Merge tag 'trace-3.8-rc3-regression-fix' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
blob8cc18abd6dde6b486996bf9f4719fdeb12e0c65e
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
40 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41 #define MAX_LPID_970 63
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER 18
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
53 unsigned long hpt;
54 struct revmap_entry *rev;
55 struct kvmppc_linear_info *li;
56 long order = kvm_hpt_order;
58 if (htab_orderp) {
59 order = *htab_orderp;
60 if (order < PPC_MIN_HPT_ORDER)
61 order = PPC_MIN_HPT_ORDER;
65 * If the user wants a different size from default,
66 * try first to allocate it from the kernel page allocator.
68 hpt = 0;
69 if (order != kvm_hpt_order) {
70 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
71 __GFP_NOWARN, order - PAGE_SHIFT);
72 if (!hpt)
73 --order;
76 /* Next try to allocate from the preallocated pool */
77 if (!hpt) {
78 li = kvm_alloc_hpt();
79 if (li) {
80 hpt = (ulong)li->base_virt;
81 kvm->arch.hpt_li = li;
82 order = kvm_hpt_order;
86 /* Lastly try successively smaller sizes from the page allocator */
87 while (!hpt && order > PPC_MIN_HPT_ORDER) {
88 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
89 __GFP_NOWARN, order - PAGE_SHIFT);
90 if (!hpt)
91 --order;
94 if (!hpt)
95 return -ENOMEM;
97 kvm->arch.hpt_virt = hpt;
98 kvm->arch.hpt_order = order;
99 /* HPTEs are 2**4 bytes long */
100 kvm->arch.hpt_npte = 1ul << (order - 4);
101 /* 128 (2**7) bytes in each HPTEG */
102 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
104 /* Allocate reverse map array */
105 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
106 if (!rev) {
107 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
108 goto out_freehpt;
110 kvm->arch.revmap = rev;
111 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
113 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
114 hpt, order, kvm->arch.lpid);
116 if (htab_orderp)
117 *htab_orderp = order;
118 return 0;
120 out_freehpt:
121 if (kvm->arch.hpt_li)
122 kvm_release_hpt(kvm->arch.hpt_li);
123 else
124 free_pages(hpt, order - PAGE_SHIFT);
125 return -ENOMEM;
128 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
130 long err = -EBUSY;
131 long order;
133 mutex_lock(&kvm->lock);
134 if (kvm->arch.rma_setup_done) {
135 kvm->arch.rma_setup_done = 0;
136 /* order rma_setup_done vs. vcpus_running */
137 smp_mb();
138 if (atomic_read(&kvm->arch.vcpus_running)) {
139 kvm->arch.rma_setup_done = 1;
140 goto out;
143 if (kvm->arch.hpt_virt) {
144 order = kvm->arch.hpt_order;
145 /* Set the entire HPT to 0, i.e. invalid HPTEs */
146 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
148 * Reset all the reverse-mapping chains for all memslots
150 kvmppc_rmap_reset(kvm);
151 /* Ensure that each vcpu will flush its TLB on next entry. */
152 cpumask_setall(&kvm->arch.need_tlb_flush);
153 *htab_orderp = order;
154 err = 0;
155 } else {
156 err = kvmppc_alloc_hpt(kvm, htab_orderp);
157 order = *htab_orderp;
159 out:
160 mutex_unlock(&kvm->lock);
161 return err;
164 void kvmppc_free_hpt(struct kvm *kvm)
166 kvmppc_free_lpid(kvm->arch.lpid);
167 vfree(kvm->arch.revmap);
168 if (kvm->arch.hpt_li)
169 kvm_release_hpt(kvm->arch.hpt_li);
170 else
171 free_pages(kvm->arch.hpt_virt,
172 kvm->arch.hpt_order - PAGE_SHIFT);
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
178 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
184 return (pgsize == 0x10000) ? 0x1000 : 0;
187 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188 unsigned long porder)
190 unsigned long i;
191 unsigned long npages;
192 unsigned long hp_v, hp_r;
193 unsigned long addr, hash;
194 unsigned long psize;
195 unsigned long hp0, hp1;
196 unsigned long idx_ret;
197 long ret;
198 struct kvm *kvm = vcpu->kvm;
200 psize = 1ul << porder;
201 npages = memslot->npages >> (porder - PAGE_SHIFT);
203 /* VRMA can't be > 1TB */
204 if (npages > 1ul << (40 - porder))
205 npages = 1ul << (40 - porder);
206 /* Can't use more than 1 HPTE per HPTEG */
207 if (npages > kvm->arch.hpt_mask + 1)
208 npages = kvm->arch.hpt_mask + 1;
210 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212 hp1 = hpte1_pgsize_encoding(psize) |
213 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
215 for (i = 0; i < npages; ++i) {
216 addr = i << porder;
217 /* can't use hpt_hash since va > 64 bits */
218 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
220 * We assume that the hash table is empty and no
221 * vcpus are using it at this stage. Since we create
222 * at most one HPTE per HPTEG, we just assume entry 7
223 * is available and use it.
