Linux 3.0.35
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobc1e6a7263893b086d66026c8d7bcc5f9d3a1e82f
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
51 #include <trace/events/ext4.h>
53 #define MPAGE_DA_EXTENT_TAIL 0x01
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size)
58 trace_ext4_begin_ordered_truncate(inode, new_size);
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
65 if (!EXT4_I(inode)->jinode)
66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode,
69 new_size);
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
81 * Test whether an inode is a fast symlink.
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 (inode->i_sb->s_blocksize >> 9) : 0;
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
95 static unsigned long blocks_for_truncate(struct inode *inode)
97 ext4_lblk_t needed;
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
107 if (needed < 2)
108 needed = 2;
110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */
112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA;
115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
128 static handle_t *start_transaction(struct inode *inode)
130 handle_t *result;
132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 if (!IS_ERR(result))
134 return result;
136 ext4_std_error(inode->i_sb, PTR_ERR(result));
137 return result;
141 * Try to extend this transaction for the purposes of truncation.
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
148 if (!ext4_handle_valid(handle))
149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 return 0;
152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 return 0;
154 return 1;
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 int nblocks)
165 int ret;
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, nblocks);
177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode);
180 return ret;
184 * Called at the last iput() if i_nlink is zero.
186 void ext4_evict_inode(struct inode *inode)
188 handle_t *handle;
189 int err;
191 trace_ext4_evict_inode(inode);
193 ext4_ioend_wait(inode);
195 if (inode->i_nlink) {
196 truncate_inode_pages(&inode->i_data, 0);
197 goto no_delete;
200 if (!is_bad_inode(inode))
201 dquot_initialize(inode);
203 if (ext4_should_order_data(inode))
204 ext4_begin_ordered_truncate(inode, 0);
205 truncate_inode_pages(&inode->i_data, 0);
207 if (is_bad_inode(inode))
208 goto no_delete;
210 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
211 if (IS_ERR(handle)) {
212 ext4_std_error(inode->i_sb, PTR_ERR(handle));
214 * If we're going to skip the normal cleanup, we still need to
215 * make sure that the in-core orphan linked list is properly
216 * cleaned up.
218 ext4_orphan_del(NULL, inode);
219 goto no_delete;
222 if (IS_SYNC(inode))
223 ext4_handle_sync(handle);
224 inode->i_size = 0;
225 err = ext4_mark_inode_dirty(handle, inode);
226 if (err) {
227 ext4_warning(inode->i_sb,
228 "couldn't mark inode dirty (err %d)", err);
229 goto stop_handle;
231 if (inode->i_blocks)
232 ext4_truncate(inode);
235 * ext4_ext_truncate() doesn't reserve any slop when it
236 * restarts journal transactions; therefore there may not be
237 * enough credits left in the handle to remove the inode from
238 * the orphan list and set the dtime field.
240 if (!ext4_handle_has_enough_credits(handle, 3)) {
241 err = ext4_journal_extend(handle, 3);
242 if (err > 0)
243 err = ext4_journal_restart(handle, 3);
244 if (err != 0) {
245 ext4_warning(inode->i_sb,
246 "couldn't extend journal (err %d)", err);
247 stop_handle:
248 ext4_journal_stop(handle);
249 ext4_orphan_del(NULL, inode);
250 goto no_delete;
255 * Kill off the orphan record which ext4_truncate created.
256 * AKPM: I think this can be inside the above `if'.
257 * Note that ext4_orphan_del() has to be able to cope with the
258 * deletion of a non-existent orphan - this is because we don't
259 * know if ext4_truncate() actually created an orphan record.
260 * (Well, we could do this if we need to, but heck - it works)
262 ext4_orphan_del(handle, inode);
263 EXT4_I(inode)->i_dtime = get_seconds();
266 * One subtle ordering requirement: if anything has gone wrong
267 * (transaction abort, IO errors, whatever), then we can still
268 * do these next steps (the fs will already have been marked as
269 * having errors), but we can't free the inode if the mark_dirty
270 * fails.
272 if (ext4_mark_inode_dirty(handle, inode))
273 /* If that failed, just do the required in-core inode clear. */
274 ext4_clear_inode(inode);
275 else
276 ext4_free_inode(handle, inode);
277 ext4_journal_stop(handle);
278 return;
279 no_delete:
280 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
283 typedef struct {
284 __le32 *p;
285 __le32 key;
286 struct buffer_head *bh;
287 } Indirect;
289 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
291 p->key = *(p->p = v);
292 p->bh = bh;
296 * ext4_block_to_path - parse the block number into array of offsets
297 * @inode: inode in question (we are only interested in its superblock)
298 * @i_block: block number to be parsed
299 * @offsets: array to store the offsets in
300 * @boundary: set this non-zero if the referred-to block is likely to be
301 * followed (on disk) by an indirect block.
303 * To store the locations of file's data ext4 uses a data structure common
304 * for UNIX filesystems - tree of pointers anchored in the inode, with
305 * data blocks at leaves and indirect blocks in intermediate nodes.
306 * This function translates the block number into path in that tree -
307 * return value is the path length and @offsets[n] is the offset of
308 * pointer to (n+1)th node in the nth one. If @block is out of range
309 * (negative or too large) warning is printed and zero returned.
311 * Note: function doesn't find node addresses, so no IO is needed. All
312 * we need to know is the capacity of indirect blocks (taken from the
313 * inode->i_sb).
317 * Portability note: the last comparison (check that we fit into triple
318 * indirect block) is spelled differently, because otherwise on an
319 * architecture with 32-bit longs and 8Kb pages we might get into trouble
320 * if our filesystem had 8Kb blocks. We might use long long, but that would
321 * kill us on x86. Oh, well, at least the sign propagation does not matter -
322 * i_block would have to be negative in the very beginning, so we would not
323 * get there at all.
326 static int ext4_block_to_path(struct inode *inode,
327 ext4_lblk_t i_block,
328 ext4_lblk_t offsets[4], int *boundary)
330 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
331 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
332 const long direct_blocks = EXT4_NDIR_BLOCKS,
333 indirect_blocks = ptrs,
334 double_blocks = (1 << (ptrs_bits * 2));
335 int n = 0;
336 int final = 0;
338 if (i_block < direct_blocks) {
339 offsets[n++] = i_block;
340 final = direct_blocks;
341 } else if ((i_block -= direct_blocks) < indirect_blocks) {
342 offsets[n++] = EXT4_IND_BLOCK;
343 offsets[n++] = i_block;
344 final = ptrs;
345 } else if ((i_block -= indirect_blocks) < double_blocks) {
346 offsets[n++] = EXT4_DIND_BLOCK;
347 offsets[n++] = i_block >> ptrs_bits;
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
351 offsets[n++] = EXT4_TIND_BLOCK;
352 offsets[n++] = i_block >> (ptrs_bits * 2);
353 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
354 offsets[n++] = i_block & (ptrs - 1);
355 final = ptrs;
356 } else {
357 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
358 i_block + direct_blocks +
359 indirect_blocks + double_blocks, inode->i_ino);
361 if (boundary)
362 *boundary = final - 1 - (i_block & (ptrs - 1));
363 return n;
366 static int __ext4_check_blockref(const char *function, unsigned int line,
367 struct inode *inode,
368 __le32 *p, unsigned int max)
370 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
371 __le32 *bref = p;
372 unsigned int blk;
374 while (bref < p+max) {
375 blk = le32_to_cpu(*bref++);
376 if (blk &&
377 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
378 blk, 1))) {
379 es->s_last_error_block = cpu_to_le64(blk);
380 ext4_error_inode(inode, function, line, blk,
381 "invalid block");
382 return -EIO;
385 return 0;
389 #define ext4_check_indirect_blockref(inode, bh) \
390 __ext4_check_blockref(__func__, __LINE__, inode, \
391 (__le32 *)(bh)->b_data, \
392 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
394 #define ext4_check_inode_blockref(inode) \
395 __ext4_check_blockref(__func__, __LINE__, inode, \
396 EXT4_I(inode)->i_data, \
397 EXT4_NDIR_BLOCKS)
400 * ext4_get_branch - read the chain of indirect blocks leading to data
401 * @inode: inode in question
402 * @depth: depth of the chain (1 - direct pointer, etc.)
403 * @offsets: offsets of pointers in inode/indirect blocks
404 * @chain: place to store the result
405 * @err: here we store the error value
407 * Function fills the array of triples <key, p, bh> and returns %NULL
408 * if everything went OK or the pointer to the last filled triple
409 * (incomplete one) otherwise. Upon the return chain[i].key contains
410 * the number of (i+1)-th block in the chain (as it is stored in memory,
411 * i.e. little-endian 32-bit), chain[i].p contains the address of that
412 * number (it points into struct inode for i==0 and into the bh->b_data
413 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
414 * block for i>0 and NULL for i==0. In other words, it holds the block
415 * numbers of the chain, addresses they were taken from (and where we can
416 * verify that chain did not change) and buffer_heads hosting these
417 * numbers.
419 * Function stops when it stumbles upon zero pointer (absent block)
420 * (pointer to last triple returned, *@err == 0)
421 * or when it gets an IO error reading an indirect block
422 * (ditto, *@err == -EIO)
423 * or when it reads all @depth-1 indirect blocks successfully and finds
424 * the whole chain, all way to the data (returns %NULL, *err == 0).
426 * Need to be called with
427 * down_read(&EXT4_I(inode)->i_data_sem)
429 static Indirect *ext4_get_branch(struct inode *inode, int depth,
430 ext4_lblk_t *offsets,
431 Indirect chain[4], int *err)
433 struct super_block *sb = inode->i_sb;
434 Indirect *p = chain;
435 struct buffer_head *bh;
437 *err = 0;
438 /* i_data is not going away, no lock needed */
439 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
440 if (!p->key)
441 goto no_block;
442 while (--depth) {
443 bh = sb_getblk(sb, le32_to_cpu(p->key));
444 if (unlikely(!bh))
445 goto failure;
447 if (!bh_uptodate_or_lock(bh)) {
448 if (bh_submit_read(bh) < 0) {
449 put_bh(bh);
450 goto failure;
452 /* validate block references */
453 if (ext4_check_indirect_blockref(inode, bh)) {
454 put_bh(bh);
455 goto failure;
459 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
460 /* Reader: end */
461 if (!p->key)
462 goto no_block;
464 return NULL;
466 failure:
467 *err = -EIO;
468 no_block:
469 return p;
473 * ext4_find_near - find a place for allocation with sufficient locality
474 * @inode: owner
475 * @ind: descriptor of indirect block.
477 * This function returns the preferred place for block allocation.
478 * It is used when heuristic for sequential allocation fails.
479 * Rules are:
480 * + if there is a block to the left of our position - allocate near it.
481 * + if pointer will live in indirect block - allocate near that block.
482 * + if pointer will live in inode - allocate in the same
483 * cylinder group.
485 * In the latter case we colour the starting block by the callers PID to
486 * prevent it from clashing with concurrent allocations for a different inode
487 * in the same block group. The PID is used here so that functionally related
488 * files will be close-by on-disk.
490 * Caller must make sure that @ind is valid and will stay that way.
492 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
494 struct ext4_inode_info *ei = EXT4_I(inode);
495 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
496 __le32 *p;
497 ext4_fsblk_t bg_start;
498 ext4_fsblk_t last_block;
499 ext4_grpblk_t colour;
500 ext4_group_t block_group;
501 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
503 /* Try to find previous block */
504 for (p = ind->p - 1; p >= start; p--) {
505 if (*p)
506 return le32_to_cpu(*p);
509 /* No such thing, so let's try location of indirect block */
510 if (ind->bh)
511 return ind->bh->b_blocknr;
514 * It is going to be referred to from the inode itself? OK, just put it
515 * into the same cylinder group then.
517 block_group = ei->i_block_group;
518 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
519 block_group &= ~(flex_size-1);
520 if (S_ISREG(inode->i_mode))
521 block_group++;
523 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
524 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
527 * If we are doing delayed allocation, we don't need take
528 * colour into account.
530 if (test_opt(inode->i_sb, DELALLOC))
531 return bg_start;
533 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
534 colour = (current->pid % 16) *
535 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
536 else
537 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
538 return bg_start + colour;
542 * ext4_find_goal - find a preferred place for allocation.
543 * @inode: owner
544 * @block: block we want
545 * @partial: pointer to the last triple within a chain
547 * Normally this function find the preferred place for block allocation,
548 * returns it.
549 * Because this is only used for non-extent files, we limit the block nr
550 * to 32 bits.
552 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
553 Indirect *partial)
555 ext4_fsblk_t goal;
558 * XXX need to get goal block from mballoc's data structures
561 goal = ext4_find_near(inode, partial);
562 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
563 return goal;
567 * ext4_blks_to_allocate - Look up the block map and count the number
568 * of direct blocks need to be allocated for the given branch.
570 * @branch: chain of indirect blocks
571 * @k: number of blocks need for indirect blocks
572 * @blks: number of data blocks to be mapped.
573 * @blocks_to_boundary: the offset in the indirect block
575 * return the total number of blocks to be allocate, including the
576 * direct and indirect blocks.
578 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
579 int blocks_to_boundary)
581 unsigned int count = 0;
584 * Simple case, [t,d]Indirect block(s) has not allocated yet
585 * then it's clear blocks on that path have not allocated
587 if (k > 0) {
588 /* right now we don't handle cross boundary allocation */
589 if (blks < blocks_to_boundary + 1)
590 count += blks;
591 else
592 count += blocks_to_boundary + 1;
593 return count;
596 count++;
597 while (count < blks && count <= blocks_to_boundary &&
598 le32_to_cpu(*(branch[0].p + count)) == 0) {
599 count++;
601 return count;
605 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
606 * @handle: handle for this transaction
607 * @inode: inode which needs allocated blocks
608 * @iblock: the logical block to start allocated at
609 * @goal: preferred physical block of allocation
610 * @indirect_blks: the number of blocks need to allocate for indirect
611 * blocks
612 * @blks: number of desired blocks
613 * @new_blocks: on return it will store the new block numbers for
614 * the indirect blocks(if needed) and the first direct block,
615 * @err: on return it will store the error code
617 * This function will return the number of blocks allocated as
618 * requested by the passed-in parameters.
620 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
621 ext4_lblk_t iblock, ext4_fsblk_t goal,
622 int indirect_blks, int blks,
623 ext4_fsblk_t new_blocks[4], int *err)
625 struct ext4_allocation_request ar;
626 int target, i;
627 unsigned long count = 0, blk_allocated = 0;
628 int index = 0;
629 ext4_fsblk_t current_block = 0;
630 int ret = 0;
633 * Here we try to allocate the requested multiple blocks at once,
634 * on a best-effort basis.
635 * To build a branch, we should allocate blocks for
636 * the indirect blocks(if not allocated yet), and at least
637 * the first direct block of this branch. That's the
638 * minimum number of blocks need to allocate(required)
640 /* first we try to allocate the indirect blocks */
641 target = indirect_blks;
642 while (target > 0) {
643 count = target;
644 /* allocating blocks for indirect blocks and direct blocks */
645 current_block = ext4_new_meta_blocks(handle, inode, goal,
646 0, &count, err);
647 if (*err)
648 goto failed_out;
650 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
651 EXT4_ERROR_INODE(inode,
652 "current_block %llu + count %lu > %d!",
653 current_block, count,
654 EXT4_MAX_BLOCK_FILE_PHYS);
655 *err = -EIO;
656 goto failed_out;
659 target -= count;
660 /* allocate blocks for indirect blocks */
661 while (index < indirect_blks && count) {
662 new_blocks[index++] = current_block++;
663 count--;
665 if (count > 0) {
667 * save the new block number
668 * for the first direct block
670 new_blocks[index] = current_block;
671 printk(KERN_INFO "%s returned more blocks than "
672 "requested\n", __func__);
673 WARN_ON(1);
674 break;
678 target = blks - count ;
679 blk_allocated = count;
680 if (!target)
681 goto allocated;
682 /* Now allocate data blocks */
683 memset(&ar, 0, sizeof(ar));
684 ar.inode = inode;
685 ar.goal = goal;
686 ar.len = target;
687 ar.logical = iblock;
688 if (S_ISREG(inode->i_mode))
689 /* enable in-core preallocation only for regular files */
690 ar.flags = EXT4_MB_HINT_DATA;
692 current_block = ext4_mb_new_blocks(handle, &ar, err);
693 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
694 EXT4_ERROR_INODE(inode,
695 "current_block %llu + ar.len %d > %d!",
696 current_block, ar.len,
697 EXT4_MAX_BLOCK_FILE_PHYS);
698 *err = -EIO;
699 goto failed_out;
702 if (*err && (target == blks)) {
704 * if the allocation failed and we didn't allocate
705 * any blocks before
707 goto failed_out;
709 if (!*err) {
710 if (target == blks) {
712 * save the new block number
713 * for the first direct block
715 new_blocks[index] = current_block;
717 blk_allocated += ar.len;
719 allocated:
720 /* total number of blocks allocated for direct blocks */
721 ret = blk_allocated;
722 *err = 0;
723 return ret;
724 failed_out:
725 for (i = 0; i < index; i++)
726 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
727 return ret;
731 * ext4_alloc_branch - allocate and set up a chain of blocks.
732 * @handle: handle for this transaction
733 * @inode: owner
734 * @indirect_blks: number of allocated indirect blocks
735 * @blks: number of allocated direct blocks
736 * @goal: preferred place for allocation
737 * @offsets: offsets (in the blocks) to store the pointers to next.
738 * @branch: place to store the chain in.
740 * This function allocates blocks, zeroes out all but the last one,
741 * links them into chain and (if we are synchronous) writes them to disk.
742 * In other words, it prepares a branch that can be spliced onto the
743 * inode. It stores the information about that chain in the branch[], in
744 * the same format as ext4_get_branch() would do. We are calling it after
745 * we had read the existing part of chain and partial points to the last
746 * triple of that (one with zero ->key). Upon the exit we have the same
747 * picture as after the successful ext4_get_block(), except that in one
748 * place chain is disconnected - *branch->p is still zero (we did not
749 * set the last link), but branch->key contains the number that should
750 * be placed into *branch->p to fill that gap.
752 * If allocation fails we free all blocks we've allocated (and forget
753 * their buffer_heads) and return the error value the from failed
754 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
755 * as described above and return 0.
757 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
758 ext4_lblk_t iblock, int indirect_blks,
759 int *blks, ext4_fsblk_t goal,
760 ext4_lblk_t *offsets, Indirect *branch)
762 int blocksize = inode->i_sb->s_blocksize;
763 int i, n = 0;
764 int err = 0;
765 struct buffer_head *bh;
766 int num;
767 ext4_fsblk_t new_blocks[4];
768 ext4_fsblk_t current_block;
770 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
771 *blks, new_blocks, &err);
772 if (err)
773 return err;
775 branch[0].key = cpu_to_le32(new_blocks[0]);
777 * metadata blocks and data blocks are allocated.
779 for (n = 1; n <= indirect_blks; n++) {
781 * Get buffer_head for parent block, zero it out
782 * and set the pointer to new one, then send
783 * parent to disk.
785 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
786 if (unlikely(!bh)) {
787 err = -EIO;
788 goto failed;
791 branch[n].bh = bh;
792 lock_buffer(bh);
793 BUFFER_TRACE(bh, "call get_create_access");
794 err = ext4_journal_get_create_access(handle, bh);
795 if (err) {
796 /* Don't brelse(bh) here; it's done in
797 * ext4_journal_forget() below */
798 unlock_buffer(bh);
799 goto failed;
802 memset(bh->b_data, 0, blocksize);
803 branch[n].p = (__le32 *) bh->b_data + offsets[n];
804 branch[n].key = cpu_to_le32(new_blocks[n]);
805 *branch[n].p = branch[n].key;
806 if (n == indirect_blks) {
807 current_block = new_blocks[n];
809 * End of chain, update the last new metablock of
810 * the chain to point to the new allocated
811 * data blocks numbers
813 for (i = 1; i < num; i++)
814 *(branch[n].p + i) = cpu_to_le32(++current_block);
816 BUFFER_TRACE(bh, "marking uptodate");
817 set_buffer_uptodate(bh);
818 unlock_buffer(bh);
820 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
821 err = ext4_handle_dirty_metadata(handle, inode, bh);
822 if (err)
823 goto failed;
825 *blks = num;
826 return err;
827 failed:
828 /* Allocation failed, free what we already allocated */
829 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
830 for (i = 1; i <= n ; i++) {
832 * branch[i].bh is newly allocated, so there is no
833 * need to revoke the block, which is why we don't
834 * need to set EXT4_FREE_BLOCKS_METADATA.
836 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
837 EXT4_FREE_BLOCKS_FORGET);
839 for (i = n+1; i < indirect_blks; i++)
840 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
842 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
844 return err;
848 * ext4_splice_branch - splice the allocated branch onto inode.
849 * @handle: handle for this transaction
850 * @inode: owner
851 * @block: (logical) number of block we are adding
852 * @chain: chain of indirect blocks (with a missing link - see
853 * ext4_alloc_branch)
854 * @where: location of missing link
855 * @num: number of indirect blocks we are adding
856 * @blks: number of direct blocks we are adding
858 * This function fills the missing link and does all housekeeping needed in
859 * inode (->i_blocks, etc.). In case of success we end up with the full
860 * chain to new block and return 0.
