[libata] ahci_platform: fix DT probing
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blob3693e83a97f325f95276b4e9c009ac48569174ed
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
36 struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
40 uint32_t flips;
44 * Set the next domain for the specified object. This
45 * may not actually perform the necessary flushing/invaliding though,
46 * as that may want to be batched with other set_domain operations
48 * This is (we hope) the only really tricky part of gem. The goal
49 * is fairly simple -- track which caches hold bits of the object
50 * and make sure they remain coherent. A few concrete examples may
51 * help to explain how it works. For shorthand, we use the notation
52 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
53 * a pair of read and write domain masks.
55 * Case 1: the batch buffer
57 * 1. Allocated
58 * 2. Written by CPU
59 * 3. Mapped to GTT
60 * 4. Read by GPU
61 * 5. Unmapped from GTT
62 * 6. Freed
64 * Let's take these a step at a time
66 * 1. Allocated
67 * Pages allocated from the kernel may still have
68 * cache contents, so we set them to (CPU, CPU) always.
69 * 2. Written by CPU (using pwrite)
70 * The pwrite function calls set_domain (CPU, CPU) and
71 * this function does nothing (as nothing changes)
72 * 3. Mapped by GTT
73 * This function asserts that the object is not
74 * currently in any GPU-based read or write domains
75 * 4. Read by GPU
76 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
77 * As write_domain is zero, this function adds in the
78 * current read domains (CPU+COMMAND, 0).
79 * flush_domains is set to CPU.
80 * invalidate_domains is set to COMMAND
81 * clflush is run to get data out of the CPU caches
82 * then i915_dev_set_domain calls i915_gem_flush to
83 * emit an MI_FLUSH and drm_agp_chipset_flush
84 * 5. Unmapped from GTT
85 * i915_gem_object_unbind calls set_domain (CPU, CPU)
86 * flush_domains and invalidate_domains end up both zero
87 * so no flushing/invalidating happens
88 * 6. Freed
89 * yay, done
91 * Case 2: The shared render buffer
93 * 1. Allocated
94 * 2. Mapped to GTT
95 * 3. Read/written by GPU
96 * 4. set_domain to (CPU,CPU)
97 * 5. Read/written by CPU
98 * 6. Read/written by GPU
100 * 1. Allocated
101 * Same as last example, (CPU, CPU)
102 * 2. Mapped to GTT
103 * Nothing changes (assertions find that it is not in the GPU)
104 * 3. Read/written by GPU
105 * execbuffer calls set_domain (RENDER, RENDER)
106 * flush_domains gets CPU
107 * invalidate_domains gets GPU
108 * clflush (obj)
109 * MI_FLUSH and drm_agp_chipset_flush
110 * 4. set_domain (CPU, CPU)
111 * flush_domains gets GPU
112 * invalidate_domains gets CPU
113 * wait_rendering (obj) to make sure all drawing is complete.
114 * This will include an MI_FLUSH to get the data from GPU
115 * to memory
116 * clflush (obj) to invalidate the CPU cache
117 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
118 * 5. Read/written by CPU
119 * cache lines are loaded and dirtied
120 * 6. Read written by GPU
121 * Same as last GPU access
123 * Case 3: The constant buffer
125 * 1. Allocated
126 * 2. Written by CPU
127 * 3. Read by GPU
128 * 4. Updated (written) by CPU again
129 * 5. Read by GPU
131 * 1. Allocated
132 * (CPU, CPU)
133 * 2. Written by CPU
134 * (CPU, CPU)
135 * 3. Read by GPU
136 * (CPU+RENDER, 0)
137 * flush_domains = CPU
138 * invalidate_domains = RENDER
139 * clflush (obj)
140 * MI_FLUSH
141 * drm_agp_chipset_flush
142 * 4. Updated (written) by CPU again
143 * (CPU, CPU)
144 * flush_domains = 0 (no previous write domain)
145 * invalidate_domains = 0 (no new read domains)
146 * 5. Read by GPU
147 * (CPU+RENDER, 0)
148 * flush_domains = CPU
149 * invalidate_domains = RENDER
150 * clflush (obj)
151 * MI_FLUSH
152 * drm_agp_chipset_flush
154 static void
155 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
156 struct intel_ring_buffer *ring,
157 struct change_domains *cd)
159 uint32_t invalidate_domains = 0, flush_domains = 0;
162 * If the object isn't moving to a new write domain,
163 * let the object stay in multiple read domains
165 if (obj->base.pending_write_domain == 0)
166 obj->base.pending_read_domains |= obj->base.read_domains;
169 * Flush the current write domain if
170 * the new read domains don't match. Invalidate
171 * any read domains which differ from the old
172 * write domain
174 if (obj->base.write_domain &&
175 (((obj->base.write_domain != obj->base.pending_read_domains ||
176 obj->ring != ring)) ||
177 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
178 flush_domains |= obj->base.write_domain;
179 invalidate_domains |=
180 obj->base.pending_read_domains & ~obj->base.write_domain;
183 * Invalidate any read caches which may have
184 * stale data. That is, any new read domains.
