753 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4754 uint32_t eecd, i=0;
4756 DEBUGFUNC("e1000_acquire_eeprom");
4758 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4759 return -E1000_ERR_SWFW_SYNC;
4760 eecd = E1000_READ_REG(hw, EECD);
4762 if (hw->mac_type != e1000_82573) {
4763 /* Request EEPROM Access */
4764 if (hw->mac_type > e1000_82544) {
4765 eecd |= E1000_EECD_REQ;
4766 E1000_WRITE_REG(hw, EECD, eecd);
4767 eecd = E1000_READ_REG(hw, EECD);
4768 while ((!(eecd & E1000_EECD_GNT)) &&
4769 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4770 i++;
4771 udelay(5);
4772 eecd = E1000_READ_REG(hw, EECD);
4774 if (!(eecd & E1000_EECD_GNT)) {
4775 eecd &= ~E1000_EECD_REQ;
4776 E1000_WRITE_REG(hw, EECD, eecd);
4777 DEBUGOUT("Could not acquire EEPROM grant\n");
4778 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4779 return -E1000_ERR_EEPROM;
4784 /* Setup EEPROM for Read/Write */
4786 if (eeprom->type == e1000_eeprom_microwire) {
4787 /* Clear SK and DI */
4788 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4789 E1000_WRITE_REG(hw, EECD, eecd);
4791 /* Set CS */
4792 eecd |= E1000_EECD_CS;
4793 E1000_WRITE_REG(hw, EECD, eecd);
4794 } else if (eeprom->type == e1000_eeprom_spi) {
4795 /* Clear SK and CS */
4796 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4797 E1000_WRITE_REG(hw, EECD, eecd);
4798 udelay(1);
4801 return E1000_SUCCESS;
4804 /******************************************************************************
4805 * Returns EEPROM to a "standby" state
4807 * hw - Struct containing variables accessed by shared code
4808 *****************************************************************************/
4809 static void
4810 e1000_standby_eeprom(struct e1000_hw *hw)
4812 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4813 uint32_t eecd;
4815 eecd = E1000_READ_REG(hw, EECD);
4817 if (eeprom->type == e1000_eeprom_microwire) {
4818 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4819 E1000_WRITE_REG(hw, EECD, eecd);
4820 E1000_WRITE_FLUSH(hw);
4821 udelay(eeprom->delay_usec);
4823 /* Clock high */
4824 eecd |= E1000_EECD_SK;
4825 E1000_WRITE_REG(hw, EECD, eecd);
4826 E1000_WRITE_FLUSH(hw);
4827 udelay(eeprom->delay_usec);
4829 /* Select EEPROM */
4830 eecd |= E1000_EECD_CS;
4831 E1000_WRITE_REG(hw, EECD, eecd);
4832 E1000_WRITE_FLUSH(hw);
4833 udelay(eeprom->delay_usec);
4835 /* Clock low */
4836 eecd &= ~E1000_EECD_SK;
4837 E1000_WRITE_REG(hw, EECD, eecd);
4838 E1000_WRITE_FLUSH(hw);
4839 udelay(eeprom->delay_usec);
4840 } else if (eeprom->type == e1000_eeprom_spi) {
4841 /* Toggle CS to flush commands */
4842 eecd |= E1000_EECD_CS;
4843 E1000_WRITE_REG(hw, EECD, eecd);
4844 E1000_WRITE_FLUSH(hw);
4845 udelay(eeprom->delay_usec);
4846 eecd &= ~E1000_EECD_CS;
4847 E1000_WRITE_REG(hw, EECD, eecd);
4848 E1000_WRITE_FLUSH(hw);
4849 udelay(eeprom->delay_usec);
4853 /******************************************************************************
4854 * Terminates a command by inverting the EEPROM's chip select pin
4856 * hw - Struct containing variables accessed by shared code
4857 *****************************************************************************/
4858 static void
4859 e1000_release_eeprom(struct e1000_hw *hw)
4861 uint32_t eecd;
4863 DEBUGFUNC("e1000_release_eeprom");
4865 eecd = E1000_READ_REG(hw, EECD);
4867 if (hw->eeprom.type == e1000_eeprom_spi) {
4868 eecd |= E1000_EECD_CS; /* Pull CS high */
4869 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4871 E1000_WRITE_REG(hw, EECD, eecd);
4873 udelay(hw->eeprom.delay_usec);
4874 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
4875 /* cleanup eeprom */
4877 /* CS on Microwire is active-high */
4878 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4880 E1000_WRITE_REG(hw, EECD, eecd);
4882 /* Rising edge of clock */
4883 eecd |= E1000_EECD_SK;
4884 E1000_WRITE_REG(hw, EECD, eecd);
4885 E1000_WRITE_FLUSH(hw);
4886 udelay(hw->eeprom.delay_usec);
4888 /* Falling edge of clock */
4889 eecd &= ~E1000_EECD_SK;
4890 E1000_WRITE_REG(hw, EECD, eecd);
4891 E1000_WRITE_FLUSH(hw);
4892 udelay(hw->eeprom.delay_usec);
4895 /* Stop requesting EEPROM access */
4896 if (hw->mac_type > e1000_82544) {
4897 eecd &= ~E1000_EECD_REQ;
4898 E1000_WRITE_REG(hw, EECD, eecd);
4901 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
4904 /******************************************************************************
4905 * Reads a 16 bit word from the EEPROM.
4907 * hw - Struct containing variables accessed by shared code
4908 *****************************************************************************/
4909 static int32_t
4910 e1000_spi_eeprom_ready(struct e1000_hw *hw)
4912 uint16_t retry_count = 0;
4913 uint8_t spi_stat_reg;
4915 DEBUGFUNC("e1000_spi_eeprom_ready");
4917 /* Read "Status Register" repeatedly until the LSB is cleared. The
4918 * EEPROM will signal that the command has been completed by clearing
4919 * bit 0 of the internal status register. If it's not cleared within
4920 * 5 milliseconds, then error out.
4922 retry_count = 0;
4923 do {
4924 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4925 hw->eeprom.opcode_bits);
4926 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4927 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4928 break;
4930 udelay(5);
4931 retry_count += 5;
4933 e1000_standby_eeprom(hw);
4934 } while (retry_count < EEPROM_MAX_RETRY_SPI);
4936 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4937 * only 0-5mSec on 5V devices)
4939 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
4940 DEBUGOUT("SPI EEPROM Status error\n");
4941 return -E1000_ERR_EEPROM;
4944 return E1000_SUCCESS;
4947 /******************************************************************************
4948 * Reads a 16 bit word from the EEPROM.
4950 * hw - Struct containing variables accessed by shared code
4951 * offset - offset of word in the EEPROM to read
4952 * data - word read from the EEPROM
4953 * words - number of words to read
4954 *****************************************************************************/
4955 int32_t
4956 e1000_read_eeprom(struct e1000_hw *hw,
4957 uint16_t offset,
4958 uint16_t words,
4959 uint16_t *data)
4961 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4962 uint32_t i = 0;
4964 DEBUGFUNC("e1000_read_eeprom");
4966 /* If eeprom is not yet detected, do so now */
4967 if (eeprom->word_size == 0)
4968 e1000_init_eeprom_params(hw);
4970 /* A check for invalid values: offset too large, too many words, and not
4971 * enough words.
4973 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4974 (words == 0)) {
4975 DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
4976 return -E1000_ERR_EEPROM;
4979 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4980 * directly. In this case, we need to acquire the EEPROM so that
4981 * FW or other port software does not interrupt.
4983 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
4984 hw->eeprom.use_eerd == FALSE) {
4985 /* Prepare the EEPROM for bit-bang reading */
4986 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4987 return -E1000_ERR_EEPROM;
4990 /* Eerd register EEPROM access requires no eeprom aquire/release */
4991 if (eeprom->use_eerd == TRUE)
4992 return e1000_read_eeprom_eerd(hw, offset, words, data);
4994 /* ICH EEPROM access is done via the ICH flash controller */
4995 if (eeprom->type == e1000_eeprom_ich8)
4996 return e1000_read_eeprom_ich8(hw, offset, words, data);
4998 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
4999 * acquired the EEPROM at this point, so any returns should relase it */
5000 if (eeprom->type == e1000_eeprom_spi) {
5001 uint16_t word_in;
5002 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
5004 if (e1000_spi_eeprom_ready(hw)) {
5005 e1000_release_eeprom(hw);
5006 return -E1000_ERR_EEPROM;
5009 e1000_standby_eeprom(hw);
5011 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5012 if ((eeprom->address_bits == 8) && (offset >= 128))
5013 read_opcode |= EEPROM_A8_OPCODE_SPI;
5015 /* Send the READ command (opcode + addr) */
5016 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
5017 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
5019 /* Read the data. The address of the eeprom internally increments with
5020 * each byte (spi) being read, saving on the overhead of eeprom setup
5021 * and tear-down. The address counter will roll over if reading beyond
5022 * the size of the eeprom, thus allowing the entire memory to be read
5023 * starting from any offset. */
5024 for (i = 0; i < words; i++) {
5025 word_in = e1000_shift_in_ee_bits(hw, 16);
5026 data[i] = (word_in >> 8) | (word_in << 8);
5028 } else if (eeprom->type == e1000_eeprom_microwire) {
5029 for (i = 0; i < words; i++) {
5030 /* Send the READ command (opcode + addr) */
5031 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
5032 eeprom->opcode_bits);
5033 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
5034 eeprom->address_bits);
5036 /* Read the data. For microwire, each word requires the overhead
5037 * of eeprom setup and tear-down. */
5038 data[i] = e1000_shift_in_ee_bits(hw, 16);
5039 e1000_standby_eeprom(hw);
5043 /* End this read operation */
5044 e1000_release_eeprom(hw);
5046 return E1000_SUCCESS;
5049 /******************************************************************************
5050 * Reads a 16 bit word from the EEPROM using the EERD register.
5052 * hw - Struct containing variables accessed by shared code
5053 * offset - offset of word in the EEPROM to read
5054 * data - word read from the EEPROM
5055 * words - number of words to read
5056 *****************************************************************************/
5057 static int32_t
5058 e1000_read_eeprom_eerd(struct e1000_hw *hw,
5059 uint16_t offset,
5060 uint16_t words,
5061 uint16_t *data)
5063 uint32_t i, eerd = 0;
5064 int32_t error = 0;
5066 for (i = 0; i < words; i++) {
5067 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5068 E1000_EEPROM_RW_REG_START;
5070 E1000_WRITE_REG(hw, EERD, eerd);
5071 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
5073 if (error) {
5074 break;
5076 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
5080 return error;
5083 /******************************************************************************
5084 * Writes a 16 bit word from the EEPROM using the EEWR register.
5086 * hw - Struct containing variables accessed by shared code
5087 * offset - offset of word in the EEPROM to read
5088 * data - word read from the EEPROM
5089 * words - number of words to read
5090 *****************************************************************************/
5091 static int32_t
5092 e1000_write_eeprom_eewr(struct e1000_hw *hw,
5093 uint16_t offset,
5094 uint16_t words,
5095 uint16_t *data)
5097 uint32_t register_value = 0;
5098 uint32_t i = 0;
5099 int32_t error = 0;
5101 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5102 return -E1000_ERR_SWFW_SYNC;
5104 for (i = 0; i < words; i++) {
5105 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5106 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
5107 E1000_EEPROM_RW_REG_START;
5109 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5110 if (error) {
5111 break;
5114 E1000_WRITE_REG(hw, EEWR, register_value);
5116 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
5118 if (error) {
5119 break;
5123 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
5124 return error;
5127 /******************************************************************************
5128 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5130 * hw - Struct containing variables accessed by shared code
5131 *****************************************************************************/
5132 static int32_t
5133 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5135 uint32_t attempts = 100000;
5136 uint32_t i, reg = 0;
5137 int32_t done = E1000_ERR_EEPROM;
5139 for (i = 0; i < attempts; i++) {
5140 if (eerd == E1000_EEPROM_POLL_READ)
5141 reg = E1000_READ_REG(hw, EERD);
5142 else
5143 reg = E1000_READ_REG(hw, EEWR);
5145 if (reg & E1000_EEPROM_RW_REG_DONE) {
5146 done = E1000_SUCCESS;
5147 break;
5149 udelay(5);
5152 return done;
5155 /***************************************************************************
5156 * Description: Determines if the onboard NVM is FLASH or EEPROM.
5158 * hw - Struct containing variables accessed by shared code
5159 ****************************************************************************/
5160 static boolean_t
5161 e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5163 uint32_t eecd = 0;
5165 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5167 if (hw->mac_type == e1000_ich8lan)
5168 return FALSE;
5170 if (hw->mac_type == e1000_82573) {
5171 eecd = E1000_READ_REG(hw, EECD);
5173 /* Isolate bits 15 & 16 */
5174 eecd = ((eecd >> 15) & 0x03);
5176 /* If both bits are set, device is Flash type */
5177 if (eecd == 0x03) {
5178 return FALSE;
5181 return TRUE;
5184 /******************************************************************************
5185 * Verifies that the EEPROM has a valid checksum
5187 * hw - Struct containing variables accessed by shared code
5189 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5190 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5191 * valid.
5192 *****************************************************************************/
5193 int32_t
5194 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5196 uint16_t checksum = 0;
5197 uint16_t i, eeprom_data;
5199 DEBUGFUNC("e1000_validate_eeprom_checksum");
5201 if ((hw->mac_type == e1000_82573) &&
5202 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5203 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5204 * 10h-12h. Checksum may need to be fixed. */
5205 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5206 if ((eeprom_data & 0x10) == 0) {
5207 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5208 * has already been fixed. If the checksum is still wrong and this
5209 * bit is a 1, we need to return bad checksum. Otherwise, we need
5210 * to set this bit to a 1 and update the checksum. */
5211 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5212 if ((eeprom_data & 0x8000) == 0) {
5213 eeprom_data |= 0x8000;
5214 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5215 e1000_update_eeprom_checksum(hw);
5220 if (hw->mac_type == e1000_ich8lan) {
5221 /* Drivers must allocate the shadow ram structure for the
5222 * EEPROM checksum to be updated. Otherwise, this bit as well
5223 * as the checksum must both be set correctly for this
5224 * validation to pass.
5226 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5227 if ((eeprom_data & 0x40) == 0) {
5228 eeprom_data |= 0x40;
5229 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5230 e1000_update_eeprom_checksum(hw);
5234 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5235 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5236 DEBUGOUT("EEPROM Read Error\n");
5237 return -E1000_ERR_EEPROM;
5239 checksum += eeprom_data;
5242 if (checksum == (uint16_t) EEPROM_SUM)
5243 return E1000_SUCCESS;
5244 else {
5245 DEBUGOUT("EEPROM Checksum Invalid\n");
5246 return -E1000_ERR_EEPROM;
5250 /******************************************************************************
5251 * Calculates the EEPROM checksum and writes it to the EEPROM
5253 * hw - Struct containing variables accessed by shared code
5255 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5256 * Writes the difference to word offset 63 of the EEPROM.
