2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
40 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41 #define MAX_LPID_970 63
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER 18
46 static long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
47 long pte_index
, unsigned long pteh
,
48 unsigned long ptel
, unsigned long *pte_idx_ret
);
49 static void kvmppc_rmap_reset(struct kvm
*kvm
);
51 long kvmppc_alloc_hpt(struct kvm
*kvm
, u32
*htab_orderp
)
54 struct revmap_entry
*rev
;
55 struct kvmppc_linear_info
*li
;
56 long order
= kvm_hpt_order
;
60 if (order
< PPC_MIN_HPT_ORDER
)
61 order
= PPC_MIN_HPT_ORDER
;
65 * If the user wants a different size from default,
66 * try first to allocate it from the kernel page allocator.
69 if (order
!= kvm_hpt_order
) {
70 hpt
= __get_free_pages(GFP_KERNEL
|__GFP_ZERO
|__GFP_REPEAT
|
71 __GFP_NOWARN
, order
- PAGE_SHIFT
);
76 /* Next try to allocate from the preallocated pool */
80 hpt
= (ulong
)li
->base_virt
;
81 kvm
->arch
.hpt_li
= li
;
82 order
= kvm_hpt_order
;
86 /* Lastly try successively smaller sizes from the page allocator */
87 while (!hpt
&& order
> PPC_MIN_HPT_ORDER
) {
88 hpt
= __get_free_pages(GFP_KERNEL
|__GFP_ZERO
|__GFP_REPEAT
|
89 __GFP_NOWARN
, order
- PAGE_SHIFT
);
97 kvm
->arch
.hpt_virt
= hpt
;
98 kvm
->arch
.hpt_order
= order
;
99 /* HPTEs are 2**4 bytes long */
100 kvm
->arch
.hpt_npte
= 1ul << (order
- 4);
101 /* 128 (2**7) bytes in each HPTEG */
102 kvm
->arch
.hpt_mask
= (1ul << (order
- 7)) - 1;
104 /* Allocate reverse map array */
105 rev
= vmalloc(sizeof(struct revmap_entry
) * kvm
->arch
.hpt_npte
);
107 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
110 kvm
->arch
.revmap
= rev
;
111 kvm
->arch
.sdr1
= __pa(hpt
) | (order
- 18);
113 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
114 hpt
, order
, kvm
->arch
.lpid
);
117 *htab_orderp
= order
;
121 if (kvm
->arch
.hpt_li
)
122 kvm_release_hpt(kvm
->arch
.hpt_li
);
124 free_pages(hpt
, order
- PAGE_SHIFT
);
128 long kvmppc_alloc_reset_hpt(struct kvm
*kvm
, u32
*htab_orderp
)
133 mutex_lock(&kvm
->lock
);
134 if (kvm
->arch
.rma_setup_done
) {
135 kvm
->arch
.rma_setup_done
= 0;
136 /* order rma_setup_done vs. vcpus_running */
138 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
139 kvm
->arch
.rma_setup_done
= 1;
143 if (kvm
->arch
.hpt_virt
) {
144 order
= kvm
->arch
.hpt_order
;
145 /* Set the entire HPT to 0, i.e. invalid HPTEs */
146 memset((void *)kvm
->arch
.hpt_virt
, 0, 1ul << order
);
148 * Reset all the reverse-mapping chains for all memslots
150 kvmppc_rmap_reset(kvm
);
151 /* Ensure that each vcpu will flush its TLB on next entry. */
152 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
153 *htab_orderp
= order
;
156 err
= kvmppc_alloc_hpt(kvm
, htab_orderp
);
157 order
= *htab_orderp
;
160 mutex_unlock(&kvm
->lock
);
164 void kvmppc_free_hpt(struct kvm
*kvm
)
166 kvmppc_free_lpid(kvm
->arch
.lpid
);
167 vfree(kvm
->arch
.revmap
);
168 if (kvm
->arch
.hpt_li
)
169 kvm_release_hpt(kvm
->arch
.hpt_li
);
171 free_pages(kvm
->arch
.hpt_virt
,
172 kvm
->arch
.hpt_order
- PAGE_SHIFT
);
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize
)
178 return (pgsize
> 0x1000) ? HPTE_V_LARGE
: 0;
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize
)
184 return (pgsize
== 0x10000) ? 0x1000 : 0;
187 void kvmppc_map_vrma(struct kvm_vcpu
*vcpu
, struct kvm_memory_slot
*memslot
,
188 unsigned long porder
)
191 unsigned long npages
;
192 unsigned long hp_v
, hp_r
;
193 unsigned long addr
, hash
;
195 unsigned long hp0
, hp1
;
196 unsigned long idx_ret
;
198 struct kvm
*kvm
= vcpu
->kvm
;
200 psize
= 1ul << porder
;
201 npages
= memslot
->npages
>> (porder
- PAGE_SHIFT
);
203 /* VRMA can't be > 1TB */
204 if (npages
> 1ul << (40 - porder
))
205 npages
= 1ul << (40 - porder
);
206 /* Can't use more than 1 HPTE per HPTEG */
207 if (npages
> kvm
->arch
.hpt_mask
+ 1)
208 npages
= kvm
->arch
.hpt_mask
+ 1;
210 hp0
= HPTE_V_1TB_SEG
| (VRMA_VSID
<< (40 - 16)) |
211 HPTE_V_BOLTED
| hpte0_pgsize_encoding(psize
);
212 hp1
= hpte1_pgsize_encoding(psize
) |
213 HPTE_R_R
| HPTE_R_C
| HPTE_R_M
| PP_RWXX
;
215 for (i
= 0; i
< npages
; ++i
) {
217 /* can't use hpt_hash since va > 64 bits */
218 hash
= (i
^ (VRMA_VSID
^ (VRMA_VSID
<< 25))) & kvm
->arch
.hpt_mask
;
220 * We assume that the hash table is empty and no
221 * vcpus are using it at this stage. Since we create
222 * at most one HPTE per HPTEG, we just assume entry 7
223 * is available and use it.