225 hash = (hash << 3) + 7;
226 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227 hp_r = hp1 | addr;
228 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229 &idx_ret);
230 if (ret != H_SUCCESS) {
231 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232 addr, ret);
233 break;
238 int kvmppc_mmu_hv_init(void)
240 unsigned long host_lpid, rsvd_lpid;
242 if (!cpu_has_feature(CPU_FTR_HVMODE))
243 return -EINVAL;
245 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
248 rsvd_lpid = LPID_RSVD;
249 } else {
250 host_lpid = 0; /* PPC970 */
251 rsvd_lpid = MAX_LPID_970;
254 kvmppc_init_lpid(rsvd_lpid + 1);
256 kvmppc_claim_lpid(host_lpid);
257 /* rsvd_lpid is reserved for use in partition switching */
258 kvmppc_claim_lpid(rsvd_lpid);
260 return 0;
263 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
267 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
269 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
273 * This is called to get a reference to a guest page if there isn't
274 * one already in the memslot->arch.slot_phys[] array.
276 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
277 struct kvm_memory_slot *memslot,
278 unsigned long psize)
280 unsigned long start;
281 long np, err;
282 struct page *page, *hpage, *pages[1];
283 unsigned long s, pgsize;
284 unsigned long *physp;
285 unsigned int is_io, got, pgorder;
286 struct vm_area_struct *vma;
287 unsigned long pfn, i, npages;
289 physp = memslot->arch.slot_phys;
290 if (!physp)
291 return -EINVAL;
292 if (physp[gfn - memslot->base_gfn])
293 return 0;
295 is_io = 0;
296 got = 0;
297 page = NULL;
298 pgsize = psize;
299 err = -EINVAL;
300 start = gfn_to_hva_memslot(memslot, gfn);
302 /* Instantiate and get the page we want access to */
303 np = get_user_pages_fast(start, 1, 1, pages);
304 if (np != 1) {
305 /* Look up the vma for the page */
306 down_read(&current->mm->mmap_sem);
307 vma = find_vma(current->mm, start);
308 if (!vma || vma->vm_start > start ||
309 start + psize > vma->vm_end ||
310 !(vma->vm_flags & VM_PFNMAP))
311 goto up_err;
312 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
313 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
314 /* check alignment of pfn vs. requested page size */
315 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
316 goto up_err;
317 up_read(&current->mm->mmap_sem);
319 } else {
320 page = pages[0];
321 got = KVMPPC_GOT_PAGE;
323 /* See if this is a large page */
324 s = PAGE_SIZE;
325 if (PageHuge(page)) {
326 hpage = compound_head(page);
327 s <<= compound_order(hpage);
328 /* Get the whole large page if slot alignment is ok */
329 if (s > psize && slot_is_aligned(memslot, s) &&
330 !(memslot->userspace_addr & (s - 1))) {
331 start &= ~(s - 1);
332 pgsize = s;
333 get_page(hpage);
334 put_page(page);
335 page = hpage;
338 if (s < psize)
339 goto out;
340 pfn = page_to_pfn(page);
343 npages = pgsize >> PAGE_SHIFT;
344 pgorder = __ilog2(npages);
345 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
346 spin_lock(&kvm->arch.slot_phys_lock);
347 for (i = 0; i < npages; ++i) {
348 if (!physp[i]) {
349 physp[i] = ((pfn + i) << PAGE_SHIFT) +
350 got + is_io + pgorder;
351 got = 0;
354 spin_unlock(&kvm->arch.slot_phys_lock);
355 err = 0;
357 out:
358 if (got)
359 put_page(page);
360 return err;
362 up_err:
363 up_read(&current->mm->mmap_sem);
364 return err;
367 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
368 long pte_index, unsigned long pteh,
369 unsigned long ptel, unsigned long *pte_idx_ret)
371 unsigned long psize, gpa, gfn;
372 struct kvm_memory_slot *memslot;
373 long ret;
375 if (kvm->arch.using_mmu_notifiers)
376 goto do_insert;
378 psize = hpte_page_size(pteh, ptel);
379 if (!psize)
380 return H_PARAMETER;
382 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
384 /* Find the memslot (if any) for this address */
385 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
386 gfn = gpa >> PAGE_SHIFT;
387 memslot = gfn_to_memslot(kvm, gfn);
388 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
389 if (!slot_is_aligned(memslot, psize))
390 return H_PARAMETER;
391 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
392 return H_PARAMETER;
395 do_insert:
396 /* Protect linux PTE lookup from page table destruction */
397 rcu_read_lock_sched(); /* this disables preemption too */
398 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
399 current->mm->pgd, false, pte_idx_ret);
400 rcu_read_unlock_sched();
401 if (ret == H_TOO_HARD) {
402 /* this can't happen */
403 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
404 ret = H_RESOURCE; /* or something */
406 return ret;
411 * We come here on a H_ENTER call from the guest when we are not
412 * using mmu notifiers and we don't have the requested page pinned
413 * already.