186 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
187 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
188 i915_gem_clflush_object(obj);
190 if (obj->base.pending_write_domain)
191 cd->flips |= atomic_read(&obj->pending_flip);
193 /* The actual obj->write_domain will be updated with
194 * pending_write_domain after we emit the accumulated flush for all
195 * of our domain changes in execbuffers (which clears objects'
196 * write_domains). So if we have a current write domain that we
197 * aren't changing, set pending_write_domain to that.
199 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200 obj->base.pending_write_domain = obj->base.write_domain;
202 cd->invalidate_domains |= invalidate_domains;
203 cd->flush_domains |= flush_domains;
204 if (flush_domains & I915_GEM_GPU_DOMAINS)
205 cd->flush_rings |= obj->ring->id;
206 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207 cd->flush_rings |= ring->id;
210 struct eb_objects {
211 int and;
212 struct hlist_head buckets[0];
215 static struct eb_objects *
216 eb_create(int size)
218 struct eb_objects *eb;
219 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220 while (count > size)
221 count >>= 1;
222 eb = kzalloc(count*sizeof(struct hlist_head) +
223 sizeof(struct eb_objects),
224 GFP_KERNEL);
225 if (eb == NULL)
226 return eb;
228 eb->and = count - 1;
229 return eb;
232 static void
233 eb_reset(struct eb_objects *eb)
235 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
238 static void
239 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 hlist_add_head(&obj->exec_node,
242 &eb->buckets[obj->exec_handle & eb->and]);
245 static struct drm_i915_gem_object *
246 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 struct hlist_head *head;
249 struct hlist_node *node;
250 struct drm_i915_gem_object *obj;
252 head = &eb->buckets[handle & eb->and];
253 hlist_for_each(node, head) {
254 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255 if (obj->exec_handle == handle)
256 return obj;
259 return NULL;
262 static void
263 eb_destroy(struct eb_objects *eb)
265 kfree(eb);
268 static int
269 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270 struct eb_objects *eb,
271 struct drm_i915_gem_relocation_entry *reloc)
273 struct drm_device *dev = obj->base.dev;
274 struct drm_gem_object *target_obj;
275 uint32_t target_offset;
276 int ret = -EINVAL;
278 /* we've already hold a reference to all valid objects */
279 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
280 if (unlikely(target_obj == NULL))
281 return -ENOENT;
283 target_offset = to_intel_bo(target_obj)->gtt_offset;
285 /* The target buffer should have appeared before us in the
286 * exec_object list, so it should have a GTT space bound by now.
288 if (unlikely(target_offset == 0)) {
289 DRM_ERROR("No GTT space found for object %d\n",
290 reloc->target_handle);
291 return ret;
294 /* Validate that the target is in a valid r/w GPU domain */
295 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296 DRM_ERROR("reloc with multiple write domains: "
297 "obj %p target %d offset %d "
298 "read %08x write %08x",
299 obj, reloc->target_handle,
300 (int) reloc->offset,
301 reloc->read_domains,
302 reloc->write_domain);
303 return ret;
305 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306 DRM_ERROR("reloc with read/write CPU domains: "
307 "obj %p target %d offset %d "
308 "read %08x write %08x",
309 obj, reloc->target_handle,
310 (int) reloc->offset,
311 reloc->read_domains,
312 reloc->write_domain);
313 return ret;
315 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
316 reloc->write_domain != target_obj->pending_write_domain)) {
317 DRM_ERROR("Write domain conflict: "
318 "obj %p target %d offset %d "
319 "new %08x old %08x\n",
320 obj, reloc->target_handle,
321 (int) reloc->offset,
322 reloc->write_domain,
323 target_obj->pending_write_domain);
324 return ret;
327 target_obj->pending_read_domains |= reloc->read_domains;
328 target_obj->pending_write_domain |= reloc->write_domain;
330 /* If the relocation already has the right value in it, no
331 * more work needs to be done.