225 hash
= (hash
<< 3) + 7;
226 hp_v
= hp0
| ((addr
>> 16) & ~0x7fUL
);
228 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, hash
, hp_v
, hp_r
,
230 if (ret
!= H_SUCCESS
) {
231 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
238 int kvmppc_mmu_hv_init(void)
240 unsigned long host_lpid
, rsvd_lpid
;
242 if (!cpu_has_feature(CPU_FTR_HVMODE
))
245 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
247 host_lpid
= mfspr(SPRN_LPID
); /* POWER7 */
248 rsvd_lpid
= LPID_RSVD
;
250 host_lpid
= 0; /* PPC970 */
251 rsvd_lpid
= MAX_LPID_970
;
254 kvmppc_init_lpid(rsvd_lpid
+ 1);
256 kvmppc_claim_lpid(host_lpid
);
257 /* rsvd_lpid is reserved for use in partition switching */
258 kvmppc_claim_lpid(rsvd_lpid
);
263 void kvmppc_mmu_destroy(struct kvm_vcpu
*vcpu
)
267 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu
*vcpu
)
269 kvmppc_set_msr(vcpu
, MSR_SF
| MSR_ME
);
273 * This is called to get a reference to a guest page if there isn't
274 * one already in the memslot->arch.slot_phys[] array.
276 static long kvmppc_get_guest_page(struct kvm
*kvm
, unsigned long gfn
,
277 struct kvm_memory_slot
*memslot
,
282 struct page
*page
, *hpage
, *pages
[1];
283 unsigned long s
, pgsize
;
284 unsigned long *physp
;
285 unsigned int is_io
, got
, pgorder
;
286 struct vm_area_struct
*vma
;
287 unsigned long pfn
, i
, npages
;
289 physp
= memslot
->arch
.slot_phys
;
292 if (physp
[gfn
- memslot
->base_gfn
])
300 start
= gfn_to_hva_memslot(memslot
, gfn
);
302 /* Instantiate and get the page we want access to */
303 np
= get_user_pages_fast(start
, 1, 1, pages
);
305 /* Look up the vma for the page */
306 down_read(¤t
->mm
->mmap_sem
);
307 vma
= find_vma(current
->mm
, start
);
308 if (!vma
|| vma
->vm_start
> start
||
309 start
+ psize
> vma
->vm_end
||
310 !(vma
->vm_flags
& VM_PFNMAP
))
312 is_io
= hpte_cache_bits(pgprot_val(vma
->vm_page_prot
));
313 pfn
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
314 /* check alignment of pfn vs. requested page size */
315 if (psize
> PAGE_SIZE
&& (pfn
& ((psize
>> PAGE_SHIFT
) - 1)))
317 up_read(¤t
->mm
->mmap_sem
);
321 got
= KVMPPC_GOT_PAGE
;
323 /* See if this is a large page */
325 if (PageHuge(page
)) {
326 hpage
= compound_head(page
);
327 s
<<= compound_order(hpage
);
328 /* Get the whole large page if slot alignment is ok */
329 if (s
> psize
&& slot_is_aligned(memslot
, s
) &&
330 !(memslot
->userspace_addr
& (s
- 1))) {
340 pfn
= page_to_pfn(page
);
343 npages
= pgsize
>> PAGE_SHIFT
;
344 pgorder
= __ilog2(npages
);
345 physp
+= (gfn
- memslot
->base_gfn
) & ~(npages
- 1);
346 spin_lock(&kvm
->arch
.slot_phys_lock
);
347 for (i
= 0; i
< npages
; ++i
) {
349 physp
[i
] = ((pfn
+ i
) << PAGE_SHIFT
) +
350 got
+ is_io
+ pgorder
;
354 spin_unlock(&kvm
->arch
.slot_phys_lock
);
363 up_read(¤t
->mm
->mmap_sem
);
367 long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
368 long pte_index
, unsigned long pteh
,
369 unsigned long ptel
, unsigned long *pte_idx_ret
)
371 unsigned long psize
, gpa
, gfn
;
372 struct kvm_memory_slot
*memslot
;
375 if (kvm
->arch
.using_mmu_notifiers
)
378 psize
= hpte_page_size(pteh
, ptel
);
382 pteh
&= ~(HPTE_V_HVLOCK
| HPTE_V_ABSENT
| HPTE_V_VALID
);
384 /* Find the memslot (if any) for this address */
385 gpa
= (ptel
& HPTE_R_RPN
) & ~(psize
- 1);
386 gfn
= gpa
>> PAGE_SHIFT
;
387 memslot
= gfn_to_memslot(kvm
, gfn
);
388 if (memslot
&& !(memslot
->flags
& KVM_MEMSLOT_INVALID
)) {
389 if (!slot_is_aligned(memslot
, psize
))
391 if (kvmppc_get_guest_page(kvm
, gfn
, memslot
, psize
) < 0)
396 /* Protect linux PTE lookup from page table destruction */
397 rcu_read_lock_sched(); /* this disables preemption too */
398 ret
= kvmppc_do_h_enter(kvm
, flags
, pte_index
, pteh
, ptel
,
399 current
->mm
->pgd
, false, pte_idx_ret
);
400 rcu_read_unlock_sched();
401 if (ret
== H_TOO_HARD
) {
402 /* this can't happen */
403 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
404 ret
= H_RESOURCE
; /* or something */
411 * We come here on a H_ENTER call from the guest when we are not
412 * using mmu notifiers and we don't have the requested page pinned
