Merge tag 'trace-3.8-rc3-regression-fix' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / kvm / kvm-ia64.c
blobbd1c515550389819abbe8322f897154bd391d9a1
1 /*
2 * kvm_ia64.c: Basic KVM support On Itanium series processors
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
62 static long vp_env_info;
64 static struct kvm_vmm_info *kvm_vmm_info;
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69 { NULL }
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75 if (vcpu->kvm->arch.is_sn2)
76 return rtc_time();
77 else
78 #endif
79 return ia64_getreg(_IA64_REG_AR_ITC);
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
84 int l;
86 for (l = 0; l < (len + 32); l += 32)
87 ia64_fc((void *)(start + l));
89 ia64_sync_i();
90 ia64_srlz_i();
93 static void kvm_flush_tlb_all(void)
95 unsigned long i, j, count0, count1, stride0, stride1, addr;
96 long flags;
98 addr = local_cpu_data->ptce_base;
99 count0 = local_cpu_data->ptce_count[0];
100 count1 = local_cpu_data->ptce_count[1];
101 stride0 = local_cpu_data->ptce_stride[0];
102 stride1 = local_cpu_data->ptce_stride[1];
104 local_irq_save(flags);
105 for (i = 0; i < count0; ++i) {
106 for (j = 0; j < count1; ++j) {
107 ia64_ptce(addr);
108 addr += stride1;
110 addr += stride0;
112 local_irq_restore(flags);
113 ia64_srlz_i(); /* srlz.i implies srlz.d */
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
118 struct ia64_pal_retval iprv;
120 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121 (u64)opt_handler);
123 return iprv.status;
126 static DEFINE_SPINLOCK(vp_lock);
128 int kvm_arch_hardware_enable(void *garbage)
130 long status;
131 long tmp_base;
132 unsigned long pte;
133 unsigned long saved_psr;
134 int slot;
136 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137 local_irq_save(saved_psr);
138 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139 local_irq_restore(saved_psr);
140 if (slot < 0)
141 return -EINVAL;
143 spin_lock(&vp_lock);
144 status = ia64_pal_vp_init_env(kvm_vsa_base ?
145 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147 if (status != 0) {
148 spin_unlock(&vp_lock);
149 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150 return -EINVAL;
153 if (!kvm_vsa_base) {
154 kvm_vsa_base = tmp_base;
155 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
157 spin_unlock(&vp_lock);
158 ia64_ptr_entry(0x3, slot);
160 return 0;
163 void kvm_arch_hardware_disable(void *garbage)
166 long status;
167 int slot;
168 unsigned long pte;
169 unsigned long saved_psr;
170 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
172 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173 PAGE_KERNEL));
175 local_irq_save(saved_psr);
176 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177 local_irq_restore(saved_psr);
178 if (slot < 0)
179 return;
181 status = ia64_pal_vp_exit_env(host_iva);
182 if (status)
183 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184 status);
185 ia64_ptr_entry(0x3, slot);
188 void kvm_arch_check_processor_compat(void *rtn)
190 *(int *)rtn = 0;
193 int kvm_dev_ioctl_check_extension(long ext)
196 int r;
198 switch (ext) {
199 case KVM_CAP_IRQCHIP:
200 case KVM_CAP_MP_STATE:
201 case KVM_CAP_IRQ_INJECT_STATUS:
202 r = 1;
203 break;
204 case KVM_CAP_COALESCED_MMIO:
205 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206 break;
207 case KVM_CAP_IOMMU:
208 r = iommu_present(&pci_bus_type);
209 break;
210 default:
211 r = 0;
213 return r;
217 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
219 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
220 kvm_run->hw.hardware_exit_reason = 1;
221 return 0;
224 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
226 struct kvm_mmio_req *p;
227 struct kvm_io_device *mmio_dev;
228 int r;
230 p = kvm_get_vcpu_ioreq(vcpu);
232 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
233 goto mmio;
234 vcpu->mmio_needed = 1;
235 vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
236 vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
237 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
239 if (vcpu->mmio_is_write)
240 memcpy(vcpu->arch.mmio_data, &p->data, p->size);
241 memcpy(kvm_run->mmio.data, &p->data, p->size);
242 kvm_run->exit_reason = KVM_EXIT_MMIO;
243 return 0;
244 mmio:
245 if (p->dir)
246 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
247 p->size, &p->data);
248 else
249 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250 p->size, &p->data);
251 if (r)
252 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
253 p->state = STATE_IORESP_READY;
255 return 1;
258 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
260 struct exit_ctl_data *p;
262 p = kvm_get_exit_data(vcpu);
264 if (p->exit_reason == EXIT_REASON_PAL_CALL)
265 return kvm_pal_emul(vcpu, kvm_run);
266 else {
267 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
268 kvm_run->hw.hardware_exit_reason = 2;
269 return 0;
273 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
275 struct exit_ctl_data *p;
277 p = kvm_get_exit_data(vcpu);
279 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
280 kvm_sal_emul(vcpu);
281 return 1;
282 } else {
283 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
284 kvm_run->hw.hardware_exit_reason = 3;
285 return 0;
290 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
292 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
294 if (!test_and_set_bit(vector, &vpd->irr[0])) {
295 vcpu->arch.irq_new_pending = 1;
296 kvm_vcpu_kick(vcpu);
297 return 1;
299 return 0;
303 * offset: address offset to IPI space.
304 * value: deliver value.