862 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
863 ext4_lblk_t block, Indirect *where, int num,
864 int blks)
866 int i;
867 int err = 0;
868 ext4_fsblk_t current_block;
871 * If we're splicing into a [td]indirect block (as opposed to the
872 * inode) then we need to get write access to the [td]indirect block
873 * before the splice.
875 if (where->bh) {
876 BUFFER_TRACE(where->bh, "get_write_access");
877 err = ext4_journal_get_write_access(handle, where->bh);
878 if (err)
879 goto err_out;
881 /* That's it */
883 *where->p = where->key;
886 * Update the host buffer_head or inode to point to more just allocated
887 * direct blocks blocks
889 if (num == 0 && blks > 1) {
890 current_block = le32_to_cpu(where->key) + 1;
891 for (i = 1; i < blks; i++)
892 *(where->p + i) = cpu_to_le32(current_block++);
895 /* We are done with atomic stuff, now do the rest of housekeeping */
896 /* had we spliced it onto indirect block? */
897 if (where->bh) {
899 * If we spliced it onto an indirect block, we haven't
900 * altered the inode. Note however that if it is being spliced
901 * onto an indirect block at the very end of the file (the
902 * file is growing) then we *will* alter the inode to reflect
903 * the new i_size. But that is not done here - it is done in
904 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
906 jbd_debug(5, "splicing indirect only\n");
907 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
908 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
909 if (err)
910 goto err_out;
911 } else {
913 * OK, we spliced it into the inode itself on a direct block.
915 ext4_mark_inode_dirty(handle, inode);
916 jbd_debug(5, "splicing direct\n");
918 return err;
920 err_out:
921 for (i = 1; i <= num; i++) {
923 * branch[i].bh is newly allocated, so there is no
924 * need to revoke the block, which is why we don't
925 * need to set EXT4_FREE_BLOCKS_METADATA.
927 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
928 EXT4_FREE_BLOCKS_FORGET);
930 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
931 blks, 0);
933 return err;
937 * The ext4_ind_map_blocks() function handles non-extents inodes
938 * (i.e., using the traditional indirect/double-indirect i_blocks
939 * scheme) for ext4_map_blocks().
941 * Allocation strategy is simple: if we have to allocate something, we will
942 * have to go the whole way to leaf. So let's do it before attaching anything
943 * to tree, set linkage between the newborn blocks, write them if sync is
944 * required, recheck the path, free and repeat if check fails, otherwise
945 * set the last missing link (that will protect us from any truncate-generated
946 * removals - all blocks on the path are immune now) and possibly force the
947 * write on the parent block.
948 * That has a nice additional property: no special recovery from the failed
949 * allocations is needed - we simply release blocks and do not touch anything
950 * reachable from inode.
952 * `handle' can be NULL if create == 0.
954 * return > 0, # of blocks mapped or allocated.
955 * return = 0, if plain lookup failed.
956 * return < 0, error case.
958 * The ext4_ind_get_blocks() function should be called with
959 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
960 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
961 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
962 * blocks.
964 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
965 struct ext4_map_blocks *map,
966 int flags)
968 int err = -EIO;
969 ext4_lblk_t offsets[4];
970 Indirect chain[4];
971 Indirect *partial;
972 ext4_fsblk_t goal;
973 int indirect_blks;
974 int blocks_to_boundary = 0;
975 int depth;
976 int count = 0;
977 ext4_fsblk_t first_block = 0;
979 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
980 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
981 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
982 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
983 &blocks_to_boundary);
985 if (depth == 0)
986 goto out;
988 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
990 /* Simplest case - block found, no allocation needed */
991 if (!partial) {
992 first_block = le32_to_cpu(chain[depth - 1].key);
993 count++;
994 /*map more blocks*/
995 while (count < map->m_len && count <= blocks_to_boundary) {
996 ext4_fsblk_t blk;
998 blk = le32_to_cpu(*(chain[depth-1].p + count));
1000 if (blk == first_block + count)
1001 count++;
1002 else
1003 break;
1005 goto got_it;
1008 /* Next simple case - plain lookup or failed read of indirect block */
1009 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1010 goto cleanup;
1013 * Okay, we need to do block allocation.
1015 goal = ext4_find_goal(inode, map->m_lblk, partial);
1017 /* the number of blocks need to allocate for [d,t]indirect blocks */
1018 indirect_blks = (chain + depth) - partial - 1;
1021 * Next look up the indirect map to count the totoal number of
1022 * direct blocks to allocate for this branch.
1024 count = ext4_blks_to_allocate(partial, indirect_blks,
1025 map->m_len, blocks_to_boundary);
1027 * Block out ext4_truncate while we alter the tree
1029 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1030 &count, goal,
1031 offsets + (partial - chain), partial);
1034 * The ext4_splice_branch call will free and forget any buffers
1035 * on the new chain if there is a failure, but that risks using
1036 * up transaction credits, especially for bitmaps where the
1037 * credits cannot be returned. Can we handle this somehow? We
1038 * may need to return -EAGAIN upwards in the worst case. --sct
1040 if (!err)
1041 err = ext4_splice_branch(handle, inode, map->m_lblk,
1042 partial, indirect_blks, count);
1043 if (err)
1044 goto cleanup;
1046 map->m_flags |= EXT4_MAP_NEW;
1048 ext4_update_inode_fsync_trans(handle, inode, 1);
1049 got_it:
1050 map->m_flags |= EXT4_MAP_MAPPED;
1051 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1052 map->m_len = count;
1053 if (count > blocks_to_boundary)
1054 map->m_flags |= EXT4_MAP_BOUNDARY;
1055 err = count;
1056 /* Clean up and exit */
1057 partial = chain + depth - 1; /* the whole chain */
1058 cleanup:
1059 while (partial > chain) {
1060 BUFFER_TRACE(partial->bh, "call brelse");
1061 brelse(partial->bh);
1062 partial--;
1064 out:
1065 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1066 map->m_pblk, map->m_len, err);
1067 return err;
1070 #ifdef CONFIG_QUOTA
1071 qsize_t *ext4_get_reserved_space(struct inode *inode)
1073 return &EXT4_I(inode)->i_reserved_quota;
1075 #endif
1078 * Calculate the number of metadata blocks need to reserve
1079 * to allocate a new block at @lblocks for non extent file based file
1081 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1082 sector_t lblock)
1084 struct ext4_inode_info *ei = EXT4_I(inode);
1085 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1086 int blk_bits;
1088 if (lblock < EXT4_NDIR_BLOCKS)
1089 return 0;
1091 lblock -= EXT4_NDIR_BLOCKS;
1093 if (ei->i_da_metadata_calc_len &&
1094 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1095 ei->i_da_metadata_calc_len++;
1096 return 0;
1098 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1099 ei->i_da_metadata_calc_len = 1;
1100 blk_bits = order_base_2(lblock);
1101 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1105 * Calculate the number of metadata blocks need to reserve
1106 * to allocate a block located at @lblock
1108 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1110 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1111 return ext4_ext_calc_metadata_amount(inode, lblock);
1113 return ext4_indirect_calc_metadata_amount(inode, lblock);
1117 * Called with i_data_sem down, which is important since we can call
1118 * ext4_discard_preallocations() from here.
1120 void ext4_da_update_reserve_space(struct inode *inode,
1121 int used, int quota_claim)
1123 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1124 struct ext4_inode_info *ei = EXT4_I(inode);
1126 spin_lock(&ei->i_block_reservation_lock);
1127 trace_ext4_da_update_reserve_space(inode, used);
1128 if (unlikely(used > ei->i_reserved_data_blocks)) {
1129 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1130 "with only %d reserved data blocks\n",
1131 __func__, inode->i_ino, used,
1132 ei->i_reserved_data_blocks);
1133 WARN_ON(1);
1134 used = ei->i_reserved_data_blocks;
1137 /* Update per-inode reservations */
1138 ei->i_reserved_data_blocks -= used;
1139 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1140 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1141 used + ei->i_allocated_meta_blocks);
1142 ei->i_allocated_meta_blocks = 0;
1144 if (ei->i_reserved_data_blocks == 0) {
1146 * We can release all of the reserved metadata blocks
1147 * only when we have written all of the delayed
1148 * allocation blocks.
1150 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1151 ei->i_reserved_meta_blocks);
1152 ei->i_reserved_meta_blocks = 0;
1153 ei->i_da_metadata_calc_len = 0;
1155 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1157 /* Update quota subsystem for data blocks */
1158 if (quota_claim)
1159 dquot_claim_block(inode, used);
1160 else {
1162 * We did fallocate with an offset that is already delayed
1163 * allocated. So on delayed allocated writeback we should
1164 * not re-claim the quota for fallocated blocks.
1166 dquot_release_reservation_block(inode, used);
1170 * If we have done all the pending block allocations and if
1171 * there aren't any writers on the inode, we can discard the
1172 * inode's preallocations.
1174 if ((ei->i_reserved_data_blocks == 0) &&
1175 (atomic_read(&inode->i_writecount) == 0))
1176 ext4_discard_preallocations(inode);
1179 static int __check_block_validity(struct inode *inode, const char *func,
1180 unsigned int line,
1181 struct ext4_map_blocks *map)
1183 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1184 map->m_len)) {
1185 ext4_error_inode(inode, func, line, map->m_pblk,
1186 "lblock %lu mapped to illegal pblock "
1187 "(length %d)", (unsigned long) map->m_lblk,
1188 map->m_len);
1189 return -EIO;
1191 return 0;
1194 #define check_block_validity(inode, map) \
1195 __check_block_validity((inode), __func__, __LINE__, (map))
1198 * Return the number of contiguous dirty pages in a given inode
1199 * starting at page frame idx.
1201 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1202 unsigned int max_pages)
1204 struct address_space *mapping = inode->i_mapping;
1205 pgoff_t index;
1206 struct pagevec pvec;
1207 pgoff_t num = 0;
1208 int i, nr_pages, done = 0;
1210 if (max_pages == 0)
1211 return 0;
1212 pagevec_init(&pvec, 0);
1213 while (!done) {
1214 index = idx;
1215 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1216 PAGECACHE_TAG_DIRTY,
1217 (pgoff_t)PAGEVEC_SIZE);
1218 if (nr_pages == 0)
1219 break;
1220 for (i = 0; i < nr_pages; i++) {
1221 struct page *page = pvec.pages[i];
1222 struct buffer_head *bh, *head;
1224 lock_page(page);
1225 if (unlikely(page->mapping != mapping) ||
1226 !PageDirty(page) ||
1227 PageWriteback(page) ||
1228 page->index != idx) {
1229 done = 1;
1230 unlock_page(page);
1231 break;
1233 if (page_has_buffers(page)) {
1234 bh = head = page_buffers(page);
1235 do {
1236 if (!buffer_delay(bh) &&
1237 !buffer_unwritten(bh))
1238 done = 1;
1239 bh = bh->b_this_page;
1240 } while (!done && (bh != head));
1242 unlock_page(page);
1243 if (done)
1244 break;
1245 idx++;
1246 num++;
1247 if (num >= max_pages) {
1248 done = 1;
1249 break;
1252 pagevec_release(&pvec);
1254 return num;
1258 * The ext4_map_blocks() function tries to look up the requested blocks,
1259 * and returns if the blocks are already mapped.
1261 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1262 * and store the allocated blocks in the result buffer head and mark it
1263 * mapped.
1265 * If file type is extents based, it will call ext4_ext_map_blocks(),
1266 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1267 * based files
1269 * On success, it returns the number of blocks being mapped or allocate.
1270 * if create==0 and the blocks are pre-allocated and uninitialized block,
1271 * the result buffer head is unmapped. If the create ==1, it will make sure
1272 * the buffer head is mapped.
1274 * It returns 0 if plain look up failed (blocks have not been allocated), in
1275 * that casem, buffer head is unmapped
1277 * It returns the error in case of allocation failure.
1279 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1280 struct ext4_map_blocks *map, int flags)
1282 int retval;
1284 map->m_flags = 0;
1285 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1286 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1287 (unsigned long) map->m_lblk);
1289 * Try to see if we can get the block without requesting a new
1290 * file system block.
1292 down_read((&EXT4_I(inode)->i_data_sem));
1293 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1294 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1295 } else {
1296 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1298 up_read((&EXT4_I(inode)->i_data_sem));
1300 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1301 int ret = check_block_validity(inode, map);
1302 if (ret != 0)
1303 return ret;
1306 /* If it is only a block(s) look up */
1307 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1308 return retval;
1311 * Returns if the blocks have already allocated
1313 * Note that if blocks have been preallocated
1314 * ext4_ext_get_block() returns th create = 0
1315 * with buffer head unmapped.
1317 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1318 return retval;
1321 * When we call get_blocks without the create flag, the
1322 * BH_Unwritten flag could have gotten set if the blocks
1323 * requested were part of a uninitialized extent. We need to
1324 * clear this flag now that we are committed to convert all or
1325 * part of the uninitialized extent to be an initialized
1326 * extent. This is because we need to avoid the combination
1327 * of BH_Unwritten and BH_Mapped flags being simultaneously
1328 * set on the buffer_head.
1330 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1333 * New blocks allocate and/or writing to uninitialized extent
1334 * will possibly result in updating i_data, so we take
1335 * the write lock of i_data_sem, and call get_blocks()
1336 * with create == 1 flag.
1338 down_write((&EXT4_I(inode)->i_data_sem));
1341 * if the caller is from delayed allocation writeout path
1342 * we have already reserved fs blocks for allocation
1343 * let the underlying get_block() function know to
1344 * avoid double accounting
1346 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1347 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1349 * We need to check for EXT4 here because migrate
1350 * could have changed the inode type in between
1352 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1353 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1354 } else {
1355 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1357 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1359 * We allocated new blocks which will result in
1360 * i_data's format changing. Force the migrate
1361 * to fail by clearing migrate flags
1363 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1367 * Update reserved blocks/metadata blocks after successful
1368 * block allocation which had been deferred till now. We don't
1369 * support fallocate for non extent files. So we can update
1370 * reserve space here.
1372 if ((retval > 0) &&
1373 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1374 ext4_da_update_reserve_space(inode, retval, 1);
1376 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1377 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1379 up_write((&EXT4_I(inode)->i_data_sem));
1380 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1381 int ret = check_block_validity(inode, map);
1382 if (ret != 0)
1383 return ret;
1385 return retval;
1388 /* Maximum number of blocks we map for direct IO at once. */
1389 #define DIO_MAX_BLOCKS 4096
1391 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1392 struct buffer_head *bh, int flags)
1394 handle_t *handle = ext4_journal_current_handle();
1395 struct ext4_map_blocks map;
1396 int ret = 0, started = 0;
1397 int dio_credits;
1399 map.m_lblk = iblock;
1400 map.m_len = bh->b_size >> inode->i_blkbits;
1402 if (flags && !handle) {
1403 /* Direct IO write... */
1404 if (map.m_len > DIO_MAX_BLOCKS)
1405 map.m_len = DIO_MAX_BLOCKS;
1406 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1407 handle = ext4_journal_start(inode, dio_credits);
1408 if (IS_ERR(handle)) {
1409 ret = PTR_ERR(handle);
1410 return ret;
1412 started = 1;
1415 ret = ext4_map_blocks(handle, inode, &map, flags);
1416 if (ret > 0) {
1417 map_bh(bh, inode->i_sb, map.m_pblk);
1418 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1419 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1420 ret = 0;
1422 if (started)
1423 ext4_journal_stop(handle);
1424 return ret;
1427 int ext4_get_block(struct inode *inode, sector_t iblock,
1428 struct buffer_head *bh, int create)
1430 return _ext4_get_block(inode, iblock, bh,
1431 create ? EXT4_GET_BLOCKS_CREATE : 0);
1435 * `handle' can be NULL if create is zero
1437 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1438 ext4_lblk_t block, int create, int *errp)
1440 struct ext4_map_blocks map;
1441 struct buffer_head *bh;
1442 int fatal = 0, err;
1444 J_ASSERT(handle != NULL || create == 0);
1446 map.m_lblk = block;
1447 map.m_len = 1;
1448 err = ext4_map_blocks(handle, inode, &map,
1449 create ? EXT4_GET_BLOCKS_CREATE : 0);
1451 if (err < 0)
1452 *errp = err;
1453 if (err <= 0)
1454 return NULL;
1455 *errp = 0;
1457 bh = sb_getblk(inode->i_sb, map.m_pblk);
1458 if (!bh) {
1459 *errp = -EIO;
1460 return NULL;
1462 if (map.m_flags & EXT4_MAP_NEW) {
1463 J_ASSERT(create != 0);
1464 J_ASSERT(handle != NULL);
1467 * Now that we do not always journal data, we should
1468 * keep in mind whether this should always journal the
1469 * new buffer as metadata. For now, regular file
1470 * writes use ext4_get_block instead, so it's not a
1471 * problem.
1473 lock_buffer(bh);
1474 BUFFER_TRACE(bh, "call get_create_access");
1475 fatal = ext4_journal_get_create_access(handle, bh);
1476 if (!fatal && !buffer_uptodate(bh)) {
1477 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1478 set_buffer_uptodate(bh);
1480 unlock_buffer(bh);
1481 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1482 err = ext4_handle_dirty_metadata(handle, inode, bh);
1483 if (!fatal)
1484 fatal = err;
1485 } else {
1486 BUFFER_TRACE(bh, "not a new buffer");
1488 if (fatal) {
1489 *errp = fatal;
1490 brelse(bh);
1491 bh = NULL;
1493 return bh;
1496 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1497 ext4_lblk_t block, int create, int *err)
1499 struct buffer_head *bh;
1501 bh = ext4_getblk(handle, inode, block, create, err);
1502 if (!bh)
1503 return bh;
1504 if (buffer_uptodate(bh))
1505 return bh;
1506 ll_rw_block(READ_META, 1, &bh);
1507 wait_on_buffer(bh);
1508 if (buffer_uptodate(bh))
1509 return bh;
1510 put_bh(bh);
1511 *err = -EIO;
1512 return NULL;
1515 static int walk_page_buffers(handle_t *handle,
1516 struct buffer_head *head,
1517 unsigned from,
1518 unsigned to,
1519 int *partial,
1520 int (*fn)(handle_t *handle,
1521 struct buffer_head *bh))
1523 struct buffer_head *bh;
1524 unsigned block_start, block_end;
1525 unsigned blocksize = head->b_size;
1526 int err, ret = 0;
1527 struct buffer_head *next;
1529 for (bh = head, block_start = 0;
1530 ret == 0 && (bh != head || !block_start);
1531 block_start = block_end, bh = next) {
1532 next = bh->b_this_page;
1533 block_end = block_start + blocksize;
1534 if (block_end <= from || block_start >= to) {
1535 if (partial && !buffer_uptodate(bh))
1536 *partial = 1;
1537 continue;
1539 err = (*fn)(handle, bh);
1540 if (!ret)
1541 ret = err;
1543 return ret;
1547 * To preserve ordering, it is essential that the hole instantiation and
1548 * the data write be encapsulated in a single transaction. We cannot
1549 * close off a transaction and start a new one between the ext4_get_block()
1550 * and the commit_write(). So doing the jbd2_journal_start at the start of
1551 * prepare_write() is the right place.
1553 * Also, this function can nest inside ext4_writepage() ->
1554 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1555 * has generated enough buffer credits to do the whole page. So we won't
1556 * block on the journal in that case, which is good, because the caller may
1557 * be PF_MEMALLOC.
1559 * By accident, ext4 can be reentered when a transaction is open via
1560 * quota file writes. If we were to commit the transaction while thus
1561 * reentered, there can be a deadlock - we would be holding a quota
1562 * lock, and the commit would never complete if another thread had a
1563 * transaction open and was blocking on the quota lock - a ranking
1564 * violation.
1566 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1567 * will _not_ run commit under these circumstances because handle->h_ref
1568 * is elevated. We'll still have enough credits for the tiny quotafile
1569 * write.
1571 static int do_journal_get_write_access(handle_t *handle,
1572 struct buffer_head *bh)
1574 int dirty = buffer_dirty(bh);
1575 int ret;
1577 if (!buffer_mapped(bh) || buffer_freed(bh))
1578 return 0;
1580 * __block_write_begin() could have dirtied some buffers. Clean
1581 * the dirty bit as jbd2_journal_get_write_access() could complain
1582 * otherwise about fs integrity issues. Setting of the dirty bit
1583 * by __block_write_begin() isn't a real problem here as we clear
1584 * the bit before releasing a page lock and thus writeback cannot
1585 * ever write the buffer.
1587 if (dirty)
1588 clear_buffer_dirty(bh);
1589 ret = ext4_journal_get_write_access(handle, bh);
1590 if (!ret && dirty)
1591 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1592 return ret;
1596 * Truncate blocks that were not used by write. We have to truncate the
1597 * pagecache as well so that corresponding buffers get properly unmapped.