415 long kvmppc_virtmode_h_enter(struct kvm_vcpu
*vcpu
, unsigned long flags
,
416 long pte_index
, unsigned long pteh
,
419 return kvmppc_virtmode_do_h_enter(vcpu
->kvm
, flags
, pte_index
,
420 pteh
, ptel
, &vcpu
->arch
.gpr
[4]);
423 static struct kvmppc_slb
*kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu
*vcpu
,
429 for (i
= 0; i
< vcpu
->arch
.slb_nr
; i
++) {
430 if (!(vcpu
->arch
.slb
[i
].orige
& SLB_ESID_V
))
433 if (vcpu
->arch
.slb
[i
].origv
& SLB_VSID_B_1T
)
438 if (((vcpu
->arch
.slb
[i
].orige
^ eaddr
) & mask
) == 0)
439 return &vcpu
->arch
.slb
[i
];
444 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v
, unsigned long r
,
447 unsigned long ra_mask
;
449 ra_mask
= hpte_page_size(v
, r
) - 1;
450 return (r
& HPTE_R_RPN
& ~ra_mask
) | (ea
& ra_mask
);
453 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu
*vcpu
, gva_t eaddr
,
454 struct kvmppc_pte
*gpte
, bool data
)
456 struct kvm
*kvm
= vcpu
->kvm
;
457 struct kvmppc_slb
*slbe
;
459 unsigned long pp
, key
;
461 unsigned long *hptep
;
463 int virtmode
= vcpu
->arch
.shregs
.msr
& (data
? MSR_DR
: MSR_IR
);
467 slbe
= kvmppc_mmu_book3s_hv_find_slbe(vcpu
, eaddr
);
472 /* real mode access */
473 slb_v
= vcpu
->kvm
->arch
.vrma_slb_v
;
476 /* Find the HPTE in the hash table */
477 index
= kvmppc_hv_find_lock_hpte(kvm
, eaddr
, slb_v
,
478 HPTE_V_VALID
| HPTE_V_ABSENT
);
481 hptep
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (index
<< 4));
482 v
= hptep
[0] & ~HPTE_V_HVLOCK
;
483 gr
= kvm
->arch
.revmap
[index
].guest_rpte
;
485 /* Unlock the HPTE */
486 asm volatile("lwsync" : : : "memory");
490 gpte
->vpage
= ((v
& HPTE_V_AVPN
) << 4) | ((eaddr
>> 12) & 0xfff);
492 /* Get PP bits and key for permission check */
493 pp
= gr
& (HPTE_R_PP0
| HPTE_R_PP
);
494 key
= (vcpu
->arch
.shregs
.msr
& MSR_PR
) ? SLB_VSID_KP
: SLB_VSID_KS
;
497 /* Calculate permissions */
498 gpte
->may_read
= hpte_read_permission(pp
, key
);
499 gpte
->may_write
= hpte_write_permission(pp
, key
);
500 gpte
->may_execute
= gpte
->may_read
&& !(gr
& (HPTE_R_N
| HPTE_R_G
));
502 /* Storage key permission check for POWER7 */
503 if (data
&& virtmode
&& cpu_has_feature(CPU_FTR_ARCH_206
)) {
504 int amrfield
= hpte_get_skey_perm(gr
, vcpu
->arch
.amr
);
511 /* Get the guest physical address */
512 gpte
->raddr
= kvmppc_mmu_get_real_addr(v
, gr
, eaddr
);
517 * Quick test for whether an instruction is a load or a store.
518 * If the instruction is a load or a store, then this will indicate
519 * which it is, at least on server processors. (Embedded processors
520 * have some external PID instructions that don't follow the rule
521 * embodied here.) If the instruction isn't a load or store, then
522 * this doesn't return anything useful.
524 static int instruction_is_store(unsigned int instr
)
529 if ((instr
& 0xfc000000) == 0x7c000000)
530 mask
= 0x100; /* major opcode 31 */
531 return (instr
& mask
) != 0;
534 static int kvmppc_hv_emulate_mmio(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
535 unsigned long gpa
, gva_t ea
, int is_store
)
539 unsigned long srr0
= kvmppc_get_pc(vcpu
);
541 /* We try to load the last instruction. We don't let
542 * emulate_instruction do it as it doesn't check what
544 * If we fail, we just return to the guest and try executing it again.
546 if (vcpu
->arch
.last_inst
== KVM_INST_FETCH_FAILED
) {
547 ret
= kvmppc_ld(vcpu
, &srr0
, sizeof(u32
), &last_inst
, false);
548 if (ret
!= EMULATE_DONE
|| last_inst
== KVM_INST_FETCH_FAILED
)
550 vcpu
->arch
.last_inst
= last_inst
;
554 * WARNING: We do not know for sure whether the instruction we just
555 * read from memory is the same that caused the fault in the first
556 * place. If the instruction we read is neither an load or a store,
557 * then it can't access memory, so we don't need to worry about
558 * enforcing access permissions. So, assuming it is a load or
559 * store, we just check that its direction (load or store) is
560 * consistent with the original fault, since that's what we
561 * checked the access permissions against. If there is a mismatch
562 * we just return and retry the instruction.