333 if (target_offset == reloc->presumed_offset)
334 return 0;
336 /* Check that the relocation address is valid... */
337 if (unlikely(reloc->offset > obj->base.size - 4)) {
338 DRM_ERROR("Relocation beyond object bounds: "
339 "obj %p target %d offset %d size %d.\n",
340 obj, reloc->target_handle,
341 (int) reloc->offset,
342 (int) obj->base.size);
343 return ret;
345 if (unlikely(reloc->offset & 3)) {
346 DRM_ERROR("Relocation not 4-byte aligned: "
347 "obj %p target %d offset %d.\n",
348 obj, reloc->target_handle,
349 (int) reloc->offset);
350 return ret;
353 reloc->delta += target_offset;
354 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
355 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
356 char *vaddr;
358 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
359 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
360 kunmap_atomic(vaddr);
361 } else {
362 struct drm_i915_private *dev_priv = dev->dev_private;
363 uint32_t __iomem *reloc_entry;
364 void __iomem *reloc_page;
366 /* We can't wait for rendering with pagefaults disabled */
367 if (obj->active && in_atomic())
368 return -EFAULT;
370 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
371 if (ret)
372 return ret;
374 /* Map the page containing the relocation we're going to perform. */
375 reloc->offset += obj->gtt_offset;
376 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
377 reloc->offset & PAGE_MASK);
378 reloc_entry = (uint32_t __iomem *)
379 (reloc_page + (reloc->offset & ~PAGE_MASK));
380 iowrite32(reloc->delta, reloc_entry);
381 io_mapping_unmap_atomic(reloc_page);
384 /* and update the user's relocation entry */
385 reloc->presumed_offset = target_offset;
387 return 0;
390 static int
391 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
392 struct eb_objects *eb)
394 struct drm_i915_gem_relocation_entry __user *user_relocs;
395 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
396 int i, ret;
398 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
399 for (i = 0; i < entry->relocation_count; i++) {
400 struct drm_i915_gem_relocation_entry reloc;
402 if (__copy_from_user_inatomic(&reloc,
403 user_relocs+i,
404 sizeof(reloc)))
405 return -EFAULT;
407 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
408 if (ret)
409 return ret;
411 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
412 &reloc.presumed_offset,
413 sizeof(reloc.presumed_offset)))
414 return -EFAULT;
417 return 0;
420 static int
421 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
422 struct eb_objects *eb,
423 struct drm_i915_gem_relocation_entry *relocs)
425 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
426 int i, ret;
428 for (i = 0; i < entry->relocation_count; i++) {
429 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
430 if (ret)
431 return ret;
434 return 0;
437 static int
438 i915_gem_execbuffer_relocate(struct drm_device *dev,
439 struct eb_objects *eb,
440 struct list_head *objects)
442 struct drm_i915_gem_object *obj;
443 int ret = 0;
445 /* This is the fast path and we cannot handle a pagefault whilst
446 * holding the struct mutex lest the user pass in the relocations
447 * contained within a mmaped bo. For in such a case we, the page
448 * fault handler would call i915_gem_fault() and we would try to
449 * acquire the struct mutex again. Obviously this is bad and so
450 * lockdep complains vehemently.
452 pagefault_disable();
453 list_for_each_entry(obj, objects, exec_list) {
454 ret = i915_gem_execbuffer_relocate_object(obj, eb);
455 if (ret)
456 break;
458 pagefault_enable();
460 return ret;
463 static int
464 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
465 struct drm_file *file,
466 struct list_head *objects)
468 struct drm_i915_gem_object *obj;
469 int ret, retry;
470 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
471 struct list_head ordered_objects;
473 INIT_LIST_HEAD(&ordered_objects);
474 while (!list_empty(objects)) {
475 struct drm_i915_gem_exec_object2 *entry;
476 bool need_fence, need_mappable;
478 obj = list_first_entry(objects,
479 struct drm_i915_gem_object,
480 exec_list);
481 entry = obj->exec_entry;
483 need_fence =
484 has_fenced_gpu_access &&
485 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
486 obj->tiling_mode != I915_TILING_NONE;
487 need_mappable =
488 entry->relocation_count ? true : need_fence;
490 if (need_mappable)
491 list_move(&obj->exec_list, &ordered_objects);
492 else
493 list_move_tail(&obj->exec_list, &ordered_objects);
495 obj->base.pending_read_domains = 0;
496 obj->base.pending_write_domain = 0;
498 list_splice(&ordered_objects, objects);
500 /* Attempt to pin all of the buffers into the GTT.
501 * This is done in 3 phases:
503 * 1a. Unbind all objects that do not match the GTT constraints for
504 * the execbuffer (fenceable, mappable, alignment etc).
505 * 1b. Increment pin count for already bound objects.
506 * 2. Bind new objects.
507 * 3. Decrement pin count.
509 * This avoid unnecessary unbinding of later objects in order to makr
510 * room for the earlier objects *unless* we need to defragment.