415 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
416 long pte_index, unsigned long pteh,
417 unsigned long ptel)
419 return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
420 pteh, ptel, &vcpu->arch.gpr[4]);
423 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
424 gva_t eaddr)
426 u64 mask;
427 int i;
429 for (i = 0; i < vcpu->arch.slb_nr; i++) {
430 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
431 continue;
433 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
434 mask = ESID_MASK_1T;
435 else
436 mask = ESID_MASK;
438 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
439 return &vcpu->arch.slb[i];
441 return NULL;
444 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
445 unsigned long ea)
447 unsigned long ra_mask;
449 ra_mask = hpte_page_size(v, r) - 1;
450 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
453 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
454 struct kvmppc_pte *gpte, bool data)
456 struct kvm *kvm = vcpu->kvm;
457 struct kvmppc_slb *slbe;
458 unsigned long slb_v;
459 unsigned long pp, key;
460 unsigned long v, gr;
461 unsigned long *hptep;
462 int index;
463 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
465 /* Get SLB entry */
466 if (virtmode) {
467 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
468 if (!slbe)
469 return -EINVAL;
470 slb_v = slbe->origv;
471 } else {
472 /* real mode access */
473 slb_v = vcpu->kvm->arch.vrma_slb_v;
476 /* Find the HPTE in the hash table */
477 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
478 HPTE_V_VALID | HPTE_V_ABSENT);
479 if (index < 0)
480 return -ENOENT;
481 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
482 v = hptep[0] & ~HPTE_V_HVLOCK;
483 gr = kvm->arch.revmap[index].guest_rpte;
485 /* Unlock the HPTE */
486 asm volatile("lwsync" : : : "memory");
487 hptep[0] = v;
489 gpte->eaddr = eaddr;
490 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
492 /* Get PP bits and key for permission check */
493 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
494 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
495 key &= slb_v;
497 /* Calculate permissions */
498 gpte->may_read = hpte_read_permission(pp, key);
499 gpte->may_write = hpte_write_permission(pp, key);
500 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
502 /* Storage key permission check for POWER7 */
503 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
504 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
505 if (amrfield & 1)
506 gpte->may_read = 0;
507 if (amrfield & 2)
508 gpte->may_write = 0;
511 /* Get the guest physical address */
512 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
513 return 0;
517 * Quick test for whether an instruction is a load or a store.
518 * If the instruction is a load or a store, then this will indicate
519 * which it is, at least on server processors. (Embedded processors
520 * have some external PID instructions that don't follow the rule
521 * embodied here.) If the instruction isn't a load or store, then
522 * this doesn't return anything useful.
524 static int instruction_is_store(unsigned int instr)
526 unsigned int mask;
528 mask = 0x10000000;
529 if ((instr & 0xfc000000) == 0x7c000000)
530 mask = 0x100; /* major opcode 31 */
531 return (instr & mask) != 0;
534 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
535 unsigned long gpa, gva_t ea, int is_store)
537 int ret;
538 u32 last_inst;
539 unsigned long srr0 = kvmppc_get_pc(vcpu);
541 /* We try to load the last instruction. We don't let
542 * emulate_instruction do it as it doesn't check what
543 * kvmppc_ld returns.
544 * If we fail, we just return to the guest and try executing it again.
546 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
547 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
548 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
549 return RESUME_GUEST;
550 vcpu->arch.last_inst = last_inst;
554 * WARNING: We do not know for sure whether the instruction we just
555 * read from memory is the same that caused the fault in the first
556 * place. If the instruction we read is neither an load or a store,
557 * then it can't access memory, so we don't need to worry about
558 * enforcing access permissions. So, assuming it is a load or
559 * store, we just check that its direction (load or store) is
560 * consistent with the original fault, since that's what we
561 * checked the access permissions against. If there is a mismatch
562 * we just return and retry the instruction.
565 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
566 return RESUME_GUEST;
569 * Emulated accesses are emulated by looking at the hash for
570 * translation once, then performing the access later. The
571 * translation could be invalidated in the meantime in which
572 * point performing the subsequent memory access on the old
573 * physical address could possibly be a security hole for the
574 * guest (but not the host).
576 * This is less of an issue for MMIO stores since they aren't
577 * globally visible. It could be an issue for MMIO loads to
578 * a certain extent but we'll ignore it for now.
581 vcpu->arch.paddr_accessed = gpa;
582 vcpu->arch.vaddr_accessed = ea;
583 return kvmppc_emulate_mmio(run, vcpu);
586 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
587 unsigned long ea, unsigned long dsisr)
589 struct kvm *kvm = vcpu->kvm;
590 unsigned long *hptep, hpte[3], r;
591 unsigned long mmu_seq, psize, pte_size;
592 unsigned long gpa, gfn, hva, pfn;
593 struct kvm_memory_slot *memslot;
594 unsigned long *rmap;
595 struct revmap_entry *rev;
596 struct page *page, *pages[1];
597 long index, ret, npages;
598 unsigned long is_io;
599 unsigned int writing, write_ok;
600 struct vm_area_struct *vma;
601 unsigned long rcbits;
604 * Real-mode code has already searched the HPT and found the
605 * entry we're interested in. Lock the entry and check that
606 * it hasn't changed. If it has, just return and re-execute the
607 * instruction.
