2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
46 #include "ext4_jbd2.h"
49 #include "ext4_extents.h"
51 #include <trace/events/ext4.h>
53 #define MPAGE_DA_EXTENT_TAIL 0x01
55 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
58 trace_ext4_begin_ordered_truncate(inode
, new_size
);
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
65 if (!EXT4_I(inode
)->jinode
)
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
68 EXT4_I(inode
)->jinode
,
72 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
73 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
74 struct buffer_head
*bh_result
, int create
);
75 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
76 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
77 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
78 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
81 * Test whether an inode is a fast symlink.
83 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
85 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
86 (inode
->i_sb
->s_blocksize
>> 9) : 0;
88 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
95 static unsigned long blocks_for_truncate(struct inode
*inode
)
99 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
110 /* But we need to bound the transaction so we don't overflow the
112 if (needed
> EXT4_MAX_TRANS_DATA
)
113 needed
= EXT4_MAX_TRANS_DATA
;
115 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
128 static handle_t
*start_transaction(struct inode
*inode
)
132 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
136 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
141 * Try to extend this transaction for the purposes of truncation.
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
146 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
148 if (!ext4_handle_valid(handle
))
150 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
152 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
162 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
173 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
174 jbd_debug(2, "restarting handle %p\n", handle
);
175 up_write(&EXT4_I(inode
)->i_data_sem
);
176 ret
= ext4_journal_restart(handle
, nblocks
);
177 down_write(&EXT4_I(inode
)->i_data_sem
);
178 ext4_discard_preallocations(inode
);
184 * Called at the last iput() if i_nlink is zero.
186 void ext4_evict_inode(struct inode
*inode
)
191 trace_ext4_evict_inode(inode
);
193 ext4_ioend_wait(inode
);
195 if (inode
->i_nlink
) {
196 truncate_inode_pages(&inode
->i_data
, 0);
200 if (!is_bad_inode(inode
))
201 dquot_initialize(inode
);
203 if (ext4_should_order_data(inode
))
204 ext4_begin_ordered_truncate(inode
, 0);
205 truncate_inode_pages(&inode
->i_data
, 0);
207 if (is_bad_inode(inode
))
210 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
211 if (IS_ERR(handle
)) {
212 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
214 * If we're going to skip the normal cleanup, we still need to
215 * make sure that the in-core orphan linked list is properly
218 ext4_orphan_del(NULL
, inode
);
223 ext4_handle_sync(handle
);
225 err
= ext4_mark_inode_dirty(handle
, inode
);
227 ext4_warning(inode
->i_sb
,
228 "couldn't mark inode dirty (err %d)", err
);
232 ext4_truncate(inode
);
235 * ext4_ext_truncate() doesn't reserve any slop when it
236 * restarts journal transactions; therefore there may not be
237 * enough credits left in the handle to remove the inode from
238 * the orphan list and set the dtime field.
240 if (!ext4_handle_has_enough_credits(handle
, 3)) {
241 err
= ext4_journal_extend(handle
, 3);
243 err
= ext4_journal_restart(handle
, 3);
245 ext4_warning(inode
->i_sb
,
246 "couldn't extend journal (err %d)", err
);
248 ext4_journal_stop(handle
);
249 ext4_orphan_del(NULL
, inode
);
255 * Kill off the orphan record which ext4_truncate created.
256 * AKPM: I think this can be inside the above `if'.
257 * Note that ext4_orphan_del() has to be able to cope with the
258 * deletion of a non-existent orphan - this is because we don't
259 * know if ext4_truncate() actually created an orphan record.
260 * (Well, we could do this if we need to, but heck - it works)
262 ext4_orphan_del(handle
, inode
);
263 EXT4_I(inode
)->i_dtime
= get_seconds();
266 * One subtle ordering requirement: if anything has gone wrong
267 * (transaction abort, IO errors, whatever), then we can still
268 * do these next steps (the fs will already have been marked as
269 * having errors), but we can't free the inode if the mark_dirty
272 if (ext4_mark_inode_dirty(handle
, inode
))
273 /* If that failed, just do the required in-core inode clear. */
274 ext4_clear_inode(inode
);
276 ext4_free_inode(handle
, inode
);
277 ext4_journal_stop(handle
);
280 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
286 struct buffer_head
*bh
;
289 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
291 p
->key
= *(p
->p
= v
);
296 * ext4_block_to_path - parse the block number into array of offsets
297 * @inode: inode in question (we are only interested in its superblock)
298 * @i_block: block number to be parsed
299 * @offsets: array to store the offsets in
300 * @boundary: set this non-zero if the referred-to block is likely to be
301 * followed (on disk) by an indirect block.
303 * To store the locations of file's data ext4 uses a data structure common
304 * for UNIX filesystems - tree of pointers anchored in the inode, with
305 * data blocks at leaves and indirect blocks in intermediate nodes.
306 * This function translates the block number into path in that tree -
307 * return value is the path length and @offsets[n] is the offset of
308 * pointer to (n+1)th node in the nth one. If @block is out of range
309 * (negative or too large) warning is printed and zero returned.
311 * Note: function doesn't find node addresses, so no IO is needed. All
312 * we need to know is the capacity of indirect blocks (taken from the
317 * Portability note: the last comparison (check that we fit into triple
318 * indirect block) is spelled differently, because otherwise on an
319 * architecture with 32-bit longs and 8Kb pages we might get into trouble
320 * if our filesystem had 8Kb blocks. We might use long long, but that would
321 * kill us on x86. Oh, well, at least the sign propagation does not matter -
322 * i_block would have to be negative in the very beginning, so we would not
326 static int ext4_block_to_path(struct inode
*inode
,
328 ext4_lblk_t offsets
[4], int *boundary
)
330 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
331 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
332 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
333 indirect_blocks
= ptrs
,
334 double_blocks
= (1 << (ptrs_bits
* 2));
338 if (i_block
< direct_blocks
) {
339 offsets
[n
++] = i_block
;
340 final
= direct_blocks
;
341 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
342 offsets
[n
++] = EXT4_IND_BLOCK
;
343 offsets
[n
++] = i_block
;
345 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
346 offsets
[n
++] = EXT4_DIND_BLOCK
;
347 offsets
[n
++] = i_block
>> ptrs_bits
;
348 offsets
[n
++] = i_block
& (ptrs
- 1);
350 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
351 offsets
[n
++] = EXT4_TIND_BLOCK
;
352 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
353 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
354 offsets
[n
++] = i_block
& (ptrs
- 1);
357 ext4_warning(inode
->i_sb
, "block %lu > max in inode %lu",
358 i_block
+ direct_blocks
+
359 indirect_blocks
+ double_blocks
, inode
->i_ino
);
362 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
366 static int __ext4_check_blockref(const char *function
, unsigned int line
,
368 __le32
*p
, unsigned int max
)
370 struct ext4_super_block
*es
= EXT4_SB(inode
->i_sb
)->s_es
;
374 while (bref
< p
+max
) {
375 blk
= le32_to_cpu(*bref
++);
377 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
379 es
->s_last_error_block
= cpu_to_le64(blk
);
380 ext4_error_inode(inode
, function
, line
, blk
,
389 #define ext4_check_indirect_blockref(inode, bh) \
390 __ext4_check_blockref(__func__, __LINE__, inode, \
391 (__le32 *)(bh)->b_data, \
392 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
394 #define ext4_check_inode_blockref(inode) \
395 __ext4_check_blockref(__func__, __LINE__, inode, \
396 EXT4_I(inode)->i_data, \
400 * ext4_get_branch - read the chain of indirect blocks leading to data
401 * @inode: inode in question
402 * @depth: depth of the chain (1 - direct pointer, etc.)
403 * @offsets: offsets of pointers in inode/indirect blocks
404 * @chain: place to store the result
405 * @err: here we store the error value
407 * Function fills the array of triples <key, p, bh> and returns %NULL
408 * if everything went OK or the pointer to the last filled triple
409 * (incomplete one) otherwise. Upon the return chain[i].key contains
410 * the number of (i+1)-th block in the chain (as it is stored in memory,
411 * i.e. little-endian 32-bit), chain[i].p contains the address of that
412 * number (it points into struct inode for i==0 and into the bh->b_data
413 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
414 * block for i>0 and NULL for i==0. In other words, it holds the block
415 * numbers of the chain, addresses they were taken from (and where we can
416 * verify that chain did not change) and buffer_heads hosting these
419 * Function stops when it stumbles upon zero pointer (absent block)
420 * (pointer to last triple returned, *@err == 0)
421 * or when it gets an IO error reading an indirect block
422 * (ditto, *@err == -EIO)
423 * or when it reads all @depth-1 indirect blocks successfully and finds
424 * the whole chain, all way to the data (returns %NULL, *err == 0).
426 * Need to be called with
427 * down_read(&EXT4_I(inode)->i_data_sem)
429 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
430 ext4_lblk_t
*offsets
,
431 Indirect chain
[4], int *err
)
433 struct super_block
*sb
= inode
->i_sb
;
435 struct buffer_head
*bh
;
438 /* i_data is not going away, no lock needed */
439 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
443 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
447 if (!bh_uptodate_or_lock(bh
)) {
448 if (bh_submit_read(bh
) < 0) {
452 /* validate block references */
453 if (ext4_check_indirect_blockref(inode
, bh
)) {
459 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
473 * ext4_find_near - find a place for allocation with sufficient locality
475 * @ind: descriptor of indirect block.
477 * This function returns the preferred place for block allocation.
478 * It is used when heuristic for sequential allocation fails.
480 * + if there is a block to the left of our position - allocate near it.
481 * + if pointer will live in indirect block - allocate near that block.
482 * + if pointer will live in inode - allocate in the same
485 * In the latter case we colour the starting block by the callers PID to
486 * prevent it from clashing with concurrent allocations for a different inode
487 * in the same block group. The PID is used here so that functionally related
488 * files will be close-by on-disk.
490 * Caller must make sure that @ind is valid and will stay that way.
492 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
494 struct ext4_inode_info
*ei
= EXT4_I(inode
);
495 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
497 ext4_fsblk_t bg_start
;
498 ext4_fsblk_t last_block
;
499 ext4_grpblk_t colour
;
500 ext4_group_t block_group
;
501 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
503 /* Try to find previous block */
504 for (p
= ind
->p
- 1; p
>= start
; p
--) {
506 return le32_to_cpu(*p
);
509 /* No such thing, so let's try location of indirect block */
511 return ind
->bh
->b_blocknr
;
514 * It is going to be referred to from the inode itself? OK, just put it
515 * into the same cylinder group then.
517 block_group
= ei
->i_block_group
;
518 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
519 block_group
&= ~(flex_size
-1);
520 if (S_ISREG(inode
->i_mode
))
523 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
524 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
527 * If we are doing delayed allocation, we don't need take
528 * colour into account.
530 if (test_opt(inode
->i_sb
, DELALLOC
))
533 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
534 colour
= (current
->pid
% 16) *
535 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
537 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
538 return bg_start
+ colour
;
542 * ext4_find_goal - find a preferred place for allocation.
544 * @block: block we want
545 * @partial: pointer to the last triple within a chain
547 * Normally this function find the preferred place for block allocation,
549 * Because this is only used for non-extent files, we limit the block nr
552 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
558 * XXX need to get goal block from mballoc's data structures
561 goal
= ext4_find_near(inode
, partial
);
562 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
567 * ext4_blks_to_allocate - Look up the block map and count the number
568 * of direct blocks need to be allocated for the given branch.
570 * @branch: chain of indirect blocks
571 * @k: number of blocks need for indirect blocks
572 * @blks: number of data blocks to be mapped.
573 * @blocks_to_boundary: the offset in the indirect block
575 * return the total number of blocks to be allocate, including the
576 * direct and indirect blocks.
578 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
579 int blocks_to_boundary
)
581 unsigned int count
= 0;
584 * Simple case, [t,d]Indirect block(s) has not allocated yet
585 * then it's clear blocks on that path have not allocated
588 /* right now we don't handle cross boundary allocation */
589 if (blks
< blocks_to_boundary
+ 1)
592 count
+= blocks_to_boundary
+ 1;
597 while (count
< blks
&& count
<= blocks_to_boundary
&&
598 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
605 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
606 * @handle: handle for this transaction
607 * @inode: inode which needs allocated blocks
608 * @iblock: the logical block to start allocated at
609 * @goal: preferred physical block of allocation
610 * @indirect_blks: the number of blocks need to allocate for indirect
612 * @blks: number of desired blocks
613 * @new_blocks: on return it will store the new block numbers for
614 * the indirect blocks(if needed) and the first direct block,
615 * @err: on return it will store the error code
617 * This function will return the number of blocks allocated as
618 * requested by the passed-in parameters.
620 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
621 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
622 int indirect_blks
, int blks
,
623 ext4_fsblk_t new_blocks
[4], int *err
)
625 struct ext4_allocation_request ar
;
627 unsigned long count
= 0, blk_allocated
= 0;
629 ext4_fsblk_t current_block
= 0;
633 * Here we try to allocate the requested multiple blocks at once,
634 * on a best-effort basis.
635 * To build a branch, we should allocate blocks for
636 * the indirect blocks(if not allocated yet), and at least
637 * the first direct block of this branch. That's the
638 * minimum number of blocks need to allocate(required)
640 /* first we try to allocate the indirect blocks */
641 target
= indirect_blks
;
644 /* allocating blocks for indirect blocks and direct blocks */
645 current_block
= ext4_new_meta_blocks(handle
, inode
, goal
,
650 if (unlikely(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
651 EXT4_ERROR_INODE(inode
,
652 "current_block %llu + count %lu > %d!",
653 current_block
, count
,
654 EXT4_MAX_BLOCK_FILE_PHYS
);
660 /* allocate blocks for indirect blocks */
661 while (index
< indirect_blks
&& count
) {
662 new_blocks
[index
++] = current_block
++;
667 * save the new block number
668 * for the first direct block
670 new_blocks
[index
] = current_block
;
671 printk(KERN_INFO
"%s returned more blocks than "
672 "requested\n", __func__
);
678 target
= blks
- count
;
679 blk_allocated
= count
;
682 /* Now allocate data blocks */
683 memset(&ar
, 0, sizeof(ar
));
688 if (S_ISREG(inode
->i_mode
))
689 /* enable in-core preallocation only for regular files */
690 ar
.flags
= EXT4_MB_HINT_DATA
;
692 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
693 if (unlikely(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
694 EXT4_ERROR_INODE(inode
,
695 "current_block %llu + ar.len %d > %d!",
696 current_block
, ar
.len
,
697 EXT4_MAX_BLOCK_FILE_PHYS
);
702 if (*err
&& (target
== blks
)) {
704 * if the allocation failed and we didn't allocate
710 if (target
== blks
) {
712 * save the new block number
713 * for the first direct block
715 new_blocks
[index
] = current_block
;
717 blk_allocated
+= ar
.len
;
720 /* total number of blocks allocated for direct blocks */
725 for (i
= 0; i
< index
; i
++)
726 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], 1, 0);
731 * ext4_alloc_branch - allocate and set up a chain of blocks.
732 * @handle: handle for this transaction
734 * @indirect_blks: number of allocated indirect blocks
735 * @blks: number of allocated direct blocks
736 * @goal: preferred place for allocation
737 * @offsets: offsets (in the blocks) to store the pointers to next.
738 * @branch: place to store the chain in.
740 * This function allocates blocks, zeroes out all but the last one,
741 * links them into chain and (if we are synchronous) writes them to disk.
742 * In other words, it prepares a branch that can be spliced onto the
743 * inode. It stores the information about that chain in the branch[], in
744 * the same format as ext4_get_branch() would do. We are calling it after
745 * we had read the existing part of chain and partial points to the last
746 * triple of that (one with zero ->key). Upon the exit we have the same
747 * picture as after the successful ext4_get_block(), except that in one
748 * place chain is disconnected - *branch->p is still zero (we did not
749 * set the last link), but branch->key contains the number that should
750 * be placed into *branch->p to fill that gap.
752 * If allocation fails we free all blocks we've allocated (and forget
753 * their buffer_heads) and return the error value the from failed
754 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
755 * as described above and return 0.
757 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
758 ext4_lblk_t iblock
, int indirect_blks
,
759 int *blks
, ext4_fsblk_t goal
,
760 ext4_lblk_t
*offsets
, Indirect
*branch
)
762 int blocksize
= inode
->i_sb
->s_blocksize
;
765 struct buffer_head
*bh
;
767 ext4_fsblk_t new_blocks
[4];
768 ext4_fsblk_t current_block
;
770 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
771 *blks
, new_blocks
, &err
);
775 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
777 * metadata blocks and data blocks are allocated.
779 for (n
= 1; n
<= indirect_blks
; n
++) {
781 * Get buffer_head for parent block, zero it out
782 * and set the pointer to new one, then send
785 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
793 BUFFER_TRACE(bh
, "call get_create_access");
794 err
= ext4_journal_get_create_access(handle
, bh
);
796 /* Don't brelse(bh) here; it's done in
797 * ext4_journal_forget() below */
802 memset(bh
->b_data
, 0, blocksize
);
803 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
804 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
805 *branch
[n
].p
= branch
[n
].key
;
806 if (n
== indirect_blks
) {
807 current_block
= new_blocks
[n
];
809 * End of chain, update the last new metablock of
810 * the chain to point to the new allocated
811 * data blocks numbers
813 for (i
= 1; i
< num
; i
++)
814 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
816 BUFFER_TRACE(bh
, "marking uptodate");
817 set_buffer_uptodate(bh
);
820 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
821 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
828 /* Allocation failed, free what we already allocated */
829 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[0], 1, 0);
830 for (i
= 1; i
<= n
; i
++) {
832 * branch[i].bh is newly allocated, so there is no
833 * need to revoke the block, which is why we don't
834 * need to set EXT4_FREE_BLOCKS_METADATA.
836 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], 1,
837 EXT4_FREE_BLOCKS_FORGET
);
839 for (i
= n
+1; i
< indirect_blks
; i
++)
840 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], 1, 0);
842 ext4_free_blocks(handle
, inode
, NULL
, new_blocks
[i
], num
, 0);
848 * ext4_splice_branch - splice the allocated branch onto inode.