1599 static void ext4_truncate_failed_write(struct inode *inode)
1601 truncate_inode_pages(inode->i_mapping, inode->i_size);
1602 ext4_truncate(inode);
1605 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1606 struct buffer_head *bh_result, int create);
1607 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1608 loff_t pos, unsigned len, unsigned flags,
1609 struct page **pagep, void **fsdata)
1611 struct inode *inode = mapping->host;
1612 int ret, needed_blocks;
1613 handle_t *handle;
1614 int retries = 0;
1615 struct page *page;
1616 pgoff_t index;
1617 unsigned from, to;
1619 trace_ext4_write_begin(inode, pos, len, flags);
1621 * Reserve one block more for addition to orphan list in case
1622 * we allocate blocks but write fails for some reason
1624 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1625 index = pos >> PAGE_CACHE_SHIFT;
1626 from = pos & (PAGE_CACHE_SIZE - 1);
1627 to = from + len;
1629 retry:
1630 handle = ext4_journal_start(inode, needed_blocks);
1631 if (IS_ERR(handle)) {
1632 ret = PTR_ERR(handle);
1633 goto out;
1636 /* We cannot recurse into the filesystem as the transaction is already
1637 * started */
1638 flags |= AOP_FLAG_NOFS;
1640 page = grab_cache_page_write_begin(mapping, index, flags);
1641 if (!page) {
1642 ext4_journal_stop(handle);
1643 ret = -ENOMEM;
1644 goto out;
1646 *pagep = page;
1648 if (ext4_should_dioread_nolock(inode))
1649 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1650 else
1651 ret = __block_write_begin(page, pos, len, ext4_get_block);
1653 if (!ret && ext4_should_journal_data(inode)) {
1654 ret = walk_page_buffers(handle, page_buffers(page),
1655 from, to, NULL, do_journal_get_write_access);
1658 if (ret) {
1659 unlock_page(page);
1660 page_cache_release(page);
1662 * __block_write_begin may have instantiated a few blocks
1663 * outside i_size. Trim these off again. Don't need
1664 * i_size_read because we hold i_mutex.
1666 * Add inode to orphan list in case we crash before
1667 * truncate finishes
1669 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1670 ext4_orphan_add(handle, inode);
1672 ext4_journal_stop(handle);
1673 if (pos + len > inode->i_size) {
1674 ext4_truncate_failed_write(inode);
1676 * If truncate failed early the inode might
1677 * still be on the orphan list; we need to
1678 * make sure the inode is removed from the
1679 * orphan list in that case.
1681 if (inode->i_nlink)
1682 ext4_orphan_del(NULL, inode);
1686 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1687 goto retry;
1688 out:
1689 return ret;
1692 /* For write_end() in data=journal mode */
1693 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1695 if (!buffer_mapped(bh) || buffer_freed(bh))
1696 return 0;
1697 set_buffer_uptodate(bh);
1698 return ext4_handle_dirty_metadata(handle, NULL, bh);
1701 static int ext4_generic_write_end(struct file *file,
1702 struct address_space *mapping,
1703 loff_t pos, unsigned len, unsigned copied,
1704 struct page *page, void *fsdata)
1706 int i_size_changed = 0;
1707 struct inode *inode = mapping->host;
1708 handle_t *handle = ext4_journal_current_handle();
1710 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1713 * No need to use i_size_read() here, the i_size
1714 * cannot change under us because we hold i_mutex.
1716 * But it's important to update i_size while still holding page lock:
1717 * page writeout could otherwise come in and zero beyond i_size.
1719 if (pos + copied > inode->i_size) {
1720 i_size_write(inode, pos + copied);
1721 i_size_changed = 1;
1724 if (pos + copied > EXT4_I(inode)->i_disksize) {
1725 /* We need to mark inode dirty even if
1726 * new_i_size is less that inode->i_size
1727 * bu greater than i_disksize.(hint delalloc)
1729 ext4_update_i_disksize(inode, (pos + copied));
1730 i_size_changed = 1;
1732 unlock_page(page);
1733 page_cache_release(page);
1736 * Don't mark the inode dirty under page lock. First, it unnecessarily
1737 * makes the holding time of page lock longer. Second, it forces lock
1738 * ordering of page lock and transaction start for journaling
1739 * filesystems.
1741 if (i_size_changed)
1742 ext4_mark_inode_dirty(handle, inode);
1744 return copied;
1748 * We need to pick up the new inode size which generic_commit_write gave us
1749 * `file' can be NULL - eg, when called from page_symlink().
1751 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1752 * buffers are managed internally.
1754 static int ext4_ordered_write_end(struct file *file,
1755 struct address_space *mapping,
1756 loff_t pos, unsigned len, unsigned copied,
1757 struct page *page, void *fsdata)
1759 handle_t *handle = ext4_journal_current_handle();
1760 struct inode *inode = mapping->host;
1761 int ret = 0, ret2;
1763 trace_ext4_ordered_write_end(inode, pos, len, copied);
1764 ret = ext4_jbd2_file_inode(handle, inode);
1766 if (ret == 0) {
1767 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1768 page, fsdata);
1769 copied = ret2;
1770 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1771 /* if we have allocated more blocks and copied
1772 * less. We will have blocks allocated outside
1773 * inode->i_size. So truncate them
1775 ext4_orphan_add(handle, inode);
1776 if (ret2 < 0)
1777 ret = ret2;
1779 ret2 = ext4_journal_stop(handle);
1780 if (!ret)
1781 ret = ret2;
1783 if (pos + len > inode->i_size) {
1784 ext4_truncate_failed_write(inode);
1786 * If truncate failed early the inode might still be
1787 * on the orphan list; we need to make sure the inode
1788 * is removed from the orphan list in that case.
1790 if (inode->i_nlink)
1791 ext4_orphan_del(NULL, inode);
1795 return ret ? ret : copied;
1798 static int ext4_writeback_write_end(struct file *file,
1799 struct address_space *mapping,
1800 loff_t pos, unsigned len, unsigned copied,
1801 struct page *page, void *fsdata)
1803 handle_t *handle = ext4_journal_current_handle();
1804 struct inode *inode = mapping->host;
1805 int ret = 0, ret2;
1807 trace_ext4_writeback_write_end(inode, pos, len, copied);
1808 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1809 page, fsdata);
1810 copied = ret2;
1811 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1812 /* if we have allocated more blocks and copied
1813 * less. We will have blocks allocated outside
1814 * inode->i_size. So truncate them
1816 ext4_orphan_add(handle, inode);
1818 if (ret2 < 0)
1819 ret = ret2;
1821 ret2 = ext4_journal_stop(handle);
1822 if (!ret)
1823 ret = ret2;
1825 if (pos + len > inode->i_size) {
1826 ext4_truncate_failed_write(inode);
1828 * If truncate failed early the inode might still be
1829 * on the orphan list; we need to make sure the inode
1830 * is removed from the orphan list in that case.
1832 if (inode->i_nlink)
1833 ext4_orphan_del(NULL, inode);
1836 return ret ? ret : copied;
1839 static int ext4_journalled_write_end(struct file *file,
1840 struct address_space *mapping,
1841 loff_t pos, unsigned len, unsigned copied,
1842 struct page *page, void *fsdata)
1844 handle_t *handle = ext4_journal_current_handle();
1845 struct inode *inode = mapping->host;
1846 int ret = 0, ret2;
1847 int partial = 0;
1848 unsigned from, to;
1849 loff_t new_i_size;
1851 trace_ext4_journalled_write_end(inode, pos, len, copied);
1852 from = pos & (PAGE_CACHE_SIZE - 1);
1853 to = from + len;
1855 BUG_ON(!ext4_handle_valid(handle));
1857 if (copied < len) {
1858 if (!PageUptodate(page))
1859 copied = 0;
1860 page_zero_new_buffers(page, from+copied, to);
1863 ret = walk_page_buffers(handle, page_buffers(page), from,
1864 to, &partial, write_end_fn);
1865 if (!partial)
1866 SetPageUptodate(page);
1867 new_i_size = pos + copied;
1868 if (new_i_size > inode->i_size)
1869 i_size_write(inode, pos+copied);
1870 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1871 if (new_i_size > EXT4_I(inode)->i_disksize) {
1872 ext4_update_i_disksize(inode, new_i_size);
1873 ret2 = ext4_mark_inode_dirty(handle, inode);
1874 if (!ret)
1875 ret = ret2;
1878 unlock_page(page);
1879 page_cache_release(page);
1880 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1881 /* if we have allocated more blocks and copied
1882 * less. We will have blocks allocated outside
1883 * inode->i_size. So truncate them
1885 ext4_orphan_add(handle, inode);
1887 ret2 = ext4_journal_stop(handle);
1888 if (!ret)
1889 ret = ret2;
1890 if (pos + len > inode->i_size) {
1891 ext4_truncate_failed_write(inode);
1893 * If truncate failed early the inode might still be
1894 * on the orphan list; we need to make sure the inode
1895 * is removed from the orphan list in that case.
1897 if (inode->i_nlink)
1898 ext4_orphan_del(NULL, inode);
1901 return ret ? ret : copied;
1905 * Reserve a single block located at lblock
1907 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1909 int retries = 0;
1910 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1911 struct ext4_inode_info *ei = EXT4_I(inode);
1912 unsigned long md_needed;
1913 int ret;
1916 * recalculate the amount of metadata blocks to reserve
1917 * in order to allocate nrblocks
1918 * worse case is one extent per block
1920 repeat:
1921 spin_lock(&ei->i_block_reservation_lock);
1922 md_needed = ext4_calc_metadata_amount(inode, lblock);
1923 trace_ext4_da_reserve_space(inode, md_needed);
1924 spin_unlock(&ei->i_block_reservation_lock);
1927 * We will charge metadata quota at writeout time; this saves
1928 * us from metadata over-estimation, though we may go over by
1929 * a small amount in the end. Here we just reserve for data.
1931 ret = dquot_reserve_block(inode, 1);
1932 if (ret)
1933 return ret;
1935 * We do still charge estimated metadata to the sb though;
1936 * we cannot afford to run out of free blocks.
1938 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1939 dquot_release_reservation_block(inode, 1);
1940 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1941 yield();
1942 goto repeat;
1944 return -ENOSPC;
1946 spin_lock(&ei->i_block_reservation_lock);
1947 ei->i_reserved_data_blocks++;
1948 ei->i_reserved_meta_blocks += md_needed;
1949 spin_unlock(&ei->i_block_reservation_lock);
1951 return 0; /* success */
1954 static void ext4_da_release_space(struct inode *inode, int to_free)
1956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1957 struct ext4_inode_info *ei = EXT4_I(inode);
1959 if (!to_free)
1960 return; /* Nothing to release, exit */
1962 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1964 trace_ext4_da_release_space(inode, to_free);
1965 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1967 * if there aren't enough reserved blocks, then the
1968 * counter is messed up somewhere. Since this
1969 * function is called from invalidate page, it's
1970 * harmless to return without any action.
1972 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1973 "ino %lu, to_free %d with only %d reserved "
1974 "data blocks\n", inode->i_ino, to_free,
1975 ei->i_reserved_data_blocks);
1976 WARN_ON(1);
1977 to_free = ei->i_reserved_data_blocks;
1979 ei->i_reserved_data_blocks -= to_free;
1981 if (ei->i_reserved_data_blocks == 0) {
1983 * We can release all of the reserved metadata blocks
1984 * only when we have written all of the delayed
1985 * allocation blocks.
1987 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1988 ei->i_reserved_meta_blocks);
1989 ei->i_reserved_meta_blocks = 0;
1990 ei->i_da_metadata_calc_len = 0;
1993 /* update fs dirty data blocks counter */
1994 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1996 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1998 dquot_release_reservation_block(inode, to_free);
2001 static void ext4_da_page_release_reservation(struct page *page,
2002 unsigned long offset)
2004 int to_release = 0;
2005 struct buffer_head *head, *bh;
2006 unsigned int curr_off = 0;
2008 head = page_buffers(page);
2009 bh = head;
2010 do {
2011 unsigned int next_off = curr_off + bh->b_size;
2013 if ((offset <= curr_off) && (buffer_delay(bh))) {
2014 to_release++;
2015 clear_buffer_delay(bh);
2017 curr_off = next_off;
2018 } while ((bh = bh->b_this_page) != head);
2019 ext4_da_release_space(page->mapping->host, to_release);
2023 * Delayed allocation stuff
2027 * mpage_da_submit_io - walks through extent of pages and try to write
2028 * them with writepage() call back
2030 * @mpd->inode: inode
2031 * @mpd->first_page: first page of the extent
2032 * @mpd->next_page: page after the last page of the extent
2034 * By the time mpage_da_submit_io() is called we expect all blocks
2035 * to be allocated. this may be wrong if allocation failed.
2037 * As pages are already locked by write_cache_pages(), we can't use it
2039 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2040 struct ext4_map_blocks *map)
2042 struct pagevec pvec;
2043 unsigned long index, end;
2044 int ret = 0, err, nr_pages, i;
2045 struct inode *inode = mpd->inode;
2046 struct address_space *mapping = inode->i_mapping;
2047 loff_t size = i_size_read(inode);
2048 unsigned int len, block_start;
2049 struct buffer_head *bh, *page_bufs = NULL;
2050 int journal_data = ext4_should_journal_data(inode);
2051 sector_t pblock = 0, cur_logical = 0;
2052 struct ext4_io_submit io_submit;
2054 BUG_ON(mpd->next_page <= mpd->first_page);
2055 memset(&io_submit, 0, sizeof(io_submit));
2057 * We need to start from the first_page to the next_page - 1
2058 * to make sure we also write the mapped dirty buffer_heads.
2059 * If we look at mpd->b_blocknr we would only be looking
2060 * at the currently mapped buffer_heads.
2062 index = mpd->first_page;
2063 end = mpd->next_page - 1;
2065 pagevec_init(&pvec, 0);
2066 while (index <= end) {
2067 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2068 if (nr_pages == 0)
2069 break;
2070 for (i = 0; i < nr_pages; i++) {
2071 int commit_write = 0, skip_page = 0;
2072 struct page *page = pvec.pages[i];
2074 index = page->index;
2075 if (index > end)
2076 break;
2078 if (index == size >> PAGE_CACHE_SHIFT)
2079 len = size & ~PAGE_CACHE_MASK;
2080 else
2081 len = PAGE_CACHE_SIZE;
2082 if (map) {
2083 cur_logical = index << (PAGE_CACHE_SHIFT -
2084 inode->i_blkbits);
2085 pblock = map->m_pblk + (cur_logical -
2086 map->m_lblk);
2088 index++;
2090 BUG_ON(!PageLocked(page));
2091 BUG_ON(PageWriteback(page));
2094 * If the page does not have buffers (for
2095 * whatever reason), try to create them using
2096 * __block_write_begin. If this fails,
2097 * skip the page and move on.
2099 if (!page_has_buffers(page)) {
2100 if (__block_write_begin(page, 0, len,
2101 noalloc_get_block_write)) {
2102 skip_page:
2103 unlock_page(page);
2104 continue;
2106 commit_write = 1;
2109 bh = page_bufs = page_buffers(page);
2110 block_start = 0;
2111 do {
2112 if (!bh)
2113 goto skip_page;
2114 if (map && (cur_logical >= map->m_lblk) &&
2115 (cur_logical <= (map->m_lblk +
2116 (map->m_len - 1)))) {
2117 if (buffer_delay(bh)) {
2118 clear_buffer_delay(bh);
2119 bh->b_blocknr = pblock;
2121 if (buffer_unwritten(bh) ||
2122 buffer_mapped(bh))
2123 BUG_ON(bh->b_blocknr != pblock);
2124 if (map->m_flags & EXT4_MAP_UNINIT)
2125 set_buffer_uninit(bh);
2126 clear_buffer_unwritten(bh);
2130 * skip page if block allocation undone and
2131 * block is dirty
2133 if (ext4_bh_delay_or_unwritten(NULL, bh))
2134 skip_page = 1;
2135 bh = bh->b_this_page;
2136 block_start += bh->b_size;
2137 cur_logical++;
2138 pblock++;
2139 } while (bh != page_bufs);
2141 if (skip_page)
2142 goto skip_page;
2144 if (commit_write)
2145 /* mark the buffer_heads as dirty & uptodate */
2146 block_commit_write(page, 0, len);
2148 clear_page_dirty_for_io(page);
2150 * Delalloc doesn't support data journalling,
2151 * but eventually maybe we'll lift this
2152 * restriction.
2154 if (unlikely(journal_data && PageChecked(page)))
2155 err = __ext4_journalled_writepage(page, len);
2156 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2157 err = ext4_bio_write_page(&io_submit, page,
2158 len, mpd->wbc);
2159 else if (buffer_uninit(page_bufs)) {
2160 ext4_set_bh_endio(page_bufs, inode);
2161 err = block_write_full_page_endio(page,
2162 noalloc_get_block_write,
2163 mpd->wbc, ext4_end_io_buffer_write);
2164 } else
2165 err = block_write_full_page(page,
2166 noalloc_get_block_write, mpd->wbc);
2168 if (!err)
2169 mpd->pages_written++;
2171 * In error case, we have to continue because
2172 * remaining pages are still locked
2174 if (ret == 0)
2175 ret = err;
2177 pagevec_release(&pvec);
2179 ext4_io_submit(&io_submit);
2180 return ret;
2183 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2185 int nr_pages, i;
2186 pgoff_t index, end;
2187 struct pagevec pvec;
2188 struct inode *inode = mpd->inode;
2189 struct address_space *mapping = inode->i_mapping;
2191 index = mpd->first_page;
2192 end = mpd->next_page - 1;
2193 while (index <= end) {
2194 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2195 if (nr_pages == 0)
2196 break;
2197 for (i = 0; i < nr_pages; i++) {
2198 struct page *page = pvec.pages[i];
2199 if (page->index > end)
2200 break;
2201 BUG_ON(!PageLocked(page));
2202 BUG_ON(PageWriteback(page));
2203 block_invalidatepage(page, 0);
2204 ClearPageUptodate(page);
2205 unlock_page(page);
2207 index = pvec.pages[nr_pages - 1]->index + 1;
2208 pagevec_release(&pvec);
2210 return;
2213 static void ext4_print_free_blocks(struct inode *inode)
2215 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2216 printk(KERN_CRIT "Total free blocks count %lld\n",
2217 ext4_count_free_blocks(inode->i_sb));
2218 printk(KERN_CRIT "Free/Dirty block details\n");
2219 printk(KERN_CRIT "free_blocks=%lld\n",
2220 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2221 printk(KERN_CRIT "dirty_blocks=%lld\n",
2222 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2223 printk(KERN_CRIT "Block reservation details\n");
2224 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2225 EXT4_I(inode)->i_reserved_data_blocks);
2226 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2227 EXT4_I(inode)->i_reserved_meta_blocks);
2228 return;
2232 * mpage_da_map_and_submit - go through given space, map them
2233 * if necessary, and then submit them for I/O
2235 * @mpd - bh describing space
2237 * The function skips space we know is already mapped to disk blocks.
2240 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2242 int err, blks, get_blocks_flags;
2243 struct ext4_map_blocks map, *mapp = NULL;
2244 sector_t next = mpd->b_blocknr;
2245 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2246 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2247 handle_t *handle = NULL;
2250 * If the blocks are mapped already, or we couldn't accumulate
2251 * any blocks, then proceed immediately to the submission stage.
2253 if ((mpd->b_size == 0) ||
2254 ((mpd->b_state & (1 << BH_Mapped)) &&
2255 !(mpd->b_state & (1 << BH_Delay)) &&
2256 !(mpd->b_state & (1 << BH_Unwritten))))
2257 goto submit_io;
2259 handle = ext4_journal_current_handle();
2260 BUG_ON(!handle);
2263 * Call ext4_map_blocks() to allocate any delayed allocation
2264 * blocks, or to convert an uninitialized extent to be
2265 * initialized (in the case where we have written into
2266 * one or more preallocated blocks).
2268 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2269 * indicate that we are on the delayed allocation path. This
2270 * affects functions in many different parts of the allocation
2271 * call path. This flag exists primarily because we don't
2272 * want to change *many* call functions, so ext4_map_blocks()
2273 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2274 * inode's allocation semaphore is taken.
2276 * If the blocks in questions were delalloc blocks, set
2277 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2278 * variables are updated after the blocks have been allocated.
2280 map.m_lblk = next;
2281 map.m_len = max_blocks;
2282 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2283 if (ext4_should_dioread_nolock(mpd->inode))
2284 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2285 if (mpd->b_state & (1 << BH_Delay))
2286 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2288 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2289 if (blks < 0) {
2290 struct super_block *sb = mpd->inode->i_sb;
2292 err = blks;
2294 * If get block returns EAGAIN or ENOSPC and there
2295 * appears to be free blocks we will just let
2296 * mpage_da_submit_io() unlock all of the pages.
2298 if (err == -EAGAIN)
2299 goto submit_io;
2301 if (err == -ENOSPC &&
2302 ext4_count_free_blocks(sb)) {
2303 mpd->retval = err;
2304 goto submit_io;
2308 * get block failure will cause us to loop in
2309 * writepages, because a_ops->writepage won't be able
2310 * to make progress. The page will be redirtied by
2311 * writepage and writepages will again try to write
2312 * the same.