609 if (ea != vcpu->arch.pgfault_addr)
610 return RESUME_GUEST;
611 index = vcpu->arch.pgfault_index;
612 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
613 rev = &kvm->arch.revmap[index];
614 preempt_disable();
615 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
616 cpu_relax();
617 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
618 hpte[1] = hptep[1];
619 hpte[2] = r = rev->guest_rpte;
620 asm volatile("lwsync" : : : "memory");
621 hptep[0] = hpte[0];
622 preempt_enable();
624 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
625 hpte[1] != vcpu->arch.pgfault_hpte[1])
626 return RESUME_GUEST;
628 /* Translate the logical address and get the page */
629 psize = hpte_page_size(hpte[0], r);
630 gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
631 gfn = gpa >> PAGE_SHIFT;
632 memslot = gfn_to_memslot(kvm, gfn);
634 /* No memslot means it's an emulated MMIO region */
635 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
636 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
637 dsisr & DSISR_ISSTORE);
639 if (!kvm->arch.using_mmu_notifiers)
640 return -EFAULT; /* should never get here */
642 /* used to check for invalidations in progress */
643 mmu_seq = kvm->mmu_notifier_seq;
644 smp_rmb();
646 is_io = 0;
647 pfn = 0;
648 page = NULL;
649 pte_size = PAGE_SIZE;
650 writing = (dsisr & DSISR_ISSTORE) != 0;
651 /* If writing != 0, then the HPTE must allow writing, if we get here */
652 write_ok = writing;
653 hva = gfn_to_hva_memslot(memslot, gfn);
654 npages = get_user_pages_fast(hva, 1, writing, pages);
655 if (npages < 1) {
656 /* Check if it's an I/O mapping */
657 down_read(&current->mm->mmap_sem);
658 vma = find_vma(current->mm, hva);
659 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
660 (vma->vm_flags & VM_PFNMAP)) {
661 pfn = vma->vm_pgoff +
662 ((hva - vma->vm_start) >> PAGE_SHIFT);
663 pte_size = psize;
664 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
665 write_ok = vma->vm_flags & VM_WRITE;
667 up_read(&current->mm->mmap_sem);
668 if (!pfn)
669 return -EFAULT;
670 } else {
671 page = pages[0];
672 if (PageHuge(page)) {
673 page = compound_head(page);
674 pte_size <<= compound_order(page);
676 /* if the guest wants write access, see if that is OK */
677 if (!writing && hpte_is_writable(r)) {
678 pte_t *ptep, pte;
681 * We need to protect against page table destruction
682 * while looking up and updating the pte.
684 rcu_read_lock_sched();
685 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
686 hva, NULL);
687 if (ptep && pte_present(*ptep)) {
688 pte = kvmppc_read_update_linux_pte(ptep, 1);
689 if (pte_write(pte))
690 write_ok = 1;
692 rcu_read_unlock_sched();
694 pfn = page_to_pfn(page);
697 ret = -EFAULT;
698 if (psize > pte_size)
699 goto out_put;
701 /* Check WIMG vs. the actual page we're accessing */
702 if (!hpte_cache_flags_ok(r, is_io)) {
703 if (is_io)
704 return -EFAULT;
706 * Allow guest to map emulated device memory as
707 * uncacheable, but actually make it cacheable.
709 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
712 /* Set the HPTE to point to pfn */
713 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
714 if (hpte_is_writable(r) && !write_ok)
715 r = hpte_make_readonly(r);
716 ret = RESUME_GUEST;
717 preempt_disable();
718 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
719 cpu_relax();
720 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
721 rev->guest_rpte != hpte[2])
722 /* HPTE has been changed under us; let the guest retry */
723 goto out_unlock;
724 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
726 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
727 lock_rmap(rmap);
729 /* Check if we might have been invalidated; let the guest retry if so */
730 ret = RESUME_GUEST;
731 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
732 unlock_rmap(rmap);
733 goto out_unlock;
736 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
737 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
738 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
740 if (hptep[0] & HPTE_V_VALID) {
741 /* HPTE was previously valid, so we need to invalidate it */
742 unlock_rmap(rmap);
743 hptep[0] |= HPTE_V_ABSENT;
744 kvmppc_invalidate_hpte(kvm, hptep, index);
745 /* don't lose previous R and C bits */
746 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
747 } else {
748 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
751 hptep[1] = r;
752 eieio();
753 hptep[0] = hpte[0];
754 asm volatile("ptesync" : : : "memory");
755 preempt_enable();
756 if (page && hpte_is_writable(r))
757 SetPageDirty(page);
759 out_put:
760 if (page) {
762 * We drop pages[0] here, not page because page might
763 * have been set to the head page of a compound, but
764 * we have to drop the reference on the correct tail
765 * page to match the get inside gup()
767 put_page(pages[0]);
769 return ret;
771 out_unlock:
772 hptep[0] &= ~HPTE_V_HVLOCK;
773 preempt_enable();
774 goto out_put;
777 static void kvmppc_rmap_reset(struct kvm *kvm)
779 struct kvm_memslots *slots;
780 struct kvm_memory_slot *memslot;
781 int srcu_idx;
783 srcu_idx = srcu_read_lock(&kvm->srcu);
784 slots = kvm->memslots;
785 kvm_for_each_memslot(memslot, slots) {
787 * This assumes it is acceptable to lose reference and
788 * change bits across a reset.