849 * @handle: handle for this transaction
851 * @block: (logical) number of block we are adding
852 * @chain: chain of indirect blocks (with a missing link - see
854 * @where: location of missing link
855 * @num: number of indirect blocks we are adding
856 * @blks: number of direct blocks we are adding
858 * This function fills the missing link and does all housekeeping needed in
859 * inode (->i_blocks, etc.). In case of success we end up with the full
860 * chain to new block and return 0.
862 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
863 ext4_lblk_t block
, Indirect
*where
, int num
,
868 ext4_fsblk_t current_block
;
871 * If we're splicing into a [td]indirect block (as opposed to the
872 * inode) then we need to get write access to the [td]indirect block
876 BUFFER_TRACE(where
->bh
, "get_write_access");
877 err
= ext4_journal_get_write_access(handle
, where
->bh
);
883 *where
->p
= where
->key
;
886 * Update the host buffer_head or inode to point to more just allocated
887 * direct blocks blocks
889 if (num
== 0 && blks
> 1) {
890 current_block
= le32_to_cpu(where
->key
) + 1;
891 for (i
= 1; i
< blks
; i
++)
892 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
895 /* We are done with atomic stuff, now do the rest of housekeeping */
896 /* had we spliced it onto indirect block? */
899 * If we spliced it onto an indirect block, we haven't
900 * altered the inode. Note however that if it is being spliced
901 * onto an indirect block at the very end of the file (the
902 * file is growing) then we *will* alter the inode to reflect
903 * the new i_size. But that is not done here - it is done in
904 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
906 jbd_debug(5, "splicing indirect only\n");
907 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
908 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
913 * OK, we spliced it into the inode itself on a direct block.
915 ext4_mark_inode_dirty(handle
, inode
);
916 jbd_debug(5, "splicing direct\n");
921 for (i
= 1; i
<= num
; i
++) {
923 * branch[i].bh is newly allocated, so there is no
924 * need to revoke the block, which is why we don't
925 * need to set EXT4_FREE_BLOCKS_METADATA.
927 ext4_free_blocks(handle
, inode
, where
[i
].bh
, 0, 1,
928 EXT4_FREE_BLOCKS_FORGET
);
930 ext4_free_blocks(handle
, inode
, NULL
, le32_to_cpu(where
[num
].key
),
937 * The ext4_ind_map_blocks() function handles non-extents inodes
938 * (i.e., using the traditional indirect/double-indirect i_blocks
939 * scheme) for ext4_map_blocks().
941 * Allocation strategy is simple: if we have to allocate something, we will
942 * have to go the whole way to leaf. So let's do it before attaching anything
943 * to tree, set linkage between the newborn blocks, write them if sync is
944 * required, recheck the path, free and repeat if check fails, otherwise
945 * set the last missing link (that will protect us from any truncate-generated
946 * removals - all blocks on the path are immune now) and possibly force the
947 * write on the parent block.
948 * That has a nice additional property: no special recovery from the failed
949 * allocations is needed - we simply release blocks and do not touch anything
950 * reachable from inode.
952 * `handle' can be NULL if create == 0.
954 * return > 0, # of blocks mapped or allocated.
955 * return = 0, if plain lookup failed.
956 * return < 0, error case.
958 * The ext4_ind_get_blocks() function should be called with
959 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
960 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
961 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
964 static int ext4_ind_map_blocks(handle_t
*handle
, struct inode
*inode
,
965 struct ext4_map_blocks
*map
,
969 ext4_lblk_t offsets
[4];
974 int blocks_to_boundary
= 0;
977 ext4_fsblk_t first_block
= 0;
979 trace_ext4_ind_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
980 J_ASSERT(!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)));
981 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
982 depth
= ext4_block_to_path(inode
, map
->m_lblk
, offsets
,
983 &blocks_to_boundary
);
988 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
990 /* Simplest case - block found, no allocation needed */
992 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
995 while (count
< map
->m_len
&& count
<= blocks_to_boundary
) {
998 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
1000 if (blk
== first_block
+ count
)
1008 /* Next simple case - plain lookup or failed read of indirect block */
1009 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
1013 * Okay, we need to do block allocation.
1015 goal
= ext4_find_goal(inode
, map
->m_lblk
, partial
);
1017 /* the number of blocks need to allocate for [d,t]indirect blocks */
1018 indirect_blks
= (chain
+ depth
) - partial
- 1;
1021 * Next look up the indirect map to count the totoal number of
1022 * direct blocks to allocate for this branch.
1024 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1025 map
->m_len
, blocks_to_boundary
);
1027 * Block out ext4_truncate while we alter the tree
1029 err
= ext4_alloc_branch(handle
, inode
, map
->m_lblk
, indirect_blks
,
1031 offsets
+ (partial
- chain
), partial
);
1034 * The ext4_splice_branch call will free and forget any buffers
1035 * on the new chain if there is a failure, but that risks using
1036 * up transaction credits, especially for bitmaps where the
1037 * credits cannot be returned. Can we handle this somehow? We
1038 * may need to return -EAGAIN upwards in the worst case. --sct
1041 err
= ext4_splice_branch(handle
, inode
, map
->m_lblk
,
1042 partial
, indirect_blks
, count
);
1046 map
->m_flags
|= EXT4_MAP_NEW
;
1048 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1050 map
->m_flags
|= EXT4_MAP_MAPPED
;
1051 map
->m_pblk
= le32_to_cpu(chain
[depth
-1].key
);
1053 if (count
> blocks_to_boundary
)
1054 map
->m_flags
|= EXT4_MAP_BOUNDARY
;
1056 /* Clean up and exit */
1057 partial
= chain
+ depth
- 1; /* the whole chain */
1059 while (partial
> chain
) {
1060 BUFFER_TRACE(partial
->bh
, "call brelse");
1061 brelse(partial
->bh
);
1065 trace_ext4_ind_map_blocks_exit(inode
, map
->m_lblk
,
1066 map
->m_pblk
, map
->m_len
, err
);
1071 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1073 return &EXT4_I(inode
)->i_reserved_quota
;
1078 * Calculate the number of metadata blocks need to reserve
1079 * to allocate a new block at @lblocks for non extent file based file
1081 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1084 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1085 sector_t dind_mask
= ~((sector_t
)EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1);
1088 if (lblock
< EXT4_NDIR_BLOCKS
)
1091 lblock
-= EXT4_NDIR_BLOCKS
;
1093 if (ei
->i_da_metadata_calc_len
&&
1094 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1095 ei
->i_da_metadata_calc_len
++;
1098 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1099 ei
->i_da_metadata_calc_len
= 1;
1100 blk_bits
= order_base_2(lblock
);
1101 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1105 * Calculate the number of metadata blocks need to reserve
1106 * to allocate a block located at @lblock
1108 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
1110 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1111 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1113 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1117 * Called with i_data_sem down, which is important since we can call
1118 * ext4_discard_preallocations() from here.
1120 void ext4_da_update_reserve_space(struct inode
*inode
,
1121 int used
, int quota_claim
)
1123 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1124 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1126 spin_lock(&ei
->i_block_reservation_lock
);
1127 trace_ext4_da_update_reserve_space(inode
, used
);
1128 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1129 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1130 "with only %d reserved data blocks\n",
1131 __func__
, inode
->i_ino
, used
,
1132 ei
->i_reserved_data_blocks
);
1134 used
= ei
->i_reserved_data_blocks
;
1137 /* Update per-inode reservations */
1138 ei
->i_reserved_data_blocks
-= used
;
1139 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1140 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1141 used
+ ei
->i_allocated_meta_blocks
);
1142 ei
->i_allocated_meta_blocks
= 0;
1144 if (ei
->i_reserved_data_blocks
== 0) {
1146 * We can release all of the reserved metadata blocks
1147 * only when we have written all of the delayed
1148 * allocation blocks.
1150 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1151 ei
->i_reserved_meta_blocks
);
1152 ei
->i_reserved_meta_blocks
= 0;
1153 ei
->i_da_metadata_calc_len
= 0;
1155 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1157 /* Update quota subsystem for data blocks */
1159 dquot_claim_block(inode
, used
);
1162 * We did fallocate with an offset that is already delayed
1163 * allocated. So on delayed allocated writeback we should
1164 * not re-claim the quota for fallocated blocks.
1166 dquot_release_reservation_block(inode
, used
);
1170 * If we have done all the pending block allocations and if
1171 * there aren't any writers on the inode, we can discard the
1172 * inode's preallocations.
1174 if ((ei
->i_reserved_data_blocks
== 0) &&
1175 (atomic_read(&inode
->i_writecount
) == 0))
1176 ext4_discard_preallocations(inode
);
1179 static int __check_block_validity(struct inode
*inode
, const char *func
,
1181 struct ext4_map_blocks
*map
)
1183 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
1185 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
1186 "lblock %lu mapped to illegal pblock "
1187 "(length %d)", (unsigned long) map
->m_lblk
,
1194 #define check_block_validity(inode, map) \
1195 __check_block_validity((inode), __func__, __LINE__, (map))
1198 * Return the number of contiguous dirty pages in a given inode
1199 * starting at page frame idx.
1201 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1202 unsigned int max_pages
)
1204 struct address_space
*mapping
= inode
->i_mapping
;
1206 struct pagevec pvec
;
1208 int i
, nr_pages
, done
= 0;
1212 pagevec_init(&pvec
, 0);
1215 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1216 PAGECACHE_TAG_DIRTY
,
1217 (pgoff_t
)PAGEVEC_SIZE
);
1220 for (i
= 0; i
< nr_pages
; i
++) {
1221 struct page
*page
= pvec
.pages
[i
];
1222 struct buffer_head
*bh
, *head
;
1225 if (unlikely(page
->mapping
!= mapping
) ||
1227 PageWriteback(page
) ||
1228 page
->index
!= idx
) {
1233 if (page_has_buffers(page
)) {
1234 bh
= head
= page_buffers(page
);
1236 if (!buffer_delay(bh
) &&
1237 !buffer_unwritten(bh
))
1239 bh
= bh
->b_this_page
;
1240 } while (!done
&& (bh
!= head
));
1247 if (num
>= max_pages
) {
1252 pagevec_release(&pvec
);
1258 * The ext4_map_blocks() function tries to look up the requested blocks,
1259 * and returns if the blocks are already mapped.
1261 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1262 * and store the allocated blocks in the result buffer head and mark it
1265 * If file type is extents based, it will call ext4_ext_map_blocks(),
1266 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1269 * On success, it returns the number of blocks being mapped or allocate.
1270 * if create==0 and the blocks are pre-allocated and uninitialized block,
1271 * the result buffer head is unmapped. If the create ==1, it will make sure
1272 * the buffer head is mapped.
1274 * It returns 0 if plain look up failed (blocks have not been allocated), in
1275 * that casem, buffer head is unmapped
1277 * It returns the error in case of allocation failure.
1279 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
1280 struct ext4_map_blocks
*map
, int flags
)
1285 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1286 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
1287 (unsigned long) map
->m_lblk
);
1289 * Try to see if we can get the block without requesting a new
1290 * file system block.
1292 down_read((&EXT4_I(inode
)->i_data_sem
));
1293 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1294 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
1296 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
1298 up_read((&EXT4_I(inode
)->i_data_sem
));
1300 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1301 int ret
= check_block_validity(inode
, map
);
1306 /* If it is only a block(s) look up */
1307 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1311 * Returns if the blocks have already allocated
1313 * Note that if blocks have been preallocated
1314 * ext4_ext_get_block() returns th create = 0
1315 * with buffer head unmapped.
1317 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
1321 * When we call get_blocks without the create flag, the
1322 * BH_Unwritten flag could have gotten set if the blocks
1323 * requested were part of a uninitialized extent. We need to
1324 * clear this flag now that we are committed to convert all or
1325 * part of the uninitialized extent to be an initialized
1326 * extent. This is because we need to avoid the combination
1327 * of BH_Unwritten and BH_Mapped flags being simultaneously
1328 * set on the buffer_head.
1330 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
1333 * New blocks allocate and/or writing to uninitialized extent
1334 * will possibly result in updating i_data, so we take
1335 * the write lock of i_data_sem, and call get_blocks()
1336 * with create == 1 flag.
1338 down_write((&EXT4_I(inode
)->i_data_sem
));
1341 * if the caller is from delayed allocation writeout path
1342 * we have already reserved fs blocks for allocation
1343 * let the underlying get_block() function know to
1344 * avoid double accounting
1346 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1347 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
1349 * We need to check for EXT4 here because migrate
1350 * could have changed the inode type in between
1352 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1353 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
1355 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
1357 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
1359 * We allocated new blocks which will result in
1360 * i_data's format changing. Force the migrate
1361 * to fail by clearing migrate flags
1363 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1367 * Update reserved blocks/metadata blocks after successful
1368 * block allocation which had been deferred till now. We don't
1369 * support fallocate for non extent files. So we can update
1370 * reserve space here.
1373 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1374 ext4_da_update_reserve_space(inode
, retval
, 1);
1376 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1377 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
1379 up_write((&EXT4_I(inode
)->i_data_sem
));
1380 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
1381 int ret
= check_block_validity(inode
, map
);
1388 /* Maximum number of blocks we map for direct IO at once. */
1389 #define DIO_MAX_BLOCKS 4096
1391 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
1392 struct buffer_head
*bh
, int flags
)
1394 handle_t
*handle
= ext4_journal_current_handle();
1395 struct ext4_map_blocks map
;
1396 int ret
= 0, started
= 0;
1399 map
.m_lblk
= iblock
;
1400 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
1402 if (flags
&& !handle
) {
1403 /* Direct IO write... */
1404 if (map
.m_len
> DIO_MAX_BLOCKS
)
1405 map
.m_len
= DIO_MAX_BLOCKS
;
1406 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
1407 handle
= ext4_journal_start(inode
, dio_credits
);
1408 if (IS_ERR(handle
)) {
1409 ret
= PTR_ERR(handle
);
1415 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
1417 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1418 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1419 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
1423 ext4_journal_stop(handle
);
1427 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1428 struct buffer_head
*bh
, int create
)
1430 return _ext4_get_block(inode
, iblock
, bh
,
1431 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1435 * `handle' can be NULL if create is zero
1437 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1438 ext4_lblk_t block
, int create
, int *errp
)
1440 struct ext4_map_blocks map
;
1441 struct buffer_head
*bh
;
1444 J_ASSERT(handle
!= NULL
|| create
== 0);
1448 err
= ext4_map_blocks(handle
, inode
, &map
,
1449 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1457 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
1462 if (map
.m_flags
& EXT4_MAP_NEW
) {
1463 J_ASSERT(create
!= 0);
1464 J_ASSERT(handle
!= NULL
);
1467 * Now that we do not always journal data, we should
1468 * keep in mind whether this should always journal the
1469 * new buffer as metadata. For now, regular file
1470 * writes use ext4_get_block instead, so it's not a
1474 BUFFER_TRACE(bh
, "call get_create_access");
1475 fatal
= ext4_journal_get_create_access(handle
, bh
);
1476 if (!fatal
&& !buffer_uptodate(bh
)) {
1477 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1478 set_buffer_uptodate(bh
);
1481 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1482 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1486 BUFFER_TRACE(bh
, "not a new buffer");
1496 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1497 ext4_lblk_t block
, int create
, int *err
)
1499 struct buffer_head
*bh
;
1501 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1504 if (buffer_uptodate(bh
))
1506 ll_rw_block(READ_META
, 1, &bh
);
1508 if (buffer_uptodate(bh
))
1515 static int walk_page_buffers(handle_t
*handle
,
1516 struct buffer_head
*head
,
1520 int (*fn
)(handle_t
*handle
,
1521 struct buffer_head
*bh
))
1523 struct buffer_head
*bh
;
1524 unsigned block_start
, block_end
;
1525 unsigned blocksize
= head
->b_size
;
1527 struct buffer_head
*next
;
1529 for (bh
= head
, block_start
= 0;
1530 ret
== 0 && (bh
!= head
|| !block_start
);
1531 block_start
= block_end
, bh
= next
) {
1532 next
= bh
->b_this_page
;
1533 block_end
= block_start
+ blocksize
;
1534 if (block_end
<= from
|| block_start
>= to
) {
1535 if (partial
&& !buffer_uptodate(bh
))
1539 err
= (*fn
)(handle
, bh
);
1547 * To preserve ordering, it is essential that the hole instantiation and
1548 * the data write be encapsulated in a single transaction. We cannot
1549 * close off a transaction and start a new one between the ext4_get_block()
1550 * and the commit_write(). So doing the jbd2_journal_start at the start of
1551 * prepare_write() is the right place.
1553 * Also, this function can nest inside ext4_writepage() ->
1554 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1555 * has generated enough buffer credits to do the whole page. So we won't
1556 * block on the journal in that case, which is good, because the caller may
1559 * By accident, ext4 can be reentered when a transaction is open via
1560 * quota file writes. If we were to commit the transaction while thus
1561 * reentered, there can be a deadlock - we would be holding a quota
1562 * lock, and the commit would never complete if another thread had a
1563 * transaction open and was blocking on the quota lock - a ranking
1566 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1567 * will _not_ run commit under these circumstances because handle->h_ref
1568 * is elevated. We'll still have enough credits for the tiny quotafile
1571 static int do_journal_get_write_access(handle_t
*handle
,
1572 struct buffer_head
*bh
)
1574 int dirty
= buffer_dirty(bh
);
1577 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1580 * __block_write_begin() could have dirtied some buffers. Clean
1581 * the dirty bit as jbd2_journal_get_write_access() could complain
1582 * otherwise about fs integrity issues. Setting of the dirty bit
1583 * by __block_write_begin() isn't a real problem here as we clear
1584 * the bit before releasing a page lock and thus writeback cannot
1585 * ever write the buffer.
1588 clear_buffer_dirty(bh
);
1589 ret
= ext4_journal_get_write_access(handle
, bh
);
1591 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1596 * Truncate blocks that were not used by write. We have to truncate the
1597 * pagecache as well so that corresponding buffers get properly unmapped.
