2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
70 * Lets keep our timers in a slab cache :-)
72 static kmem_cache_t
*posix_timers_cache
;
73 static struct idr posix_timers_id
;
74 static DEFINE_SPINLOCK(idr_lock
);
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
87 * The timer ID is turned into a timer address by idr_find().
88 * Verifying a valid ID consists of:
90 * a) checking that idr_find() returns other than -1.
91 * b) checking that the timer id matches the one in the timer itself.
92 * c) that the timer owner is in the callers thread group.
96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97 * to implement others. This structure defines the various
98 * clocks and allows the possibility of adding others. We
99 * provide an interface to add clocks to the table and expect
100 * the "arch" code to add at least one clock that is high
101 * resolution. Here we define the standard CLOCK_REALTIME as a
102 * 1/HZ resolution clock.
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113 * various clock functions. For clocks that use the standard
114 * system timer code these entries should be NULL. This will
115 * allow dispatch without the overhead of indirect function
116 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
117 * must supply functions here, even if the function just returns
118 * ENOSYS. The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for the
120 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
121 * fields are not modified by timer code.
123 * At this time all functions EXCEPT clock_nanosleep can be
124 * redirected by the CLOCKS structure. Clock_nanosleep is in
125 * there, but the code ignores it.
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
135 static struct k_clock posix_clocks
[MAX_CLOCKS
];
138 * These ones are defined below.
140 static int common_nsleep(const clockid_t
, int flags
, struct timespec
*t
,
141 struct timespec __user
*rmtp
);
142 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
143 static int common_timer_set(struct k_itimer
*, int,
144 struct itimerspec
*, struct itimerspec
*);
145 static int common_timer_del(struct k_itimer
*timer
);
147 static int posix_timer_fn(void *data
);
149 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
);
151 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
153 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
157 * Call the k_clock hook function if non-null, or the default function.
159 #define CLOCK_DISPATCH(clock, call, arglist) \
160 ((clock) < 0 ? posix_cpu_##call arglist : \
161 (posix_clocks[clock].call != NULL \
162 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
165 * Default clock hook functions when the struct k_clock passed
166 * to register_posix_clock leaves a function pointer null.
168 * The function common_CALL is the default implementation for
169 * the function pointer CALL in struct k_clock.
172 static inline int common_clock_getres(const clockid_t which_clock
,
176 tp
->tv_nsec
= posix_clocks
[which_clock
].res
;
181 * Get real time for posix timers
183 static int common_clock_get(clockid_t which_clock
, struct timespec
*tp
)
185 ktime_get_real_ts(tp
);
189 static inline int common_clock_set(const clockid_t which_clock
,
192 return do_sys_settimeofday(tp
, NULL
);
195 static int common_timer_create(struct k_itimer
*new_timer
)
197 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
202 * Return nonzero if we know a priori this clockid_t value is bogus.