306 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
307 uint64_t vector)
309 switch (dm) {
310 case SAPIC_FIXED:
311 break;
312 case SAPIC_NMI:
313 vector = 2;
314 break;
315 case SAPIC_EXTINT:
316 vector = 0;
317 break;
318 case SAPIC_INIT:
319 case SAPIC_PMI:
320 default:
321 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
322 return;
324 __apic_accept_irq(vcpu, vector);
327 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
328 unsigned long eid)
330 union ia64_lid lid;
331 int i;
332 struct kvm_vcpu *vcpu;
334 kvm_for_each_vcpu(i, vcpu, kvm) {
335 lid.val = VCPU_LID(vcpu);
336 if (lid.id == id && lid.eid == eid)
337 return vcpu;
340 return NULL;
343 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
345 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
346 struct kvm_vcpu *target_vcpu;
347 struct kvm_pt_regs *regs;
348 union ia64_ipi_a addr = p->u.ipi_data.addr;
349 union ia64_ipi_d data = p->u.ipi_data.data;
351 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
352 if (!target_vcpu)
353 return handle_vm_error(vcpu, kvm_run);
355 if (!target_vcpu->arch.launched) {
356 regs = vcpu_regs(target_vcpu);
358 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
359 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
361 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
362 if (waitqueue_active(&target_vcpu->wq))
363 wake_up_interruptible(&target_vcpu->wq);
364 } else {
365 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
366 if (target_vcpu != vcpu)
367 kvm_vcpu_kick(target_vcpu);
370 return 1;
373 struct call_data {
374 struct kvm_ptc_g ptc_g_data;
375 struct kvm_vcpu *vcpu;
378 static void vcpu_global_purge(void *info)
380 struct call_data *p = (struct call_data *)info;
381 struct kvm_vcpu *vcpu = p->vcpu;
383 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384 return;
386 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
387 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
388 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
389 p->ptc_g_data;
390 } else {
391 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
392 vcpu->arch.ptc_g_count = 0;
393 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
397 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
399 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
400 struct kvm *kvm = vcpu->kvm;
401 struct call_data call_data;
402 int i;
403 struct kvm_vcpu *vcpui;
405 call_data.ptc_g_data = p->u.ptc_g_data;
407 kvm_for_each_vcpu(i, vcpui, kvm) {
408 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
409 vcpu == vcpui)
410 continue;
412 if (waitqueue_active(&vcpui->wq))
413 wake_up_interruptible(&vcpui->wq);
415 if (vcpui->cpu != -1) {
416 call_data.vcpu = vcpui;
417 smp_call_function_single(vcpui->cpu,
418 vcpu_global_purge, &call_data, 1);
419 } else
420 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
423 return 1;
426 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
428 return 1;
431 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
433 unsigned long pte, rtc_phys_addr, map_addr;
434 int slot;
436 map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
437 rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
438 pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
439 slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
440 vcpu->arch.sn_rtc_tr_slot = slot;
441 if (slot < 0) {
442 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
443 slot = 0;
445 return slot;
448 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
451 ktime_t kt;
452 long itc_diff;
453 unsigned long vcpu_now_itc;
454 unsigned long expires;
455 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
456 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
457 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
459 if (irqchip_in_kernel(vcpu->kvm)) {
461 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
463 if (time_after(vcpu_now_itc, vpd->itm)) {
464 vcpu->arch.timer_check = 1;
465 return 1;
467 itc_diff = vpd->itm - vcpu_now_itc;
468 if (itc_diff < 0)
469 itc_diff = -itc_diff;
471 expires = div64_u64(itc_diff, cyc_per_usec);
472 kt = ktime_set(0, 1000 * expires);
474 vcpu->arch.ht_active = 1;
475 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
477 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
478 kvm_vcpu_block(vcpu);
479 hrtimer_cancel(p_ht);
480 vcpu->arch.ht_active = 0;
482 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
483 kvm_cpu_has_pending_timer(vcpu))
484 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
485 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
487 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
488 return -EINTR;
489 return 1;
490 } else {
491 printk(KERN_ERR"kvm: Unsupported userspace halt!");
492 return 0;
496 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
497 struct kvm_run *kvm_run)
499 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
500 return 0;
503 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
504 struct kvm_run *kvm_run)
506 return 1;
509 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
510 struct kvm_run *kvm_run)
512 printk("VMM: %s", vcpu->arch.log_buf);
513 return 1;
516 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
517 struct kvm_run *kvm_run) = {
518 [EXIT_REASON_VM_PANIC] = handle_vm_error,
519 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
520 [EXIT_REASON_PAL_CALL] = handle_pal_call,
521 [EXIT_REASON_SAL_CALL] = handle_sal_call,
522 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
523 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
524 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
525 [EXIT_REASON_IPI] = handle_ipi,
526 [EXIT_REASON_PTC_G] = handle_global_purge,
527 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
531 static const int kvm_vti_max_exit_handlers =
532 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
534 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
536 struct exit_ctl_data *p_exit_data;
538 p_exit_data = kvm_get_exit_data(vcpu);
539 return p_exit_data->exit_reason;
543 * The guest has exited. See if we can fix it or if we need userspace
544 * assistance.