5257 *****************************************************************************/
5258 int32_t
5259 e1000_update_eeprom_checksum(struct e1000_hw *hw)
5261 uint32_t ctrl_ext;
5262 uint16_t checksum = 0;
5263 uint16_t i, eeprom_data;
5265 DEBUGFUNC("e1000_update_eeprom_checksum");
5267 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5268 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
5269 DEBUGOUT("EEPROM Read Error\n");
5270 return -E1000_ERR_EEPROM;
5272 checksum += eeprom_data;
5274 checksum = (uint16_t) EEPROM_SUM - checksum;
5275 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
5276 DEBUGOUT("EEPROM Write Error\n");
5277 return -E1000_ERR_EEPROM;
5278 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5279 e1000_commit_shadow_ram(hw);
5280 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5281 e1000_commit_shadow_ram(hw);
5282 /* Reload the EEPROM, or else modifications will not appear
5283 * until after next adapter reset. */
5284 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5285 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5286 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5287 msleep(10);
5289 return E1000_SUCCESS;
5292 /******************************************************************************
5293 * Parent function for writing words to the different EEPROM types.
5295 * hw - Struct containing variables accessed by shared code
5296 * offset - offset within the EEPROM to be written to
5297 * words - number of words to write
5298 * data - 16 bit word to be written to the EEPROM
5300 * If e1000_update_eeprom_checksum is not called after this function, the
5301 * EEPROM will most likely contain an invalid checksum.
5302 *****************************************************************************/
5303 int32_t
5304 e1000_write_eeprom(struct e1000_hw *hw,
5305 uint16_t offset,
5306 uint16_t words,
5307 uint16_t *data)
5309 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5310 int32_t status = 0;
5312 DEBUGFUNC("e1000_write_eeprom");
5314 /* If eeprom is not yet detected, do so now */
5315 if (eeprom->word_size == 0)
5316 e1000_init_eeprom_params(hw);
5318 /* A check for invalid values: offset too large, too many words, and not
5319 * enough words.
5321 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
5322 (words == 0)) {
5323 DEBUGOUT("\"words\" parameter out of bounds\n");
5324 return -E1000_ERR_EEPROM;
5327 /* 82573 writes only through eewr */
5328 if (eeprom->use_eewr == TRUE)
5329 return e1000_write_eeprom_eewr(hw, offset, words, data);
5331 if (eeprom->type == e1000_eeprom_ich8)
5332 return e1000_write_eeprom_ich8(hw, offset, words, data);
5334 /* Prepare the EEPROM for writing */
5335 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5336 return -E1000_ERR_EEPROM;
5338 if (eeprom->type == e1000_eeprom_microwire) {
5339 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5340 } else {
5341 status = e1000_write_eeprom_spi(hw, offset, words, data);
5342 msleep(10);
5345 /* Done with writing */
5346 e1000_release_eeprom(hw);
5348 return status;
5351 /******************************************************************************
5352 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5354 * hw - Struct containing variables accessed by shared code
5355 * offset - offset within the EEPROM to be written to
5356 * words - number of words to write
5357 * data - pointer to array of 8 bit words to be written to the EEPROM
5359 *****************************************************************************/
5360 static int32_t
5361 e1000_write_eeprom_spi(struct e1000_hw *hw,
5362 uint16_t offset,
5363 uint16_t words,
5364 uint16_t *data)
5366 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5367 uint16_t widx = 0;
5369 DEBUGFUNC("e1000_write_eeprom_spi");
5371 while (widx < words) {
5372 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5374 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
5376 e1000_standby_eeprom(hw);
5378 /* Send the WRITE ENABLE command (8 bit opcode ) */
5379 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5380 eeprom->opcode_bits);
5382 e1000_standby_eeprom(hw);
5384 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
5385 if ((eeprom->address_bits == 8) && (offset >= 128))
5386 write_opcode |= EEPROM_A8_OPCODE_SPI;
5388 /* Send the Write command (8-bit opcode + addr) */
5389 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5391 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5392 eeprom->address_bits);
5394 /* Send the data */
5396 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5397 while (widx < words) {
5398 uint16_t word_out = data[widx];
5399 word_out = (word_out >> 8) | (word_out << 8);
5400 e1000_shift_out_ee_bits(hw, word_out, 16);
5401 widx++;
5403 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5404 * operation, while the smaller eeproms are capable of an 8-byte
5405 * PAGE WRITE operation. Break the inner loop to pass new address
5407 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
5408 e1000_standby_eeprom(hw);
5409 break;
5414 return E1000_SUCCESS;
5417 /******************************************************************************
5418 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5420 * hw - Struct containing variables accessed by shared code
5421 * offset - offset within the EEPROM to be written to
5422 * words - number of words to write
5423 * data - pointer to array of 16 bit words to be written to the EEPROM
5425 *****************************************************************************/
5426 static int32_t
5427 e1000_write_eeprom_microwire(struct e1000_hw *hw,
5428 uint16_t offset,
5429 uint16_t words,
5430 uint16_t *data)
5432 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5433 uint32_t eecd;
5434 uint16_t words_written = 0;
5435 uint16_t i = 0;
5437 DEBUGFUNC("e1000_write_eeprom_microwire");
5439 /* Send the write enable command to the EEPROM (3-bit opcode plus
5440 * 6/8-bit dummy address beginning with 11). It's less work to include
5441 * the 11 of the dummy address as part of the opcode than it is to shift
5442 * it over the correct number of bits for the address. This puts the
5443 * EEPROM into write/erase mode.
5445 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5446 (uint16_t)(eeprom->opcode_bits + 2));
5448 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5450 /* Prepare the EEPROM */
5451 e1000_standby_eeprom(hw);
5453 while (words_written < words) {
5454 /* Send the Write command (3-bit opcode + addr) */
5455 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5456 eeprom->opcode_bits);
5458 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5459 eeprom->address_bits);
5461 /* Send the data */
5462 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5464 /* Toggle the CS line. This in effect tells the EEPROM to execute
5465 * the previous command.
5467 e1000_standby_eeprom(hw);
5469 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5470 * signal that the command has been completed by raising the DO signal.
5471 * If DO does not go high in 10 milliseconds, then error out.
5473 for (i = 0; i < 200; i++) {
5474 eecd = E1000_READ_REG(hw, EECD);
5475 if (eecd & E1000_EECD_DO) break;
5476 udelay(50);
5478 if (i == 200) {
5479 DEBUGOUT("EEPROM Write did not complete\n");
5480 return -E1000_ERR_EEPROM;
5483 /* Recover from write */
5484 e1000_standby_eeprom(hw);
5486 words_written++;
5489 /* Send the write disable command to the EEPROM (3-bit opcode plus
5490 * 6/8-bit dummy address beginning with 10). It's less work to include
5491 * the 10 of the dummy address as part of the opcode than it is to shift
5492 * it over the correct number of bits for the address. This takes the
5493 * EEPROM out of write/erase mode.
5495 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5496 (uint16_t)(eeprom->opcode_bits + 2));
5498 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5500 return E1000_SUCCESS;
5503 /******************************************************************************
5504 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5505 * in the eeprom cache and the non modified values in the currently active bank
5506 * to the new bank.
5508 * hw - Struct containing variables accessed by shared code
5509 * offset - offset of word in the EEPROM to read
5510 * data - word read from the EEPROM
5511 * words - number of words to read
5512 *****************************************************************************/
5513 static int32_t
5514 e1000_commit_shadow_ram(struct e1000_hw *hw)
5516 uint32_t attempts = 100000;
5517 uint32_t eecd = 0;
5518 uint32_t flop = 0;
5519 uint32_t i = 0;
5520 int32_t error = E1000_SUCCESS;
5521 uint32_t old_bank_offset = 0;
5522 uint32_t new_bank_offset = 0;
5523 uint8_t low_byte = 0;
5524 uint8_t high_byte = 0;
5525 boolean_t sector_write_failed = FALSE;
5527 if (hw->mac_type == e1000_82573) {
5528 /* The flop register will be used to determine if flash type is STM */
5529 flop = E1000_READ_REG(hw, FLOP);
5530 for (i=0; i < attempts; i++) {
5531 eecd = E1000_READ_REG(hw, EECD);
5532 if ((eecd & E1000_EECD_FLUPD) == 0) {
5533 break;
5535 udelay(5);
5538 if (i == attempts) {
5539 return -E1000_ERR_EEPROM;
5542 /* If STM opcode located in bits 15:8 of flop, reset firmware */
5543 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5544 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5547 /* Perform the flash update */
5548 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5550 for (i=0; i < attempts; i++) {
5551 eecd = E1000_READ_REG(hw, EECD);
5552 if ((eecd & E1000_EECD_FLUPD) == 0) {
5553 break;
5555 udelay(5);
5558 if (i == attempts) {
5559 return -E1000_ERR_EEPROM;
5563 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5564 /* We're writing to the opposite bank so if we're on bank 1,
5565 * write to bank 0 etc. We also need to erase the segment that
5566 * is going to be written */
5567 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5568 new_bank_offset = hw->flash_bank_size * 2;
5569 old_bank_offset = 0;
5570 e1000_erase_ich8_4k_segment(hw, 1);
5571 } else {
5572 old_bank_offset = hw->flash_bank_size * 2;
5573 new_bank_offset = 0;
5574 e1000_erase_ich8_4k_segment(hw, 0);
5577 sector_write_failed = FALSE;
5578 /* Loop for every byte in the shadow RAM,
5579 * which is in units of words. */
5580 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5581 /* Determine whether to write the value stored
5582 * in the other NVM bank or a modified value stored
5583 * in the shadow RAM */
5584 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5585 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5586 udelay(100);
5587 error = e1000_verify_write_ich8_byte(hw,
5588 (i << 1) + new_bank_offset, low_byte);
5590 if (error != E1000_SUCCESS)
5591 sector_write_failed = TRUE;
5592 else {
5593 high_byte =
5594 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5595 udelay(100);
5597 } else {
5598 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5599 &low_byte);
5600 udelay(100);
5601 error = e1000_verify_write_ich8_byte(hw,
5602 (i << 1) + new_bank_offset, low_byte);
5604 if (error != E1000_SUCCESS)
5605 sector_write_failed = TRUE;
5606 else {
5607 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5608 &high_byte);
5609 udelay(100);
5613 /* If the write of the low byte was successful, go ahread and
5614 * write the high byte while checking to make sure that if it
5615 * is the signature byte, then it is handled properly */
5616 if (sector_write_failed == FALSE) {
5617 /* If the word is 0x13, then make sure the signature bits
5618 * (15:14) are 11b until the commit has completed.
5619 * This will allow us to write 10b which indicates the
5620 * signature is valid. We want to do this after the write
5621 * has completed so that we don't mark the segment valid
5622 * while the write is still in progress */
5623 if (i == E1000_ICH8_NVM_SIG_WORD)
5624 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5626 error = e1000_verify_write_ich8_byte(hw,
5627 (i << 1) + new_bank_offset + 1, high_byte);
5628 if (error != E1000_SUCCESS)
5629 sector_write_failed = TRUE;
5631 } else {
5632 /* If the write failed then break from the loop and
5633 * return an error */
5634 break;
5638 /* Don't bother writing the segment valid bits if sector
5639 * programming failed. */
5640 if (sector_write_failed == FALSE) {
5641 /* Finally validate the new segment by setting bit 15:14
5642 * to 10b in word 0x13 , this can be done without an
5643 * erase as well since these bits are 11 to start with
5644 * and we need to change bit 14 to 0b */
5645 e1000_read_ich8_byte(hw,
5646 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5647 &high_byte);
5648 high_byte &= 0xBF;
5649 error = e1000_verify_write_ich8_byte(hw,
5650 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
5651 /* And invalidate the previously valid segment by setting
5652 * its signature word (0x13) high_byte to 0b. This can be
5653 * done without an erase because flash erase sets all bits
5654 * to 1's. We can write 1's to 0's without an erase */
5655 if (error == E1000_SUCCESS) {
5656 error = e1000_verify_write_ich8_byte(hw,
5657 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
5660 /* Clear the now not used entry in the cache */
5661 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5662 hw->eeprom_shadow_ram[i].modified = FALSE;
5663 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5668 return error;
5671 /******************************************************************************
5672 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5673 * second function of dual function devices
5675 * hw - Struct containing variables accessed by shared code
5676 *****************************************************************************/
5677 int32_t
5678 e1000_read_mac_addr(struct e1000_hw * hw)
5680 uint16_t offset;
5681 uint16_t eeprom_data, i;
5683 DEBUGFUNC("e1000_read_mac_addr");
5685 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
5686 offset = i >> 1;
5687 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
5688 DEBUGOUT("EEPROM Read Error\n");
5689 return -E1000_ERR_EEPROM;
5691 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5692 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5695 switch (hw->mac_type) {
5696 default:
5697 break;
5698 case e1000_82546:
5699 case e1000_82546_rev_3:
5700 case e1000_82571:
5701 case e1000_80003es2lan:
5702 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
5703 hw->perm_mac_addr[5] ^= 0x01;
5704 break;
5707 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
5708 hw->mac_addr[i] = hw->perm_mac_addr[i];
5709 return E1000_SUCCESS;
5712 /******************************************************************************
5713 * Initializes receive address filters.
5715 * hw - Struct containing variables accessed by shared code
5717 * Places the MAC address in receive address register 0 and clears the rest
5718 * of the receive addresss registers. Clears the multicast table. Assumes
5719 * the receiver is in reset when the routine is called.
5720 *****************************************************************************/
5721 static void
5722 e1000_init_rx_addrs(struct e1000_hw *hw)
5724 uint32_t i;
5725 uint32_t rar_num;
5727 DEBUGFUNC("e1000_init_rx_addrs");
5729 /* Setup the receive address. */
5730 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5732 e1000_rar_set(hw, hw->mac_addr, 0);
5734 rar_num = E1000_RAR_ENTRIES;
5736 /* Reserve a spot for the Locally Administered Address to work around
5737 * an 82571 issue in which a reset on one port will reload the MAC on
5738 * the other port. */
5739 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5740 rar_num -= 1;
5741 if (hw->mac_type == e1000_ich8lan)
5742 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5744 /* Zero out the other 15 receive addresses. */
5745 DEBUGOUT("Clearing RAR[1-15]\n");
5746 for (i = 1; i < rar_num; i++) {
5747 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5748 E1000_WRITE_FLUSH(hw);
5749 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5750 E1000_WRITE_FLUSH(hw);
5754 /******************************************************************************
5755 * Hashes an address to determine its location in the multicast table
5757 * hw - Struct containing variables accessed by shared code
5758 * mc_addr - the multicast address to hash
5759 *****************************************************************************/
5760 uint32_t
5761 e1000_hash_mc_addr(struct e1000_hw *hw,
5762 uint8_t *mc_addr)
5764 uint32_t hash_value = 0;
5766 /* The portion of the address that is used for the hash table is
5767 * determined by the mc_filter_type setting.