512 retry = 0;
513 do {
514 ret = 0;
516 /* Unbind any ill-fitting objects or pin. */
517 list_for_each_entry(obj, objects, exec_list) {
518 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
519 bool need_fence, need_mappable;
520 if (!obj->gtt_space)
521 continue;
523 need_fence =
524 has_fenced_gpu_access &&
525 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
526 obj->tiling_mode != I915_TILING_NONE;
527 need_mappable =
528 entry->relocation_count ? true : need_fence;
530 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
531 (need_mappable && !obj->map_and_fenceable))
532 ret = i915_gem_object_unbind(obj);
533 else
534 ret = i915_gem_object_pin(obj,
535 entry->alignment,
536 need_mappable);
537 if (ret)
538 goto err;
540 entry++;
543 /* Bind fresh objects */
544 list_for_each_entry(obj, objects, exec_list) {
545 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
546 bool need_fence;
548 need_fence =
549 has_fenced_gpu_access &&
550 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
551 obj->tiling_mode != I915_TILING_NONE;
553 if (!obj->gtt_space) {
554 bool need_mappable =
555 entry->relocation_count ? true : need_fence;
557 ret = i915_gem_object_pin(obj,
558 entry->alignment,
559 need_mappable);
560 if (ret)
561 break;
564 if (has_fenced_gpu_access) {
565 if (need_fence) {
566 ret = i915_gem_object_get_fence(obj, ring);
567 if (ret)
568 break;
569 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
570 obj->tiling_mode == I915_TILING_NONE) {
571 /* XXX pipelined! */
572 ret = i915_gem_object_put_fence(obj);
573 if (ret)
574 break;
576 obj->pending_fenced_gpu_access = need_fence;
579 entry->offset = obj->gtt_offset;
582 /* Decrement pin count for bound objects */
583 list_for_each_entry(obj, objects, exec_list) {
584 if (obj->gtt_space)
585 i915_gem_object_unpin(obj);
588 if (ret != -ENOSPC || retry > 1)
589 return ret;
591 /* First attempt, just clear anything that is purgeable.
592 * Second attempt, clear the entire GTT.
594 ret = i915_gem_evict_everything(ring->dev, retry == 0);
595 if (ret)
596 return ret;
598 retry++;
599 } while (1);
601 err:
602 obj = list_entry(obj->exec_list.prev,
603 struct drm_i915_gem_object,
604 exec_list);
605 while (objects != &obj->exec_list) {
606 if (obj->gtt_space)
607 i915_gem_object_unpin(obj);
609 obj = list_entry(obj->exec_list.prev,
610 struct drm_i915_gem_object,
611 exec_list);
614 return ret;
617 static int
618 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
619 struct drm_file *file,
620 struct intel_ring_buffer *ring,
621 struct list_head *objects,
622 struct eb_objects *eb,
623 struct drm_i915_gem_exec_object2 *exec,
624 int count)
626 struct drm_i915_gem_relocation_entry *reloc;
627 struct drm_i915_gem_object *obj;
628 int *reloc_offset;
629 int i, total, ret;
631 /* We may process another execbuffer during the unlock... */
632 while (!list_empty(objects)) {
633 obj = list_first_entry(objects,
634 struct drm_i915_gem_object,
635 exec_list);
636 list_del_init(&obj->exec_list);
637 drm_gem_object_unreference(&obj->base);
640 mutex_unlock(&dev->struct_mutex);
642 total = 0;
643 for (i = 0; i < count; i++)
644 total += exec[i].relocation_count;
646 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
647 reloc = drm_malloc_ab(total, sizeof(*reloc));
648 if (reloc == NULL || reloc_offset == NULL) {
649 drm_free_large(reloc);
650 drm_free_large(reloc_offset);
651 mutex_lock(&dev->struct_mutex);
652 return -ENOMEM;
655 total = 0;
656 for (i = 0; i < count; i++) {
657 struct drm_i915_gem_relocation_entry __user *user_relocs;
659 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
661 if (copy_from_user(reloc+total, user_relocs,
662 exec[i].relocation_count * sizeof(*reloc))) {
663 ret = -EFAULT;
664 mutex_lock(&dev->struct_mutex);
665 goto err;
668 reloc_offset[i] = total;
669 total += exec[i].relocation_count;
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret) {
674 mutex_lock(&dev->struct_mutex);
675 goto err;
678 /* reacquire the objects */
679 eb_reset(eb);
680 for (i = 0; i < count; i++) {
681 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
682 exec[i].handle));
683 if (&obj->base == NULL) {
684 DRM_ERROR("Invalid object handle %d at index %d\n",
685 exec[i].handle, i);
686 ret = -ENOENT;
687 goto err;
690 list_add_tail(&obj->exec_list, objects);
691 obj->exec_handle = exec[i].handle;
692 obj->exec_entry = &exec[i];
693 eb_add_object(eb, obj);
696 ret = i915_gem_execbuffer_reserve(ring, file, objects);
697 if (ret)
698 goto err;
700 list_for_each_entry(obj, objects, exec_list) {
701 int offset = obj->exec_entry - exec;
702 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
703 reloc + reloc_offset[offset]);
704 if (ret)
705 goto err;
708 /* Leave the user relocations as are, this is the painfully slow path,
709 * and we want to avoid the complication of dropping the lock whilst
710 * having buffers reserved in the aperture and so causing spurious
711 * ENOSPC for random operations.