2314 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2315 ext4_msg(sb, KERN_CRIT,
2316 "delayed block allocation failed for inode %lu "
2317 "at logical offset %llu with max blocks %zd "
2318 "with error %d", mpd->inode->i_ino,
2319 (unsigned long long) next,
2320 mpd->b_size >> mpd->inode->i_blkbits, err);
2321 ext4_msg(sb, KERN_CRIT,
2322 "This should not happen!! Data will be lost\n");
2323 if (err == -ENOSPC)
2324 ext4_print_free_blocks(mpd->inode);
2326 /* invalidate all the pages */
2327 ext4_da_block_invalidatepages(mpd);
2329 /* Mark this page range as having been completed */
2330 mpd->io_done = 1;
2331 return;
2333 BUG_ON(blks == 0);
2335 mapp = &map;
2336 if (map.m_flags & EXT4_MAP_NEW) {
2337 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2338 int i;
2340 for (i = 0; i < map.m_len; i++)
2341 unmap_underlying_metadata(bdev, map.m_pblk + i);
2344 if (ext4_should_order_data(mpd->inode)) {
2345 err = ext4_jbd2_file_inode(handle, mpd->inode);
2346 if (err)
2347 /* This only happens if the journal is aborted */
2348 return;
2352 * Update on-disk size along with block allocation.
2354 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2355 if (disksize > i_size_read(mpd->inode))
2356 disksize = i_size_read(mpd->inode);
2357 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2358 ext4_update_i_disksize(mpd->inode, disksize);
2359 err = ext4_mark_inode_dirty(handle, mpd->inode);
2360 if (err)
2361 ext4_error(mpd->inode->i_sb,
2362 "Failed to mark inode %lu dirty",
2363 mpd->inode->i_ino);
2366 submit_io:
2367 mpage_da_submit_io(mpd, mapp);
2368 mpd->io_done = 1;
2371 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2372 (1 << BH_Delay) | (1 << BH_Unwritten))
2375 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2377 * @mpd->lbh - extent of blocks
2378 * @logical - logical number of the block in the file
2379 * @bh - bh of the block (used to access block's state)
2381 * the function is used to collect contig. blocks in same state
2383 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2384 sector_t logical, size_t b_size,
2385 unsigned long b_state)
2387 sector_t next;
2388 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2391 * XXX Don't go larger than mballoc is willing to allocate
2392 * This is a stopgap solution. We eventually need to fold
2393 * mpage_da_submit_io() into this function and then call
2394 * ext4_map_blocks() multiple times in a loop
2396 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2397 goto flush_it;
2399 /* check if thereserved journal credits might overflow */
2400 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2401 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2403 * With non-extent format we are limited by the journal
2404 * credit available. Total credit needed to insert
2405 * nrblocks contiguous blocks is dependent on the
2406 * nrblocks. So limit nrblocks.
2408 goto flush_it;
2409 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2410 EXT4_MAX_TRANS_DATA) {
2412 * Adding the new buffer_head would make it cross the
2413 * allowed limit for which we have journal credit
2414 * reserved. So limit the new bh->b_size
2416 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2417 mpd->inode->i_blkbits;
2418 /* we will do mpage_da_submit_io in the next loop */
2422 * First block in the extent
2424 if (mpd->b_size == 0) {
2425 mpd->b_blocknr = logical;
2426 mpd->b_size = b_size;
2427 mpd->b_state = b_state & BH_FLAGS;
2428 return;
2431 next = mpd->b_blocknr + nrblocks;
2433 * Can we merge the block to our big extent?
2435 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2436 mpd->b_size += b_size;
2437 return;
2440 flush_it:
2442 * We couldn't merge the block to our extent, so we
2443 * need to flush current extent and start new one
2445 mpage_da_map_and_submit(mpd);
2446 return;
2449 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2451 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2455 * This is a special get_blocks_t callback which is used by
2456 * ext4_da_write_begin(). It will either return mapped block or
2457 * reserve space for a single block.
2459 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2460 * We also have b_blocknr = -1 and b_bdev initialized properly
2462 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2463 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2464 * initialized properly.
2466 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2467 struct buffer_head *bh, int create)
2469 struct ext4_map_blocks map;
2470 int ret = 0;
2471 sector_t invalid_block = ~((sector_t) 0xffff);
2473 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2474 invalid_block = ~0;
2476 BUG_ON(create == 0);
2477 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2479 map.m_lblk = iblock;
2480 map.m_len = 1;
2483 * first, we need to know whether the block is allocated already
2484 * preallocated blocks are unmapped but should treated
2485 * the same as allocated blocks.
2487 ret = ext4_map_blocks(NULL, inode, &map, 0);
2488 if (ret < 0)
2489 return ret;
2490 if (ret == 0) {
2491 if (buffer_delay(bh))
2492 return 0; /* Not sure this could or should happen */
2494 * XXX: __block_write_begin() unmaps passed block, is it OK?
2496 ret = ext4_da_reserve_space(inode, iblock);
2497 if (ret)
2498 /* not enough space to reserve */
2499 return ret;
2501 map_bh(bh, inode->i_sb, invalid_block);
2502 set_buffer_new(bh);
2503 set_buffer_delay(bh);
2504 return 0;
2507 map_bh(bh, inode->i_sb, map.m_pblk);
2508 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2510 if (buffer_unwritten(bh)) {
2511 /* A delayed write to unwritten bh should be marked
2512 * new and mapped. Mapped ensures that we don't do
2513 * get_block multiple times when we write to the same
2514 * offset and new ensures that we do proper zero out
2515 * for partial write.
2517 set_buffer_new(bh);
2518 set_buffer_mapped(bh);
2520 return 0;
2524 * This function is used as a standard get_block_t calback function
2525 * when there is no desire to allocate any blocks. It is used as a
2526 * callback function for block_write_begin() and block_write_full_page().
2527 * These functions should only try to map a single block at a time.
2529 * Since this function doesn't do block allocations even if the caller
2530 * requests it by passing in create=1, it is critically important that
2531 * any caller checks to make sure that any buffer heads are returned
2532 * by this function are either all already mapped or marked for
2533 * delayed allocation before calling block_write_full_page(). Otherwise,
2534 * b_blocknr could be left unitialized, and the page write functions will
2535 * be taken by surprise.
2537 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2538 struct buffer_head *bh_result, int create)
2540 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2541 return _ext4_get_block(inode, iblock, bh_result, 0);
2544 static int bget_one(handle_t *handle, struct buffer_head *bh)
2546 get_bh(bh);
2547 return 0;
2550 static int bput_one(handle_t *handle, struct buffer_head *bh)
2552 put_bh(bh);
2553 return 0;
2556 static int __ext4_journalled_writepage(struct page *page,
2557 unsigned int len)
2559 struct address_space *mapping = page->mapping;
2560 struct inode *inode = mapping->host;
2561 struct buffer_head *page_bufs;
2562 handle_t *handle = NULL;
2563 int ret = 0;
2564 int err;
2566 ClearPageChecked(page);
2567 page_bufs = page_buffers(page);
2568 BUG_ON(!page_bufs);
2569 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2570 /* As soon as we unlock the page, it can go away, but we have
2571 * references to buffers so we are safe */
2572 unlock_page(page);
2574 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2575 if (IS_ERR(handle)) {
2576 ret = PTR_ERR(handle);
2577 goto out;
2580 BUG_ON(!ext4_handle_valid(handle));
2582 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2583 do_journal_get_write_access);
2585 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2586 write_end_fn);
2587 if (ret == 0)
2588 ret = err;
2589 err = ext4_journal_stop(handle);
2590 if (!ret)
2591 ret = err;
2593 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2594 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2595 out:
2596 return ret;
2599 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2600 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2603 * Note that we don't need to start a transaction unless we're journaling data
2604 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2605 * need to file the inode to the transaction's list in ordered mode because if
2606 * we are writing back data added by write(), the inode is already there and if
2607 * we are writing back data modified via mmap(), no one guarantees in which
2608 * transaction the data will hit the disk. In case we are journaling data, we
2609 * cannot start transaction directly because transaction start ranks above page
2610 * lock so we have to do some magic.
2612 * This function can get called via...
2613 * - ext4_da_writepages after taking page lock (have journal handle)
2614 * - journal_submit_inode_data_buffers (no journal handle)
2615 * - shrink_page_list via pdflush (no journal handle)
2616 * - grab_page_cache when doing write_begin (have journal handle)
2618 * We don't do any block allocation in this function. If we have page with
2619 * multiple blocks we need to write those buffer_heads that are mapped. This
2620 * is important for mmaped based write. So if we do with blocksize 1K
2621 * truncate(f, 1024);
2622 * a = mmap(f, 0, 4096);
2623 * a[0] = 'a';
2624 * truncate(f, 4096);
2625 * we have in the page first buffer_head mapped via page_mkwrite call back
2626 * but other bufer_heads would be unmapped but dirty(dirty done via the
2627 * do_wp_page). So writepage should write the first block. If we modify
2628 * the mmap area beyond 1024 we will again get a page_fault and the
2629 * page_mkwrite callback will do the block allocation and mark the
2630 * buffer_heads mapped.
2632 * We redirty the page if we have any buffer_heads that is either delay or
2633 * unwritten in the page.
2635 * We can get recursively called as show below.
2637 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2638 * ext4_writepage()
2640 * But since we don't do any block allocation we should not deadlock.
2641 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2643 static int ext4_writepage(struct page *page,
2644 struct writeback_control *wbc)
2646 int ret = 0, commit_write = 0;
2647 loff_t size;
2648 unsigned int len;
2649 struct buffer_head *page_bufs = NULL;
2650 struct inode *inode = page->mapping->host;
2652 trace_ext4_writepage(page);
2653 size = i_size_read(inode);
2654 if (page->index == size >> PAGE_CACHE_SHIFT)
2655 len = size & ~PAGE_CACHE_MASK;
2656 else
2657 len = PAGE_CACHE_SIZE;
2660 * If the page does not have buffers (for whatever reason),
2661 * try to create them using __block_write_begin. If this
2662 * fails, redirty the page and move on.
2664 if (!page_has_buffers(page)) {
2665 if (__block_write_begin(page, 0, len,
2666 noalloc_get_block_write)) {
2667 redirty_page:
2668 redirty_page_for_writepage(wbc, page);
2669 unlock_page(page);
2670 return 0;
2672 commit_write = 1;
2674 page_bufs = page_buffers(page);
2675 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2676 ext4_bh_delay_or_unwritten)) {
2678 * We don't want to do block allocation, so redirty
2679 * the page and return. We may reach here when we do
2680 * a journal commit via journal_submit_inode_data_buffers.
2681 * We can also reach here via shrink_page_list
2683 goto redirty_page;
2685 if (commit_write)
2686 /* now mark the buffer_heads as dirty and uptodate */
2687 block_commit_write(page, 0, len);
2689 if (PageChecked(page) && ext4_should_journal_data(inode))
2691 * It's mmapped pagecache. Add buffers and journal it. There
2692 * doesn't seem much point in redirtying the page here.
2694 return __ext4_journalled_writepage(page, len);
2696 if (buffer_uninit(page_bufs)) {
2697 ext4_set_bh_endio(page_bufs, inode);
2698 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2699 wbc, ext4_end_io_buffer_write);
2700 } else
2701 ret = block_write_full_page(page, noalloc_get_block_write,
2702 wbc);
2704 return ret;
2708 * This is called via ext4_da_writepages() to
2709 * calculate the total number of credits to reserve to fit
2710 * a single extent allocation into a single transaction,
2711 * ext4_da_writpeages() will loop calling this before
2712 * the block allocation.
2715 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2717 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2720 * With non-extent format the journal credit needed to
2721 * insert nrblocks contiguous block is dependent on
2722 * number of contiguous block. So we will limit
2723 * number of contiguous block to a sane value
2725 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2726 (max_blocks > EXT4_MAX_TRANS_DATA))
2727 max_blocks = EXT4_MAX_TRANS_DATA;
2729 return ext4_chunk_trans_blocks(inode, max_blocks);
2733 * write_cache_pages_da - walk the list of dirty pages of the given
2734 * address space and accumulate pages that need writing, and call
2735 * mpage_da_map_and_submit to map a single contiguous memory region
2736 * and then write them.
2738 static int write_cache_pages_da(struct address_space *mapping,
2739 struct writeback_control *wbc,
2740 struct mpage_da_data *mpd,
2741 pgoff_t *done_index)
2743 struct buffer_head *bh, *head;
2744 struct inode *inode = mapping->host;
2745 struct pagevec pvec;
2746 unsigned int nr_pages;
2747 sector_t logical;
2748 pgoff_t index, end;
2749 long nr_to_write = wbc->nr_to_write;
2750 int i, tag, ret = 0;
2752 memset(mpd, 0, sizeof(struct mpage_da_data));
2753 mpd->wbc = wbc;
2754 mpd->inode = inode;
2755 pagevec_init(&pvec, 0);
2756 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2757 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2759 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2760 tag = PAGECACHE_TAG_TOWRITE;
2761 else
2762 tag = PAGECACHE_TAG_DIRTY;
2764 *done_index = index;
2765 while (index <= end) {
2766 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2767 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2768 if (nr_pages == 0)
2769 return 0;
2771 for (i = 0; i < nr_pages; i++) {
2772 struct page *page = pvec.pages[i];
2775 * At this point, the page may be truncated or
2776 * invalidated (changing page->mapping to NULL), or
2777 * even swizzled back from swapper_space to tmpfs file
2778 * mapping. However, page->index will not change
2779 * because we have a reference on the page.
2781 if (page->index > end)
2782 goto out;
2784 *done_index = page->index + 1;
2787 * If we can't merge this page, and we have
2788 * accumulated an contiguous region, write it
2790 if ((mpd->next_page != page->index) &&
2791 (mpd->next_page != mpd->first_page)) {
2792 mpage_da_map_and_submit(mpd);
2793 goto ret_extent_tail;
2796 lock_page(page);
2799 * If the page is no longer dirty, or its
2800 * mapping no longer corresponds to inode we
2801 * are writing (which means it has been
2802 * truncated or invalidated), or the page is
2803 * already under writeback and we are not
2804 * doing a data integrity writeback, skip the page
2806 if (!PageDirty(page) ||
2807 (PageWriteback(page) &&
2808 (wbc->sync_mode == WB_SYNC_NONE)) ||
2809 unlikely(page->mapping != mapping)) {
2810 unlock_page(page);
2811 continue;
2814 wait_on_page_writeback(page);
2815 BUG_ON(PageWriteback(page));
2817 if (mpd->next_page != page->index)
2818 mpd->first_page = page->index;
2819 mpd->next_page = page->index + 1;
2820 logical = (sector_t) page->index <<
2821 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2823 if (!page_has_buffers(page)) {
2824 mpage_add_bh_to_extent(mpd, logical,
2825 PAGE_CACHE_SIZE,
2826 (1 << BH_Dirty) | (1 << BH_Uptodate));
2827 if (mpd->io_done)
2828 goto ret_extent_tail;
2829 } else {
2831 * Page with regular buffer heads,
2832 * just add all dirty ones
2834 head = page_buffers(page);
2835 bh = head;
2836 do {
2837 BUG_ON(buffer_locked(bh));
2839 * We need to try to allocate
2840 * unmapped blocks in the same page.
2841 * Otherwise we won't make progress
2842 * with the page in ext4_writepage
2844 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2845 mpage_add_bh_to_extent(mpd, logical,
2846 bh->b_size,
2847 bh->b_state);
2848 if (mpd->io_done)
2849 goto ret_extent_tail;
2850 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2852 * mapped dirty buffer. We need
2853 * to update the b_state
2854 * because we look at b_state
2855 * in mpage_da_map_blocks. We
2856 * don't update b_size because
2857 * if we find an unmapped
2858 * buffer_head later we need to
2859 * use the b_state flag of that
2860 * buffer_head.
2862 if (mpd->b_size == 0)
2863 mpd->b_state = bh->b_state & BH_FLAGS;
2865 logical++;
2866 } while ((bh = bh->b_this_page) != head);
2869 if (nr_to_write > 0) {
2870 nr_to_write--;
2871 if (nr_to_write == 0 &&
2872 wbc->sync_mode == WB_SYNC_NONE)
2874 * We stop writing back only if we are
2875 * not doing integrity sync. In case of
2876 * integrity sync we have to keep going
2877 * because someone may be concurrently
2878 * dirtying pages, and we might have
2879 * synced a lot of newly appeared dirty
2880 * pages, but have not synced all of the
2881 * old dirty pages.
2883 goto out;
2886 pagevec_release(&pvec);
2887 cond_resched();
2889 return 0;
2890 ret_extent_tail:
2891 ret = MPAGE_DA_EXTENT_TAIL;
2892 out:
2893 pagevec_release(&pvec);
2894 cond_resched();
2895 return ret;
2899 static int ext4_da_writepages(struct address_space *mapping,
2900 struct writeback_control *wbc)
2902 pgoff_t index;
2903 int range_whole = 0;
2904 handle_t *handle = NULL;
2905 struct mpage_da_data mpd;
2906 struct inode *inode = mapping->host;
2907 int pages_written = 0;
2908 unsigned int max_pages;
2909 int range_cyclic, cycled = 1, io_done = 0;
2910 int needed_blocks, ret = 0;
2911 long desired_nr_to_write, nr_to_writebump = 0;
2912 loff_t range_start = wbc->range_start;
2913 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2914 pgoff_t done_index = 0;
2915 pgoff_t end;
2917 trace_ext4_da_writepages(inode, wbc);
2920 * No pages to write? This is mainly a kludge to avoid starting
2921 * a transaction for special inodes like journal inode on last iput()
2922 * because that could violate lock ordering on umount
2924 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2925 return 0;
2928 * If the filesystem has aborted, it is read-only, so return
2929 * right away instead of dumping stack traces later on that
2930 * will obscure the real source of the problem. We test
2931 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2932 * the latter could be true if the filesystem is mounted
2933 * read-only, and in that case, ext4_da_writepages should
2934 * *never* be called, so if that ever happens, we would want
2935 * the stack trace.
2937 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2938 return -EROFS;
2940 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2941 range_whole = 1;
2943 range_cyclic = wbc->range_cyclic;
2944 if (wbc->range_cyclic) {
2945 index = mapping->writeback_index;
2946 if (index)
2947 cycled = 0;
2948 wbc->range_start = index << PAGE_CACHE_SHIFT;
2949 wbc->range_end = LLONG_MAX;
2950 wbc->range_cyclic = 0;
2951 end = -1;
2952 } else {
2953 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2954 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2958 * This works around two forms of stupidity. The first is in
2959 * the writeback code, which caps the maximum number of pages
2960 * written to be 1024 pages. This is wrong on multiple
2961 * levels; different architectues have a different page size,
2962 * which changes the maximum amount of data which gets
2963 * written. Secondly, 4 megabytes is way too small. XFS
2964 * forces this value to be 16 megabytes by multiplying
2965 * nr_to_write parameter by four, and then relies on its
2966 * allocator to allocate larger extents to make them
2967 * contiguous. Unfortunately this brings us to the second
2968 * stupidity, which is that ext4's mballoc code only allocates
2969 * at most 2048 blocks. So we force contiguous writes up to
2970 * the number of dirty blocks in the inode, or
2971 * sbi->max_writeback_mb_bump whichever is smaller.
2973 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2974 if (!range_cyclic && range_whole) {
2975 if (wbc->nr_to_write == LONG_MAX)
2976 desired_nr_to_write = wbc->nr_to_write;
2977 else
2978 desired_nr_to_write = wbc->nr_to_write * 8;
2979 } else
2980 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2981 max_pages);
2982 if (desired_nr_to_write > max_pages)
2983 desired_nr_to_write = max_pages;
2985 if (wbc->nr_to_write < desired_nr_to_write) {
2986 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2987 wbc->nr_to_write = desired_nr_to_write;
2990 retry:
2991 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2992 tag_pages_for_writeback(mapping, index, end);
2994 while (!ret && wbc->nr_to_write > 0) {
2997 * we insert one extent at a time. So we need
2998 * credit needed for single extent allocation.
2999 * journalled mode is currently not supported
3000 * by delalloc
3002 BUG_ON(ext4_should_journal_data(inode));
3003 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3005 /* start a new transaction*/
3006 handle = ext4_journal_start(inode, needed_blocks);
3007 if (IS_ERR(handle)) {
3008 ret = PTR_ERR(handle);
3009 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3010 "%ld pages, ino %lu; err %d", __func__,
3011 wbc->nr_to_write, inode->i_ino, ret);
3012 goto out_writepages;
3016 * Now call write_cache_pages_da() to find the next
3017 * contiguous region of logical blocks that need
3018 * blocks to be allocated by ext4 and submit them.
3020 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3022 * If we have a contiguous extent of pages and we
3023 * haven't done the I/O yet, map the blocks and submit
3024 * them for I/O.
