4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
49 EXPORT_SYMBOL(jiffies_64
);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
62 struct list_head vec
[TVN_SIZE
];
66 struct list_head vec
[TVR_SIZE
];
71 struct timer_list
*running_timer
;
72 unsigned long timer_jiffies
;
78 } ____cacheline_aligned
;
80 struct tvec_base boot_tvec_bases
;
81 EXPORT_SYMBOL(boot_tvec_bases
);
82 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
89 #define TBASE_DEFERRABLE_FLAG (0x1)
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
94 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
97 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
99 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
102 static inline void timer_set_deferrable(struct timer_list
*timer
)
104 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
105 TBASE_DEFERRABLE_FLAG
));
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
116 * __round_jiffies - function to round jiffies to a full second
117 * @j: the time in (absolute) jiffies that should be rounded
118 * @cpu: the processor number on which the timeout will happen
120 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 * up or down to (approximately) full seconds. This is useful for timers
122 * for which the exact time they fire does not matter too much, as long as
123 * they fire approximately every X seconds.
125 * By rounding these timers to whole seconds, all such timers will fire
126 * at the same time, rather than at various times spread out. The goal
127 * of this is to have the CPU wake up less, which saves power.
129 * The exact rounding is skewed for each processor to avoid all
130 * processors firing at the exact same time, which could lead
131 * to lock contention or spurious cache line bouncing.
133 * The return value is the rounded version of the @j parameter.
135 unsigned long __round_jiffies(unsigned long j
, int cpu
)
138 unsigned long original
= j
;
141 * We don't want all cpus firing their timers at once hitting the
142 * same lock or cachelines, so we skew each extra cpu with an extra
143 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
145 * The skew is done by adding 3*cpunr, then round, then subtract this
146 * extra offset again.
153 * If the target jiffie is just after a whole second (which can happen
154 * due to delays of the timer irq, long irq off times etc etc) then
155 * we should round down to the whole second, not up. Use 1/4th second
156 * as cutoff for this rounding as an extreme upper bound for this.
158 if (rem
< HZ
/4) /* round down */
163 /* now that we have rounded, subtract the extra skew again */
166 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
170 EXPORT_SYMBOL_GPL(__round_jiffies
);
173 * __round_jiffies_relative - function to round jiffies to a full second
174 * @j: the time in (relative) jiffies that should be rounded
175 * @cpu: the processor number on which the timeout will happen
177 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
178 * up or down to (approximately) full seconds. This is useful for timers
179 * for which the exact time they fire does not matter too much, as long as
180 * they fire approximately every X seconds.
182 * By rounding these timers to whole seconds, all such timers will fire
183 * at the same time, rather than at various times spread out. The goal
184 * of this is to have the CPU wake up less, which saves power.
186 * The exact rounding is skewed for each processor to avoid all
187 * processors firing at the exact same time, which could lead
188 * to lock contention or spurious cache line bouncing.
190 * The return value is the rounded version of the @j parameter.
192 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
195 * In theory the following code can skip a jiffy in case jiffies
196 * increments right between the addition and the later subtraction.
197 * However since the entire point of this function is to use approximate
198 * timeouts, it's entirely ok to not handle that.
200 return __round_jiffies(j
+ jiffies
, cpu
) - jiffies
;
202 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
205 * round_jiffies - function to round jiffies to a full second
206 * @j: the time in (absolute) jiffies that should be rounded
208 * round_jiffies() rounds an absolute time in the future (in jiffies)
209 * up or down to (approximately) full seconds. This is useful for timers
210 * for which the exact time they fire does not matter too much, as long as
211 * they fire approximately every X seconds.
213 * By rounding these timers to whole seconds, all such timers will fire
214 * at the same time, rather than at various times spread out. The goal
215 * of this is to have the CPU wake up less, which saves power.
217 * The return value is the rounded version of the @j parameter.
219 unsigned long round_jiffies(unsigned long j
)
221 return __round_jiffies(j
, raw_smp_processor_id());
223 EXPORT_SYMBOL_GPL(round_jiffies
);
226 * round_jiffies_relative - function to round jiffies to a full second
227 * @j: the time in (relative) jiffies that should be rounded
229 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
230 * up or down to (approximately) full seconds. This is useful for timers
231 * for which the exact time they fire does not matter too much, as long as
232 * they fire approximately every X seconds.