546 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
548 u32 exit_reason = kvm_get_exit_reason(vcpu);
549 vcpu->arch.last_exit = exit_reason;
551 if (exit_reason < kvm_vti_max_exit_handlers
552 && kvm_vti_exit_handlers[exit_reason])
553 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
554 else {
555 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
556 kvm_run->hw.hardware_exit_reason = exit_reason;
558 return 0;
561 static inline void vti_set_rr6(unsigned long rr6)
563 ia64_set_rr(RR6, rr6);
564 ia64_srlz_i();
567 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
569 unsigned long pte;
570 struct kvm *kvm = vcpu->kvm;
571 int r;
573 /*Insert a pair of tr to map vmm*/
574 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
575 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
576 if (r < 0)
577 goto out;
578 vcpu->arch.vmm_tr_slot = r;
579 /*Insert a pairt of tr to map data of vm*/
580 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
581 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
582 pte, KVM_VM_DATA_SHIFT);
583 if (r < 0)
584 goto out;
585 vcpu->arch.vm_tr_slot = r;
587 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
588 if (kvm->arch.is_sn2) {
589 r = kvm_sn2_setup_mappings(vcpu);
590 if (r < 0)
591 goto out;
593 #endif
595 r = 0;
596 out:
597 return r;
600 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
602 struct kvm *kvm = vcpu->kvm;
603 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
604 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
605 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
606 if (kvm->arch.is_sn2)
607 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
608 #endif
611 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
613 unsigned long psr;
614 int r;
615 int cpu = smp_processor_id();
617 if (vcpu->arch.last_run_cpu != cpu ||
618 per_cpu(last_vcpu, cpu) != vcpu) {
619 per_cpu(last_vcpu, cpu) = vcpu;
620 vcpu->arch.last_run_cpu = cpu;
621 kvm_flush_tlb_all();
624 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
625 vti_set_rr6(vcpu->arch.vmm_rr);
626 local_irq_save(psr);
627 r = kvm_insert_vmm_mapping(vcpu);
628 local_irq_restore(psr);
629 return r;
632 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
634 kvm_purge_vmm_mapping(vcpu);
635 vti_set_rr6(vcpu->arch.host_rr6);
638 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
640 union context *host_ctx, *guest_ctx;
641 int r, idx;
643 idx = srcu_read_lock(&vcpu->kvm->srcu);
645 again:
646 if (signal_pending(current)) {
647 r = -EINTR;
648 kvm_run->exit_reason = KVM_EXIT_INTR;
649 goto out;
652 preempt_disable();
653 local_irq_disable();
655 /*Get host and guest context with guest address space.*/
656 host_ctx = kvm_get_host_context(vcpu);
657 guest_ctx = kvm_get_guest_context(vcpu);
659 clear_bit(KVM_REQ_KICK, &vcpu->requests);
661 r = kvm_vcpu_pre_transition(vcpu);
662 if (r < 0)
663 goto vcpu_run_fail;
665 srcu_read_unlock(&vcpu->kvm->srcu, idx);
666 vcpu->mode = IN_GUEST_MODE;
667 kvm_guest_enter();
670 * Transition to the guest
672 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
674 kvm_vcpu_post_transition(vcpu);
676 vcpu->arch.launched = 1;
677 set_bit(KVM_REQ_KICK, &vcpu->requests);
678 local_irq_enable();
681 * We must have an instruction between local_irq_enable() and
682 * kvm_guest_exit(), so the timer interrupt isn't delayed by
683 * the interrupt shadow. The stat.exits increment will do nicely.
684 * But we need to prevent reordering, hence this barrier():
686 barrier();
687 kvm_guest_exit();
688 vcpu->mode = OUTSIDE_GUEST_MODE;
689 preempt_enable();
691 idx = srcu_read_lock(&vcpu->kvm->srcu);
693 r = kvm_handle_exit(kvm_run, vcpu);
695 if (r > 0) {
696 if (!need_resched())
697 goto again;
700 out:
701 srcu_read_unlock(&vcpu->kvm->srcu, idx);
702 if (r > 0) {
703 kvm_resched(vcpu);
704 idx = srcu_read_lock(&vcpu->kvm->srcu);
705 goto again;
708 return r;
710 vcpu_run_fail:
711 local_irq_enable();
712 preempt_enable();
713 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
714 goto out;
717 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
719 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
721 if (!vcpu->mmio_is_write)
722 memcpy(&p->data, vcpu->arch.mmio_data, 8);
723 p->state = STATE_IORESP_READY;
726 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
728 int r;
729 sigset_t sigsaved;
731 if (vcpu->sigset_active)
732 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
734 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
735 kvm_vcpu_block(vcpu);
736 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
737 r = -EAGAIN;
738 goto out;
741 if (vcpu->mmio_needed) {
742 memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
743 kvm_set_mmio_data(vcpu);
744 vcpu->mmio_read_completed = 1;
745 vcpu->mmio_needed = 0;
747 r = __vcpu_run(vcpu, kvm_run);
748 out:
749 if (vcpu->sigset_active)
750 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
752 return r;
755 struct kvm *kvm_arch_alloc_vm(void)
758 struct kvm *kvm;
759 uint64_t vm_base;
761 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
763 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
765 if (!vm_base)
766 return NULL;
768 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769 kvm = (struct kvm *)(vm_base +
770 offsetof(struct kvm_vm_data, kvm_vm_struct));
771 kvm->arch.vm_base = vm_base;
772 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
774 return kvm;
777 struct kvm_ia64_io_range {