5769 switch (hw->mc_filter_type) {
5770 /* [0] [1] [2] [3] [4] [5]
5771 * 01 AA 00 12 34 56
5772 * LSB MSB
5774 case 0:
5775 if (hw->mac_type == e1000_ich8lan) {
5776 /* [47:38] i.e. 0x158 for above example address */
5777 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5778 } else {
5779 /* [47:36] i.e. 0x563 for above example address */
5780 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5782 break;
5783 case 1:
5784 if (hw->mac_type == e1000_ich8lan) {
5785 /* [46:37] i.e. 0x2B1 for above example address */
5786 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5787 } else {
5788 /* [46:35] i.e. 0xAC6 for above example address */
5789 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5791 break;
5792 case 2:
5793 if (hw->mac_type == e1000_ich8lan) {
5794 /*[45:36] i.e. 0x163 for above example address */
5795 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5796 } else {
5797 /* [45:34] i.e. 0x5D8 for above example address */
5798 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5800 break;
5801 case 3:
5802 if (hw->mac_type == e1000_ich8lan) {
5803 /* [43:34] i.e. 0x18D for above example address */
5804 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5805 } else {
5806 /* [43:32] i.e. 0x634 for above example address */
5807 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5809 break;
5812 hash_value &= 0xFFF;
5813 if (hw->mac_type == e1000_ich8lan)
5814 hash_value &= 0x3FF;
5816 return hash_value;
5819 /******************************************************************************
5820 * Sets the bit in the multicast table corresponding to the hash value.
5822 * hw - Struct containing variables accessed by shared code
5823 * hash_value - Multicast address hash value
5824 *****************************************************************************/
5825 void
5826 e1000_mta_set(struct e1000_hw *hw,
5827 uint32_t hash_value)
5829 uint32_t hash_bit, hash_reg;
5830 uint32_t mta;
5831 uint32_t temp;
5833 /* The MTA is a register array of 128 32-bit registers.
5834 * It is treated like an array of 4096 bits. We want to set
5835 * bit BitArray[hash_value]. So we figure out what register
5836 * the bit is in, read it, OR in the new bit, then write
5837 * back the new value. The register is determined by the
5838 * upper 7 bits of the hash value and the bit within that
5839 * register are determined by the lower 5 bits of the value.
5841 hash_reg = (hash_value >> 5) & 0x7F;
5842 if (hw->mac_type == e1000_ich8lan)
5843 hash_reg &= 0x1F;
5844 hash_bit = hash_value & 0x1F;
5846 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5848 mta |= (1 << hash_bit);
5850 /* If we are on an 82544 and we are trying to write an odd offset
5851 * in the MTA, save off the previous entry before writing and
5852 * restore the old value after writing.
5854 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5855 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5856 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5857 E1000_WRITE_FLUSH(hw);
5858 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5859 E1000_WRITE_FLUSH(hw);
5860 } else {
5861 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5862 E1000_WRITE_FLUSH(hw);
5866 /******************************************************************************
5867 * Puts an ethernet address into a receive address register.
5869 * hw - Struct containing variables accessed by shared code
5870 * addr - Address to put into receive address register
5871 * index - Receive address register to write
5872 *****************************************************************************/
5873 void
5874 e1000_rar_set(struct e1000_hw *hw,
5875 uint8_t *addr,
5876 uint32_t index)
5878 uint32_t rar_low, rar_high;
5880 /* HW expects these in little endian so we reverse the byte order
5881 * from network order (big endian) to little endian
5883 rar_low = ((uint32_t) addr[0] |
5884 ((uint32_t) addr[1] << 8) |
5885 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
5886 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
5888 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5889 * unit hang.
5891 * Description:
5892 * If there are any Rx frames queued up or otherwise present in the HW
5893 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5894 * hang. To work around this issue, we have to disable receives and
5895 * flush out all Rx frames before we enable RSS. To do so, we modify we
5896 * redirect all Rx traffic to manageability and then reset the HW.
5897 * This flushes away Rx frames, and (since the redirections to
5898 * manageability persists across resets) keeps new ones from coming in
5899 * while we work. Then, we clear the Address Valid AV bit for all MAC
5900 * addresses and undo the re-direction to manageability.
5901 * Now, frames are coming in again, but the MAC won't accept them, so
5902 * far so good. We now proceed to initialize RSS (if necessary) and
5903 * configure the Rx unit. Last, we re-enable the AV bits and continue
5904 * on our merry way.
5906 switch (hw->mac_type) {
5907 case e1000_82571:
5908 case e1000_82572:
5909 case e1000_80003es2lan:
5910 if (hw->leave_av_bit_off == TRUE)
5911 break;
5912 default:
5913 /* Indicate to hardware the Address is Valid. */
5914 rar_high |= E1000_RAH_AV;
5915 break;
5918 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5919 E1000_WRITE_FLUSH(hw);
5920 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5921 E1000_WRITE_FLUSH(hw);
5924 /******************************************************************************
5925 * Writes a value to the specified offset in the VLAN filter table.
5927 * hw - Struct containing variables accessed by shared code
5928 * offset - Offset in VLAN filer table to write
5929 * value - Value to write into VLAN filter table
5930 *****************************************************************************/
5931 void
5932 e1000_write_vfta(struct e1000_hw *hw,
5933 uint32_t offset,
5934 uint32_t value)
5936 uint32_t temp;
5938 if (hw->mac_type == e1000_ich8lan)
5939 return;
5941 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5942 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5943 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5944 E1000_WRITE_FLUSH(hw);
5945 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5946 E1000_WRITE_FLUSH(hw);
5947 } else {
5948 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5949 E1000_WRITE_FLUSH(hw);
5953 /******************************************************************************
5954 * Clears the VLAN filer table
5956 * hw - Struct containing variables accessed by shared code
5957 *****************************************************************************/
5958 static void
5959 e1000_clear_vfta(struct e1000_hw *hw)
5961 uint32_t offset;
5962 uint32_t vfta_value = 0;
5963 uint32_t vfta_offset = 0;
5964 uint32_t vfta_bit_in_reg = 0;
5966 if (hw->mac_type == e1000_ich8lan)
5967 return;
5969 if (hw->mac_type == e1000_82573) {
5970 if (hw->mng_cookie.vlan_id != 0) {
5971 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5972 * ID. The following operations determine which 32b entry
5973 * (i.e. offset) into the array we want to set the VLAN ID
5974 * (i.e. bit) of the manageability unit. */
5975 vfta_offset = (hw->mng_cookie.vlan_id >>
5976 E1000_VFTA_ENTRY_SHIFT) &
5977 E1000_VFTA_ENTRY_MASK;
5978 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5979 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5982 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5983 /* If the offset we want to clear is the same offset of the
5984 * manageability VLAN ID, then clear all bits except that of the
5985 * manageability unit */
5986 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5987 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5988 E1000_WRITE_FLUSH(hw);
5992 static int32_t
5993 e1000_id_led_init(struct e1000_hw * hw)
5995 uint32_t ledctl;
5996 const uint32_t ledctl_mask = 0x000000FF;
5997 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
5998 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
5999 uint16_t eeprom_data, i, temp;
6000 const uint16_t led_mask = 0x0F;
6002 DEBUGFUNC("e1000_id_led_init");
6004 if (hw->mac_type < e1000_82540) {
6005 /* Nothing to do */
6006 return E1000_SUCCESS;
6009 ledctl = E1000_READ_REG(hw, LEDCTL);
6010 hw->ledctl_default = ledctl;
6011 hw->ledctl_mode1 = hw->ledctl_default;
6012 hw->ledctl_mode2 = hw->ledctl_default;
6014 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
6015 DEBUGOUT("EEPROM Read Error\n");
6016 return -E1000_ERR_EEPROM;
6019 if ((hw->mac_type == e1000_82573) &&
6020 (eeprom_data == ID_LED_RESERVED_82573))
6021 eeprom_data = ID_LED_DEFAULT_82573;
6022 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6023 (eeprom_data == ID_LED_RESERVED_FFFF)) {
6024 if (hw->mac_type == e1000_ich8lan)
6025 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6026 else
6027 eeprom_data = ID_LED_DEFAULT;
6029 for (i = 0; i < 4; i++) {
6030 temp = (eeprom_data >> (i << 2)) & led_mask;
6031 switch (temp) {
6032 case ID_LED_ON1_DEF2:
6033 case ID_LED_ON1_ON2:
6034 case ID_LED_ON1_OFF2:
6035 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6036 hw->ledctl_mode1 |= ledctl_on << (i << 3);
6037 break;
6038 case ID_LED_OFF1_DEF2:
6039 case ID_LED_OFF1_ON2:
6040 case ID_LED_OFF1_OFF2:
6041 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6042 hw->ledctl_mode1 |= ledctl_off << (i << 3);
6043 break;
6044 default:
6045 /* Do nothing */
6046 break;
6048 switch (temp) {
6049 case ID_LED_DEF1_ON2:
6050 case ID_LED_ON1_ON2:
6051 case ID_LED_OFF1_ON2:
6052 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6053 hw->ledctl_mode2 |= ledctl_on << (i << 3);
6054 break;
6055 case ID_LED_DEF1_OFF2:
6056 case ID_LED_ON1_OFF2:
6057 case ID_LED_OFF1_OFF2:
6058 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6059 hw->ledctl_mode2 |= ledctl_off << (i << 3);
6060 break;
6061 default:
6062 /* Do nothing */
6063 break;
6066 return E1000_SUCCESS;
6069 /******************************************************************************
6070 * Prepares SW controlable LED for use and saves the current state of the LED.
6072 * hw - Struct containing variables accessed by shared code
6073 *****************************************************************************/
6074 int32_t
6075 e1000_setup_led(struct e1000_hw *hw)
6077 uint32_t ledctl;
6078 int32_t ret_val = E1000_SUCCESS;
6080 DEBUGFUNC("e1000_setup_led");
6082 switch (hw->mac_type) {
6083 case e1000_82542_rev2_0:
6084 case e1000_82542_rev2_1:
6085 case e1000_82543:
6086 case e1000_82544:
6087 /* No setup necessary */
6088 break;
6089 case e1000_82541:
6090 case e1000_82547:
6091 case e1000_82541_rev_2:
6092 case e1000_82547_rev_2:
6093 /* Turn off PHY Smart Power Down (if enabled) */
6094 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6095 &hw->phy_spd_default);
6096 if (ret_val)
6097 return ret_val;
6098 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6099 (uint16_t)(hw->phy_spd_default &
6100 ~IGP01E1000_GMII_SPD));
6101 if (ret_val)
6102 return ret_val;
6103 /* Fall Through */
6104 default:
6105 if (hw->media_type == e1000_media_type_fiber) {
6106 ledctl = E1000_READ_REG(hw, LEDCTL);
6107 /* Save current LEDCTL settings */
6108 hw->ledctl_default = ledctl;
6109 /* Turn off LED0 */
6110 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6111 E1000_LEDCTL_LED0_BLINK |
6112 E1000_LEDCTL_LED0_MODE_MASK);
6113 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6114 E1000_LEDCTL_LED0_MODE_SHIFT);
6115 E1000_WRITE_REG(hw, LEDCTL, ledctl);
6116 } else if (hw->media_type == e1000_media_type_copper)
6117 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6118 break;
6121 return E1000_SUCCESS;
6125 /******************************************************************************
6126 * Used on 82571 and later Si that has LED blink bits.
6127 * Callers must use their own timer and should have already called
6128 * e1000_id_led_init()
6129 * Call e1000_cleanup led() to stop blinking
6131 * hw - Struct containing variables accessed by shared code
6132 *****************************************************************************/
6133 int32_t
6134 e1000_blink_led_start(struct e1000_hw *hw)
6136 int16_t i;
6137 uint32_t ledctl_blink = 0;
6139 DEBUGFUNC("e1000_id_led_blink_on");
6141 if (hw->mac_type < e1000_82571) {
6142 /* Nothing to do */
6143 return E1000_SUCCESS;
6145 if (hw->media_type == e1000_media_type_fiber) {
6146 /* always blink LED0 for PCI-E fiber */
6147 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6148 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6149 } else {
6150 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6151 ledctl_blink = hw->ledctl_mode2;
6152 for (i=0; i < 4; i++)
6153 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6154 E1000_LEDCTL_MODE_LED_ON)
6155 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6158 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6160 return E1000_SUCCESS;
6163 /******************************************************************************
6164 * Restores the saved state of the SW controlable LED.
6166 * hw - Struct containing variables accessed by shared code
6167 *****************************************************************************/
6168 int32_t
6169 e1000_cleanup_led(struct e1000_hw *hw)
6171 int32_t ret_val = E1000_SUCCESS;
6173 DEBUGFUNC("e1000_cleanup_led");
6175 switch (hw->mac_type) {
6176 case e1000_82542_rev2_0:
6177 case e1000_82542_rev2_1:
6178 case e1000_82543:
6179 case e1000_82544:
6180 /* No cleanup necessary */
6181 break;
6182 case e1000_82541:
6183 case e1000_82547:
6184 case e1000_82541_rev_2:
6185 case e1000_82547_rev_2:
6186 /* Turn on PHY Smart Power Down (if previously enabled) */
6187 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6188 hw->phy_spd_default);
6189 if (ret_val)
6190 return ret_val;
6191 /* Fall Through */
6192 default:
6193 if (hw->phy_type == e1000_phy_ife) {
6194 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6195 break;
6197 /* Restore LEDCTL settings */
6198 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6199 break;
6202 return E1000_SUCCESS;
6205 /******************************************************************************
6206 * Turns on the software controllable LED
6208 * hw - Struct containing variables accessed by shared code
6209 *****************************************************************************/
6210 int32_t
6211 e1000_led_on(struct e1000_hw *hw)
6213 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6215 DEBUGFUNC("e1000_led_on");
6217 switch (hw->mac_type) {
6218 case e1000_82542_rev2_0:
6219 case e1000_82542_rev2_1:
6220 case e1000_82543:
6221 /* Set SW Defineable Pin 0 to turn on the LED */
6222 ctrl |= E1000_CTRL_SWDPIN0;
6223 ctrl |= E1000_CTRL_SWDPIO0;
6224 break;
6225 case e1000_82544:
6226 if (hw->media_type == e1000_media_type_fiber) {
6227 /* Set SW Defineable Pin 0 to turn on the LED */
6228 ctrl |= E1000_CTRL_SWDPIN0;
6229 ctrl |= E1000_CTRL_SWDPIO0;
6230 } else {
6231 /* Clear SW Defineable Pin 0 to turn on the LED */
6232 ctrl &= ~E1000_CTRL_SWDPIN0;
6233 ctrl |= E1000_CTRL_SWDPIO0;
6235 break;
6236 default:
6237 if (hw->media_type == e1000_media_type_fiber) {
6238 /* Clear SW Defineable Pin 0 to turn on the LED */
6239 ctrl &= ~E1000_CTRL_SWDPIN0;
6240 ctrl |= E1000_CTRL_SWDPIO0;
6241 } else if (hw->phy_type == e1000_phy_ife) {
6242 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6243 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6244 } else if (hw->media_type == e1000_media_type_copper) {
6245 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6246 return E1000_SUCCESS;
6248 break;
6251 E1000_WRITE_REG(hw, CTRL, ctrl);
6253 return E1000_SUCCESS;
6256 /******************************************************************************
6257 * Turns off the software controllable LED
6259 * hw - Struct containing variables accessed by shared code
6260 *****************************************************************************/
6261 int32_t
6262 e1000_led_off(struct e1000_hw *hw)
6264 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6266 DEBUGFUNC("e1000_led_off");
6268 switch (hw->mac_type) {
6269 case e1000_82542_rev2_0:
6270 case e1000_82542_rev2_1:
6271 case e1000_82543:
6272 /* Clear SW Defineable Pin 0 to turn off the LED */
6273 ctrl &= ~E1000_CTRL_SWDPIN0;
6274 ctrl |= E1000_CTRL_SWDPIO0;
6275 break;
6276 case e1000_82544:
6277 if (hw->media_type == e1000_media_type_fiber) {
6278 /* Clear SW Defineable Pin 0 to turn off the LED */
6279 ctrl &= ~E1000_CTRL_SWDPIN0;
6280 ctrl |= E1000_CTRL_SWDPIO0;
6281 } else {
6282 /* Set SW Defineable Pin 0 to turn off the LED */
6283 ctrl |= E1000_CTRL_SWDPIN0;
6284 ctrl |= E1000_CTRL_SWDPIO0;
6286 break;
6287 default:
6288 if (hw->media_type == e1000_media_type_fiber) {
6289 /* Set SW Defineable Pin 0 to turn off the LED */
6290 ctrl |= E1000_CTRL_SWDPIN0;
6291 ctrl |= E1000_CTRL_SWDPIO0;
6292 } else if (hw->phy_type == e1000_phy_ife) {
6293 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6294 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6295 } else if (hw->media_type == e1000_media_type_copper) {
6296 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6297 return E1000_SUCCESS;
6299 break;
6302 E1000_WRITE_REG(hw, CTRL, ctrl);
6304 return E1000_SUCCESS;
6307 /******************************************************************************
6308 * Clears all hardware statistics counters.
