thinkpad-acpi: make volume subdriver optional
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blobab807963a61494f2aca5bae2f01ec364fec20a7a
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
77 static unsigned long blocks_for_truncate(struct inode *inode)
79 ext4_lblk_t needed;
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
86 * like a regular file for ext4 to try to delete it. Things
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
110 static handle_t *start_transaction(struct inode *inode)
112 handle_t *result;
114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 if (!IS_ERR(result))
116 return result;
118 ext4_std_error(inode->i_sb, PTR_ERR(result));
119 return result;
123 * Try to extend this transaction for the purposes of truncation.
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 return 0;
134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 return 0;
136 return 1;
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 int nblocks)
147 int ret;
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 jbd_debug(2, "restarting handle %p\n", handle);
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
160 ext4_discard_preallocations(inode);
162 return ret;
166 * Called at the last iput() if i_nlink is zero.
168 void ext4_delete_inode(struct inode *inode)
170 handle_t *handle;
171 int err;
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
175 truncate_inode_pages(&inode->i_data, 0);
177 if (is_bad_inode(inode))
178 goto no_delete;
180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 if (IS_ERR(handle)) {
182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
188 ext4_orphan_del(NULL, inode);
189 goto no_delete;
192 if (IS_SYNC(inode))
193 ext4_handle_sync(handle);
194 inode->i_size = 0;
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
201 if (inode->i_blocks)
202 ext4_truncate(inode);
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
210 if (!ext4_handle_has_enough_credits(handle, 3)) {
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
224 * Kill off the orphan record which ext4_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext4_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext4_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
241 if (ext4_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 p->key = *(p->p = v);
261 p->bh = bh;
265 * ext4_block_to_path - parse the block number into array of offsets
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
272 * To store the locations of file's data ext4 uses a data structure common
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
295 static int ext4_block_to_path(struct inode *inode,
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
307 if (i_block < direct_blocks) {
308 offsets[n++] = i_block;
309 final = direct_blocks;
310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
311 offsets[n++] = EXT4_IND_BLOCK;
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
315 offsets[n++] = EXT4_DIND_BLOCK;
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 offsets[n++] = EXT4_TIND_BLOCK;
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
326 ext4_warning(inode->i_sb, "ext4_block_to_path",
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
339 __le32 *bref = p;
340 unsigned int blk;
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
353 return 0;
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
430 return NULL;
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
456 * Caller must make sure that @ind is valid and will stay that way.
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
521 ext4_fsblk_t goal;
524 * XXX need to get goal block from mballoc's data structures
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
547 unsigned int count = 0;
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
567 return count;
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
618 if (count > 0) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
627 break;
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
648 if (*err && (target == blks)) {
650 * if the allocation failed and we didn't allocate
651 * any blocks before
653 goto failed_out;
655 if (!*err) {
656 if (target == blks) {
658 * save the new block number
659 * for the first direct block
661 new_blocks[index] = current_block;
663 blk_allocated += ar.len;
665 allocated:
666 /* total number of blocks allocated for direct blocks */
667 ret = blk_allocated;
668 *err = 0;
669 return ret;
670 failed_out:
671 for (i = 0; i < index; i++)
672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 return ret;
677 * ext4_alloc_branch - allocate and set up a chain of blocks.
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
688 * the same format as ext4_get_branch() would do. We are calling it after
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
691 * picture as after the successful ext4_get_block(), except that in one
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 * as described above and return 0.
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
719 branch[0].key = cpu_to_le32(new_blocks[0]);
721 * metadata blocks and data blocks are allocated.
723 for (n = 1; n <= indirect_blks; n++) {
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 err = ext4_journal_get_create_access(handle, bh);
734 if (err) {
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
737 unlock_buffer(bh);
738 goto failed;
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
745 if (n == indirect_blks) {
746 current_block = new_blocks[n];
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
752 for (i = 1; i < num; i++)
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
761 if (err)
762 goto failed;
764 *blks = num;
765 return err;
766 failed:
767 /* Allocation failed, free what we already allocated */
768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 for (i = 1; i <= n ; i++) {
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
783 return err;
787 * ext4_splice_branch - splice the allocated branch onto inode.
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
791 * ext4_alloc_branch)
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
804 int i;
805 int err = 0;
806 ext4_fsblk_t current_block;
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
815 err = ext4_journal_get_write_access(handle, where->bh);
816 if (err)
817 goto err_out;
819 /* That's it */
821 *where->p = where->key;
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
830 *(where->p + i) = cpu_to_le32(current_block++);
833 /* We are done with atomic stuff, now do the rest of housekeeping */
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
844 jbd_debug(5, "splicing indirect only\n");
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 if (err)
848 goto err_out;
849 } else {
851 * OK, we spliced it into the inode itself on a direct block.
853 ext4_mark_inode_dirty(handle, inode);
854 jbd_debug(5, "splicing direct\n");
856 return err;
858 err_out:
859 for (i = 1; i <= num; i++) {
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
871 return err;
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
890 * `handle' can be NULL if create == 0.
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
907 int err = -EIO;
908 ext4_lblk_t offsets[4];
909 Indirect chain[4];
910 Indirect *partial;
911 ext4_fsblk_t goal;
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
915 int count = 0;
916 ext4_fsblk_t first_block = 0;
918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 depth = ext4_block_to_path(inode, iblock, offsets,
921 &blocks_to_boundary);
923 if (depth == 0)
924 goto out;
926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
935 ext4_fsblk_t blk;
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
944 goto got_it;
947 /* Next simple case - plain lookup or failed read of indirect block */
948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 goto cleanup;
952 * Okay, we need to do block allocation.
954 goal = ext4_find_goal(inode, iblock, partial);
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
963 count = ext4_blks_to_allocate(partial, indirect_blks,
964 maxblocks, blocks_to_boundary);
966 * Block out ext4_truncate while we alter the tree
968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 &count, goal,
970 offsets + (partial - chain), partial);
973 * The ext4_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
979 if (!err)
980 err = ext4_splice_branch(handle, inode, iblock,
981 partial, indirect_blks, count);
982 if (err)
983 goto cleanup;
985 set_buffer_new(bh_result);
987 ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 if (count > blocks_to_boundary)
991 set_buffer_boundary(bh_result);
992 err = count;
993 /* Clean up and exit */
994 partial = chain + depth - 1; /* the whole chain */
995 cleanup:
996 while (partial > chain) {
997 BUFFER_TRACE(partial->bh, "call brelse");
998 brelse(partial->bh);
999 partial--;
1001 BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 return err;
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1009 return &EXT4_I(inode)->i_reserved_quota;
1011 #endif
1013 * Calculate the number of metadata blocks need to reserve
1014 * to allocate @blocks for non extent file based file
1016 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1018 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1019 int ind_blks, dind_blks, tind_blks;
1021 /* number of new indirect blocks needed */
1022 ind_blks = (blocks + icap - 1) / icap;
1024 dind_blks = (ind_blks + icap - 1) / icap;
1026 tind_blks = 1;
1028 return ind_blks + dind_blks + tind_blks;
1032 * Calculate the number of metadata blocks need to reserve
1033 * to allocate given number of blocks
1035 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1037 if (!blocks)
1038 return 0;
1040 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1041 return ext4_ext_calc_metadata_amount(inode, blocks);
1043 return ext4_indirect_calc_metadata_amount(inode, blocks);
1046 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1048 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1049 int total, mdb, mdb_free, mdb_claim = 0;
1051 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1052 /* recalculate the number of metablocks still need to be reserved */
1053 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1054 mdb = ext4_calc_metadata_amount(inode, total);
1056 /* figure out how many metablocks to release */
1057 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1058 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1060 if (mdb_free) {
1061 /* Account for allocated meta_blocks */
1062 mdb_claim = EXT4_I(inode)->i_allocated_meta_blocks;
1063 BUG_ON(mdb_free < mdb_claim);
1064 mdb_free -= mdb_claim;
1066 /* update fs dirty blocks counter */
1067 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1068 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1069 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1072 /* update per-inode reservations */
1073 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1074 EXT4_I(inode)->i_reserved_data_blocks -= used;
1075 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used + mdb_claim);
1076 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1078 vfs_dq_claim_block(inode, used + mdb_claim);
1081 * free those over-booking quota for metadata blocks
1083 if (mdb_free)
1084 vfs_dq_release_reservation_block(inode, mdb_free);
1087 * If we have done all the pending block allocations and if
1088 * there aren't any writers on the inode, we can discard the
1089 * inode's preallocations.
1091 if (!total && (atomic_read(&inode->i_writecount) == 0))
1092 ext4_discard_preallocations(inode);
1095 static int check_block_validity(struct inode *inode, const char *msg,
1096 sector_t logical, sector_t phys, int len)
1098 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1099 ext4_error(inode->i_sb, msg,
1100 "inode #%lu logical block %llu mapped to %llu "
1101 "(size %d)", inode->i_ino,
1102 (unsigned long long) logical,
1103 (unsigned long long) phys, len);
1104 return -EIO;
1106 return 0;
1110 * Return the number of contiguous dirty pages in a given inode
1111 * starting at page frame idx.
1113 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1114 unsigned int max_pages)
1116 struct address_space *mapping = inode->i_mapping;
1117 pgoff_t index;
1118 struct pagevec pvec;
1119 pgoff_t num = 0;
1120 int i, nr_pages, done = 0;
1122 if (max_pages == 0)
1123 return 0;
1124 pagevec_init(&pvec, 0);
1125 while (!done) {
1126 index = idx;
1127 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1128 PAGECACHE_TAG_DIRTY,
1129 (pgoff_t)PAGEVEC_SIZE);
1130 if (nr_pages == 0)
1131 break;
1132 for (i = 0; i < nr_pages; i++) {
1133 struct page *page = pvec.pages[i];
1134 struct buffer_head *bh, *head;
1136 lock_page(page);
1137 if (unlikely(page->mapping != mapping) ||
1138 !PageDirty(page) ||
1139 PageWriteback(page) ||
1140 page->index != idx) {
1141 done = 1;
1142 unlock_page(page);
1143 break;
1145 if (page_has_buffers(page)) {
1146 bh = head = page_buffers(page);
1147 do {
1148 if (!buffer_delay(bh) &&
1149 !buffer_unwritten(bh))
1150 done = 1;
1151 bh = bh->b_this_page;
1152 } while (!done && (bh != head));
1154 unlock_page(page);
1155 if (done)
1156 break;
1157 idx++;
1158 num++;
1159 if (num >= max_pages)
1160 break;
1162 pagevec_release(&pvec);
1164 return num;
1168 * The ext4_get_blocks() function tries to look up the requested blocks,
1169 * and returns if the blocks are already mapped.
1171 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1172 * and store the allocated blocks in the result buffer head and mark it
1173 * mapped.
1175 * If file type is extents based, it will call ext4_ext_get_blocks(),
1176 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1177 * based files
1179 * On success, it returns the number of blocks being mapped or allocate.
1180 * if create==0 and the blocks are pre-allocated and uninitialized block,
1181 * the result buffer head is unmapped. If the create ==1, it will make sure
1182 * the buffer head is mapped.
1184 * It returns 0 if plain look up failed (blocks have not been allocated), in
1185 * that casem, buffer head is unmapped
1187 * It returns the error in case of allocation failure.