234 * By rounding these timers to whole seconds, all such timers will fire
235 * at the same time, rather than at various times spread out. The goal
236 * of this is to have the CPU wake up less, which saves power.
238 * The return value is the rounded version of the @j parameter.
240 unsigned long round_jiffies_relative(unsigned long j
)
242 return __round_jiffies_relative(j
, raw_smp_processor_id());
244 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
247 static inline void set_running_timer(struct tvec_base
*base
,
248 struct timer_list
*timer
)
251 base
->running_timer
= timer
;
255 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
257 unsigned long expires
= timer
->expires
;
258 unsigned long idx
= expires
- base
->timer_jiffies
;
259 struct list_head
*vec
;
261 if (idx
< TVR_SIZE
) {
262 int i
= expires
& TVR_MASK
;
263 vec
= base
->tv1
.vec
+ i
;
264 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
265 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
266 vec
= base
->tv2
.vec
+ i
;
267 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
268 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
269 vec
= base
->tv3
.vec
+ i
;
270 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
271 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
272 vec
= base
->tv4
.vec
+ i
;
273 } else if ((signed long) idx
< 0) {
275 * Can happen if you add a timer with expires == jiffies,
276 * or you set a timer to go off in the past
278 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
281 /* If the timeout is larger than 0xffffffff on 64-bit
282 * architectures then we use the maximum timeout:
284 if (idx
> 0xffffffffUL
) {
286 expires
= idx
+ base
->timer_jiffies
;
288 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
289 vec
= base
->tv5
.vec
+ i
;
294 list_add_tail(&timer
->entry
, vec
);
297 #ifdef CONFIG_TIMER_STATS
298 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
300 if (timer
->start_site
)
303 timer
->start_site
= addr
;
304 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
305 timer
->start_pid
= current
->pid
;
308 static void timer_stats_account_timer(struct timer_list
*timer
)
310 unsigned int flag
= 0;
312 if (unlikely(tbase_get_deferrable(timer
->base
)))
313 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
315 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
316 timer
->function
, timer
->start_comm
, flag
);
320 static void timer_stats_account_timer(struct timer_list
*timer
) {}
323 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325 static struct debug_obj_descr timer_debug_descr
;
328 * fixup_init is called when:
329 * - an active object is initialized
331 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
333 struct timer_list
*timer
= addr
;
336 case ODEBUG_STATE_ACTIVE
:
337 del_timer_sync(timer
);
338 debug_object_init(timer
, &timer_debug_descr
);
346 * fixup_activate is called when:
347 * - an active object is activated
348 * - an unknown object is activated (might be a statically initialized object)
350 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
352 struct timer_list
*timer
= addr
;
356 case ODEBUG_STATE_NOTAVAILABLE
:
358 * This is not really a fixup. The timer was
359 * statically initialized. We just make sure that it
360 * is tracked in the object tracker.
362 if (timer
->entry
.next
== NULL
&&
363 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
364 debug_object_init(timer
, &timer_debug_descr
);
365 debug_object_activate(timer
, &timer_debug_descr
);
372 case ODEBUG_STATE_ACTIVE
:
381 * fixup_free is called when:
382 * - an active object is freed
384 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
386 struct timer_list
*timer
= addr
;
389 case ODEBUG_STATE_ACTIVE
:
390 del_timer_sync(timer
);
391 debug_object_free(timer
, &timer_debug_descr
);
398 static struct debug_obj_descr timer_debug_descr
= {
399 .name
= "timer_list",
400 .fixup_init
= timer_fixup_init
,
401 .fixup_activate
= timer_fixup_activate
,
402 .fixup_free
= timer_fixup_free
,
405 static inline void debug_timer_init(struct timer_list
*timer
)
407 debug_object_init(timer
, &timer_debug_descr
);
410 static inline void debug_timer_activate(struct timer_list
*timer
)
412 debug_object_activate(timer
, &timer_debug_descr
);
415 static inline void debug_timer_deactivate(struct timer_list
*timer
)
417 debug_object_deactivate(timer
, &timer_debug_descr
);
420 static inline void debug_timer_free(struct timer_list
*timer
)
422 debug_object_free(timer
, &timer_debug_descr
);
425 static void __init_timer(struct timer_list
*timer
);
427 void init_timer_on_stack(struct timer_list
*timer
)
429 debug_object_init_on_stack(timer
, &timer_debug_descr
);
432 EXPORT_SYMBOL_GPL(init_timer_on_stack
);
434 void destroy_timer_on_stack(struct timer_list
*timer
)
436 debug_object_free(timer
, &timer_debug_descr
);
438 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
441 static inline void debug_timer_init(struct timer_list
*timer
) { }
442 static inline void debug_timer_activate(struct timer_list
*timer
) { }
443 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
446 static void __init_timer(struct timer_list
*timer
)
448 timer
->entry
.next
= NULL
;
449 timer
->base
= __raw_get_cpu_var(tvec_bases
);
450 #ifdef CONFIG_TIMER_STATS
451 timer
->start_site
= NULL
;
452 timer
->start_pid
= -1;
453 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
458 * init_timer - initialize a timer.