6310 * hw - Struct containing variables accessed by shared code
6311 *****************************************************************************/
6312 static void
6313 e1000_clear_hw_cntrs(struct e1000_hw *hw)
6315 volatile uint32_t temp;
6317 temp = E1000_READ_REG(hw, CRCERRS);
6318 temp = E1000_READ_REG(hw, SYMERRS);
6319 temp = E1000_READ_REG(hw, MPC);
6320 temp = E1000_READ_REG(hw, SCC);
6321 temp = E1000_READ_REG(hw, ECOL);
6322 temp = E1000_READ_REG(hw, MCC);
6323 temp = E1000_READ_REG(hw, LATECOL);
6324 temp = E1000_READ_REG(hw, COLC);
6325 temp = E1000_READ_REG(hw, DC);
6326 temp = E1000_READ_REG(hw, SEC);
6327 temp = E1000_READ_REG(hw, RLEC);
6328 temp = E1000_READ_REG(hw, XONRXC);
6329 temp = E1000_READ_REG(hw, XONTXC);
6330 temp = E1000_READ_REG(hw, XOFFRXC);
6331 temp = E1000_READ_REG(hw, XOFFTXC);
6332 temp = E1000_READ_REG(hw, FCRUC);
6334 if (hw->mac_type != e1000_ich8lan) {
6335 temp = E1000_READ_REG(hw, PRC64);
6336 temp = E1000_READ_REG(hw, PRC127);
6337 temp = E1000_READ_REG(hw, PRC255);
6338 temp = E1000_READ_REG(hw, PRC511);
6339 temp = E1000_READ_REG(hw, PRC1023);
6340 temp = E1000_READ_REG(hw, PRC1522);
6343 temp = E1000_READ_REG(hw, GPRC);
6344 temp = E1000_READ_REG(hw, BPRC);
6345 temp = E1000_READ_REG(hw, MPRC);
6346 temp = E1000_READ_REG(hw, GPTC);
6347 temp = E1000_READ_REG(hw, GORCL);
6348 temp = E1000_READ_REG(hw, GORCH);
6349 temp = E1000_READ_REG(hw, GOTCL);
6350 temp = E1000_READ_REG(hw, GOTCH);
6351 temp = E1000_READ_REG(hw, RNBC);
6352 temp = E1000_READ_REG(hw, RUC);
6353 temp = E1000_READ_REG(hw, RFC);
6354 temp = E1000_READ_REG(hw, ROC);
6355 temp = E1000_READ_REG(hw, RJC);
6356 temp = E1000_READ_REG(hw, TORL);
6357 temp = E1000_READ_REG(hw, TORH);
6358 temp = E1000_READ_REG(hw, TOTL);
6359 temp = E1000_READ_REG(hw, TOTH);
6360 temp = E1000_READ_REG(hw, TPR);
6361 temp = E1000_READ_REG(hw, TPT);
6363 if (hw->mac_type != e1000_ich8lan) {
6364 temp = E1000_READ_REG(hw, PTC64);
6365 temp = E1000_READ_REG(hw, PTC127);
6366 temp = E1000_READ_REG(hw, PTC255);
6367 temp = E1000_READ_REG(hw, PTC511);
6368 temp = E1000_READ_REG(hw, PTC1023);
6369 temp = E1000_READ_REG(hw, PTC1522);
6372 temp = E1000_READ_REG(hw, MPTC);
6373 temp = E1000_READ_REG(hw, BPTC);
6375 if (hw->mac_type < e1000_82543) return;
6377 temp = E1000_READ_REG(hw, ALGNERRC);
6378 temp = E1000_READ_REG(hw, RXERRC);
6379 temp = E1000_READ_REG(hw, TNCRS);
6380 temp = E1000_READ_REG(hw, CEXTERR);
6381 temp = E1000_READ_REG(hw, TSCTC);
6382 temp = E1000_READ_REG(hw, TSCTFC);
6384 if (hw->mac_type <= e1000_82544) return;
6386 temp = E1000_READ_REG(hw, MGTPRC);
6387 temp = E1000_READ_REG(hw, MGTPDC);
6388 temp = E1000_READ_REG(hw, MGTPTC);
6390 if (hw->mac_type <= e1000_82547_rev_2) return;
6392 temp = E1000_READ_REG(hw, IAC);
6393 temp = E1000_READ_REG(hw, ICRXOC);
6395 if (hw->mac_type == e1000_ich8lan) return;
6397 temp = E1000_READ_REG(hw, ICRXPTC);
6398 temp = E1000_READ_REG(hw, ICRXATC);
6399 temp = E1000_READ_REG(hw, ICTXPTC);
6400 temp = E1000_READ_REG(hw, ICTXATC);
6401 temp = E1000_READ_REG(hw, ICTXQEC);
6402 temp = E1000_READ_REG(hw, ICTXQMTC);
6403 temp = E1000_READ_REG(hw, ICRXDMTC);
6406 /******************************************************************************
6407 * Resets Adaptive IFS to its default state.
6409 * hw - Struct containing variables accessed by shared code
6411 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6412 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6413 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6414 * before calling this function.
6415 *****************************************************************************/
6416 void
6417 e1000_reset_adaptive(struct e1000_hw *hw)
6419 DEBUGFUNC("e1000_reset_adaptive");
6421 if (hw->adaptive_ifs) {
6422 if (!hw->ifs_params_forced) {
6423 hw->current_ifs_val = 0;
6424 hw->ifs_min_val = IFS_MIN;
6425 hw->ifs_max_val = IFS_MAX;
6426 hw->ifs_step_size = IFS_STEP;
6427 hw->ifs_ratio = IFS_RATIO;
6429 hw->in_ifs_mode = FALSE;
6430 E1000_WRITE_REG(hw, AIT, 0);
6431 } else {
6432 DEBUGOUT("Not in Adaptive IFS mode!\n");
6436 /******************************************************************************
6437 * Called during the callback/watchdog routine to update IFS value based on
6438 * the ratio of transmits to collisions.
6440 * hw - Struct containing variables accessed by shared code
6441 * tx_packets - Number of transmits since last callback
6442 * total_collisions - Number of collisions since last callback
6443 *****************************************************************************/
6444 void
6445 e1000_update_adaptive(struct e1000_hw *hw)
6447 DEBUGFUNC("e1000_update_adaptive");
6449 if (hw->adaptive_ifs) {
6450 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6451 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
6452 hw->in_ifs_mode = TRUE;
6453 if (hw->current_ifs_val < hw->ifs_max_val) {
6454 if (hw->current_ifs_val == 0)
6455 hw->current_ifs_val = hw->ifs_min_val;
6456 else
6457 hw->current_ifs_val += hw->ifs_step_size;
6458 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6461 } else {
6462 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
6463 hw->current_ifs_val = 0;
6464 hw->in_ifs_mode = FALSE;
6465 E1000_WRITE_REG(hw, AIT, 0);
6468 } else {
6469 DEBUGOUT("Not in Adaptive IFS mode!\n");
6473 /******************************************************************************
6474 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6476 * hw - Struct containing variables accessed by shared code
6477 * frame_len - The length of the frame in question
6478 * mac_addr - The Ethernet destination address of the frame in question
6479 *****************************************************************************/
6480 void
6481 e1000_tbi_adjust_stats(struct e1000_hw *hw,
6482 struct e1000_hw_stats *stats,
6483 uint32_t frame_len,
6484 uint8_t *mac_addr)
6486 uint64_t carry_bit;
6488 /* First adjust the frame length. */
6489 frame_len--;
6490 /* We need to adjust the statistics counters, since the hardware
6491 * counters overcount this packet as a CRC error and undercount
6492 * the packet as a good packet
6494 /* This packet should not be counted as a CRC error. */
6495 stats->crcerrs--;
6496 /* This packet does count as a Good Packet Received. */
6497 stats->gprc++;
6499 /* Adjust the Good Octets received counters */
6500 carry_bit = 0x80000000 & stats->gorcl;
6501 stats->gorcl += frame_len;
6502 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6503 * Received Count) was one before the addition,
6504 * AND it is zero after, then we lost the carry out,
6505 * need to add one to Gorch (Good Octets Received Count High).
6506 * This could be simplified if all environments supported
6507 * 64-bit integers.
6509 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
6510 stats->gorch++;
6511 /* Is this a broadcast or multicast? Check broadcast first,
6512 * since the test for a multicast frame will test positive on
6513 * a broadcast frame.
6515 if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
6516 /* Broadcast packet */
6517 stats->bprc++;
6518 else if (*mac_addr & 0x01)
6519 /* Multicast packet */
6520 stats->mprc++;
6522 if (frame_len == hw->max_frame_size) {
6523 /* In this case, the hardware has overcounted the number of
6524 * oversize frames.
6526 if (stats->roc > 0)
6527 stats->roc--;
6530 /* Adjust the bin counters when the extra byte put the frame in the
6531 * wrong bin. Remember that the frame_len was adjusted above.
6533 if (frame_len == 64) {
6534 stats->prc64++;
6535 stats->prc127--;
6536 } else if (frame_len == 127) {
6537 stats->prc127++;
6538 stats->prc255--;
6539 } else if (frame_len == 255) {
6540 stats->prc255++;
6541 stats->prc511--;
6542 } else if (frame_len == 511) {
6543 stats->prc511++;
6544 stats->prc1023--;
6545 } else if (frame_len == 1023) {
6546 stats->prc1023++;
6547 stats->prc1522--;
6548 } else if (frame_len == 1522) {
6549 stats->prc1522++;
6553 /******************************************************************************
6554 * Gets the current PCI bus type, speed, and width of the hardware
6556 * hw - Struct containing variables accessed by shared code
6557 *****************************************************************************/
6558 void
6559 e1000_get_bus_info(struct e1000_hw *hw)
6561 int32_t ret_val;
6562 uint16_t pci_ex_link_status;
6563 uint32_t status;
6565 switch (hw->mac_type) {
6566 case e1000_82542_rev2_0:
6567 case e1000_82542_rev2_1:
6568 hw->bus_type = e1000_bus_type_unknown;
6569 hw->bus_speed = e1000_bus_speed_unknown;
6570 hw->bus_width = e1000_bus_width_unknown;
6571 break;
6572 case e1000_82571:
6573 case e1000_82572:
6574 case e1000_82573:
6575 case e1000_80003es2lan:
6576 hw->bus_type = e1000_bus_type_pci_express;
6577 hw->bus_speed = e1000_bus_speed_2500;
6578 ret_val = e1000_read_pcie_cap_reg(hw,
6579 PCI_EX_LINK_STATUS,
6580 &pci_ex_link_status);
6581 if (ret_val)
6582 hw->bus_width = e1000_bus_width_unknown;
6583 else
6584 hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6585 PCI_EX_LINK_WIDTH_SHIFT;
6586 break;
6587 case e1000_ich8lan:
6588 hw->bus_type = e1000_bus_type_pci_express;
6589 hw->bus_speed = e1000_bus_speed_2500;
6590 hw->bus_width = e1000_bus_width_pciex_1;
6591 break;
6592 default:
6593 status = E1000_READ_REG(hw, STATUS);
6594 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6595 e1000_bus_type_pcix : e1000_bus_type_pci;
6597 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
6598 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6599 e1000_bus_speed_66 : e1000_bus_speed_120;
6600 } else if (hw->bus_type == e1000_bus_type_pci) {
6601 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6602 e1000_bus_speed_66 : e1000_bus_speed_33;
6603 } else {
6604 switch (status & E1000_STATUS_PCIX_SPEED) {
6605 case E1000_STATUS_PCIX_SPEED_66:
6606 hw->bus_speed = e1000_bus_speed_66;
6607 break;
6608 case E1000_STATUS_PCIX_SPEED_100:
6609 hw->bus_speed = e1000_bus_speed_100;
6610 break;
6611 case E1000_STATUS_PCIX_SPEED_133:
6612 hw->bus_speed = e1000_bus_speed_133;
6613 break;
6614 default:
6615 hw->bus_speed = e1000_bus_speed_reserved;
6616 break;
6619 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6620 e1000_bus_width_64 : e1000_bus_width_32;
6621 break;
6625 /******************************************************************************
6626 * Writes a value to one of the devices registers using port I/O (as opposed to
6627 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6629 * hw - Struct containing variables accessed by shared code
6630 * offset - offset to write to
6631 * value - value to write
6632 *****************************************************************************/
6633 static void
6634 e1000_write_reg_io(struct e1000_hw *hw,
6635 uint32_t offset,
6636 uint32_t value)
6638 unsigned long io_addr = hw->io_base;
6639 unsigned long io_data = hw->io_base + 4;
6641 e1000_io_write(hw, io_addr, offset);
6642 e1000_io_write(hw, io_data, value);
6645 /******************************************************************************
6646 * Estimates the cable length.
6648 * hw - Struct containing variables accessed by shared code
6649 * min_length - The estimated minimum length
6650 * max_length - The estimated maximum length
6652 * returns: - E1000_ERR_XXX
6653 * E1000_SUCCESS
6655 * This function always returns a ranged length (minimum & maximum).
6656 * So for M88 phy's, this function interprets the one value returned from the
6657 * register to the minimum and maximum range.
6658 * For IGP phy's, the function calculates the range by the AGC registers.
