ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sched / sch_sfq.c
blob6e041d10dbdb944c1f79d2fd24194e35d66f5ba0
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <net/ip.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
28 /* Stochastic Fairness Queuing algorithm.
29 =======================================
31 Source:
32 Paul E. McKenney "Stochastic Fairness Queuing",
33 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
35 Paul E. McKenney "Stochastic Fairness Queuing",
36 "Interworking: Research and Experience", v.2, 1991, p.113-131.
39 See also:
40 M. Shreedhar and George Varghese "Efficient Fair
41 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
44 This is not the thing that is usually called (W)FQ nowadays.
45 It does not use any timestamp mechanism, but instead
46 processes queues in round-robin order.
48 ADVANTAGE:
50 - It is very cheap. Both CPU and memory requirements are minimal.
52 DRAWBACKS:
54 - "Stochastic" -> It is not 100% fair.
55 When hash collisions occur, several flows are considered as one.
57 - "Round-robin" -> It introduces larger delays than virtual clock
58 based schemes, and should not be used for isolating interactive
59 traffic from non-interactive. It means, that this scheduler
60 should be used as leaf of CBQ or P3, which put interactive traffic
61 to higher priority band.
63 We still need true WFQ for top level CSZ, but using WFQ
64 for the best effort traffic is absolutely pointless:
65 SFQ is superior for this purpose.
67 IMPLEMENTATION:
68 This implementation limits maximal queue length to 128;
69 maximal mtu to 2^15-1; number of hash buckets to 1024.
70 The only goal of this restrictions was that all data
71 fit into one 4K page :-). Struct sfq_sched_data is
72 organized in anti-cache manner: all the data for a bucket
73 are scattered over different locations. This is not good,
74 but it allowed me to put it into 4K.
76 It is easy to increase these values, but not in flight. */
78 #define SFQ_DEPTH 128
79 #define SFQ_HASH_DIVISOR 1024
81 /* This type should contain at least SFQ_DEPTH*2 values */
82 typedef unsigned char sfq_index;
84 struct sfq_head
86 sfq_index next;
87 sfq_index prev;
90 struct sfq_sched_data
92 /* Parameters */
93 int perturb_period;
94 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
95 int limit;
97 /* Variables */
98 struct tcf_proto *filter_list;
99 struct timer_list perturb_timer;
100 u32 perturbation;
101 sfq_index tail; /* Index of current slot in round */
102 sfq_index max_depth; /* Maximal depth */
104 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
105 sfq_index next[SFQ_DEPTH]; /* Active slots link */
106 short allot[SFQ_DEPTH]; /* Current allotment per slot */
107 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
108 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
109 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
112 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
114 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
117 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
119 u32 h, h2;
121 switch (skb->protocol) {
122 case __constant_htons(ETH_P_IP):
124 const struct iphdr *iph = ip_hdr(skb);
125 h = iph->daddr;
126 h2 = iph->saddr ^ iph->protocol;
127 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
128 (iph->protocol == IPPROTO_TCP ||
129 iph->protocol == IPPROTO_UDP ||
130 iph->protocol == IPPROTO_UDPLITE ||
131 iph->protocol == IPPROTO_SCTP ||
132 iph->protocol == IPPROTO_DCCP ||
133 iph->protocol == IPPROTO_ESP))
134 h2 ^= *(((u32*)iph) + iph->ihl);
135 break;
137 case __constant_htons(ETH_P_IPV6):
139 struct ipv6hdr *iph = ipv6_hdr(skb);
140 h = iph->daddr.s6_addr32[3];