459 * @timer: the timer to be initialized
461 * init_timer() must be done to a timer prior calling *any* of the
462 * other timer functions.
464 void init_timer(struct timer_list
*timer
)
466 debug_timer_init(timer
);
469 EXPORT_SYMBOL(init_timer
);
471 void init_timer_deferrable(struct timer_list
*timer
)
474 timer_set_deferrable(timer
);
476 EXPORT_SYMBOL(init_timer_deferrable
);
478 static inline void detach_timer(struct timer_list
*timer
,
481 struct list_head
*entry
= &timer
->entry
;
483 debug_timer_deactivate(timer
);
485 __list_del(entry
->prev
, entry
->next
);
488 entry
->prev
= LIST_POISON2
;
492 * We are using hashed locking: holding per_cpu(tvec_bases).lock
493 * means that all timers which are tied to this base via timer->base are
494 * locked, and the base itself is locked too.
496 * So __run_timers/migrate_timers can safely modify all timers which could
497 * be found on ->tvX lists.
499 * When the timer's base is locked, and the timer removed from list, it is
500 * possible to set timer->base = NULL and drop the lock: the timer remains
503 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
504 unsigned long *flags
)
505 __acquires(timer
->base
->lock
)
507 struct tvec_base
*base
;
510 struct tvec_base
*prelock_base
= timer
->base
;
511 base
= tbase_get_base(prelock_base
);
512 if (likely(base
!= NULL
)) {
513 spin_lock_irqsave(&base
->lock
, *flags
);
514 if (likely(prelock_base
== timer
->base
))
516 /* The timer has migrated to another CPU */
517 spin_unlock_irqrestore(&base
->lock
, *flags
);
523 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
525 struct tvec_base
*base
, *new_base
;
529 timer_stats_timer_set_start_info(timer
);
530 BUG_ON(!timer
->function
);
532 base
= lock_timer_base(timer
, &flags
);
534 if (timer_pending(timer
)) {
535 detach_timer(timer
, 0);
539 debug_timer_activate(timer
);
541 new_base
= __get_cpu_var(tvec_bases
);
543 if (base
!= new_base
) {
545 * We are trying to schedule the timer on the local CPU.
546 * However we can't change timer's base while it is running,
547 * otherwise del_timer_sync() can't detect that the timer's
548 * handler yet has not finished. This also guarantees that
549 * the timer is serialized wrt itself.
551 if (likely(base
->running_timer
!= timer
)) {
552 /* See the comment in lock_timer_base() */
553 timer_set_base(timer
, NULL
);
554 spin_unlock(&base
->lock
);
556 spin_lock(&base
->lock
);
557 timer_set_base(timer
, base
);
561 timer
->expires
= expires
;
562 internal_add_timer(base
, timer
);
563 spin_unlock_irqrestore(&base
->lock
, flags
);
568 EXPORT_SYMBOL(__mod_timer
);
571 * add_timer_on - start a timer on a particular CPU
572 * @timer: the timer to be added
573 * @cpu: the CPU to start it on
575 * This is not very scalable on SMP. Double adds are not possible.