1189 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1190 unsigned int max_blocks, struct buffer_head *bh,
1191 int flags)
1193 int retval;
1195 clear_buffer_mapped(bh);
1196 clear_buffer_unwritten(bh);
1198 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1199 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1200 (unsigned long)block);
1202 * Try to see if we can get the block without requesting a new
1203 * file system block.
1205 down_read((&EXT4_I(inode)->i_data_sem));
1206 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1207 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1208 bh, 0);
1209 } else {
1210 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1211 bh, 0);
1213 up_read((&EXT4_I(inode)->i_data_sem));
1215 if (retval > 0 && buffer_mapped(bh)) {
1216 int ret = check_block_validity(inode, "file system corruption",
1217 block, bh->b_blocknr, retval);
1218 if (ret != 0)
1219 return ret;
1222 /* If it is only a block(s) look up */
1223 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1224 return retval;
1227 * Returns if the blocks have already allocated
1229 * Note that if blocks have been preallocated
1230 * ext4_ext_get_block() returns th create = 0
1231 * with buffer head unmapped.
1233 if (retval > 0 && buffer_mapped(bh))
1234 return retval;
1237 * When we call get_blocks without the create flag, the
1238 * BH_Unwritten flag could have gotten set if the blocks
1239 * requested were part of a uninitialized extent. We need to
1240 * clear this flag now that we are committed to convert all or
1241 * part of the uninitialized extent to be an initialized
1242 * extent. This is because we need to avoid the combination
1243 * of BH_Unwritten and BH_Mapped flags being simultaneously
1244 * set on the buffer_head.
1246 clear_buffer_unwritten(bh);
1249 * New blocks allocate and/or writing to uninitialized extent
1250 * will possibly result in updating i_data, so we take
1251 * the write lock of i_data_sem, and call get_blocks()
1252 * with create == 1 flag.
1254 down_write((&EXT4_I(inode)->i_data_sem));
1257 * if the caller is from delayed allocation writeout path
1258 * we have already reserved fs blocks for allocation
1259 * let the underlying get_block() function know to
1260 * avoid double accounting
1262 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1263 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1265 * We need to check for EXT4 here because migrate
1266 * could have changed the inode type in between
1268 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1269 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1270 bh, flags);
1271 } else {
1272 retval = ext4_ind_get_blocks(handle, inode, block,
1273 max_blocks, bh, flags);
1275 if (retval > 0 && buffer_new(bh)) {
1277 * We allocated new blocks which will result in
1278 * i_data's format changing. Force the migrate
1279 * to fail by clearing migrate flags
1281 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1285 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1286 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1289 * Update reserved blocks/metadata blocks after successful
1290 * block allocation which had been deferred till now.
1292 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1293 ext4_da_update_reserve_space(inode, retval);
1295 up_write((&EXT4_I(inode)->i_data_sem));
1296 if (retval > 0 && buffer_mapped(bh)) {
1297 int ret = check_block_validity(inode, "file system "
1298 "corruption after allocation",
1299 block, bh->b_blocknr, retval);
1300 if (ret != 0)
1301 return ret;
1303 return retval;
1306 /* Maximum number of blocks we map for direct IO at once. */
1307 #define DIO_MAX_BLOCKS 4096
1309 int ext4_get_block(struct inode *inode, sector_t iblock,
1310 struct buffer_head *bh_result, int create)
1312 handle_t *handle = ext4_journal_current_handle();
1313 int ret = 0, started = 0;
1314 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1315 int dio_credits;
1317 if (create && !handle) {
1318 /* Direct IO write... */
1319 if (max_blocks > DIO_MAX_BLOCKS)
1320 max_blocks = DIO_MAX_BLOCKS;
1321 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1322 handle = ext4_journal_start(inode, dio_credits);
1323 if (IS_ERR(handle)) {
1324 ret = PTR_ERR(handle);
1325 goto out;
1327 started = 1;
1330 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1331 create ? EXT4_GET_BLOCKS_CREATE : 0);
1332 if (ret > 0) {
1333 bh_result->b_size = (ret << inode->i_blkbits);
1334 ret = 0;
1336 if (started)
1337 ext4_journal_stop(handle);
1338 out:
1339 return ret;
1343 * `handle' can be NULL if create is zero
1345 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1346 ext4_lblk_t block, int create, int *errp)
1348 struct buffer_head dummy;
1349 int fatal = 0, err;
1350 int flags = 0;
1352 J_ASSERT(handle != NULL || create == 0);
1354 dummy.b_state = 0;
1355 dummy.b_blocknr = -1000;
1356 buffer_trace_init(&dummy.b_history);
1357 if (create)
1358 flags |= EXT4_GET_BLOCKS_CREATE;
1359 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1361 * ext4_get_blocks() returns number of blocks mapped. 0 in
1362 * case of a HOLE.
1364 if (err > 0) {
1365 if (err > 1)
1366 WARN_ON(1);
1367 err = 0;
1369 *errp = err;
1370 if (!err && buffer_mapped(&dummy)) {
1371 struct buffer_head *bh;
1372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1373 if (!bh) {
1374 *errp = -EIO;
1375 goto err;
1377 if (buffer_new(&dummy)) {
1378 J_ASSERT(create != 0);
1379 J_ASSERT(handle != NULL);
1382 * Now that we do not always journal data, we should
1383 * keep in mind whether this should always journal the
1384 * new buffer as metadata. For now, regular file
1385 * writes use ext4_get_block instead, so it's not a
1386 * problem.
1388 lock_buffer(bh);
1389 BUFFER_TRACE(bh, "call get_create_access");
1390 fatal = ext4_journal_get_create_access(handle, bh);
1391 if (!fatal && !buffer_uptodate(bh)) {
1392 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1393 set_buffer_uptodate(bh);
1395 unlock_buffer(bh);
1396 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1397 err = ext4_handle_dirty_metadata(handle, inode, bh);
1398 if (!fatal)
1399 fatal = err;
1400 } else {
1401 BUFFER_TRACE(bh, "not a new buffer");
1403 if (fatal) {
1404 *errp = fatal;
1405 brelse(bh);
1406 bh = NULL;
1408 return bh;
1410 err:
1411 return NULL;
1414 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1415 ext4_lblk_t block, int create, int *err)
1417 struct buffer_head *bh;
1419 bh = ext4_getblk(handle, inode, block, create, err);
1420 if (!bh)
1421 return bh;
1422 if (buffer_uptodate(bh))
1423 return bh;
1424 ll_rw_block(READ_META, 1, &bh);
1425 wait_on_buffer(bh);
1426 if (buffer_uptodate(bh))
1427 return bh;
1428 put_bh(bh);
1429 *err = -EIO;
1430 return NULL;
1433 static int walk_page_buffers(handle_t *handle,
1434 struct buffer_head *head,
1435 unsigned from,
1436 unsigned to,
1437 int *partial,
1438 int (*fn)(handle_t *handle,
1439 struct buffer_head *bh))
1441 struct buffer_head *bh;
1442 unsigned block_start, block_end;
1443 unsigned blocksize = head->b_size;
1444 int err, ret = 0;
1445 struct buffer_head *next;
1447 for (bh = head, block_start = 0;
1448 ret == 0 && (bh != head || !block_start);
1449 block_start = block_end, bh = next) {
1450 next = bh->b_this_page;
1451 block_end = block_start + blocksize;
1452 if (block_end <= from || block_start >= to) {
1453 if (partial && !buffer_uptodate(bh))
1454 *partial = 1;
1455 continue;
1457 err = (*fn)(handle, bh);
1458 if (!ret)
1459 ret = err;
1461 return ret;
1465 * To preserve ordering, it is essential that the hole instantiation and
1466 * the data write be encapsulated in a single transaction. We cannot
1467 * close off a transaction and start a new one between the ext4_get_block()
1468 * and the commit_write(). So doing the jbd2_journal_start at the start of
1469 * prepare_write() is the right place.
1471 * Also, this function can nest inside ext4_writepage() ->
1472 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1473 * has generated enough buffer credits to do the whole page. So we won't
1474 * block on the journal in that case, which is good, because the caller may
1475 * be PF_MEMALLOC.
1477 * By accident, ext4 can be reentered when a transaction is open via
1478 * quota file writes. If we were to commit the transaction while thus
1479 * reentered, there can be a deadlock - we would be holding a quota
1480 * lock, and the commit would never complete if another thread had a
1481 * transaction open and was blocking on the quota lock - a ranking
1482 * violation.
1484 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1485 * will _not_ run commit under these circumstances because handle->h_ref
1486 * is elevated. We'll still have enough credits for the tiny quotafile
1487 * write.
1489 static int do_journal_get_write_access(handle_t *handle,
1490 struct buffer_head *bh)
1492 if (!buffer_mapped(bh) || buffer_freed(bh))
1493 return 0;
1494 return ext4_journal_get_write_access(handle, bh);
1498 * Truncate blocks that were not used by write. We have to truncate the
1499 * pagecache as well so that corresponding buffers get properly unmapped.
1501 static void ext4_truncate_failed_write(struct inode *inode)
1503 truncate_inode_pages(inode->i_mapping, inode->i_size);
1504 ext4_truncate(inode);
1507 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1508 loff_t pos, unsigned len, unsigned flags,
1509 struct page **pagep, void **fsdata)
1511 struct inode *inode = mapping->host;
1512 int ret, needed_blocks;
1513 handle_t *handle;
1514 int retries = 0;
1515 struct page *page;
1516 pgoff_t index;
1517 unsigned from, to;
1519 trace_ext4_write_begin(inode, pos, len, flags);
1521 * Reserve one block more for addition to orphan list in case
1522 * we allocate blocks but write fails for some reason
1524 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1525 index = pos >> PAGE_CACHE_SHIFT;
1526 from = pos & (PAGE_CACHE_SIZE - 1);
1527 to = from + len;
1529 retry:
1530 handle = ext4_journal_start(inode, needed_blocks);
1531 if (IS_ERR(handle)) {
1532 ret = PTR_ERR(handle);
1533 goto out;
1536 /* We cannot recurse into the filesystem as the transaction is already
1537 * started */
1538 flags |= AOP_FLAG_NOFS;
1540 page = grab_cache_page_write_begin(mapping, index, flags);
1541 if (!page) {
1542 ext4_journal_stop(handle);
1543 ret = -ENOMEM;
1544 goto out;
1546 *pagep = page;
1548 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1549 ext4_get_block);
1551 if (!ret && ext4_should_journal_data(inode)) {
1552 ret = walk_page_buffers(handle, page_buffers(page),
1553 from, to, NULL, do_journal_get_write_access);
1556 if (ret) {
1557 unlock_page(page);
1558 page_cache_release(page);
1560 * block_write_begin may have instantiated a few blocks
1561 * outside i_size. Trim these off again. Don't need
1562 * i_size_read because we hold i_mutex.
1564 * Add inode to orphan list in case we crash before
1565 * truncate finishes
1567 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1568 ext4_orphan_add(handle, inode);
1570 ext4_journal_stop(handle);
1571 if (pos + len > inode->i_size) {
1572 ext4_truncate_failed_write(inode);
1574 * If truncate failed early the inode might
1575 * still be on the orphan list; we need to
1576 * make sure the inode is removed from the
1577 * orphan list in that case.