565 if (instruction_is_store(vcpu
->arch
.last_inst
) != !!is_store
)
569 * Emulated accesses are emulated by looking at the hash for
570 * translation once, then performing the access later. The
571 * translation could be invalidated in the meantime in which
572 * point performing the subsequent memory access on the old
573 * physical address could possibly be a security hole for the
574 * guest (but not the host).
576 * This is less of an issue for MMIO stores since they aren't
577 * globally visible. It could be an issue for MMIO loads to
578 * a certain extent but we'll ignore it for now.
581 vcpu
->arch
.paddr_accessed
= gpa
;
582 vcpu
->arch
.vaddr_accessed
= ea
;
583 return kvmppc_emulate_mmio(run
, vcpu
);
586 int kvmppc_book3s_hv_page_fault(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
587 unsigned long ea
, unsigned long dsisr
)
589 struct kvm
*kvm
= vcpu
->kvm
;
590 unsigned long *hptep
, hpte
[3], r
;
591 unsigned long mmu_seq
, psize
, pte_size
;
592 unsigned long gpa
, gfn
, hva
, pfn
;
593 struct kvm_memory_slot
*memslot
;
595 struct revmap_entry
*rev
;
596 struct page
*page
, *pages
[1];
597 long index
, ret
, npages
;
599 unsigned int writing
, write_ok
;
600 struct vm_area_struct
*vma
;
601 unsigned long rcbits
;
604 * Real-mode code has already searched the HPT and found the
605 * entry we're interested in. Lock the entry and check that
606 * it hasn't changed. If it has, just return and re-execute the
609 if (ea
!= vcpu
->arch
.pgfault_addr
)
611 index
= vcpu
->arch
.pgfault_index
;
612 hptep
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (index
<< 4));
613 rev
= &kvm
->arch
.revmap
[index
];
615 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
617 hpte
[0] = hptep
[0] & ~HPTE_V_HVLOCK
;
619 hpte
[2] = r
= rev
->guest_rpte
;
620 asm volatile("lwsync" : : : "memory");
624 if (hpte
[0] != vcpu
->arch
.pgfault_hpte
[0] ||
625 hpte
[1] != vcpu
->arch
.pgfault_hpte
[1])
628 /* Translate the logical address and get the page */
629 psize
= hpte_page_size(hpte
[0], r
);
630 gpa
= (r
& HPTE_R_RPN
& ~(psize
- 1)) | (ea
& (psize
- 1));
631 gfn
= gpa
>> PAGE_SHIFT
;
632 memslot
= gfn_to_memslot(kvm
, gfn
);
634 /* No memslot means it's an emulated MMIO region */
635 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
636 return kvmppc_hv_emulate_mmio(run
, vcpu
, gpa
, ea
,
637 dsisr
& DSISR_ISSTORE
);
639 if (!kvm
->arch
.using_mmu_notifiers
)
640 return -EFAULT
; /* should never get here */
642 /* used to check for invalidations in progress */
643 mmu_seq
= kvm
->mmu_notifier_seq
;
649 pte_size
= PAGE_SIZE
;
650 writing
= (dsisr
& DSISR_ISSTORE
) != 0;
651 /* If writing != 0, then the HPTE must allow writing, if we get here */
653 hva
= gfn_to_hva_memslot(memslot
, gfn
);
654 npages
= get_user_pages_fast(hva
, 1, writing
, pages
);
656 /* Check if it's an I/O mapping */
657 down_read(¤t
->mm
->mmap_sem
);
658 vma
= find_vma(current
->mm
, hva
);
659 if (vma
&& vma
->vm_start
<= hva
&& hva
+ psize
<= vma
->vm_end
&&
660 (vma
->vm_flags
& VM_PFNMAP
)) {
661 pfn
= vma
->vm_pgoff
+
662 ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
664 is_io
= hpte_cache_bits(pgprot_val(vma
->vm_page_prot
));
665 write_ok
= vma
->vm_flags
& VM_WRITE
;
667 up_read(¤t
->mm
->mmap_sem
);
672 if (PageHuge(page
)) {
673 page
= compound_head(page
);
674 pte_size
<<= compound_order(page
);
676 /* if the guest wants write access, see if that is OK */
677 if (!writing
&& hpte_is_writable(r
)) {
681 * We need to protect against page table destruction
682 * while looking up and updating the pte.
684 rcu_read_lock_sched();
685 ptep
= find_linux_pte_or_hugepte(current
->mm
->pgd
,
687 if (ptep
&& pte_present(*ptep
)) {
688 pte
= kvmppc_read_update_linux_pte(ptep
, 1);
692 rcu_read_unlock_sched();
694 pfn
= page_to_pfn(page
);
698 if (psize
> pte_size
)
701 /* Check WIMG vs. the actual page we're accessing */
702 if (!hpte_cache_flags_ok(r
, is_io
)) {
706 * Allow guest to map emulated device memory as
707 * uncacheable, but actually make it cacheable.