577 void add_timer_on(struct timer_list
*timer
, int cpu
)
579 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
582 timer_stats_timer_set_start_info(timer
);
583 BUG_ON(timer_pending(timer
) || !timer
->function
);
584 spin_lock_irqsave(&base
->lock
, flags
);
585 timer_set_base(timer
, base
);
586 debug_timer_activate(timer
);
587 internal_add_timer(base
, timer
);
589 * Check whether the other CPU is idle and needs to be
590 * triggered to reevaluate the timer wheel when nohz is
591 * active. We are protected against the other CPU fiddling
592 * with the timer by holding the timer base lock. This also
593 * makes sure that a CPU on the way to idle can not evaluate
596 wake_up_idle_cpu(cpu
);
597 spin_unlock_irqrestore(&base
->lock
, flags
);
601 * mod_timer - modify a timer's timeout
602 * @timer: the timer to be modified
603 * @expires: new timeout in jiffies
605 * mod_timer() is a more efficient way to update the expire field of an
606 * active timer (if the timer is inactive it will be activated)
608 * mod_timer(timer, expires) is equivalent to:
610 * del_timer(timer); timer->expires = expires; add_timer(timer);
612 * Note that if there are multiple unserialized concurrent users of the
613 * same timer, then mod_timer() is the only safe way to modify the timeout,
614 * since add_timer() cannot modify an already running timer.
616 * The function returns whether it has modified a pending timer or not.
617 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
618 * active timer returns 1.)
620 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
622 BUG_ON(!timer
->function
);
624 timer_stats_timer_set_start_info(timer
);
626 * This is a common optimization triggered by the
627 * networking code - if the timer is re-modified
628 * to be the same thing then just return:
630 if (timer
->expires
== expires
&& timer_pending(timer
))
633 return __mod_timer(timer
, expires
);
636 EXPORT_SYMBOL(mod_timer
);
639 * del_timer - deactive a timer.
640 * @timer: the timer to be deactivated
642 * del_timer() deactivates a timer - this works on both active and inactive
645 * The function returns whether it has deactivated a pending timer or not.
646 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
647 * active timer returns 1.)
649 int del_timer(struct timer_list
*timer
)
651 struct tvec_base
*base
;
655 timer_stats_timer_clear_start_info(timer
);
656 if (timer_pending(timer
)) {
657 base
= lock_timer_base(timer
, &flags
);
658 if (timer_pending(timer
)) {
659 detach_timer(timer
, 1);
662 spin_unlock_irqrestore(&base
->lock
, flags
);
668 EXPORT_SYMBOL(del_timer
);
672 * try_to_del_timer_sync - Try to deactivate a timer
673 * @timer: timer do del
675 * This function tries to deactivate a timer. Upon successful (ret >= 0)
676 * exit the timer is not queued and the handler is not running on any CPU.
678 * It must not be called from interrupt contexts.
680 int try_to_del_timer_sync(struct timer_list
*timer
)
682 struct tvec_base
*base
;
686 base
= lock_timer_base(timer
, &flags
);
688 if (base
->running_timer
== timer
)
692 if (timer_pending(timer
)) {
693 detach_timer(timer
, 1);
697 spin_unlock_irqrestore(&base
->lock
, flags
);
702 EXPORT_SYMBOL(try_to_del_timer_sync
);
705 * del_timer_sync - deactivate a timer and wait for the handler to finish.
706 * @timer: the timer to be deactivated
708 * This function only differs from del_timer() on SMP: besides deactivating
709 * the timer it also makes sure the handler has finished executing on other
712 * Synchronization rules: Callers must prevent restarting of the timer,
713 * otherwise this function is meaningless. It must not be called from
714 * interrupt contexts. The caller must not hold locks which would prevent
715 * completion of the timer's handler. The timer's handler must not call
716 * add_timer_on(). Upon exit the timer is not queued and the handler is
717 * not running on any CPU.
719 * The function returns whether it has deactivated a pending timer or not.
721 int del_timer_sync(struct timer_list
*timer
)
724 int ret
= try_to_del_timer_sync(timer
);
731 EXPORT_SYMBOL(del_timer_sync
);
734 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
736 /* cascade all the timers from tv up one level */
737 struct timer_list
*timer
, *tmp
;
738 struct list_head tv_list
;
740 list_replace_init(tv
->vec
+ index
, &tv_list
);
743 * We are removing _all_ timers from the list, so we
744 * don't have to detach them individually.
746 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
747 BUG_ON(tbase_get_base(timer
->base
) != base
);
748 internal_add_timer(base
, timer
);
754 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
757 * __run_timers - run all expired timers (if any) on this CPU.
758 * @base: the timer vector to be processed.