790 memset(memslot->arch.rmap, 0,
791 memslot->npages * sizeof(*memslot->arch.rmap));
793 srcu_read_unlock(&kvm->srcu, srcu_idx);
796 static int kvm_handle_hva_range(struct kvm *kvm,
797 unsigned long start,
798 unsigned long end,
799 int (*handler)(struct kvm *kvm,
800 unsigned long *rmapp,
801 unsigned long gfn))
803 int ret;
804 int retval = 0;
805 struct kvm_memslots *slots;
806 struct kvm_memory_slot *memslot;
808 slots = kvm_memslots(kvm);
809 kvm_for_each_memslot(memslot, slots) {
810 unsigned long hva_start, hva_end;
811 gfn_t gfn, gfn_end;
813 hva_start = max(start, memslot->userspace_addr);
814 hva_end = min(end, memslot->userspace_addr +
815 (memslot->npages << PAGE_SHIFT));
816 if (hva_start >= hva_end)
817 continue;
819 * {gfn(page) | page intersects with [hva_start, hva_end)} =
820 * {gfn, gfn+1, ..., gfn_end-1}.
822 gfn = hva_to_gfn_memslot(hva_start, memslot);
823 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
825 for (; gfn < gfn_end; ++gfn) {
826 gfn_t gfn_offset = gfn - memslot->base_gfn;
828 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
829 retval |= ret;
833 return retval;
836 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
837 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
838 unsigned long gfn))
840 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
843 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
844 unsigned long gfn)
846 struct revmap_entry *rev = kvm->arch.revmap;
847 unsigned long h, i, j;
848 unsigned long *hptep;
849 unsigned long ptel, psize, rcbits;
851 for (;;) {
852 lock_rmap(rmapp);
853 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
854 unlock_rmap(rmapp);
855 break;
859 * To avoid an ABBA deadlock with the HPTE lock bit,
860 * we can't spin on the HPTE lock while holding the
861 * rmap chain lock.
863 i = *rmapp & KVMPPC_RMAP_INDEX;
864 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
865 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
866 /* unlock rmap before spinning on the HPTE lock */
867 unlock_rmap(rmapp);
868 while (hptep[0] & HPTE_V_HVLOCK)
869 cpu_relax();
870 continue;
872 j = rev[i].forw;
873 if (j == i) {
874 /* chain is now empty */
875 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
876 } else {
877 /* remove i from chain */
878 h = rev[i].back;
879 rev[h].forw = j;
880 rev[j].back = h;
881 rev[i].forw = rev[i].back = i;
882 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
885 /* Now check and modify the HPTE */
886 ptel = rev[i].guest_rpte;
887 psize = hpte_page_size(hptep[0], ptel);
888 if ((hptep[0] & HPTE_V_VALID) &&
889 hpte_rpn(ptel, psize) == gfn) {
890 if (kvm->arch.using_mmu_notifiers)
891 hptep[0] |= HPTE_V_ABSENT;
892 kvmppc_invalidate_hpte(kvm, hptep, i);
893 /* Harvest R and C */
894 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
895 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
896 rev[i].guest_rpte = ptel | rcbits;
898 unlock_rmap(rmapp);
899 hptep[0] &= ~HPTE_V_HVLOCK;
901 return 0;
904 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
906 if (kvm->arch.using_mmu_notifiers)
907 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
908 return 0;
911 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
913 if (kvm->arch.using_mmu_notifiers)
914 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
915 return 0;
918 void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
920 unsigned long *rmapp;
921 unsigned long gfn;
922 unsigned long n;
924 rmapp = memslot->arch.rmap;
925 gfn = memslot->base_gfn;
926 for (n = memslot->npages; n; --n) {
928 * Testing the present bit without locking is OK because
929 * the memslot has been marked invalid already, and hence
930 * no new HPTEs referencing this page can be created,
931 * thus the present bit can't go from 0 to 1.