6659 *****************************************************************************/
6660 static int32_t
6661 e1000_get_cable_length(struct e1000_hw *hw,
6662 uint16_t *min_length,
6663 uint16_t *max_length)
6665 int32_t ret_val;
6666 uint16_t agc_value = 0;
6667 uint16_t i, phy_data;
6668 uint16_t cable_length;
6670 DEBUGFUNC("e1000_get_cable_length");
6672 *min_length = *max_length = 0;
6674 /* Use old method for Phy older than IGP */
6675 if (hw->phy_type == e1000_phy_m88) {
6677 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6678 &phy_data);
6679 if (ret_val)
6680 return ret_val;
6681 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6682 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6684 /* Convert the enum value to ranged values */
6685 switch (cable_length) {
6686 case e1000_cable_length_50:
6687 *min_length = 0;
6688 *max_length = e1000_igp_cable_length_50;
6689 break;
6690 case e1000_cable_length_50_80:
6691 *min_length = e1000_igp_cable_length_50;
6692 *max_length = e1000_igp_cable_length_80;
6693 break;
6694 case e1000_cable_length_80_110:
6695 *min_length = e1000_igp_cable_length_80;
6696 *max_length = e1000_igp_cable_length_110;
6697 break;
6698 case e1000_cable_length_110_140:
6699 *min_length = e1000_igp_cable_length_110;
6700 *max_length = e1000_igp_cable_length_140;
6701 break;
6702 case e1000_cable_length_140:
6703 *min_length = e1000_igp_cable_length_140;
6704 *max_length = e1000_igp_cable_length_170;
6705 break;
6706 default:
6707 return -E1000_ERR_PHY;
6708 break;
6710 } else if (hw->phy_type == e1000_phy_gg82563) {
6711 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6712 &phy_data);
6713 if (ret_val)
6714 return ret_val;
6715 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6717 switch (cable_length) {
6718 case e1000_gg_cable_length_60:
6719 *min_length = 0;
6720 *max_length = e1000_igp_cable_length_60;
6721 break;
6722 case e1000_gg_cable_length_60_115:
6723 *min_length = e1000_igp_cable_length_60;
6724 *max_length = e1000_igp_cable_length_115;
6725 break;
6726 case e1000_gg_cable_length_115_150:
6727 *min_length = e1000_igp_cable_length_115;
6728 *max_length = e1000_igp_cable_length_150;
6729 break;
6730 case e1000_gg_cable_length_150:
6731 *min_length = e1000_igp_cable_length_150;
6732 *max_length = e1000_igp_cable_length_180;
6733 break;
6734 default:
6735 return -E1000_ERR_PHY;
6736 break;
6738 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6739 uint16_t cur_agc_value;
6740 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6741 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6742 {IGP01E1000_PHY_AGC_A,
6743 IGP01E1000_PHY_AGC_B,
6744 IGP01E1000_PHY_AGC_C,
6745 IGP01E1000_PHY_AGC_D};
6746 /* Read the AGC registers for all channels */
6747 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
6749 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6750 if (ret_val)
6751 return ret_val;
6753 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6755 /* Value bound check. */
6756 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6757 (cur_agc_value == 0))
6758 return -E1000_ERR_PHY;
6760 agc_value += cur_agc_value;
6762 /* Update minimal AGC value. */
6763 if (min_agc_value > cur_agc_value)
6764 min_agc_value = cur_agc_value;
6767 /* Remove the minimal AGC result for length < 50m */
6768 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6769 agc_value -= min_agc_value;
6771 /* Get the average length of the remaining 3 channels */
6772 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6773 } else {
6774 /* Get the average length of all the 4 channels. */
6775 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6778 /* Set the range of the calculated length. */
6779 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6780 IGP01E1000_AGC_RANGE) > 0) ?
6781 (e1000_igp_cable_length_table[agc_value] -
6782 IGP01E1000_AGC_RANGE) : 0;
6783 *max_length = e1000_igp_cable_length_table[agc_value] +
6784 IGP01E1000_AGC_RANGE;
6785 } else if (hw->phy_type == e1000_phy_igp_2 ||
6786 hw->phy_type == e1000_phy_igp_3) {
6787 uint16_t cur_agc_index, max_agc_index = 0;
6788 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6789 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6790 {IGP02E1000_PHY_AGC_A,
6791 IGP02E1000_PHY_AGC_B,
6792 IGP02E1000_PHY_AGC_C,
6793 IGP02E1000_PHY_AGC_D};
6794 /* Read the AGC registers for all channels */
6795 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6796 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6797 if (ret_val)
6798 return ret_val;
6800 /* Getting bits 15:9, which represent the combination of course and
6801 * fine gain values. The result is a number that can be put into
6802 * the lookup table to obtain the approximate cable length. */
6803 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6804 IGP02E1000_AGC_LENGTH_MASK;
6806 /* Array index bound check. */
6807 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6808 (cur_agc_index == 0))
6809 return -E1000_ERR_PHY;
6811 /* Remove min & max AGC values from calculation. */
6812 if (e1000_igp_2_cable_length_table[min_agc_index] >
6813 e1000_igp_2_cable_length_table[cur_agc_index])
6814 min_agc_index = cur_agc_index;
6815 if (e1000_igp_2_cable_length_table[max_agc_index] <
6816 e1000_igp_2_cable_length_table[cur_agc_index])
6817 max_agc_index = cur_agc_index;
6819 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6822 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6823 e1000_igp_2_cable_length_table[max_agc_index]);
6824 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6826 /* Calculate cable length with the error range of +/- 10 meters. */
6827 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6828 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6829 *max_length = agc_value + IGP02E1000_AGC_RANGE;
6832 return E1000_SUCCESS;
6835 /******************************************************************************
6836 * Check the cable polarity
6838 * hw - Struct containing variables accessed by shared code
6839 * polarity - output parameter : 0 - Polarity is not reversed
6840 * 1 - Polarity is reversed.
6842 * returns: - E1000_ERR_XXX
6843 * E1000_SUCCESS
6845 * For phy's older then IGP, this function simply reads the polarity bit in the
6846 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6847 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6848 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6849 * IGP01E1000_PHY_PCS_INIT_REG.
6850 *****************************************************************************/
6851 static int32_t
6852 e1000_check_polarity(struct e1000_hw *hw,
6853 e1000_rev_polarity *polarity)
6855 int32_t ret_val;
6856 uint16_t phy_data;
6858 DEBUGFUNC("e1000_check_polarity");
6860 if ((hw->phy_type == e1000_phy_m88) ||
6861 (hw->phy_type == e1000_phy_gg82563)) {
6862 /* return the Polarity bit in the Status register. */
6863 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6864 &phy_data);
6865 if (ret_val)
6866 return ret_val;
6867 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6868 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6869 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6871 } else if (hw->phy_type == e1000_phy_igp ||
6872 hw->phy_type == e1000_phy_igp_3 ||
6873 hw->phy_type == e1000_phy_igp_2) {
6874 /* Read the Status register to check the speed */
6875 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6876 &phy_data);
6877 if (ret_val)
6878 return ret_val;
6880 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6881 * find the polarity status */
6882 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
6883 IGP01E1000_PSSR_SPEED_1000MBPS) {
6885 /* Read the GIG initialization PCS register (0x00B4) */
6886 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6887 &phy_data);
6888 if (ret_val)
6889 return ret_val;
6891 /* Check the polarity bits */
6892 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6893 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6894 } else {
6895 /* For 10 Mbps, read the polarity bit in the status register. (for
6896 * 100 Mbps this bit is always 0) */
6897 *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6898 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6900 } else if (hw->phy_type == e1000_phy_ife) {
6901 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6902 &phy_data);
6903 if (ret_val)
6904 return ret_val;
6905 *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6906 IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6907 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6909 return E1000_SUCCESS;
6912 /******************************************************************************
6913 * Check if Downshift occured
6915 * hw - Struct containing variables accessed by shared code
6916 * downshift - output parameter : 0 - No Downshift ocured.
6917 * 1 - Downshift ocured.
6919 * returns: - E1000_ERR_XXX
6920 * E1000_SUCCESS
6922 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6923 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6924 * Link Health register. In IGP this bit is latched high, so the driver must
6925 * read it immediately after link is established.
6926 *****************************************************************************/
6927 static int32_t
6928 e1000_check_downshift(struct e1000_hw *hw)
6930 int32_t ret_val;
6931 uint16_t phy_data;
6933 DEBUGFUNC("e1000_check_downshift");
6935 if (hw->phy_type == e1000_phy_igp ||
6936 hw->phy_type == e1000_phy_igp_3 ||
6937 hw->phy_type == e1000_phy_igp_2) {
6938 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6939 &phy_data);
6940 if (ret_val)
6941 return ret_val;
6943 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
6944 } else if ((hw->phy_type == e1000_phy_m88) ||
6945 (hw->phy_type == e1000_phy_gg82563)) {
6946 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6947 &phy_data);
6948 if (ret_val)
6949 return ret_val;
6951 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6952 M88E1000_PSSR_DOWNSHIFT_SHIFT;
6953 } else if (hw->phy_type == e1000_phy_ife) {
6954 /* e1000_phy_ife supports 10/100 speed only */
6955 hw->speed_downgraded = FALSE;
6958 return E1000_SUCCESS;
6961 /*****************************************************************************
6963 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6964 * gigabit link is achieved to improve link quality.
6966 * hw: Struct containing variables accessed by shared code
6968 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6969 * E1000_SUCCESS at any other case.
6971 ****************************************************************************/
6973 static int32_t
6974 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6975 boolean_t link_up)
6977 int32_t ret_val;
6978 uint16_t phy_data, phy_saved_data, speed, duplex, i;
6979 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6980 {IGP01E1000_PHY_AGC_PARAM_A,
6981 IGP01E1000_PHY_AGC_PARAM_B,
6982 IGP01E1000_PHY_AGC_PARAM_C,
6983 IGP01E1000_PHY_AGC_PARAM_D};
6984 uint16_t min_length, max_length;
6986 DEBUGFUNC("e1000_config_dsp_after_link_change");
6988 if (hw->phy_type != e1000_phy_igp)
6989 return E1000_SUCCESS;
6991 if (link_up) {
6992 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
6993 if (ret_val) {
6994 DEBUGOUT("Error getting link speed and duplex\n");
6995 return ret_val;
6998 if (speed == SPEED_1000) {
7000 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
7001 if (ret_val)
7002 return ret_val;
7004 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
7005 min_length >= e1000_igp_cable_length_50) {
7007 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7008 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
7009 &phy_data);
7010 if (ret_val)
7011 return ret_val;
7013 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7015 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7016 phy_data);
7017 if (ret_val)
7018 return ret_val;
7020 hw->dsp_config_state = e1000_dsp_config_activated;
7023 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
7024 (min_length < e1000_igp_cable_length_50)) {
7026 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7027 uint32_t idle_errs = 0;
7029 /* clear previous idle error counts */
7030 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7031 &phy_data);
7032 if (ret_val)
7033 return ret_val;
7035 for (i = 0; i < ffe_idle_err_timeout; i++) {
7036 udelay(1000);
7037 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7038 &phy_data);
7039 if (ret_val)
7040 return ret_val;
7042 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
7043 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
7044 hw->ffe_config_state = e1000_ffe_config_active;
7046 ret_val = e1000_write_phy_reg(hw,
7047 IGP01E1000_PHY_DSP_FFE,
7048 IGP01E1000_PHY_DSP_FFE_CM_CP);
7049 if (ret_val)
7050 return ret_val;
7051 break;
7054 if (idle_errs)
7055 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7059 } else {
7060 if (hw->dsp_config_state == e1000_dsp_config_activated) {
7061 /* Save off the current value of register 0x2F5B to be restored at
7062 * the end of the routines. */
7063 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7065 if (ret_val)
7066 return ret_val;
7068 /* Disable the PHY transmitter */
7069 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7071 if (ret_val)
7072 return ret_val;
7074 mdelay(20);
7076 ret_val = e1000_write_phy_reg(hw, 0x0000,
7077 IGP01E1000_IEEE_FORCE_GIGA);
7078 if (ret_val)
7079 return ret_val;
7080 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
7081 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
7082 if (ret_val)
7083 return ret_val;
7085 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7086 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7088 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
7089 if (ret_val)
7090 return ret_val;
7093 ret_val = e1000_write_phy_reg(hw, 0x0000,
7094 IGP01E1000_IEEE_RESTART_AUTONEG);
7095 if (ret_val)
7096 return ret_val;
7098 mdelay(20);
7100 /* Now enable the transmitter */
7101 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7103 if (ret_val)
7104 return ret_val;
7106 hw->dsp_config_state = e1000_dsp_config_enabled;
7109 if (hw->ffe_config_state == e1000_ffe_config_active) {
7110 /* Save off the current value of register 0x2F5B to be restored at
7111 * the end of the routines. */
7112 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7114 if (ret_val)
7115 return ret_val;
7117 /* Disable the PHY transmitter */
7118 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7120 if (ret_val)
7121 return ret_val;
7123 mdelay(20);
7125 ret_val = e1000_write_phy_reg(hw, 0x0000,
7126 IGP01E1000_IEEE_FORCE_GIGA);
7127 if (ret_val)
7128 return ret_val;
7129 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7130 IGP01E1000_PHY_DSP_FFE_DEFAULT);
7131 if (ret_val)
7132 return ret_val;
7134 ret_val = e1000_write_phy_reg(hw, 0x0000,
7135 IGP01E1000_IEEE_RESTART_AUTONEG);
7136 if (ret_val)
7137 return ret_val;
7139 mdelay(20);
7141 /* Now enable the transmitter */
7142 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7144 if (ret_val)
7145 return ret_val;
7147 hw->ffe_config_state = e1000_ffe_config_enabled;
7150 return E1000_SUCCESS;
7153 /*****************************************************************************
7154 * Set PHY to class A mode
7155 * Assumes the following operations will follow to enable the new class mode.
7156 * 1. Do a PHY soft reset
7157 * 2. Restart auto-negotiation or force link.
7159 * hw - Struct containing variables accessed by shared code
7160 ****************************************************************************/
7161 static int32_t
7162 e1000_set_phy_mode(struct e1000_hw *hw)
7164 int32_t ret_val;
7165 uint16_t eeprom_data;
7167 DEBUGFUNC("e1000_set_phy_mode");
7169 if ((hw->mac_type == e1000_82545_rev_3) &&
7170 (hw->media_type == e1000_media_type_copper)) {
7171 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
7172 if (ret_val) {
7173 return ret_val;
7176 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7177 (eeprom_data & EEPROM_PHY_CLASS_A)) {
7178 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
7179 if (ret_val)
7180 return ret_val;
7181 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
7182 if (ret_val)
7183 return ret_val;
7185 hw->phy_reset_disable = FALSE;
7189 return E1000_SUCCESS;
7192 /*****************************************************************************
7194 * This function sets the lplu state according to the active flag. When
7195 * activating lplu this function also disables smart speed and vise versa.
7196 * lplu will not be activated unless the device autonegotiation advertisment
7197 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7198 * hw: Struct containing variables accessed by shared code
7199 * active - true to enable lplu false to disable lplu.
7201 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7202 * E1000_SUCCESS at any other case.