778 unsigned long start;
779 unsigned long size;
780 unsigned long type;
783 static const struct kvm_ia64_io_range io_ranges[] = {
784 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
785 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
786 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
787 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
788 {PIB_START, PIB_SIZE, GPFN_PIB},
791 static void kvm_build_io_pmt(struct kvm *kvm)
793 unsigned long i, j;
795 /* Mark I/O ranges */
796 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797 i++) {
798 for (j = io_ranges[i].start;
799 j < io_ranges[i].start + io_ranges[i].size;
800 j += PAGE_SIZE)
801 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802 io_ranges[i].type, 0);
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0 0x1739
809 #define GUEST_PHYSICAL_RR4 0x2739
810 #define VMM_INIT_RR 0x1660
812 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
814 BUG_ON(!kvm);
816 if (type)
817 return -EINVAL;
819 kvm->arch.is_sn2 = ia64_platform_is("sn2");
821 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
822 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
823 kvm->arch.vmm_init_rr = VMM_INIT_RR;
826 *Fill P2M entries for MMIO/IO ranges
828 kvm_build_io_pmt(kvm);
830 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
832 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
833 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
835 return 0;
838 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
839 struct kvm_irqchip *chip)
841 int r;
843 r = 0;
844 switch (chip->chip_id) {
845 case KVM_IRQCHIP_IOAPIC:
846 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
847 break;
848 default:
849 r = -EINVAL;
850 break;
852 return r;
855 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
857 int r;
859 r = 0;
860 switch (chip->chip_id) {
861 case KVM_IRQCHIP_IOAPIC:
862 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
863 break;
864 default:
865 r = -EINVAL;
866 break;
868 return r;
871 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
873 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
875 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
876 int i;
878 for (i = 0; i < 16; i++) {
879 vpd->vgr[i] = regs->vpd.vgr[i];
880 vpd->vbgr[i] = regs->vpd.vbgr[i];
882 for (i = 0; i < 128; i++)
883 vpd->vcr[i] = regs->vpd.vcr[i];
884 vpd->vhpi = regs->vpd.vhpi;
885 vpd->vnat = regs->vpd.vnat;
886 vpd->vbnat = regs->vpd.vbnat;
887 vpd->vpsr = regs->vpd.vpsr;
889 vpd->vpr = regs->vpd.vpr;
891 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
893 RESTORE_REGS(mp_state);
894 RESTORE_REGS(vmm_rr);
895 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
896 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
897 RESTORE_REGS(itr_regions);
898 RESTORE_REGS(dtr_regions);
899 RESTORE_REGS(tc_regions);
900 RESTORE_REGS(irq_check);
901 RESTORE_REGS(itc_check);
902 RESTORE_REGS(timer_check);
903 RESTORE_REGS(timer_pending);
904 RESTORE_REGS(last_itc);
905 for (i = 0; i < 8; i++) {
906 vcpu->arch.vrr[i] = regs->vrr[i];
907 vcpu->arch.ibr[i] = regs->ibr[i];
908 vcpu->arch.dbr[i] = regs->dbr[i];
910 for (i = 0; i < 4; i++)
911 vcpu->arch.insvc[i] = regs->insvc[i];
912 RESTORE_REGS(xtp);
913 RESTORE_REGS(metaphysical_rr0);
914 RESTORE_REGS(metaphysical_rr4);
915 RESTORE_REGS(metaphysical_saved_rr0);
916 RESTORE_REGS(metaphysical_saved_rr4);
917 RESTORE_REGS(fp_psr);
918 RESTORE_REGS(saved_gp);
920 vcpu->arch.irq_new_pending = 1;
921 vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
922 set_bit(KVM_REQ_RESUME, &vcpu->requests);
924 return 0;
927 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
929 if (!irqchip_in_kernel(kvm))
930 return -ENXIO;
932 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
933 irq_event->irq, irq_event->level);
934 return 0;
937 long kvm_arch_vm_ioctl(struct file *filp,
938 unsigned int ioctl, unsigned long arg)
940 struct kvm *kvm = filp->private_data;
941 void __user *argp = (void __user *)arg;
942 int r = -ENOTTY;
944 switch (ioctl) {
945 case KVM_SET_MEMORY_REGION: {
946 struct kvm_memory_region kvm_mem;
947 struct kvm_userspace_memory_region kvm_userspace_mem;
949 r = -EFAULT;
950 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
951 goto out;
952 kvm_userspace_mem.slot = kvm_mem.slot;
953 kvm_userspace_mem.flags = kvm_mem.flags;
954 kvm_userspace_mem.guest_phys_addr =
955 kvm_mem.guest_phys_addr;
956 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
957 r = kvm_vm_ioctl_set_memory_region(kvm,
958 &kvm_userspace_mem, 0);
959 if (r)
960 goto out;
961 break;
963 case KVM_CREATE_IRQCHIP:
964 r = -EFAULT;
965 r = kvm_ioapic_init(kvm);
966 if (r)
967 goto out;
968 r = kvm_setup_default_irq_routing(kvm);
969 if (r) {
970 mutex_lock(&kvm->slots_lock);
971 kvm_ioapic_destroy(kvm);
972 mutex_unlock(&kvm->slots_lock);
973 goto out;
975 break;
976 case KVM_GET_IRQCHIP: {
977 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
978 struct kvm_irqchip chip;
980 r = -EFAULT;
981 if (copy_from_user(&chip, argp, sizeof chip))
982 goto out;
983 r = -ENXIO;
984 if (!irqchip_in_kernel(kvm))
985 goto out;
986 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
987 if (r)
988 goto out;
989 r = -EFAULT;
990 if (copy_to_user(argp, &chip, sizeof chip))
991 goto out;
992 r = 0;
993 break;
995 case KVM_SET_IRQCHIP: {
996 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
997 struct kvm_irqchip chip;
999 r = -EFAULT;