1579 if (inode->i_nlink)
1580 ext4_orphan_del(NULL, inode);
1584 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1585 goto retry;
1586 out:
1587 return ret;
1590 /* For write_end() in data=journal mode */
1591 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1593 if (!buffer_mapped(bh) || buffer_freed(bh))
1594 return 0;
1595 set_buffer_uptodate(bh);
1596 return ext4_handle_dirty_metadata(handle, NULL, bh);
1599 static int ext4_generic_write_end(struct file *file,
1600 struct address_space *mapping,
1601 loff_t pos, unsigned len, unsigned copied,
1602 struct page *page, void *fsdata)
1604 int i_size_changed = 0;
1605 struct inode *inode = mapping->host;
1606 handle_t *handle = ext4_journal_current_handle();
1608 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1611 * No need to use i_size_read() here, the i_size
1612 * cannot change under us because we hold i_mutex.
1614 * But it's important to update i_size while still holding page lock:
1615 * page writeout could otherwise come in and zero beyond i_size.
1617 if (pos + copied > inode->i_size) {
1618 i_size_write(inode, pos + copied);
1619 i_size_changed = 1;
1622 if (pos + copied > EXT4_I(inode)->i_disksize) {
1623 /* We need to mark inode dirty even if
1624 * new_i_size is less that inode->i_size
1625 * bu greater than i_disksize.(hint delalloc)
1627 ext4_update_i_disksize(inode, (pos + copied));
1628 i_size_changed = 1;
1630 unlock_page(page);
1631 page_cache_release(page);
1634 * Don't mark the inode dirty under page lock. First, it unnecessarily
1635 * makes the holding time of page lock longer. Second, it forces lock
1636 * ordering of page lock and transaction start for journaling
1637 * filesystems.
1639 if (i_size_changed)
1640 ext4_mark_inode_dirty(handle, inode);
1642 return copied;
1646 * We need to pick up the new inode size which generic_commit_write gave us
1647 * `file' can be NULL - eg, when called from page_symlink().
1649 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1650 * buffers are managed internally.
1652 static int ext4_ordered_write_end(struct file *file,
1653 struct address_space *mapping,
1654 loff_t pos, unsigned len, unsigned copied,
1655 struct page *page, void *fsdata)
1657 handle_t *handle = ext4_journal_current_handle();
1658 struct inode *inode = mapping->host;
1659 int ret = 0, ret2;
1661 trace_ext4_ordered_write_end(inode, pos, len, copied);
1662 ret = ext4_jbd2_file_inode(handle, inode);
1664 if (ret == 0) {
1665 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1666 page, fsdata);
1667 copied = ret2;
1668 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1669 /* if we have allocated more blocks and copied
1670 * less. We will have blocks allocated outside
1671 * inode->i_size. So truncate them
1673 ext4_orphan_add(handle, inode);
1674 if (ret2 < 0)
1675 ret = ret2;
1677 ret2 = ext4_journal_stop(handle);
1678 if (!ret)
1679 ret = ret2;
1681 if (pos + len > inode->i_size) {
1682 ext4_truncate_failed_write(inode);
1684 * If truncate failed early the inode might still be
1685 * on the orphan list; we need to make sure the inode
1686 * is removed from the orphan list in that case.
1688 if (inode->i_nlink)
1689 ext4_orphan_del(NULL, inode);
1693 return ret ? ret : copied;
1696 static int ext4_writeback_write_end(struct file *file,
1697 struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
1701 handle_t *handle = ext4_journal_current_handle();
1702 struct inode *inode = mapping->host;
1703 int ret = 0, ret2;
1705 trace_ext4_writeback_write_end(inode, pos, len, copied);
1706 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1707 page, fsdata);
1708 copied = ret2;
1709 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1710 /* if we have allocated more blocks and copied
1711 * less. We will have blocks allocated outside
1712 * inode->i_size. So truncate them
1714 ext4_orphan_add(handle, inode);
1716 if (ret2 < 0)
1717 ret = ret2;
1719 ret2 = ext4_journal_stop(handle);
1720 if (!ret)
1721 ret = ret2;
1723 if (pos + len > inode->i_size) {
1724 ext4_truncate_failed_write(inode);
1726 * If truncate failed early the inode might still be
1727 * on the orphan list; we need to make sure the inode
1728 * is removed from the orphan list in that case.
1730 if (inode->i_nlink)
1731 ext4_orphan_del(NULL, inode);
1734 return ret ? ret : copied;
1737 static int ext4_journalled_write_end(struct file *file,
1738 struct address_space *mapping,
1739 loff_t pos, unsigned len, unsigned copied,
1740 struct page *page, void *fsdata)
1742 handle_t *handle = ext4_journal_current_handle();
1743 struct inode *inode = mapping->host;
1744 int ret = 0, ret2;
1745 int partial = 0;
1746 unsigned from, to;
1747 loff_t new_i_size;
1749 trace_ext4_journalled_write_end(inode, pos, len, copied);
1750 from = pos & (PAGE_CACHE_SIZE - 1);
1751 to = from + len;
1753 if (copied < len) {
1754 if (!PageUptodate(page))
1755 copied = 0;
1756 page_zero_new_buffers(page, from+copied, to);
1759 ret = walk_page_buffers(handle, page_buffers(page), from,
1760 to, &partial, write_end_fn);
1761 if (!partial)
1762 SetPageUptodate(page);
1763 new_i_size = pos + copied;
1764 if (new_i_size > inode->i_size)
1765 i_size_write(inode, pos+copied);
1766 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1767 if (new_i_size > EXT4_I(inode)->i_disksize) {
1768 ext4_update_i_disksize(inode, new_i_size);
1769 ret2 = ext4_mark_inode_dirty(handle, inode);
1770 if (!ret)
1771 ret = ret2;
1774 unlock_page(page);
1775 page_cache_release(page);
1776 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1777 /* if we have allocated more blocks and copied
1778 * less. We will have blocks allocated outside
1779 * inode->i_size. So truncate them
1781 ext4_orphan_add(handle, inode);
1783 ret2 = ext4_journal_stop(handle);
1784 if (!ret)
1785 ret = ret2;
1786 if (pos + len > inode->i_size) {
1787 ext4_truncate_failed_write(inode);
1789 * If truncate failed early the inode might still be
1790 * on the orphan list; we need to make sure the inode
1791 * is removed from the orphan list in that case.
1793 if (inode->i_nlink)
1794 ext4_orphan_del(NULL, inode);
1797 return ret ? ret : copied;
1800 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1802 int retries = 0;
1803 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1804 unsigned long md_needed, mdblocks, total = 0;
1807 * recalculate the amount of metadata blocks to reserve
1808 * in order to allocate nrblocks
1809 * worse case is one extent per block
1811 repeat:
1812 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1813 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1814 mdblocks = ext4_calc_metadata_amount(inode, total);
1815 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1817 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1818 total = md_needed + nrblocks;
1819 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1822 * Make quota reservation here to prevent quota overflow
1823 * later. Real quota accounting is done at pages writeout
1824 * time.
1826 if (vfs_dq_reserve_block(inode, total))
1827 return -EDQUOT;
1829 if (ext4_claim_free_blocks(sbi, total)) {
1830 vfs_dq_release_reservation_block(inode, total);
1831 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1832 yield();
1833 goto repeat;
1835 return -ENOSPC;
1837 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1838 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1839 EXT4_I(inode)->i_reserved_meta_blocks += md_needed;
1840 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1842 return 0; /* success */
1845 static void ext4_da_release_space(struct inode *inode, int to_free)
1847 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1848 int total, mdb, mdb_free, release;
1850 if (!to_free)
1851 return; /* Nothing to release, exit */
1853 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1855 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1857 * if there is no reserved blocks, but we try to free some
1858 * then the counter is messed up somewhere.
1859 * but since this function is called from invalidate
1860 * page, it's harmless to return without any action
1862 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1863 "blocks for inode %lu, but there is no reserved "
1864 "data blocks\n", to_free, inode->i_ino);
1865 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1866 return;
1869 /* recalculate the number of metablocks still need to be reserved */
1870 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1871 mdb = ext4_calc_metadata_amount(inode, total);
1873 /* figure out how many metablocks to release */
1874 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1875 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1877 release = to_free + mdb_free;
1879 /* update fs dirty blocks counter for truncate case */
1880 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1882 /* update per-inode reservations */
1883 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1884 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1886 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1887 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1888 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1890 vfs_dq_release_reservation_block(inode, release);
1893 static void ext4_da_page_release_reservation(struct page *page,
1894 unsigned long offset)
1896 int to_release = 0;
1897 struct buffer_head *head, *bh;
1898 unsigned int curr_off = 0;
1900 head = page_buffers(page);
1901 bh = head;
1902 do {
1903 unsigned int next_off = curr_off + bh->b_size;
1905 if ((offset <= curr_off) && (buffer_delay(bh))) {
1906 to_release++;
1907 clear_buffer_delay(bh);
1909 curr_off = next_off;
1910 } while ((bh = bh->b_this_page) != head);
1911 ext4_da_release_space(page->mapping->host, to_release);
1915 * Delayed allocation stuff
1919 * mpage_da_submit_io - walks through extent of pages and try to write
1920 * them with writepage() call back
1922 * @mpd->inode: inode
1923 * @mpd->first_page: first page of the extent
1924 * @mpd->next_page: page after the last page of the extent
1926 * By the time mpage_da_submit_io() is called we expect all blocks
1927 * to be allocated. this may be wrong if allocation failed.
1929 * As pages are already locked by write_cache_pages(), we can't use it
1931 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1933 long pages_skipped;
1934 struct pagevec pvec;
1935 unsigned long index, end;
1936 int ret = 0, err, nr_pages, i;
1937 struct inode *inode = mpd->inode;
1938 struct address_space *mapping = inode->i_mapping;
1940 BUG_ON(mpd->next_page <= mpd->first_page);
1942 * We need to start from the first_page to the next_page - 1
1943 * to make sure we also write the mapped dirty buffer_heads.
1944 * If we look at mpd->b_blocknr we would only be looking
1945 * at the currently mapped buffer_heads.
1947 index = mpd->first_page;
1948 end = mpd->next_page - 1;
1950 pagevec_init(&pvec, 0);
1951 while (index <= end) {
1952 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1953 if (nr_pages == 0)
1954 break;
1955 for (i = 0; i < nr_pages; i++) {
1956 struct page *page = pvec.pages[i];
1958 index = page->index;
1959 if (index > end)
1960 break;
1961 index++;
1963 BUG_ON(!PageLocked(page));
1964 BUG_ON(PageWriteback(page));
1966 pages_skipped = mpd->wbc->pages_skipped;
1967 err = mapping->a_ops->writepage(page, mpd->wbc);
1968 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1970 * have successfully written the page
1971 * without skipping the same
1973 mpd->pages_written++;
1975 * In error case, we have to continue because
1976 * remaining pages are still locked
1977 * XXX: unlock and re-dirty them?