714 err:
715 drm_free_large(reloc);
716 drm_free_large(reloc_offset);
717 return ret;
720 static int
721 i915_gem_execbuffer_flush(struct drm_device *dev,
722 uint32_t invalidate_domains,
723 uint32_t flush_domains,
724 uint32_t flush_rings)
726 drm_i915_private_t *dev_priv = dev->dev_private;
727 int i, ret;
729 if (flush_domains & I915_GEM_DOMAIN_CPU)
730 intel_gtt_chipset_flush();
732 if (flush_domains & I915_GEM_DOMAIN_GTT)
733 wmb();
735 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
736 for (i = 0; i < I915_NUM_RINGS; i++)
737 if (flush_rings & (1 << i)) {
738 ret = i915_gem_flush_ring(&dev_priv->ring[i],
739 invalidate_domains,
740 flush_domains);
741 if (ret)
742 return ret;
746 return 0;
749 static int
750 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
751 struct intel_ring_buffer *to)
753 struct intel_ring_buffer *from = obj->ring;
754 u32 seqno;
755 int ret, idx;
757 if (from == NULL || to == from)
758 return 0;
760 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
761 if (INTEL_INFO(obj->base.dev)->gen < 6 || !i915_semaphores)
762 return i915_gem_object_wait_rendering(obj);
764 idx = intel_ring_sync_index(from, to);
766 seqno = obj->last_rendering_seqno;
767 if (seqno <= from->sync_seqno[idx])
768 return 0;
770 if (seqno == from->outstanding_lazy_request) {
771 struct drm_i915_gem_request *request;
773 request = kzalloc(sizeof(*request), GFP_KERNEL);
774 if (request == NULL)
775 return -ENOMEM;
777 ret = i915_add_request(from, NULL, request);
778 if (ret) {
779 kfree(request);
780 return ret;
783 seqno = request->seqno;
786 from->sync_seqno[idx] = seqno;
788 return to->sync_to(to, from, seqno - 1);
791 static int
792 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
794 u32 plane, flip_mask;
795 int ret;
797 /* Check for any pending flips. As we only maintain a flip queue depth
798 * of 1, we can simply insert a WAIT for the next display flip prior
799 * to executing the batch and avoid stalling the CPU.
802 for (plane = 0; flips >> plane; plane++) {
803 if (((flips >> plane) & 1) == 0)
804 continue;
806 if (plane)
807 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
808 else
809 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
811 ret = intel_ring_begin(ring, 2);
812 if (ret)
813 return ret;
815 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
816 intel_ring_emit(ring, MI_NOOP);
817 intel_ring_advance(ring);
820 return 0;
824 static int
825 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
826 struct list_head *objects)
828 struct drm_i915_gem_object *obj;
829 struct change_domains cd;
830 int ret;
832 memset(&cd, 0, sizeof(cd));
833 list_for_each_entry(obj, objects, exec_list)
834 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
836 if (cd.invalidate_domains | cd.flush_domains) {
837 ret = i915_gem_execbuffer_flush(ring->dev,
838 cd.invalidate_domains,
839 cd.flush_domains,
840 cd.flush_rings);
841 if (ret)
842 return ret;
845 if (cd.flips) {
846 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
847 if (ret)
848 return ret;
851 list_for_each_entry(obj, objects, exec_list) {
852 ret = i915_gem_execbuffer_sync_rings(obj, ring);
853 if (ret)
854 return ret;
857 return 0;
860 static bool
861 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
863 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
866 static int
867 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
868 int count)
870 int i;
872 for (i = 0; i < count; i++) {
873 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
874 int length; /* limited by fault_in_pages_readable() */
876 /* First check for malicious input causing overflow */
877 if (exec[i].relocation_count >
878 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
879 return -EINVAL;
881 length = exec[i].relocation_count *
882 sizeof(struct drm_i915_gem_relocation_entry);
883 if (!access_ok(VERIFY_READ, ptr, length))
884 return -EFAULT;
886 /* we may also need to update the presumed offsets */
887 if (!access_ok(VERIFY_WRITE, ptr, length))
888 return -EFAULT;
890 if (fault_in_pages_readable(ptr, length))
891 return -EFAULT;