709 r
= (r
& ~(HPTE_R_W
|HPTE_R_I
|HPTE_R_G
)) | HPTE_R_M
;
712 /* Set the HPTE to point to pfn */
713 r
= (r
& ~(HPTE_R_PP0
- pte_size
)) | (pfn
<< PAGE_SHIFT
);
714 if (hpte_is_writable(r
) && !write_ok
)
715 r
= hpte_make_readonly(r
);
718 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
720 if ((hptep
[0] & ~HPTE_V_HVLOCK
) != hpte
[0] || hptep
[1] != hpte
[1] ||
721 rev
->guest_rpte
!= hpte
[2])
722 /* HPTE has been changed under us; let the guest retry */
724 hpte
[0] = (hpte
[0] & ~HPTE_V_ABSENT
) | HPTE_V_VALID
;
726 rmap
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
729 /* Check if we might have been invalidated; let the guest retry if so */
731 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
)) {
736 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
737 rcbits
= *rmap
>> KVMPPC_RMAP_RC_SHIFT
;
738 r
&= rcbits
| ~(HPTE_R_R
| HPTE_R_C
);
740 if (hptep
[0] & HPTE_V_VALID
) {
741 /* HPTE was previously valid, so we need to invalidate it */
743 hptep
[0] |= HPTE_V_ABSENT
;
744 kvmppc_invalidate_hpte(kvm
, hptep
, index
);
745 /* don't lose previous R and C bits */
746 r
|= hptep
[1] & (HPTE_R_R
| HPTE_R_C
);
748 kvmppc_add_revmap_chain(kvm
, rev
, rmap
, index
, 0);
754 asm volatile("ptesync" : : : "memory");
756 if (page
&& hpte_is_writable(r
))
762 * We drop pages[0] here, not page because page might
763 * have been set to the head page of a compound, but
764 * we have to drop the reference on the correct tail
765 * page to match the get inside gup()
772 hptep
[0] &= ~HPTE_V_HVLOCK
;
777 static void kvmppc_rmap_reset(struct kvm
*kvm
)
779 struct kvm_memslots
*slots
;
780 struct kvm_memory_slot
*memslot
;
783 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
784 slots
= kvm
->memslots
;
785 kvm_for_each_memslot(memslot
, slots
) {
787 * This assumes it is acceptable to lose reference and
788 * change bits across a reset.
790 memset(memslot
->arch
.rmap
, 0,
791 memslot
->npages
* sizeof(*memslot
->arch
.rmap
));
793 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
796 static int kvm_handle_hva_range(struct kvm
*kvm
,
799 int (*handler
)(struct kvm
*kvm
,
800 unsigned long *rmapp
,
805 struct kvm_memslots
*slots
;
806 struct kvm_memory_slot
*memslot
;
808 slots
= kvm_memslots(kvm
);
809 kvm_for_each_memslot(memslot
, slots
) {
810 unsigned long hva_start
, hva_end
;
813 hva_start
= max(start
, memslot
->userspace_addr
);
814 hva_end
= min(end
, memslot
->userspace_addr
+
815 (memslot
->npages
<< PAGE_SHIFT
));
816 if (hva_start
>= hva_end
)
819 * {gfn(page) | page intersects with [hva_start, hva_end)} =
820 * {gfn, gfn+1, ..., gfn_end-1}.
822 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
823 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
825 for (; gfn
< gfn_end
; ++gfn
) {
826 gfn_t gfn_offset
= gfn
- memslot
->base_gfn
;
828 ret
= handler(kvm
, &memslot
->arch
.rmap
[gfn_offset
], gfn
);
836 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
837 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
840 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, handler
);
843 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
846 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
847 unsigned long h
, i
, j
;
848 unsigned long *hptep
;
849 unsigned long ptel
, psize
, rcbits
;
853 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
859 * To avoid an ABBA deadlock with the HPTE lock bit,
860 * we can't spin on the HPTE lock while holding the
863 i
= *rmapp
& KVMPPC_RMAP_INDEX
;
864 hptep
= (unsigned long *) (kvm
->arch
.hpt_virt
+ (i
<< 4));
865 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
866 /* unlock rmap before spinning on the HPTE lock */
868 while (hptep
[0] & HPTE_V_HVLOCK
)
874 /* chain is now empty */
875 *rmapp
&= ~(KVMPPC_RMAP_PRESENT
| KVMPPC_RMAP_INDEX
);
877 /* remove i from chain */
881 rev
[i
].forw
= rev
[i
].back
= i
;
882 *rmapp
= (*rmapp
& ~KVMPPC_RMAP_INDEX
) | j
;
885 /* Now check and modify the HPTE */
886 ptel
= rev
[i
].guest_rpte
;
887 psize
= hpte_page_size(hptep
[0], ptel
);
888 if ((hptep
[0] & HPTE_V_VALID
) &&
889 hpte_rpn(ptel
, psize
) == gfn
) {
890 if (kvm
->arch
.using_mmu_notifiers
)
891 hptep
[0] |= HPTE_V_ABSENT
;
892 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
893 /* Harvest R and C */
894 rcbits
= hptep
[1] & (HPTE_R_R
| HPTE_R_C
);
895 *rmapp
|= rcbits
<< KVMPPC_RMAP_RC_SHIFT
;
896 rev
[i
].guest_rpte
= ptel
| rcbits
;
899 hptep
[0] &= ~HPTE_V_HVLOCK
;
904 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
906 if (kvm
->arch
.using_mmu_notifiers
)
907 kvm_handle_hva(kvm
, hva
, kvm_unmap_rmapp
);
911 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
913 if (kvm
->arch
.using_mmu_notifiers
)
914 kvm_handle_hva_range(kvm
, start
, end
, kvm_unmap_rmapp
);
918 void kvmppc_core_flush_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
920 unsigned long *rmapp
;
924 rmapp
= memslot
->arch
.rmap
;
925 gfn
= memslot
->base_gfn
;
926 for (n
= memslot
->npages
; n
; --n
) {
928 * Testing the present bit without locking is OK because
929 * the memslot has been marked invalid already, and hence
930 * no new HPTEs referencing this page can be created,
931 * thus the present bit can't go from 0 to 1.