1979 if (ret == 0)
1980 ret = err;
1982 pagevec_release(&pvec);
1984 return ret;
1988 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1990 * @mpd->inode - inode to walk through
1991 * @exbh->b_blocknr - first block on a disk
1992 * @exbh->b_size - amount of space in bytes
1993 * @logical - first logical block to start assignment with
1995 * the function goes through all passed space and put actual disk
1996 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1998 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1999 struct buffer_head *exbh)
2001 struct inode *inode = mpd->inode;
2002 struct address_space *mapping = inode->i_mapping;
2003 int blocks = exbh->b_size >> inode->i_blkbits;
2004 sector_t pblock = exbh->b_blocknr, cur_logical;
2005 struct buffer_head *head, *bh;
2006 pgoff_t index, end;
2007 struct pagevec pvec;
2008 int nr_pages, i;
2010 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2011 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2012 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2014 pagevec_init(&pvec, 0);
2016 while (index <= end) {
2017 /* XXX: optimize tail */
2018 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2019 if (nr_pages == 0)
2020 break;
2021 for (i = 0; i < nr_pages; i++) {
2022 struct page *page = pvec.pages[i];
2024 index = page->index;
2025 if (index > end)
2026 break;
2027 index++;
2029 BUG_ON(!PageLocked(page));
2030 BUG_ON(PageWriteback(page));
2031 BUG_ON(!page_has_buffers(page));
2033 bh = page_buffers(page);
2034 head = bh;
2036 /* skip blocks out of the range */
2037 do {
2038 if (cur_logical >= logical)
2039 break;
2040 cur_logical++;
2041 } while ((bh = bh->b_this_page) != head);
2043 do {
2044 if (cur_logical >= logical + blocks)
2045 break;
2047 if (buffer_delay(bh) ||
2048 buffer_unwritten(bh)) {
2050 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2052 if (buffer_delay(bh)) {
2053 clear_buffer_delay(bh);
2054 bh->b_blocknr = pblock;
2055 } else {
2057 * unwritten already should have
2058 * blocknr assigned. Verify that
2060 clear_buffer_unwritten(bh);
2061 BUG_ON(bh->b_blocknr != pblock);
2064 } else if (buffer_mapped(bh))
2065 BUG_ON(bh->b_blocknr != pblock);
2067 cur_logical++;
2068 pblock++;
2069 } while ((bh = bh->b_this_page) != head);
2071 pagevec_release(&pvec);
2077 * __unmap_underlying_blocks - just a helper function to unmap
2078 * set of blocks described by @bh
2080 static inline void __unmap_underlying_blocks(struct inode *inode,
2081 struct buffer_head *bh)
2083 struct block_device *bdev = inode->i_sb->s_bdev;
2084 int blocks, i;
2086 blocks = bh->b_size >> inode->i_blkbits;
2087 for (i = 0; i < blocks; i++)
2088 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2091 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2092 sector_t logical, long blk_cnt)
2094 int nr_pages, i;
2095 pgoff_t index, end;
2096 struct pagevec pvec;
2097 struct inode *inode = mpd->inode;
2098 struct address_space *mapping = inode->i_mapping;
2100 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2101 end = (logical + blk_cnt - 1) >>
2102 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2103 while (index <= end) {
2104 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2105 if (nr_pages == 0)
2106 break;
2107 for (i = 0; i < nr_pages; i++) {
2108 struct page *page = pvec.pages[i];
2109 index = page->index;
2110 if (index > end)
2111 break;
2112 index++;
2114 BUG_ON(!PageLocked(page));
2115 BUG_ON(PageWriteback(page));
2116 block_invalidatepage(page, 0);
2117 ClearPageUptodate(page);
2118 unlock_page(page);
2121 return;
2124 static void ext4_print_free_blocks(struct inode *inode)
2126 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2127 printk(KERN_CRIT "Total free blocks count %lld\n",
2128 ext4_count_free_blocks(inode->i_sb));
2129 printk(KERN_CRIT "Free/Dirty block details\n");
2130 printk(KERN_CRIT "free_blocks=%lld\n",
2131 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2132 printk(KERN_CRIT "dirty_blocks=%lld\n",
2133 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2134 printk(KERN_CRIT "Block reservation details\n");
2135 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2136 EXT4_I(inode)->i_reserved_data_blocks);
2137 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2138 EXT4_I(inode)->i_reserved_meta_blocks);
2139 return;
2143 * mpage_da_map_blocks - go through given space
2145 * @mpd - bh describing space
2147 * The function skips space we know is already mapped to disk blocks.
2150 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2152 int err, blks, get_blocks_flags;
2153 struct buffer_head new;
2154 sector_t next = mpd->b_blocknr;
2155 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2156 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2157 handle_t *handle = NULL;
2160 * We consider only non-mapped and non-allocated blocks
2162 if ((mpd->b_state & (1 << BH_Mapped)) &&
2163 !(mpd->b_state & (1 << BH_Delay)) &&
2164 !(mpd->b_state & (1 << BH_Unwritten)))
2165 return 0;
2168 * If we didn't accumulate anything to write simply return
2170 if (!mpd->b_size)
2171 return 0;
2173 handle = ext4_journal_current_handle();
2174 BUG_ON(!handle);
2177 * Call ext4_get_blocks() to allocate any delayed allocation
2178 * blocks, or to convert an uninitialized extent to be
2179 * initialized (in the case where we have written into
2180 * one or more preallocated blocks).
2182 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2183 * indicate that we are on the delayed allocation path. This
2184 * affects functions in many different parts of the allocation
2185 * call path. This flag exists primarily because we don't
2186 * want to change *many* call functions, so ext4_get_blocks()
2187 * will set the magic i_delalloc_reserved_flag once the
2188 * inode's allocation semaphore is taken.
2190 * If the blocks in questions were delalloc blocks, set
2191 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2192 * variables are updated after the blocks have been allocated.
2194 new.b_state = 0;
2195 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2196 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2197 if (mpd->b_state & (1 << BH_Delay))
2198 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2199 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2200 &new, get_blocks_flags);
2201 if (blks < 0) {
2202 err = blks;
2204 * If get block returns with error we simply
2205 * return. Later writepage will redirty the page and
2206 * writepages will find the dirty page again
2208 if (err == -EAGAIN)
2209 return 0;
2211 if (err == -ENOSPC &&
2212 ext4_count_free_blocks(mpd->inode->i_sb)) {
2213 mpd->retval = err;
2214 return 0;
2218 * get block failure will cause us to loop in
2219 * writepages, because a_ops->writepage won't be able
2220 * to make progress. The page will be redirtied by
2221 * writepage and writepages will again try to write
2222 * the same.
2224 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2225 "delayed block allocation failed for inode %lu at "
2226 "logical offset %llu with max blocks %zd with "
2227 "error %d\n", mpd->inode->i_ino,
2228 (unsigned long long) next,
2229 mpd->b_size >> mpd->inode->i_blkbits, err);
2230 printk(KERN_CRIT "This should not happen!! "
2231 "Data will be lost\n");
2232 if (err == -ENOSPC) {
2233 ext4_print_free_blocks(mpd->inode);
2235 /* invalidate all the pages */
2236 ext4_da_block_invalidatepages(mpd, next,
2237 mpd->b_size >> mpd->inode->i_blkbits);
2238 return err;
2240 BUG_ON(blks == 0);
2242 new.b_size = (blks << mpd->inode->i_blkbits);
2244 if (buffer_new(&new))
2245 __unmap_underlying_blocks(mpd->inode, &new);
2248 * If blocks are delayed marked, we need to
2249 * put actual blocknr and drop delayed bit
2251 if ((mpd->b_state & (1 << BH_Delay)) ||
2252 (mpd->b_state & (1 << BH_Unwritten)))
2253 mpage_put_bnr_to_bhs(mpd, next, &new);
2255 if (ext4_should_order_data(mpd->inode)) {
2256 err = ext4_jbd2_file_inode(handle, mpd->inode);
2257 if (err)
2258 return err;
2262 * Update on-disk size along with block allocation.
2264 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2265 if (disksize > i_size_read(mpd->inode))
2266 disksize = i_size_read(mpd->inode);
2267 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2268 ext4_update_i_disksize(mpd->inode, disksize);
2269 return ext4_mark_inode_dirty(handle, mpd->inode);
2272 return 0;
2275 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2276 (1 << BH_Delay) | (1 << BH_Unwritten))
2279 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2281 * @mpd->lbh - extent of blocks
2282 * @logical - logical number of the block in the file
2283 * @bh - bh of the block (used to access block's state)
2285 * the function is used to collect contig. blocks in same state
2287 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2288 sector_t logical, size_t b_size,
2289 unsigned long b_state)
2291 sector_t next;
2292 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2294 /* check if thereserved journal credits might overflow */
2295 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2296 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2298 * With non-extent format we are limited by the journal
2299 * credit available. Total credit needed to insert
2300 * nrblocks contiguous blocks is dependent on the
2301 * nrblocks. So limit nrblocks.
2303 goto flush_it;
2304 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2305 EXT4_MAX_TRANS_DATA) {
2307 * Adding the new buffer_head would make it cross the
2308 * allowed limit for which we have journal credit
2309 * reserved. So limit the new bh->b_size
2311 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2312 mpd->inode->i_blkbits;
2313 /* we will do mpage_da_submit_io in the next loop */
2317 * First block in the extent
2319 if (mpd->b_size == 0) {
2320 mpd->b_blocknr = logical;
2321 mpd->b_size = b_size;
2322 mpd->b_state = b_state & BH_FLAGS;
2323 return;
2326 next = mpd->b_blocknr + nrblocks;
2328 * Can we merge the block to our big extent?
2330 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2331 mpd->b_size += b_size;
2332 return;
2335 flush_it:
2337 * We couldn't merge the block to our extent, so we
2338 * need to flush current extent and start new one
2340 if (mpage_da_map_blocks(mpd) == 0)
2341 mpage_da_submit_io(mpd);
2342 mpd->io_done = 1;
2343 return;
2346 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2348 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2352 * __mpage_da_writepage - finds extent of pages and blocks
2354 * @page: page to consider
2355 * @wbc: not used, we just follow rules
2356 * @data: context
2358 * The function finds extents of pages and scan them for all blocks.
2360 static int __mpage_da_writepage(struct page *page,
2361 struct writeback_control *wbc, void *data)
2363 struct mpage_da_data *mpd = data;
2364 struct inode *inode = mpd->inode;
2365 struct buffer_head *bh, *head;
2366 sector_t logical;
2368 if (mpd->io_done) {
2370 * Rest of the page in the page_vec
2371 * redirty then and skip then. We will
2372 * try to write them again after
2373 * starting a new transaction
2375 redirty_page_for_writepage(wbc, page);
2376 unlock_page(page);
2377 return MPAGE_DA_EXTENT_TAIL;
2380 * Can we merge this page to current extent?
2382 if (mpd->next_page != page->index) {
2384 * Nope, we can't. So, we map non-allocated blocks
2385 * and start IO on them using writepage()
2387 if (mpd->next_page != mpd->first_page) {
2388 if (mpage_da_map_blocks(mpd) == 0)
2389 mpage_da_submit_io(mpd);
2391 * skip rest of the page in the page_vec
2393 mpd->io_done = 1;
2394 redirty_page_for_writepage(wbc, page);
2395 unlock_page(page);
2396 return MPAGE_DA_EXTENT_TAIL;
2400 * Start next extent of pages ...
2402 mpd->first_page = page->index;
2405 * ... and blocks
2407 mpd->b_size = 0;
2408 mpd->b_state = 0;
2409 mpd->b_blocknr = 0;
2412 mpd->next_page = page->index + 1;
2413 logical = (sector_t) page->index <<
2414 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2416 if (!page_has_buffers(page)) {
2417 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2418 (1 << BH_Dirty) | (1 << BH_Uptodate));
2419 if (mpd->io_done)
2420 return MPAGE_DA_EXTENT_TAIL;
2421 } else {
2423 * Page with regular buffer heads, just add all dirty ones
2425 head = page_buffers(page);
2426 bh = head;
2427 do {
2428 BUG_ON(buffer_locked(bh));
2430 * We need to try to allocate
2431 * unmapped blocks in the same page.