141 h2 = iph->saddr.s6_addr32[3] ^ iph->nexthdr;
142 if (iph->nexthdr == IPPROTO_TCP ||
143 iph->nexthdr == IPPROTO_UDP ||
144 iph->nexthdr == IPPROTO_UDPLITE ||
145 iph->nexthdr == IPPROTO_SCTP ||
146 iph->nexthdr == IPPROTO_DCCP ||
147 iph->nexthdr == IPPROTO_ESP)
148 h2 ^= *(u32*)&iph[1];
149 break;
151 default:
152 h = (unsigned long)skb->dst ^ skb->protocol;
153 h2 = (unsigned long)skb->sk;
156 return sfq_fold_hash(q, h, h2);
159 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
160 int *qerr)
162 struct sfq_sched_data *q = qdisc_priv(sch);
163 struct tcf_result res;
164 int result;
166 if (TC_H_MAJ(skb->priority) == sch->handle &&
167 TC_H_MIN(skb->priority) > 0 &&
168 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
169 return TC_H_MIN(skb->priority);
171 if (!q->filter_list)
172 return sfq_hash(q, skb) + 1;
174 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
175 result = tc_classify(skb, q->filter_list, &res);
176 if (result >= 0) {
177 #ifdef CONFIG_NET_CLS_ACT
178 switch (result) {
179 case TC_ACT_STOLEN:
180 case TC_ACT_QUEUED:
181 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
182 case TC_ACT_SHOT:
183 return 0;
185 #endif
186 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
187 return TC_H_MIN(res.classid);
189 return 0;
192 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
194 sfq_index p, n;
195 int d = q->qs[x].qlen + SFQ_DEPTH;
197 p = d;
198 n = q->dep[d].next;
199 q->dep[x].next = n;
200 q->dep[x].prev = p;
201 q->dep[p].next = q->dep[n].prev = x;
204 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
206 sfq_index p, n;
208 n = q->dep[x].next;
209 p = q->dep[x].prev;
210 q->dep[p].next = n;
211 q->dep[n].prev = p;
213 if (n == p && q->max_depth == q->qs[x].qlen + 1)
214 q->max_depth--;
216 sfq_link(q, x);
219 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
221 sfq_index p, n;
222 int d;
224 n = q->dep[x].next;
225 p = q->dep[x].prev;
226 q->dep[p].next = n;
227 q->dep[n].prev = p;
228 d = q->qs[x].qlen;
229 if (q->max_depth < d)
230 q->max_depth = d;
232 sfq_link(q, x);
235 static unsigned int sfq_drop(struct Qdisc *sch)
237 struct sfq_sched_data *q = qdisc_priv(sch);
238 sfq_index d = q->max_depth;
239 struct sk_buff *skb;
240 unsigned int len;
242 /* Queue is full! Find the longest slot and
243 drop a packet from it */
245 if (d > 1) {
246 sfq_index x = q->dep[d + SFQ_DEPTH].next;
247 skb = q->qs[x].prev;
248 len = qdisc_pkt_len(skb);
249 __skb_unlink(skb, &q->qs[x]);
250 kfree_skb(skb);
251 sfq_dec(q, x);
252 sch->q.qlen--;
253 sch->qstats.drops++;
254 sch->qstats.backlog -= len;
255 return len;
258 if (d == 1) {
259 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
260 d = q->next[q->tail];
261 q->next[q->tail] = q->next[d];
262 q->allot[q->next[d]] += q->quantum;
263 skb = q->qs[d].prev;
264 len = qdisc_pkt_len(skb);
265 __skb_unlink(skb, &q->qs[d]);
266 kfree_skb(skb);
267 sfq_dec(q, d);
268 sch->q.qlen--;
269 q->ht[q->hash[d]] = SFQ_DEPTH;
270 sch->qstats.drops++;
271 sch->qstats.backlog -= len;
272 return len;
275 return 0;
278 static int
279 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
281 struct sfq_sched_data *q = qdisc_priv(sch);
282 unsigned int hash;
283 sfq_index x;
284 int ret;
286 hash = sfq_classify(skb, sch, &ret);
287 if (hash == 0) {
288 if (ret & __NET_XMIT_BYPASS)
289 sch->qstats.drops++;
290 kfree_skb(skb);
291 return ret;
293 hash--;
295 x = q->ht[hash];
296 if (x == SFQ_DEPTH) {
297 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
298 q->hash[x] = hash;
301 /* If selected queue has length q->limit, this means that
302 * all another queues are empty and that we do simple tail drop,
303 * i.e. drop _this_ packet.