204 static inline int invalid_clockid(const clockid_t which_clock
)
206 if (which_clock
< 0) /* CPU clock, posix_cpu_* will check it */
208 if ((unsigned) which_clock
>= MAX_CLOCKS
)
210 if (posix_clocks
[which_clock
].clock_getres
!= NULL
)
212 if (posix_clocks
[which_clock
].res
!= 0)
218 * Get monotonic time for posix timers
220 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec
*tp
)
227 * Initialize everything, well, just everything in Posix clocks/timers ;)
229 static __init
int init_posix_timers(void)
231 struct k_clock clock_realtime
= {
232 .clock_getres
= hrtimer_get_res
,
234 struct k_clock clock_monotonic
= {
235 .clock_getres
= hrtimer_get_res
,
236 .clock_get
= posix_ktime_get_ts
,
237 .clock_set
= do_posix_clock_nosettime
,
240 register_posix_clock(CLOCK_REALTIME
, &clock_realtime
);
241 register_posix_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
243 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
244 sizeof (struct k_itimer
), 0, 0, NULL
, NULL
);
245 idr_init(&posix_timers_id
);
249 __initcall(init_posix_timers
);
251 static void schedule_next_timer(struct k_itimer
*timr
)
253 if (timr
->it
.real
.interval
.tv64
== 0)
256 timr
->it_overrun
+= hrtimer_forward(&timr
->it
.real
.timer
,
257 timr
->it
.real
.interval
);
258 timr
->it_overrun_last
= timr
->it_overrun
;
259 timr
->it_overrun
= -1;
260 ++timr
->it_requeue_pending
;
261 hrtimer_restart(&timr
->it
.real
.timer
);
265 * This function is exported for use by the signal deliver code. It is
266 * called just prior to the info block being released and passes that
267 * block to us. It's function is to update the overrun entry AND to
268 * restart the timer. It should only be called if the timer is to be
269 * restarted (i.e. we have flagged this in the sys_private entry of the
272 * To protect aginst the timer going away while the interrupt is queued,
273 * we require that the it_requeue_pending flag be set.
275 void do_schedule_next_timer(struct siginfo
*info
)
277 struct k_itimer
*timr
;
280 timr
= lock_timer(info
->si_tid
, &flags
);
282 if (timr
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
283 if (timr
->it_clock
< 0)
284 posix_cpu_timer_schedule(timr
);
286 schedule_next_timer(timr
);
288 info
->si_overrun
= timr
->it_overrun_last
;
292 unlock_timer(timr
, flags
);
295 int posix_timer_event(struct k_itimer
*timr
,int si_private
)
297 memset(&timr
->sigq
->info
, 0, sizeof(siginfo_t
));
298 timr
->sigq
->info
.si_sys_private
= si_private
;
299 /* Send signal to the process that owns this timer.*/
301 timr
->sigq
->info
.si_signo
= timr
->it_sigev_signo
;
302 timr
->sigq
->info
.si_errno
= 0;
303 timr
->sigq
->info
.si_code
= SI_TIMER
;
304 timr
->sigq
->info
.si_tid
= timr
->it_id
;
305 timr
->sigq
->info
.si_value
= timr
->it_sigev_value
;
307 if (timr
->it_sigev_notify
& SIGEV_THREAD_ID
) {
308 struct task_struct
*leader
;
309 int ret
= send_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
312 if (likely(ret
>= 0))
315 timr
->it_sigev_notify
= SIGEV_SIGNAL
;
316 leader
= timr
->it_process
->group_leader
;
317 put_task_struct(timr
->it_process
);
318 timr
->it_process
= leader
;
321 return send_group_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
324 EXPORT_SYMBOL_GPL(posix_timer_event
);
327 * This function gets called when a POSIX.1b interval timer expires. It
328 * is used as a callback from the kernel internal timer. The
329 * run_timer_list code ALWAYS calls with interrupts on.
331 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
333 static int posix_timer_fn(void *data
)
335 struct k_itimer
*timr
= data
;
338 int ret
= HRTIMER_NORESTART
;
340 spin_lock_irqsave(&timr
->it_lock
, flags
);
342 if (timr
->it
.real
.interval
.tv64
!= 0)
343 si_private
= ++timr
->it_requeue_pending
;
345 if (posix_timer_event(timr
, si_private
)) {
347 * signal was not sent because of sig_ignor
348 * we will not get a call back to restart it AND
349 * it should be restarted.