2432 * Otherwise we won't make progress
2433 * with the page in ext4_writepage
2435 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2436 mpage_add_bh_to_extent(mpd, logical,
2437 bh->b_size,
2438 bh->b_state);
2439 if (mpd->io_done)
2440 return MPAGE_DA_EXTENT_TAIL;
2441 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2443 * mapped dirty buffer. We need to update
2444 * the b_state because we look at
2445 * b_state in mpage_da_map_blocks. We don't
2446 * update b_size because if we find an
2447 * unmapped buffer_head later we need to
2448 * use the b_state flag of that buffer_head.
2450 if (mpd->b_size == 0)
2451 mpd->b_state = bh->b_state & BH_FLAGS;
2453 logical++;
2454 } while ((bh = bh->b_this_page) != head);
2457 return 0;
2461 * This is a special get_blocks_t callback which is used by
2462 * ext4_da_write_begin(). It will either return mapped block or
2463 * reserve space for a single block.
2465 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2466 * We also have b_blocknr = -1 and b_bdev initialized properly
2468 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2469 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2470 * initialized properly.
2472 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2473 struct buffer_head *bh_result, int create)
2475 int ret = 0;
2476 sector_t invalid_block = ~((sector_t) 0xffff);
2478 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2479 invalid_block = ~0;
2481 BUG_ON(create == 0);
2482 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2485 * first, we need to know whether the block is allocated already
2486 * preallocated blocks are unmapped but should treated
2487 * the same as allocated blocks.
2489 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2490 if ((ret == 0) && !buffer_delay(bh_result)) {
2491 /* the block isn't (pre)allocated yet, let's reserve space */
2493 * XXX: __block_prepare_write() unmaps passed block,
2494 * is it OK?
2496 ret = ext4_da_reserve_space(inode, 1);
2497 if (ret)
2498 /* not enough space to reserve */
2499 return ret;
2501 map_bh(bh_result, inode->i_sb, invalid_block);
2502 set_buffer_new(bh_result);
2503 set_buffer_delay(bh_result);
2504 } else if (ret > 0) {
2505 bh_result->b_size = (ret << inode->i_blkbits);
2506 if (buffer_unwritten(bh_result)) {
2507 /* A delayed write to unwritten bh should
2508 * be marked new and mapped. Mapped ensures
2509 * that we don't do get_block multiple times
2510 * when we write to the same offset and new
2511 * ensures that we do proper zero out for
2512 * partial write.
2514 set_buffer_new(bh_result);
2515 set_buffer_mapped(bh_result);
2517 ret = 0;
2520 return ret;
2524 * This function is used as a standard get_block_t calback function
2525 * when there is no desire to allocate any blocks. It is used as a
2526 * callback function for block_prepare_write(), nobh_writepage(), and
2527 * block_write_full_page(). These functions should only try to map a
2528 * single block at a time.
2530 * Since this function doesn't do block allocations even if the caller
2531 * requests it by passing in create=1, it is critically important that
2532 * any caller checks to make sure that any buffer heads are returned
2533 * by this function are either all already mapped or marked for
2534 * delayed allocation before calling nobh_writepage() or
2535 * block_write_full_page(). Otherwise, b_blocknr could be left
2536 * unitialized, and the page write functions will be taken by
2537 * surprise.
2539 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2540 struct buffer_head *bh_result, int create)
2542 int ret = 0;
2543 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2545 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2548 * we don't want to do block allocation in writepage
2549 * so call get_block_wrap with create = 0
2551 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2552 if (ret > 0) {
2553 bh_result->b_size = (ret << inode->i_blkbits);
2554 ret = 0;
2556 return ret;
2559 static int bget_one(handle_t *handle, struct buffer_head *bh)
2561 get_bh(bh);
2562 return 0;
2565 static int bput_one(handle_t *handle, struct buffer_head *bh)
2567 put_bh(bh);
2568 return 0;
2571 static int __ext4_journalled_writepage(struct page *page,
2572 unsigned int len)
2574 struct address_space *mapping = page->mapping;
2575 struct inode *inode = mapping->host;
2576 struct buffer_head *page_bufs;
2577 handle_t *handle = NULL;
2578 int ret = 0;
2579 int err;
2581 page_bufs = page_buffers(page);
2582 BUG_ON(!page_bufs);
2583 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2584 /* As soon as we unlock the page, it can go away, but we have
2585 * references to buffers so we are safe */
2586 unlock_page(page);
2588 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2589 if (IS_ERR(handle)) {
2590 ret = PTR_ERR(handle);
2591 goto out;
2594 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2595 do_journal_get_write_access);
2597 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2598 write_end_fn);
2599 if (ret == 0)
2600 ret = err;
2601 err = ext4_journal_stop(handle);
2602 if (!ret)
2603 ret = err;
2605 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2606 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2607 out:
2608 return ret;
2612 * Note that we don't need to start a transaction unless we're journaling data
2613 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2614 * need to file the inode to the transaction's list in ordered mode because if
2615 * we are writing back data added by write(), the inode is already there and if
2616 * we are writing back data modified via mmap(), noone guarantees in which
2617 * transaction the data will hit the disk. In case we are journaling data, we
2618 * cannot start transaction directly because transaction start ranks above page
2619 * lock so we have to do some magic.
2621 * This function can get called via...
2622 * - ext4_da_writepages after taking page lock (have journal handle)
2623 * - journal_submit_inode_data_buffers (no journal handle)
2624 * - shrink_page_list via pdflush (no journal handle)
2625 * - grab_page_cache when doing write_begin (have journal handle)
2627 * We don't do any block allocation in this function. If we have page with
2628 * multiple blocks we need to write those buffer_heads that are mapped. This
2629 * is important for mmaped based write. So if we do with blocksize 1K
2630 * truncate(f, 1024);
2631 * a = mmap(f, 0, 4096);
2632 * a[0] = 'a';
2633 * truncate(f, 4096);
2634 * we have in the page first buffer_head mapped via page_mkwrite call back
2635 * but other bufer_heads would be unmapped but dirty(dirty done via the
2636 * do_wp_page). So writepage should write the first block. If we modify
2637 * the mmap area beyond 1024 we will again get a page_fault and the
2638 * page_mkwrite callback will do the block allocation and mark the
2639 * buffer_heads mapped.
2641 * We redirty the page if we have any buffer_heads that is either delay or
2642 * unwritten in the page.
2644 * We can get recursively called as show below.
2646 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2647 * ext4_writepage()
2649 * But since we don't do any block allocation we should not deadlock.
2650 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2652 static int ext4_writepage(struct page *page,
2653 struct writeback_control *wbc)
2655 int ret = 0;
2656 loff_t size;
2657 unsigned int len;
2658 struct buffer_head *page_bufs;
2659 struct inode *inode = page->mapping->host;
2661 trace_ext4_writepage(inode, page);
2662 size = i_size_read(inode);
2663 if (page->index == size >> PAGE_CACHE_SHIFT)
2664 len = size & ~PAGE_CACHE_MASK;
2665 else
2666 len = PAGE_CACHE_SIZE;
2668 if (page_has_buffers(page)) {
2669 page_bufs = page_buffers(page);
2670 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2671 ext4_bh_delay_or_unwritten)) {
2673 * We don't want to do block allocation
2674 * So redirty the page and return
2675 * We may reach here when we do a journal commit
2676 * via journal_submit_inode_data_buffers.
2677 * If we don't have mapping block we just ignore
2678 * them. We can also reach here via shrink_page_list
2680 redirty_page_for_writepage(wbc, page);
2681 unlock_page(page);
2682 return 0;
2684 } else {
2686 * The test for page_has_buffers() is subtle:
2687 * We know the page is dirty but it lost buffers. That means
2688 * that at some moment in time after write_begin()/write_end()
2689 * has been called all buffers have been clean and thus they
2690 * must have been written at least once. So they are all
2691 * mapped and we can happily proceed with mapping them
2692 * and writing the page.
2694 * Try to initialize the buffer_heads and check whether
2695 * all are mapped and non delay. We don't want to
2696 * do block allocation here.
2698 ret = block_prepare_write(page, 0, len,
2699 noalloc_get_block_write);
2700 if (!ret) {
2701 page_bufs = page_buffers(page);
2702 /* check whether all are mapped and non delay */
2703 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2704 ext4_bh_delay_or_unwritten)) {
2705 redirty_page_for_writepage(wbc, page);
2706 unlock_page(page);
2707 return 0;
2709 } else {
2711 * We can't do block allocation here
2712 * so just redity the page and unlock
2713 * and return
2715 redirty_page_for_writepage(wbc, page);
2716 unlock_page(page);
2717 return 0;
2719 /* now mark the buffer_heads as dirty and uptodate */
2720 block_commit_write(page, 0, len);
2723 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2725 * It's mmapped pagecache. Add buffers and journal it. There
2726 * doesn't seem much point in redirtying the page here.
2728 ClearPageChecked(page);
2729 return __ext4_journalled_writepage(page, len);
2732 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2733 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2734 else
2735 ret = block_write_full_page(page, noalloc_get_block_write,
2736 wbc);
2738 return ret;
2742 * This is called via ext4_da_writepages() to
2743 * calulate the total number of credits to reserve to fit
2744 * a single extent allocation into a single transaction,
2745 * ext4_da_writpeages() will loop calling this before
2746 * the block allocation.
2749 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2751 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2754 * With non-extent format the journal credit needed to
2755 * insert nrblocks contiguous block is dependent on
2756 * number of contiguous block. So we will limit
2757 * number of contiguous block to a sane value
2759 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2760 (max_blocks > EXT4_MAX_TRANS_DATA))
2761 max_blocks = EXT4_MAX_TRANS_DATA;
2763 return ext4_chunk_trans_blocks(inode, max_blocks);
2766 static int ext4_da_writepages(struct address_space *mapping,
2767 struct writeback_control *wbc)
2769 pgoff_t index;
2770 int range_whole = 0;
2771 handle_t *handle = NULL;
2772 struct mpage_da_data mpd;
2773 struct inode *inode = mapping->host;
2774 int no_nrwrite_index_update;
2775 int pages_written = 0;
2776 long pages_skipped;
2777 unsigned int max_pages;
2778 int range_cyclic, cycled = 1, io_done = 0;
2779 int needed_blocks, ret = 0;
2780 long desired_nr_to_write, nr_to_writebump = 0;
2781 loff_t range_start = wbc->range_start;
2782 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2784 trace_ext4_da_writepages(inode, wbc);
2787 * No pages to write? This is mainly a kludge to avoid starting
2788 * a transaction for special inodes like journal inode on last iput()
2789 * because that could violate lock ordering on umount
2791 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2792 return 0;
2795 * If the filesystem has aborted, it is read-only, so return
2796 * right away instead of dumping stack traces later on that
2797 * will obscure the real source of the problem. We test
2798 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2799 * the latter could be true if the filesystem is mounted
2800 * read-only, and in that case, ext4_da_writepages should
2801 * *never* be called, so if that ever happens, we would want
2802 * the stack trace.