1599 static void ext4_truncate_failed_write(struct inode
*inode
)
1601 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1602 ext4_truncate(inode
);
1605 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
1606 struct buffer_head
*bh_result
, int create
);
1607 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1608 loff_t pos
, unsigned len
, unsigned flags
,
1609 struct page
**pagep
, void **fsdata
)
1611 struct inode
*inode
= mapping
->host
;
1612 int ret
, needed_blocks
;
1619 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1621 * Reserve one block more for addition to orphan list in case
1622 * we allocate blocks but write fails for some reason
1624 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1625 index
= pos
>> PAGE_CACHE_SHIFT
;
1626 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1630 handle
= ext4_journal_start(inode
, needed_blocks
);
1631 if (IS_ERR(handle
)) {
1632 ret
= PTR_ERR(handle
);
1636 /* We cannot recurse into the filesystem as the transaction is already
1638 flags
|= AOP_FLAG_NOFS
;
1640 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1642 ext4_journal_stop(handle
);
1648 if (ext4_should_dioread_nolock(inode
))
1649 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1651 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1653 if (!ret
&& ext4_should_journal_data(inode
)) {
1654 ret
= walk_page_buffers(handle
, page_buffers(page
),
1655 from
, to
, NULL
, do_journal_get_write_access
);
1660 page_cache_release(page
);
1662 * __block_write_begin may have instantiated a few blocks
1663 * outside i_size. Trim these off again. Don't need
1664 * i_size_read because we hold i_mutex.
1666 * Add inode to orphan list in case we crash before
1669 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1670 ext4_orphan_add(handle
, inode
);
1672 ext4_journal_stop(handle
);
1673 if (pos
+ len
> inode
->i_size
) {
1674 ext4_truncate_failed_write(inode
);
1676 * If truncate failed early the inode might
1677 * still be on the orphan list; we need to
1678 * make sure the inode is removed from the
1679 * orphan list in that case.
1682 ext4_orphan_del(NULL
, inode
);
1686 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1692 /* For write_end() in data=journal mode */
1693 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1695 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1697 set_buffer_uptodate(bh
);
1698 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1701 static int ext4_generic_write_end(struct file
*file
,
1702 struct address_space
*mapping
,
1703 loff_t pos
, unsigned len
, unsigned copied
,
1704 struct page
*page
, void *fsdata
)
1706 int i_size_changed
= 0;
1707 struct inode
*inode
= mapping
->host
;
1708 handle_t
*handle
= ext4_journal_current_handle();
1710 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1713 * No need to use i_size_read() here, the i_size
1714 * cannot change under us because we hold i_mutex.
1716 * But it's important to update i_size while still holding page lock:
1717 * page writeout could otherwise come in and zero beyond i_size.
1719 if (pos
+ copied
> inode
->i_size
) {
1720 i_size_write(inode
, pos
+ copied
);
1724 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1725 /* We need to mark inode dirty even if
1726 * new_i_size is less that inode->i_size
1727 * bu greater than i_disksize.(hint delalloc)
1729 ext4_update_i_disksize(inode
, (pos
+ copied
));
1733 page_cache_release(page
);
1736 * Don't mark the inode dirty under page lock. First, it unnecessarily
1737 * makes the holding time of page lock longer. Second, it forces lock
1738 * ordering of page lock and transaction start for journaling
1742 ext4_mark_inode_dirty(handle
, inode
);
1748 * We need to pick up the new inode size which generic_commit_write gave us
1749 * `file' can be NULL - eg, when called from page_symlink().
1751 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1752 * buffers are managed internally.
1754 static int ext4_ordered_write_end(struct file
*file
,
1755 struct address_space
*mapping
,
1756 loff_t pos
, unsigned len
, unsigned copied
,
1757 struct page
*page
, void *fsdata
)
1759 handle_t
*handle
= ext4_journal_current_handle();
1760 struct inode
*inode
= mapping
->host
;
1763 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1764 ret
= ext4_jbd2_file_inode(handle
, inode
);
1767 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1770 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1771 /* if we have allocated more blocks and copied
1772 * less. We will have blocks allocated outside
1773 * inode->i_size. So truncate them
1775 ext4_orphan_add(handle
, inode
);
1779 ret2
= ext4_journal_stop(handle
);
1783 if (pos
+ len
> inode
->i_size
) {
1784 ext4_truncate_failed_write(inode
);
1786 * If truncate failed early the inode might still be
1787 * on the orphan list; we need to make sure the inode
1788 * is removed from the orphan list in that case.
1791 ext4_orphan_del(NULL
, inode
);
1795 return ret
? ret
: copied
;
1798 static int ext4_writeback_write_end(struct file
*file
,
1799 struct address_space
*mapping
,
1800 loff_t pos
, unsigned len
, unsigned copied
,
1801 struct page
*page
, void *fsdata
)
1803 handle_t
*handle
= ext4_journal_current_handle();
1804 struct inode
*inode
= mapping
->host
;
1807 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1808 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1811 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1812 /* if we have allocated more blocks and copied
1813 * less. We will have blocks allocated outside
1814 * inode->i_size. So truncate them
1816 ext4_orphan_add(handle
, inode
);
1821 ret2
= ext4_journal_stop(handle
);
1825 if (pos
+ len
> inode
->i_size
) {
1826 ext4_truncate_failed_write(inode
);
1828 * If truncate failed early the inode might still be
1829 * on the orphan list; we need to make sure the inode
1830 * is removed from the orphan list in that case.
1833 ext4_orphan_del(NULL
, inode
);
1836 return ret
? ret
: copied
;
1839 static int ext4_journalled_write_end(struct file
*file
,
1840 struct address_space
*mapping
,
1841 loff_t pos
, unsigned len
, unsigned copied
,
1842 struct page
*page
, void *fsdata
)
1844 handle_t
*handle
= ext4_journal_current_handle();
1845 struct inode
*inode
= mapping
->host
;
1851 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1852 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1855 BUG_ON(!ext4_handle_valid(handle
));
1858 if (!PageUptodate(page
))
1860 page_zero_new_buffers(page
, from
+copied
, to
);
1863 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1864 to
, &partial
, write_end_fn
);
1866 SetPageUptodate(page
);
1867 new_i_size
= pos
+ copied
;
1868 if (new_i_size
> inode
->i_size
)
1869 i_size_write(inode
, pos
+copied
);
1870 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1871 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1872 ext4_update_i_disksize(inode
, new_i_size
);
1873 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1879 page_cache_release(page
);
1880 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1881 /* if we have allocated more blocks and copied
1882 * less. We will have blocks allocated outside
1883 * inode->i_size. So truncate them
1885 ext4_orphan_add(handle
, inode
);
1887 ret2
= ext4_journal_stop(handle
);
1890 if (pos
+ len
> inode
->i_size
) {
1891 ext4_truncate_failed_write(inode
);
1893 * If truncate failed early the inode might still be
1894 * on the orphan list; we need to make sure the inode
1895 * is removed from the orphan list in that case.
1898 ext4_orphan_del(NULL
, inode
);
1901 return ret
? ret
: copied
;
1905 * Reserve a single block located at lblock
1907 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1910 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1911 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1912 unsigned long md_needed
;
1916 * recalculate the amount of metadata blocks to reserve
1917 * in order to allocate nrblocks
1918 * worse case is one extent per block
1921 spin_lock(&ei
->i_block_reservation_lock
);
1922 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1923 trace_ext4_da_reserve_space(inode
, md_needed
);
1924 spin_unlock(&ei
->i_block_reservation_lock
);
1927 * We will charge metadata quota at writeout time; this saves
1928 * us from metadata over-estimation, though we may go over by
1929 * a small amount in the end. Here we just reserve for data.
1931 ret
= dquot_reserve_block(inode
, 1);
1935 * We do still charge estimated metadata to the sb though;
1936 * we cannot afford to run out of free blocks.
1938 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1, 0)) {
1939 dquot_release_reservation_block(inode
, 1);
1940 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1946 spin_lock(&ei
->i_block_reservation_lock
);
1947 ei
->i_reserved_data_blocks
++;
1948 ei
->i_reserved_meta_blocks
+= md_needed
;
1949 spin_unlock(&ei
->i_block_reservation_lock
);
1951 return 0; /* success */
1954 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1956 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1957 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1960 return; /* Nothing to release, exit */
1962 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1964 trace_ext4_da_release_space(inode
, to_free
);
1965 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1967 * if there aren't enough reserved blocks, then the
1968 * counter is messed up somewhere. Since this
1969 * function is called from invalidate page, it's
1970 * harmless to return without any action.
1972 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1973 "ino %lu, to_free %d with only %d reserved "
1974 "data blocks\n", inode
->i_ino
, to_free
,
1975 ei
->i_reserved_data_blocks
);
1977 to_free
= ei
->i_reserved_data_blocks
;
1979 ei
->i_reserved_data_blocks
-= to_free
;
1981 if (ei
->i_reserved_data_blocks
== 0) {
1983 * We can release all of the reserved metadata blocks
1984 * only when we have written all of the delayed
1985 * allocation blocks.
1987 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1988 ei
->i_reserved_meta_blocks
);
1989 ei
->i_reserved_meta_blocks
= 0;
1990 ei
->i_da_metadata_calc_len
= 0;
1993 /* update fs dirty data blocks counter */
1994 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1996 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1998 dquot_release_reservation_block(inode
, to_free
);
2001 static void ext4_da_page_release_reservation(struct page
*page
,
2002 unsigned long offset
)
2005 struct buffer_head
*head
, *bh
;
2006 unsigned int curr_off
= 0;
2008 head
= page_buffers(page
);
2011 unsigned int next_off
= curr_off
+ bh
->b_size
;
2013 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
2015 clear_buffer_delay(bh
);
2017 curr_off
= next_off
;
2018 } while ((bh
= bh
->b_this_page
) != head
);
2019 ext4_da_release_space(page
->mapping
->host
, to_release
);
2023 * Delayed allocation stuff
2027 * mpage_da_submit_io - walks through extent of pages and try to write
2028 * them with writepage() call back
2030 * @mpd->inode: inode
2031 * @mpd->first_page: first page of the extent
2032 * @mpd->next_page: page after the last page of the extent
2034 * By the time mpage_da_submit_io() is called we expect all blocks
2035 * to be allocated. this may be wrong if allocation failed.
2037 * As pages are already locked by write_cache_pages(), we can't use it
2039 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
2040 struct ext4_map_blocks
*map
)
2042 struct pagevec pvec
;
2043 unsigned long index
, end
;
2044 int ret
= 0, err
, nr_pages
, i
;
2045 struct inode
*inode
= mpd
->inode
;
2046 struct address_space
*mapping
= inode
->i_mapping
;
2047 loff_t size
= i_size_read(inode
);
2048 unsigned int len
, block_start
;
2049 struct buffer_head
*bh
, *page_bufs
= NULL
;
2050 int journal_data
= ext4_should_journal_data(inode
);
2051 sector_t pblock
= 0, cur_logical
= 0;
2052 struct ext4_io_submit io_submit
;
2054 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
2055 memset(&io_submit
, 0, sizeof(io_submit
));
2057 * We need to start from the first_page to the next_page - 1
2058 * to make sure we also write the mapped dirty buffer_heads.
2059 * If we look at mpd->b_blocknr we would only be looking
2060 * at the currently mapped buffer_heads.
2062 index
= mpd
->first_page
;
2063 end
= mpd
->next_page
- 1;
2065 pagevec_init(&pvec
, 0);
2066 while (index
<= end
) {
2067 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2070 for (i
= 0; i
< nr_pages
; i
++) {
2071 int commit_write
= 0, skip_page
= 0;
2072 struct page
*page
= pvec
.pages
[i
];
2074 index
= page
->index
;
2078 if (index
== size
>> PAGE_CACHE_SHIFT
)
2079 len
= size
& ~PAGE_CACHE_MASK
;
2081 len
= PAGE_CACHE_SIZE
;
2083 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
2085 pblock
= map
->m_pblk
+ (cur_logical
-
2090 BUG_ON(!PageLocked(page
));
2091 BUG_ON(PageWriteback(page
));
2094 * If the page does not have buffers (for
2095 * whatever reason), try to create them using
2096 * __block_write_begin. If this fails,
2097 * skip the page and move on.
2099 if (!page_has_buffers(page
)) {
2100 if (__block_write_begin(page
, 0, len
,
2101 noalloc_get_block_write
)) {
2109 bh
= page_bufs
= page_buffers(page
);
2114 if (map
&& (cur_logical
>= map
->m_lblk
) &&
2115 (cur_logical
<= (map
->m_lblk
+
2116 (map
->m_len
- 1)))) {
2117 if (buffer_delay(bh
)) {
2118 clear_buffer_delay(bh
);
2119 bh
->b_blocknr
= pblock
;
2121 if (buffer_unwritten(bh
) ||
2123 BUG_ON(bh
->b_blocknr
!= pblock
);
2124 if (map
->m_flags
& EXT4_MAP_UNINIT
)
2125 set_buffer_uninit(bh
);
2126 clear_buffer_unwritten(bh
);
2130 * skip page if block allocation undone and
2133 if (ext4_bh_delay_or_unwritten(NULL
, bh
))
2135 bh
= bh
->b_this_page
;
2136 block_start
+= bh
->b_size
;
2139 } while (bh
!= page_bufs
);
2145 /* mark the buffer_heads as dirty & uptodate */
2146 block_commit_write(page
, 0, len
);
2148 clear_page_dirty_for_io(page
);
2150 * Delalloc doesn't support data journalling,
2151 * but eventually maybe we'll lift this
2154 if (unlikely(journal_data
&& PageChecked(page
)))
2155 err
= __ext4_journalled_writepage(page
, len
);
2156 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
2157 err
= ext4_bio_write_page(&io_submit
, page
,
2159 else if (buffer_uninit(page_bufs
)) {
2160 ext4_set_bh_endio(page_bufs
, inode
);
2161 err
= block_write_full_page_endio(page
,
2162 noalloc_get_block_write
,
2163 mpd
->wbc
, ext4_end_io_buffer_write
);
2165 err
= block_write_full_page(page
,
2166 noalloc_get_block_write
, mpd
->wbc
);
2169 mpd
->pages_written
++;
2171 * In error case, we have to continue because
2172 * remaining pages are still locked
2177 pagevec_release(&pvec
);
2179 ext4_io_submit(&io_submit
);
2183 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
2187 struct pagevec pvec
;
2188 struct inode
*inode
= mpd
->inode
;
2189 struct address_space
*mapping
= inode
->i_mapping
;
2191 index
= mpd
->first_page
;
2192 end
= mpd
->next_page
- 1;
2193 while (index
<= end
) {
2194 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2197 for (i
= 0; i
< nr_pages
; i
++) {
2198 struct page
*page
= pvec
.pages
[i
];
2199 if (page
->index
> end
)
2201 BUG_ON(!PageLocked(page
));
2202 BUG_ON(PageWriteback(page
));
2203 block_invalidatepage(page
, 0);
2204 ClearPageUptodate(page
);
2207 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
2208 pagevec_release(&pvec
);
2213 static void ext4_print_free_blocks(struct inode
*inode
)
2215 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2216 printk(KERN_CRIT
"Total free blocks count %lld\n",
2217 ext4_count_free_blocks(inode
->i_sb
));
2218 printk(KERN_CRIT
"Free/Dirty block details\n");
2219 printk(KERN_CRIT
"free_blocks=%lld\n",
2220 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2221 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2222 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2223 printk(KERN_CRIT
"Block reservation details\n");
2224 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2225 EXT4_I(inode
)->i_reserved_data_blocks
);
2226 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2227 EXT4_I(inode
)->i_reserved_meta_blocks
);
2232 * mpage_da_map_and_submit - go through given space, map them
2233 * if necessary, and then submit them for I/O
2235 * @mpd - bh describing space
2237 * The function skips space we know is already mapped to disk blocks.
2240 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
2242 int err
, blks
, get_blocks_flags
;
2243 struct ext4_map_blocks map
, *mapp
= NULL
;
2244 sector_t next
= mpd
->b_blocknr
;
2245 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2246 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2247 handle_t
*handle
= NULL
;
2250 * If the blocks are mapped already, or we couldn't accumulate
2251 * any blocks, then proceed immediately to the submission stage.
2253 if ((mpd
->b_size
== 0) ||
2254 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2255 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2256 !(mpd
->b_state
& (1 << BH_Unwritten
))))
2259 handle
= ext4_journal_current_handle();
2263 * Call ext4_map_blocks() to allocate any delayed allocation
2264 * blocks, or to convert an uninitialized extent to be
2265 * initialized (in the case where we have written into
2266 * one or more preallocated blocks).
2268 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2269 * indicate that we are on the delayed allocation path. This
2270 * affects functions in many different parts of the allocation
2271 * call path. This flag exists primarily because we don't
2272 * want to change *many* call functions, so ext4_map_blocks()
2273 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2274 * inode's allocation semaphore is taken.
2276 * If the blocks in questions were delalloc blocks, set
2277 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2278 * variables are updated after the blocks have been allocated.
2281 map
.m_len
= max_blocks
;
2282 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2283 if (ext4_should_dioread_nolock(mpd
->inode
))
2284 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2285 if (mpd
->b_state
& (1 << BH_Delay
))
2286 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2288 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
2290 struct super_block
*sb
= mpd
->inode
->i_sb
;
2294 * If get block returns EAGAIN or ENOSPC and there
2295 * appears to be free blocks we will just let
2296 * mpage_da_submit_io() unlock all of the pages.
2301 if (err
== -ENOSPC
&&
2302 ext4_count_free_blocks(sb
)) {
2308 * get block failure will cause us to loop in
2309 * writepages, because a_ops->writepage won't be able
2310 * to make progress. The page will be redirtied by
2311 * writepage and writepages will again try to write
2314 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2315 ext4_msg(sb
, KERN_CRIT
,
2316 "delayed block allocation failed for inode %lu "
2317 "at logical offset %llu with max blocks %zd "
2318 "with error %d", mpd
->inode
->i_ino
,
2319 (unsigned long long) next
,
2320 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2321 ext4_msg(sb
, KERN_CRIT
,
2322 "This should not happen!! Data will be lost\n");
2324 ext4_print_free_blocks(mpd
->inode
);
2326 /* invalidate all the pages */
2327 ext4_da_block_invalidatepages(mpd
);
2329 /* Mark this page range as having been completed */
2336 if (map
.m_flags
& EXT4_MAP_NEW
) {
2337 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
2340 for (i
= 0; i
< map
.m_len
; i
++)
2341 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
2344 if (ext4_should_order_data(mpd
->inode
)) {
2345 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2347 /* This only happens if the journal is aborted */
2352 * Update on-disk size along with block allocation.