3026 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3027 mpage_da_map_and_submit(&mpd);
3028 ret = MPAGE_DA_EXTENT_TAIL;
3030 trace_ext4_da_write_pages(inode, &mpd);
3031 wbc->nr_to_write -= mpd.pages_written;
3033 ext4_journal_stop(handle);
3035 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3036 /* commit the transaction which would
3037 * free blocks released in the transaction
3038 * and try again
3040 jbd2_journal_force_commit_nested(sbi->s_journal);
3041 ret = 0;
3042 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3044 * got one extent now try with
3045 * rest of the pages
3047 pages_written += mpd.pages_written;
3048 ret = 0;
3049 io_done = 1;
3050 } else if (wbc->nr_to_write)
3052 * There is no more writeout needed
3053 * or we requested for a noblocking writeout
3054 * and we found the device congested
3056 break;
3058 if (!io_done && !cycled) {
3059 cycled = 1;
3060 index = 0;
3061 wbc->range_start = index << PAGE_CACHE_SHIFT;
3062 wbc->range_end = mapping->writeback_index - 1;
3063 goto retry;
3066 /* Update index */
3067 wbc->range_cyclic = range_cyclic;
3068 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3070 * set the writeback_index so that range_cyclic
3071 * mode will write it back later
3073 mapping->writeback_index = done_index;
3075 out_writepages:
3076 wbc->nr_to_write -= nr_to_writebump;
3077 wbc->range_start = range_start;
3078 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3079 return ret;
3082 #define FALL_BACK_TO_NONDELALLOC 1
3083 static int ext4_nonda_switch(struct super_block *sb)
3085 s64 free_blocks, dirty_blocks;
3086 struct ext4_sb_info *sbi = EXT4_SB(sb);
3089 * switch to non delalloc mode if we are running low
3090 * on free block. The free block accounting via percpu
3091 * counters can get slightly wrong with percpu_counter_batch getting
3092 * accumulated on each CPU without updating global counters
3093 * Delalloc need an accurate free block accounting. So switch
3094 * to non delalloc when we are near to error range.
3096 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3097 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3098 if (2 * free_blocks < 3 * dirty_blocks ||
3099 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3101 * free block count is less than 150% of dirty blocks
3102 * or free blocks is less than watermark
3104 return 1;
3107 * Even if we don't switch but are nearing capacity,
3108 * start pushing delalloc when 1/2 of free blocks are dirty.
3110 if (free_blocks < 2 * dirty_blocks)
3111 writeback_inodes_sb_if_idle(sb);
3113 return 0;
3116 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3117 loff_t pos, unsigned len, unsigned flags,
3118 struct page **pagep, void **fsdata)
3120 int ret, retries = 0;
3121 struct page *page;
3122 pgoff_t index;
3123 struct inode *inode = mapping->host;
3124 handle_t *handle;
3126 index = pos >> PAGE_CACHE_SHIFT;
3128 if (ext4_nonda_switch(inode->i_sb)) {
3129 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3130 return ext4_write_begin(file, mapping, pos,
3131 len, flags, pagep, fsdata);
3133 *fsdata = (void *)0;
3134 trace_ext4_da_write_begin(inode, pos, len, flags);
3135 retry:
3137 * With delayed allocation, we don't log the i_disksize update
3138 * if there is delayed block allocation. But we still need
3139 * to journalling the i_disksize update if writes to the end
3140 * of file which has an already mapped buffer.
3142 handle = ext4_journal_start(inode, 1);
3143 if (IS_ERR(handle)) {
3144 ret = PTR_ERR(handle);
3145 goto out;
3147 /* We cannot recurse into the filesystem as the transaction is already
3148 * started */
3149 flags |= AOP_FLAG_NOFS;
3151 page = grab_cache_page_write_begin(mapping, index, flags);
3152 if (!page) {
3153 ext4_journal_stop(handle);
3154 ret = -ENOMEM;
3155 goto out;
3157 *pagep = page;
3159 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3160 if (ret < 0) {
3161 unlock_page(page);
3162 ext4_journal_stop(handle);
3163 page_cache_release(page);
3165 * block_write_begin may have instantiated a few blocks
3166 * outside i_size. Trim these off again. Don't need
3167 * i_size_read because we hold i_mutex.
3169 if (pos + len > inode->i_size)
3170 ext4_truncate_failed_write(inode);
3173 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3174 goto retry;
3175 out:
3176 return ret;
3180 * Check if we should update i_disksize
3181 * when write to the end of file but not require block allocation
3183 static int ext4_da_should_update_i_disksize(struct page *page,
3184 unsigned long offset)
3186 struct buffer_head *bh;
3187 struct inode *inode = page->mapping->host;
3188 unsigned int idx;
3189 int i;
3191 bh = page_buffers(page);
3192 idx = offset >> inode->i_blkbits;
3194 for (i = 0; i < idx; i++)
3195 bh = bh->b_this_page;
3197 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3198 return 0;
3199 return 1;
3202 static int ext4_da_write_end(struct file *file,
3203 struct address_space *mapping,
3204 loff_t pos, unsigned len, unsigned copied,
3205 struct page *page, void *fsdata)
3207 struct inode *inode = mapping->host;
3208 int ret = 0, ret2;
3209 handle_t *handle = ext4_journal_current_handle();
3210 loff_t new_i_size;
3211 unsigned long start, end;
3212 int write_mode = (int)(unsigned long)fsdata;
3214 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3215 switch (ext4_inode_journal_mode(inode)) {
3216 case EXT4_INODE_ORDERED_DATA_MODE:
3217 return ext4_ordered_write_end(file, mapping, pos,
3218 len, copied, page, fsdata);
3219 case EXT4_INODE_WRITEBACK_DATA_MODE:
3220 return ext4_writeback_write_end(file, mapping, pos,
3221 len, copied, page, fsdata);
3222 default:
3223 BUG();
3227 trace_ext4_da_write_end(inode, pos, len, copied);
3228 start = pos & (PAGE_CACHE_SIZE - 1);
3229 end = start + copied - 1;
3232 * generic_write_end() will run mark_inode_dirty() if i_size
3233 * changes. So let's piggyback the i_disksize mark_inode_dirty
3234 * into that.
3237 new_i_size = pos + copied;
3238 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3239 if (ext4_da_should_update_i_disksize(page, end)) {
3240 down_write(&EXT4_I(inode)->i_data_sem);
3241 if (new_i_size > EXT4_I(inode)->i_disksize) {
3243 * Updating i_disksize when extending file
3244 * without needing block allocation
3246 if (ext4_should_order_data(inode))
3247 ret = ext4_jbd2_file_inode(handle,
3248 inode);
3250 EXT4_I(inode)->i_disksize = new_i_size;
3252 up_write(&EXT4_I(inode)->i_data_sem);
3253 /* We need to mark inode dirty even if
3254 * new_i_size is less that inode->i_size
3255 * bu greater than i_disksize.(hint delalloc)
3257 ext4_mark_inode_dirty(handle, inode);
3260 ret2 = generic_write_end(file, mapping, pos, len, copied,
3261 page, fsdata);
3262 copied = ret2;
3263 if (ret2 < 0)
3264 ret = ret2;
3265 ret2 = ext4_journal_stop(handle);
3266 if (!ret)
3267 ret = ret2;
3269 return ret ? ret : copied;
3272 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3275 * Drop reserved blocks
3277 BUG_ON(!PageLocked(page));
3278 if (!page_has_buffers(page))
3279 goto out;
3281 ext4_da_page_release_reservation(page, offset);
3283 out:
3284 ext4_invalidatepage(page, offset);
3286 return;
3290 * Force all delayed allocation blocks to be allocated for a given inode.
3292 int ext4_alloc_da_blocks(struct inode *inode)
3294 trace_ext4_alloc_da_blocks(inode);
3296 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3297 !EXT4_I(inode)->i_reserved_meta_blocks)
3298 return 0;
3301 * We do something simple for now. The filemap_flush() will
3302 * also start triggering a write of the data blocks, which is
3303 * not strictly speaking necessary (and for users of
3304 * laptop_mode, not even desirable). However, to do otherwise
3305 * would require replicating code paths in:
3307 * ext4_da_writepages() ->
3308 * write_cache_pages() ---> (via passed in callback function)
3309 * __mpage_da_writepage() -->
3310 * mpage_add_bh_to_extent()
3311 * mpage_da_map_blocks()
3313 * The problem is that write_cache_pages(), located in
3314 * mm/page-writeback.c, marks pages clean in preparation for
3315 * doing I/O, which is not desirable if we're not planning on
3316 * doing I/O at all.
3318 * We could call write_cache_pages(), and then redirty all of
3319 * the pages by calling redirty_page_for_writepage() but that
3320 * would be ugly in the extreme. So instead we would need to
3321 * replicate parts of the code in the above functions,
3322 * simplifying them because we wouldn't actually intend to
3323 * write out the pages, but rather only collect contiguous
3324 * logical block extents, call the multi-block allocator, and
3325 * then update the buffer heads with the block allocations.
3327 * For now, though, we'll cheat by calling filemap_flush(),
3328 * which will map the blocks, and start the I/O, but not
3329 * actually wait for the I/O to complete.
3331 return filemap_flush(inode->i_mapping);
3335 * bmap() is special. It gets used by applications such as lilo and by
3336 * the swapper to find the on-disk block of a specific piece of data.
3338 * Naturally, this is dangerous if the block concerned is still in the
3339 * journal. If somebody makes a swapfile on an ext4 data-journaling
3340 * filesystem and enables swap, then they may get a nasty shock when the
3341 * data getting swapped to that swapfile suddenly gets overwritten by
3342 * the original zero's written out previously to the journal and
3343 * awaiting writeback in the kernel's buffer cache.
3345 * So, if we see any bmap calls here on a modified, data-journaled file,
3346 * take extra steps to flush any blocks which might be in the cache.
3348 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3350 struct inode *inode = mapping->host;
3351 journal_t *journal;
3352 int err;
3354 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3355 test_opt(inode->i_sb, DELALLOC)) {
3357 * With delalloc we want to sync the file
3358 * so that we can make sure we allocate
3359 * blocks for file
3361 filemap_write_and_wait(mapping);
3364 if (EXT4_JOURNAL(inode) &&
3365 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3367 * This is a REALLY heavyweight approach, but the use of
3368 * bmap on dirty files is expected to be extremely rare:
3369 * only if we run lilo or swapon on a freshly made file
3370 * do we expect this to happen.
3372 * (bmap requires CAP_SYS_RAWIO so this does not
3373 * represent an unprivileged user DOS attack --- we'd be
3374 * in trouble if mortal users could trigger this path at
3375 * will.)
3377 * NB. EXT4_STATE_JDATA is not set on files other than
3378 * regular files. If somebody wants to bmap a directory
3379 * or symlink and gets confused because the buffer
3380 * hasn't yet been flushed to disk, they deserve
3381 * everything they get.
3384 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3385 journal = EXT4_JOURNAL(inode);
3386 jbd2_journal_lock_updates(journal);
3387 err = jbd2_journal_flush(journal);
3388 jbd2_journal_unlock_updates(journal);
3390 if (err)
3391 return 0;
3394 return generic_block_bmap(mapping, block, ext4_get_block);
3397 static int ext4_readpage(struct file *file, struct page *page)
3399 trace_ext4_readpage(page);
3400 return mpage_readpage(page, ext4_get_block);
3403 static int
3404 ext4_readpages(struct file *file, struct address_space *mapping,
3405 struct list_head *pages, unsigned nr_pages)
3407 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3410 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3412 struct buffer_head *head, *bh;
3413 unsigned int curr_off = 0;
3415 if (!page_has_buffers(page))
3416 return;
3417 head = bh = page_buffers(page);
3418 do {
3419 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3420 && bh->b_private) {
3421 ext4_free_io_end(bh->b_private);
3422 bh->b_private = NULL;
3423 bh->b_end_io = NULL;
3425 curr_off = curr_off + bh->b_size;
3426 bh = bh->b_this_page;
3427 } while (bh != head);
3430 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3432 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3434 trace_ext4_invalidatepage(page, offset);
3437 * free any io_end structure allocated for buffers to be discarded
3439 if (ext4_should_dioread_nolock(page->mapping->host))
3440 ext4_invalidatepage_free_endio(page, offset);
3442 * If it's a full truncate we just forget about the pending dirtying
3444 if (offset == 0)
3445 ClearPageChecked(page);
3447 if (journal)
3448 jbd2_journal_invalidatepage(journal, page, offset);
3449 else
3450 block_invalidatepage(page, offset);
3453 static int ext4_releasepage(struct page *page, gfp_t wait)
3455 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3457 trace_ext4_releasepage(page);
3459 WARN_ON(PageChecked(page));
3460 if (!page_has_buffers(page))
3461 return 0;
3462 if (journal)
3463 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3464 else
3465 return try_to_free_buffers(page);
3469 * O_DIRECT for ext3 (or indirect map) based files
3471 * If the O_DIRECT write will extend the file then add this inode to the
3472 * orphan list. So recovery will truncate it back to the original size
3473 * if the machine crashes during the write.
3475 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3476 * crashes then stale disk data _may_ be exposed inside the file. But current
3477 * VFS code falls back into buffered path in that case so we are safe.
3479 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3480 const struct iovec *iov, loff_t offset,
3481 unsigned long nr_segs)
3483 struct file *file = iocb->ki_filp;
3484 struct inode *inode = file->f_mapping->host;
3485 struct ext4_inode_info *ei = EXT4_I(inode);
3486 handle_t *handle;
3487 ssize_t ret;
3488 int orphan = 0;
3489 size_t count = iov_length(iov, nr_segs);
3490 int retries = 0;
3492 if (rw == WRITE) {
3493 loff_t final_size = offset + count;
3495 if (final_size > inode->i_size) {
3496 /* Credits for sb + inode write */
3497 handle = ext4_journal_start(inode, 2);
3498 if (IS_ERR(handle)) {
3499 ret = PTR_ERR(handle);
3500 goto out;
3502 ret = ext4_orphan_add(handle, inode);
3503 if (ret) {
3504 ext4_journal_stop(handle);
3505 goto out;
3507 orphan = 1;
3508 ei->i_disksize = inode->i_size;
3509 ext4_journal_stop(handle);
3513 retry:
3514 if (rw == READ && ext4_should_dioread_nolock(inode)) {
3515 if (unlikely(!list_empty(&ei->i_completed_io_list))) {
3516 mutex_lock(&inode->i_mutex);
3517 ext4_flush_completed_IO(inode);
3518 mutex_unlock(&inode->i_mutex);
3520 ret = __blockdev_direct_IO(rw, iocb, inode,
3521 inode->i_sb->s_bdev, iov,
3522 offset, nr_segs,
3523 ext4_get_block, NULL, NULL, 0);
3524 } else {
3525 ret = blockdev_direct_IO(rw, iocb, inode,
3526 inode->i_sb->s_bdev, iov,
3527 offset, nr_segs,
3528 ext4_get_block, NULL);
3530 if (unlikely((rw & WRITE) && ret < 0)) {
3531 loff_t isize = i_size_read(inode);
3532 loff_t end = offset + iov_length(iov, nr_segs);
3534 if (end > isize)
3535 ext4_truncate_failed_write(inode);
3538 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3539 goto retry;
3541 if (orphan) {
3542 int err;
3544 /* Credits for sb + inode write */
3545 handle = ext4_journal_start(inode, 2);
3546 if (IS_ERR(handle)) {
3547 /* This is really bad luck. We've written the data
3548 * but cannot extend i_size. Bail out and pretend
3549 * the write failed... */
3550 ret = PTR_ERR(handle);
3551 if (inode->i_nlink)
3552 ext4_orphan_del(NULL, inode);
3554 goto out;
3556 if (inode->i_nlink)
3557 ext4_orphan_del(handle, inode);
3558 if (ret > 0) {
3559 loff_t end = offset + ret;
3560 if (end > inode->i_size) {
3561 ei->i_disksize = end;
3562 i_size_write(inode, end);
3564 * We're going to return a positive `ret'
3565 * here due to non-zero-length I/O, so there's
3566 * no way of reporting error returns from
3567 * ext4_mark_inode_dirty() to userspace. So
3568 * ignore it.
3570 ext4_mark_inode_dirty(handle, inode);
3573 err = ext4_journal_stop(handle);
3574 if (ret == 0)
3575 ret = err;
3577 out:
3578 return ret;
3582 * ext4_get_block used when preparing for a DIO write or buffer write.
3583 * We allocate an uinitialized extent if blocks haven't been allocated.
3584 * The extent will be converted to initialized after the IO is complete.
3586 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3587 struct buffer_head *bh_result, int create)
3589 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3590 inode->i_ino, create);
3591 return _ext4_get_block(inode, iblock, bh_result,
3592 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3595 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3596 ssize_t size, void *private, int ret,
3597 bool is_async)
3599 ext4_io_end_t *io_end = iocb->private;
3600 struct workqueue_struct *wq;
3601 unsigned long flags;
3602 struct ext4_inode_info *ei;
3604 /* if not async direct IO or dio with 0 bytes write, just return */
3605 if (!io_end || !size)
3606 goto out;
3608 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3609 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3610 iocb->private, io_end->inode->i_ino, iocb, offset,
3611 size);
3613 /* if not aio dio with unwritten extents, just free io and return */
3614 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3615 ext4_free_io_end(io_end);
3616 iocb->private = NULL;
3617 out:
3618 if (is_async)
3619 aio_complete(iocb, ret, 0);
3620 return;
3623 io_end->offset = offset;
3624 io_end->size = size;
3625 if (is_async) {
3626 io_end->iocb = iocb;
3627 io_end->result = ret;
3629 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3631 /* Add the io_end to per-inode completed aio dio list*/
3632 ei = EXT4_I(io_end->inode);
3633 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3634 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3635 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3637 /* queue the work to convert unwritten extents to written */
3638 queue_work(wq, &io_end->work);
3639 iocb->private = NULL;
3642 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3644 ext4_io_end_t *io_end = bh->b_private;
3645 struct workqueue_struct *wq;
3646 struct inode *inode;
3647 unsigned long flags;
3649 if (!test_clear_buffer_uninit(bh) || !io_end)
3650 goto out;
3652 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3653 printk("sb umounted, discard end_io request for inode %lu\n",
3654 io_end->inode->i_ino);
3655 ext4_free_io_end(io_end);
3656 goto out;
3660 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3661 * but being more careful is always safe for the future change.
3663 inode = io_end->inode;
3664 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3665 io_end->flag |= EXT4_IO_END_UNWRITTEN;
3666 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3669 /* Add the io_end to per-inode completed io list*/
3670 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3671 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3672 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3674 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3675 /* queue the work to convert unwritten extents to written */
3676 queue_work(wq, &io_end->work);
3677 out:
3678 bh->b_private = NULL;
3679 bh->b_end_io = NULL;
3680 clear_buffer_uninit(bh);
3681 end_buffer_async_write(bh, uptodate);
3684 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3686 ext4_io_end_t *io_end;
3687 struct page *page = bh->b_page;
3688 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3689 size_t size = bh->b_size;
3691 retry:
3692 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3693 if (!io_end) {
3694 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3695 schedule();
3696 goto retry;
3698 io_end->offset = offset;
3699 io_end->size = size;
3701 * We need to hold a reference to the page to make sure it
3702 * doesn't get evicted before ext4_end_io_work() has a chance
3703 * to convert the extent from written to unwritten.
3705 io_end->page = page;
3706 get_page(io_end->page);
3708 bh->b_private = io_end;
3709 bh->b_end_io = ext4_end_io_buffer_write;
3710 return 0;
3714 * For ext4 extent files, ext4 will do direct-io write to holes,
3715 * preallocated extents, and those write extend the file, no need to
3716 * fall back to buffered IO.
3718 * For holes, we fallocate those blocks, mark them as uninitialized
3719 * If those blocks were preallocated, we mark sure they are splited, but
3720 * still keep the range to write as uninitialized.
3722 * The unwrritten extents will be converted to written when DIO is completed.
3723 * For async direct IO, since the IO may still pending when return, we
3724 * set up an end_io call back function, which will do the conversion
3725 * when async direct IO completed.
3727 * If the O_DIRECT write will extend the file then add this inode to the
3728 * orphan list. So recovery will truncate it back to the original size
3729 * if the machine crashes during the write.
3732 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3733 const struct iovec *iov, loff_t offset,
3734 unsigned long nr_segs)
3736 struct file *file = iocb->ki_filp;
3737 struct inode *inode = file->f_mapping->host;
3738 ssize_t ret;
3739 size_t count = iov_length(iov, nr_segs);
3741 loff_t final_size = offset + count;
3742 if (rw == WRITE && final_size <= inode->i_size) {
3744 * We could direct write to holes and fallocate.
3746 * Allocated blocks to fill the hole are marked as uninitialized
3747 * to prevent parallel buffered read to expose the stale data
3748 * before DIO complete the data IO.
3750 * As to previously fallocated extents, ext4 get_block
3751 * will just simply mark the buffer mapped but still
3752 * keep the extents uninitialized.
3754 * for non AIO case, we will convert those unwritten extents
3755 * to written after return back from blockdev_direct_IO.
3757 * for async DIO, the conversion needs to be defered when
3758 * the IO is completed. The ext4 end_io callback function
3759 * will be called to take care of the conversion work.
3760 * Here for async case, we allocate an io_end structure to
3761 * hook to the iocb.
3763 iocb->private = NULL;
3764 EXT4_I(inode)->cur_aio_dio = NULL;
3765 if (!is_sync_kiocb(iocb)) {
3766 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3767 if (!iocb->private)
3768 return -ENOMEM;
3770 * we save the io structure for current async
3771 * direct IO, so that later ext4_map_blocks()
3772 * could flag the io structure whether there
3773 * is a unwritten extents needs to be converted
3774 * when IO is completed.
3776 EXT4_I(inode)->cur_aio_dio = iocb->private;
3779 ret = blockdev_direct_IO(rw, iocb, inode,
3780 inode->i_sb->s_bdev, iov,
3781 offset, nr_segs,
3782 ext4_get_block_write,
3783 ext4_end_io_dio);
3784 if (iocb->private)
3785 EXT4_I(inode)->cur_aio_dio = NULL;
3787 * The io_end structure takes a reference to the inode,
3788 * that structure needs to be destroyed and the
3789 * reference to the inode need to be dropped, when IO is
3790 * complete, even with 0 byte write, or failed.