2804 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2805 return -EROFS;
2807 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2808 range_whole = 1;
2810 range_cyclic = wbc->range_cyclic;
2811 if (wbc->range_cyclic) {
2812 index = mapping->writeback_index;
2813 if (index)
2814 cycled = 0;
2815 wbc->range_start = index << PAGE_CACHE_SHIFT;
2816 wbc->range_end = LLONG_MAX;
2817 wbc->range_cyclic = 0;
2818 } else
2819 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2822 * This works around two forms of stupidity. The first is in
2823 * the writeback code, which caps the maximum number of pages
2824 * written to be 1024 pages. This is wrong on multiple
2825 * levels; different architectues have a different page size,
2826 * which changes the maximum amount of data which gets
2827 * written. Secondly, 4 megabytes is way too small. XFS
2828 * forces this value to be 16 megabytes by multiplying
2829 * nr_to_write parameter by four, and then relies on its
2830 * allocator to allocate larger extents to make them
2831 * contiguous. Unfortunately this brings us to the second
2832 * stupidity, which is that ext4's mballoc code only allocates
2833 * at most 2048 blocks. So we force contiguous writes up to
2834 * the number of dirty blocks in the inode, or
2835 * sbi->max_writeback_mb_bump whichever is smaller.
2837 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2838 if (!range_cyclic && range_whole)
2839 desired_nr_to_write = wbc->nr_to_write * 8;
2840 else
2841 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2842 max_pages);
2843 if (desired_nr_to_write > max_pages)
2844 desired_nr_to_write = max_pages;
2846 if (wbc->nr_to_write < desired_nr_to_write) {
2847 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2848 wbc->nr_to_write = desired_nr_to_write;
2851 mpd.wbc = wbc;
2852 mpd.inode = mapping->host;
2855 * we don't want write_cache_pages to update
2856 * nr_to_write and writeback_index
2858 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2859 wbc->no_nrwrite_index_update = 1;
2860 pages_skipped = wbc->pages_skipped;
2862 retry:
2863 while (!ret && wbc->nr_to_write > 0) {
2866 * we insert one extent at a time. So we need
2867 * credit needed for single extent allocation.
2868 * journalled mode is currently not supported
2869 * by delalloc
2871 BUG_ON(ext4_should_journal_data(inode));
2872 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2874 /* start a new transaction*/
2875 handle = ext4_journal_start(inode, needed_blocks);
2876 if (IS_ERR(handle)) {
2877 ret = PTR_ERR(handle);
2878 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2879 "%ld pages, ino %lu; err %d\n", __func__,
2880 wbc->nr_to_write, inode->i_ino, ret);
2881 goto out_writepages;
2885 * Now call __mpage_da_writepage to find the next
2886 * contiguous region of logical blocks that need
2887 * blocks to be allocated by ext4. We don't actually
2888 * submit the blocks for I/O here, even though
2889 * write_cache_pages thinks it will, and will set the
2890 * pages as clean for write before calling
2891 * __mpage_da_writepage().
2893 mpd.b_size = 0;
2894 mpd.b_state = 0;
2895 mpd.b_blocknr = 0;
2896 mpd.first_page = 0;
2897 mpd.next_page = 0;
2898 mpd.io_done = 0;
2899 mpd.pages_written = 0;
2900 mpd.retval = 0;
2901 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2902 &mpd);
2904 * If we have a contiguous extent of pages and we
2905 * haven't done the I/O yet, map the blocks and submit
2906 * them for I/O.
2908 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2909 if (mpage_da_map_blocks(&mpd) == 0)
2910 mpage_da_submit_io(&mpd);
2911 mpd.io_done = 1;
2912 ret = MPAGE_DA_EXTENT_TAIL;
2914 trace_ext4_da_write_pages(inode, &mpd);
2915 wbc->nr_to_write -= mpd.pages_written;
2917 ext4_journal_stop(handle);
2919 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2920 /* commit the transaction which would
2921 * free blocks released in the transaction
2922 * and try again
2924 jbd2_journal_force_commit_nested(sbi->s_journal);
2925 wbc->pages_skipped = pages_skipped;
2926 ret = 0;
2927 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2929 * got one extent now try with
2930 * rest of the pages
2932 pages_written += mpd.pages_written;
2933 wbc->pages_skipped = pages_skipped;
2934 ret = 0;
2935 io_done = 1;
2936 } else if (wbc->nr_to_write)
2938 * There is no more writeout needed
2939 * or we requested for a noblocking writeout
2940 * and we found the device congested
2942 break;
2944 if (!io_done && !cycled) {
2945 cycled = 1;
2946 index = 0;
2947 wbc->range_start = index << PAGE_CACHE_SHIFT;
2948 wbc->range_end = mapping->writeback_index - 1;
2949 goto retry;
2951 if (pages_skipped != wbc->pages_skipped)
2952 ext4_msg(inode->i_sb, KERN_CRIT,
2953 "This should not happen leaving %s "
2954 "with nr_to_write = %ld ret = %d\n",
2955 __func__, wbc->nr_to_write, ret);
2957 /* Update index */
2958 index += pages_written;
2959 wbc->range_cyclic = range_cyclic;
2960 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2962 * set the writeback_index so that range_cyclic
2963 * mode will write it back later
2965 mapping->writeback_index = index;
2967 out_writepages:
2968 if (!no_nrwrite_index_update)
2969 wbc->no_nrwrite_index_update = 0;
2970 if (wbc->nr_to_write > nr_to_writebump)
2971 wbc->nr_to_write -= nr_to_writebump;
2972 wbc->range_start = range_start;
2973 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2974 return ret;
2977 #define FALL_BACK_TO_NONDELALLOC 1
2978 static int ext4_nonda_switch(struct super_block *sb)
2980 s64 free_blocks, dirty_blocks;
2981 struct ext4_sb_info *sbi = EXT4_SB(sb);
2984 * switch to non delalloc mode if we are running low
2985 * on free block. The free block accounting via percpu
2986 * counters can get slightly wrong with percpu_counter_batch getting
2987 * accumulated on each CPU without updating global counters
2988 * Delalloc need an accurate free block accounting. So switch
2989 * to non delalloc when we are near to error range.
2991 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2992 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2993 if (2 * free_blocks < 3 * dirty_blocks ||
2994 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2996 * free block count is less that 150% of dirty blocks
2997 * or free blocks is less that watermark
2999 return 1;
3001 return 0;
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 loff_t pos, unsigned len, unsigned flags,
3006 struct page **pagep, void **fsdata)
3008 int ret, retries = 0;
3009 struct page *page;
3010 pgoff_t index;
3011 unsigned from, to;
3012 struct inode *inode = mapping->host;
3013 handle_t *handle;
3015 index = pos >> PAGE_CACHE_SHIFT;
3016 from = pos & (PAGE_CACHE_SIZE - 1);
3017 to = from + len;
3019 if (ext4_nonda_switch(inode->i_sb)) {
3020 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3021 return ext4_write_begin(file, mapping, pos,
3022 len, flags, pagep, fsdata);
3024 *fsdata = (void *)0;
3025 trace_ext4_da_write_begin(inode, pos, len, flags);
3026 retry:
3028 * With delayed allocation, we don't log the i_disksize update
3029 * if there is delayed block allocation. But we still need
3030 * to journalling the i_disksize update if writes to the end
3031 * of file which has an already mapped buffer.
3033 handle = ext4_journal_start(inode, 1);
3034 if (IS_ERR(handle)) {
3035 ret = PTR_ERR(handle);
3036 goto out;
3038 /* We cannot recurse into the filesystem as the transaction is already
3039 * started */
3040 flags |= AOP_FLAG_NOFS;
3042 page = grab_cache_page_write_begin(mapping, index, flags);
3043 if (!page) {
3044 ext4_journal_stop(handle);
3045 ret = -ENOMEM;
3046 goto out;
3048 *pagep = page;
3050 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3051 ext4_da_get_block_prep);
3052 if (ret < 0) {
3053 unlock_page(page);
3054 ext4_journal_stop(handle);
3055 page_cache_release(page);
3057 * block_write_begin may have instantiated a few blocks
3058 * outside i_size. Trim these off again. Don't need
3059 * i_size_read because we hold i_mutex.
3061 if (pos + len > inode->i_size)
3062 ext4_truncate_failed_write(inode);
3065 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3066 goto retry;
3067 out:
3068 return ret;
3072 * Check if we should update i_disksize
3073 * when write to the end of file but not require block allocation
3075 static int ext4_da_should_update_i_disksize(struct page *page,
3076 unsigned long offset)
3078 struct buffer_head *bh;
3079 struct inode *inode = page->mapping->host;
3080 unsigned int idx;
3081 int i;
3083 bh = page_buffers(page);
3084 idx = offset >> inode->i_blkbits;
3086 for (i = 0; i < idx; i++)
3087 bh = bh->b_this_page;
3089 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3090 return 0;
3091 return 1;
3094 static int ext4_da_write_end(struct file *file,
3095 struct address_space *mapping,
3096 loff_t pos, unsigned len, unsigned copied,
3097 struct page *page, void *fsdata)
3099 struct inode *inode = mapping->host;
3100 int ret = 0, ret2;
3101 handle_t *handle = ext4_journal_current_handle();
3102 loff_t new_i_size;
3103 unsigned long start, end;
3104 int write_mode = (int)(unsigned long)fsdata;
3106 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3107 if (ext4_should_order_data(inode)) {
3108 return ext4_ordered_write_end(file, mapping, pos,
3109 len, copied, page, fsdata);
3110 } else if (ext4_should_writeback_data(inode)) {
3111 return ext4_writeback_write_end(file, mapping, pos,
3112 len, copied, page, fsdata);
3113 } else {
3114 BUG();
3118 trace_ext4_da_write_end(inode, pos, len, copied);
3119 start = pos & (PAGE_CACHE_SIZE - 1);
3120 end = start + copied - 1;
3123 * generic_write_end() will run mark_inode_dirty() if i_size
3124 * changes. So let's piggyback the i_disksize mark_inode_dirty
3125 * into that.
3128 new_i_size = pos + copied;
3129 if (new_i_size > EXT4_I(inode)->i_disksize) {
3130 if (ext4_da_should_update_i_disksize(page, end)) {
3131 down_write(&EXT4_I(inode)->i_data_sem);
3132 if (new_i_size > EXT4_I(inode)->i_disksize) {
3134 * Updating i_disksize when extending file
3135 * without needing block allocation
3137 if (ext4_should_order_data(inode))
3138 ret = ext4_jbd2_file_inode(handle,
3139 inode);
3141 EXT4_I(inode)->i_disksize = new_i_size;
3143 up_write(&EXT4_I(inode)->i_data_sem);
3144 /* We need to mark inode dirty even if
3145 * new_i_size is less that inode->i_size
3146 * bu greater than i_disksize.(hint delalloc)
3148 ext4_mark_inode_dirty(handle, inode);
3151 ret2 = generic_write_end(file, mapping, pos, len, copied,
3152 page, fsdata);
3153 copied = ret2;
3154 if (ret2 < 0)
3155 ret = ret2;
3156 ret2 = ext4_journal_stop(handle);
3157 if (!ret)
3158 ret = ret2;
3160 return ret ? ret : copied;
3163 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3166 * Drop reserved blocks
3168 BUG_ON(!PageLocked(page));
3169 if (!page_has_buffers(page))
3170 goto out;
3172 ext4_da_page_release_reservation(page, offset);
3174 out:
3175 ext4_invalidatepage(page, offset);
3177 return;
3181 * Force all delayed allocation blocks to be allocated for a given inode.