933 if (*rmapp
& KVMPPC_RMAP_PRESENT
)
934 kvm_unmap_rmapp(kvm
, rmapp
, gfn
);
940 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
943 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
944 unsigned long head
, i
, j
;
945 unsigned long *hptep
;
950 if (*rmapp
& KVMPPC_RMAP_REFERENCED
) {
951 *rmapp
&= ~KVMPPC_RMAP_REFERENCED
;
954 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
959 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
961 hptep
= (unsigned long *) (kvm
->arch
.hpt_virt
+ (i
<< 4));
964 /* If this HPTE isn't referenced, ignore it */
965 if (!(hptep
[1] & HPTE_R_R
))
968 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
969 /* unlock rmap before spinning on the HPTE lock */
971 while (hptep
[0] & HPTE_V_HVLOCK
)
976 /* Now check and modify the HPTE */
977 if ((hptep
[0] & HPTE_V_VALID
) && (hptep
[1] & HPTE_R_R
)) {
978 kvmppc_clear_ref_hpte(kvm
, hptep
, i
);
979 rev
[i
].guest_rpte
|= HPTE_R_R
;
982 hptep
[0] &= ~HPTE_V_HVLOCK
;
983 } while ((i
= j
) != head
);
989 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
991 if (!kvm
->arch
.using_mmu_notifiers
)
993 return kvm_handle_hva(kvm
, hva
, kvm_age_rmapp
);
996 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
999 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
1000 unsigned long head
, i
, j
;
1004 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
1008 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
1011 if (*rmapp
& KVMPPC_RMAP_PRESENT
) {
1012 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1014 hp
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (i
<< 4));
1016 if (hp
[1] & HPTE_R_R
)
1018 } while ((i
= j
) != head
);
1027 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1029 if (!kvm
->arch
.using_mmu_notifiers
)
1031 return kvm_handle_hva(kvm
, hva
, kvm_test_age_rmapp
);
1034 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1036 if (!kvm
->arch
.using_mmu_notifiers
)
1038 kvm_handle_hva(kvm
, hva
, kvm_unmap_rmapp
);
1041 static int kvm_test_clear_dirty(struct kvm
*kvm
, unsigned long *rmapp
)
1043 struct revmap_entry
*rev
= kvm
->arch
.revmap
;
1044 unsigned long head
, i
, j
;
1045 unsigned long *hptep
;
1050 if (*rmapp
& KVMPPC_RMAP_CHANGED
) {
1051 *rmapp
&= ~KVMPPC_RMAP_CHANGED
;
1054 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
1059 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1061 hptep
= (unsigned long *) (kvm
->arch
.hpt_virt
+ (i
<< 4));
1064 if (!(hptep
[1] & HPTE_R_C
))
1067 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
1068 /* unlock rmap before spinning on the HPTE lock */
1070 while (hptep
[0] & HPTE_V_HVLOCK
)
1075 /* Now check and modify the HPTE */
1076 if ((hptep
[0] & HPTE_V_VALID
) && (hptep
[1] & HPTE_R_C
)) {
1077 /* need to make it temporarily absent to clear C */
1078 hptep
[0] |= HPTE_V_ABSENT
;
1079 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
1080 hptep
[1] &= ~HPTE_R_C
;
1082 hptep
[0] = (hptep
[0] & ~HPTE_V_ABSENT
) | HPTE_V_VALID
;
1083 rev
[i
].guest_rpte
|= HPTE_R_C
;
1086 hptep
[0] &= ~HPTE_V_HVLOCK
;
1087 } while ((i
= j
) != head
);
1093 long kvmppc_hv_get_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1097 unsigned long *rmapp
;
1100 rmapp
= memslot
->arch
.rmap
;
1101 for (i
= 0; i
< memslot
->npages
; ++i
) {
1102 if (kvm_test_clear_dirty(kvm
, rmapp
) && map
)
1103 __set_bit_le(i
, map
);
1110 void *kvmppc_pin_guest_page(struct kvm
*kvm
, unsigned long gpa
,
1111 unsigned long *nb_ret
)
1113 struct kvm_memory_slot
*memslot
;
1114 unsigned long gfn
= gpa
>> PAGE_SHIFT
;
1115 struct page
*page
, *pages
[1];
1117 unsigned long hva
, psize
, offset
;
1119 unsigned long *physp
;
1122 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1123 memslot
= gfn_to_memslot(kvm
, gfn
);
1124 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
1126 if (!kvm
->arch
.using_mmu_notifiers
) {
1127 physp
= memslot
->arch
.slot_phys
;
1130 physp
+= gfn
- memslot
->base_gfn
;
1133 if (kvmppc_get_guest_page(kvm
, gfn
, memslot
,
1138 page
= pfn_to_page(pa
>> PAGE_SHIFT
);
1141 hva
= gfn_to_hva_memslot(memslot
, gfn
);
1142 npages
= get_user_pages_fast(hva
, 1, 1, pages
);
1147 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1150 if (PageHuge(page
)) {
1151 page
= compound_head(page
);
1152 psize
<<= compound_order(page
);
1154 offset
= gpa
& (psize
- 1);
1156 *nb_ret
= psize
- offset
;
1157 return page_address(page
) + offset
;
1160 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1164 void kvmppc_unpin_guest_page(struct kvm
*kvm
, void *va
)
1166 struct page
*page
= virt_to_page(va
);
1172 * Functions for reading and writing the hash table via reads and
1173 * writes on a file descriptor.