2354 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2355 if (disksize
> i_size_read(mpd
->inode
))
2356 disksize
= i_size_read(mpd
->inode
);
2357 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2358 ext4_update_i_disksize(mpd
->inode
, disksize
);
2359 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
2361 ext4_error(mpd
->inode
->i_sb
,
2362 "Failed to mark inode %lu dirty",
2367 mpage_da_submit_io(mpd
, mapp
);
2371 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2372 (1 << BH_Delay) | (1 << BH_Unwritten))
2375 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2377 * @mpd->lbh - extent of blocks
2378 * @logical - logical number of the block in the file
2379 * @bh - bh of the block (used to access block's state)
2381 * the function is used to collect contig. blocks in same state
2383 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2384 sector_t logical
, size_t b_size
,
2385 unsigned long b_state
)
2388 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2391 * XXX Don't go larger than mballoc is willing to allocate
2392 * This is a stopgap solution. We eventually need to fold
2393 * mpage_da_submit_io() into this function and then call
2394 * ext4_map_blocks() multiple times in a loop
2396 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
2399 /* check if thereserved journal credits might overflow */
2400 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
2401 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2403 * With non-extent format we are limited by the journal
2404 * credit available. Total credit needed to insert
2405 * nrblocks contiguous blocks is dependent on the
2406 * nrblocks. So limit nrblocks.
2409 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2410 EXT4_MAX_TRANS_DATA
) {
2412 * Adding the new buffer_head would make it cross the
2413 * allowed limit for which we have journal credit
2414 * reserved. So limit the new bh->b_size
2416 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2417 mpd
->inode
->i_blkbits
;
2418 /* we will do mpage_da_submit_io in the next loop */
2422 * First block in the extent
2424 if (mpd
->b_size
== 0) {
2425 mpd
->b_blocknr
= logical
;
2426 mpd
->b_size
= b_size
;
2427 mpd
->b_state
= b_state
& BH_FLAGS
;
2431 next
= mpd
->b_blocknr
+ nrblocks
;
2433 * Can we merge the block to our big extent?
2435 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2436 mpd
->b_size
+= b_size
;
2442 * We couldn't merge the block to our extent, so we
2443 * need to flush current extent and start new one
2445 mpage_da_map_and_submit(mpd
);
2449 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2451 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2455 * This is a special get_blocks_t callback which is used by
2456 * ext4_da_write_begin(). It will either return mapped block or
2457 * reserve space for a single block.
2459 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2460 * We also have b_blocknr = -1 and b_bdev initialized properly
2462 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2463 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2464 * initialized properly.
2466 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2467 struct buffer_head
*bh
, int create
)
2469 struct ext4_map_blocks map
;
2471 sector_t invalid_block
= ~((sector_t
) 0xffff);
2473 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2476 BUG_ON(create
== 0);
2477 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
2479 map
.m_lblk
= iblock
;
2483 * first, we need to know whether the block is allocated already
2484 * preallocated blocks are unmapped but should treated
2485 * the same as allocated blocks.
2487 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
2491 if (buffer_delay(bh
))
2492 return 0; /* Not sure this could or should happen */
2494 * XXX: __block_write_begin() unmaps passed block, is it OK?
2496 ret
= ext4_da_reserve_space(inode
, iblock
);
2498 /* not enough space to reserve */
2501 map_bh(bh
, inode
->i_sb
, invalid_block
);
2503 set_buffer_delay(bh
);
2507 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
2508 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
2510 if (buffer_unwritten(bh
)) {
2511 /* A delayed write to unwritten bh should be marked
2512 * new and mapped. Mapped ensures that we don't do
2513 * get_block multiple times when we write to the same
2514 * offset and new ensures that we do proper zero out
2515 * for partial write.
2518 set_buffer_mapped(bh
);
2524 * This function is used as a standard get_block_t calback function
2525 * when there is no desire to allocate any blocks. It is used as a
2526 * callback function for block_write_begin() and block_write_full_page().
2527 * These functions should only try to map a single block at a time.
2529 * Since this function doesn't do block allocations even if the caller
2530 * requests it by passing in create=1, it is critically important that
2531 * any caller checks to make sure that any buffer heads are returned
2532 * by this function are either all already mapped or marked for
2533 * delayed allocation before calling block_write_full_page(). Otherwise,
2534 * b_blocknr could be left unitialized, and the page write functions will
2535 * be taken by surprise.
2537 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2538 struct buffer_head
*bh_result
, int create
)
2540 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2541 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
2544 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2550 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2556 static int __ext4_journalled_writepage(struct page
*page
,
2559 struct address_space
*mapping
= page
->mapping
;
2560 struct inode
*inode
= mapping
->host
;
2561 struct buffer_head
*page_bufs
;
2562 handle_t
*handle
= NULL
;
2566 ClearPageChecked(page
);
2567 page_bufs
= page_buffers(page
);
2569 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2570 /* As soon as we unlock the page, it can go away, but we have
2571 * references to buffers so we are safe */
2574 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2575 if (IS_ERR(handle
)) {
2576 ret
= PTR_ERR(handle
);
2580 BUG_ON(!ext4_handle_valid(handle
));
2582 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2583 do_journal_get_write_access
);
2585 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2589 err
= ext4_journal_stop(handle
);
2593 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2594 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2599 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
2600 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
2603 * Note that we don't need to start a transaction unless we're journaling data
2604 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2605 * need to file the inode to the transaction's list in ordered mode because if
2606 * we are writing back data added by write(), the inode is already there and if
2607 * we are writing back data modified via mmap(), no one guarantees in which
2608 * transaction the data will hit the disk. In case we are journaling data, we
2609 * cannot start transaction directly because transaction start ranks above page
2610 * lock so we have to do some magic.
2612 * This function can get called via...
2613 * - ext4_da_writepages after taking page lock (have journal handle)
2614 * - journal_submit_inode_data_buffers (no journal handle)
2615 * - shrink_page_list via pdflush (no journal handle)
2616 * - grab_page_cache when doing write_begin (have journal handle)
2618 * We don't do any block allocation in this function. If we have page with
2619 * multiple blocks we need to write those buffer_heads that are mapped. This
2620 * is important for mmaped based write. So if we do with blocksize 1K
2621 * truncate(f, 1024);
2622 * a = mmap(f, 0, 4096);
2624 * truncate(f, 4096);
2625 * we have in the page first buffer_head mapped via page_mkwrite call back
2626 * but other bufer_heads would be unmapped but dirty(dirty done via the
2627 * do_wp_page). So writepage should write the first block. If we modify
2628 * the mmap area beyond 1024 we will again get a page_fault and the
2629 * page_mkwrite callback will do the block allocation and mark the
2630 * buffer_heads mapped.
2632 * We redirty the page if we have any buffer_heads that is either delay or
2633 * unwritten in the page.
2635 * We can get recursively called as show below.
2637 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2640 * But since we don't do any block allocation we should not deadlock.
2641 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2643 static int ext4_writepage(struct page
*page
,
2644 struct writeback_control
*wbc
)
2646 int ret
= 0, commit_write
= 0;
2649 struct buffer_head
*page_bufs
= NULL
;
2650 struct inode
*inode
= page
->mapping
->host
;
2652 trace_ext4_writepage(page
);
2653 size
= i_size_read(inode
);
2654 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2655 len
= size
& ~PAGE_CACHE_MASK
;
2657 len
= PAGE_CACHE_SIZE
;
2660 * If the page does not have buffers (for whatever reason),
2661 * try to create them using __block_write_begin. If this
2662 * fails, redirty the page and move on.
2664 if (!page_has_buffers(page
)) {
2665 if (__block_write_begin(page
, 0, len
,
2666 noalloc_get_block_write
)) {
2668 redirty_page_for_writepage(wbc
, page
);
2674 page_bufs
= page_buffers(page
);
2675 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2676 ext4_bh_delay_or_unwritten
)) {
2678 * We don't want to do block allocation, so redirty
2679 * the page and return. We may reach here when we do
2680 * a journal commit via journal_submit_inode_data_buffers.
2681 * We can also reach here via shrink_page_list
2686 /* now mark the buffer_heads as dirty and uptodate */
2687 block_commit_write(page
, 0, len
);
2689 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2691 * It's mmapped pagecache. Add buffers and journal it. There
2692 * doesn't seem much point in redirtying the page here.
2694 return __ext4_journalled_writepage(page
, len
);
2696 if (buffer_uninit(page_bufs
)) {
2697 ext4_set_bh_endio(page_bufs
, inode
);
2698 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2699 wbc
, ext4_end_io_buffer_write
);
2701 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2708 * This is called via ext4_da_writepages() to
2709 * calculate the total number of credits to reserve to fit
2710 * a single extent allocation into a single transaction,
2711 * ext4_da_writpeages() will loop calling this before
2712 * the block allocation.
2715 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2717 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2720 * With non-extent format the journal credit needed to
2721 * insert nrblocks contiguous block is dependent on
2722 * number of contiguous block. So we will limit
2723 * number of contiguous block to a sane value
2725 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2726 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2727 max_blocks
= EXT4_MAX_TRANS_DATA
;
2729 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2733 * write_cache_pages_da - walk the list of dirty pages of the given
2734 * address space and accumulate pages that need writing, and call
2735 * mpage_da_map_and_submit to map a single contiguous memory region
2736 * and then write them.
2738 static int write_cache_pages_da(struct address_space
*mapping
,
2739 struct writeback_control
*wbc
,
2740 struct mpage_da_data
*mpd
,
2741 pgoff_t
*done_index
)
2743 struct buffer_head
*bh
, *head
;
2744 struct inode
*inode
= mapping
->host
;
2745 struct pagevec pvec
;
2746 unsigned int nr_pages
;
2749 long nr_to_write
= wbc
->nr_to_write
;
2750 int i
, tag
, ret
= 0;
2752 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2755 pagevec_init(&pvec
, 0);
2756 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2757 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2759 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2760 tag
= PAGECACHE_TAG_TOWRITE
;
2762 tag
= PAGECACHE_TAG_DIRTY
;
2764 *done_index
= index
;
2765 while (index
<= end
) {
2766 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2767 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2771 for (i
= 0; i
< nr_pages
; i
++) {
2772 struct page
*page
= pvec
.pages
[i
];
2775 * At this point, the page may be truncated or
2776 * invalidated (changing page->mapping to NULL), or
2777 * even swizzled back from swapper_space to tmpfs file
2778 * mapping. However, page->index will not change
2779 * because we have a reference on the page.
2781 if (page
->index
> end
)
2784 *done_index
= page
->index
+ 1;
2787 * If we can't merge this page, and we have
2788 * accumulated an contiguous region, write it
2790 if ((mpd
->next_page
!= page
->index
) &&
2791 (mpd
->next_page
!= mpd
->first_page
)) {
2792 mpage_da_map_and_submit(mpd
);
2793 goto ret_extent_tail
;
2799 * If the page is no longer dirty, or its
2800 * mapping no longer corresponds to inode we
2801 * are writing (which means it has been
2802 * truncated or invalidated), or the page is
2803 * already under writeback and we are not
2804 * doing a data integrity writeback, skip the page
2806 if (!PageDirty(page
) ||
2807 (PageWriteback(page
) &&
2808 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2809 unlikely(page
->mapping
!= mapping
)) {
2814 wait_on_page_writeback(page
);
2815 BUG_ON(PageWriteback(page
));
2817 if (mpd
->next_page
!= page
->index
)
2818 mpd
->first_page
= page
->index
;
2819 mpd
->next_page
= page
->index
+ 1;
2820 logical
= (sector_t
) page
->index
<<
2821 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2823 if (!page_has_buffers(page
)) {
2824 mpage_add_bh_to_extent(mpd
, logical
,
2826 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2828 goto ret_extent_tail
;
2831 * Page with regular buffer heads,
2832 * just add all dirty ones
2834 head
= page_buffers(page
);
2837 BUG_ON(buffer_locked(bh
));
2839 * We need to try to allocate
2840 * unmapped blocks in the same page.
2841 * Otherwise we won't make progress
2842 * with the page in ext4_writepage
2844 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2845 mpage_add_bh_to_extent(mpd
, logical
,
2849 goto ret_extent_tail
;
2850 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2852 * mapped dirty buffer. We need
2853 * to update the b_state
2854 * because we look at b_state
2855 * in mpage_da_map_blocks. We
2856 * don't update b_size because
2857 * if we find an unmapped
2858 * buffer_head later we need to
2859 * use the b_state flag of that
2862 if (mpd
->b_size
== 0)
2863 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2866 } while ((bh
= bh
->b_this_page
) != head
);
2869 if (nr_to_write
> 0) {
2871 if (nr_to_write
== 0 &&
2872 wbc
->sync_mode
== WB_SYNC_NONE
)
2874 * We stop writing back only if we are
2875 * not doing integrity sync. In case of
2876 * integrity sync we have to keep going
2877 * because someone may be concurrently
2878 * dirtying pages, and we might have
2879 * synced a lot of newly appeared dirty
2880 * pages, but have not synced all of the
2886 pagevec_release(&pvec
);
2891 ret
= MPAGE_DA_EXTENT_TAIL
;
2893 pagevec_release(&pvec
);
2899 static int ext4_da_writepages(struct address_space
*mapping
,
2900 struct writeback_control
*wbc
)
2903 int range_whole
= 0;
2904 handle_t
*handle
= NULL
;
2905 struct mpage_da_data mpd
;
2906 struct inode
*inode
= mapping
->host
;
2907 int pages_written
= 0;
2908 unsigned int max_pages
;
2909 int range_cyclic
, cycled
= 1, io_done
= 0;
2910 int needed_blocks
, ret
= 0;
2911 long desired_nr_to_write
, nr_to_writebump
= 0;
2912 loff_t range_start
= wbc
->range_start
;
2913 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2914 pgoff_t done_index
= 0;
2917 trace_ext4_da_writepages(inode
, wbc
);
2920 * No pages to write? This is mainly a kludge to avoid starting
2921 * a transaction for special inodes like journal inode on last iput()
2922 * because that could violate lock ordering on umount
2924 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2928 * If the filesystem has aborted, it is read-only, so return
2929 * right away instead of dumping stack traces later on that
2930 * will obscure the real source of the problem. We test
2931 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2932 * the latter could be true if the filesystem is mounted
2933 * read-only, and in that case, ext4_da_writepages should
2934 * *never* be called, so if that ever happens, we would want
2937 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2940 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2943 range_cyclic
= wbc
->range_cyclic
;
2944 if (wbc
->range_cyclic
) {
2945 index
= mapping
->writeback_index
;
2948 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2949 wbc
->range_end
= LLONG_MAX
;
2950 wbc
->range_cyclic
= 0;
2953 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2954 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2958 * This works around two forms of stupidity. The first is in
2959 * the writeback code, which caps the maximum number of pages
2960 * written to be 1024 pages. This is wrong on multiple
2961 * levels; different architectues have a different page size,
2962 * which changes the maximum amount of data which gets
2963 * written. Secondly, 4 megabytes is way too small. XFS
2964 * forces this value to be 16 megabytes by multiplying
2965 * nr_to_write parameter by four, and then relies on its
2966 * allocator to allocate larger extents to make them
2967 * contiguous. Unfortunately this brings us to the second
2968 * stupidity, which is that ext4's mballoc code only allocates
2969 * at most 2048 blocks. So we force contiguous writes up to
2970 * the number of dirty blocks in the inode, or
2971 * sbi->max_writeback_mb_bump whichever is smaller.
2973 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2974 if (!range_cyclic
&& range_whole
) {
2975 if (wbc
->nr_to_write
== LONG_MAX
)
2976 desired_nr_to_write
= wbc
->nr_to_write
;
2978 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2980 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2982 if (desired_nr_to_write
> max_pages
)
2983 desired_nr_to_write
= max_pages
;
2985 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2986 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2987 wbc
->nr_to_write
= desired_nr_to_write
;
2991 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2992 tag_pages_for_writeback(mapping
, index
, end
);
2994 while (!ret
&& wbc
->nr_to_write
> 0) {
2997 * we insert one extent at a time. So we need
2998 * credit needed for single extent allocation.
2999 * journalled mode is currently not supported
3002 BUG_ON(ext4_should_journal_data(inode
));
3003 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
3005 /* start a new transaction*/
3006 handle
= ext4_journal_start(inode
, needed_blocks
);
3007 if (IS_ERR(handle
)) {
3008 ret
= PTR_ERR(handle
);
3009 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
3010 "%ld pages, ino %lu; err %d", __func__
,
3011 wbc
->nr_to_write
, inode
->i_ino
, ret
);
3012 goto out_writepages
;
3016 * Now call write_cache_pages_da() to find the next
3017 * contiguous region of logical blocks that need
3018 * blocks to be allocated by ext4 and submit them.