894 return 0;
897 static void
898 i915_gem_execbuffer_move_to_active(struct list_head *objects,
899 struct intel_ring_buffer *ring,
900 u32 seqno)
902 struct drm_i915_gem_object *obj;
904 list_for_each_entry(obj, objects, exec_list) {
905 u32 old_read = obj->base.read_domains;
906 u32 old_write = obj->base.write_domain;
909 obj->base.read_domains = obj->base.pending_read_domains;
910 obj->base.write_domain = obj->base.pending_write_domain;
911 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
913 i915_gem_object_move_to_active(obj, ring, seqno);
914 if (obj->base.write_domain) {
915 obj->dirty = 1;
916 obj->pending_gpu_write = true;
917 list_move_tail(&obj->gpu_write_list,
918 &ring->gpu_write_list);
919 intel_mark_busy(ring->dev, obj);
922 trace_i915_gem_object_change_domain(obj, old_read, old_write);
926 static void
927 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
928 struct drm_file *file,
929 struct intel_ring_buffer *ring)
931 struct drm_i915_gem_request *request;
932 u32 invalidate;
935 * Ensure that the commands in the batch buffer are
936 * finished before the interrupt fires.
938 * The sampler always gets flushed on i965 (sigh).
940 invalidate = I915_GEM_DOMAIN_COMMAND;
941 if (INTEL_INFO(dev)->gen >= 4)
942 invalidate |= I915_GEM_DOMAIN_SAMPLER;
943 if (ring->flush(ring, invalidate, 0)) {
944 i915_gem_next_request_seqno(ring);
945 return;
948 /* Add a breadcrumb for the completion of the batch buffer */
949 request = kzalloc(sizeof(*request), GFP_KERNEL);
950 if (request == NULL || i915_add_request(ring, file, request)) {
951 i915_gem_next_request_seqno(ring);
952 kfree(request);
956 static int
957 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
958 struct drm_file *file,
959 struct drm_i915_gem_execbuffer2 *args,
960 struct drm_i915_gem_exec_object2 *exec)
962 drm_i915_private_t *dev_priv = dev->dev_private;
963 struct list_head objects;
964 struct eb_objects *eb;
965 struct drm_i915_gem_object *batch_obj;
966 struct drm_clip_rect *cliprects = NULL;
967 struct intel_ring_buffer *ring;
968 u32 exec_start, exec_len;
969 u32 seqno;
970 int ret, mode, i;
972 if (!i915_gem_check_execbuffer(args)) {
973 DRM_ERROR("execbuf with invalid offset/length\n");
974 return -EINVAL;
977 ret = validate_exec_list(exec, args->buffer_count);
978 if (ret)
979 return ret;
981 switch (args->flags & I915_EXEC_RING_MASK) {
982 case I915_EXEC_DEFAULT:
983 case I915_EXEC_RENDER:
984 ring = &dev_priv->ring[RCS];
985 break;
986 case I915_EXEC_BSD:
987 if (!HAS_BSD(dev)) {
988 DRM_ERROR("execbuf with invalid ring (BSD)\n");
989 return -EINVAL;
991 ring = &dev_priv->ring[VCS];
992 break;
993 case I915_EXEC_BLT:
994 if (!HAS_BLT(dev)) {
995 DRM_ERROR("execbuf with invalid ring (BLT)\n");
996 return -EINVAL;
998 ring = &dev_priv->ring[BCS];
999 break;
1000 default:
1001 DRM_ERROR("execbuf with unknown ring: %d\n",
1002 (int)(args->flags & I915_EXEC_RING_MASK));
1003 return -EINVAL;
1006 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1007 switch (mode) {
1008 case I915_EXEC_CONSTANTS_REL_GENERAL:
1009 case I915_EXEC_CONSTANTS_ABSOLUTE:
1010 case I915_EXEC_CONSTANTS_REL_SURFACE:
1011 if (ring == &dev_priv->ring[RCS] &&
1012 mode != dev_priv->relative_constants_mode) {
1013 if (INTEL_INFO(dev)->gen < 4)
1014 return -EINVAL;
1016 if (INTEL_INFO(dev)->gen > 5 &&
1017 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1018 return -EINVAL;
1020 ret = intel_ring_begin(ring, 4);
1021 if (ret)
1022 return ret;
1024 intel_ring_emit(ring, MI_NOOP);
1025 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1026 intel_ring_emit(ring, INSTPM);
1027 intel_ring_emit(ring,
1028 I915_EXEC_CONSTANTS_MASK << 16 | mode);
1029 intel_ring_advance(ring);
1031 dev_priv->relative_constants_mode = mode;
1033 break;
1034 default:
1035 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1036 return -EINVAL;
1039 if (args->buffer_count < 1) {
1040 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1041 return -EINVAL;
1044 if (args->num_cliprects != 0) {
1045 if (ring != &dev_priv->ring[RCS]) {
1046 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1047 return -EINVAL;