1175 * Reads return the guest view of the hash table, which has to be
1176 * pieced together from the real hash table and the guest_rpte
1177 * values in the revmap array.
1179 * On writes, each HPTE written is considered in turn, and if it
1180 * is valid, it is written to the HPT as if an H_ENTER with the
1181 * exact flag set was done. When the invalid count is non-zero
1182 * in the header written to the stream, the kernel will make
1183 * sure that that many HPTEs are invalid, and invalidate them
1187 struct kvm_htab_ctx
{
1188 unsigned long index
;
1189 unsigned long flags
;
1194 #define HPTE_SIZE (2 * sizeof(unsigned long))
1196 static long record_hpte(unsigned long flags
, unsigned long *hptp
,
1197 unsigned long *hpte
, struct revmap_entry
*revp
,
1198 int want_valid
, int first_pass
)
1204 /* Unmodified entries are uninteresting except on the first pass */
1205 dirty
= !!(revp
->guest_rpte
& HPTE_GR_MODIFIED
);
1206 if (!first_pass
&& !dirty
)
1210 if (hptp
[0] & (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
1212 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) &&
1213 !(hptp
[0] & HPTE_V_BOLTED
))
1216 if (valid
!= want_valid
)
1220 if (valid
|| dirty
) {
1221 /* lock the HPTE so it's stable and read it */
1223 while (!try_lock_hpte(hptp
, HPTE_V_HVLOCK
))
1226 if (v
& HPTE_V_ABSENT
) {
1227 v
&= ~HPTE_V_ABSENT
;
1230 /* re-evaluate valid and dirty from synchronized HPTE value */
1231 valid
= !!(v
& HPTE_V_VALID
);
1232 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) && !(v
& HPTE_V_BOLTED
))
1234 r
= revp
->guest_rpte
| (hptp
[1] & (HPTE_R_R
| HPTE_R_C
));
1235 dirty
= !!(revp
->guest_rpte
& HPTE_GR_MODIFIED
);
1236 /* only clear modified if this is the right sort of entry */
1237 if (valid
== want_valid
&& dirty
) {
1238 r
&= ~HPTE_GR_MODIFIED
;
1239 revp
->guest_rpte
= r
;
1241 asm volatile(PPC_RELEASE_BARRIER
"" : : : "memory");
1242 hptp
[0] &= ~HPTE_V_HVLOCK
;
1244 if (!(valid
== want_valid
&& (first_pass
|| dirty
)))
1252 static ssize_t
kvm_htab_read(struct file
*file
, char __user
*buf
,
1253 size_t count
, loff_t
*ppos
)
1255 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1256 struct kvm
*kvm
= ctx
->kvm
;
1257 struct kvm_get_htab_header hdr
;
1258 unsigned long *hptp
;
1259 struct revmap_entry
*revp
;
1260 unsigned long i
, nb
, nw
;
1261 unsigned long __user
*lbuf
;
1262 struct kvm_get_htab_header __user
*hptr
;
1263 unsigned long flags
;
1265 unsigned long hpte
[2];
1267 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1270 first_pass
= ctx
->first_pass
;
1274 hptp
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (i
* HPTE_SIZE
));
1275 revp
= kvm
->arch
.revmap
+ i
;
1276 lbuf
= (unsigned long __user
*)buf
;
1279 while (nb
+ sizeof(hdr
) + HPTE_SIZE
< count
) {
1280 /* Initialize header */
1281 hptr
= (struct kvm_get_htab_header __user
*)buf
;
1286 lbuf
= (unsigned long __user
*)(buf
+ sizeof(hdr
));
1288 /* Skip uninteresting entries, i.e. clean on not-first pass */
1290 while (i
< kvm
->arch
.hpt_npte
&&
1291 !(revp
->guest_rpte
& HPTE_GR_MODIFIED
)) {
1299 /* Grab a series of valid entries */
1300 while (i
< kvm
->arch
.hpt_npte
&&
1301 hdr
.n_valid
< 0xffff &&
1302 nb
+ HPTE_SIZE
< count
&&
1303 record_hpte(flags
, hptp
, hpte
, revp
, 1, first_pass
)) {
1304 /* valid entry, write it out */
1306 if (__put_user(hpte
[0], lbuf
) ||
1307 __put_user(hpte
[1], lbuf
+ 1))
1315 /* Now skip invalid entries while we can */
1316 while (i
< kvm
->arch
.hpt_npte
&&
1317 hdr
.n_invalid
< 0xffff &&
1318 record_hpte(flags
, hptp
, hpte
, revp
, 0, first_pass
)) {
1319 /* found an invalid entry */
1326 if (hdr
.n_valid
|| hdr
.n_invalid
) {
1327 /* write back the header */
1328 if (__copy_to_user(hptr
, &hdr
, sizeof(hdr
)))
1331 buf
= (char __user
*)lbuf
;
1336 /* Check if we've wrapped around the hash table */
1337 if (i
>= kvm
->arch
.hpt_npte
) {
1339 ctx
->first_pass
= 0;
1349 static ssize_t