351 if (timr
->it
.real
.interval
.tv64
!= 0) {
353 hrtimer_forward(&timr
->it
.real
.timer
,
354 timr
->it
.real
.interval
);
355 ret
= HRTIMER_RESTART
;
359 unlock_timer(timr
, flags
);
363 static struct task_struct
* good_sigevent(sigevent_t
* event
)
365 struct task_struct
*rtn
= current
->group_leader
;
367 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
368 (!(rtn
= find_task_by_pid(event
->sigev_notify_thread_id
)) ||
369 rtn
->tgid
!= current
->tgid
||
370 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
373 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
374 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
380 void register_posix_clock(const clockid_t clock_id
, struct k_clock
*new_clock
)
382 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
383 printk("POSIX clock register failed for clock_id %d\n",
388 posix_clocks
[clock_id
] = *new_clock
;
390 EXPORT_SYMBOL_GPL(register_posix_clock
);
392 static struct k_itimer
* alloc_posix_timer(void)
394 struct k_itimer
*tmr
;
395 tmr
= kmem_cache_alloc(posix_timers_cache
, GFP_KERNEL
);
398 memset(tmr
, 0, sizeof (struct k_itimer
));
399 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
400 kmem_cache_free(posix_timers_cache
, tmr
);
407 #define IT_ID_NOT_SET 0
408 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
412 spin_lock_irqsave(&idr_lock
, flags
);
413 idr_remove(&posix_timers_id
, tmr
->it_id
);
414 spin_unlock_irqrestore(&idr_lock
, flags
);
416 sigqueue_free(tmr
->sigq
);
417 if (unlikely(tmr
->it_process
) &&
418 tmr
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
419 put_task_struct(tmr
->it_process
);
420 kmem_cache_free(posix_timers_cache
, tmr
);
423 /* Create a POSIX.1b interval timer. */
426 sys_timer_create(const clockid_t which_clock
,
427 struct sigevent __user
*timer_event_spec
,
428 timer_t __user
* created_timer_id
)
431 struct k_itimer
*new_timer
= NULL
;
433 struct task_struct
*process
= NULL
;
436 int it_id_set
= IT_ID_NOT_SET
;
438 if (invalid_clockid(which_clock
))
441 new_timer
= alloc_posix_timer();
442 if (unlikely(!new_timer
))
445 spin_lock_init(&new_timer
->it_lock
);
447 if (unlikely(!idr_pre_get(&posix_timers_id
, GFP_KERNEL
))) {
451 spin_lock_irq(&idr_lock
);
452 error
= idr_get_new(&posix_timers_id
, (void *) new_timer
,
454 spin_unlock_irq(&idr_lock
);
455 if (error
== -EAGAIN
)
459 * Wierd looking, but we return EAGAIN if the IDR is
460 * full (proper POSIX return value for this)
466 it_id_set
= IT_ID_SET
;
467 new_timer
->it_id
= (timer_t
) new_timer_id
;
468 new_timer
->it_clock
= which_clock
;
469 new_timer
->it_overrun
= -1;
470 error
= CLOCK_DISPATCH(which_clock
, timer_create
, (new_timer
));
475 * return the timer_id now. The next step is hard to
476 * back out if there is an error.
478 if (copy_to_user(created_timer_id
,
479 &new_timer_id
, sizeof (new_timer_id
))) {
483 if (timer_event_spec
) {
484 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
488 new_timer
->it_sigev_notify
= event
.sigev_notify
;
489 new_timer
->it_sigev_signo
= event
.sigev_signo
;
490 new_timer
->it_sigev_value
= event
.sigev_value
;
492 read_lock(&tasklist_lock
);
493 if ((process
= good_sigevent(&event
))) {
495 * We may be setting up this process for another
496 * thread. It may be exiting. To catch this
497 * case the we check the PF_EXITING flag. If
498 * the flag is not set, the siglock will catch
499 * him before it is too late (in exit_itimers).