760 * This function cascades all vectors and executes all expired timer
763 static inline void __run_timers(struct tvec_base
*base
)
765 struct timer_list
*timer
;
767 spin_lock_irq(&base
->lock
);
768 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
769 struct list_head work_list
;
770 struct list_head
*head
= &work_list
;
771 int index
= base
->timer_jiffies
& TVR_MASK
;
777 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
778 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
779 !cascade(base
, &base
->tv4
, INDEX(2)))
780 cascade(base
, &base
->tv5
, INDEX(3));
781 ++base
->timer_jiffies
;
782 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
783 while (!list_empty(head
)) {
784 void (*fn
)(unsigned long);
787 timer
= list_first_entry(head
, struct timer_list
,entry
);
788 fn
= timer
->function
;
791 timer_stats_account_timer(timer
);
793 set_running_timer(base
, timer
);
794 detach_timer(timer
, 1);
795 spin_unlock_irq(&base
->lock
);
797 int preempt_count
= preempt_count();
799 if (preempt_count
!= preempt_count()) {
800 printk(KERN_ERR
"huh, entered %p "
801 "with preempt_count %08x, exited"
808 spin_lock_irq(&base
->lock
);
811 set_running_timer(base
, NULL
);
812 spin_unlock_irq(&base
->lock
);
817 * Find out when the next timer event is due to happen. This
818 * is used on S/390 to stop all activity when a cpus is idle.
819 * This functions needs to be called disabled.
821 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
823 unsigned long timer_jiffies
= base
->timer_jiffies
;
824 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
825 int index
, slot
, array
, found
= 0;
826 struct timer_list
*nte
;
827 struct tvec
*varray
[4];
829 /* Look for timer events in tv1. */
830 index
= slot
= timer_jiffies
& TVR_MASK
;
832 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
833 if (tbase_get_deferrable(nte
->base
))
837 expires
= nte
->expires
;
838 /* Look at the cascade bucket(s)? */
839 if (!index
|| slot
< index
)
843 slot
= (slot
+ 1) & TVR_MASK
;
844 } while (slot
!= index
);
847 /* Calculate the next cascade event */
849 timer_jiffies
+= TVR_SIZE
- index
;
850 timer_jiffies
>>= TVR_BITS
;
853 varray
[0] = &base
->tv2
;
854 varray
[1] = &base
->tv3
;
855 varray
[2] = &base
->tv4
;
856 varray
[3] = &base
->tv5
;
858 for (array
= 0; array
< 4; array
++) {
859 struct tvec
*varp
= varray
[array
];
861 index
= slot
= timer_jiffies
& TVN_MASK
;
863 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
865 if (time_before(nte
->expires
, expires
))
866 expires
= nte
->expires
;
869 * Do we still search for the first timer or are
870 * we looking up the cascade buckets ?
873 /* Look at the cascade bucket(s)? */
874 if (!index
|| slot
< index
)
878 slot
= (slot
+ 1) & TVN_MASK
;
879 } while (slot
!= index
);
882 timer_jiffies
+= TVN_SIZE
- index
;
883 timer_jiffies
>>= TVN_BITS
;
889 * Check, if the next hrtimer event is before the next timer wheel
892 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
893 unsigned long expires
)
895 ktime_t hr_delta
= hrtimer_get_next_event();
896 struct timespec tsdelta
;
899 if (hr_delta
.tv64
== KTIME_MAX
)
903 * Expired timer available, let it expire in the next tick
905 if (hr_delta
.tv64
<= 0)
908 tsdelta
= ktime_to_timespec(hr_delta
);
909 delta
= timespec_to_jiffies(&tsdelta
);
912 * Limit the delta to the max value, which is checked in
913 * tick_nohz_stop_sched_tick():
915 if (delta
> NEXT_TIMER_MAX_DELTA
)
916 delta
= NEXT_TIMER_MAX_DELTA
;
919 * Take rounding errors in to account and make sure, that it
920 * expires in the next tick. Otherwise we go into an endless
921 * ping pong due to tick_nohz_stop_sched_tick() retriggering
927 if (time_before(now
, expires
))
933 * get_next_timer_interrupt - return the jiffy of the next pending timer
934 * @now: current time (in jiffies)
936 unsigned long get_next_timer_interrupt(unsigned long now
)
938 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
939 unsigned long expires
;
941 spin_lock(&base
->lock
);
942 expires
= __next_timer_interrupt(base
);
943 spin_unlock(&base
->lock
);
945 if (time_before_eq(expires
, now
))
948 return cmp_next_hrtimer_event(now
, expires
);
952 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
953 void account_process_tick(struct task_struct
*p
, int user_tick
)
955 cputime_t one_jiffy
= jiffies_to_cputime(1);
958 account_user_time(p
, one_jiffy
);
959 account_user_time_scaled(p
, cputime_to_scaled(one_jiffy
));
961 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
);
962 account_system_time_scaled(p
, cputime_to_scaled(one_jiffy
));
968 * Called from the timer interrupt handler to charge one tick to the current
969 * process. user_tick is 1 if the tick is user time, 0 for system.