3020 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
3022 * If we have a contiguous extent of pages and we
3023 * haven't done the I/O yet, map the blocks and submit
3026 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
3027 mpage_da_map_and_submit(&mpd
);
3028 ret
= MPAGE_DA_EXTENT_TAIL
;
3030 trace_ext4_da_write_pages(inode
, &mpd
);
3031 wbc
->nr_to_write
-= mpd
.pages_written
;
3033 ext4_journal_stop(handle
);
3035 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
3036 /* commit the transaction which would
3037 * free blocks released in the transaction
3040 jbd2_journal_force_commit_nested(sbi
->s_journal
);
3042 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
3044 * got one extent now try with
3047 pages_written
+= mpd
.pages_written
;
3050 } else if (wbc
->nr_to_write
)
3052 * There is no more writeout needed
3053 * or we requested for a noblocking writeout
3054 * and we found the device congested
3058 if (!io_done
&& !cycled
) {
3061 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3062 wbc
->range_end
= mapping
->writeback_index
- 1;
3067 wbc
->range_cyclic
= range_cyclic
;
3068 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3070 * set the writeback_index so that range_cyclic
3071 * mode will write it back later
3073 mapping
->writeback_index
= done_index
;
3076 wbc
->nr_to_write
-= nr_to_writebump
;
3077 wbc
->range_start
= range_start
;
3078 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3082 #define FALL_BACK_TO_NONDELALLOC 1
3083 static int ext4_nonda_switch(struct super_block
*sb
)
3085 s64 free_blocks
, dirty_blocks
;
3086 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3089 * switch to non delalloc mode if we are running low
3090 * on free block. The free block accounting via percpu
3091 * counters can get slightly wrong with percpu_counter_batch getting
3092 * accumulated on each CPU without updating global counters
3093 * Delalloc need an accurate free block accounting. So switch
3094 * to non delalloc when we are near to error range.
3096 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3097 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3098 if (2 * free_blocks
< 3 * dirty_blocks
||
3099 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3101 * free block count is less than 150% of dirty blocks
3102 * or free blocks is less than watermark
3107 * Even if we don't switch but are nearing capacity,
3108 * start pushing delalloc when 1/2 of free blocks are dirty.
3110 if (free_blocks
< 2 * dirty_blocks
)
3111 writeback_inodes_sb_if_idle(sb
);
3116 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3117 loff_t pos
, unsigned len
, unsigned flags
,
3118 struct page
**pagep
, void **fsdata
)
3120 int ret
, retries
= 0;
3123 struct inode
*inode
= mapping
->host
;
3126 index
= pos
>> PAGE_CACHE_SHIFT
;
3128 if (ext4_nonda_switch(inode
->i_sb
)) {
3129 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3130 return ext4_write_begin(file
, mapping
, pos
,
3131 len
, flags
, pagep
, fsdata
);
3133 *fsdata
= (void *)0;
3134 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3137 * With delayed allocation, we don't log the i_disksize update
3138 * if there is delayed block allocation. But we still need
3139 * to journalling the i_disksize update if writes to the end
3140 * of file which has an already mapped buffer.
3142 handle
= ext4_journal_start(inode
, 1);
3143 if (IS_ERR(handle
)) {
3144 ret
= PTR_ERR(handle
);
3147 /* We cannot recurse into the filesystem as the transaction is already
3149 flags
|= AOP_FLAG_NOFS
;
3151 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3153 ext4_journal_stop(handle
);
3159 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
3162 ext4_journal_stop(handle
);
3163 page_cache_release(page
);
3165 * block_write_begin may have instantiated a few blocks
3166 * outside i_size. Trim these off again. Don't need
3167 * i_size_read because we hold i_mutex.
3169 if (pos
+ len
> inode
->i_size
)
3170 ext4_truncate_failed_write(inode
);
3173 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3180 * Check if we should update i_disksize
3181 * when write to the end of file but not require block allocation
3183 static int ext4_da_should_update_i_disksize(struct page
*page
,
3184 unsigned long offset
)
3186 struct buffer_head
*bh
;
3187 struct inode
*inode
= page
->mapping
->host
;
3191 bh
= page_buffers(page
);
3192 idx
= offset
>> inode
->i_blkbits
;
3194 for (i
= 0; i
< idx
; i
++)
3195 bh
= bh
->b_this_page
;
3197 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3202 static int ext4_da_write_end(struct file
*file
,
3203 struct address_space
*mapping
,
3204 loff_t pos
, unsigned len
, unsigned copied
,
3205 struct page
*page
, void *fsdata
)
3207 struct inode
*inode
= mapping
->host
;
3209 handle_t
*handle
= ext4_journal_current_handle();
3211 unsigned long start
, end
;
3212 int write_mode
= (int)(unsigned long)fsdata
;
3214 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3215 switch (ext4_inode_journal_mode(inode
)) {
3216 case EXT4_INODE_ORDERED_DATA_MODE
:
3217 return ext4_ordered_write_end(file
, mapping
, pos
,
3218 len
, copied
, page
, fsdata
);
3219 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3220 return ext4_writeback_write_end(file
, mapping
, pos
,
3221 len
, copied
, page
, fsdata
);
3227 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3228 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3229 end
= start
+ copied
- 1;
3232 * generic_write_end() will run mark_inode_dirty() if i_size
3233 * changes. So let's piggyback the i_disksize mark_inode_dirty
3237 new_i_size
= pos
+ copied
;
3238 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
3239 if (ext4_da_should_update_i_disksize(page
, end
)) {
3240 down_write(&EXT4_I(inode
)->i_data_sem
);
3241 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3243 * Updating i_disksize when extending file
3244 * without needing block allocation
3246 if (ext4_should_order_data(inode
))
3247 ret
= ext4_jbd2_file_inode(handle
,
3250 EXT4_I(inode
)->i_disksize
= new_i_size
;
3252 up_write(&EXT4_I(inode
)->i_data_sem
);
3253 /* We need to mark inode dirty even if
3254 * new_i_size is less that inode->i_size
3255 * bu greater than i_disksize.(hint delalloc)
3257 ext4_mark_inode_dirty(handle
, inode
);
3260 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3265 ret2
= ext4_journal_stop(handle
);
3269 return ret
? ret
: copied
;
3272 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3275 * Drop reserved blocks
3277 BUG_ON(!PageLocked(page
));
3278 if (!page_has_buffers(page
))
3281 ext4_da_page_release_reservation(page
, offset
);
3284 ext4_invalidatepage(page
, offset
);
3290 * Force all delayed allocation blocks to be allocated for a given inode.
3292 int ext4_alloc_da_blocks(struct inode
*inode
)
3294 trace_ext4_alloc_da_blocks(inode
);
3296 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3297 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3301 * We do something simple for now. The filemap_flush() will
3302 * also start triggering a write of the data blocks, which is
3303 * not strictly speaking necessary (and for users of
3304 * laptop_mode, not even desirable). However, to do otherwise
3305 * would require replicating code paths in:
3307 * ext4_da_writepages() ->
3308 * write_cache_pages() ---> (via passed in callback function)
3309 * __mpage_da_writepage() -->
3310 * mpage_add_bh_to_extent()
3311 * mpage_da_map_blocks()
3313 * The problem is that write_cache_pages(), located in
3314 * mm/page-writeback.c, marks pages clean in preparation for
3315 * doing I/O, which is not desirable if we're not planning on
3318 * We could call write_cache_pages(), and then redirty all of
3319 * the pages by calling redirty_page_for_writepage() but that
3320 * would be ugly in the extreme. So instead we would need to
3321 * replicate parts of the code in the above functions,
3322 * simplifying them because we wouldn't actually intend to
3323 * write out the pages, but rather only collect contiguous
3324 * logical block extents, call the multi-block allocator, and
3325 * then update the buffer heads with the block allocations.
3327 * For now, though, we'll cheat by calling filemap_flush(),
3328 * which will map the blocks, and start the I/O, but not
3329 * actually wait for the I/O to complete.
3331 return filemap_flush(inode
->i_mapping
);
3335 * bmap() is special. It gets used by applications such as lilo and by
3336 * the swapper to find the on-disk block of a specific piece of data.
3338 * Naturally, this is dangerous if the block concerned is still in the
3339 * journal. If somebody makes a swapfile on an ext4 data-journaling
3340 * filesystem and enables swap, then they may get a nasty shock when the
3341 * data getting swapped to that swapfile suddenly gets overwritten by
3342 * the original zero's written out previously to the journal and
3343 * awaiting writeback in the kernel's buffer cache.
3345 * So, if we see any bmap calls here on a modified, data-journaled file,
3346 * take extra steps to flush any blocks which might be in the cache.
3348 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3350 struct inode
*inode
= mapping
->host
;
3354 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3355 test_opt(inode
->i_sb
, DELALLOC
)) {
3357 * With delalloc we want to sync the file
3358 * so that we can make sure we allocate
3361 filemap_write_and_wait(mapping
);
3364 if (EXT4_JOURNAL(inode
) &&
3365 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3367 * This is a REALLY heavyweight approach, but the use of
3368 * bmap on dirty files is expected to be extremely rare:
3369 * only if we run lilo or swapon on a freshly made file
3370 * do we expect this to happen.
3372 * (bmap requires CAP_SYS_RAWIO so this does not
3373 * represent an unprivileged user DOS attack --- we'd be
3374 * in trouble if mortal users could trigger this path at
3377 * NB. EXT4_STATE_JDATA is not set on files other than
3378 * regular files. If somebody wants to bmap a directory
3379 * or symlink and gets confused because the buffer
3380 * hasn't yet been flushed to disk, they deserve
3381 * everything they get.
3384 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3385 journal
= EXT4_JOURNAL(inode
);
3386 jbd2_journal_lock_updates(journal
);
3387 err
= jbd2_journal_flush(journal
);
3388 jbd2_journal_unlock_updates(journal
);
3394 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3397 static int ext4_readpage(struct file
*file
, struct page
*page
)
3399 trace_ext4_readpage(page
);
3400 return mpage_readpage(page
, ext4_get_block
);
3404 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3405 struct list_head
*pages
, unsigned nr_pages
)
3407 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3410 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
3412 struct buffer_head
*head
, *bh
;
3413 unsigned int curr_off
= 0;
3415 if (!page_has_buffers(page
))
3417 head
= bh
= page_buffers(page
);
3419 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
3421 ext4_free_io_end(bh
->b_private
);
3422 bh
->b_private
= NULL
;
3423 bh
->b_end_io
= NULL
;
3425 curr_off
= curr_off
+ bh
->b_size
;
3426 bh
= bh
->b_this_page
;
3427 } while (bh
!= head
);
3430 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3432 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3434 trace_ext4_invalidatepage(page
, offset
);
3437 * free any io_end structure allocated for buffers to be discarded
3439 if (ext4_should_dioread_nolock(page
->mapping
->host
))
3440 ext4_invalidatepage_free_endio(page
, offset
);
3442 * If it's a full truncate we just forget about the pending dirtying
3445 ClearPageChecked(page
);
3448 jbd2_journal_invalidatepage(journal
, page
, offset
);
3450 block_invalidatepage(page
, offset
);
3453 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3455 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3457 trace_ext4_releasepage(page
);
3459 WARN_ON(PageChecked(page
));
3460 if (!page_has_buffers(page
))
3463 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3465 return try_to_free_buffers(page
);
3469 * O_DIRECT for ext3 (or indirect map) based files
3471 * If the O_DIRECT write will extend the file then add this inode to the
3472 * orphan list. So recovery will truncate it back to the original size
3473 * if the machine crashes during the write.
3475 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3476 * crashes then stale disk data _may_ be exposed inside the file. But current
3477 * VFS code falls back into buffered path in that case so we are safe.
3479 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3480 const struct iovec
*iov
, loff_t offset
,
3481 unsigned long nr_segs
)
3483 struct file
*file
= iocb
->ki_filp
;
3484 struct inode
*inode
= file
->f_mapping
->host
;
3485 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3489 size_t count
= iov_length(iov
, nr_segs
);
3493 loff_t final_size
= offset
+ count
;
3495 if (final_size
> inode
->i_size
) {
3496 /* Credits for sb + inode write */
3497 handle
= ext4_journal_start(inode
, 2);
3498 if (IS_ERR(handle
)) {
3499 ret
= PTR_ERR(handle
);
3502 ret
= ext4_orphan_add(handle
, inode
);
3504 ext4_journal_stop(handle
);
3508 ei
->i_disksize
= inode
->i_size
;
3509 ext4_journal_stop(handle
);
3514 if (rw
== READ
&& ext4_should_dioread_nolock(inode
)) {
3515 if (unlikely(!list_empty(&ei
->i_completed_io_list
))) {
3516 mutex_lock(&inode
->i_mutex
);
3517 ext4_flush_completed_IO(inode
);
3518 mutex_unlock(&inode
->i_mutex
);
3520 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3521 inode
->i_sb
->s_bdev
, iov
,
3523 ext4_get_block
, NULL
, NULL
, 0);
3525 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3526 inode
->i_sb
->s_bdev
, iov
,
3528 ext4_get_block
, NULL
);
3530 if (unlikely((rw
& WRITE
) && ret
< 0)) {
3531 loff_t isize
= i_size_read(inode
);
3532 loff_t end
= offset
+ iov_length(iov
, nr_segs
);
3535 ext4_truncate_failed_write(inode
);
3538 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3544 /* Credits for sb + inode write */
3545 handle
= ext4_journal_start(inode
, 2);
3546 if (IS_ERR(handle
)) {
3547 /* This is really bad luck. We've written the data
3548 * but cannot extend i_size. Bail out and pretend
3549 * the write failed... */
3550 ret
= PTR_ERR(handle
);
3552 ext4_orphan_del(NULL
, inode
);
3557 ext4_orphan_del(handle
, inode
);
3559 loff_t end
= offset
+ ret
;
3560 if (end
> inode
->i_size
) {
3561 ei
->i_disksize
= end
;
3562 i_size_write(inode
, end
);
3564 * We're going to return a positive `ret'
3565 * here due to non-zero-length I/O, so there's
3566 * no way of reporting error returns from
3567 * ext4_mark_inode_dirty() to userspace. So
3570 ext4_mark_inode_dirty(handle
, inode
);
3573 err
= ext4_journal_stop(handle
);
3582 * ext4_get_block used when preparing for a DIO write or buffer write.
3583 * We allocate an uinitialized extent if blocks haven't been allocated.
3584 * The extent will be converted to initialized after the IO is complete.
3586 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3587 struct buffer_head
*bh_result
, int create
)
3589 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3590 inode
->i_ino
, create
);
3591 return _ext4_get_block(inode
, iblock
, bh_result
,
3592 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3595 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3596 ssize_t size
, void *private, int ret
,
3599 ext4_io_end_t
*io_end
= iocb
->private;
3600 struct workqueue_struct
*wq
;
3601 unsigned long flags
;
3602 struct ext4_inode_info
*ei
;
3604 /* if not async direct IO or dio with 0 bytes write, just return */
3605 if (!io_end
|| !size
)
3608 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3609 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3610 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3613 /* if not aio dio with unwritten extents, just free io and return */
3614 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3615 ext4_free_io_end(io_end
);
3616 iocb
->private = NULL
;
3619 aio_complete(iocb
, ret
, 0);
3623 io_end
->offset
= offset
;
3624 io_end
->size
= size
;
3626 io_end
->iocb
= iocb
;
3627 io_end
->result
= ret
;
3629 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3631 /* Add the io_end to per-inode completed aio dio list*/
3632 ei
= EXT4_I(io_end
->inode
);
3633 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3634 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
3635 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3637 /* queue the work to convert unwritten extents to written */
3638 queue_work(wq
, &io_end
->work
);
3639 iocb
->private = NULL
;
3642 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
3644 ext4_io_end_t
*io_end
= bh
->b_private
;
3645 struct workqueue_struct
*wq
;
3646 struct inode
*inode
;
3647 unsigned long flags
;
3649 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3652 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3653 printk("sb umounted, discard end_io request for inode %lu\n",
3654 io_end
->inode
->i_ino
);
3655 ext4_free_io_end(io_end
);
3660 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3661 * but being more careful is always safe for the future change.
3663 inode
= io_end
->inode
;
3664 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
3665 io_end
->flag
|= EXT4_IO_END_UNWRITTEN
;
3666 atomic_inc(&EXT4_I(inode
)->i_aiodio_unwritten
);
3669 /* Add the io_end to per-inode completed io list*/
3670 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3671 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
3672 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3674 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
3675 /* queue the work to convert unwritten extents to written */
3676 queue_work(wq
, &io_end
->work
);
3678 bh
->b_private
= NULL
;
3679 bh
->b_end_io
= NULL
;
3680 clear_buffer_uninit(bh
);
3681 end_buffer_async_write(bh
, uptodate
);
3684 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3686 ext4_io_end_t
*io_end
;
3687 struct page
*page
= bh
->b_page
;
3688 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3689 size_t size
= bh
->b_size
;
3692 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3694 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
3698 io_end
->offset
= offset
;
3699 io_end
->size
= size
;
3701 * We need to hold a reference to the page to make sure it
3702 * doesn't get evicted before ext4_end_io_work() has a chance
3703 * to convert the extent from written to unwritten.
3705 io_end
->page
= page
;
3706 get_page(io_end
->page
);
3708 bh
->b_private
= io_end
;
3709 bh
->b_end_io
= ext4_end_io_buffer_write
;
3714 * For ext4 extent files, ext4 will do direct-io write to holes,
3715 * preallocated extents, and those write extend the file, no need to
3716 * fall back to buffered IO.
3718 * For holes, we fallocate those blocks, mark them as uninitialized
3719 * If those blocks were preallocated, we mark sure they are splited, but
3720 * still keep the range to write as uninitialized.
3722 * The unwrritten extents will be converted to written when DIO is completed.
3723 * For async direct IO, since the IO may still pending when return, we
3724 * set up an end_io call back function, which will do the conversion
3725 * when async direct IO completed.
3727 * If the O_DIRECT write will extend the file then add this inode to the
3728 * orphan list. So recovery will truncate it back to the original size
3729 * if the machine crashes during the write.
3732 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3733 const struct iovec
*iov
, loff_t offset
,
3734 unsigned long nr_segs
)
3736 struct file
*file
= iocb
->ki_filp
;
3737 struct inode
*inode
= file
->f_mapping
->host
;
3739 size_t count
= iov_length(iov
, nr_segs
);
3741 loff_t final_size
= offset
+ count
;
3742 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3744 * We could direct write to holes and fallocate.
3746 * Allocated blocks to fill the hole are marked as uninitialized
3747 * to prevent parallel buffered read to expose the stale data
3748 * before DIO complete the data IO.
3750 * As to previously fallocated extents, ext4 get_block
3751 * will just simply mark the buffer mapped but still
3752 * keep the extents uninitialized.
3754 * for non AIO case, we will convert those unwritten extents
3755 * to written after return back from blockdev_direct_IO.