501 * The exec case is a bit more invloved but easy
502 * to code. If the process is in our thread
503 * group (and it must be or we would not allow
504 * it here) and is doing an exec, it will cause
505 * us to be killed. In this case it will wait
506 * for us to die which means we can finish this
507 * linkage with our last gasp. I.e. no code :)
509 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
510 if (!(process
->flags
& PF_EXITING
)) {
511 new_timer
->it_process
= process
;
512 list_add(&new_timer
->list
,
513 &process
->signal
->posix_timers
);
514 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
515 if (new_timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
516 get_task_struct(process
);
518 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
522 read_unlock(&tasklist_lock
);
528 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
529 new_timer
->it_sigev_signo
= SIGALRM
;
530 new_timer
->it_sigev_value
.sival_int
= new_timer
->it_id
;
531 process
= current
->group_leader
;
532 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
533 new_timer
->it_process
= process
;
534 list_add(&new_timer
->list
, &process
->signal
->posix_timers
);
535 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
539 * In the case of the timer belonging to another task, after
540 * the task is unlocked, the timer is owned by the other task
541 * and may cease to exist at any time. Don't use or modify
542 * new_timer after the unlock call.
547 release_posix_timer(new_timer
, it_id_set
);
553 * Locking issues: We need to protect the result of the id look up until
554 * we get the timer locked down so it is not deleted under us. The
555 * removal is done under the idr spinlock so we use that here to bridge
556 * the find to the timer lock. To avoid a dead lock, the timer id MUST
557 * be release with out holding the timer lock.
559 static struct k_itimer
* lock_timer(timer_t timer_id
, unsigned long *flags
)
561 struct k_itimer
*timr
;
563 * Watch out here. We do a irqsave on the idr_lock and pass the
564 * flags part over to the timer lock. Must not let interrupts in
565 * while we are moving the lock.
568 spin_lock_irqsave(&idr_lock
, *flags
);
569 timr
= (struct k_itimer
*) idr_find(&posix_timers_id
, (int) timer_id
);
571 spin_lock(&timr
->it_lock
);
572 spin_unlock(&idr_lock
);
574 if ((timr
->it_id
!= timer_id
) || !(timr
->it_process
) ||
575 timr
->it_process
->tgid
!= current
->tgid
) {
576 unlock_timer(timr
, *flags
);
580 spin_unlock_irqrestore(&idr_lock
, *flags
);
586 * Get the time remaining on a POSIX.1b interval timer. This function
587 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
590 * We have a couple of messes to clean up here. First there is the case
591 * of a timer that has a requeue pending. These timers should appear to
592 * be in the timer list with an expiry as if we were to requeue them
595 * The second issue is the SIGEV_NONE timer which may be active but is
596 * not really ever put in the timer list (to save system resources).
597 * This timer may be expired, and if so, we will do it here. Otherwise
598 * it is the same as a requeue pending timer WRT to what we should
602 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
605 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
607 memset(cur_setting
, 0, sizeof(struct itimerspec
));
608 remaining
= hrtimer_get_remaining(timer
);
610 /* Time left ? or timer pending */
611 if (remaining
.tv64
> 0 || hrtimer_active(timer
))
613 /* interval timer ? */
614 if (timr
->it
.real
.interval
.tv64
== 0)
617 * When a requeue is pending or this is a SIGEV_NONE timer
618 * move the expiry time forward by intervals, so expiry is >
621 if (timr
->it_requeue_pending
& REQUEUE_PENDING
||
622 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
624 hrtimer_forward(timer
, timr
->it
.real
.interval
);
625 remaining
= hrtimer_get_remaining(timer
);
628 /* interval timer ? */
629 if (timr
->it
.real
.interval
.tv64
!= 0)
630 cur_setting
->it_interval
=
631 ktime_to_timespec(timr
->it
.real
.interval
);
632 /* Return 0 only, when the timer is expired and not pending */
633 if (remaining
.tv64
<= 0)
634 cur_setting
->it_value
.tv_nsec
= 1;
636 cur_setting
->it_value
= ktime_to_timespec(remaining
);
639 /* Get the time remaining on a POSIX.1b interval timer. */
641 sys_timer_gettime(timer_t timer_id
, struct itimerspec __user
*setting
)
643 struct k_itimer
*timr
;
644 struct itimerspec cur_setting
;
647 timr
= lock_timer(timer_id
, &flags
);
651 CLOCK_DISPATCH(timr
->it_clock
, timer_get
, (timr
, &cur_setting
));
653 unlock_timer(timr
, flags
);
655 if (copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
662 * Get the number of overruns of a POSIX.1b interval timer. This is to
663 * be the overrun of the timer last delivered. At the same time we are
664 * accumulating overruns on the next timer. The overrun is frozen when
665 * the signal is delivered, either at the notify time (if the info block
666 * is not queued) or at the actual delivery time (as we are informed by
667 * the call back to do_schedule_next_timer(). So all we need to do is
668 * to pick up the frozen overrun.