3792 * In the successful AIO DIO case, the io_end structure will be
3793 * desctroyed and the reference to the inode will be dropped
3794 * after the end_io call back function is called.
3796 * In the case there is 0 byte write, or error case, since
3797 * VFS direct IO won't invoke the end_io call back function,
3798 * we need to free the end_io structure here.
3800 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3801 ext4_free_io_end(iocb->private);
3802 iocb->private = NULL;
3803 } else if (ret > 0 && ext4_test_inode_state(inode,
3804 EXT4_STATE_DIO_UNWRITTEN)) {
3805 int err;
3807 * for non AIO case, since the IO is already
3808 * completed, we could do the conversion right here
3810 err = ext4_convert_unwritten_extents(inode,
3811 offset, ret);
3812 if (err < 0)
3813 ret = err;
3814 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3816 return ret;
3819 /* for write the the end of file case, we fall back to old way */
3820 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3823 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3824 const struct iovec *iov, loff_t offset,
3825 unsigned long nr_segs)
3827 struct file *file = iocb->ki_filp;
3828 struct inode *inode = file->f_mapping->host;
3829 ssize_t ret;
3831 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3832 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3833 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3834 else
3835 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3836 trace_ext4_direct_IO_exit(inode, offset,
3837 iov_length(iov, nr_segs), rw, ret);
3838 return ret;
3842 * Pages can be marked dirty completely asynchronously from ext4's journalling
3843 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3844 * much here because ->set_page_dirty is called under VFS locks. The page is
3845 * not necessarily locked.
3847 * We cannot just dirty the page and leave attached buffers clean, because the
3848 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3849 * or jbddirty because all the journalling code will explode.
3851 * So what we do is to mark the page "pending dirty" and next time writepage
3852 * is called, propagate that into the buffers appropriately.
3854 static int ext4_journalled_set_page_dirty(struct page *page)
3856 SetPageChecked(page);
3857 return __set_page_dirty_nobuffers(page);
3860 static const struct address_space_operations ext4_ordered_aops = {
3861 .readpage = ext4_readpage,
3862 .readpages = ext4_readpages,
3863 .writepage = ext4_writepage,
3864 .write_begin = ext4_write_begin,
3865 .write_end = ext4_ordered_write_end,
3866 .bmap = ext4_bmap,
3867 .invalidatepage = ext4_invalidatepage,
3868 .releasepage = ext4_releasepage,
3869 .direct_IO = ext4_direct_IO,
3870 .migratepage = buffer_migrate_page,
3871 .is_partially_uptodate = block_is_partially_uptodate,
3872 .error_remove_page = generic_error_remove_page,
3875 static const struct address_space_operations ext4_writeback_aops = {
3876 .readpage = ext4_readpage,
3877 .readpages = ext4_readpages,
3878 .writepage = ext4_writepage,
3879 .write_begin = ext4_write_begin,
3880 .write_end = ext4_writeback_write_end,
3881 .bmap = ext4_bmap,
3882 .invalidatepage = ext4_invalidatepage,
3883 .releasepage = ext4_releasepage,
3884 .direct_IO = ext4_direct_IO,
3885 .migratepage = buffer_migrate_page,
3886 .is_partially_uptodate = block_is_partially_uptodate,
3887 .error_remove_page = generic_error_remove_page,
3890 static const struct address_space_operations ext4_journalled_aops = {
3891 .readpage = ext4_readpage,
3892 .readpages = ext4_readpages,
3893 .writepage = ext4_writepage,
3894 .write_begin = ext4_write_begin,
3895 .write_end = ext4_journalled_write_end,
3896 .set_page_dirty = ext4_journalled_set_page_dirty,
3897 .bmap = ext4_bmap,
3898 .invalidatepage = ext4_invalidatepage,
3899 .releasepage = ext4_releasepage,
3900 .is_partially_uptodate = block_is_partially_uptodate,
3901 .error_remove_page = generic_error_remove_page,
3904 static const struct address_space_operations ext4_da_aops = {
3905 .readpage = ext4_readpage,
3906 .readpages = ext4_readpages,
3907 .writepage = ext4_writepage,
3908 .writepages = ext4_da_writepages,
3909 .write_begin = ext4_da_write_begin,
3910 .write_end = ext4_da_write_end,
3911 .bmap = ext4_bmap,
3912 .invalidatepage = ext4_da_invalidatepage,
3913 .releasepage = ext4_releasepage,
3914 .direct_IO = ext4_direct_IO,
3915 .migratepage = buffer_migrate_page,
3916 .is_partially_uptodate = block_is_partially_uptodate,
3917 .error_remove_page = generic_error_remove_page,
3920 void ext4_set_aops(struct inode *inode)
3922 switch (ext4_inode_journal_mode(inode)) {
3923 case EXT4_INODE_ORDERED_DATA_MODE:
3924 if (test_opt(inode->i_sb, DELALLOC))
3925 inode->i_mapping->a_ops = &ext4_da_aops;
3926 else
3927 inode->i_mapping->a_ops = &ext4_ordered_aops;
3928 break;
3929 case EXT4_INODE_WRITEBACK_DATA_MODE:
3930 if (test_opt(inode->i_sb, DELALLOC))
3931 inode->i_mapping->a_ops = &ext4_da_aops;
3932 else
3933 inode->i_mapping->a_ops = &ext4_writeback_aops;
3934 break;
3935 case EXT4_INODE_JOURNAL_DATA_MODE:
3936 inode->i_mapping->a_ops = &ext4_journalled_aops;
3937 break;
3938 default:
3939 BUG();
3944 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3945 * up to the end of the block which corresponds to `from'.
3946 * This required during truncate. We need to physically zero the tail end
3947 * of that block so it doesn't yield old data if the file is later grown.
3949 int ext4_block_truncate_page(handle_t *handle,
3950 struct address_space *mapping, loff_t from)
3952 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3953 unsigned length;
3954 unsigned blocksize;
3955 struct inode *inode = mapping->host;
3957 blocksize = inode->i_sb->s_blocksize;
3958 length = blocksize - (offset & (blocksize - 1));
3960 return ext4_block_zero_page_range(handle, mapping, from, length);
3964 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3965 * starting from file offset 'from'. The range to be zero'd must
3966 * be contained with in one block. If the specified range exceeds
3967 * the end of the block it will be shortened to end of the block
3968 * that cooresponds to 'from'
3970 int ext4_block_zero_page_range(handle_t *handle,
3971 struct address_space *mapping, loff_t from, loff_t length)
3973 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3974 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3975 unsigned blocksize, max, pos;
3976 ext4_lblk_t iblock;
3977 struct inode *inode = mapping->host;
3978 struct buffer_head *bh;
3979 struct page *page;
3980 int err = 0;
3982 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3983 mapping_gfp_mask(mapping) & ~__GFP_FS);
3984 if (!page)
3985 return -EINVAL;
3987 blocksize = inode->i_sb->s_blocksize;
3988 max = blocksize - (offset & (blocksize - 1));
3991 * correct length if it does not fall between
3992 * 'from' and the end of the block
3994 if (length > max || length < 0)
3995 length = max;
3997 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3999 if (!page_has_buffers(page))
4000 create_empty_buffers(page, blocksize, 0);
4002 /* Find the buffer that contains "offset" */
4003 bh = page_buffers(page);
4004 pos = blocksize;
4005 while (offset >= pos) {
4006 bh = bh->b_this_page;
4007 iblock++;
4008 pos += blocksize;
4011 err = 0;
4012 if (buffer_freed(bh)) {
4013 BUFFER_TRACE(bh, "freed: skip");
4014 goto unlock;
4017 if (!buffer_mapped(bh)) {
4018 BUFFER_TRACE(bh, "unmapped");
4019 ext4_get_block(inode, iblock, bh, 0);
4020 /* unmapped? It's a hole - nothing to do */
4021 if (!buffer_mapped(bh)) {
4022 BUFFER_TRACE(bh, "still unmapped");
4023 goto unlock;
4027 /* Ok, it's mapped. Make sure it's up-to-date */
4028 if (PageUptodate(page))
4029 set_buffer_uptodate(bh);
4031 if (!buffer_uptodate(bh)) {
4032 err = -EIO;
4033 ll_rw_block(READ, 1, &bh);
4034 wait_on_buffer(bh);
4035 /* Uhhuh. Read error. Complain and punt. */
4036 if (!buffer_uptodate(bh))
4037 goto unlock;
4040 if (ext4_should_journal_data(inode)) {
4041 BUFFER_TRACE(bh, "get write access");
4042 err = ext4_journal_get_write_access(handle, bh);
4043 if (err)
4044 goto unlock;
4047 zero_user(page, offset, length);
4049 BUFFER_TRACE(bh, "zeroed end of block");
4051 err = 0;
4052 if (ext4_should_journal_data(inode)) {
4053 err = ext4_handle_dirty_metadata(handle, inode, bh);
4054 } else {
4055 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4056 err = ext4_jbd2_file_inode(handle, inode);
4057 mark_buffer_dirty(bh);
4060 unlock:
4061 unlock_page(page);
4062 page_cache_release(page);
4063 return err;
4067 * Probably it should be a library function... search for first non-zero word
4068 * or memcmp with zero_page, whatever is better for particular architecture.
4069 * Linus?
4071 static inline int all_zeroes(__le32 *p, __le32 *q)
4073 while (p < q)
4074 if (*p++)
4075 return 0;
4076 return 1;
4080 * ext4_find_shared - find the indirect blocks for partial truncation.
4081 * @inode: inode in question
4082 * @depth: depth of the affected branch
4083 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4084 * @chain: place to store the pointers to partial indirect blocks
4085 * @top: place to the (detached) top of branch
4087 * This is a helper function used by ext4_truncate().
4089 * When we do truncate() we may have to clean the ends of several
4090 * indirect blocks but leave the blocks themselves alive. Block is
4091 * partially truncated if some data below the new i_size is referred
4092 * from it (and it is on the path to the first completely truncated
4093 * data block, indeed). We have to free the top of that path along
4094 * with everything to the right of the path. Since no allocation
4095 * past the truncation point is possible until ext4_truncate()
4096 * finishes, we may safely do the latter, but top of branch may
4097 * require special attention - pageout below the truncation point
4098 * might try to populate it.
4100 * We atomically detach the top of branch from the tree, store the
4101 * block number of its root in *@top, pointers to buffer_heads of
4102 * partially truncated blocks - in @chain[].bh and pointers to
4103 * their last elements that should not be removed - in
4104 * @chain[].p. Return value is the pointer to last filled element
4105 * of @chain.
4107 * The work left to caller to do the actual freeing of subtrees:
4108 * a) free the subtree starting from *@top
4109 * b) free the subtrees whose roots are stored in
4110 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4111 * c) free the subtrees growing from the inode past the @chain[0].
4112 * (no partially truncated stuff there). */
4114 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4115 ext4_lblk_t offsets[4], Indirect chain[4],
4116 __le32 *top)
4118 Indirect *partial, *p;
4119 int k, err;
4121 *top = 0;
4122 /* Make k index the deepest non-null offset + 1 */
4123 for (k = depth; k > 1 && !offsets[k-1]; k--)
4125 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4126 /* Writer: pointers */
4127 if (!partial)
4128 partial = chain + k-1;
4130 * If the branch acquired continuation since we've looked at it -
4131 * fine, it should all survive and (new) top doesn't belong to us.
4133 if (!partial->key && *partial->p)
4134 /* Writer: end */
4135 goto no_top;
4136 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4139 * OK, we've found the last block that must survive. The rest of our
4140 * branch should be detached before unlocking. However, if that rest
4141 * of branch is all ours and does not grow immediately from the inode
4142 * it's easier to cheat and just decrement partial->p.
4144 if (p == chain + k - 1 && p > chain) {
4145 p->p--;
4146 } else {
4147 *top = *p->p;
4148 /* Nope, don't do this in ext4. Must leave the tree intact */
4149 #if 0
4150 *p->p = 0;
4151 #endif
4153 /* Writer: end */
4155 while (partial > p) {
4156 brelse(partial->bh);
4157 partial--;
4159 no_top:
4160 return partial;
4164 * Zero a number of block pointers in either an inode or an indirect block.
4165 * If we restart the transaction we must again get write access to the
4166 * indirect block for further modification.
4168 * We release `count' blocks on disk, but (last - first) may be greater
4169 * than `count' because there can be holes in there.
4171 * Return 0 on success, 1 on invalid block range
4172 * and < 0 on fatal error.
4174 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4175 struct buffer_head *bh,
4176 ext4_fsblk_t block_to_free,
4177 unsigned long count, __le32 *first,
4178 __le32 *last)
4180 __le32 *p;
4181 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4182 int err;
4184 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4185 flags |= EXT4_FREE_BLOCKS_METADATA;
4187 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4188 count)) {
4189 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4190 "blocks %llu len %lu",
4191 (unsigned long long) block_to_free, count);
4192 return 1;
4195 if (try_to_extend_transaction(handle, inode)) {
4196 if (bh) {
4197 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4198 err = ext4_handle_dirty_metadata(handle, inode, bh);
4199 if (unlikely(err))
4200 goto out_err;
4202 err = ext4_mark_inode_dirty(handle, inode);
4203 if (unlikely(err))
4204 goto out_err;
4205 err = ext4_truncate_restart_trans(handle, inode,
4206 blocks_for_truncate(inode));
4207 if (unlikely(err))
4208 goto out_err;
4209 if (bh) {
4210 BUFFER_TRACE(bh, "retaking write access");
4211 err = ext4_journal_get_write_access(handle, bh);
4212 if (unlikely(err))
4213 goto out_err;
4217 for (p = first; p < last; p++)
4218 *p = 0;
4220 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4221 return 0;
4222 out_err:
4223 ext4_std_error(inode->i_sb, err);
4224 return err;
4228 * ext4_free_data - free a list of data blocks
4229 * @handle: handle for this transaction
4230 * @inode: inode we are dealing with
4231 * @this_bh: indirect buffer_head which contains *@first and *@last
4232 * @first: array of block numbers
4233 * @last: points immediately past the end of array
4235 * We are freeing all blocks referred from that array (numbers are stored as
4236 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4238 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4239 * blocks are contiguous then releasing them at one time will only affect one
4240 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4241 * actually use a lot of journal space.
4243 * @this_bh will be %NULL if @first and @last point into the inode's direct
4244 * block pointers.
4246 static void ext4_free_data(handle_t *handle, struct inode *inode,
4247 struct buffer_head *this_bh,
4248 __le32 *first, __le32 *last)
4250 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4251 unsigned long count = 0; /* Number of blocks in the run */
4252 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4253 corresponding to
4254 block_to_free */
4255 ext4_fsblk_t nr; /* Current block # */
4256 __le32 *p; /* Pointer into inode/ind
4257 for current block */
4258 int err = 0;
4260 if (this_bh) { /* For indirect block */
4261 BUFFER_TRACE(this_bh, "get_write_access");
4262 err = ext4_journal_get_write_access(handle, this_bh);
4263 /* Important: if we can't update the indirect pointers
4264 * to the blocks, we can't free them. */
4265 if (err)
4266 return;
4269 for (p = first; p < last; p++) {
4270 nr = le32_to_cpu(*p);
4271 if (nr) {
4272 /* accumulate blocks to free if they're contiguous */
4273 if (count == 0) {
4274 block_to_free = nr;
4275 block_to_free_p = p;
4276 count = 1;
4277 } else if (nr == block_to_free + count) {
4278 count++;
4279 } else {
4280 err = ext4_clear_blocks(handle, inode, this_bh,
4281 block_to_free, count,
4282 block_to_free_p, p);
4283 if (err)
4284 break;
4285 block_to_free = nr;
4286 block_to_free_p = p;
4287 count = 1;
4292 if (!err && count > 0)
4293 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4294 count, block_to_free_p, p);
4295 if (err < 0)
4296 /* fatal error */
4297 return;
4299 if (this_bh) {
4300 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4303 * The buffer head should have an attached journal head at this
4304 * point. However, if the data is corrupted and an indirect
4305 * block pointed to itself, it would have been detached when
4306 * the block was cleared. Check for this instead of OOPSing.
4308 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4309 ext4_handle_dirty_metadata(handle, inode, this_bh);
4310 else
4311 EXT4_ERROR_INODE(inode,
4312 "circular indirect block detected at "
4313 "block %llu",
4314 (unsigned long long) this_bh->b_blocknr);
4319 * ext4_free_branches - free an array of branches
4320 * @handle: JBD handle for this transaction
4321 * @inode: inode we are dealing with
4322 * @parent_bh: the buffer_head which contains *@first and *@last
4323 * @first: array of block numbers
4324 * @last: pointer immediately past the end of array
4325 * @depth: depth of the branches to free
4327 * We are freeing all blocks referred from these branches (numbers are
4328 * stored as little-endian 32-bit) and updating @inode->i_blocks
4329 * appropriately.
4331 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4332 struct buffer_head *parent_bh,
4333 __le32 *first, __le32 *last, int depth)
4335 ext4_fsblk_t nr;
4336 __le32 *p;
4338 if (ext4_handle_is_aborted(handle))
4339 return;
4341 if (depth--) {
4342 struct buffer_head *bh;
4343 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4344 p = last;
4345 while (--p >= first) {
4346 nr = le32_to_cpu(*p);
4347 if (!nr)
4348 continue; /* A hole */
4350 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4351 nr, 1)) {
4352 EXT4_ERROR_INODE(inode,
4353 "invalid indirect mapped "
4354 "block %lu (level %d)",
4355 (unsigned long) nr, depth);
4356 break;
4359 /* Go read the buffer for the next level down */
4360 bh = sb_bread(inode->i_sb, nr);
4363 * A read failure? Report error and clear slot
4364 * (should be rare).
4366 if (!bh) {
4367 EXT4_ERROR_INODE_BLOCK(inode, nr,
4368 "Read failure");
4369 continue;
4372 /* This zaps the entire block. Bottom up. */
4373 BUFFER_TRACE(bh, "free child branches");
4374 ext4_free_branches(handle, inode, bh,
4375 (__le32 *) bh->b_data,
4376 (__le32 *) bh->b_data + addr_per_block,
4377 depth);
4378 brelse(bh);
4381 * Everything below this this pointer has been
4382 * released. Now let this top-of-subtree go.
4384 * We want the freeing of this indirect block to be
4385 * atomic in the journal with the updating of the
4386 * bitmap block which owns it. So make some room in
4387 * the journal.
4389 * We zero the parent pointer *after* freeing its
4390 * pointee in the bitmaps, so if extend_transaction()
4391 * for some reason fails to put the bitmap changes and
4392 * the release into the same transaction, recovery
4393 * will merely complain about releasing a free block,
4394 * rather than leaking blocks.
4396 if (ext4_handle_is_aborted(handle))
4397 return;
4398 if (try_to_extend_transaction(handle, inode)) {
4399 ext4_mark_inode_dirty(handle, inode);
4400 ext4_truncate_restart_trans(handle, inode,
4401 blocks_for_truncate(inode));
4405 * The forget flag here is critical because if
4406 * we are journaling (and not doing data
4407 * journaling), we have to make sure a revoke
4408 * record is written to prevent the journal
4409 * replay from overwriting the (former)
4410 * indirect block if it gets reallocated as a
4411 * data block. This must happen in the same
4412 * transaction where the data blocks are
4413 * actually freed.
4415 ext4_free_blocks(handle, inode, NULL, nr, 1,
4416 EXT4_FREE_BLOCKS_METADATA|
4417 EXT4_FREE_BLOCKS_FORGET);
4419 if (parent_bh) {
4421 * The block which we have just freed is
4422 * pointed to by an indirect block: journal it
4424 BUFFER_TRACE(parent_bh, "get_write_access");
4425 if (!ext4_journal_get_write_access(handle,
4426 parent_bh)){
4427 *p = 0;
4428 BUFFER_TRACE(parent_bh,
4429 "call ext4_handle_dirty_metadata");
4430 ext4_handle_dirty_metadata(handle,
4431 inode,
4432 parent_bh);
4436 } else {
4437 /* We have reached the bottom of the tree. */
4438 BUFFER_TRACE(parent_bh, "free data blocks");
4439 ext4_free_data(handle, inode, parent_bh, first, last);
4443 int ext4_can_truncate(struct inode *inode)
4445 if (S_ISREG(inode->i_mode))
4446 return 1;
4447 if (S_ISDIR(inode->i_mode))
4448 return 1;
4449 if (S_ISLNK(inode->i_mode))
4450 return !ext4_inode_is_fast_symlink(inode);
4451 return 0;
4455 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4456 * associated with the given offset and length
4458 * @inode: File inode
4459 * @offset: The offset where the hole will begin
4460 * @len: The length of the hole
4462 * Returns: 0 on sucess or negative on failure
4465 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4467 struct inode *inode = file->f_path.dentry->d_inode;
4468 if (!S_ISREG(inode->i_mode))
4469 return -ENOTSUPP;
4471 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4472 /* TODO: Add support for non extent hole punching */
4473 return -ENOTSUPP;
4476 return ext4_ext_punch_hole(file, offset, length);
4480 * ext4_truncate()
4482 * We block out ext4_get_block() block instantiations across the entire
4483 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4484 * simultaneously on behalf of the same inode.