3757 * for async DIO, the conversion needs to be defered when
3758 * the IO is completed. The ext4 end_io callback function
3759 * will be called to take care of the conversion work.
3760 * Here for async case, we allocate an io_end structure to
3763 iocb
->private = NULL
;
3764 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3765 if (!is_sync_kiocb(iocb
)) {
3766 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
3770 * we save the io structure for current async
3771 * direct IO, so that later ext4_map_blocks()
3772 * could flag the io structure whether there
3773 * is a unwritten extents needs to be converted
3774 * when IO is completed.
3776 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3779 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3780 inode
->i_sb
->s_bdev
, iov
,
3782 ext4_get_block_write
,
3785 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3787 * The io_end structure takes a reference to the inode,
3788 * that structure needs to be destroyed and the
3789 * reference to the inode need to be dropped, when IO is
3790 * complete, even with 0 byte write, or failed.
3792 * In the successful AIO DIO case, the io_end structure will be
3793 * desctroyed and the reference to the inode will be dropped
3794 * after the end_io call back function is called.
3796 * In the case there is 0 byte write, or error case, since
3797 * VFS direct IO won't invoke the end_io call back function,
3798 * we need to free the end_io structure here.
3800 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3801 ext4_free_io_end(iocb
->private);
3802 iocb
->private = NULL
;
3803 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3804 EXT4_STATE_DIO_UNWRITTEN
)) {
3807 * for non AIO case, since the IO is already
3808 * completed, we could do the conversion right here
3810 err
= ext4_convert_unwritten_extents(inode
,
3814 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3819 /* for write the the end of file case, we fall back to old way */
3820 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3823 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3824 const struct iovec
*iov
, loff_t offset
,
3825 unsigned long nr_segs
)
3827 struct file
*file
= iocb
->ki_filp
;
3828 struct inode
*inode
= file
->f_mapping
->host
;
3831 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3832 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3833 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3835 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3836 trace_ext4_direct_IO_exit(inode
, offset
,
3837 iov_length(iov
, nr_segs
), rw
, ret
);
3842 * Pages can be marked dirty completely asynchronously from ext4's journalling
3843 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3844 * much here because ->set_page_dirty is called under VFS locks. The page is
3845 * not necessarily locked.
3847 * We cannot just dirty the page and leave attached buffers clean, because the
3848 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3849 * or jbddirty because all the journalling code will explode.
3851 * So what we do is to mark the page "pending dirty" and next time writepage
3852 * is called, propagate that into the buffers appropriately.
3854 static int ext4_journalled_set_page_dirty(struct page
*page
)
3856 SetPageChecked(page
);
3857 return __set_page_dirty_nobuffers(page
);
3860 static const struct address_space_operations ext4_ordered_aops
= {
3861 .readpage
= ext4_readpage
,
3862 .readpages
= ext4_readpages
,
3863 .writepage
= ext4_writepage
,
3864 .write_begin
= ext4_write_begin
,
3865 .write_end
= ext4_ordered_write_end
,
3867 .invalidatepage
= ext4_invalidatepage
,
3868 .releasepage
= ext4_releasepage
,
3869 .direct_IO
= ext4_direct_IO
,
3870 .migratepage
= buffer_migrate_page
,
3871 .is_partially_uptodate
= block_is_partially_uptodate
,
3872 .error_remove_page
= generic_error_remove_page
,
3875 static const struct address_space_operations ext4_writeback_aops
= {
3876 .readpage
= ext4_readpage
,
3877 .readpages
= ext4_readpages
,
3878 .writepage
= ext4_writepage
,
3879 .write_begin
= ext4_write_begin
,
3880 .write_end
= ext4_writeback_write_end
,
3882 .invalidatepage
= ext4_invalidatepage
,
3883 .releasepage
= ext4_releasepage
,
3884 .direct_IO
= ext4_direct_IO
,
3885 .migratepage
= buffer_migrate_page
,
3886 .is_partially_uptodate
= block_is_partially_uptodate
,
3887 .error_remove_page
= generic_error_remove_page
,
3890 static const struct address_space_operations ext4_journalled_aops
= {
3891 .readpage
= ext4_readpage
,
3892 .readpages
= ext4_readpages
,
3893 .writepage
= ext4_writepage
,
3894 .write_begin
= ext4_write_begin
,
3895 .write_end
= ext4_journalled_write_end
,
3896 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3898 .invalidatepage
= ext4_invalidatepage
,
3899 .releasepage
= ext4_releasepage
,
3900 .is_partially_uptodate
= block_is_partially_uptodate
,
3901 .error_remove_page
= generic_error_remove_page
,
3904 static const struct address_space_operations ext4_da_aops
= {
3905 .readpage
= ext4_readpage
,
3906 .readpages
= ext4_readpages
,
3907 .writepage
= ext4_writepage
,
3908 .writepages
= ext4_da_writepages
,
3909 .write_begin
= ext4_da_write_begin
,
3910 .write_end
= ext4_da_write_end
,
3912 .invalidatepage
= ext4_da_invalidatepage
,
3913 .releasepage
= ext4_releasepage
,
3914 .direct_IO
= ext4_direct_IO
,
3915 .migratepage
= buffer_migrate_page
,
3916 .is_partially_uptodate
= block_is_partially_uptodate
,
3917 .error_remove_page
= generic_error_remove_page
,
3920 void ext4_set_aops(struct inode
*inode
)
3922 switch (ext4_inode_journal_mode(inode
)) {
3923 case EXT4_INODE_ORDERED_DATA_MODE
:
3924 if (test_opt(inode
->i_sb
, DELALLOC
))
3925 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3927 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3929 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3930 if (test_opt(inode
->i_sb
, DELALLOC
))
3931 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3933 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3935 case EXT4_INODE_JOURNAL_DATA_MODE
:
3936 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3944 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3945 * up to the end of the block which corresponds to `from'.
3946 * This required during truncate. We need to physically zero the tail end
3947 * of that block so it doesn't yield old data if the file is later grown.
3949 int ext4_block_truncate_page(handle_t
*handle
,
3950 struct address_space
*mapping
, loff_t from
)
3952 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3955 struct inode
*inode
= mapping
->host
;
3957 blocksize
= inode
->i_sb
->s_blocksize
;
3958 length
= blocksize
- (offset
& (blocksize
- 1));
3960 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3964 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3965 * starting from file offset 'from'. The range to be zero'd must
3966 * be contained with in one block. If the specified range exceeds
3967 * the end of the block it will be shortened to end of the block
3968 * that cooresponds to 'from'
3970 int ext4_block_zero_page_range(handle_t
*handle
,
3971 struct address_space
*mapping
, loff_t from
, loff_t length
)
3973 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3974 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3975 unsigned blocksize
, max
, pos
;
3977 struct inode
*inode
= mapping
->host
;
3978 struct buffer_head
*bh
;
3982 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3983 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3987 blocksize
= inode
->i_sb
->s_blocksize
;
3988 max
= blocksize
- (offset
& (blocksize
- 1));
3991 * correct length if it does not fall between
3992 * 'from' and the end of the block
3994 if (length
> max
|| length
< 0)
3997 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3999 if (!page_has_buffers(page
))
4000 create_empty_buffers(page
, blocksize
, 0);
4002 /* Find the buffer that contains "offset" */
4003 bh
= page_buffers(page
);
4005 while (offset
>= pos
) {
4006 bh
= bh
->b_this_page
;
4012 if (buffer_freed(bh
)) {
4013 BUFFER_TRACE(bh
, "freed: skip");
4017 if (!buffer_mapped(bh
)) {
4018 BUFFER_TRACE(bh
, "unmapped");
4019 ext4_get_block(inode
, iblock
, bh
, 0);
4020 /* unmapped? It's a hole - nothing to do */
4021 if (!buffer_mapped(bh
)) {
4022 BUFFER_TRACE(bh
, "still unmapped");
4027 /* Ok, it's mapped. Make sure it's up-to-date */
4028 if (PageUptodate(page
))
4029 set_buffer_uptodate(bh
);
4031 if (!buffer_uptodate(bh
)) {
4033 ll_rw_block(READ
, 1, &bh
);
4035 /* Uhhuh. Read error. Complain and punt. */
4036 if (!buffer_uptodate(bh
))
4040 if (ext4_should_journal_data(inode
)) {
4041 BUFFER_TRACE(bh
, "get write access");
4042 err
= ext4_journal_get_write_access(handle
, bh
);
4047 zero_user(page
, offset
, length
);
4049 BUFFER_TRACE(bh
, "zeroed end of block");
4052 if (ext4_should_journal_data(inode
)) {
4053 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4055 if (ext4_should_order_data(inode
) && EXT4_I(inode
)->jinode
)
4056 err
= ext4_jbd2_file_inode(handle
, inode
);
4057 mark_buffer_dirty(bh
);
4062 page_cache_release(page
);
4067 * Probably it should be a library function... search for first non-zero word
4068 * or memcmp with zero_page, whatever is better for particular architecture.
4071 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4080 * ext4_find_shared - find the indirect blocks for partial truncation.
4081 * @inode: inode in question
4082 * @depth: depth of the affected branch
4083 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4084 * @chain: place to store the pointers to partial indirect blocks
4085 * @top: place to the (detached) top of branch
4087 * This is a helper function used by ext4_truncate().
4089 * When we do truncate() we may have to clean the ends of several
4090 * indirect blocks but leave the blocks themselves alive. Block is
4091 * partially truncated if some data below the new i_size is referred
4092 * from it (and it is on the path to the first completely truncated
4093 * data block, indeed). We have to free the top of that path along
4094 * with everything to the right of the path. Since no allocation
4095 * past the truncation point is possible until ext4_truncate()
4096 * finishes, we may safely do the latter, but top of branch may
4097 * require special attention - pageout below the truncation point
4098 * might try to populate it.
4100 * We atomically detach the top of branch from the tree, store the
4101 * block number of its root in *@top, pointers to buffer_heads of
4102 * partially truncated blocks - in @chain[].bh and pointers to
4103 * their last elements that should not be removed - in
4104 * @chain[].p. Return value is the pointer to last filled element
4107 * The work left to caller to do the actual freeing of subtrees:
4108 * a) free the subtree starting from *@top
4109 * b) free the subtrees whose roots are stored in
4110 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4111 * c) free the subtrees growing from the inode past the @chain[0].
4112 * (no partially truncated stuff there). */
4114 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4115 ext4_lblk_t offsets
[4], Indirect chain
[4],
4118 Indirect
*partial
, *p
;
4122 /* Make k index the deepest non-null offset + 1 */
4123 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4125 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4126 /* Writer: pointers */
4128 partial
= chain
+ k
-1;
4130 * If the branch acquired continuation since we've looked at it -
4131 * fine, it should all survive and (new) top doesn't belong to us.
4133 if (!partial
->key
&& *partial
->p
)
4136 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4139 * OK, we've found the last block that must survive. The rest of our
4140 * branch should be detached before unlocking. However, if that rest
4141 * of branch is all ours and does not grow immediately from the inode
4142 * it's easier to cheat and just decrement partial->p.
4144 if (p
== chain
+ k
- 1 && p
> chain
) {
4148 /* Nope, don't do this in ext4. Must leave the tree intact */
4155 while (partial
> p
) {
4156 brelse(partial
->bh
);
4164 * Zero a number of block pointers in either an inode or an indirect block.
4165 * If we restart the transaction we must again get write access to the
4166 * indirect block for further modification.
4168 * We release `count' blocks on disk, but (last - first) may be greater
4169 * than `count' because there can be holes in there.
4171 * Return 0 on success, 1 on invalid block range
4172 * and < 0 on fatal error.
4174 static int ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4175 struct buffer_head
*bh
,
4176 ext4_fsblk_t block_to_free
,
4177 unsigned long count
, __le32
*first
,
4181 int flags
= EXT4_FREE_BLOCKS_FORGET
| EXT4_FREE_BLOCKS_VALIDATED
;
4184 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
4185 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4187 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block_to_free
,
4189 EXT4_ERROR_INODE(inode
, "attempt to clear invalid "
4190 "blocks %llu len %lu",
4191 (unsigned long long) block_to_free
, count
);
4195 if (try_to_extend_transaction(handle
, inode
)) {
4197 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4198 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4202 err
= ext4_mark_inode_dirty(handle
, inode
);
4205 err
= ext4_truncate_restart_trans(handle
, inode
,
4206 blocks_for_truncate(inode
));
4210 BUFFER_TRACE(bh
, "retaking write access");
4211 err
= ext4_journal_get_write_access(handle
, bh
);
4217 for (p
= first
; p
< last
; p
++)
4220 ext4_free_blocks(handle
, inode
, NULL
, block_to_free
, count
, flags
);
4223 ext4_std_error(inode
->i_sb
, err
);
4228 * ext4_free_data - free a list of data blocks
4229 * @handle: handle for this transaction
4230 * @inode: inode we are dealing with
4231 * @this_bh: indirect buffer_head which contains *@first and *@last
4232 * @first: array of block numbers
4233 * @last: points immediately past the end of array
4235 * We are freeing all blocks referred from that array (numbers are stored as
4236 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4238 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4239 * blocks are contiguous then releasing them at one time will only affect one
4240 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4241 * actually use a lot of journal space.
4243 * @this_bh will be %NULL if @first and @last point into the inode's direct
4246 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4247 struct buffer_head
*this_bh
,
4248 __le32
*first
, __le32
*last
)
4250 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4251 unsigned long count
= 0; /* Number of blocks in the run */
4252 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4255 ext4_fsblk_t nr
; /* Current block # */
4256 __le32
*p
; /* Pointer into inode/ind
4257 for current block */
4260 if (this_bh
) { /* For indirect block */
4261 BUFFER_TRACE(this_bh
, "get_write_access");
4262 err
= ext4_journal_get_write_access(handle
, this_bh
);
4263 /* Important: if we can't update the indirect pointers
4264 * to the blocks, we can't free them. */
4269 for (p
= first
; p
< last
; p
++) {
4270 nr
= le32_to_cpu(*p
);
4272 /* accumulate blocks to free if they're contiguous */
4275 block_to_free_p
= p
;
4277 } else if (nr
== block_to_free
+ count
) {
4280 err
= ext4_clear_blocks(handle
, inode
, this_bh
,
4281 block_to_free
, count
,
4282 block_to_free_p
, p
);
4286 block_to_free_p
= p
;
4292 if (!err
&& count
> 0)
4293 err
= ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4294 count
, block_to_free_p
, p
);
4300 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4303 * The buffer head should have an attached journal head at this
4304 * point. However, if the data is corrupted and an indirect
4305 * block pointed to itself, it would have been detached when
4306 * the block was cleared. Check for this instead of OOPSing.
4308 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4309 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4311 EXT4_ERROR_INODE(inode
,
4312 "circular indirect block detected at "
4314 (unsigned long long) this_bh
->b_blocknr
);
4319 * ext4_free_branches - free an array of branches
4320 * @handle: JBD handle for this transaction
4321 * @inode: inode we are dealing with
4322 * @parent_bh: the buffer_head which contains *@first and *@last
4323 * @first: array of block numbers
4324 * @last: pointer immediately past the end of array
4325 * @depth: depth of the branches to free
4327 * We are freeing all blocks referred from these branches (numbers are
4328 * stored as little-endian 32-bit) and updating @inode->i_blocks
4331 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4332 struct buffer_head
*parent_bh
,
4333 __le32
*first
, __le32
*last
, int depth
)
4338 if (ext4_handle_is_aborted(handle
))
4342 struct buffer_head
*bh
;
4343 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4345 while (--p
>= first
) {
4346 nr
= le32_to_cpu(*p
);
4348 continue; /* A hole */
4350 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
4352 EXT4_ERROR_INODE(inode
,
4353 "invalid indirect mapped "
4354 "block %lu (level %d)",
4355 (unsigned long) nr
, depth
);
4359 /* Go read the buffer for the next level down */
4360 bh
= sb_bread(inode
->i_sb
, nr
);
4363 * A read failure? Report error and clear slot
4367 EXT4_ERROR_INODE_BLOCK(inode
, nr
,
4372 /* This zaps the entire block. Bottom up. */
4373 BUFFER_TRACE(bh
, "free child branches");
4374 ext4_free_branches(handle
, inode
, bh
,
4375 (__le32
*) bh
->b_data
,
4376 (__le32
*) bh
->b_data
+ addr_per_block
,
4381 * Everything below this this pointer has been
4382 * released. Now let this top-of-subtree go.
4384 * We want the freeing of this indirect block to be
4385 * atomic in the journal with the updating of the
4386 * bitmap block which owns it. So make some room in
4389 * We zero the parent pointer *after* freeing its
4390 * pointee in the bitmaps, so if extend_transaction()
4391 * for some reason fails to put the bitmap changes and
4392 * the release into the same transaction, recovery
4393 * will merely complain about releasing a free block,
4394 * rather than leaking blocks.
4396 if (ext4_handle_is_aborted(handle
))
4398 if (try_to_extend_transaction(handle
, inode
)) {
4399 ext4_mark_inode_dirty(handle
, inode
);
4400 ext4_truncate_restart_trans(handle
, inode
,
4401 blocks_for_truncate(inode
));
4405 * The forget flag here is critical because if
4406 * we are journaling (and not doing data
4407 * journaling), we have to make sure a revoke
4408 * record is written to prevent the journal
4409 * replay from overwriting the (former)
4410 * indirect block if it gets reallocated as a
4411 * data block. This must happen in the same
4412 * transaction where the data blocks are
4415 ext4_free_blocks(handle
, inode
, NULL
, nr
, 1,
4416 EXT4_FREE_BLOCKS_METADATA
|
4417 EXT4_FREE_BLOCKS_FORGET
);
4421 * The block which we have just freed is
4422 * pointed to by an indirect block: journal it
4424 BUFFER_TRACE(parent_bh
, "get_write_access");
4425 if (!ext4_journal_get_write_access(handle
,
4428 BUFFER_TRACE(parent_bh
,
4429 "call ext4_handle_dirty_metadata");
4430 ext4_handle_dirty_metadata(handle
,
4437 /* We have reached the bottom of the tree. */
4438 BUFFER_TRACE(parent_bh
, "free data blocks");
4439 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4443 int ext4_can_truncate(struct inode
*inode
)
4445 if (S_ISREG(inode
->i_mode
))
4447 if (S_ISDIR(inode
->i_mode
))
4449 if (S_ISLNK(inode
->i_mode
))
4450 return !ext4_inode_is_fast_symlink(inode
);
4455 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4456 * associated with the given offset and length
4458 * @inode: File inode
4459 * @offset: The offset where the hole will begin
4460 * @len: The length of the hole
4462 * Returns: 0 on sucess or negative on failure
4465 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4467 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4468 if (!S_ISREG(inode
->i_mode
))
4471 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4472 /* TODO: Add support for non extent hole punching */
4476 return ext4_ext_punch_hole(file
, offset
, length
);
4482 * We block out ext4_get_block() block instantiations across the entire
4483 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4484 * simultaneously on behalf of the same inode.