933 if (*rmapp & KVMPPC_RMAP_PRESENT)
934 kvm_unmap_rmapp(kvm, rmapp, gfn);
935 ++rmapp;
936 ++gfn;
940 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
941 unsigned long gfn)
943 struct revmap_entry *rev = kvm->arch.revmap;
944 unsigned long head, i, j;
945 unsigned long *hptep;
946 int ret = 0;
948 retry:
949 lock_rmap(rmapp);
950 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
951 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
952 ret = 1;
954 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
955 unlock_rmap(rmapp);
956 return ret;
959 i = head = *rmapp & KVMPPC_RMAP_INDEX;
960 do {
961 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
962 j = rev[i].forw;
964 /* If this HPTE isn't referenced, ignore it */
965 if (!(hptep[1] & HPTE_R_R))
966 continue;
968 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
969 /* unlock rmap before spinning on the HPTE lock */
970 unlock_rmap(rmapp);
971 while (hptep[0] & HPTE_V_HVLOCK)
972 cpu_relax();
973 goto retry;
976 /* Now check and modify the HPTE */
977 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
978 kvmppc_clear_ref_hpte(kvm, hptep, i);
979 rev[i].guest_rpte |= HPTE_R_R;
980 ret = 1;
982 hptep[0] &= ~HPTE_V_HVLOCK;
983 } while ((i = j) != head);
985 unlock_rmap(rmapp);
986 return ret;
989 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
991 if (!kvm->arch.using_mmu_notifiers)
992 return 0;
993 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
996 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
997 unsigned long gfn)
999 struct revmap_entry *rev = kvm->arch.revmap;
1000 unsigned long head, i, j;
1001 unsigned long *hp;
1002 int ret = 1;
1004 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1005 return 1;
1007 lock_rmap(rmapp);
1008 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1009 goto out;
1011 if (*rmapp & KVMPPC_RMAP_PRESENT) {
1012 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1013 do {
1014 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1015 j = rev[i].forw;
1016 if (hp[1] & HPTE_R_R)
1017 goto out;
1018 } while ((i = j) != head);
1020 ret = 0;
1022 out:
1023 unlock_rmap(rmapp);
1024 return ret;
1027 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1029 if (!kvm->arch.using_mmu_notifiers)
1030 return 0;
1031 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1034 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1036 if (!kvm->arch.using_mmu_notifiers)
1037 return;
1038 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1041 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1043 struct revmap_entry *rev = kvm->arch.revmap;
1044 unsigned long head, i, j;
1045 unsigned long *hptep;
1046 int ret = 0;
1048 retry:
1049 lock_rmap(rmapp);
1050 if (*rmapp & KVMPPC_RMAP_CHANGED) {
1051 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1052 ret = 1;
1054 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1055 unlock_rmap(rmapp);
1056 return ret;
1059 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1060 do {
1061 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1062 j = rev[i].forw;
1064 if (!(hptep[1] & HPTE_R_C))
1065 continue;
1067 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1068 /* unlock rmap before spinning on the HPTE lock */
1069 unlock_rmap(rmapp);
1070 while (hptep[0] & HPTE_V_HVLOCK)
1071 cpu_relax();
1072 goto retry;
1075 /* Now check and modify the HPTE */
1076 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1077 /* need to make it temporarily absent to clear C */
1078 hptep[0] |= HPTE_V_ABSENT;
1079 kvmppc_invalidate_hpte(kvm, hptep, i);
1080 hptep[1] &= ~HPTE_R_C;
1081 eieio();
1082 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1083 rev[i].guest_rpte |= HPTE_R_C;
1084 ret = 1;
1086 hptep[0] &= ~HPTE_V_HVLOCK;
1087 } while ((i = j) != head);
1089 unlock_rmap(rmapp);
1090 return ret;
1093 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1094 unsigned long *map)
1096 unsigned long i;
1097 unsigned long *rmapp;
1099 preempt_disable();
1100 rmapp = memslot->arch.rmap;
1101 for (i = 0; i < memslot->npages; ++i) {
1102 if (kvm_test_clear_dirty(kvm, rmapp) && map)
1103 __set_bit_le(i, map);
1104 ++rmapp;
1106 preempt_enable();
1107 return 0;
1110 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1111 unsigned long *nb_ret)
1113 struct kvm_memory_slot *memslot;
1114 unsigned long gfn = gpa >> PAGE_SHIFT;
1115 struct page *page, *pages[1];
1116 int npages;
1117 unsigned long hva, psize, offset;
1118 unsigned long pa;
1119 unsigned long *physp;
1120 int srcu_idx;
1122 srcu_idx = srcu_read_lock(&kvm->srcu);
1123 memslot = gfn_to_memslot(kvm, gfn);
1124 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1125 goto err;
1126 if (!kvm->arch.using_mmu_notifiers) {
1127 physp = memslot->arch.slot_phys;
1128 if (!physp)
1129 goto err;
1130 physp += gfn - memslot->base_gfn;
1131 pa = *physp;
1132 if (!pa) {
1133 if (kvmppc_get_guest_page(kvm, gfn, memslot,
1134 PAGE_SIZE) < 0)
1135 goto err;
1136 pa = *physp;
1138 page = pfn_to_page(pa >> PAGE_SHIFT);
1139 get_page(page);
1140 } else {
1141 hva = gfn_to_hva_memslot(memslot, gfn);
1142 npages = get_user_pages_fast(hva, 1, 1, pages);
1143 if (npages < 1)
1144 goto err;
1145 page = pages[0];
1147 srcu_read_unlock(&kvm->srcu, srcu_idx);
1149 psize = PAGE_SIZE;
1150 if (PageHuge(page)) {
1151 page = compound_head(page);
1152 psize <<= compound_order(page);
1154 offset = gpa & (psize - 1);
1155 if (nb_ret)
1156 *nb_ret = psize - offset;
1157 return page_address(page) + offset;
1159 err:
1160 srcu_read_unlock(&kvm->srcu, srcu_idx);
1161 return NULL;
1164 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1166 struct page *page = virt_to_page(va);
1168 put_page(page);
1172 * Functions for reading and writing the hash table via reads and
1173 * writes on a file descriptor.