1050 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1051 GFP_KERNEL);
1052 if (cliprects == NULL) {
1053 ret = -ENOMEM;
1054 goto pre_mutex_err;
1057 if (copy_from_user(cliprects,
1058 (struct drm_clip_rect __user *)(uintptr_t)
1059 args->cliprects_ptr,
1060 sizeof(*cliprects)*args->num_cliprects)) {
1061 ret = -EFAULT;
1062 goto pre_mutex_err;
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto pre_mutex_err;
1070 if (dev_priv->mm.suspended) {
1071 mutex_unlock(&dev->struct_mutex);
1072 ret = -EBUSY;
1073 goto pre_mutex_err;
1076 eb = eb_create(args->buffer_count);
1077 if (eb == NULL) {
1078 mutex_unlock(&dev->struct_mutex);
1079 ret = -ENOMEM;
1080 goto pre_mutex_err;
1083 /* Look up object handles */
1084 INIT_LIST_HEAD(&objects);
1085 for (i = 0; i < args->buffer_count; i++) {
1086 struct drm_i915_gem_object *obj;
1088 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1089 exec[i].handle));
1090 if (&obj->base == NULL) {
1091 DRM_ERROR("Invalid object handle %d at index %d\n",
1092 exec[i].handle, i);
1093 /* prevent error path from reading uninitialized data */
1094 ret = -ENOENT;
1095 goto err;
1098 if (!list_empty(&obj->exec_list)) {
1099 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1100 obj, exec[i].handle, i);
1101 ret = -EINVAL;
1102 goto err;
1105 list_add_tail(&obj->exec_list, &objects);
1106 obj->exec_handle = exec[i].handle;
1107 obj->exec_entry = &exec[i];
1108 eb_add_object(eb, obj);
1111 /* take note of the batch buffer before we might reorder the lists */
1112 batch_obj = list_entry(objects.prev,
1113 struct drm_i915_gem_object,
1114 exec_list);
1116 /* Move the objects en-masse into the GTT, evicting if necessary. */
1117 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1118 if (ret)
1119 goto err;
1121 /* The objects are in their final locations, apply the relocations. */
1122 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1123 if (ret) {
1124 if (ret == -EFAULT) {
1125 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1126 &objects, eb,
1127 exec,
1128 args->buffer_count);
1129 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1131 if (ret)
1132 goto err;
1135 /* Set the pending read domains for the batch buffer to COMMAND */
1136 if (batch_obj->base.pending_write_domain) {
1137 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1138 ret = -EINVAL;
1139 goto err;
1141 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1143 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1144 if (ret)
1145 goto err;
1147 seqno = i915_gem_next_request_seqno(ring);
1148 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1149 if (seqno < ring->sync_seqno[i]) {
1150 /* The GPU can not handle its semaphore value wrapping,
1151 * so every billion or so execbuffers, we need to stall
1152 * the GPU in order to reset the counters.
1154 ret = i915_gpu_idle(dev);
1155 if (ret)
1156 goto err;
1158 BUG_ON(ring->sync_seqno[i]);
1162 trace_i915_gem_ring_dispatch(ring, seqno);
1164 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1165 exec_len = args->batch_len;
1166 if (cliprects) {
1167 for (i = 0; i < args->num_cliprects; i++) {
1168 ret = i915_emit_box(dev, &cliprects[i],
1169 args->DR1, args->DR4);
1170 if (ret)
1171 goto err;
1173 ret = ring->dispatch_execbuffer(ring,
1174 exec_start, exec_len);
1175 if (ret)
1176 goto err;
1178 } else {
1179 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1180 if (ret)
1181 goto err;
1184 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1185 i915_gem_execbuffer_retire_commands(dev, file, ring);
1187 err:
1188 eb_destroy(eb);
1189 while (!list_empty(&objects)) {
1190 struct drm_i915_gem_object *obj;
1192 obj = list_first_entry(&objects,
1193 struct drm_i915_gem_object,
1194 exec_list);
1195 list_del_init(&obj->exec_list);
1196 drm_gem_object_unreference(&obj->base);
1199 mutex_unlock(&dev->struct_mutex);
1201 pre_mutex_err:
1202 kfree(cliprects);
1203 return ret;
1207 * Legacy execbuffer just creates an exec2 list from the original exec object
1208 * list array and passes it to the real function.