305 if (q->qs[x].qlen >= q->limit)
306 return qdisc_drop(skb, sch);
308 sch->qstats.backlog += qdisc_pkt_len(skb);
309 __skb_queue_tail(&q->qs[x], skb);
310 sfq_inc(q, x);
311 if (q->qs[x].qlen == 1) { /* The flow is new */
312 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
313 q->tail = x;
314 q->next[x] = x;
315 q->allot[x] = q->quantum;
316 } else {
317 q->next[x] = q->next[q->tail];
318 q->next[q->tail] = x;
319 q->tail = x;
322 if (++sch->q.qlen <= q->limit) {
323 sch->bstats.bytes += qdisc_pkt_len(skb);
324 sch->bstats.packets++;
325 return 0;
328 sfq_drop(sch);
329 return NET_XMIT_CN;
332 static int
333 sfq_requeue(struct sk_buff *skb, struct Qdisc *sch)
335 struct sfq_sched_data *q = qdisc_priv(sch);
336 unsigned int hash;
337 sfq_index x;
338 int ret;
340 hash = sfq_classify(skb, sch, &ret);
341 if (hash == 0) {
342 if (ret & __NET_XMIT_BYPASS)
343 sch->qstats.drops++;
344 kfree_skb(skb);
345 return ret;
347 hash--;
349 x = q->ht[hash];
350 if (x == SFQ_DEPTH) {
351 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
352 q->hash[x] = hash;
355 sch->qstats.backlog += qdisc_pkt_len(skb);
356 __skb_queue_head(&q->qs[x], skb);
357 /* If selected queue has length q->limit+1, this means that
358 * all another queues are empty and we do simple tail drop.
359 * This packet is still requeued at head of queue, tail packet
360 * is dropped.
362 if (q->qs[x].qlen > q->limit) {
363 skb = q->qs[x].prev;
364 __skb_unlink(skb, &q->qs[x]);
365 sch->qstats.drops++;
366 sch->qstats.backlog -= qdisc_pkt_len(skb);
367 kfree_skb(skb);
368 return NET_XMIT_CN;
371 sfq_inc(q, x);
372 if (q->qs[x].qlen == 1) { /* The flow is new */
373 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
374 q->tail = x;
375 q->next[x] = x;
376 q->allot[x] = q->quantum;
377 } else {
378 q->next[x] = q->next[q->tail];
379 q->next[q->tail] = x;
380 q->tail = x;
384 if (++sch->q.qlen <= q->limit) {
385 sch->qstats.requeues++;
386 return 0;
389 sch->qstats.drops++;
390 sfq_drop(sch);
391 return NET_XMIT_CN;
397 static struct sk_buff *
398 sfq_dequeue(struct Qdisc *sch)
400 struct sfq_sched_data *q = qdisc_priv(sch);
401 struct sk_buff *skb;
402 sfq_index a, old_a;
404 /* No active slots */
405 if (q->tail == SFQ_DEPTH)
406 return NULL;
408 a = old_a = q->next[q->tail];
410 /* Grab packet */
411 skb = __skb_dequeue(&q->qs[a]);
412 sfq_dec(q, a);
413 sch->q.qlen--;
414 sch->qstats.backlog -= qdisc_pkt_len(skb);
416 /* Is the slot empty? */
417 if (q->qs[a].qlen == 0) {
418 q->ht[q->hash[a]] = SFQ_DEPTH;
419 a = q->next[a];
420 if (a == old_a) {
421 q->tail = SFQ_DEPTH;
422 return skb;
424 q->next[q->tail] = a;
425 q->allot[a] += q->quantum;
426 } else if ((q->allot[a] -= qdisc_pkt_len(skb)) <= 0) {
427 q->tail = a;
428 a = q->next[a];
429 q->allot[a] += q->quantum;
431 return skb;
434 static void
435 sfq_reset(struct Qdisc *sch)
437 struct sk_buff *skb;
439 while ((skb = sfq_dequeue(sch)) != NULL)
440 kfree_skb(skb);
443 static void sfq_perturbation(unsigned long arg)
445 struct Qdisc *sch = (struct Qdisc *)arg;
446 struct sfq_sched_data *q = qdisc_priv(sch);
448 q->perturbation = net_random();
450 if (q->perturb_period)
451 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
454 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
456 struct sfq_sched_data *q = qdisc_priv(sch);
457 struct tc_sfq_qopt *ctl = nla_data(opt);
458 unsigned int qlen;
460 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
461 return -EINVAL;
463 sch_tree_lock(sch);
464 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
465 q->perturb_period = ctl->perturb_period * HZ;
466 if (ctl->limit)
467 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
469 qlen = sch->q.qlen;
470 while (sch->q.qlen > q->limit)
471 sfq_drop(sch);
472 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
474 del_timer(&q->perturb_timer);
475 if (q->perturb_period) {
476 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