1175 * Reads return the guest view of the hash table, which has to be
1176 * pieced together from the real hash table and the guest_rpte
1177 * values in the revmap array.
1179 * On writes, each HPTE written is considered in turn, and if it
1180 * is valid, it is written to the HPT as if an H_ENTER with the
1181 * exact flag set was done. When the invalid count is non-zero
1182 * in the header written to the stream, the kernel will make
1183 * sure that that many HPTEs are invalid, and invalidate them
1184 * if not.
1187 struct kvm_htab_ctx {
1188 unsigned long index;
1189 unsigned long flags;
1190 struct kvm *kvm;
1191 int first_pass;
1194 #define HPTE_SIZE (2 * sizeof(unsigned long))
1196 static long record_hpte(unsigned long flags, unsigned long *hptp,
1197 unsigned long *hpte, struct revmap_entry *revp,
1198 int want_valid, int first_pass)
1200 unsigned long v, r;
1201 int ok = 1;
1202 int valid, dirty;
1204 /* Unmodified entries are uninteresting except on the first pass */
1205 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1206 if (!first_pass && !dirty)
1207 return 0;
1209 valid = 0;
1210 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1211 valid = 1;
1212 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1213 !(hptp[0] & HPTE_V_BOLTED))
1214 valid = 0;
1216 if (valid != want_valid)
1217 return 0;
1219 v = r = 0;
1220 if (valid || dirty) {
1221 /* lock the HPTE so it's stable and read it */
1222 preempt_disable();
1223 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1224 cpu_relax();
1225 v = hptp[0];
1226 if (v & HPTE_V_ABSENT) {
1227 v &= ~HPTE_V_ABSENT;
1228 v |= HPTE_V_VALID;
1230 /* re-evaluate valid and dirty from synchronized HPTE value */
1231 valid = !!(v & HPTE_V_VALID);
1232 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1233 valid = 0;
1234 r = revp->guest_rpte | (hptp[1] & (HPTE_R_R | HPTE_R_C));
1235 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1236 /* only clear modified if this is the right sort of entry */
1237 if (valid == want_valid && dirty) {
1238 r &= ~HPTE_GR_MODIFIED;
1239 revp->guest_rpte = r;
1241 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1242 hptp[0] &= ~HPTE_V_HVLOCK;
1243 preempt_enable();
1244 if (!(valid == want_valid && (first_pass || dirty)))
1245 ok = 0;
1247 hpte[0] = v;
1248 hpte[1] = r;
1249 return ok;
1252 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1253 size_t count, loff_t *ppos)
1255 struct kvm_htab_ctx *ctx = file->private_data;
1256 struct kvm *kvm = ctx->kvm;
1257 struct kvm_get_htab_header hdr;
1258 unsigned long *hptp;
1259 struct revmap_entry *revp;
1260 unsigned long i, nb, nw;
1261 unsigned long __user *lbuf;
1262 struct kvm_get_htab_header __user *hptr;
1263 unsigned long flags;
1264 int first_pass;
1265 unsigned long hpte[2];
1267 if (!access_ok(VERIFY_WRITE, buf, count))
1268 return -EFAULT;
1270 first_pass = ctx->first_pass;
1271 flags = ctx->flags;
1273 i = ctx->index;
1274 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1275 revp = kvm->arch.revmap + i;
1276 lbuf = (unsigned long __user *)buf;
1278 nb = 0;
1279 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1280 /* Initialize header */
1281 hptr = (struct kvm_get_htab_header __user *)buf;
1282 hdr.n_valid = 0;
1283 hdr.n_invalid = 0;
1284 nw = nb;
1285 nb += sizeof(hdr);
1286 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1288 /* Skip uninteresting entries, i.e. clean on not-first pass */
1289 if (!first_pass) {
1290 while (i < kvm->arch.hpt_npte &&
1291 !(revp->guest_rpte & HPTE_GR_MODIFIED)) {
1292 ++i;
1293 hptp += 2;
1294 ++revp;
1297 hdr.index = i;
1299 /* Grab a series of valid entries */
1300 while (i < kvm->arch.hpt_npte &&
1301 hdr.n_valid < 0xffff &&
1302 nb + HPTE_SIZE < count &&
1303 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1304 /* valid entry, write it out */
1305 ++hdr.n_valid;
1306 if (__put_user(hpte[0], lbuf) ||
1307 __put_user(hpte[1], lbuf + 1))
1308 return -EFAULT;
1309 nb += HPTE_SIZE;
1310 lbuf += 2;
1311 ++i;
1312 hptp += 2;
1313 ++revp;
1315 /* Now skip invalid entries while we can */
1316 while (i < kvm->arch.hpt_npte &&
1317 hdr.n_invalid < 0xffff &&
1318 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1319 /* found an invalid entry */
1320 ++hdr.n_invalid;
1321 ++i;
1322 hptp += 2;
1323 ++revp;
1326 if (hdr.n_valid || hdr.n_invalid) {
1327 /* write back the header */
1328 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1329 return -EFAULT;
1330 nw = nb;
1331 buf = (char __user *)lbuf;
1332 } else {
1333 nb = nw;
1336 /* Check if we've wrapped around the hash table */
1337 if (i >= kvm->arch.hpt_npte) {
1338 i = 0;
1339 ctx->first_pass = 0;
1340 break;
1344 ctx->index = i;
1346 return nb;