971 void update_process_times(int user_tick
)
973 struct task_struct
*p
= current
;
974 int cpu
= smp_processor_id();
976 /* Note: this timer irq context must be accounted for as well. */
977 account_process_tick(p
, user_tick
);
979 if (rcu_pending(cpu
))
980 rcu_check_callbacks(cpu
, user_tick
);
983 run_posix_cpu_timers(p
);
987 * Nr of active tasks - counted in fixed-point numbers
989 static unsigned long count_active_tasks(void)
991 return nr_active() * FIXED_1
;
995 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
996 * imply that avenrun[] is the standard name for this kind of thing.
997 * Nothing else seems to be standardized: the fractional size etc
998 * all seem to differ on different machines.
1000 * Requires xtime_lock to access.
1002 unsigned long avenrun
[3];
1004 EXPORT_SYMBOL(avenrun
);
1007 * calc_load - given tick count, update the avenrun load estimates.
1008 * This is called while holding a write_lock on xtime_lock.
1010 static inline void calc_load(unsigned long ticks
)
1012 unsigned long active_tasks
; /* fixed-point */
1013 static int count
= LOAD_FREQ
;
1016 if (unlikely(count
< 0)) {
1017 active_tasks
= count_active_tasks();
1019 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
1020 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
1021 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
1023 } while (count
< 0);
1028 * This function runs timers and the timer-tq in bottom half context.
1030 static void run_timer_softirq(struct softirq_action
*h
)
1032 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
1034 hrtimer_run_pending();
1036 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1041 * Called by the local, per-CPU timer interrupt on SMP.
1043 void run_local_timers(void)
1045 hrtimer_run_queues();
1046 raise_softirq(TIMER_SOFTIRQ
);
1051 * Called by the timer interrupt. xtime_lock must already be taken
1054 static inline void update_times(unsigned long ticks
)
1061 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1062 * without sampling the sequence number in xtime_lock.
1063 * jiffies is defined in the linker script...
1066 void do_timer(unsigned long ticks
)
1068 jiffies_64
+= ticks
;
1069 update_times(ticks
);
1072 #ifdef __ARCH_WANT_SYS_ALARM
1075 * For backwards compatibility? This can be done in libc so Alpha
1076 * and all newer ports shouldn't need it.
1078 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1080 return alarm_setitimer(seconds
);
1088 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1089 * should be moved into arch/i386 instead?
1093 * sys_getpid - return the thread group id of the current process
1095 * Note, despite the name, this returns the tgid not the pid. The tgid and
1096 * the pid are identical unless CLONE_THREAD was specified on clone() in
1097 * which case the tgid is the same in all threads of the same group.
1099 * This is SMP safe as current->tgid does not change.
1101 SYSCALL_DEFINE0(getpid
)
1103 return task_tgid_vnr(current
);
1107 * Accessing ->real_parent is not SMP-safe, it could
1108 * change from under us. However, we can use a stale
1109 * value of ->real_parent under rcu_read_lock(), see
1110 * release_task()->call_rcu(delayed_put_task_struct).
1112 SYSCALL_DEFINE0(getppid
)
1117 pid
= task_tgid_vnr(current
->real_parent
);
1123 SYSCALL_DEFINE0(getuid
)
1125 /* Only we change this so SMP safe */
1126 return current
->uid
;
1129 SYSCALL_DEFINE0(geteuid
)
1131 /* Only we change this so SMP safe */
1132 return current
->euid
;
1135 SYSCALL_DEFINE0(getgid
)
1137 /* Only we change this so SMP safe */
1138 return current
->gid
;
1141 SYSCALL_DEFINE0(getegid
)
1143 /* Only we change this so SMP safe */
1144 return current
->egid
;
1149 static void process_timeout(unsigned long __data
)
1151 wake_up_process((struct task_struct
*)__data
);
1155 * schedule_timeout - sleep until timeout
1156 * @timeout: timeout value in jiffies
1158 * Make the current task sleep until @timeout jiffies have
1159 * elapsed. The routine will return immediately unless
1160 * the current task state has been set (see set_current_state()).