477 q->perturbation = net_random();
479 sch_tree_unlock(sch);
480 return 0;
483 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
485 struct sfq_sched_data *q = qdisc_priv(sch);
486 int i;
488 q->perturb_timer.function = sfq_perturbation;
489 q->perturb_timer.data = (unsigned long)sch;;
490 init_timer_deferrable(&q->perturb_timer);
492 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
493 q->ht[i] = SFQ_DEPTH;
495 for (i = 0; i < SFQ_DEPTH; i++) {
496 skb_queue_head_init(&q->qs[i]);
497 q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
498 q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
501 q->limit = SFQ_DEPTH - 1;
502 q->max_depth = 0;
503 q->tail = SFQ_DEPTH;
504 if (opt == NULL) {
505 q->quantum = psched_mtu(qdisc_dev(sch));
506 q->perturb_period = 0;
507 q->perturbation = net_random();
508 } else {
509 int err = sfq_change(sch, opt);
510 if (err)
511 return err;
514 for (i = 0; i < SFQ_DEPTH; i++)
515 sfq_link(q, i);
516 return 0;
519 static void sfq_destroy(struct Qdisc *sch)
521 struct sfq_sched_data *q = qdisc_priv(sch);
523 tcf_destroy_chain(&q->filter_list);
524 q->perturb_period = 0;
525 del_timer_sync(&q->perturb_timer);
528 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
530 struct sfq_sched_data *q = qdisc_priv(sch);
531 unsigned char *b = skb_tail_pointer(skb);
532 struct tc_sfq_qopt opt;
534 opt.quantum = q->quantum;
535 opt.perturb_period = q->perturb_period / HZ;
537 opt.limit = q->limit;
538 opt.divisor = SFQ_HASH_DIVISOR;
539 opt.flows = q->limit;
541 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
543 return skb->len;
545 nla_put_failure:
546 nlmsg_trim(skb, b);
547 return -1;
550 static int sfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
551 struct nlattr **tca, unsigned long *arg)
553 return -EOPNOTSUPP;
556 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
558 return 0;
561 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
563 struct sfq_sched_data *q = qdisc_priv(sch);
565 if (cl)
566 return NULL;
567 return &q->filter_list;
570 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
571 struct sk_buff *skb, struct tcmsg *tcm)
573 tcm->tcm_handle |= TC_H_MIN(cl);
574 return 0;
577 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
578 struct gnet_dump *d)
580 struct sfq_sched_data *q = qdisc_priv(sch);
581 sfq_index idx = q->ht[cl-1];
582 struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen };
583 struct tc_sfq_xstats xstats = { .allot = q->allot[idx] };
585 if (gnet_stats_copy_queue(d, &qs) < 0)
586 return -1;
587 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
590 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
592 struct sfq_sched_data *q = qdisc_priv(sch);
593 unsigned int i;
595 if (arg->stop)
596 return;
598 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
599 if (q->ht[i] == SFQ_DEPTH ||
600 arg->count < arg->skip) {
601 arg->count++;
602 continue;
604 if (arg->fn(sch, i + 1, arg) < 0) {
605 arg->stop = 1;
606 break;
608 arg->count++;
612 static const struct Qdisc_class_ops sfq_class_ops = {
613 .get = sfq_get,
614 .change = sfq_change_class,
615 .tcf_chain = sfq_find_tcf,
616 .dump = sfq_dump_class,
617 .dump_stats = sfq_dump_class_stats,
618 .walk = sfq_walk,
621 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
622 .cl_ops = &sfq_class_ops,
623 .id = "sfq",
624 .priv_size = sizeof(struct sfq_sched_data),
625 .enqueue = sfq_enqueue,
626 .dequeue = sfq_dequeue,
627 .requeue = sfq_requeue,
628 .drop = sfq_drop,
629 .init = sfq_init,
630 .reset = sfq_reset,
631 .destroy = sfq_destroy,
632 .change = NULL,
633 .dump = sfq_dump,
634 .owner = THIS_MODULE,
637 static int __init sfq_module_init(void)
639 return register_qdisc(&sfq_qdisc_ops);
641 static void __exit sfq_module_exit(void)
643 unregister_qdisc(&sfq_qdisc_ops);
645 module_init(sfq_module_init)
646 module_exit(sfq_module_exit)
647 MODULE_LICENSE("GPL");