kvm_htab_write(struct file
*file
, const char __user
*buf
,
1350 size_t count
, loff_t
*ppos
)
1352 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1353 struct kvm
*kvm
= ctx
->kvm
;
1354 struct kvm_get_htab_header hdr
;
1357 unsigned long __user
*lbuf
;
1358 unsigned long *hptp
;
1359 unsigned long tmp
[2];
1364 if (!access_ok(VERIFY_READ
, buf
, count
))
1367 /* lock out vcpus from running while we're doing this */
1368 mutex_lock(&kvm
->lock
);
1369 rma_setup
= kvm
->arch
.rma_setup_done
;
1371 kvm
->arch
.rma_setup_done
= 0; /* temporarily */
1372 /* order rma_setup_done vs. vcpus_running */
1374 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
1375 kvm
->arch
.rma_setup_done
= 1;
1376 mutex_unlock(&kvm
->lock
);
1382 for (nb
= 0; nb
+ sizeof(hdr
) <= count
; ) {
1384 if (__copy_from_user(&hdr
, buf
, sizeof(hdr
)))
1388 if (nb
+ hdr
.n_valid
* HPTE_SIZE
> count
)
1396 if (i
>= kvm
->arch
.hpt_npte
||
1397 i
+ hdr
.n_valid
+ hdr
.n_invalid
> kvm
->arch
.hpt_npte
)
1400 hptp
= (unsigned long *)(kvm
->arch
.hpt_virt
+ (i
* HPTE_SIZE
));
1401 lbuf
= (unsigned long __user
*)buf
;
1402 for (j
= 0; j
< hdr
.n_valid
; ++j
) {
1404 if (__get_user(v
, lbuf
) || __get_user(r
, lbuf
+ 1))
1407 if (!(v
& HPTE_V_VALID
))
1412 if (hptp
[0] & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1413 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1415 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, i
, v
, r
,
1417 if (ret
!= H_SUCCESS
) {
1418 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1419 "r=%lx\n", ret
, i
, v
, r
);
1422 if (!rma_setup
&& is_vrma_hpte(v
)) {
1423 unsigned long psize
= hpte_page_size(v
, r
);
1424 unsigned long senc
= slb_pgsize_encoding(psize
);
1427 kvm
->arch
.vrma_slb_v
= senc
| SLB_VSID_B_1T
|
1428 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
1429 lpcr
= kvm
->arch
.lpcr
& ~LPCR_VRMASD
;
1430 lpcr
|= senc
<< (LPCR_VRMASD_SH
- 4);
1431 kvm
->arch
.lpcr
= lpcr
;
1438 for (j
= 0; j
< hdr
.n_invalid
; ++j
) {
1439 if (hptp
[0] & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1440 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1448 /* Order HPTE updates vs. rma_setup_done */
1450 kvm
->arch
.rma_setup_done
= rma_setup
;
1451 mutex_unlock(&kvm
->lock
);
1458 static int kvm_htab_release(struct inode
*inode
, struct file
*filp
)
1460 struct kvm_htab_ctx
*ctx
= filp
->private_data
;
1462 filp
->private_data
= NULL
;
1463 if (!(ctx
->flags
& KVM_GET_HTAB_WRITE
))
1464 atomic_dec(&ctx
->kvm
->arch
.hpte_mod_interest
);
1465 kvm_put_kvm(ctx
->kvm
);
1470 static struct file_operations kvm_htab_fops
= {
1471 .read
= kvm_htab_read
,
1472 .write
= kvm_htab_write
,
1473 .llseek
= default_llseek
,
1474 .release
= kvm_htab_release
,
1477 int kvm_vm_ioctl_get_htab_fd(struct kvm
*kvm
, struct kvm_get_htab_fd
*ghf
)
1480 struct kvm_htab_ctx
*ctx
;
1483 /* reject flags we don't recognize */
1484 if (ghf
->flags
& ~(KVM_GET_HTAB_BOLTED_ONLY
| KVM_GET_HTAB_WRITE
))
1486 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
1491 ctx
->index
= ghf
->start_index
;
1492 ctx
->flags
= ghf
->flags
;
1493 ctx
->first_pass
= 1;
1495 rwflag
= (ghf
->flags
& KVM_GET_HTAB_WRITE
) ? O_WRONLY
: O_RDONLY
;
1496 ret
= anon_inode_getfd("kvm-htab", &kvm_htab_fops
, ctx
, rwflag
);
1502 if (rwflag
== O_RDONLY
) {
1503 mutex_lock(&kvm
->slots_lock
);
1504 atomic_inc(&kvm
->arch
.hpte_mod_interest
);
1505 /* make sure kvmppc_do_h_enter etc. see the increment */
1506 synchronize_srcu_expedited(&kvm
->srcu
);
1507 mutex_unlock(&kvm
->slots_lock
);
1513 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu
*vcpu
)
1515 struct kvmppc_mmu
*mmu
= &vcpu
->arch
.mmu
;
1517 if (cpu_has_feature(CPU_FTR_ARCH_206
))
1518 vcpu
->arch
.slb_nr
= 32; /* POWER7 */
1520 vcpu
->arch
.slb_nr
= 64;
1522 mmu
->xlate
= kvmppc_mmu_book3s_64_hv_xlate
;
1523 mmu
->reset_msr
= kvmppc_mmu_book3s_64_hv_reset_msr
;
1525 vcpu
->arch
.hflags
|= BOOK3S_HFLAG_SLB
;