4486 * As we work through the truncate and commmit bits of it to the journal there
4487 * is one core, guiding principle: the file's tree must always be consistent on
4488 * disk. We must be able to restart the truncate after a crash.
4490 * The file's tree may be transiently inconsistent in memory (although it
4491 * probably isn't), but whenever we close off and commit a journal transaction,
4492 * the contents of (the filesystem + the journal) must be consistent and
4493 * restartable. It's pretty simple, really: bottom up, right to left (although
4494 * left-to-right works OK too).
4496 * Note that at recovery time, journal replay occurs *before* the restart of
4497 * truncate against the orphan inode list.
4499 * The committed inode has the new, desired i_size (which is the same as
4500 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4501 * that this inode's truncate did not complete and it will again call
4502 * ext4_truncate() to have another go. So there will be instantiated blocks
4503 * to the right of the truncation point in a crashed ext4 filesystem. But
4504 * that's fine - as long as they are linked from the inode, the post-crash
4505 * ext4_truncate() run will find them and release them.
4507 void ext4_truncate(struct inode *inode)
4509 handle_t *handle;
4510 struct ext4_inode_info *ei = EXT4_I(inode);
4511 __le32 *i_data = ei->i_data;
4512 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4513 struct address_space *mapping = inode->i_mapping;
4514 ext4_lblk_t offsets[4];
4515 Indirect chain[4];
4516 Indirect *partial;
4517 __le32 nr = 0;
4518 int n = 0;
4519 ext4_lblk_t last_block, max_block;
4520 unsigned blocksize = inode->i_sb->s_blocksize;
4522 trace_ext4_truncate_enter(inode);
4524 if (!ext4_can_truncate(inode))
4525 return;
4527 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4529 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4530 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4532 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4533 ext4_ext_truncate(inode);
4534 trace_ext4_truncate_exit(inode);
4535 return;
4538 handle = start_transaction(inode);
4539 if (IS_ERR(handle))
4540 return; /* AKPM: return what? */
4542 last_block = (inode->i_size + blocksize-1)
4543 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4544 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4545 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4547 if (inode->i_size & (blocksize - 1))
4548 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4549 goto out_stop;
4551 if (last_block != max_block) {
4552 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4553 if (n == 0)
4554 goto out_stop; /* error */
4558 * OK. This truncate is going to happen. We add the inode to the
4559 * orphan list, so that if this truncate spans multiple transactions,
4560 * and we crash, we will resume the truncate when the filesystem
4561 * recovers. It also marks the inode dirty, to catch the new size.
4563 * Implication: the file must always be in a sane, consistent
4564 * truncatable state while each transaction commits.
4566 if (ext4_orphan_add(handle, inode))
4567 goto out_stop;
4570 * From here we block out all ext4_get_block() callers who want to
4571 * modify the block allocation tree.
4573 down_write(&ei->i_data_sem);
4575 ext4_discard_preallocations(inode);
4578 * The orphan list entry will now protect us from any crash which
4579 * occurs before the truncate completes, so it is now safe to propagate
4580 * the new, shorter inode size (held for now in i_size) into the
4581 * on-disk inode. We do this via i_disksize, which is the value which
4582 * ext4 *really* writes onto the disk inode.
4584 ei->i_disksize = inode->i_size;
4586 if (last_block == max_block) {
4588 * It is unnecessary to free any data blocks if last_block is
4589 * equal to the indirect block limit.
4591 goto out_unlock;
4592 } else if (n == 1) { /* direct blocks */
4593 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4594 i_data + EXT4_NDIR_BLOCKS);
4595 goto do_indirects;
4598 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4599 /* Kill the top of shared branch (not detached) */
4600 if (nr) {
4601 if (partial == chain) {
4602 /* Shared branch grows from the inode */
4603 ext4_free_branches(handle, inode, NULL,
4604 &nr, &nr+1, (chain+n-1) - partial);
4605 *partial->p = 0;
4607 * We mark the inode dirty prior to restart,
4608 * and prior to stop. No need for it here.
4610 } else {
4611 /* Shared branch grows from an indirect block */
4612 BUFFER_TRACE(partial->bh, "get_write_access");
4613 ext4_free_branches(handle, inode, partial->bh,
4614 partial->p,
4615 partial->p+1, (chain+n-1) - partial);
4618 /* Clear the ends of indirect blocks on the shared branch */
4619 while (partial > chain) {
4620 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4621 (__le32*)partial->bh->b_data+addr_per_block,
4622 (chain+n-1) - partial);
4623 BUFFER_TRACE(partial->bh, "call brelse");
4624 brelse(partial->bh);
4625 partial--;
4627 do_indirects:
4628 /* Kill the remaining (whole) subtrees */
4629 switch (offsets[0]) {
4630 default:
4631 nr = i_data[EXT4_IND_BLOCK];
4632 if (nr) {
4633 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4634 i_data[EXT4_IND_BLOCK] = 0;
4636 case EXT4_IND_BLOCK:
4637 nr = i_data[EXT4_DIND_BLOCK];
4638 if (nr) {
4639 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4640 i_data[EXT4_DIND_BLOCK] = 0;
4642 case EXT4_DIND_BLOCK:
4643 nr = i_data[EXT4_TIND_BLOCK];
4644 if (nr) {
4645 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4646 i_data[EXT4_TIND_BLOCK] = 0;
4648 case EXT4_TIND_BLOCK:
4652 out_unlock:
4653 up_write(&ei->i_data_sem);
4654 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4655 ext4_mark_inode_dirty(handle, inode);
4658 * In a multi-transaction truncate, we only make the final transaction
4659 * synchronous
4661 if (IS_SYNC(inode))
4662 ext4_handle_sync(handle);
4663 out_stop:
4665 * If this was a simple ftruncate(), and the file will remain alive
4666 * then we need to clear up the orphan record which we created above.
4667 * However, if this was a real unlink then we were called by
4668 * ext4_delete_inode(), and we allow that function to clean up the
4669 * orphan info for us.
4671 if (inode->i_nlink)
4672 ext4_orphan_del(handle, inode);
4674 ext4_journal_stop(handle);
4675 trace_ext4_truncate_exit(inode);
4679 * ext4_get_inode_loc returns with an extra refcount against the inode's
4680 * underlying buffer_head on success. If 'in_mem' is true, we have all
4681 * data in memory that is needed to recreate the on-disk version of this
4682 * inode.
4684 static int __ext4_get_inode_loc(struct inode *inode,
4685 struct ext4_iloc *iloc, int in_mem)
4687 struct ext4_group_desc *gdp;
4688 struct buffer_head *bh;
4689 struct super_block *sb = inode->i_sb;
4690 ext4_fsblk_t block;
4691 int inodes_per_block, inode_offset;
4693 iloc->bh = NULL;
4694 if (!ext4_valid_inum(sb, inode->i_ino))
4695 return -EIO;
4697 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4698 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4699 if (!gdp)
4700 return -EIO;
4703 * Figure out the offset within the block group inode table
4705 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4706 inode_offset = ((inode->i_ino - 1) %
4707 EXT4_INODES_PER_GROUP(sb));
4708 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4709 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4711 bh = sb_getblk(sb, block);
4712 if (!bh) {
4713 EXT4_ERROR_INODE_BLOCK(inode, block,
4714 "unable to read itable block");
4715 return -EIO;
4717 if (!buffer_uptodate(bh)) {
4718 lock_buffer(bh);
4721 * If the buffer has the write error flag, we have failed
4722 * to write out another inode in the same block. In this
4723 * case, we don't have to read the block because we may
4724 * read the old inode data successfully.
4726 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4727 set_buffer_uptodate(bh);
4729 if (buffer_uptodate(bh)) {
4730 /* someone brought it uptodate while we waited */
4731 unlock_buffer(bh);
4732 goto has_buffer;
4736 * If we have all information of the inode in memory and this
4737 * is the only valid inode in the block, we need not read the
4738 * block.
4740 if (in_mem) {
4741 struct buffer_head *bitmap_bh;
4742 int i, start;
4744 start = inode_offset & ~(inodes_per_block - 1);
4746 /* Is the inode bitmap in cache? */
4747 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4748 if (!bitmap_bh)
4749 goto make_io;
4752 * If the inode bitmap isn't in cache then the
4753 * optimisation may end up performing two reads instead
4754 * of one, so skip it.
4756 if (!buffer_uptodate(bitmap_bh)) {
4757 brelse(bitmap_bh);
4758 goto make_io;
4760 for (i = start; i < start + inodes_per_block; i++) {
4761 if (i == inode_offset)
4762 continue;
4763 if (ext4_test_bit(i, bitmap_bh->b_data))
4764 break;
4766 brelse(bitmap_bh);
4767 if (i == start + inodes_per_block) {
4768 /* all other inodes are free, so skip I/O */
4769 memset(bh->b_data, 0, bh->b_size);
4770 set_buffer_uptodate(bh);
4771 unlock_buffer(bh);
4772 goto has_buffer;
4776 make_io:
4778 * If we need to do any I/O, try to pre-readahead extra
4779 * blocks from the inode table.
4781 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4782 ext4_fsblk_t b, end, table;
4783 unsigned num;
4785 table = ext4_inode_table(sb, gdp);
4786 /* s_inode_readahead_blks is always a power of 2 */
4787 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4788 if (table > b)
4789 b = table;
4790 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4791 num = EXT4_INODES_PER_GROUP(sb);
4792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4793 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4794 num -= ext4_itable_unused_count(sb, gdp);
4795 table += num / inodes_per_block;
4796 if (end > table)
4797 end = table;
4798 while (b <= end)
4799 sb_breadahead(sb, b++);
4803 * There are other valid inodes in the buffer, this inode
4804 * has in-inode xattrs, or we don't have this inode in memory.
4805 * Read the block from disk.
4807 trace_ext4_load_inode(inode);
4808 get_bh(bh);
4809 bh->b_end_io = end_buffer_read_sync;
4810 submit_bh(READ_META, bh);
4811 wait_on_buffer(bh);
4812 if (!buffer_uptodate(bh)) {
4813 EXT4_ERROR_INODE_BLOCK(inode, block,
4814 "unable to read itable block");
4815 brelse(bh);
4816 return -EIO;
4819 has_buffer:
4820 iloc->bh = bh;
4821 return 0;
4824 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4826 /* We have all inode data except xattrs in memory here. */
4827 return __ext4_get_inode_loc(inode, iloc,
4828 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4831 void ext4_set_inode_flags(struct inode *inode)
4833 unsigned int flags = EXT4_I(inode)->i_flags;
4835 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4836 if (flags & EXT4_SYNC_FL)
4837 inode->i_flags |= S_SYNC;
4838 if (flags & EXT4_APPEND_FL)
4839 inode->i_flags |= S_APPEND;
4840 if (flags & EXT4_IMMUTABLE_FL)
4841 inode->i_flags |= S_IMMUTABLE;
4842 if (flags & EXT4_NOATIME_FL)
4843 inode->i_flags |= S_NOATIME;
4844 if (flags & EXT4_DIRSYNC_FL)
4845 inode->i_flags |= S_DIRSYNC;
4848 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4849 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4851 unsigned int vfs_fl;
4852 unsigned long old_fl, new_fl;
4854 do {
4855 vfs_fl = ei->vfs_inode.i_flags;
4856 old_fl = ei->i_flags;
4857 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4858 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4859 EXT4_DIRSYNC_FL);
4860 if (vfs_fl & S_SYNC)
4861 new_fl |= EXT4_SYNC_FL;
4862 if (vfs_fl & S_APPEND)
4863 new_fl |= EXT4_APPEND_FL;
4864 if (vfs_fl & S_IMMUTABLE)
4865 new_fl |= EXT4_IMMUTABLE_FL;
4866 if (vfs_fl & S_NOATIME)
4867 new_fl |= EXT4_NOATIME_FL;
4868 if (vfs_fl & S_DIRSYNC)
4869 new_fl |= EXT4_DIRSYNC_FL;
4870 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4873 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4874 struct ext4_inode_info *ei)
4876 blkcnt_t i_blocks ;
4877 struct inode *inode = &(ei->vfs_inode);
4878 struct super_block *sb = inode->i_sb;
4880 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4881 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4882 /* we are using combined 48 bit field */
4883 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4884 le32_to_cpu(raw_inode->i_blocks_lo);
4885 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4886 /* i_blocks represent file system block size */
4887 return i_blocks << (inode->i_blkbits - 9);
4888 } else {
4889 return i_blocks;
4891 } else {
4892 return le32_to_cpu(raw_inode->i_blocks_lo);
4896 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4898 struct ext4_iloc iloc;
4899 struct ext4_inode *raw_inode;
4900 struct ext4_inode_info *ei;
4901 struct inode *inode;
4902 journal_t *journal = EXT4_SB(sb)->s_journal;
4903 long ret;
4904 int block;
4906 inode = iget_locked(sb, ino);
4907 if (!inode)
4908 return ERR_PTR(-ENOMEM);
4909 if (!(inode->i_state & I_NEW))
4910 return inode;
4912 ei = EXT4_I(inode);
4913 iloc.bh = NULL;
4915 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4916 if (ret < 0)
4917 goto bad_inode;
4918 raw_inode = ext4_raw_inode(&iloc);
4919 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4920 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4921 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4922 if (!(test_opt(inode->i_sb, NO_UID32))) {
4923 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4924 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4926 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4928 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4929 ei->i_dir_start_lookup = 0;
4930 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4931 /* We now have enough fields to check if the inode was active or not.
4932 * This is needed because nfsd might try to access dead inodes
4933 * the test is that same one that e2fsck uses
4934 * NeilBrown 1999oct15
4936 if (inode->i_nlink == 0) {
4937 if (inode->i_mode == 0 ||
4938 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4939 /* this inode is deleted */
4940 ret = -ESTALE;
4941 goto bad_inode;
4943 /* The only unlinked inodes we let through here have
4944 * valid i_mode and are being read by the orphan
4945 * recovery code: that's fine, we're about to complete
4946 * the process of deleting those. */
4948 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4949 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4950 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4951 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4952 ei->i_file_acl |=
4953 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4954 inode->i_size = ext4_isize(raw_inode);
4955 ei->i_disksize = inode->i_size;
4956 #ifdef CONFIG_QUOTA
4957 ei->i_reserved_quota = 0;
4958 #endif
4959 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4960 ei->i_block_group = iloc.block_group;
4961 ei->i_last_alloc_group = ~0;
4963 * NOTE! The in-memory inode i_data array is in little-endian order
4964 * even on big-endian machines: we do NOT byteswap the block numbers!
4966 for (block = 0; block < EXT4_N_BLOCKS; block++)
4967 ei->i_data[block] = raw_inode->i_block[block];
4968 INIT_LIST_HEAD(&ei->i_orphan);
4971 * Set transaction id's of transactions that have to be committed
4972 * to finish f[data]sync. We set them to currently running transaction
4973 * as we cannot be sure that the inode or some of its metadata isn't
4974 * part of the transaction - the inode could have been reclaimed and
4975 * now it is reread from disk.
4977 if (journal) {
4978 transaction_t *transaction;
4979 tid_t tid;
4981 read_lock(&journal->j_state_lock);
4982 if (journal->j_running_transaction)
4983 transaction = journal->j_running_transaction;
4984 else
4985 transaction = journal->j_committing_transaction;
4986 if (transaction)
4987 tid = transaction->t_tid;
4988 else
4989 tid = journal->j_commit_sequence;
4990 read_unlock(&journal->j_state_lock);
4991 ei->i_sync_tid = tid;
4992 ei->i_datasync_tid = tid;
4995 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4996 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4997 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4998 EXT4_INODE_SIZE(inode->i_sb)) {
4999 ret = -EIO;
5000 goto bad_inode;
5002 if (ei->i_extra_isize == 0) {
5003 /* The extra space is currently unused. Use it. */
5004 ei->i_extra_isize = sizeof(struct ext4_inode) -
5005 EXT4_GOOD_OLD_INODE_SIZE;
5006 } else {
5007 __le32 *magic = (void *)raw_inode +
5008 EXT4_GOOD_OLD_INODE_SIZE +
5009 ei->i_extra_isize;
5010 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5011 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5013 } else
5014 ei->i_extra_isize = 0;
5016 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5017 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5018 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5019 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5021 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5022 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5023 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5024 inode->i_version |=
5025 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5028 ret = 0;
5029 if (ei->i_file_acl &&
5030 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5031 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5032 ei->i_file_acl);
5033 ret = -EIO;
5034 goto bad_inode;
5035 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5036 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5037 (S_ISLNK(inode->i_mode) &&
5038 !ext4_inode_is_fast_symlink(inode)))
5039 /* Validate extent which is part of inode */
5040 ret = ext4_ext_check_inode(inode);
5041 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5042 (S_ISLNK(inode->i_mode) &&
5043 !ext4_inode_is_fast_symlink(inode))) {
5044 /* Validate block references which are part of inode */
5045 ret = ext4_check_inode_blockref(inode);
5047 if (ret)
5048 goto bad_inode;
5050 if (S_ISREG(inode->i_mode)) {
5051 inode->i_op = &ext4_file_inode_operations;
5052 inode->i_fop = &ext4_file_operations;
5053 ext4_set_aops(inode);
5054 } else if (S_ISDIR(inode->i_mode)) {
5055 inode->i_op = &ext4_dir_inode_operations;
5056 inode->i_fop = &ext4_dir_operations;
5057 } else if (S_ISLNK(inode->i_mode)) {
5058 if (ext4_inode_is_fast_symlink(inode)) {
5059 inode->i_op = &ext4_fast_symlink_inode_operations;
5060 nd_terminate_link(ei->i_data, inode->i_size,
5061 sizeof(ei->i_data) - 1);
5062 } else {
5063 inode->i_op = &ext4_symlink_inode_operations;
5064 ext4_set_aops(inode);
5066 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5067 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5068 inode->i_op = &ext4_special_inode_operations;
5069 if (raw_inode->i_block[0])
5070 init_special_inode(inode, inode->i_mode,
5071 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5072 else
5073 init_special_inode(inode, inode->i_mode,
5074 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5075 } else {
5076 ret = -EIO;
5077 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5078 goto bad_inode;
5080 brelse(iloc.bh);
5081 ext4_set_inode_flags(inode);
5082 unlock_new_inode(inode);
5083 return inode;
5085 bad_inode:
5086 brelse(iloc.bh);
5087 iget_failed(inode);
5088 return ERR_PTR(ret);
5091 static int ext4_inode_blocks_set(handle_t *handle,
5092 struct ext4_inode *raw_inode,
5093 struct ext4_inode_info *ei)
5095 struct inode *inode = &(ei->vfs_inode);
5096 u64 i_blocks = inode->i_blocks;
5097 struct super_block *sb = inode->i_sb;
5099 if (i_blocks <= ~0U) {
5101 * i_blocks can be represnted in a 32 bit variable
5102 * as multiple of 512 bytes
5104 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5105 raw_inode->i_blocks_high = 0;
5106 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5107 return 0;
5109 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5110 return -EFBIG;
5112 if (i_blocks <= 0xffffffffffffULL) {
5114 * i_blocks can be represented in a 48 bit variable
5115 * as multiple of 512 bytes
5117 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5118 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5119 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5120 } else {
5121 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5122 /* i_block is stored in file system block size */
5123 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5124 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5125 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5127 return 0;
5131 * Post the struct inode info into an on-disk inode location in the
5132 * buffer-cache. This gobbles the caller's reference to the
5133 * buffer_head in the inode location struct.
5135 * The caller must have write access to iloc->bh.
5137 static int ext4_do_update_inode(handle_t *handle,
5138 struct inode *inode,
5139 struct ext4_iloc *iloc)
5141 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5142 struct ext4_inode_info *ei = EXT4_I(inode);
5143 struct buffer_head *bh = iloc->bh;
5144 int err = 0, rc, block;
5146 /* For fields not not tracking in the in-memory inode,
5147 * initialise them to zero for new inodes. */
5148 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5149 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5151 ext4_get_inode_flags(ei);
5152 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5153 if (!(test_opt(inode->i_sb, NO_UID32))) {
5154 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5155 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5157 * Fix up interoperability with old kernels. Otherwise, old inodes get
5158 * re-used with the upper 16 bits of the uid/gid intact
5160 if (!ei->i_dtime) {
5161 raw_inode->i_uid_high =
5162 cpu_to_le16(high_16_bits(inode->i_uid));
5163 raw_inode->i_gid_high =
5164 cpu_to_le16(high_16_bits(inode->i_gid));
5165 } else {
5166 raw_inode->i_uid_high = 0;
5167 raw_inode->i_gid_high = 0;
5169 } else {
5170 raw_inode->i_uid_low =
5171 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5172 raw_inode->i_gid_low =
5173 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5174 raw_inode->i_uid_high = 0;
5175 raw_inode->i_gid_high = 0;
5177 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5179 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5180 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5181 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5182 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5184 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5185 goto out_brelse;
5186 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5187 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5188 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5189 cpu_to_le32(EXT4_OS_HURD))
5190 raw_inode->i_file_acl_high =
5191 cpu_to_le16(ei->i_file_acl >> 32);
5192 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5193 ext4_isize_set(raw_inode, ei->i_disksize);
5194 if (ei->i_disksize > 0x7fffffffULL) {
5195 struct super_block *sb = inode->i_sb;
5196 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5197 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5198 EXT4_SB(sb)->s_es->s_rev_level ==
5199 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5200 /* If this is the first large file
5201 * created, add a flag to the superblock.