671 sys_timer_getoverrun(timer_t timer_id
)
673 struct k_itimer
*timr
;
677 timr
= lock_timer(timer_id
, &flags
);
681 overrun
= timr
->it_overrun_last
;
682 unlock_timer(timr
, flags
);
687 /* Set a POSIX.1b interval timer. */
688 /* timr->it_lock is taken. */
690 common_timer_set(struct k_itimer
*timr
, int flags
,
691 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
693 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
694 enum hrtimer_mode mode
;
697 common_timer_get(timr
, old_setting
);
699 /* disable the timer */
700 timr
->it
.real
.interval
.tv64
= 0;
702 * careful here. If smp we could be in the "fire" routine which will
703 * be spinning as we hold the lock. But this is ONLY an SMP issue.
705 if (hrtimer_try_to_cancel(timer
) < 0)
708 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
710 timr
->it_overrun_last
= 0;
712 /* switch off the timer when it_value is zero */
713 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
716 mode
= flags
& TIMER_ABSTIME
? HRTIMER_ABS
: HRTIMER_REL
;
717 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
718 timr
->it
.real
.timer
.data
= timr
;
719 timr
->it
.real
.timer
.function
= posix_timer_fn
;
721 timer
->expires
= timespec_to_ktime(new_setting
->it_value
);
723 /* Convert interval */
724 timr
->it
.real
.interval
= timespec_to_ktime(new_setting
->it_interval
);
726 /* SIGEV_NONE timers are not queued ! See common_timer_get */
727 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
)) {
728 /* Setup correct expiry time for relative timers */
729 if (mode
== HRTIMER_REL
)
730 timer
->expires
= ktime_add(timer
->expires
,
731 timer
->base
->get_time());
735 hrtimer_start(timer
, timer
->expires
, mode
);
739 /* Set a POSIX.1b interval timer */
741 sys_timer_settime(timer_t timer_id
, int flags
,
742 const struct itimerspec __user
*new_setting
,
743 struct itimerspec __user
*old_setting
)
745 struct k_itimer
*timr
;
746 struct itimerspec new_spec
, old_spec
;
749 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
754 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
757 if (!timespec_valid(&new_spec
.it_interval
) ||
758 !timespec_valid(&new_spec
.it_value
))
761 timr
= lock_timer(timer_id
, &flag
);
765 error
= CLOCK_DISPATCH(timr
->it_clock
, timer_set
,
766 (timr
, flags
, &new_spec
, rtn
));
768 unlock_timer(timr
, flag
);
769 if (error
== TIMER_RETRY
) {
770 rtn
= NULL
; // We already got the old time...
774 if (old_setting
&& !error
&&
775 copy_to_user(old_setting
, &old_spec
, sizeof (old_spec
)))
781 static inline int common_timer_del(struct k_itimer
*timer
)
783 timer
->it
.real
.interval
.tv64
= 0;
785 if (hrtimer_try_to_cancel(&timer
->it
.real
.timer
) < 0)
790 static inline int timer_delete_hook(struct k_itimer
*timer
)
792 return CLOCK_DISPATCH(timer
->it_clock
, timer_del
, (timer
));
795 /* Delete a POSIX.1b interval timer. */
797 sys_timer_delete(timer_t timer_id
)
799 struct k_itimer
*timer
;
803 timer
= lock_timer(timer_id
, &flags
);
807 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
808 unlock_timer(timer
, flags
);
812 spin_lock(¤t
->sighand
->siglock
);
813 list_del(&timer
->list
);
814 spin_unlock(¤t
->sighand
->siglock
);
816 * This keeps any tasks waiting on the spin lock from thinking
817 * they got something (see the lock code above).