1162 * You can set the task state as follows -
1164 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1165 * pass before the routine returns. The routine will return 0
1167 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1168 * delivered to the current task. In this case the remaining time
1169 * in jiffies will be returned, or 0 if the timer expired in time
1171 * The current task state is guaranteed to be TASK_RUNNING when this
1174 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1175 * the CPU away without a bound on the timeout. In this case the return
1176 * value will be %MAX_SCHEDULE_TIMEOUT.
1178 * In all cases the return value is guaranteed to be non-negative.
1180 signed long __sched
schedule_timeout(signed long timeout
)
1182 struct timer_list timer
;
1183 unsigned long expire
;
1187 case MAX_SCHEDULE_TIMEOUT
:
1189 * These two special cases are useful to be comfortable
1190 * in the caller. Nothing more. We could take
1191 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1192 * but I' d like to return a valid offset (>=0) to allow
1193 * the caller to do everything it want with the retval.
1199 * Another bit of PARANOID. Note that the retval will be
1200 * 0 since no piece of kernel is supposed to do a check
1201 * for a negative retval of schedule_timeout() (since it
1202 * should never happens anyway). You just have the printk()
1203 * that will tell you if something is gone wrong and where.
1206 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1207 "value %lx\n", timeout
);
1209 current
->state
= TASK_RUNNING
;
1214 expire
= timeout
+ jiffies
;
1216 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1217 __mod_timer(&timer
, expire
);
1219 del_singleshot_timer_sync(&timer
);
1221 /* Remove the timer from the object tracker */
1222 destroy_timer_on_stack(&timer
);
1224 timeout
= expire
- jiffies
;
1227 return timeout
< 0 ? 0 : timeout
;
1229 EXPORT_SYMBOL(schedule_timeout
);
1232 * We can use __set_current_state() here because schedule_timeout() calls
1233 * schedule() unconditionally.
1235 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1237 __set_current_state(TASK_INTERRUPTIBLE
);
1238 return schedule_timeout(timeout
);
1240 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1242 signed long __sched
schedule_timeout_killable(signed long timeout
)
1244 __set_current_state(TASK_KILLABLE
);
1245 return schedule_timeout(timeout
);
1247 EXPORT_SYMBOL(schedule_timeout_killable
);
1249 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1251 __set_current_state(TASK_UNINTERRUPTIBLE
);
1252 return schedule_timeout(timeout
);
1254 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1256 /* Thread ID - the internal kernel "pid" */
1257 SYSCALL_DEFINE0(gettid
)
1259 return task_pid_vnr(current
);
1263 * do_sysinfo - fill in sysinfo struct
1264 * @info: pointer to buffer to fill
1266 int do_sysinfo(struct sysinfo
*info
)
1268 unsigned long mem_total
, sav_total
;
1269 unsigned int mem_unit
, bitcount
;
1272 memset(info
, 0, sizeof(struct sysinfo
));
1276 seq
= read_seqbegin(&xtime_lock
);
1279 * This is annoying. The below is the same thing
1280 * posix_get_clock_monotonic() does, but it wants to
1281 * take the lock which we want to cover the loads stuff
1285 getnstimeofday(&tp
);
1286 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1287 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1288 monotonic_to_bootbased(&tp
);
1289 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1290 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1293 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1295 info
->loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1296 info
->loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1297 info
->loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1299 info
->procs
= nr_threads
;
1300 } while (read_seqretry(&xtime_lock
, seq
));
1306 * If the sum of all the available memory (i.e. ram + swap)
1307 * is less than can be stored in a 32 bit unsigned long then
1308 * we can be binary compatible with 2.2.x kernels. If not,
1309 * well, in that case 2.2.x was broken anyways...