1349 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1350 size_t count, loff_t *ppos)
1352 struct kvm_htab_ctx *ctx = file->private_data;
1353 struct kvm *kvm = ctx->kvm;
1354 struct kvm_get_htab_header hdr;
1355 unsigned long i, j;
1356 unsigned long v, r;
1357 unsigned long __user *lbuf;
1358 unsigned long *hptp;
1359 unsigned long tmp[2];
1360 ssize_t nb;
1361 long int err, ret;
1362 int rma_setup;
1364 if (!access_ok(VERIFY_READ, buf, count))
1365 return -EFAULT;
1367 /* lock out vcpus from running while we're doing this */
1368 mutex_lock(&kvm->lock);
1369 rma_setup = kvm->arch.rma_setup_done;
1370 if (rma_setup) {
1371 kvm->arch.rma_setup_done = 0; /* temporarily */
1372 /* order rma_setup_done vs. vcpus_running */
1373 smp_mb();
1374 if (atomic_read(&kvm->arch.vcpus_running)) {
1375 kvm->arch.rma_setup_done = 1;
1376 mutex_unlock(&kvm->lock);
1377 return -EBUSY;
1381 err = 0;
1382 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1383 err = -EFAULT;
1384 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1385 break;
1387 err = 0;
1388 if (nb + hdr.n_valid * HPTE_SIZE > count)
1389 break;
1391 nb += sizeof(hdr);
1392 buf += sizeof(hdr);
1394 err = -EINVAL;
1395 i = hdr.index;
1396 if (i >= kvm->arch.hpt_npte ||
1397 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1398 break;
1400 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1401 lbuf = (unsigned long __user *)buf;
1402 for (j = 0; j < hdr.n_valid; ++j) {
1403 err = -EFAULT;
1404 if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1405 goto out;
1406 err = -EINVAL;
1407 if (!(v & HPTE_V_VALID))
1408 goto out;
1409 lbuf += 2;
1410 nb += HPTE_SIZE;
1412 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1413 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1414 err = -EIO;
1415 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1416 tmp);
1417 if (ret != H_SUCCESS) {
1418 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1419 "r=%lx\n", ret, i, v, r);
1420 goto out;
1422 if (!rma_setup && is_vrma_hpte(v)) {
1423 unsigned long psize = hpte_page_size(v, r);
1424 unsigned long senc = slb_pgsize_encoding(psize);
1425 unsigned long lpcr;
1427 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1428 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1429 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1430 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1431 kvm->arch.lpcr = lpcr;
1432 rma_setup = 1;
1434 ++i;
1435 hptp += 2;
1438 for (j = 0; j < hdr.n_invalid; ++j) {
1439 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1440 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1441 ++i;
1442 hptp += 2;
1444 err = 0;
1447 out:
1448 /* Order HPTE updates vs. rma_setup_done */
1449 smp_wmb();
1450 kvm->arch.rma_setup_done = rma_setup;
1451 mutex_unlock(&kvm->lock);
1453 if (err)
1454 return err;
1455 return nb;
1458 static int kvm_htab_release(struct inode *inode, struct file *filp)
1460 struct kvm_htab_ctx *ctx = filp->private_data;
1462 filp->private_data = NULL;
1463 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1464 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1465 kvm_put_kvm(ctx->kvm);
1466 kfree(ctx);
1467 return 0;
1470 static struct file_operations kvm_htab_fops = {
1471 .read = kvm_htab_read,
1472 .write = kvm_htab_write,
1473 .llseek = default_llseek,
1474 .release = kvm_htab_release,
1477 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1479 int ret;
1480 struct kvm_htab_ctx *ctx;
1481 int rwflag;
1483 /* reject flags we don't recognize */
1484 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1485 return -EINVAL;
1486 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1487 if (!ctx)
1488 return -ENOMEM;
1489 kvm_get_kvm(kvm);
1490 ctx->kvm = kvm;
1491 ctx->index = ghf->start_index;
1492 ctx->flags = ghf->flags;
1493 ctx->first_pass = 1;
1495 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1496 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
1497 if (ret < 0) {
1498 kvm_put_kvm(kvm);
1499 return ret;
1502 if (rwflag == O_RDONLY) {
1503 mutex_lock(&kvm->slots_lock);
1504 atomic_inc(&kvm->arch.hpte_mod_interest);
1505 /* make sure kvmppc_do_h_enter etc. see the increment */
1506 synchronize_srcu_expedited(&kvm->srcu);
1507 mutex_unlock(&kvm->slots_lock);
1510 return ret;
1513 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1515 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1517 if (cpu_has_feature(CPU_FTR_ARCH_206))
1518 vcpu->arch.slb_nr = 32; /* POWER7 */
1519 else
1520 vcpu->arch.slb_nr = 64;
1522 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1523 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1525 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;