819 if (timer
->it_process
) {
820 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
821 put_task_struct(timer
->it_process
);
822 timer
->it_process
= NULL
;
824 unlock_timer(timer
, flags
);
825 release_posix_timer(timer
, IT_ID_SET
);
830 * return timer owned by the process, used by exit_itimers
832 static void itimer_delete(struct k_itimer
*timer
)
837 spin_lock_irqsave(&timer
->it_lock
, flags
);
839 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
840 unlock_timer(timer
, flags
);
843 list_del(&timer
->list
);
845 * This keeps any tasks waiting on the spin lock from thinking
846 * they got something (see the lock code above).
848 if (timer
->it_process
) {
849 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
850 put_task_struct(timer
->it_process
);
851 timer
->it_process
= NULL
;
853 unlock_timer(timer
, flags
);
854 release_posix_timer(timer
, IT_ID_SET
);
858 * This is called by do_exit or de_thread, only when there are no more
859 * references to the shared signal_struct.
861 void exit_itimers(struct signal_struct
*sig
)
863 struct k_itimer
*tmr
;
865 while (!list_empty(&sig
->posix_timers
)) {
866 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
871 /* Not available / possible... functions */
872 int do_posix_clock_nosettime(const clockid_t clockid
, struct timespec
*tp
)
876 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime
);
878 int do_posix_clock_nonanosleep(const clockid_t clock
, int flags
,
879 struct timespec
*t
, struct timespec __user
*r
)
882 return -EOPNOTSUPP
; /* aka ENOTSUP in userland for POSIX */
883 #else /* parisc does define it separately. */
887 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep
);
889 asmlinkage
long sys_clock_settime(const clockid_t which_clock
,
890 const struct timespec __user
*tp
)
892 struct timespec new_tp
;
894 if (invalid_clockid(which_clock
))
896 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
899 return CLOCK_DISPATCH(which_clock
, clock_set
, (which_clock
, &new_tp
));
903 sys_clock_gettime(const clockid_t which_clock
, struct timespec __user
*tp
)
905 struct timespec kernel_tp
;
908 if (invalid_clockid(which_clock
))
910 error
= CLOCK_DISPATCH(which_clock
, clock_get
,
911 (which_clock
, &kernel_tp
));
912 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
920 sys_clock_getres(const clockid_t which_clock
, struct timespec __user
*tp
)
922 struct timespec rtn_tp
;
925 if (invalid_clockid(which_clock
))
928 error
= CLOCK_DISPATCH(which_clock
, clock_getres
,
929 (which_clock
, &rtn_tp
));
931 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
))) {
939 * nanosleep for monotonic and realtime clocks
941 static int common_nsleep(const clockid_t which_clock
, int flags
,
942 struct timespec
*tsave
, struct timespec __user
*rmtp
)
944 return hrtimer_nanosleep(tsave
, rmtp
, flags
& TIMER_ABSTIME
?
945 HRTIMER_ABS
: HRTIMER_REL
, which_clock
);
949 sys_clock_nanosleep(const clockid_t which_clock
, int flags
,
950 const struct timespec __user
*rqtp
,
951 struct timespec __user
*rmtp
)
955 if (invalid_clockid(which_clock
))
958 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
961 if (!timespec_valid(&t
))
964 return CLOCK_DISPATCH(which_clock
, nsleep
,
965 (which_clock
, flags
, &t
, rmtp
));