1211 i915_gem_execbuffer(struct drm_device *dev, void *data,
1212 struct drm_file *file)
1214 struct drm_i915_gem_execbuffer *args = data;
1215 struct drm_i915_gem_execbuffer2 exec2;
1216 struct drm_i915_gem_exec_object *exec_list = NULL;
1217 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1218 int ret, i;
1220 if (args->buffer_count < 1) {
1221 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1222 return -EINVAL;
1225 /* Copy in the exec list from userland */
1226 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1227 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1228 if (exec_list == NULL || exec2_list == NULL) {
1229 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1230 args->buffer_count);
1231 drm_free_large(exec_list);
1232 drm_free_large(exec2_list);
1233 return -ENOMEM;
1235 ret = copy_from_user(exec_list,
1236 (struct drm_i915_relocation_entry __user *)
1237 (uintptr_t) args->buffers_ptr,
1238 sizeof(*exec_list) * args->buffer_count);
1239 if (ret != 0) {
1240 DRM_ERROR("copy %d exec entries failed %d\n",
1241 args->buffer_count, ret);
1242 drm_free_large(exec_list);
1243 drm_free_large(exec2_list);
1244 return -EFAULT;
1247 for (i = 0; i < args->buffer_count; i++) {
1248 exec2_list[i].handle = exec_list[i].handle;
1249 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1250 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1251 exec2_list[i].alignment = exec_list[i].alignment;
1252 exec2_list[i].offset = exec_list[i].offset;
1253 if (INTEL_INFO(dev)->gen < 4)
1254 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1255 else
1256 exec2_list[i].flags = 0;
1259 exec2.buffers_ptr = args->buffers_ptr;
1260 exec2.buffer_count = args->buffer_count;
1261 exec2.batch_start_offset = args->batch_start_offset;
1262 exec2.batch_len = args->batch_len;
1263 exec2.DR1 = args->DR1;
1264 exec2.DR4 = args->DR4;
1265 exec2.num_cliprects = args->num_cliprects;
1266 exec2.cliprects_ptr = args->cliprects_ptr;
1267 exec2.flags = I915_EXEC_RENDER;
1269 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1270 if (!ret) {
1271 /* Copy the new buffer offsets back to the user's exec list. */
1272 for (i = 0; i < args->buffer_count; i++)
1273 exec_list[i].offset = exec2_list[i].offset;
1274 /* ... and back out to userspace */
1275 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1276 (uintptr_t) args->buffers_ptr,
1277 exec_list,
1278 sizeof(*exec_list) * args->buffer_count);
1279 if (ret) {
1280 ret = -EFAULT;
1281 DRM_ERROR("failed to copy %d exec entries "
1282 "back to user (%d)\n",
1283 args->buffer_count, ret);
1287 drm_free_large(exec_list);
1288 drm_free_large(exec2_list);
1289 return ret;
1293 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1294 struct drm_file *file)
1296 struct drm_i915_gem_execbuffer2 *args = data;
1297 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1298 int ret;
1300 if (args->buffer_count < 1) {
1301 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1302 return -EINVAL;
1305 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1306 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1307 if (exec2_list == NULL)
1308 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1309 args->buffer_count);
1310 if (exec2_list == NULL) {
1311 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1312 args->buffer_count);
1313 return -ENOMEM;
1315 ret = copy_from_user(exec2_list,
1316 (struct drm_i915_relocation_entry __user *)
1317 (uintptr_t) args->buffers_ptr,
1318 sizeof(*exec2_list) * args->buffer_count);
1319 if (ret != 0) {
1320 DRM_ERROR("copy %d exec entries failed %d\n",
1321 args->buffer_count, ret);
1322 drm_free_large(exec2_list);
1323 return -EFAULT;
1326 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1327 if (!ret) {
1328 /* Copy the new buffer offsets back to the user's exec list. */
1329 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1330 (uintptr_t) args->buffers_ptr,
1331 exec2_list,
1332 sizeof(*exec2_list) * args->buffer_count);
1333 if (ret) {
1334 ret = -EFAULT;
1335 DRM_ERROR("failed to copy %d exec entries "
1336 "back to user (%d)\n",
1337 args->buffer_count, ret);
1341 drm_free_large(exec2_list);
1342 return ret;