1000 if (copy_from_user(&chip, argp, sizeof chip))
1001 goto out;
1002 r = -ENXIO;
1003 if (!irqchip_in_kernel(kvm))
1004 goto out;
1005 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1006 if (r)
1007 goto out;
1008 r = 0;
1009 break;
1011 default:
1014 out:
1015 return r;
1018 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1019 struct kvm_sregs *sregs)
1021 return -EINVAL;
1024 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1025 struct kvm_sregs *sregs)
1027 return -EINVAL;
1030 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1031 struct kvm_translation *tr)
1034 return -EINVAL;
1037 static int kvm_alloc_vmm_area(void)
1039 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1040 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1041 get_order(KVM_VMM_SIZE));
1042 if (!kvm_vmm_base)
1043 return -ENOMEM;
1045 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1046 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1048 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1049 kvm_vmm_base, kvm_vm_buffer);
1052 return 0;
1055 static void kvm_free_vmm_area(void)
1057 if (kvm_vmm_base) {
1058 /*Zero this area before free to avoid bits leak!!*/
1059 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1060 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1061 kvm_vmm_base = 0;
1062 kvm_vm_buffer = 0;
1063 kvm_vsa_base = 0;
1067 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1069 int i;
1070 union cpuid3_t cpuid3;
1071 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1073 if (IS_ERR(vpd))
1074 return PTR_ERR(vpd);
1076 /* CPUID init */
1077 for (i = 0; i < 5; i++)
1078 vpd->vcpuid[i] = ia64_get_cpuid(i);
1080 /* Limit the CPUID number to 5 */
1081 cpuid3.value = vpd->vcpuid[3];
1082 cpuid3.number = 4; /* 5 - 1 */
1083 vpd->vcpuid[3] = cpuid3.value;
1085 /*Set vac and vdc fields*/
1086 vpd->vac.a_from_int_cr = 1;
1087 vpd->vac.a_to_int_cr = 1;
1088 vpd->vac.a_from_psr = 1;
1089 vpd->vac.a_from_cpuid = 1;
1090 vpd->vac.a_cover = 1;
1091 vpd->vac.a_bsw = 1;
1092 vpd->vac.a_int = 1;
1093 vpd->vdc.d_vmsw = 1;
1095 /*Set virtual buffer*/
1096 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1098 return 0;
1101 static int vti_create_vp(struct kvm_vcpu *vcpu)
1103 long ret;
1104 struct vpd *vpd = vcpu->arch.vpd;
1105 unsigned long vmm_ivt;
1107 vmm_ivt = kvm_vmm_info->vmm_ivt;
1109 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1111 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1113 if (ret) {
1114 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1115 return -EINVAL;
1117 return 0;
1120 static void init_ptce_info(struct kvm_vcpu *vcpu)
1122 ia64_ptce_info_t ptce = {0};
1124 ia64_get_ptce(&ptce);
1125 vcpu->arch.ptce_base = ptce.base;
1126 vcpu->arch.ptce_count[0] = ptce.count[0];
1127 vcpu->arch.ptce_count[1] = ptce.count[1];
1128 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1129 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1132 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1134 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1136 if (hrtimer_cancel(p_ht))
1137 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1140 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1142 struct kvm_vcpu *vcpu;
1143 wait_queue_head_t *q;
1145 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1146 q = &vcpu->wq;
1148 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1149 goto out;
1151 if (waitqueue_active(q))
1152 wake_up_interruptible(q);
1154 out:
1155 vcpu->arch.timer_fired = 1;
1156 vcpu->arch.timer_check = 1;
1157 return HRTIMER_NORESTART;
1160 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1162 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
1164 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
1167 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1169 struct kvm_vcpu *v;
1170 int r;
1171 int i;
1172 long itc_offset;
1173 struct kvm *kvm = vcpu->kvm;
1174 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1176 union context *p_ctx = &vcpu->arch.guest;
1177 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1179 /*Init vcpu context for first run.*/
1180 if (IS_ERR(vmm_vcpu))
1181 return PTR_ERR(vmm_vcpu);
1183 if (kvm_vcpu_is_bsp(vcpu)) {
1184 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1186 /*Set entry address for first run.*/
1187 regs->cr_iip = PALE_RESET_ENTRY;
1189 /*Initialize itc offset for vcpus*/
1190 itc_offset = 0UL - kvm_get_itc(vcpu);
1191 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1192 v = (struct kvm_vcpu *)((char *)vcpu +
1193 sizeof(struct kvm_vcpu_data) * i);
1194 v->arch.itc_offset = itc_offset;
1195 v->arch.last_itc = 0;
1197 } else
1198 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1200 r = -ENOMEM;
1201 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1202 if (!vcpu->arch.apic)
1203 goto out;
1204 vcpu->arch.apic->vcpu = vcpu;
1206 p_ctx->gr[1] = 0;
1207 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1208 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1209 p_ctx->psr = 0x1008522000UL;
1210 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1211 p_ctx->caller_unat = 0;
1212 p_ctx->pr = 0x0;
1213 p_ctx->ar[36] = 0x0; /*unat*/
1214 p_ctx->ar[19] = 0x0; /*rnat*/
1215 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1216 ((sizeof(struct kvm_vcpu)+15) & ~15);
1217 p_ctx->ar[64] = 0x0; /*pfs*/
1218 p_ctx->cr[0] = 0x7e04UL;
1219 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1220 p_ctx->cr[8] = 0x3c;