3183 int ext4_alloc_da_blocks(struct inode *inode)
3185 trace_ext4_alloc_da_blocks(inode);
3187 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3188 !EXT4_I(inode)->i_reserved_meta_blocks)
3189 return 0;
3192 * We do something simple for now. The filemap_flush() will
3193 * also start triggering a write of the data blocks, which is
3194 * not strictly speaking necessary (and for users of
3195 * laptop_mode, not even desirable). However, to do otherwise
3196 * would require replicating code paths in:
3198 * ext4_da_writepages() ->
3199 * write_cache_pages() ---> (via passed in callback function)
3200 * __mpage_da_writepage() -->
3201 * mpage_add_bh_to_extent()
3202 * mpage_da_map_blocks()
3204 * The problem is that write_cache_pages(), located in
3205 * mm/page-writeback.c, marks pages clean in preparation for
3206 * doing I/O, which is not desirable if we're not planning on
3207 * doing I/O at all.
3209 * We could call write_cache_pages(), and then redirty all of
3210 * the pages by calling redirty_page_for_writeback() but that
3211 * would be ugly in the extreme. So instead we would need to
3212 * replicate parts of the code in the above functions,
3213 * simplifying them becuase we wouldn't actually intend to
3214 * write out the pages, but rather only collect contiguous
3215 * logical block extents, call the multi-block allocator, and
3216 * then update the buffer heads with the block allocations.
3218 * For now, though, we'll cheat by calling filemap_flush(),
3219 * which will map the blocks, and start the I/O, but not
3220 * actually wait for the I/O to complete.
3222 return filemap_flush(inode->i_mapping);
3226 * bmap() is special. It gets used by applications such as lilo and by
3227 * the swapper to find the on-disk block of a specific piece of data.
3229 * Naturally, this is dangerous if the block concerned is still in the
3230 * journal. If somebody makes a swapfile on an ext4 data-journaling
3231 * filesystem and enables swap, then they may get a nasty shock when the
3232 * data getting swapped to that swapfile suddenly gets overwritten by
3233 * the original zero's written out previously to the journal and
3234 * awaiting writeback in the kernel's buffer cache.
3236 * So, if we see any bmap calls here on a modified, data-journaled file,
3237 * take extra steps to flush any blocks which might be in the cache.
3239 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3241 struct inode *inode = mapping->host;
3242 journal_t *journal;
3243 int err;
3245 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3246 test_opt(inode->i_sb, DELALLOC)) {
3248 * With delalloc we want to sync the file
3249 * so that we can make sure we allocate
3250 * blocks for file
3252 filemap_write_and_wait(mapping);
3255 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3257 * This is a REALLY heavyweight approach, but the use of
3258 * bmap on dirty files is expected to be extremely rare:
3259 * only if we run lilo or swapon on a freshly made file
3260 * do we expect this to happen.
3262 * (bmap requires CAP_SYS_RAWIO so this does not
3263 * represent an unprivileged user DOS attack --- we'd be
3264 * in trouble if mortal users could trigger this path at
3265 * will.)
3267 * NB. EXT4_STATE_JDATA is not set on files other than
3268 * regular files. If somebody wants to bmap a directory
3269 * or symlink and gets confused because the buffer
3270 * hasn't yet been flushed to disk, they deserve
3271 * everything they get.
3274 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3275 journal = EXT4_JOURNAL(inode);
3276 jbd2_journal_lock_updates(journal);
3277 err = jbd2_journal_flush(journal);
3278 jbd2_journal_unlock_updates(journal);
3280 if (err)
3281 return 0;
3284 return generic_block_bmap(mapping, block, ext4_get_block);
3287 static int ext4_readpage(struct file *file, struct page *page)
3289 return mpage_readpage(page, ext4_get_block);
3292 static int
3293 ext4_readpages(struct file *file, struct address_space *mapping,
3294 struct list_head *pages, unsigned nr_pages)
3296 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3299 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3301 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304 * If it's a full truncate we just forget about the pending dirtying
3306 if (offset == 0)
3307 ClearPageChecked(page);
3309 if (journal)
3310 jbd2_journal_invalidatepage(journal, page, offset);
3311 else
3312 block_invalidatepage(page, offset);
3315 static int ext4_releasepage(struct page *page, gfp_t wait)
3317 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3319 WARN_ON(PageChecked(page));
3320 if (!page_has_buffers(page))
3321 return 0;
3322 if (journal)
3323 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3324 else
3325 return try_to_free_buffers(page);
3329 * O_DIRECT for ext3 (or indirect map) based files
3331 * If the O_DIRECT write will extend the file then add this inode to the
3332 * orphan list. So recovery will truncate it back to the original size
3333 * if the machine crashes during the write.
3335 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3336 * crashes then stale disk data _may_ be exposed inside the file. But current
3337 * VFS code falls back into buffered path in that case so we are safe.
3339 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3340 const struct iovec *iov, loff_t offset,
3341 unsigned long nr_segs)
3343 struct file *file = iocb->ki_filp;
3344 struct inode *inode = file->f_mapping->host;
3345 struct ext4_inode_info *ei = EXT4_I(inode);
3346 handle_t *handle;
3347 ssize_t ret;
3348 int orphan = 0;
3349 size_t count = iov_length(iov, nr_segs);
3350 int retries = 0;
3352 if (rw == WRITE) {
3353 loff_t final_size = offset + count;
3355 if (final_size > inode->i_size) {
3356 /* Credits for sb + inode write */
3357 handle = ext4_journal_start(inode, 2);
3358 if (IS_ERR(handle)) {
3359 ret = PTR_ERR(handle);
3360 goto out;
3362 ret = ext4_orphan_add(handle, inode);
3363 if (ret) {
3364 ext4_journal_stop(handle);
3365 goto out;
3367 orphan = 1;
3368 ei->i_disksize = inode->i_size;
3369 ext4_journal_stop(handle);
3373 retry:
3374 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3375 offset, nr_segs,
3376 ext4_get_block, NULL);
3377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3378 goto retry;
3380 if (orphan) {
3381 int err;
3383 /* Credits for sb + inode write */
3384 handle = ext4_journal_start(inode, 2);
3385 if (IS_ERR(handle)) {
3386 /* This is really bad luck. We've written the data
3387 * but cannot extend i_size. Bail out and pretend
3388 * the write failed... */
3389 ret = PTR_ERR(handle);
3390 goto out;
3392 if (inode->i_nlink)
3393 ext4_orphan_del(handle, inode);
3394 if (ret > 0) {
3395 loff_t end = offset + ret;
3396 if (end > inode->i_size) {
3397 ei->i_disksize = end;
3398 i_size_write(inode, end);
3400 * We're going to return a positive `ret'
3401 * here due to non-zero-length I/O, so there's
3402 * no way of reporting error returns from
3403 * ext4_mark_inode_dirty() to userspace. So
3404 * ignore it.
3406 ext4_mark_inode_dirty(handle, inode);
3409 err = ext4_journal_stop(handle);
3410 if (ret == 0)
3411 ret = err;
3413 out:
3414 return ret;
3417 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3418 struct buffer_head *bh_result, int create)
3420 handle_t *handle = NULL;
3421 int ret = 0;
3422 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3423 int dio_credits;
3425 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3426 inode->i_ino, create);
3428 * DIO VFS code passes create = 0 flag for write to
3429 * the middle of file. It does this to avoid block
3430 * allocation for holes, to prevent expose stale data
3431 * out when there is parallel buffered read (which does
3432 * not hold the i_mutex lock) while direct IO write has
3433 * not completed. DIO request on holes finally falls back
3434 * to buffered IO for this reason.
3436 * For ext4 extent based file, since we support fallocate,
3437 * new allocated extent as uninitialized, for holes, we
3438 * could fallocate blocks for holes, thus parallel
3439 * buffered IO read will zero out the page when read on
3440 * a hole while parallel DIO write to the hole has not completed.
3442 * when we come here, we know it's a direct IO write to
3443 * to the middle of file (<i_size)
3444 * so it's safe to override the create flag from VFS.
3446 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3448 if (max_blocks > DIO_MAX_BLOCKS)
3449 max_blocks = DIO_MAX_BLOCKS;
3450 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3451 handle = ext4_journal_start(inode, dio_credits);
3452 if (IS_ERR(handle)) {
3453 ret = PTR_ERR(handle);
3454 goto out;
3456 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3457 create);
3458 if (ret > 0) {
3459 bh_result->b_size = (ret << inode->i_blkbits);
3460 ret = 0;
3462 ext4_journal_stop(handle);
3463 out:
3464 return ret;
3467 static void ext4_free_io_end(ext4_io_end_t *io)
3469 BUG_ON(!io);
3470 iput(io->inode);
3471 kfree(io);
3473 static void dump_aio_dio_list(struct inode * inode)
3475 #ifdef EXT4_DEBUG
3476 struct list_head *cur, *before, *after;
3477 ext4_io_end_t *io, *io0, *io1;
3479 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3480 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3481 return;
3484 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3485 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3486 cur = &io->list;
3487 before = cur->prev;
3488 io0 = container_of(before, ext4_io_end_t, list);
3489 after = cur->next;
3490 io1 = container_of(after, ext4_io_end_t, list);
3492 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3493 io, inode->i_ino, io0, io1);
3495 #endif
3499 * check a range of space and convert unwritten extents to written.
3501 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3503 struct inode *inode = io->inode;
3504 loff_t offset = io->offset;
3505 size_t size = io->size;
3506 int ret = 0;
3508 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3509 "list->prev 0x%p\n",
3510 io, inode->i_ino, io->list.next, io->list.prev);
3512 if (list_empty(&io->list))
3513 return ret;
3515 if (io->flag != DIO_AIO_UNWRITTEN)
3516 return ret;
3518 if (offset + size <= i_size_read(inode))
3519 ret = ext4_convert_unwritten_extents(inode, offset, size);
3521 if (ret < 0) {
3522 printk(KERN_EMERG "%s: failed to convert unwritten"
3523 "extents to written extents, error is %d"
3524 " io is still on inode %lu aio dio list\n",
3525 __func__, ret, inode->i_ino);
3526 return ret;
3529 /* clear the DIO AIO unwritten flag */
3530 io->flag = 0;
3531 return ret;
3534 * work on completed aio dio IO, to convert unwritten extents to extents
3536 static void ext4_end_aio_dio_work(struct work_struct *work)
3538 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3539 struct inode *inode = io->inode;
3540 int ret = 0;
3542 mutex_lock(&inode->i_mutex);
3543 ret = ext4_end_aio_dio_nolock(io);
3544 if (ret >= 0) {
3545 if (!list_empty(&io->list))
3546 list_del_init(&io->list);
3547 ext4_free_io_end(io);
3549 mutex_unlock(&inode->i_mutex);
3552 * This function is called from ext4_sync_file().
3554 * When AIO DIO IO is completed, the work to convert unwritten
3555 * extents to written is queued on workqueue but may not get immediately
3556 * scheduled. When fsync is called, we need to ensure the
3557 * conversion is complete before fsync returns.
