cfq-iosched: add hlist for browsing parallel to the radix tree
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-x86 / pgtable_32.h
bloba842c7222b1eef0f598a8de4a4c5375506e0b2c5
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
5 /*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
25 struct mm_struct;
26 struct vm_area_struct;
28 extern pgd_t swapper_pg_dir[1024];
29 extern struct kmem_cache *pmd_cache;
30 void check_pgt_cache(void);
32 static inline void pgtable_cache_init(void) {}
33 void paging_init(void);
37 * The Linux x86 paging architecture is 'compile-time dual-mode', it
38 * implements both the traditional 2-level x86 page tables and the
39 * newer 3-level PAE-mode page tables.
41 #ifdef CONFIG_X86_PAE
42 # include <asm/pgtable-3level-defs.h>
43 # define PMD_SIZE (1UL << PMD_SHIFT)
44 # define PMD_MASK (~(PMD_SIZE-1))
45 #else
46 # include <asm/pgtable-2level-defs.h>
47 #endif
49 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
50 #define PGDIR_MASK (~(PGDIR_SIZE-1))
52 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
53 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
55 /* Just any arbitrary offset to the start of the vmalloc VM area: the
56 * current 8MB value just means that there will be a 8MB "hole" after the
57 * physical memory until the kernel virtual memory starts. That means that
58 * any out-of-bounds memory accesses will hopefully be caught.
59 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
60 * area for the same reason. ;)
62 #define VMALLOC_OFFSET (8*1024*1024)
63 #define VMALLOC_START (((unsigned long) high_memory + \
64 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
65 #ifdef CONFIG_X86_PAE
66 #define LAST_PKMAP 512
67 #else
68 #define LAST_PKMAP 1024
69 #endif
71 #define PKMAP_BASE ((FIXADDR_BOOT_START - PAGE_SIZE*(LAST_PKMAP + 1)) & PMD_MASK)
73 #ifdef CONFIG_HIGHMEM
74 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
75 #else
76 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
77 #endif
80 * Define this if things work differently on an i386 and an i486:
81 * it will (on an i486) warn about kernel memory accesses that are
82 * done without a 'access_ok(VERIFY_WRITE,..)'
84 #undef TEST_ACCESS_OK
86 /* The boot page tables (all created as a single array) */
87 extern unsigned long pg0[];
89 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
91 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
92 #define pmd_none(x) (!(unsigned long)pmd_val(x))
93 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
94 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
97 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
99 #ifdef CONFIG_X86_PAE
100 # include <asm/pgtable-3level.h>
101 #else
102 # include <asm/pgtable-2level.h>
103 #endif
106 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
108 * dst - pointer to pgd range anwhere on a pgd page
109 * src - ""
110 * count - the number of pgds to copy.
112 * dst and src can be on the same page, but the range must not overlap,
113 * and must not cross a page boundary.
115 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
117 memcpy(dst, src, count * sizeof(pgd_t));
121 * Macro to mark a page protection value as "uncacheable". On processors which do not support
122 * it, this is a no-op.
124 #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
125 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
128 * Conversion functions: convert a page and protection to a page entry,
129 * and a page entry and page directory to the page they refer to.
132 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
135 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
137 * this macro returns the index of the entry in the pgd page which would
138 * control the given virtual address
140 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
141 #define pgd_index_k(addr) pgd_index(addr)
144 * pgd_offset() returns a (pgd_t *)
145 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
147 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
150 * a shortcut which implies the use of the kernel's pgd, instead
151 * of a process's
153 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
155 static inline int pud_large(pud_t pud) { return 0; }
158 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
160 * this macro returns the index of the entry in the pmd page which would
161 * control the given virtual address
163 #define pmd_index(address) \
164 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
167 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
169 * this macro returns the index of the entry in the pte page which would
170 * control the given virtual address
172 #define pte_index(address) \
173 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
174 #define pte_offset_kernel(dir, address) \
175 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
177 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
179 #define pmd_page_vaddr(pmd) \
180 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
182 #if defined(CONFIG_HIGHPTE)
183 #define pte_offset_map(dir, address) \
184 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
185 #define pte_offset_map_nested(dir, address) \
186 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
187 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
188 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
189 #else
190 #define pte_offset_map(dir, address) \
191 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
192 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
193 #define pte_unmap(pte) do { } while (0)
194 #define pte_unmap_nested(pte) do { } while (0)
195 #endif
197 /* Clear a kernel PTE and flush it from the TLB */
198 #define kpte_clear_flush(ptep, vaddr) \
199 do { \
200 pte_clear(&init_mm, vaddr, ptep); \
201 __flush_tlb_one(vaddr); \
202 } while (0)
205 * The i386 doesn't have any external MMU info: the kernel page
206 * tables contain all the necessary information.
208 #define update_mmu_cache(vma,address,pte) do { } while (0)
210 void native_pagetable_setup_start(pgd_t *base);
211 void native_pagetable_setup_done(pgd_t *base);
213 #ifndef CONFIG_PARAVIRT
214 static inline void paravirt_pagetable_setup_start(pgd_t *base)
216 native_pagetable_setup_start(base);
219 static inline void paravirt_pagetable_setup_done(pgd_t *base)
221 native_pagetable_setup_done(base);
223 #endif /* !CONFIG_PARAVIRT */
225 #endif /* !__ASSEMBLY__ */
228 * kern_addr_valid() is (1) for FLATMEM and (0) for
229 * SPARSEMEM and DISCONTIGMEM
231 #ifdef CONFIG_FLATMEM
232 #define kern_addr_valid(addr) (1)
233 #else
234 #define kern_addr_valid(kaddr) (0)
235 #endif
237 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
238 remap_pfn_range(vma, vaddr, pfn, size, prot)
240 #endif /* _I386_PGTABLE_H */