7204 ****************************************************************************/
7206 static int32_t
7207 e1000_set_d3_lplu_state(struct e1000_hw *hw,
7208 boolean_t active)
7210 uint32_t phy_ctrl = 0;
7211 int32_t ret_val;
7212 uint16_t phy_data;
7213 DEBUGFUNC("e1000_set_d3_lplu_state");
7215 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7216 && hw->phy_type != e1000_phy_igp_3)
7217 return E1000_SUCCESS;
7219 /* During driver activity LPLU should not be used or it will attain link
7220 * from the lowest speeds starting from 10Mbps. The capability is used for
7221 * Dx transitions and states */
7222 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
7223 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
7224 if (ret_val)
7225 return ret_val;
7226 } else if (hw->mac_type == e1000_ich8lan) {
7227 /* MAC writes into PHY register based on the state transition
7228 * and start auto-negotiation. SW driver can overwrite the settings
7229 * in CSR PHY power control E1000_PHY_CTRL register. */
7230 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7231 } else {
7232 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7233 if (ret_val)
7234 return ret_val;
7237 if (!active) {
7238 if (hw->mac_type == e1000_82541_rev_2 ||
7239 hw->mac_type == e1000_82547_rev_2) {
7240 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7241 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7242 if (ret_val)
7243 return ret_val;
7244 } else {
7245 if (hw->mac_type == e1000_ich8lan) {
7246 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7247 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7248 } else {
7249 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7250 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7251 phy_data);
7252 if (ret_val)
7253 return ret_val;
7257 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7258 * Dx states where the power conservation is most important. During
7259 * driver activity we should enable SmartSpeed, so performance is
7260 * maintained. */
7261 if (hw->smart_speed == e1000_smart_speed_on) {
7262 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7263 &phy_data);
7264 if (ret_val)
7265 return ret_val;
7267 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7268 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7269 phy_data);
7270 if (ret_val)
7271 return ret_val;
7272 } else if (hw->smart_speed == e1000_smart_speed_off) {
7273 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7274 &phy_data);
7275 if (ret_val)
7276 return ret_val;
7278 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7279 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7280 phy_data);
7281 if (ret_val)
7282 return ret_val;
7285 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7286 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7287 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
7289 if (hw->mac_type == e1000_82541_rev_2 ||
7290 hw->mac_type == e1000_82547_rev_2) {
7291 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7292 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
7293 if (ret_val)
7294 return ret_val;
7295 } else {
7296 if (hw->mac_type == e1000_ich8lan) {
7297 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7298 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7299 } else {
7300 phy_data |= IGP02E1000_PM_D3_LPLU;
7301 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7302 phy_data);
7303 if (ret_val)
7304 return ret_val;
7308 /* When LPLU is enabled we should disable SmartSpeed */
7309 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7310 if (ret_val)
7311 return ret_val;
7313 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7314 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7315 if (ret_val)
7316 return ret_val;
7319 return E1000_SUCCESS;
7322 /*****************************************************************************
7324 * This function sets the lplu d0 state according to the active flag. When
7325 * activating lplu this function also disables smart speed and vise versa.
7326 * lplu will not be activated unless the device autonegotiation advertisment
7327 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7328 * hw: Struct containing variables accessed by shared code
7329 * active - true to enable lplu false to disable lplu.
7331 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7332 * E1000_SUCCESS at any other case.
7334 ****************************************************************************/
7336 static int32_t
7337 e1000_set_d0_lplu_state(struct e1000_hw *hw,
7338 boolean_t active)
7340 uint32_t phy_ctrl = 0;
7341 int32_t ret_val;
7342 uint16_t phy_data;
7343 DEBUGFUNC("e1000_set_d0_lplu_state");
7345 if (hw->mac_type <= e1000_82547_rev_2)
7346 return E1000_SUCCESS;
7348 if (hw->mac_type == e1000_ich8lan) {
7349 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7350 } else {
7351 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
7352 if (ret_val)
7353 return ret_val;
7356 if (!active) {
7357 if (hw->mac_type == e1000_ich8lan) {
7358 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7359 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7360 } else {
7361 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7362 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7363 if (ret_val)
7364 return ret_val;
7367 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7368 * Dx states where the power conservation is most important. During
7369 * driver activity we should enable SmartSpeed, so performance is
7370 * maintained. */
7371 if (hw->smart_speed == e1000_smart_speed_on) {
7372 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7373 &phy_data);
7374 if (ret_val)
7375 return ret_val;
7377 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7378 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7379 phy_data);
7380 if (ret_val)
7381 return ret_val;
7382 } else if (hw->smart_speed == e1000_smart_speed_off) {
7383 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7384 &phy_data);
7385 if (ret_val)
7386 return ret_val;
7388 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7389 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7390 phy_data);
7391 if (ret_val)
7392 return ret_val;
7396 } else {
7398 if (hw->mac_type == e1000_ich8lan) {
7399 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7400 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7401 } else {
7402 phy_data |= IGP02E1000_PM_D0_LPLU;
7403 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7404 if (ret_val)
7405 return ret_val;
7408 /* When LPLU is enabled we should disable SmartSpeed */
7409 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
7410 if (ret_val)
7411 return ret_val;
7413 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7414 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
7415 if (ret_val)
7416 return ret_val;
7419 return E1000_SUCCESS;
7422 /******************************************************************************
7423 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7425 * hw - Struct containing variables accessed by shared code
7426 *****************************************************************************/
7427 static int32_t
7428 e1000_set_vco_speed(struct e1000_hw *hw)
7430 int32_t ret_val;
7431 uint16_t default_page = 0;
7432 uint16_t phy_data;
7434 DEBUGFUNC("e1000_set_vco_speed");
7436 switch (hw->mac_type) {
7437 case e1000_82545_rev_3:
7438 case e1000_82546_rev_3:
7439 break;
7440 default:
7441 return E1000_SUCCESS;
7444 /* Set PHY register 30, page 5, bit 8 to 0 */
7446 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
7447 if (ret_val)
7448 return ret_val;
7450 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
7451 if (ret_val)
7452 return ret_val;
7454 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7455 if (ret_val)
7456 return ret_val;
7458 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7459 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7460 if (ret_val)
7461 return ret_val;
7463 /* Set PHY register 30, page 4, bit 11 to 1 */
7465 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
7466 if (ret_val)
7467 return ret_val;
7469 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
7470 if (ret_val)
7471 return ret_val;
7473 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7474 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
7475 if (ret_val)
7476 return ret_val;
7478 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
7479 if (ret_val)
7480 return ret_val;
7482 return E1000_SUCCESS;
7486 /*****************************************************************************
7487 * This function reads the cookie from ARC ram.
7489 * returns: - E1000_SUCCESS .
7490 ****************************************************************************/
7491 static int32_t
7492 e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7494 uint8_t i;
7495 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
7496 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7498 length = (length >> 2);
7499 offset = (offset >> 2);
7501 for (i = 0; i < length; i++) {
7502 *((uint32_t *) buffer + i) =
7503 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7505 return E1000_SUCCESS;
7509 /*****************************************************************************
7510 * This function checks whether the HOST IF is enabled for command operaton
7511 * and also checks whether the previous command is completed.
7512 * It busy waits in case of previous command is not completed.
7514 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
7515 * timeout
7516 * - E1000_SUCCESS for success.
7517 ****************************************************************************/
7518 static int32_t
7519 e1000_mng_enable_host_if(struct e1000_hw * hw)
7521 uint32_t hicr;
7522 uint8_t i;
7524 /* Check that the host interface is enabled. */
7525 hicr = E1000_READ_REG(hw, HICR);
7526 if ((hicr & E1000_HICR_EN) == 0) {
7527 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7528 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7530 /* check the previous command is completed */
7531 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7532 hicr = E1000_READ_REG(hw, HICR);
7533 if (!(hicr & E1000_HICR_C))
7534 break;
7535 mdelay(1);
7538 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
7539 DEBUGOUT("Previous command timeout failed .\n");
7540 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7542 return E1000_SUCCESS;
7545 /*****************************************************************************
7546 * This function writes the buffer content at the offset given on the host if.
7547 * It also does alignment considerations to do the writes in most efficient way.
7548 * Also fills up the sum of the buffer in *buffer parameter.
7550 * returns - E1000_SUCCESS for success.
7551 ****************************************************************************/
7552 static int32_t
7553 e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7554 uint16_t length, uint16_t offset, uint8_t *sum)
7556 uint8_t *tmp;
7557 uint8_t *bufptr = buffer;
7558 uint32_t data = 0;
7559 uint16_t remaining, i, j, prev_bytes;
7561 /* sum = only sum of the data and it is not checksum */
7563 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7564 return -E1000_ERR_PARAM;
7567 tmp = (uint8_t *)&data;
7568 prev_bytes = offset & 0x3;
7569 offset &= 0xFFFC;
7570 offset >>= 2;
7572 if (prev_bytes) {
7573 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7574 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7575 *(tmp + j) = *bufptr++;
7576 *sum += *(tmp + j);
7578 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7579 length -= j - prev_bytes;
7580 offset++;
7583 remaining = length & 0x3;
7584 length -= remaining;
7586 /* Calculate length in DWORDs */
7587 length >>= 2;
7589 /* The device driver writes the relevant command block into the
7590 * ram area. */
7591 for (i = 0; i < length; i++) {
7592 for (j = 0; j < sizeof(uint32_t); j++) {
7593 *(tmp + j) = *bufptr++;
7594 *sum += *(tmp + j);
7597 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7599 if (remaining) {
7600 for (j = 0; j < sizeof(uint32_t); j++) {
7601 if (j < remaining)
7602 *(tmp + j) = *bufptr++;
7603 else
7604 *(tmp + j) = 0;
7606 *sum += *(tmp + j);
7608 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7611 return E1000_SUCCESS;
7615 /*****************************************************************************
7616 * This function writes the command header after does the checksum calculation.
7618 * returns - E1000_SUCCESS for success.
7619 ****************************************************************************/
7620 static int32_t
7621 e1000_mng_write_cmd_header(struct e1000_hw * hw,
7622 struct e1000_host_mng_command_header * hdr)
7624 uint16_t i;
7625 uint8_t sum;
7626 uint8_t *buffer;
7628 /* Write the whole command header structure which includes sum of
7629 * the buffer */
7631 uint16_t length = sizeof(struct e1000_host_mng_command_header);
7633 sum = hdr->checksum;
7634 hdr->checksum = 0;
7636 buffer = (uint8_t *) hdr;
7637 i = length;
7638 while (i--)
7639 sum += buffer[i];
7641 hdr->checksum = 0 - sum;
7643 length >>= 2;
7644 /* The device driver writes the relevant command block into the ram area. */
7645 for (i = 0; i < length; i++) {
7646 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7647 E1000_WRITE_FLUSH(hw);
7650 return E1000_SUCCESS;
7654 /*****************************************************************************
7655 * This function indicates to ARC that a new command is pending which completes
7656 * one write operation by the driver.
7658 * returns - E1000_SUCCESS for success.
7659 ****************************************************************************/
7660 static int32_t
7661 e1000_mng_write_commit(struct e1000_hw * hw)
7663 uint32_t hicr;
7665 hicr = E1000_READ_REG(hw, HICR);
7666 /* Setting this bit tells the ARC that a new command is pending. */
7667 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7669 return E1000_SUCCESS;
7673 /*****************************************************************************
7674 * This function checks the mode of the firmware.
7676 * returns - TRUE when the mode is IAMT or FALSE.
7677 ****************************************************************************/
7678 boolean_t
7679 e1000_check_mng_mode(struct e1000_hw *hw)
7681 uint32_t fwsm;
7683 fwsm = E1000_READ_REG(hw, FWSM);
7685 if (hw->mac_type == e1000_ich8lan) {
7686 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7687 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7688 return TRUE;
7689 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7690 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7691 return TRUE;
7693 return FALSE;
7697 /*****************************************************************************
7698 * This function writes the dhcp info .
7699 ****************************************************************************/
7700 int32_t
7701 e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7702 uint16_t length)
7704 int32_t ret_val;
7705 struct e1000_host_mng_command_header hdr;
7707 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7708 hdr.command_length = length;
7709 hdr.reserved1 = 0;
7710 hdr.reserved2 = 0;
7711 hdr.checksum = 0;
7713 ret_val = e1000_mng_enable_host_if(hw);
7714 if (ret_val == E1000_SUCCESS) {
7715 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7716 &(hdr.checksum));
7717 if (ret_val == E1000_SUCCESS) {
7718 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7719 if (ret_val == E1000_SUCCESS)
7720 ret_val = e1000_mng_write_commit(hw);
7723 return ret_val;
7727 /*****************************************************************************
7728 * This function calculates the checksum.
7730 * returns - checksum of buffer contents.
7731 ****************************************************************************/
7732 static uint8_t
7733 e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7735 uint8_t sum = 0;
7736 uint32_t i;
7738 if (!buffer)
7739 return 0;
7741 for (i=0; i < length; i++)
7742 sum += buffer[i];
7744 return (uint8_t) (0 - sum);
7747 /*****************************************************************************
7748 * This function checks whether tx pkt filtering needs to be enabled or not.
7750 * returns - TRUE for packet filtering or FALSE.
7751 ****************************************************************************/
7752 boolean_t
7753 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7755 /* called in init as well as watchdog timer functions */
7757 int32_t ret_val, checksum;
7758 boolean_t tx_filter = FALSE;
7759 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7760 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7762 if (e1000_check_mng_mode(hw)) {
7763 ret_val = e1000_mng_enable_host_if(hw);
7764 if (ret_val == E1000_SUCCESS) {
7765 ret_val = e1000_host_if_read_cookie(hw, buffer);
7766 if (ret_val == E1000_SUCCESS) {
7767 checksum = hdr->checksum;
7768 hdr->checksum = 0;
7769 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7770 checksum == e1000_calculate_mng_checksum((char *)buffer,
7771 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7772 if (hdr->status &
7773 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7774 tx_filter = TRUE;
7775 } else
7776 tx_filter = TRUE;
7777 } else
7778 tx_filter = TRUE;
7782 hw->tx_pkt_filtering = tx_filter;
7783 return tx_filter;
7786 /******************************************************************************
7787 * Verifies the hardware needs to allow ARPs to be processed by the host
7789 * hw - Struct containing variables accessed by shared code
7791 * returns: - TRUE/FALSE
7793 *****************************************************************************/
7794 uint32_t
7795 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7797 uint32_t manc;
7798 uint32_t fwsm, factps;
7800 if (hw->asf_firmware_present) {
7801 manc = E1000_READ_REG(hw, MANC);
7803 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7804 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7805 return FALSE;
7806 if (e1000_arc_subsystem_valid(hw) == TRUE) {
7807 fwsm = E1000_READ_REG(hw, FWSM);
7808 factps = E1000_READ_REG(hw, FACTPS);
7810 if (((fwsm & E1000_FWSM_MODE_MASK) ==
7811 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
7812 (factps & E1000_FACTPS_MNGCG))
7813 return TRUE;
7814 } else
7815 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7816 return TRUE;
7818 return FALSE;
7821 static int32_t
7822 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7824 int32_t ret_val;
7825 uint16_t mii_status_reg;
7826 uint16_t i;
7828 /* Polarity reversal workaround for forced 10F/10H links. */
7830 /* Disable the transmitter on the PHY */
7832 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7833 if (ret_val)
7834 return ret_val;
7835 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
7836 if (ret_val)
7837 return ret_val;
7839 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7840 if (ret_val)
7841 return ret_val;
7843 /* This loop will early-out if the NO link condition has been met. */
7844 for (i = PHY_FORCE_TIME; i > 0; i--) {
7845 /* Read the MII Status Register and wait for Link Status bit
7846 * to be clear.