1222 /*Initialize region register*/
1223 p_ctx->rr[0] = 0x30;
1224 p_ctx->rr[1] = 0x30;
1225 p_ctx->rr[2] = 0x30;
1226 p_ctx->rr[3] = 0x30;
1227 p_ctx->rr[4] = 0x30;
1228 p_ctx->rr[5] = 0x30;
1229 p_ctx->rr[7] = 0x30;
1231 /*Initialize branch register 0*/
1232 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1234 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1235 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1236 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1238 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1239 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1241 vcpu->arch.last_run_cpu = -1;
1242 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1243 vcpu->arch.vsa_base = kvm_vsa_base;
1244 vcpu->arch.__gp = kvm_vmm_gp;
1245 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1246 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1247 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1248 init_ptce_info(vcpu);
1250 r = 0;
1251 out:
1252 return r;
1255 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1257 unsigned long psr;
1258 int r;
1260 local_irq_save(psr);
1261 r = kvm_insert_vmm_mapping(vcpu);
1262 local_irq_restore(psr);
1263 if (r)
1264 goto fail;
1265 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1266 if (r)
1267 goto fail;
1269 r = vti_init_vpd(vcpu);
1270 if (r) {
1271 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1272 goto uninit;
1275 r = vti_create_vp(vcpu);
1276 if (r)
1277 goto uninit;
1279 kvm_purge_vmm_mapping(vcpu);
1281 return 0;
1282 uninit:
1283 kvm_vcpu_uninit(vcpu);
1284 fail:
1285 return r;
1288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1289 unsigned int id)
1291 struct kvm_vcpu *vcpu;
1292 unsigned long vm_base = kvm->arch.vm_base;
1293 int r;
1294 int cpu;
1296 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1298 r = -EINVAL;
1299 if (id >= KVM_MAX_VCPUS) {
1300 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1301 KVM_MAX_VCPUS);
1302 goto fail;
1305 r = -ENOMEM;
1306 if (!vm_base) {
1307 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1308 goto fail;
1310 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1311 vcpu_data[id].vcpu_struct));
1312 vcpu->kvm = kvm;
1314 cpu = get_cpu();
1315 r = vti_vcpu_setup(vcpu, id);
1316 put_cpu();
1318 if (r) {
1319 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1320 goto fail;
1323 return vcpu;
1324 fail:
1325 return ERR_PTR(r);
1328 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1330 return 0;
1333 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1335 return 0;
1338 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1340 return -EINVAL;
1343 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1345 return -EINVAL;
1348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1349 struct kvm_guest_debug *dbg)
1351 return -EINVAL;
1354 void kvm_arch_free_vm(struct kvm *kvm)
1356 unsigned long vm_base = kvm->arch.vm_base;
1358 if (vm_base) {
1359 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1360 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1365 static void kvm_release_vm_pages(struct kvm *kvm)
1367 struct kvm_memslots *slots;
1368 struct kvm_memory_slot *memslot;
1369 int j;
1371 slots = kvm_memslots(kvm);
1372 kvm_for_each_memslot(memslot, slots) {
1373 for (j = 0; j < memslot->npages; j++) {
1374 if (memslot->rmap[j])
1375 put_page((struct page *)memslot->rmap[j]);
1380 void kvm_arch_sync_events(struct kvm *kvm)
1384 void kvm_arch_destroy_vm(struct kvm *kvm)
1386 kvm_iommu_unmap_guest(kvm);
1387 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1388 kvm_free_all_assigned_devices(kvm);
1389 #endif
1390 kfree(kvm->arch.vioapic);
1391 kvm_release_vm_pages(kvm);
1394 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1398 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1400 if (cpu != vcpu->cpu) {
1401 vcpu->cpu = cpu;
1402 if (vcpu->arch.ht_active)
1403 kvm_migrate_hlt_timer(vcpu);
1407 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1409 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1411 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1412 int i;
1414 vcpu_load(vcpu);
1416 for (i = 0; i < 16; i++) {
1417 regs->vpd.vgr[i] = vpd->vgr[i];
1418 regs->vpd.vbgr[i] = vpd->vbgr[i];
1420 for (i = 0; i < 128; i++)
1421 regs->vpd.vcr[i] = vpd->vcr[i];
1422 regs->vpd.vhpi = vpd->vhpi;
1423 regs->vpd.vnat = vpd->vnat;
1424 regs->vpd.vbnat = vpd->vbnat;
1425 regs->vpd.vpsr = vpd->vpsr;
1426 regs->vpd.vpr = vpd->vpr;
1428 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1430 SAVE_REGS(mp_state);
1431 SAVE_REGS(vmm_rr);
1432 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1433 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1434 SAVE_REGS(itr_regions);
1435 SAVE_REGS(dtr_regions);
1436 SAVE_REGS(tc_regions);
1437 SAVE_REGS(irq_check);
1438 SAVE_REGS(itc_check);
1439 SAVE_REGS(timer_check);
1440 SAVE_REGS(timer_pending);
1441 SAVE_REGS(last_itc);
1442 for (i = 0; i < 8; i++) {
1443 regs->vrr[i] = vcpu->arch.vrr[i];
1444 regs->ibr[i] = vcpu->arch.ibr[i];
1445 regs->dbr[i] = vcpu->arch.dbr[i];
1447 for (i = 0; i < 4; i++)
1448 regs->insvc[i] = vcpu->arch.insvc[i];
1449 regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1450 SAVE_REGS(xtp);
1451 SAVE_REGS(metaphysical_rr0);
1452 SAVE_REGS(metaphysical_rr4);
1453 SAVE_REGS(metaphysical_saved_rr0);
1454 SAVE_REGS(metaphysical_saved_rr4);
1455 SAVE_REGS(fp_psr);
1456 SAVE_REGS(saved_gp);
1458 vcpu_put(vcpu);