5203 err = ext4_journal_get_write_access(handle,
5204 EXT4_SB(sb)->s_sbh);
5205 if (err)
5206 goto out_brelse;
5207 ext4_update_dynamic_rev(sb);
5208 EXT4_SET_RO_COMPAT_FEATURE(sb,
5209 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5210 sb->s_dirt = 1;
5211 ext4_handle_sync(handle);
5212 err = ext4_handle_dirty_metadata(handle, NULL,
5213 EXT4_SB(sb)->s_sbh);
5216 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5217 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5218 if (old_valid_dev(inode->i_rdev)) {
5219 raw_inode->i_block[0] =
5220 cpu_to_le32(old_encode_dev(inode->i_rdev));
5221 raw_inode->i_block[1] = 0;
5222 } else {
5223 raw_inode->i_block[0] = 0;
5224 raw_inode->i_block[1] =
5225 cpu_to_le32(new_encode_dev(inode->i_rdev));
5226 raw_inode->i_block[2] = 0;
5228 } else
5229 for (block = 0; block < EXT4_N_BLOCKS; block++)
5230 raw_inode->i_block[block] = ei->i_data[block];
5232 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5233 if (ei->i_extra_isize) {
5234 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5235 raw_inode->i_version_hi =
5236 cpu_to_le32(inode->i_version >> 32);
5237 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5240 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5241 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5242 if (!err)
5243 err = rc;
5244 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5246 ext4_update_inode_fsync_trans(handle, inode, 0);
5247 out_brelse:
5248 brelse(bh);
5249 ext4_std_error(inode->i_sb, err);
5250 return err;
5254 * ext4_write_inode()
5256 * We are called from a few places:
5258 * - Within generic_file_write() for O_SYNC files.
5259 * Here, there will be no transaction running. We wait for any running
5260 * trasnaction to commit.
5262 * - Within sys_sync(), kupdate and such.
5263 * We wait on commit, if tol to.
5265 * - Within prune_icache() (PF_MEMALLOC == true)
5266 * Here we simply return. We can't afford to block kswapd on the
5267 * journal commit.
5269 * In all cases it is actually safe for us to return without doing anything,
5270 * because the inode has been copied into a raw inode buffer in
5271 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5272 * knfsd.
5274 * Note that we are absolutely dependent upon all inode dirtiers doing the
5275 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5276 * which we are interested.
5278 * It would be a bug for them to not do this. The code:
5280 * mark_inode_dirty(inode)
5281 * stuff();
5282 * inode->i_size = expr;
5284 * is in error because a kswapd-driven write_inode() could occur while
5285 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5286 * will no longer be on the superblock's dirty inode list.
5288 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5290 int err;
5292 if (current->flags & PF_MEMALLOC)
5293 return 0;
5295 if (EXT4_SB(inode->i_sb)->s_journal) {
5296 if (ext4_journal_current_handle()) {
5297 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5298 dump_stack();
5299 return -EIO;
5302 if (wbc->sync_mode != WB_SYNC_ALL)
5303 return 0;
5305 err = ext4_force_commit(inode->i_sb);
5306 } else {
5307 struct ext4_iloc iloc;
5309 err = __ext4_get_inode_loc(inode, &iloc, 0);
5310 if (err)
5311 return err;
5312 if (wbc->sync_mode == WB_SYNC_ALL)
5313 sync_dirty_buffer(iloc.bh);
5314 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5315 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5316 "IO error syncing inode");
5317 err = -EIO;
5319 brelse(iloc.bh);
5321 return err;
5325 * ext4_setattr()
5327 * Called from notify_change.
5329 * We want to trap VFS attempts to truncate the file as soon as
5330 * possible. In particular, we want to make sure that when the VFS
5331 * shrinks i_size, we put the inode on the orphan list and modify
5332 * i_disksize immediately, so that during the subsequent flushing of
5333 * dirty pages and freeing of disk blocks, we can guarantee that any
5334 * commit will leave the blocks being flushed in an unused state on
5335 * disk. (On recovery, the inode will get truncated and the blocks will
5336 * be freed, so we have a strong guarantee that no future commit will
5337 * leave these blocks visible to the user.)
5339 * Another thing we have to assure is that if we are in ordered mode
5340 * and inode is still attached to the committing transaction, we must
5341 * we start writeout of all the dirty pages which are being truncated.
5342 * This way we are sure that all the data written in the previous
5343 * transaction are already on disk (truncate waits for pages under
5344 * writeback).
5346 * Called with inode->i_mutex down.
5348 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5350 struct inode *inode = dentry->d_inode;
5351 int error, rc = 0;
5352 int orphan = 0;
5353 const unsigned int ia_valid = attr->ia_valid;
5355 error = inode_change_ok(inode, attr);
5356 if (error)
5357 return error;
5359 if (is_quota_modification(inode, attr))
5360 dquot_initialize(inode);
5361 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5362 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5363 handle_t *handle;
5365 /* (user+group)*(old+new) structure, inode write (sb,
5366 * inode block, ? - but truncate inode update has it) */
5367 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5368 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5369 if (IS_ERR(handle)) {
5370 error = PTR_ERR(handle);
5371 goto err_out;
5373 error = dquot_transfer(inode, attr);
5374 if (error) {
5375 ext4_journal_stop(handle);
5376 return error;
5378 /* Update corresponding info in inode so that everything is in
5379 * one transaction */
5380 if (attr->ia_valid & ATTR_UID)
5381 inode->i_uid = attr->ia_uid;
5382 if (attr->ia_valid & ATTR_GID)
5383 inode->i_gid = attr->ia_gid;
5384 error = ext4_mark_inode_dirty(handle, inode);
5385 ext4_journal_stop(handle);
5388 if (attr->ia_valid & ATTR_SIZE) {
5389 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5390 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5392 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5393 return -EFBIG;
5397 if (S_ISREG(inode->i_mode) &&
5398 attr->ia_valid & ATTR_SIZE &&
5399 (attr->ia_size < inode->i_size)) {
5400 handle_t *handle;
5402 handle = ext4_journal_start(inode, 3);
5403 if (IS_ERR(handle)) {
5404 error = PTR_ERR(handle);
5405 goto err_out;
5407 if (ext4_handle_valid(handle)) {
5408 error = ext4_orphan_add(handle, inode);
5409 orphan = 1;
5411 EXT4_I(inode)->i_disksize = attr->ia_size;
5412 rc = ext4_mark_inode_dirty(handle, inode);
5413 if (!error)
5414 error = rc;
5415 ext4_journal_stop(handle);
5417 if (ext4_should_order_data(inode)) {
5418 error = ext4_begin_ordered_truncate(inode,
5419 attr->ia_size);
5420 if (error) {
5421 /* Do as much error cleanup as possible */
5422 handle = ext4_journal_start(inode, 3);
5423 if (IS_ERR(handle)) {
5424 ext4_orphan_del(NULL, inode);
5425 goto err_out;
5427 ext4_orphan_del(handle, inode);
5428 orphan = 0;
5429 ext4_journal_stop(handle);
5430 goto err_out;
5435 if (attr->ia_valid & ATTR_SIZE) {
5436 if (attr->ia_size != i_size_read(inode)) {
5437 truncate_setsize(inode, attr->ia_size);
5438 ext4_truncate(inode);
5439 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5440 ext4_truncate(inode);
5443 if (!rc) {
5444 setattr_copy(inode, attr);
5445 mark_inode_dirty(inode);
5449 * If the call to ext4_truncate failed to get a transaction handle at
5450 * all, we need to clean up the in-core orphan list manually.
5452 if (orphan && inode->i_nlink)
5453 ext4_orphan_del(NULL, inode);
5455 if (!rc && (ia_valid & ATTR_MODE))
5456 rc = ext4_acl_chmod(inode);
5458 err_out:
5459 ext4_std_error(inode->i_sb, error);
5460 if (!error)
5461 error = rc;
5462 return error;
5465 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5466 struct kstat *stat)
5468 struct inode *inode;
5469 unsigned long delalloc_blocks;
5471 inode = dentry->d_inode;
5472 generic_fillattr(inode, stat);
5475 * We can't update i_blocks if the block allocation is delayed
5476 * otherwise in the case of system crash before the real block
5477 * allocation is done, we will have i_blocks inconsistent with
5478 * on-disk file blocks.
5479 * We always keep i_blocks updated together with real
5480 * allocation. But to not confuse with user, stat
5481 * will return the blocks that include the delayed allocation
5482 * blocks for this file.
5484 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5486 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5487 return 0;
5490 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5491 int chunk)
5493 int indirects;
5495 /* if nrblocks are contiguous */
5496 if (chunk) {
5498 * With N contiguous data blocks, we need at most
5499 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5500 * 2 dindirect blocks, and 1 tindirect block
5502 return DIV_ROUND_UP(nrblocks,
5503 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5506 * if nrblocks are not contiguous, worse case, each block touch
5507 * a indirect block, and each indirect block touch a double indirect
5508 * block, plus a triple indirect block
5510 indirects = nrblocks * 2 + 1;
5511 return indirects;
5514 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5516 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5517 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5518 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5522 * Account for index blocks, block groups bitmaps and block group
5523 * descriptor blocks if modify datablocks and index blocks
5524 * worse case, the indexs blocks spread over different block groups
5526 * If datablocks are discontiguous, they are possible to spread over
5527 * different block groups too. If they are contiuguous, with flexbg,
5528 * they could still across block group boundary.
5530 * Also account for superblock, inode, quota and xattr blocks
5532 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5534 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535 int gdpblocks;
5536 int idxblocks;
5537 int ret = 0;
5540 * How many index blocks need to touch to modify nrblocks?
5541 * The "Chunk" flag indicating whether the nrblocks is
5542 * physically contiguous on disk
5544 * For Direct IO and fallocate, they calls get_block to allocate
5545 * one single extent at a time, so they could set the "Chunk" flag
5547 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5549 ret = idxblocks;
5552 * Now let's see how many group bitmaps and group descriptors need
5553 * to account
5555 groups = idxblocks;
5556 if (chunk)
5557 groups += 1;
5558 else
5559 groups += nrblocks;
5561 gdpblocks = groups;
5562 if (groups > ngroups)
5563 groups = ngroups;
5564 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5565 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5567 /* bitmaps and block group descriptor blocks */
5568 ret += groups + gdpblocks;
5570 /* Blocks for super block, inode, quota and xattr blocks */
5571 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5573 return ret;
5577 * Calculate the total number of credits to reserve to fit
5578 * the modification of a single pages into a single transaction,
5579 * which may include multiple chunks of block allocations.
5581 * This could be called via ext4_write_begin()
5583 * We need to consider the worse case, when
5584 * one new block per extent.
5586 int ext4_writepage_trans_blocks(struct inode *inode)
5588 int bpp = ext4_journal_blocks_per_page(inode);
5589 int ret;
5591 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5593 /* Account for data blocks for journalled mode */
5594 if (ext4_should_journal_data(inode))
5595 ret += bpp;
5596 return ret;
5600 * Calculate the journal credits for a chunk of data modification.
5602 * This is called from DIO, fallocate or whoever calling
5603 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5605 * journal buffers for data blocks are not included here, as DIO
5606 * and fallocate do no need to journal data buffers.
5608 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5610 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5614 * The caller must have previously called ext4_reserve_inode_write().
5615 * Give this, we know that the caller already has write access to iloc->bh.
5617 int ext4_mark_iloc_dirty(handle_t *handle,
5618 struct inode *inode, struct ext4_iloc *iloc)
5620 int err = 0;
5622 if (test_opt(inode->i_sb, I_VERSION))
5623 inode_inc_iversion(inode);
5625 /* the do_update_inode consumes one bh->b_count */
5626 get_bh(iloc->bh);
5628 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5629 err = ext4_do_update_inode(handle, inode, iloc);
5630 put_bh(iloc->bh);
5631 return err;
5635 * On success, We end up with an outstanding reference count against
5636 * iloc->bh. This _must_ be cleaned up later.
5640 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5641 struct ext4_iloc *iloc)
5643 int err;
5645 err = ext4_get_inode_loc(inode, iloc);
5646 if (!err) {
5647 BUFFER_TRACE(iloc->bh, "get_write_access");
5648 err = ext4_journal_get_write_access(handle, iloc->bh);
5649 if (err) {
5650 brelse(iloc->bh);
5651 iloc->bh = NULL;
5654 ext4_std_error(inode->i_sb, err);
5655 return err;
5659 * Expand an inode by new_extra_isize bytes.
5660 * Returns 0 on success or negative error number on failure.
5662 static int ext4_expand_extra_isize(struct inode *inode,
5663 unsigned int new_extra_isize,
5664 struct ext4_iloc iloc,
5665 handle_t *handle)
5667 struct ext4_inode *raw_inode;
5668 struct ext4_xattr_ibody_header *header;
5670 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5671 return 0;
5673 raw_inode = ext4_raw_inode(&iloc);
5675 header = IHDR(inode, raw_inode);
5677 /* No extended attributes present */
5678 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5679 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5680 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5681 new_extra_isize);
5682 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5683 return 0;
5686 /* try to expand with EAs present */
5687 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5688 raw_inode, handle);
5692 * What we do here is to mark the in-core inode as clean with respect to inode
5693 * dirtiness (it may still be data-dirty).
5694 * This means that the in-core inode may be reaped by prune_icache
5695 * without having to perform any I/O. This is a very good thing,
5696 * because *any* task may call prune_icache - even ones which
5697 * have a transaction open against a different journal.
5699 * Is this cheating? Not really. Sure, we haven't written the
5700 * inode out, but prune_icache isn't a user-visible syncing function.
5701 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5702 * we start and wait on commits.
5704 * Is this efficient/effective? Well, we're being nice to the system
5705 * by cleaning up our inodes proactively so they can be reaped
5706 * without I/O. But we are potentially leaving up to five seconds'
5707 * worth of inodes floating about which prune_icache wants us to
5708 * write out. One way to fix that would be to get prune_icache()
5709 * to do a write_super() to free up some memory. It has the desired
5710 * effect.
5712 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5714 struct ext4_iloc iloc;
5715 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5716 static unsigned int mnt_count;
5717 int err, ret;
5719 might_sleep();
5720 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5721 err = ext4_reserve_inode_write(handle, inode, &iloc);
5722 if (ext4_handle_valid(handle) &&
5723 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5724 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5726 * We need extra buffer credits since we may write into EA block
5727 * with this same handle. If journal_extend fails, then it will
5728 * only result in a minor loss of functionality for that inode.
5729 * If this is felt to be critical, then e2fsck should be run to
5730 * force a large enough s_min_extra_isize.
5732 if ((jbd2_journal_extend(handle,
5733 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5734 ret = ext4_expand_extra_isize(inode,
5735 sbi->s_want_extra_isize,
5736 iloc, handle);
5737 if (ret) {
5738 ext4_set_inode_state(inode,
5739 EXT4_STATE_NO_EXPAND);
5740 if (mnt_count !=
5741 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5742 ext4_warning(inode->i_sb,
5743 "Unable to expand inode %lu. Delete"
5744 " some EAs or run e2fsck.",
5745 inode->i_ino);
5746 mnt_count =
5747 le16_to_cpu(sbi->s_es->s_mnt_count);
5752 if (!err)
5753 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5754 return err;
5758 * ext4_dirty_inode() is called from __mark_inode_dirty()
5760 * We're really interested in the case where a file is being extended.
5761 * i_size has been changed by generic_commit_write() and we thus need
5762 * to include the updated inode in the current transaction.
5764 * Also, dquot_alloc_block() will always dirty the inode when blocks
5765 * are allocated to the file.
5767 * If the inode is marked synchronous, we don't honour that here - doing
5768 * so would cause a commit on atime updates, which we don't bother doing.
5769 * We handle synchronous inodes at the highest possible level.
5771 void ext4_dirty_inode(struct inode *inode, int flags)
5773 handle_t *handle;
5775 handle = ext4_journal_start(inode, 2);
5776 if (IS_ERR(handle))
5777 goto out;
5779 ext4_mark_inode_dirty(handle, inode);
5781 ext4_journal_stop(handle);
5782 out:
5783 return;
5786 #if 0
5788 * Bind an inode's backing buffer_head into this transaction, to prevent
5789 * it from being flushed to disk early. Unlike
5790 * ext4_reserve_inode_write, this leaves behind no bh reference and
5791 * returns no iloc structure, so the caller needs to repeat the iloc
5792 * lookup to mark the inode dirty later.
5794 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5796 struct ext4_iloc iloc;
5798 int err = 0;
5799 if (handle) {
5800 err = ext4_get_inode_loc(inode, &iloc);
5801 if (!err) {
5802 BUFFER_TRACE(iloc.bh, "get_write_access");
5803 err = jbd2_journal_get_write_access(handle, iloc.bh);
5804 if (!err)
5805 err = ext4_handle_dirty_metadata(handle,
5806 NULL,
5807 iloc.bh);
5808 brelse(iloc.bh);
5811 ext4_std_error(inode->i_sb, err);
5812 return err;
5814 #endif
5816 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5818 journal_t *journal;
5819 handle_t *handle;
5820 int err;
5823 * We have to be very careful here: changing a data block's
5824 * journaling status dynamically is dangerous. If we write a
5825 * data block to the journal, change the status and then delete
5826 * that block, we risk forgetting to revoke the old log record
5827 * from the journal and so a subsequent replay can corrupt data.
5828 * So, first we make sure that the journal is empty and that
5829 * nobody is changing anything.
5832 journal = EXT4_JOURNAL(inode);
5833 if (!journal)
5834 return 0;
5835 if (is_journal_aborted(journal))
5836 return -EROFS;
5838 jbd2_journal_lock_updates(journal);
5839 jbd2_journal_flush(journal);
5842 * OK, there are no updates running now, and all cached data is
5843 * synced to disk. We are now in a completely consistent state
5844 * which doesn't have anything in the journal, and we know that
5845 * no filesystem updates are running, so it is safe to modify
5846 * the inode's in-core data-journaling state flag now.
5849 if (val)
5850 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5851 else
5852 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5853 ext4_set_aops(inode);
5855 jbd2_journal_unlock_updates(journal);
5857 /* Finally we can mark the inode as dirty. */
5859 handle = ext4_journal_start(inode, 1);
5860 if (IS_ERR(handle))
5861 return PTR_ERR(handle);
5863 err = ext4_mark_inode_dirty(handle, inode);
5864 ext4_handle_sync(handle);
5865 ext4_journal_stop(handle);
5866 ext4_std_error(inode->i_sb, err);
5868 return err;
5871 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5873 return !buffer_mapped(bh);
5876 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5878 struct page *page = vmf->page;
5879 loff_t size;
5880 unsigned long len;
5881 int ret = -EINVAL;
5882 void *fsdata;
5883 struct file *file = vma->vm_file;
5884 struct inode *inode = file->f_path.dentry->d_inode;
5885 struct address_space *mapping = inode->i_mapping;
5888 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5889 * get i_mutex because we are already holding mmap_sem.
5891 down_read(&inode->i_alloc_sem);
5892 size = i_size_read(inode);
5893 if (page->mapping != mapping || size <= page_offset(page)
5894 || !PageUptodate(page)) {
5895 /* page got truncated from under us? */
5896 goto out_unlock;
5898 ret = 0;
5900 lock_page(page);
5901 wait_on_page_writeback(page);
5902 if (PageMappedToDisk(page)) {
5903 up_read(&inode->i_alloc_sem);
5904 return VM_FAULT_LOCKED;
5907 if (page->index == size >> PAGE_CACHE_SHIFT)
5908 len = size & ~PAGE_CACHE_MASK;
5909 else
5910 len = PAGE_CACHE_SIZE;
5913 * return if we have all the buffers mapped. This avoid
5914 * the need to call write_begin/write_end which does a
5915 * journal_start/journal_stop which can block and take
5916 * long time
5918 if (page_has_buffers(page)) {
5919 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5920 ext4_bh_unmapped)) {
5921 up_read(&inode->i_alloc_sem);
5922 return VM_FAULT_LOCKED;
5925 unlock_page(page);
5927 * OK, we need to fill the hole... Do write_begin write_end
5928 * to do block allocation/reservation.We are not holding
5929 * inode.i__mutex here. That allow * parallel write_begin,
5930 * write_end call. lock_page prevent this from happening
5931 * on the same page though
5933 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5934 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5935 if (ret < 0)
5936 goto out_unlock;
5937 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5938 len, len, page, fsdata);
5939 if (ret < 0)
5940 goto out_unlock;
5941 ret = 0;
5944 * write_begin/end might have created a dirty page and someone
5945 * could wander in and start the IO. Make sure that hasn't
5946 * happened.
5948 lock_page(page);
5949 wait_on_page_writeback(page);
5950 up_read(&inode->i_alloc_sem);
5951 return VM_FAULT_LOCKED;
5952 out_unlock:
5953 if (ret)
5954 ret = VM_FAULT_SIGBUS;
5955 up_read(&inode->i_alloc_sem);
5956 return ret;