7849 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7850 if (ret_val)
7851 return ret_val;
7853 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7854 if (ret_val)
7855 return ret_val;
7857 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
7858 mdelay(100);
7861 /* Recommended delay time after link has been lost */
7862 mdelay(1000);
7864 /* Now we will re-enable th transmitter on the PHY */
7866 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
7867 if (ret_val)
7868 return ret_val;
7869 mdelay(50);
7870 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
7871 if (ret_val)
7872 return ret_val;
7873 mdelay(50);
7874 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
7875 if (ret_val)
7876 return ret_val;
7877 mdelay(50);
7878 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
7879 if (ret_val)
7880 return ret_val;
7882 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
7883 if (ret_val)
7884 return ret_val;
7886 /* This loop will early-out if the link condition has been met. */
7887 for (i = PHY_FORCE_TIME; i > 0; i--) {
7888 /* Read the MII Status Register and wait for Link Status bit
7889 * to be set.
7892 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7893 if (ret_val)
7894 return ret_val;
7896 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
7897 if (ret_val)
7898 return ret_val;
7900 if (mii_status_reg & MII_SR_LINK_STATUS) break;
7901 mdelay(100);
7903 return E1000_SUCCESS;
7906 /***************************************************************************
7908 * Disables PCI-Express master access.
7910 * hw: Struct containing variables accessed by shared code
7912 * returns: - none.
7914 ***************************************************************************/
7915 static void
7916 e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7918 uint32_t ctrl;
7920 DEBUGFUNC("e1000_set_pci_express_master_disable");
7922 if (hw->bus_type != e1000_bus_type_pci_express)
7923 return;
7925 ctrl = E1000_READ_REG(hw, CTRL);
7926 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7927 E1000_WRITE_REG(hw, CTRL, ctrl);
7930 /*******************************************************************************
7932 * Disables PCI-Express master access and verifies there are no pending requests
7934 * hw: Struct containing variables accessed by shared code
7936 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7937 * caused the master requests to be disabled.
7938 * E1000_SUCCESS master requests disabled.
7940 ******************************************************************************/
7941 int32_t
7942 e1000_disable_pciex_master(struct e1000_hw *hw)
7944 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7946 DEBUGFUNC("e1000_disable_pciex_master");
7948 if (hw->bus_type != e1000_bus_type_pci_express)
7949 return E1000_SUCCESS;
7951 e1000_set_pci_express_master_disable(hw);
7953 while (timeout) {
7954 if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
7955 break;
7956 else
7957 udelay(100);
7958 timeout--;
7961 if (!timeout) {
7962 DEBUGOUT("Master requests are pending.\n");
7963 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7966 return E1000_SUCCESS;
7969 /*******************************************************************************
7971 * Check for EEPROM Auto Read bit done.
7973 * hw: Struct containing variables accessed by shared code
7975 * returns: - E1000_ERR_RESET if fail to reset MAC
7976 * E1000_SUCCESS at any other case.
7978 ******************************************************************************/
7979 static int32_t
7980 e1000_get_auto_rd_done(struct e1000_hw *hw)
7982 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
7984 DEBUGFUNC("e1000_get_auto_rd_done");
7986 switch (hw->mac_type) {
7987 default:
7988 msleep(5);
7989 break;
7990 case e1000_82571:
7991 case e1000_82572:
7992 case e1000_82573:
7993 case e1000_80003es2lan:
7994 case e1000_ich8lan:
7995 while (timeout) {
7996 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
7997 break;
7998 else msleep(1);
7999 timeout--;
8002 if (!timeout) {
8003 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8004 return -E1000_ERR_RESET;
8006 break;
8009 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8010 * Need to wait for PHY configuration completion before accessing NVM
8011 * and PHY. */
8012 if (hw->mac_type == e1000_82573)
8013 msleep(25);
8015 return E1000_SUCCESS;
8018 /***************************************************************************
8019 * Checks if the PHY configuration is done
8021 * hw: Struct containing variables accessed by shared code
8023 * returns: - E1000_ERR_RESET if fail to reset MAC
8024 * E1000_SUCCESS at any other case.
8026 ***************************************************************************/
8027 static int32_t
8028 e1000_get_phy_cfg_done(struct e1000_hw *hw)
8030 int32_t timeout = PHY_CFG_TIMEOUT;
8031 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8033 DEBUGFUNC("e1000_get_phy_cfg_done");
8035 switch (hw->mac_type) {
8036 default:
8037 mdelay(10);
8038 break;
8039 case e1000_80003es2lan:
8040 /* Separate *_CFG_DONE_* bit for each port */
8041 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8042 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8043 /* Fall Through */
8044 case e1000_82571:
8045 case e1000_82572:
8046 while (timeout) {
8047 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8048 break;
8049 else
8050 msleep(1);
8051 timeout--;
8053 if (!timeout) {
8054 DEBUGOUT("MNG configuration cycle has not completed.\n");
8055 return -E1000_ERR_RESET;
8057 break;
8060 return E1000_SUCCESS;
8063 /***************************************************************************
8065 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8066 * adapter or Eeprom access.
8068 * hw: Struct containing variables accessed by shared code
8070 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8071 * E1000_SUCCESS at any other case.
8073 ***************************************************************************/
8074 static int32_t
8075 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8077 int32_t timeout;
8078 uint32_t swsm;
8080 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8082 if (!hw->eeprom_semaphore_present)
8083 return E1000_SUCCESS;
8085 if (hw->mac_type == e1000_80003es2lan) {
8086 /* Get the SW semaphore. */
8087 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8088 return -E1000_ERR_EEPROM;
8091 /* Get the FW semaphore. */
8092 timeout = hw->eeprom.word_size + 1;
8093 while (timeout) {
8094 swsm = E1000_READ_REG(hw, SWSM);
8095 swsm |= E1000_SWSM_SWESMBI;
8096 E1000_WRITE_REG(hw, SWSM, swsm);
8097 /* if we managed to set the bit we got the semaphore. */
8098 swsm = E1000_READ_REG(hw, SWSM);
8099 if (swsm & E1000_SWSM_SWESMBI)
8100 break;
8102 udelay(50);
8103 timeout--;
8106 if (!timeout) {
8107 /* Release semaphores */
8108 e1000_put_hw_eeprom_semaphore(hw);
8109 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8110 return -E1000_ERR_EEPROM;
8113 return E1000_SUCCESS;
8116 /***************************************************************************
8117 * This function clears HW semaphore bits.
8119 * hw: Struct containing variables accessed by shared code
8121 * returns: - None.
8123 ***************************************************************************/
8124 static void
8125 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8127 uint32_t swsm;
8129 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8131 if (!hw->eeprom_semaphore_present)
8132 return;
8134 swsm = E1000_READ_REG(hw, SWSM);
8135 if (hw->mac_type == e1000_80003es2lan) {
8136 /* Release both semaphores. */
8137 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8138 } else
8139 swsm &= ~(E1000_SWSM_SWESMBI);
8140 E1000_WRITE_REG(hw, SWSM, swsm);
8143 /***************************************************************************
8145 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8147 * hw: Struct containing variables accessed by shared code
8149 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8150 * E1000_SUCCESS at any other case.
8152 ***************************************************************************/
8153 static int32_t
8154 e1000_get_software_semaphore(struct e1000_hw *hw)
8156 int32_t timeout = hw->eeprom.word_size + 1;
8157 uint32_t swsm;
8159 DEBUGFUNC("e1000_get_software_semaphore");
8161 if (hw->mac_type != e1000_80003es2lan) {
8162 return E1000_SUCCESS;
8165 while (timeout) {
8166 swsm = E1000_READ_REG(hw, SWSM);
8167 /* If SMBI bit cleared, it is now set and we hold the semaphore */
8168 if (!(swsm & E1000_SWSM_SMBI))
8169 break;
8170 mdelay(1);
8171 timeout--;
8174 if (!timeout) {
8175 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8176 return -E1000_ERR_RESET;
8179 return E1000_SUCCESS;
8182 /***************************************************************************
8184 * Release semaphore bit (SMBI).
8186 * hw: Struct containing variables accessed by shared code
8188 ***************************************************************************/
8189 static void
8190 e1000_release_software_semaphore(struct e1000_hw *hw)
8192 uint32_t swsm;
8194 DEBUGFUNC("e1000_release_software_semaphore");
8196 if (hw->mac_type != e1000_80003es2lan) {
8197 return;
8200 swsm = E1000_READ_REG(hw, SWSM);
8201 /* Release the SW semaphores.*/
8202 swsm &= ~E1000_SWSM_SMBI;
8203 E1000_WRITE_REG(hw, SWSM, swsm);
8206 /******************************************************************************
8207 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8208 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8209 * the caller to figure out how to deal with it.
8211 * hw - Struct containing variables accessed by shared code
8213 * returns: - E1000_BLK_PHY_RESET
8214 * E1000_SUCCESS
8216 *****************************************************************************/
8217 int32_t
8218 e1000_check_phy_reset_block(struct e1000_hw *hw)
8220 uint32_t manc = 0;
8221 uint32_t fwsm = 0;
8223 if (hw->mac_type == e1000_ich8lan) {
8224 fwsm = E1000_READ_REG(hw, FWSM);
8225 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8226 : E1000_BLK_PHY_RESET;
8229 if (hw->mac_type > e1000_82547_rev_2)
8230 manc = E1000_READ_REG(hw, MANC);
8231 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8232 E1000_BLK_PHY_RESET : E1000_SUCCESS;
8235 static uint8_t
8236 e1000_arc_subsystem_valid(struct e1000_hw *hw)
8238 uint32_t fwsm;
8240 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8241 * may not be provided a DMA clock when no manageability features are
8242 * enabled. We do not want to perform any reads/writes to these registers
8243 * if this is the case. We read FWSM to determine the manageability mode.
8245 switch (hw->mac_type) {
8246 case e1000_82571:
8247 case e1000_82572:
8248 case e1000_82573:
8249 case e1000_80003es2lan:
8250 fwsm = E1000_READ_REG(hw, FWSM);
8251 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
8252 return TRUE;
8253 break;
8254 case e1000_ich8lan:
8255 return TRUE;
8256 default:
8257 break;
8259 return FALSE;
8263 /******************************************************************************
8264 * Configure PCI-Ex no-snoop
8266 * hw - Struct containing variables accessed by shared code.
8267 * no_snoop - Bitmap of no-snoop events.
8269 * returns: E1000_SUCCESS
8271 *****************************************************************************/
8272 static int32_t
8273 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8275 uint32_t gcr_reg = 0;
8277 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8279 if (hw->bus_type == e1000_bus_type_unknown)
8280 e1000_get_bus_info(hw);
8282 if (hw->bus_type != e1000_bus_type_pci_express)
8283 return E1000_SUCCESS;
8285 if (no_snoop) {
8286 gcr_reg = E1000_READ_REG(hw, GCR);
8287 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8288 gcr_reg |= no_snoop;
8289 E1000_WRITE_REG(hw, GCR, gcr_reg);
8291 if (hw->mac_type == e1000_ich8lan) {
8292 uint32_t ctrl_ext;
8294 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8296 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8297 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8298 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8301 return E1000_SUCCESS;
8304 /***************************************************************************
8306 * Get software semaphore FLAG bit (SWFLAG).
8307 * SWFLAG is used to synchronize the access to all shared resource between
8308 * SW, FW and HW.
8310 * hw: Struct containing variables accessed by shared code
8312 ***************************************************************************/
8313 static int32_t
8314 e1000_get_software_flag(struct e1000_hw *hw)
8316 int32_t timeout = PHY_CFG_TIMEOUT;
8317 uint32_t extcnf_ctrl;
8319 DEBUGFUNC("e1000_get_software_flag");
8321 if (hw->mac_type == e1000_ich8lan) {
8322 while (timeout) {
8323 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8324 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8325 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8327 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8328 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8329 break;
8330 mdelay(1);
8331 timeout--;
8334 if (!timeout) {
8335 DEBUGOUT("FW or HW locks the resource too long.\n");
8336 return -E1000_ERR_CONFIG;
8340 return E1000_SUCCESS;
8343 /***************************************************************************
8345 * Release software semaphore FLAG bit (SWFLAG).
8346 * SWFLAG is used to synchronize the access to all shared resource between
8347 * SW, FW and HW.
8349 * hw: Struct containing variables accessed by shared code
8351 ***************************************************************************/
8352 static void
8353 e1000_release_software_flag(struct e1000_hw *hw)
8355 uint32_t extcnf_ctrl;
8357 DEBUGFUNC("e1000_release_software_flag");
8359 if (hw->mac_type == e1000_ich8lan) {
8360 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8361 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8362 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8365 return;
8368 /******************************************************************************
8369 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8370 * register.
8372 * hw - Struct containing variables accessed by shared code
8373 * offset - offset of word in the EEPROM to read
8374 * data - word read from the EEPROM
8375 * words - number of words to read
8376 *****************************************************************************/
8377 static int32_t
8378 e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8379 uint16_t *data)
8381 int32_t error = E1000_SUCCESS;
8382 uint32_t flash_bank = 0;
8383 uint32_t act_offset = 0;
8384 uint32_t bank_offset = 0;
8385 uint16_t word = 0;
8386 uint16_t i = 0;
8388 /* We need to know which is the valid flash bank. In the event
8389 * that we didn't allocate eeprom_shadow_ram, we may not be
8390 * managing flash_bank. So it cannot be trusted and needs
8391 * to be updated with each read.
8393 /* Value of bit 22 corresponds to the flash bank we're on. */
8394 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8396 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8397 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8399 error = e1000_get_software_flag(hw);
8400 if (error != E1000_SUCCESS)
8401 return error;
8403 for (i = 0; i < words; i++) {
8404 if (hw->eeprom_shadow_ram != NULL &&
8405 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8406 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8407 } else {
8408 /* The NVM part needs a byte offset, hence * 2 */
8409 act_offset = bank_offset + ((offset + i) * 2);
8410 error = e1000_read_ich8_word(hw, act_offset, &word);
8411 if (error != E1000_SUCCESS)
8412 break;
8413 data[i] = word;
8417 e1000_release_software_flag(hw);
8419 return error;
8422 /******************************************************************************
8423 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8424 * register. Actually, writes are written to the shadow ram cache in the hw
8425 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8426 * the NVM, which occurs when the NVM checksum is updated.
8428 * hw - Struct containing variables accessed by shared code
8429 * offset - offset of word in the EEPROM to write
8430 * words - number of words to write
8431 * data - words to write to the EEPROM
8432 *****************************************************************************/
8433 static int32_t
8434 e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8435 uint16_t *data)
8437 uint32_t i = 0;
8438 int32_t error = E1000_SUCCESS;
8440 error = e1000_get_software_flag(hw);
8441 if (error != E1000_SUCCESS)
8442 return error;
8444 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8445 * allocated. Subsequent reads to the modified words are read from
8446 * this cached structure as well. Writes will only go into this
8447 * cached structure unless it's followed by a call to
8448 * e1000_update_eeprom_checksum() where it will commit the changes
8449 * and clear the "modified" field.
8451 if (hw->eeprom_shadow_ram != NULL) {
8452 for (i = 0; i < words; i++) {
8453 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8454 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8455 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8456 } else {
8457 error = -E1000_ERR_EEPROM;
8458 break;
8461 } else {
8462 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8463 * as they don't perform any NVM writes. An attempt in doing so
8464 * will result in this error.
8466 error = -E1000_ERR_EEPROM;
8469 e1000_release_software_flag(hw);
8471 return error;
8474 /******************************************************************************
8475 * This function does initial flash setup so that a new read/write/erase cycle
8476 * can be started.