1459 return 0;
1462 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1463 struct kvm_ia64_vcpu_stack *stack)
1465 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1466 return 0;
1469 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1470 struct kvm_ia64_vcpu_stack *stack)
1472 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1473 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1475 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1476 return 0;
1479 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1482 hrtimer_cancel(&vcpu->arch.hlt_timer);
1483 kfree(vcpu->arch.apic);
1487 long kvm_arch_vcpu_ioctl(struct file *filp,
1488 unsigned int ioctl, unsigned long arg)
1490 struct kvm_vcpu *vcpu = filp->private_data;
1491 void __user *argp = (void __user *)arg;
1492 struct kvm_ia64_vcpu_stack *stack = NULL;
1493 long r;
1495 switch (ioctl) {
1496 case KVM_IA64_VCPU_GET_STACK: {
1497 struct kvm_ia64_vcpu_stack __user *user_stack;
1498 void __user *first_p = argp;
1500 r = -EFAULT;
1501 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1502 goto out;
1504 if (!access_ok(VERIFY_WRITE, user_stack,
1505 sizeof(struct kvm_ia64_vcpu_stack))) {
1506 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1507 "Illegal user destination address for stack\n");
1508 goto out;
1510 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1511 if (!stack) {
1512 r = -ENOMEM;
1513 goto out;
1516 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1517 if (r)
1518 goto out;
1520 if (copy_to_user(user_stack, stack,
1521 sizeof(struct kvm_ia64_vcpu_stack))) {
1522 r = -EFAULT;
1523 goto out;
1526 break;
1528 case KVM_IA64_VCPU_SET_STACK: {
1529 struct kvm_ia64_vcpu_stack __user *user_stack;
1530 void __user *first_p = argp;
1532 r = -EFAULT;
1533 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1534 goto out;
1536 if (!access_ok(VERIFY_READ, user_stack,
1537 sizeof(struct kvm_ia64_vcpu_stack))) {
1538 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1539 "Illegal user address for stack\n");
1540 goto out;
1542 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1543 if (!stack) {
1544 r = -ENOMEM;
1545 goto out;
1547 if (copy_from_user(stack, user_stack,
1548 sizeof(struct kvm_ia64_vcpu_stack)))
1549 goto out;
1551 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1552 break;
1555 default:
1556 r = -EINVAL;
1559 out:
1560 kfree(stack);
1561 return r;
1564 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1566 return VM_FAULT_SIGBUS;
1569 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
1570 struct kvm_memory_slot *dont)
1574 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
1576 return 0;
1579 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1580 struct kvm_memory_slot *memslot,
1581 struct kvm_memory_slot old,
1582 struct kvm_userspace_memory_region *mem,
1583 int user_alloc)
1585 unsigned long i;
1586 unsigned long pfn;
1587 int npages = memslot->npages;
1588 unsigned long base_gfn = memslot->base_gfn;
1590 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1591 return -ENOMEM;
1593 for (i = 0; i < npages; i++) {
1594 pfn = gfn_to_pfn(kvm, base_gfn + i);
1595 if (!kvm_is_mmio_pfn(pfn)) {
1596 kvm_set_pmt_entry(kvm, base_gfn + i,
1597 pfn << PAGE_SHIFT,
1598 _PAGE_AR_RWX | _PAGE_MA_WB);
1599 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1600 } else {
1601 kvm_set_pmt_entry(kvm, base_gfn + i,
1602 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1603 _PAGE_MA_UC);
1604 memslot->rmap[i] = 0;
1608 return 0;
1611 void kvm_arch_commit_memory_region(struct kvm *kvm,
1612 struct kvm_userspace_memory_region *mem,
1613 struct kvm_memory_slot old,
1614 int user_alloc)
1616 return;
1619 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1621 kvm_flush_remote_tlbs(kvm);
1624 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1625 struct kvm_memory_slot *slot)
1627 kvm_arch_flush_shadow_all();
1630 long kvm_arch_dev_ioctl(struct file *filp,
1631 unsigned int ioctl, unsigned long arg)
1633 return -EINVAL;
1636 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1638 kvm_vcpu_uninit(vcpu);
1641 static int vti_cpu_has_kvm_support(void)
1643 long avail = 1, status = 1, control = 1;
1644 long ret;
1646 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1647 if (ret)
1648 goto out;
1650 if (!(avail & PAL_PROC_VM_BIT))
1651 goto out;
1653 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1655 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1656 if (ret)
1657 goto out;
1658 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1660 if (!(vp_env_info & VP_OPCODE)) {
1661 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1662 "vm_env_info:0x%lx\n", vp_env_info);
1665 return 1;
1666 out:
1667 return 0;
1672 * On SN2, the ITC isn't stable, so copy in fast path code to use the
1673 * SN2 RTC, replacing the ITC based default verion.
1675 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1676 struct module *module)
1678 unsigned long new_ar, new_ar_sn2;
1679 unsigned long module_base;
1681 if (!ia64_platform_is("sn2"))
1682 return;
1684 module_base = (unsigned long)module->module_core;
1686 new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1687 new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1689 printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1690 "as source\n");
1693 * Copy the SN2 version of mov_ar into place. They are both
1694 * the same size, so 6 bundles is sufficient (6 * 0x10).