4486 * As we work through the truncate and commmit bits of it to the journal there
4487 * is one core, guiding principle: the file's tree must always be consistent on
4488 * disk. We must be able to restart the truncate after a crash.
4490 * The file's tree may be transiently inconsistent in memory (although it
4491 * probably isn't), but whenever we close off and commit a journal transaction,
4492 * the contents of (the filesystem + the journal) must be consistent and
4493 * restartable. It's pretty simple, really: bottom up, right to left (although
4494 * left-to-right works OK too).
4496 * Note that at recovery time, journal replay occurs *before* the restart of
4497 * truncate against the orphan inode list.
4499 * The committed inode has the new, desired i_size (which is the same as
4500 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4501 * that this inode's truncate did not complete and it will again call
4502 * ext4_truncate() to have another go. So there will be instantiated blocks
4503 * to the right of the truncation point in a crashed ext4 filesystem. But
4504 * that's fine - as long as they are linked from the inode, the post-crash
4505 * ext4_truncate() run will find them and release them.
4507 void ext4_truncate(struct inode
*inode
)
4510 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4511 __le32
*i_data
= ei
->i_data
;
4512 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4513 struct address_space
*mapping
= inode
->i_mapping
;
4514 ext4_lblk_t offsets
[4];
4519 ext4_lblk_t last_block
, max_block
;
4520 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4522 trace_ext4_truncate_enter(inode
);
4524 if (!ext4_can_truncate(inode
))
4527 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4529 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4530 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4532 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4533 ext4_ext_truncate(inode
);
4534 trace_ext4_truncate_exit(inode
);
4538 handle
= start_transaction(inode
);
4540 return; /* AKPM: return what? */
4542 last_block
= (inode
->i_size
+ blocksize
-1)
4543 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4544 max_block
= (EXT4_SB(inode
->i_sb
)->s_bitmap_maxbytes
+ blocksize
-1)
4545 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4547 if (inode
->i_size
& (blocksize
- 1))
4548 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4551 if (last_block
!= max_block
) {
4552 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4554 goto out_stop
; /* error */
4558 * OK. This truncate is going to happen. We add the inode to the
4559 * orphan list, so that if this truncate spans multiple transactions,
4560 * and we crash, we will resume the truncate when the filesystem
4561 * recovers. It also marks the inode dirty, to catch the new size.
4563 * Implication: the file must always be in a sane, consistent
4564 * truncatable state while each transaction commits.
4566 if (ext4_orphan_add(handle
, inode
))
4570 * From here we block out all ext4_get_block() callers who want to
4571 * modify the block allocation tree.
4573 down_write(&ei
->i_data_sem
);
4575 ext4_discard_preallocations(inode
);
4578 * The orphan list entry will now protect us from any crash which
4579 * occurs before the truncate completes, so it is now safe to propagate
4580 * the new, shorter inode size (held for now in i_size) into the
4581 * on-disk inode. We do this via i_disksize, which is the value which
4582 * ext4 *really* writes onto the disk inode.
4584 ei
->i_disksize
= inode
->i_size
;
4586 if (last_block
== max_block
) {
4588 * It is unnecessary to free any data blocks if last_block is
4589 * equal to the indirect block limit.
4592 } else if (n
== 1) { /* direct blocks */
4593 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4594 i_data
+ EXT4_NDIR_BLOCKS
);
4598 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4599 /* Kill the top of shared branch (not detached) */
4601 if (partial
== chain
) {
4602 /* Shared branch grows from the inode */
4603 ext4_free_branches(handle
, inode
, NULL
,
4604 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4607 * We mark the inode dirty prior to restart,
4608 * and prior to stop. No need for it here.
4611 /* Shared branch grows from an indirect block */
4612 BUFFER_TRACE(partial
->bh
, "get_write_access");
4613 ext4_free_branches(handle
, inode
, partial
->bh
,
4615 partial
->p
+1, (chain
+n
-1) - partial
);
4618 /* Clear the ends of indirect blocks on the shared branch */
4619 while (partial
> chain
) {
4620 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4621 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4622 (chain
+n
-1) - partial
);
4623 BUFFER_TRACE(partial
->bh
, "call brelse");
4624 brelse(partial
->bh
);
4628 /* Kill the remaining (whole) subtrees */
4629 switch (offsets
[0]) {
4631 nr
= i_data
[EXT4_IND_BLOCK
];
4633 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4634 i_data
[EXT4_IND_BLOCK
] = 0;
4636 case EXT4_IND_BLOCK
:
4637 nr
= i_data
[EXT4_DIND_BLOCK
];
4639 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4640 i_data
[EXT4_DIND_BLOCK
] = 0;
4642 case EXT4_DIND_BLOCK
:
4643 nr
= i_data
[EXT4_TIND_BLOCK
];
4645 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4646 i_data
[EXT4_TIND_BLOCK
] = 0;
4648 case EXT4_TIND_BLOCK
:
4653 up_write(&ei
->i_data_sem
);
4654 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4655 ext4_mark_inode_dirty(handle
, inode
);
4658 * In a multi-transaction truncate, we only make the final transaction
4662 ext4_handle_sync(handle
);
4665 * If this was a simple ftruncate(), and the file will remain alive
4666 * then we need to clear up the orphan record which we created above.
4667 * However, if this was a real unlink then we were called by
4668 * ext4_delete_inode(), and we allow that function to clean up the
4669 * orphan info for us.
4672 ext4_orphan_del(handle
, inode
);
4674 ext4_journal_stop(handle
);
4675 trace_ext4_truncate_exit(inode
);
4679 * ext4_get_inode_loc returns with an extra refcount against the inode's
4680 * underlying buffer_head on success. If 'in_mem' is true, we have all
4681 * data in memory that is needed to recreate the on-disk version of this
4684 static int __ext4_get_inode_loc(struct inode
*inode
,
4685 struct ext4_iloc
*iloc
, int in_mem
)
4687 struct ext4_group_desc
*gdp
;
4688 struct buffer_head
*bh
;
4689 struct super_block
*sb
= inode
->i_sb
;
4691 int inodes_per_block
, inode_offset
;
4694 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4697 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4698 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4703 * Figure out the offset within the block group inode table
4705 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4706 inode_offset
= ((inode
->i_ino
- 1) %
4707 EXT4_INODES_PER_GROUP(sb
));
4708 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4709 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4711 bh
= sb_getblk(sb
, block
);
4713 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4714 "unable to read itable block");
4717 if (!buffer_uptodate(bh
)) {
4721 * If the buffer has the write error flag, we have failed
4722 * to write out another inode in the same block. In this
4723 * case, we don't have to read the block because we may
4724 * read the old inode data successfully.
4726 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4727 set_buffer_uptodate(bh
);
4729 if (buffer_uptodate(bh
)) {
4730 /* someone brought it uptodate while we waited */
4736 * If we have all information of the inode in memory and this
4737 * is the only valid inode in the block, we need not read the
4741 struct buffer_head
*bitmap_bh
;
4744 start
= inode_offset
& ~(inodes_per_block
- 1);
4746 /* Is the inode bitmap in cache? */
4747 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4752 * If the inode bitmap isn't in cache then the
4753 * optimisation may end up performing two reads instead
4754 * of one, so skip it.
4756 if (!buffer_uptodate(bitmap_bh
)) {
4760 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4761 if (i
== inode_offset
)
4763 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4767 if (i
== start
+ inodes_per_block
) {
4768 /* all other inodes are free, so skip I/O */
4769 memset(bh
->b_data
, 0, bh
->b_size
);
4770 set_buffer_uptodate(bh
);
4778 * If we need to do any I/O, try to pre-readahead extra
4779 * blocks from the inode table.
4781 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4782 ext4_fsblk_t b
, end
, table
;
4785 table
= ext4_inode_table(sb
, gdp
);
4786 /* s_inode_readahead_blks is always a power of 2 */
4787 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4790 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4791 num
= EXT4_INODES_PER_GROUP(sb
);
4792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4793 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4794 num
-= ext4_itable_unused_count(sb
, gdp
);
4795 table
+= num
/ inodes_per_block
;
4799 sb_breadahead(sb
, b
++);
4803 * There are other valid inodes in the buffer, this inode
4804 * has in-inode xattrs, or we don't have this inode in memory.
4805 * Read the block from disk.
4807 trace_ext4_load_inode(inode
);
4809 bh
->b_end_io
= end_buffer_read_sync
;
4810 submit_bh(READ_META
, bh
);
4812 if (!buffer_uptodate(bh
)) {
4813 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4814 "unable to read itable block");
4824 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4826 /* We have all inode data except xattrs in memory here. */
4827 return __ext4_get_inode_loc(inode
, iloc
,
4828 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4831 void ext4_set_inode_flags(struct inode
*inode
)
4833 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4835 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4836 if (flags
& EXT4_SYNC_FL
)
4837 inode
->i_flags
|= S_SYNC
;
4838 if (flags
& EXT4_APPEND_FL
)
4839 inode
->i_flags
|= S_APPEND
;
4840 if (flags
& EXT4_IMMUTABLE_FL
)
4841 inode
->i_flags
|= S_IMMUTABLE
;
4842 if (flags
& EXT4_NOATIME_FL
)
4843 inode
->i_flags
|= S_NOATIME
;
4844 if (flags
& EXT4_DIRSYNC_FL
)
4845 inode
->i_flags
|= S_DIRSYNC
;
4848 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4849 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4851 unsigned int vfs_fl
;
4852 unsigned long old_fl
, new_fl
;
4855 vfs_fl
= ei
->vfs_inode
.i_flags
;
4856 old_fl
= ei
->i_flags
;
4857 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4858 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4860 if (vfs_fl
& S_SYNC
)
4861 new_fl
|= EXT4_SYNC_FL
;
4862 if (vfs_fl
& S_APPEND
)
4863 new_fl
|= EXT4_APPEND_FL
;
4864 if (vfs_fl
& S_IMMUTABLE
)
4865 new_fl
|= EXT4_IMMUTABLE_FL
;
4866 if (vfs_fl
& S_NOATIME
)
4867 new_fl
|= EXT4_NOATIME_FL
;
4868 if (vfs_fl
& S_DIRSYNC
)
4869 new_fl
|= EXT4_DIRSYNC_FL
;
4870 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4873 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4874 struct ext4_inode_info
*ei
)
4877 struct inode
*inode
= &(ei
->vfs_inode
);
4878 struct super_block
*sb
= inode
->i_sb
;
4880 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4881 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4882 /* we are using combined 48 bit field */
4883 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4884 le32_to_cpu(raw_inode
->i_blocks_lo
);
4885 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4886 /* i_blocks represent file system block size */
4887 return i_blocks
<< (inode
->i_blkbits
- 9);
4892 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4896 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4898 struct ext4_iloc iloc
;
4899 struct ext4_inode
*raw_inode
;
4900 struct ext4_inode_info
*ei
;
4901 struct inode
*inode
;
4902 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4906 inode
= iget_locked(sb
, ino
);
4908 return ERR_PTR(-ENOMEM
);
4909 if (!(inode
->i_state
& I_NEW
))
4915 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4918 raw_inode
= ext4_raw_inode(&iloc
);
4919 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4920 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4921 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4922 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4923 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4924 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4926 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4928 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4929 ei
->i_dir_start_lookup
= 0;
4930 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4931 /* We now have enough fields to check if the inode was active or not.
4932 * This is needed because nfsd might try to access dead inodes
4933 * the test is that same one that e2fsck uses
4934 * NeilBrown 1999oct15
4936 if (inode
->i_nlink
== 0) {
4937 if (inode
->i_mode
== 0 ||
4938 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4939 /* this inode is deleted */
4943 /* The only unlinked inodes we let through here have
4944 * valid i_mode and are being read by the orphan
4945 * recovery code: that's fine, we're about to complete
4946 * the process of deleting those. */
4948 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4949 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4950 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4951 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4953 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4954 inode
->i_size
= ext4_isize(raw_inode
);
4955 ei
->i_disksize
= inode
->i_size
;
4957 ei
->i_reserved_quota
= 0;
4959 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4960 ei
->i_block_group
= iloc
.block_group
;
4961 ei
->i_last_alloc_group
= ~0;
4963 * NOTE! The in-memory inode i_data array is in little-endian order
4964 * even on big-endian machines: we do NOT byteswap the block numbers!
4966 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4967 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4968 INIT_LIST_HEAD(&ei
->i_orphan
);
4971 * Set transaction id's of transactions that have to be committed
4972 * to finish f[data]sync. We set them to currently running transaction
4973 * as we cannot be sure that the inode or some of its metadata isn't
4974 * part of the transaction - the inode could have been reclaimed and
4975 * now it is reread from disk.
4978 transaction_t
*transaction
;
4981 read_lock(&journal
->j_state_lock
);
4982 if (journal
->j_running_transaction
)
4983 transaction
= journal
->j_running_transaction
;
4985 transaction
= journal
->j_committing_transaction
;
4987 tid
= transaction
->t_tid
;
4989 tid
= journal
->j_commit_sequence
;
4990 read_unlock(&journal
->j_state_lock
);
4991 ei
->i_sync_tid
= tid
;
4992 ei
->i_datasync_tid
= tid
;
4995 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4996 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4997 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4998 EXT4_INODE_SIZE(inode
->i_sb
)) {
5002 if (ei
->i_extra_isize
== 0) {
5003 /* The extra space is currently unused. Use it. */
5004 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
5005 EXT4_GOOD_OLD_INODE_SIZE
;
5007 __le32
*magic
= (void *)raw_inode
+
5008 EXT4_GOOD_OLD_INODE_SIZE
+
5010 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
5011 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
5014 ei
->i_extra_isize
= 0;
5016 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
5017 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
5018 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
5019 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
5021 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
5022 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
5023 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5025 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
5029 if (ei
->i_file_acl
&&
5030 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
5031 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
5035 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
5036 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5037 (S_ISLNK(inode
->i_mode
) &&
5038 !ext4_inode_is_fast_symlink(inode
)))
5039 /* Validate extent which is part of inode */
5040 ret
= ext4_ext_check_inode(inode
);
5041 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5042 (S_ISLNK(inode
->i_mode
) &&
5043 !ext4_inode_is_fast_symlink(inode
))) {
5044 /* Validate block references which are part of inode */
5045 ret
= ext4_check_inode_blockref(inode
);
5050 if (S_ISREG(inode
->i_mode
)) {
5051 inode
->i_op
= &ext4_file_inode_operations
;
5052 inode
->i_fop
= &ext4_file_operations
;
5053 ext4_set_aops(inode
);
5054 } else if (S_ISDIR(inode
->i_mode
)) {
5055 inode
->i_op
= &ext4_dir_inode_operations
;
5056 inode
->i_fop
= &ext4_dir_operations
;
5057 } else if (S_ISLNK(inode
->i_mode
)) {
5058 if (ext4_inode_is_fast_symlink(inode
)) {
5059 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
5060 nd_terminate_link(ei
->i_data
, inode
->i_size
,
5061 sizeof(ei
->i_data
) - 1);
5063 inode
->i_op
= &ext4_symlink_inode_operations
;
5064 ext4_set_aops(inode
);
5066 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5067 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5068 inode
->i_op
= &ext4_special_inode_operations
;
5069 if (raw_inode
->i_block
[0])
5070 init_special_inode(inode
, inode
->i_mode
,
5071 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5073 init_special_inode(inode
, inode
->i_mode
,
5074 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5077 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
5081 ext4_set_inode_flags(inode
);
5082 unlock_new_inode(inode
);
5088 return ERR_PTR(ret
);
5091 static int ext4_inode_blocks_set(handle_t
*handle
,
5092 struct ext4_inode
*raw_inode
,
5093 struct ext4_inode_info
*ei
)
5095 struct inode
*inode
= &(ei
->vfs_inode
);
5096 u64 i_blocks
= inode
->i_blocks
;
5097 struct super_block
*sb
= inode
->i_sb
;
5099 if (i_blocks
<= ~0U) {
5101 * i_blocks can be represnted in a 32 bit variable
5102 * as multiple of 512 bytes
5104 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5105 raw_inode
->i_blocks_high
= 0;
5106 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5109 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5112 if (i_blocks
<= 0xffffffffffffULL
) {
5114 * i_blocks can be represented in a 48 bit variable
5115 * as multiple of 512 bytes
5117 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5118 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5119 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5121 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5122 /* i_block is stored in file system block size */
5123 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5124 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5125 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5131 * Post the struct inode info into an on-disk inode location in the
5132 * buffer-cache. This gobbles the caller's reference to the
5133 * buffer_head in the inode location struct.
5135 * The caller must have write access to iloc->bh.