8478 * hw - The pointer to the hw structure
8479 ****************************************************************************/
8480 static int32_t
8481 e1000_ich8_cycle_init(struct e1000_hw *hw)
8483 union ich8_hws_flash_status hsfsts;
8484 int32_t error = E1000_ERR_EEPROM;
8485 int32_t i = 0;
8487 DEBUGFUNC("e1000_ich8_cycle_init");
8489 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8491 /* May be check the Flash Des Valid bit in Hw status */
8492 if (hsfsts.hsf_status.fldesvalid == 0) {
8493 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8494 return error;
8497 /* Clear FCERR in Hw status by writing 1 */
8498 /* Clear DAEL in Hw status by writing a 1 */
8499 hsfsts.hsf_status.flcerr = 1;
8500 hsfsts.hsf_status.dael = 1;
8502 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8504 /* Either we should have a hardware SPI cycle in progress bit to check
8505 * against, in order to start a new cycle or FDONE bit should be changed
8506 * in the hardware so that it is 1 after harware reset, which can then be
8507 * used as an indication whether a cycle is in progress or has been
8508 * completed .. we should also have some software semaphore mechanism to
8509 * guard FDONE or the cycle in progress bit so that two threads access to
8510 * those bits can be sequentiallized or a way so that 2 threads dont
8511 * start the cycle at the same time */
8513 if (hsfsts.hsf_status.flcinprog == 0) {
8514 /* There is no cycle running at present, so we can start a cycle */
8515 /* Begin by setting Flash Cycle Done. */
8516 hsfsts.hsf_status.flcdone = 1;
8517 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8518 error = E1000_SUCCESS;
8519 } else {
8520 /* otherwise poll for sometime so the current cycle has a chance
8521 * to end before giving up. */
8522 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8523 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8524 if (hsfsts.hsf_status.flcinprog == 0) {
8525 error = E1000_SUCCESS;
8526 break;
8528 udelay(1);
8530 if (error == E1000_SUCCESS) {
8531 /* Successful in waiting for previous cycle to timeout,
8532 * now set the Flash Cycle Done. */
8533 hsfsts.hsf_status.flcdone = 1;
8534 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8535 } else {
8536 DEBUGOUT("Flash controller busy, cannot get access");
8539 return error;
8542 /******************************************************************************
8543 * This function starts a flash cycle and waits for its completion
8545 * hw - The pointer to the hw structure
8546 ****************************************************************************/
8547 static int32_t
8548 e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8550 union ich8_hws_flash_ctrl hsflctl;
8551 union ich8_hws_flash_status hsfsts;
8552 int32_t error = E1000_ERR_EEPROM;
8553 uint32_t i = 0;
8555 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8556 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8557 hsflctl.hsf_ctrl.flcgo = 1;
8558 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8560 /* wait till FDONE bit is set to 1 */
8561 do {
8562 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8563 if (hsfsts.hsf_status.flcdone == 1)
8564 break;
8565 udelay(1);
8566 i++;
8567 } while (i < timeout);
8568 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8569 error = E1000_SUCCESS;
8571 return error;
8574 /******************************************************************************
8575 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8577 * hw - The pointer to the hw structure
8578 * index - The index of the byte or word to read.
8579 * size - Size of data to read, 1=byte 2=word
8580 * data - Pointer to the word to store the value read.
8581 *****************************************************************************/
8582 static int32_t
8583 e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8584 uint32_t size, uint16_t* data)
8586 union ich8_hws_flash_status hsfsts;
8587 union ich8_hws_flash_ctrl hsflctl;
8588 uint32_t flash_linear_address;
8589 uint32_t flash_data = 0;
8590 int32_t error = -E1000_ERR_EEPROM;
8591 int32_t count = 0;
8593 DEBUGFUNC("e1000_read_ich8_data");
8595 if (size < 1 || size > 2 || data == 0x0 ||
8596 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8597 return error;
8599 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8600 hw->flash_base_addr;
8602 do {
8603 udelay(1);
8604 /* Steps */
8605 error = e1000_ich8_cycle_init(hw);
8606 if (error != E1000_SUCCESS)
8607 break;
8609 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8610 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8611 hsflctl.hsf_ctrl.fldbcount = size - 1;
8612 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8613 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8615 /* Write the last 24 bits of index into Flash Linear address field in
8616 * Flash Address */
8617 /* TODO: TBD maybe check the index against the size of flash */
8619 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8621 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8623 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8624 * sequence a few more times, else read in (shift in) the Flash Data0,
8625 * the order is least significant byte first msb to lsb */
8626 if (error == E1000_SUCCESS) {
8627 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8628 if (size == 1) {
8629 *data = (uint8_t)(flash_data & 0x000000FF);
8630 } else if (size == 2) {
8631 *data = (uint16_t)(flash_data & 0x0000FFFF);
8633 break;
8634 } else {
8635 /* If we've gotten here, then things are probably completely hosed,
8636 * but if the error condition is detected, it won't hurt to give
8637 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8639 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8640 if (hsfsts.hsf_status.flcerr == 1) {
8641 /* Repeat for some time before giving up. */
8642 continue;
8643 } else if (hsfsts.hsf_status.flcdone == 0) {
8644 DEBUGOUT("Timeout error - flash cycle did not complete.");
8645 break;
8648 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8650 return error;
8653 /******************************************************************************
8654 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8656 * hw - The pointer to the hw structure
8657 * index - The index of the byte/word to read.
8658 * size - Size of data to read, 1=byte 2=word
8659 * data - The byte(s) to write to the NVM.
8660 *****************************************************************************/
8661 static int32_t
8662 e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8663 uint16_t data)
8665 union ich8_hws_flash_status hsfsts;
8666 union ich8_hws_flash_ctrl hsflctl;
8667 uint32_t flash_linear_address;
8668 uint32_t flash_data = 0;
8669 int32_t error = -E1000_ERR_EEPROM;
8670 int32_t count = 0;
8672 DEBUGFUNC("e1000_write_ich8_data");
8674 if (size < 1 || size > 2 || data > size * 0xff ||
8675 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8676 return error;
8678 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8679 hw->flash_base_addr;
8681 do {
8682 udelay(1);
8683 /* Steps */
8684 error = e1000_ich8_cycle_init(hw);
8685 if (error != E1000_SUCCESS)
8686 break;
8688 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8689 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8690 hsflctl.hsf_ctrl.fldbcount = size -1;
8691 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8692 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8694 /* Write the last 24 bits of index into Flash Linear address field in
8695 * Flash Address */
8696 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8698 if (size == 1)
8699 flash_data = (uint32_t)data & 0x00FF;
8700 else
8701 flash_data = (uint32_t)data;
8703 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8705 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8706 * sequence a few more times else done */
8707 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8708 if (error == E1000_SUCCESS) {
8709 break;
8710 } else {
8711 /* If we're here, then things are most likely completely hosed,
8712 * but if the error condition is detected, it won't hurt to give
8713 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8715 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8716 if (hsfsts.hsf_status.flcerr == 1) {
8717 /* Repeat for some time before giving up. */
8718 continue;
8719 } else if (hsfsts.hsf_status.flcdone == 0) {
8720 DEBUGOUT("Timeout error - flash cycle did not complete.");
8721 break;
8724 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8726 return error;
8729 /******************************************************************************
8730 * Reads a single byte from the NVM using the ICH8 flash access registers.
8732 * hw - pointer to e1000_hw structure
8733 * index - The index of the byte to read.
8734 * data - Pointer to a byte to store the value read.
8735 *****************************************************************************/
8736 static int32_t
8737 e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8739 int32_t status = E1000_SUCCESS;
8740 uint16_t word = 0;
8742 status = e1000_read_ich8_data(hw, index, 1, &word);
8743 if (status == E1000_SUCCESS) {
8744 *data = (uint8_t)word;
8747 return status;
8750 /******************************************************************************
8751 * Writes a single byte to the NVM using the ICH8 flash access registers.
8752 * Performs verification by reading back the value and then going through
8753 * a retry algorithm before giving up.
8755 * hw - pointer to e1000_hw structure
8756 * index - The index of the byte to write.
8757 * byte - The byte to write to the NVM.
8758 *****************************************************************************/
8759 static int32_t
8760 e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8762 int32_t error = E1000_SUCCESS;
8763 int32_t program_retries = 0;
8765 DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
8767 error = e1000_write_ich8_byte(hw, index, byte);
8769 if (error != E1000_SUCCESS) {
8770 for (program_retries = 0; program_retries < 100; program_retries++) {
8771 DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8772 error = e1000_write_ich8_byte(hw, index, byte);
8773 udelay(100);
8774 if (error == E1000_SUCCESS)
8775 break;
8779 if (program_retries == 100)
8780 error = E1000_ERR_EEPROM;
8782 return error;
8785 /******************************************************************************
8786 * Writes a single byte to the NVM using the ICH8 flash access registers.
8788 * hw - pointer to e1000_hw structure
8789 * index - The index of the byte to read.
8790 * data - The byte to write to the NVM.
8791 *****************************************************************************/
8792 static int32_t
8793 e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8795 int32_t status = E1000_SUCCESS;
8796 uint16_t word = (uint16_t)data;
8798 status = e1000_write_ich8_data(hw, index, 1, word);
8800 return status;
8803 /******************************************************************************
8804 * Reads a word from the NVM using the ICH8 flash access registers.
8806 * hw - pointer to e1000_hw structure
8807 * index - The starting byte index of the word to read.
8808 * data - Pointer to a word to store the value read.
8809 *****************************************************************************/
8810 static int32_t
8811 e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8813 int32_t status = E1000_SUCCESS;
8814 status = e1000_read_ich8_data(hw, index, 2, data);
8815 return status;
8818 /******************************************************************************
8819 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8820 * based.
8822 * hw - pointer to e1000_hw structure
8823 * bank - 0 for first bank, 1 for second bank
8825 * Note that this function may actually erase as much as 8 or 64 KBytes. The
8826 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8827 * bank size may be 4, 8 or 64 KBytes
8828 *****************************************************************************/
8829 int32_t
8830 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
8832 union ich8_hws_flash_status hsfsts;
8833 union ich8_hws_flash_ctrl hsflctl;
8834 uint32_t flash_linear_address;
8835 int32_t count = 0;
8836 int32_t error = E1000_ERR_EEPROM;
8837 int32_t iteration;
8838 int32_t sub_sector_size = 0;
8839 int32_t bank_size;
8840 int32_t j = 0;
8841 int32_t error_flag = 0;
8843 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8845 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8846 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8847 * consecutive sectors. The start index for the nth Hw sector can be
8848 * calculated as bank * 4096 + n * 256
8849 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8850 * The start index for the nth Hw sector can be calculated
8851 * as bank * 4096
8852 * 10: The HW sector is 8K bytes
8853 * 11: The Hw sector size is 64K bytes */
8854 if (hsfsts.hsf_status.berasesz == 0x0) {
8855 /* Hw sector size 256 */
8856 sub_sector_size = ICH8_FLASH_SEG_SIZE_256;
8857 bank_size = ICH8_FLASH_SECTOR_SIZE;
8858 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8859 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8860 bank_size = ICH8_FLASH_SEG_SIZE_4K;
8861 iteration = 1;
8862 } else if (hw->mac_type != e1000_ich8lan &&
8863 hsfsts.hsf_status.berasesz == 0x2) {
8864 /* 8K erase size invalid for ICH8 - added in for ICH9 */
8865 bank_size = ICH9_FLASH_SEG_SIZE_8K;
8866 iteration = 1;
8867 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8868 bank_size = ICH8_FLASH_SEG_SIZE_64K;
8869 iteration = 1;
8870 } else {
8871 return error;
8874 for (j = 0; j < iteration ; j++) {
8875 do {
8876 count++;
8877 /* Steps */
8878 error = e1000_ich8_cycle_init(hw);
8879 if (error != E1000_SUCCESS) {
8880 error_flag = 1;
8881 break;
8884 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8885 * Control */
8886 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8887 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8888 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8890 /* Write the last 24 bits of an index within the block into Flash
8891 * Linear address field in Flash Address. This probably needs to
8892 * be calculated here based off the on-chip erase sector size and
8893 * the software bank size (4, 8 or 64 KBytes) */
8894 flash_linear_address = bank * bank_size + j * sub_sector_size;
8895 flash_linear_address += hw->flash_base_addr;
8896 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
8898 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8900 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_ERASE_TIMEOUT);
8901 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8902 * sequence a few more times else Done */
8903 if (error == E1000_SUCCESS) {
8904 break;
8905 } else {
8906 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8907 if (hsfsts.hsf_status.flcerr == 1) {
8908 /* repeat for some time before giving up */
8909 continue;
8910 } else if (hsfsts.hsf_status.flcdone == 0) {
8911 error_flag = 1;
8912 break;
8915 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8916 if (error_flag == 1)
8917 break;
8919 if (error_flag != 1)
8920 error = E1000_SUCCESS;
8921 return error;
8924 static int32_t
8925 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8926 uint32_t cnf_base_addr, uint32_t cnf_size)
8928 uint32_t ret_val = E1000_SUCCESS;
8929 uint16_t word_addr, reg_data, reg_addr;
8930 uint16_t i;
8932 /* cnf_base_addr is in DWORD */
8933 word_addr = (uint16_t)(cnf_base_addr << 1);
8935 /* cnf_size is returned in size of dwords */
8936 for (i = 0; i < cnf_size; i++) {
8937 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8938 if (ret_val)
8939 return ret_val;
8941 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8942 if (ret_val)
8943 return ret_val;
8945 ret_val = e1000_get_software_flag(hw);
8946 if (ret_val != E1000_SUCCESS)
8947 return ret_val;
8949 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
8951 e1000_release_software_flag(hw);
8954 return ret_val;
8958 /******************************************************************************
8959 * This function initializes the PHY from the NVM on ICH8 platforms. This
8960 * is needed due to an issue where the NVM configuration is not properly
8961 * autoloaded after power transitions. Therefore, after each PHY reset, we
8962 * will load the configuration data out of the NVM manually.
8964 * hw: Struct containing variables accessed by shared code
8965 *****************************************************************************/
8966 static int32_t
8967 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8969 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8971 if (hw->phy_type != e1000_phy_igp_3)
8972 return E1000_SUCCESS;
8974 /* Check if SW needs configure the PHY */
8975 reg_data = E1000_READ_REG(hw, FEXTNVM);
8976 if (!(reg_data & FEXTNVM_SW_CONFIG))
8977 return E1000_SUCCESS;
8979 /* Wait for basic configuration completes before proceeding*/
8980 loop = 0;
8981 do {
8982 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
8983 udelay(100);
8984 loop++;
8985 } while ((!reg_data) && (loop < 50));
8987 /* Clear the Init Done bit for the next init event */
8988 reg_data = E1000_READ_REG(hw, STATUS);
8989 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
8990 E1000_WRITE_REG(hw, STATUS, reg_data);
8992 /* Make sure HW does not configure LCD from PHY extended configuration
8993 before SW configuration */
8994 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
8995 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
8996 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
8997 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
8998 cnf_size >>= 16;
8999 if (cnf_size) {
9000 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9001 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9002 /* cnf_base_addr is in DWORD */
9003 cnf_base_addr >>= 16;
9005 /* Configure LCD from extended configuration region. */
9006 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9007 cnf_size);
9008 if (ret_val)
9009 return ret_val;
9013 return E1000_SUCCESS;