1696 memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1699 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1700 struct module *module)
1702 unsigned long module_base;
1703 unsigned long vmm_size;
1705 unsigned long vmm_offset, func_offset, fdesc_offset;
1706 struct fdesc *p_fdesc;
1708 BUG_ON(!module);
1710 if (!kvm_vmm_base) {
1711 printk("kvm: kvm area hasn't been initialized yet!!\n");
1712 return -EFAULT;
1715 /*Calculate new position of relocated vmm module.*/
1716 module_base = (unsigned long)module->module_core;
1717 vmm_size = module->core_size;
1718 if (unlikely(vmm_size > KVM_VMM_SIZE))
1719 return -EFAULT;
1721 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1722 kvm_patch_vmm(vmm_info, module);
1723 kvm_flush_icache(kvm_vmm_base, vmm_size);
1725 /*Recalculate kvm_vmm_info based on new VMM*/
1726 vmm_offset = vmm_info->vmm_ivt - module_base;
1727 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1728 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1729 kvm_vmm_info->vmm_ivt);
1731 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1732 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1733 fdesc_offset);
1734 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1735 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1736 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1737 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1739 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1740 KVM_VMM_BASE+func_offset);
1742 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1743 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1744 fdesc_offset);
1745 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1746 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1747 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1748 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1750 kvm_vmm_gp = p_fdesc->gp;
1752 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1753 kvm_vmm_info->vmm_entry);
1754 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1755 KVM_VMM_BASE + func_offset);
1757 return 0;
1760 int kvm_arch_init(void *opaque)
1762 int r;
1763 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1765 if (!vti_cpu_has_kvm_support()) {
1766 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1767 r = -EOPNOTSUPP;
1768 goto out;
1771 if (kvm_vmm_info) {
1772 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1773 r = -EEXIST;
1774 goto out;
1777 r = -ENOMEM;
1778 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1779 if (!kvm_vmm_info)
1780 goto out;
1782 if (kvm_alloc_vmm_area())
1783 goto out_free0;
1785 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1786 if (r)
1787 goto out_free1;
1789 return 0;
1791 out_free1:
1792 kvm_free_vmm_area();
1793 out_free0:
1794 kfree(kvm_vmm_info);
1795 out:
1796 return r;
1799 void kvm_arch_exit(void)
1801 kvm_free_vmm_area();
1802 kfree(kvm_vmm_info);
1803 kvm_vmm_info = NULL;
1806 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1807 struct kvm_memory_slot *memslot)
1809 int i;
1810 long base;
1811 unsigned long n;
1812 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1813 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1815 n = kvm_dirty_bitmap_bytes(memslot);
1816 base = memslot->base_gfn / BITS_PER_LONG;
1818 spin_lock(&kvm->arch.dirty_log_lock);
1819 for (i = 0; i < n/sizeof(long); ++i) {
1820 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1821 dirty_bitmap[base + i] = 0;
1823 spin_unlock(&kvm->arch.dirty_log_lock);
1826 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1827 struct kvm_dirty_log *log)
1829 int r;
1830 unsigned long n;
1831 struct kvm_memory_slot *memslot;
1832 int is_dirty = 0;
1834 mutex_lock(&kvm->slots_lock);
1836 r = -EINVAL;
1837 if (log->slot >= KVM_MEMORY_SLOTS)
1838 goto out;
1840 memslot = id_to_memslot(kvm->memslots, log->slot);
1841 r = -ENOENT;
1842 if (!memslot->dirty_bitmap)
1843 goto out;
1845 kvm_ia64_sync_dirty_log(kvm, memslot);
1846 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1847 if (r)
1848 goto out;
1850 /* If nothing is dirty, don't bother messing with page tables. */
1851 if (is_dirty) {
1852 kvm_flush_remote_tlbs(kvm);
1853 n = kvm_dirty_bitmap_bytes(memslot);
1854 memset(memslot->dirty_bitmap, 0, n);
1856 r = 0;
1857 out:
1858 mutex_unlock(&kvm->slots_lock);
1859 return r;
1862 int kvm_arch_hardware_setup(void)
1864 return 0;
1867 void kvm_arch_hardware_unsetup(void)
1871 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1873 return __apic_accept_irq(vcpu, irq->vector);
1876 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1878 return apic->vcpu->vcpu_id == dest;
1881 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1883 return 0;
1886 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1888 return vcpu1->arch.xtp - vcpu2->arch.xtp;
1891 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1892 int short_hand, int dest, int dest_mode)
1894 struct kvm_lapic *target = vcpu->arch.apic;
1895 return (dest_mode == 0) ?
1896 kvm_apic_match_physical_addr(target, dest) :
1897 kvm_apic_match_logical_addr(target, dest);
1900 static int find_highest_bits(int *dat)
1902 u32 bits, bitnum;
1903 int i;
1905 /* loop for all 256 bits */
1906 for (i = 7; i >= 0 ; i--) {
1907 bits = dat[i];
1908 if (bits) {
1909 bitnum = fls(bits);
1910 return i * 32 + bitnum - 1;
1914 return -1;
1917 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1919 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1921 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1922 return NMI_VECTOR;
1923 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1924 return ExtINT_VECTOR;
1926 return find_highest_bits((int *)&vpd->irr[0]);
1929 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1931 return vcpu->arch.timer_fired;
1934 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1936 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1937 (kvm_highest_pending_irq(vcpu) != -1);
1940 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1942 return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
1945 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1946 struct kvm_mp_state *mp_state)
1948 mp_state->mp_state = vcpu->arch.mp_state;
1949 return 0;
1952 static int vcpu_reset(struct kvm_vcpu *vcpu)
1954 int r;
1955 long psr;
1956 local_irq_save(psr);
1957 r = kvm_insert_vmm_mapping(vcpu);
1958 local_irq_restore(psr);
1959 if (r)
1960 goto fail;
1962 vcpu->arch.launched = 0;
1963 kvm_arch_vcpu_uninit(vcpu);
1964 r = kvm_arch_vcpu_init(vcpu);
1965 if (r)
1966 goto fail;
1968 kvm_purge_vmm_mapping(vcpu);
1969 r = 0;
1970 fail:
1971 return r;
1974 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1975 struct kvm_mp_state *mp_state)
1977 int r = 0;
1979 vcpu->arch.mp_state = mp_state->mp_state;
1980 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1981 r = vcpu_reset(vcpu);
1982 return r;