5137 static int ext4_do_update_inode(handle_t
*handle
,
5138 struct inode
*inode
,
5139 struct ext4_iloc
*iloc
)
5141 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5142 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5143 struct buffer_head
*bh
= iloc
->bh
;
5144 int err
= 0, rc
, block
;
5146 /* For fields not not tracking in the in-memory inode,
5147 * initialise them to zero for new inodes. */
5148 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5149 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5151 ext4_get_inode_flags(ei
);
5152 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5153 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5154 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5155 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5157 * Fix up interoperability with old kernels. Otherwise, old inodes get
5158 * re-used with the upper 16 bits of the uid/gid intact
5161 raw_inode
->i_uid_high
=
5162 cpu_to_le16(high_16_bits(inode
->i_uid
));
5163 raw_inode
->i_gid_high
=
5164 cpu_to_le16(high_16_bits(inode
->i_gid
));
5166 raw_inode
->i_uid_high
= 0;
5167 raw_inode
->i_gid_high
= 0;
5170 raw_inode
->i_uid_low
=
5171 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5172 raw_inode
->i_gid_low
=
5173 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5174 raw_inode
->i_uid_high
= 0;
5175 raw_inode
->i_gid_high
= 0;
5177 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5179 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5180 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5181 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5182 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5184 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5186 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5187 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
5188 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5189 cpu_to_le32(EXT4_OS_HURD
))
5190 raw_inode
->i_file_acl_high
=
5191 cpu_to_le16(ei
->i_file_acl
>> 32);
5192 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5193 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5194 if (ei
->i_disksize
> 0x7fffffffULL
) {
5195 struct super_block
*sb
= inode
->i_sb
;
5196 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5197 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5198 EXT4_SB(sb
)->s_es
->s_rev_level
==
5199 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5200 /* If this is the first large file
5201 * created, add a flag to the superblock.
5203 err
= ext4_journal_get_write_access(handle
,
5204 EXT4_SB(sb
)->s_sbh
);
5207 ext4_update_dynamic_rev(sb
);
5208 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5209 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5211 ext4_handle_sync(handle
);
5212 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5213 EXT4_SB(sb
)->s_sbh
);
5216 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5217 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5218 if (old_valid_dev(inode
->i_rdev
)) {
5219 raw_inode
->i_block
[0] =
5220 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5221 raw_inode
->i_block
[1] = 0;
5223 raw_inode
->i_block
[0] = 0;
5224 raw_inode
->i_block
[1] =
5225 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5226 raw_inode
->i_block
[2] = 0;
5229 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5230 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5232 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5233 if (ei
->i_extra_isize
) {
5234 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5235 raw_inode
->i_version_hi
=
5236 cpu_to_le32(inode
->i_version
>> 32);
5237 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5240 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5241 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5244 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5246 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5249 ext4_std_error(inode
->i_sb
, err
);
5254 * ext4_write_inode()
5256 * We are called from a few places:
5258 * - Within generic_file_write() for O_SYNC files.
5259 * Here, there will be no transaction running. We wait for any running
5260 * trasnaction to commit.
5262 * - Within sys_sync(), kupdate and such.
5263 * We wait on commit, if tol to.
5265 * - Within prune_icache() (PF_MEMALLOC == true)
5266 * Here we simply return. We can't afford to block kswapd on the
5269 * In all cases it is actually safe for us to return without doing anything,
5270 * because the inode has been copied into a raw inode buffer in
5271 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5274 * Note that we are absolutely dependent upon all inode dirtiers doing the
5275 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5276 * which we are interested.
5278 * It would be a bug for them to not do this. The code:
5280 * mark_inode_dirty(inode)
5282 * inode->i_size = expr;
5284 * is in error because a kswapd-driven write_inode() could occur while
5285 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5286 * will no longer be on the superblock's dirty inode list.
5288 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5292 if (current
->flags
& PF_MEMALLOC
)
5295 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5296 if (ext4_journal_current_handle()) {
5297 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5302 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
5305 err
= ext4_force_commit(inode
->i_sb
);
5307 struct ext4_iloc iloc
;
5309 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5312 if (wbc
->sync_mode
== WB_SYNC_ALL
)
5313 sync_dirty_buffer(iloc
.bh
);
5314 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5315 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
5316 "IO error syncing inode");
5327 * Called from notify_change.
5329 * We want to trap VFS attempts to truncate the file as soon as
5330 * possible. In particular, we want to make sure that when the VFS
5331 * shrinks i_size, we put the inode on the orphan list and modify
5332 * i_disksize immediately, so that during the subsequent flushing of
5333 * dirty pages and freeing of disk blocks, we can guarantee that any
5334 * commit will leave the blocks being flushed in an unused state on
5335 * disk. (On recovery, the inode will get truncated and the blocks will
5336 * be freed, so we have a strong guarantee that no future commit will
5337 * leave these blocks visible to the user.)
5339 * Another thing we have to assure is that if we are in ordered mode
5340 * and inode is still attached to the committing transaction, we must
5341 * we start writeout of all the dirty pages which are being truncated.
5342 * This way we are sure that all the data written in the previous
5343 * transaction are already on disk (truncate waits for pages under
5346 * Called with inode->i_mutex down.
5348 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5350 struct inode
*inode
= dentry
->d_inode
;
5353 const unsigned int ia_valid
= attr
->ia_valid
;
5355 error
= inode_change_ok(inode
, attr
);
5359 if (is_quota_modification(inode
, attr
))
5360 dquot_initialize(inode
);
5361 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5362 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5365 /* (user+group)*(old+new) structure, inode write (sb,
5366 * inode block, ? - but truncate inode update has it) */
5367 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5368 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5369 if (IS_ERR(handle
)) {
5370 error
= PTR_ERR(handle
);
5373 error
= dquot_transfer(inode
, attr
);
5375 ext4_journal_stop(handle
);
5378 /* Update corresponding info in inode so that everything is in
5379 * one transaction */
5380 if (attr
->ia_valid
& ATTR_UID
)
5381 inode
->i_uid
= attr
->ia_uid
;
5382 if (attr
->ia_valid
& ATTR_GID
)
5383 inode
->i_gid
= attr
->ia_gid
;
5384 error
= ext4_mark_inode_dirty(handle
, inode
);
5385 ext4_journal_stop(handle
);
5388 if (attr
->ia_valid
& ATTR_SIZE
) {
5389 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5390 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5392 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5397 if (S_ISREG(inode
->i_mode
) &&
5398 attr
->ia_valid
& ATTR_SIZE
&&
5399 (attr
->ia_size
< inode
->i_size
)) {
5402 handle
= ext4_journal_start(inode
, 3);
5403 if (IS_ERR(handle
)) {
5404 error
= PTR_ERR(handle
);
5407 if (ext4_handle_valid(handle
)) {
5408 error
= ext4_orphan_add(handle
, inode
);
5411 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5412 rc
= ext4_mark_inode_dirty(handle
, inode
);
5415 ext4_journal_stop(handle
);
5417 if (ext4_should_order_data(inode
)) {
5418 error
= ext4_begin_ordered_truncate(inode
,
5421 /* Do as much error cleanup as possible */
5422 handle
= ext4_journal_start(inode
, 3);
5423 if (IS_ERR(handle
)) {
5424 ext4_orphan_del(NULL
, inode
);
5427 ext4_orphan_del(handle
, inode
);
5429 ext4_journal_stop(handle
);
5435 if (attr
->ia_valid
& ATTR_SIZE
) {
5436 if (attr
->ia_size
!= i_size_read(inode
)) {
5437 truncate_setsize(inode
, attr
->ia_size
);
5438 ext4_truncate(inode
);
5439 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
5440 ext4_truncate(inode
);
5444 setattr_copy(inode
, attr
);
5445 mark_inode_dirty(inode
);
5449 * If the call to ext4_truncate failed to get a transaction handle at
5450 * all, we need to clean up the in-core orphan list manually.
5452 if (orphan
&& inode
->i_nlink
)
5453 ext4_orphan_del(NULL
, inode
);
5455 if (!rc
&& (ia_valid
& ATTR_MODE
))
5456 rc
= ext4_acl_chmod(inode
);
5459 ext4_std_error(inode
->i_sb
, error
);
5465 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5468 struct inode
*inode
;
5469 unsigned long delalloc_blocks
;
5471 inode
= dentry
->d_inode
;
5472 generic_fillattr(inode
, stat
);
5475 * We can't update i_blocks if the block allocation is delayed
5476 * otherwise in the case of system crash before the real block
5477 * allocation is done, we will have i_blocks inconsistent with
5478 * on-disk file blocks.
5479 * We always keep i_blocks updated together with real
5480 * allocation. But to not confuse with user, stat
5481 * will return the blocks that include the delayed allocation
5482 * blocks for this file.
5484 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5486 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5490 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5495 /* if nrblocks are contiguous */
5498 * With N contiguous data blocks, we need at most
5499 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5500 * 2 dindirect blocks, and 1 tindirect block
5502 return DIV_ROUND_UP(nrblocks
,
5503 EXT4_ADDR_PER_BLOCK(inode
->i_sb
)) + 4;
5506 * if nrblocks are not contiguous, worse case, each block touch
5507 * a indirect block, and each indirect block touch a double indirect
5508 * block, plus a triple indirect block
5510 indirects
= nrblocks
* 2 + 1;
5514 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5516 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5517 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5518 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5522 * Account for index blocks, block groups bitmaps and block group
5523 * descriptor blocks if modify datablocks and index blocks
5524 * worse case, the indexs blocks spread over different block groups
5526 * If datablocks are discontiguous, they are possible to spread over
5527 * different block groups too. If they are contiuguous, with flexbg,
5528 * they could still across block group boundary.
5530 * Also account for superblock, inode, quota and xattr blocks
5532 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5534 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5540 * How many index blocks need to touch to modify nrblocks?
5541 * The "Chunk" flag indicating whether the nrblocks is
5542 * physically contiguous on disk
5544 * For Direct IO and fallocate, they calls get_block to allocate
5545 * one single extent at a time, so they could set the "Chunk" flag
5547 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5552 * Now let's see how many group bitmaps and group descriptors need
5562 if (groups
> ngroups
)
5564 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5565 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5567 /* bitmaps and block group descriptor blocks */
5568 ret
+= groups
+ gdpblocks
;
5570 /* Blocks for super block, inode, quota and xattr blocks */
5571 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5577 * Calculate the total number of credits to reserve to fit
5578 * the modification of a single pages into a single transaction,
5579 * which may include multiple chunks of block allocations.
5581 * This could be called via ext4_write_begin()
5583 * We need to consider the worse case, when
5584 * one new block per extent.
5586 int ext4_writepage_trans_blocks(struct inode
*inode
)
5588 int bpp
= ext4_journal_blocks_per_page(inode
);
5591 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5593 /* Account for data blocks for journalled mode */
5594 if (ext4_should_journal_data(inode
))
5600 * Calculate the journal credits for a chunk of data modification.
5602 * This is called from DIO, fallocate or whoever calling
5603 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5605 * journal buffers for data blocks are not included here, as DIO
5606 * and fallocate do no need to journal data buffers.
5608 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5610 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5614 * The caller must have previously called ext4_reserve_inode_write().
5615 * Give this, we know that the caller already has write access to iloc->bh.
5617 int ext4_mark_iloc_dirty(handle_t
*handle
,
5618 struct inode
*inode
, struct ext4_iloc
*iloc
)
5622 if (test_opt(inode
->i_sb
, I_VERSION
))
5623 inode_inc_iversion(inode
);
5625 /* the do_update_inode consumes one bh->b_count */
5628 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5629 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5635 * On success, We end up with an outstanding reference count against
5636 * iloc->bh. This _must_ be cleaned up later.
5640 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5641 struct ext4_iloc
*iloc
)
5645 err
= ext4_get_inode_loc(inode
, iloc
);
5647 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5648 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5654 ext4_std_error(inode
->i_sb
, err
);
5659 * Expand an inode by new_extra_isize bytes.
5660 * Returns 0 on success or negative error number on failure.
5662 static int ext4_expand_extra_isize(struct inode
*inode
,
5663 unsigned int new_extra_isize
,
5664 struct ext4_iloc iloc
,
5667 struct ext4_inode
*raw_inode
;
5668 struct ext4_xattr_ibody_header
*header
;
5670 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5673 raw_inode
= ext4_raw_inode(&iloc
);
5675 header
= IHDR(inode
, raw_inode
);
5677 /* No extended attributes present */
5678 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5679 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5680 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5682 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5686 /* try to expand with EAs present */
5687 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5692 * What we do here is to mark the in-core inode as clean with respect to inode
5693 * dirtiness (it may still be data-dirty).
5694 * This means that the in-core inode may be reaped by prune_icache
5695 * without having to perform any I/O. This is a very good thing,
5696 * because *any* task may call prune_icache - even ones which
5697 * have a transaction open against a different journal.
5699 * Is this cheating? Not really. Sure, we haven't written the
5700 * inode out, but prune_icache isn't a user-visible syncing function.
5701 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5702 * we start and wait on commits.
5704 * Is this efficient/effective? Well, we're being nice to the system
5705 * by cleaning up our inodes proactively so they can be reaped
5706 * without I/O. But we are potentially leaving up to five seconds'
5707 * worth of inodes floating about which prune_icache wants us to
5708 * write out. One way to fix that would be to get prune_icache()
5709 * to do a write_super() to free up some memory. It has the desired
5712 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5714 struct ext4_iloc iloc
;
5715 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5716 static unsigned int mnt_count
;
5720 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5721 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5722 if (ext4_handle_valid(handle
) &&
5723 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5724 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5726 * We need extra buffer credits since we may write into EA block
5727 * with this same handle. If journal_extend fails, then it will
5728 * only result in a minor loss of functionality for that inode.
5729 * If this is felt to be critical, then e2fsck should be run to
5730 * force a large enough s_min_extra_isize.
5732 if ((jbd2_journal_extend(handle
,
5733 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5734 ret
= ext4_expand_extra_isize(inode
,
5735 sbi
->s_want_extra_isize
,
5738 ext4_set_inode_state(inode
,
5739 EXT4_STATE_NO_EXPAND
);
5741 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5742 ext4_warning(inode
->i_sb
,
5743 "Unable to expand inode %lu. Delete"
5744 " some EAs or run e2fsck.",
5747 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5753 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5758 * ext4_dirty_inode() is called from __mark_inode_dirty()
5760 * We're really interested in the case where a file is being extended.
5761 * i_size has been changed by generic_commit_write() and we thus need
5762 * to include the updated inode in the current transaction.
5764 * Also, dquot_alloc_block() will always dirty the inode when blocks
5765 * are allocated to the file.
5767 * If the inode is marked synchronous, we don't honour that here - doing
5768 * so would cause a commit on atime updates, which we don't bother doing.
5769 * We handle synchronous inodes at the highest possible level.
5771 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5775 handle
= ext4_journal_start(inode
, 2);
5779 ext4_mark_inode_dirty(handle
, inode
);
5781 ext4_journal_stop(handle
);
5788 * Bind an inode's backing buffer_head into this transaction, to prevent
5789 * it from being flushed to disk early. Unlike
5790 * ext4_reserve_inode_write, this leaves behind no bh reference and
5791 * returns no iloc structure, so the caller needs to repeat the iloc
5792 * lookup to mark the inode dirty later.
5794 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5796 struct ext4_iloc iloc
;
5800 err
= ext4_get_inode_loc(inode
, &iloc
);
5802 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5803 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5805 err
= ext4_handle_dirty_metadata(handle
,
5811 ext4_std_error(inode
->i_sb
, err
);
5816 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5823 * We have to be very careful here: changing a data block's
5824 * journaling status dynamically is dangerous. If we write a
5825 * data block to the journal, change the status and then delete
5826 * that block, we risk forgetting to revoke the old log record
5827 * from the journal and so a subsequent replay can corrupt data.
5828 * So, first we make sure that the journal is empty and that
5829 * nobody is changing anything.
5832 journal
= EXT4_JOURNAL(inode
);
5835 if (is_journal_aborted(journal
))
5838 jbd2_journal_lock_updates(journal
);
5839 jbd2_journal_flush(journal
);
5842 * OK, there are no updates running now, and all cached data is
5843 * synced to disk. We are now in a completely consistent state
5844 * which doesn't have anything in the journal, and we know that
5845 * no filesystem updates are running, so it is safe to modify
5846 * the inode's in-core data-journaling state flag now.
5850 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5852 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5853 ext4_set_aops(inode
);
5855 jbd2_journal_unlock_updates(journal
);
5857 /* Finally we can mark the inode as dirty. */
5859 handle
= ext4_journal_start(inode
, 1);
5861 return PTR_ERR(handle
);
5863 err
= ext4_mark_inode_dirty(handle
, inode
);
5864 ext4_handle_sync(handle
);
5865 ext4_journal_stop(handle
);
5866 ext4_std_error(inode
->i_sb
, err
);
5871 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5873 return !buffer_mapped(bh
);
5876 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5878 struct page
*page
= vmf
->page
;
5883 struct file
*file
= vma
->vm_file
;
5884 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5885 struct address_space
*mapping
= inode
->i_mapping
;
5888 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5889 * get i_mutex because we are already holding mmap_sem.
5891 down_read(&inode
->i_alloc_sem
);
5892 size
= i_size_read(inode
);
5893 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5894 || !PageUptodate(page
)) {
5895 /* page got truncated from under us? */
5901 wait_on_page_writeback(page
);
5902 if (PageMappedToDisk(page
)) {
5903 up_read(&inode
->i_alloc_sem
);
5904 return VM_FAULT_LOCKED
;
5907 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5908 len
= size
& ~PAGE_CACHE_MASK
;
5910 len
= PAGE_CACHE_SIZE
;
5913 * return if we have all the buffers mapped. This avoid
5914 * the need to call write_begin/write_end which does a
5915 * journal_start/journal_stop which can block and take
5918 if (page_has_buffers(page
)) {
5919 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5920 ext4_bh_unmapped
)) {
5921 up_read(&inode
->i_alloc_sem
);
5922 return VM_FAULT_LOCKED
;
5927 * OK, we need to fill the hole... Do write_begin write_end
5928 * to do block allocation/reservation.We are not holding
5929 * inode.i__mutex here. That allow * parallel write_begin,
5930 * write_end call. lock_page prevent this from happening
5931 * on the same page though
5933 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5934 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5937 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5938 len
, len
, page
, fsdata
);
5944 * write_begin/end might have created a dirty page and someone
5945 * could wander in and start the IO. Make sure that hasn't
5949 wait_on_page_writeback(page
);
5950 up_read(&inode
->i_alloc_sem
);
5951 return VM_FAULT_LOCKED
;
5954 ret
= VM_FAULT_SIGBUS
;
5955 up_read(&inode
->i_alloc_sem
);