1311 * -Erik Andersen <andersee@debian.org>
1314 mem_total
= info
->totalram
+ info
->totalswap
;
1315 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1318 mem_unit
= info
->mem_unit
;
1319 while (mem_unit
> 1) {
1322 sav_total
= mem_total
;
1324 if (mem_total
< sav_total
)
1329 * If mem_total did not overflow, multiply all memory values by
1330 * info->mem_unit and set it to 1. This leaves things compatible
1331 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1336 info
->totalram
<<= bitcount
;
1337 info
->freeram
<<= bitcount
;
1338 info
->sharedram
<<= bitcount
;
1339 info
->bufferram
<<= bitcount
;
1340 info
->totalswap
<<= bitcount
;
1341 info
->freeswap
<<= bitcount
;
1342 info
->totalhigh
<<= bitcount
;
1343 info
->freehigh
<<= bitcount
;
1349 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1355 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1361 static int __cpuinit
init_timers_cpu(int cpu
)
1364 struct tvec_base
*base
;
1365 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1367 if (!tvec_base_done
[cpu
]) {
1368 static char boot_done
;
1372 * The APs use this path later in boot
1374 base
= kmalloc_node(sizeof(*base
),
1375 GFP_KERNEL
| __GFP_ZERO
,
1380 /* Make sure that tvec_base is 2 byte aligned */
1381 if (tbase_get_deferrable(base
)) {
1386 per_cpu(tvec_bases
, cpu
) = base
;
1389 * This is for the boot CPU - we use compile-time
1390 * static initialisation because per-cpu memory isn't
1391 * ready yet and because the memory allocators are not
1392 * initialised either.
1395 base
= &boot_tvec_bases
;
1397 tvec_base_done
[cpu
] = 1;
1399 base
= per_cpu(tvec_bases
, cpu
);
1402 spin_lock_init(&base
->lock
);
1404 for (j
= 0; j
< TVN_SIZE
; j
++) {
1405 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1406 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1407 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1408 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1410 for (j
= 0; j
< TVR_SIZE
; j
++)
1411 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1413 base
->timer_jiffies
= jiffies
;
1417 #ifdef CONFIG_HOTPLUG_CPU
1418 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1420 struct timer_list
*timer
;
1422 while (!list_empty(head
)) {
1423 timer
= list_first_entry(head
, struct timer_list
, entry
);
1424 detach_timer(timer
, 0);
1425 timer_set_base(timer
, new_base
);
1426 internal_add_timer(new_base
, timer
);
1430 static void __cpuinit
migrate_timers(int cpu
)
1432 struct tvec_base
*old_base
;
1433 struct tvec_base
*new_base
;
1436 BUG_ON(cpu_online(cpu
));
1437 old_base
= per_cpu(tvec_bases
, cpu
);
1438 new_base
= get_cpu_var(tvec_bases
);
1440 local_irq_disable();
1441 spin_lock(&new_base
->lock
);
1442 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1444 BUG_ON(old_base
->running_timer
);
1446 for (i
= 0; i
< TVR_SIZE
; i
++)
1447 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1448 for (i
= 0; i
< TVN_SIZE
; i
++) {
1449 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1450 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1451 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1452 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1455 spin_unlock(&old_base
->lock
);
1456 spin_unlock(&new_base
->lock
);
1458 put_cpu_var(tvec_bases
);
1460 #endif /* CONFIG_HOTPLUG_CPU */
1462 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1463 unsigned long action
, void *hcpu
)
1465 long cpu
= (long)hcpu
;
1467 case CPU_UP_PREPARE
:
1468 case CPU_UP_PREPARE_FROZEN
:
1469 if (init_timers_cpu(cpu
) < 0)
1472 #ifdef CONFIG_HOTPLUG_CPU
1474 case CPU_DEAD_FROZEN
:
1475 migrate_timers(cpu
);
1484 static struct notifier_block __cpuinitdata timers_nb
= {
1485 .notifier_call
= timer_cpu_notify
,
1489 void __init
init_timers(void)
1491 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1492 (void *)(long)smp_processor_id());
1496 BUG_ON(err
== NOTIFY_BAD
);
1497 register_cpu_notifier(&timers_nb
);
1498 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1502 * msleep - sleep safely even with waitqueue interruptions
1503 * @msecs: Time in milliseconds to sleep for
1505 void msleep(unsigned int msecs
)
1507 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1510 timeout
= schedule_timeout_uninterruptible(timeout
);
1513 EXPORT_SYMBOL(msleep
);
1516 * msleep_interruptible - sleep waiting for signals
1517 * @msecs: Time in milliseconds to sleep for
1519 unsigned long msleep_interruptible(unsigned int msecs
)
1521 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1523 while (timeout
&& !signal_pending(current
))
1524 timeout
= schedule_timeout_interruptible(timeout
);
1525 return jiffies_to_msecs(timeout
);
1528 EXPORT_SYMBOL(msleep_interruptible
);