3558 * The inode keeps track of a list of completed AIO from DIO path
3559 * that might needs to do the conversion. This function walks through
3560 * the list and convert the related unwritten extents to written.
3562 int flush_aio_dio_completed_IO(struct inode *inode)
3564 ext4_io_end_t *io;
3565 int ret = 0;
3566 int ret2 = 0;
3568 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3569 return ret;
3571 dump_aio_dio_list(inode);
3572 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3573 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3574 ext4_io_end_t, list);
3576 * Calling ext4_end_aio_dio_nolock() to convert completed
3577 * IO to written.
3579 * When ext4_sync_file() is called, run_queue() may already
3580 * about to flush the work corresponding to this io structure.
3581 * It will be upset if it founds the io structure related
3582 * to the work-to-be schedule is freed.
3584 * Thus we need to keep the io structure still valid here after
3585 * convertion finished. The io structure has a flag to
3586 * avoid double converting from both fsync and background work
3587 * queue work.
3589 ret = ext4_end_aio_dio_nolock(io);
3590 if (ret < 0)
3591 ret2 = ret;
3592 else
3593 list_del_init(&io->list);
3595 return (ret2 < 0) ? ret2 : 0;
3598 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3600 ext4_io_end_t *io = NULL;
3602 io = kmalloc(sizeof(*io), GFP_NOFS);
3604 if (io) {
3605 igrab(inode);
3606 io->inode = inode;
3607 io->flag = 0;
3608 io->offset = 0;
3609 io->size = 0;
3610 io->error = 0;
3611 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3612 INIT_LIST_HEAD(&io->list);
3615 return io;
3618 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3619 ssize_t size, void *private)
3621 ext4_io_end_t *io_end = iocb->private;
3622 struct workqueue_struct *wq;
3624 /* if not async direct IO or dio with 0 bytes write, just return */
3625 if (!io_end || !size)
3626 return;
3628 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3629 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3630 iocb->private, io_end->inode->i_ino, iocb, offset,
3631 size);
3633 /* if not aio dio with unwritten extents, just free io and return */
3634 if (io_end->flag != DIO_AIO_UNWRITTEN){
3635 ext4_free_io_end(io_end);
3636 iocb->private = NULL;
3637 return;
3640 io_end->offset = offset;
3641 io_end->size = size;
3642 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3644 /* queue the work to convert unwritten extents to written */
3645 queue_work(wq, &io_end->work);
3647 /* Add the io_end to per-inode completed aio dio list*/
3648 list_add_tail(&io_end->list,
3649 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3650 iocb->private = NULL;
3653 * For ext4 extent files, ext4 will do direct-io write to holes,
3654 * preallocated extents, and those write extend the file, no need to
3655 * fall back to buffered IO.
3657 * For holes, we fallocate those blocks, mark them as unintialized
3658 * If those blocks were preallocated, we mark sure they are splited, but
3659 * still keep the range to write as unintialized.
3661 * The unwrritten extents will be converted to written when DIO is completed.
3662 * For async direct IO, since the IO may still pending when return, we
3663 * set up an end_io call back function, which will do the convertion
3664 * when async direct IO completed.
3666 * If the O_DIRECT write will extend the file then add this inode to the
3667 * orphan list. So recovery will truncate it back to the original size
3668 * if the machine crashes during the write.
3671 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3672 const struct iovec *iov, loff_t offset,
3673 unsigned long nr_segs)
3675 struct file *file = iocb->ki_filp;
3676 struct inode *inode = file->f_mapping->host;
3677 ssize_t ret;
3678 size_t count = iov_length(iov, nr_segs);
3680 loff_t final_size = offset + count;
3681 if (rw == WRITE && final_size <= inode->i_size) {
3683 * We could direct write to holes and fallocate.
3685 * Allocated blocks to fill the hole are marked as uninitialized
3686 * to prevent paralel buffered read to expose the stale data
3687 * before DIO complete the data IO.
3689 * As to previously fallocated extents, ext4 get_block
3690 * will just simply mark the buffer mapped but still
3691 * keep the extents uninitialized.
3693 * for non AIO case, we will convert those unwritten extents
3694 * to written after return back from blockdev_direct_IO.
3696 * for async DIO, the conversion needs to be defered when
3697 * the IO is completed. The ext4 end_io callback function
3698 * will be called to take care of the conversion work.
3699 * Here for async case, we allocate an io_end structure to
3700 * hook to the iocb.
3702 iocb->private = NULL;
3703 EXT4_I(inode)->cur_aio_dio = NULL;
3704 if (!is_sync_kiocb(iocb)) {
3705 iocb->private = ext4_init_io_end(inode);
3706 if (!iocb->private)
3707 return -ENOMEM;
3709 * we save the io structure for current async
3710 * direct IO, so that later ext4_get_blocks()
3711 * could flag the io structure whether there
3712 * is a unwritten extents needs to be converted
3713 * when IO is completed.
3715 EXT4_I(inode)->cur_aio_dio = iocb->private;
3718 ret = blockdev_direct_IO(rw, iocb, inode,
3719 inode->i_sb->s_bdev, iov,
3720 offset, nr_segs,
3721 ext4_get_block_dio_write,
3722 ext4_end_io_dio);
3723 if (iocb->private)
3724 EXT4_I(inode)->cur_aio_dio = NULL;
3726 * The io_end structure takes a reference to the inode,
3727 * that structure needs to be destroyed and the
3728 * reference to the inode need to be dropped, when IO is
3729 * complete, even with 0 byte write, or failed.
3731 * In the successful AIO DIO case, the io_end structure will be
3732 * desctroyed and the reference to the inode will be dropped
3733 * after the end_io call back function is called.
3735 * In the case there is 0 byte write, or error case, since
3736 * VFS direct IO won't invoke the end_io call back function,
3737 * we need to free the end_io structure here.
3739 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3740 ext4_free_io_end(iocb->private);
3741 iocb->private = NULL;
3742 } else if (ret > 0 && (EXT4_I(inode)->i_state &
3743 EXT4_STATE_DIO_UNWRITTEN)) {
3744 int err;
3746 * for non AIO case, since the IO is already
3747 * completed, we could do the convertion right here
3749 err = ext4_convert_unwritten_extents(inode,
3750 offset, ret);
3751 if (err < 0)
3752 ret = err;
3753 EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3755 return ret;
3758 /* for write the the end of file case, we fall back to old way */
3759 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3762 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3763 const struct iovec *iov, loff_t offset,
3764 unsigned long nr_segs)
3766 struct file *file = iocb->ki_filp;
3767 struct inode *inode = file->f_mapping->host;
3769 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3770 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3772 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3776 * Pages can be marked dirty completely asynchronously from ext4's journalling
3777 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3778 * much here because ->set_page_dirty is called under VFS locks. The page is
3779 * not necessarily locked.
3781 * We cannot just dirty the page and leave attached buffers clean, because the
3782 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3783 * or jbddirty because all the journalling code will explode.
3785 * So what we do is to mark the page "pending dirty" and next time writepage
3786 * is called, propagate that into the buffers appropriately.
3788 static int ext4_journalled_set_page_dirty(struct page *page)
3790 SetPageChecked(page);
3791 return __set_page_dirty_nobuffers(page);
3794 static const struct address_space_operations ext4_ordered_aops = {
3795 .readpage = ext4_readpage,
3796 .readpages = ext4_readpages,
3797 .writepage = ext4_writepage,
3798 .sync_page = block_sync_page,
3799 .write_begin = ext4_write_begin,
3800 .write_end = ext4_ordered_write_end,
3801 .bmap = ext4_bmap,
3802 .invalidatepage = ext4_invalidatepage,
3803 .releasepage = ext4_releasepage,
3804 .direct_IO = ext4_direct_IO,
3805 .migratepage = buffer_migrate_page,
3806 .is_partially_uptodate = block_is_partially_uptodate,
3807 .error_remove_page = generic_error_remove_page,
3810 static const struct address_space_operations ext4_writeback_aops = {
3811 .readpage = ext4_readpage,
3812 .readpages = ext4_readpages,
3813 .writepage = ext4_writepage,
3814 .sync_page = block_sync_page,
3815 .write_begin = ext4_write_begin,
3816 .write_end = ext4_writeback_write_end,
3817 .bmap = ext4_bmap,
3818 .invalidatepage = ext4_invalidatepage,
3819 .releasepage = ext4_releasepage,
3820 .direct_IO = ext4_direct_IO,
3821 .migratepage = buffer_migrate_page,
3822 .is_partially_uptodate = block_is_partially_uptodate,
3823 .error_remove_page = generic_error_remove_page,
3826 static const struct address_space_operations ext4_journalled_aops = {
3827 .readpage = ext4_readpage,
3828 .readpages = ext4_readpages,
3829 .writepage = ext4_writepage,
3830 .sync_page = block_sync_page,
3831 .write_begin = ext4_write_begin,
3832 .write_end = ext4_journalled_write_end,
3833 .set_page_dirty = ext4_journalled_set_page_dirty,
3834 .bmap = ext4_bmap,
3835 .invalidatepage = ext4_invalidatepage,
3836 .releasepage = ext4_releasepage,
3837 .is_partially_uptodate = block_is_partially_uptodate,
3838 .error_remove_page = generic_error_remove_page,
3841 static const struct address_space_operations ext4_da_aops = {
3842 .readpage = ext4_readpage,
3843 .readpages = ext4_readpages,
3844 .writepage = ext4_writepage,
3845 .writepages = ext4_da_writepages,
3846 .sync_page = block_sync_page,
3847 .write_begin = ext4_da_write_begin,
3848 .write_end = ext4_da_write_end,
3849 .bmap = ext4_bmap,
3850 .invalidatepage = ext4_da_invalidatepage,
3851 .releasepage = ext4_releasepage,
3852 .direct_IO = ext4_direct_IO,
3853 .migratepage = buffer_migrate_page,
3854 .is_partially_uptodate = block_is_partially_uptodate,
3855 .error_remove_page = generic_error_remove_page,
3858 void ext4_set_aops(struct inode *inode)
3860 if (ext4_should_order_data(inode) &&
3861 test_opt(inode->i_sb, DELALLOC))
3862 inode->i_mapping->a_ops = &ext4_da_aops;
3863 else if (ext4_should_order_data(inode))
3864 inode->i_mapping->a_ops = &ext4_ordered_aops;
3865 else if (ext4_should_writeback_data(inode) &&
3866 test_opt(inode->i_sb, DELALLOC))
3867 inode->i_mapping->a_ops = &ext4_da_aops;
3868 else if (ext4_should_writeback_data(inode))
3869 inode->i_mapping->a_ops = &ext4_writeback_aops;
3870 else
3871 inode->i_mapping->a_ops = &ext4_journalled_aops;
3875 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3876 * up to the end of the block which corresponds to `from'.
3877 * This required during truncate. We need to physically zero the tail end
3878 * of that block so it doesn't yield old data if the file is later grown.
3880 int ext4_block_truncate_page(handle_t *handle,
3881 struct address_space *mapping, loff_t from)
3883 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3884 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3885 unsigned blocksize, length, pos;
3886 ext4_lblk_t iblock;
3887 struct inode *inode = mapping->host;
3888 struct buffer_head *bh;
3889 struct page *page;
3890 int err = 0;
3892 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3893 mapping_gfp_mask(mapping) & ~__GFP_FS);
3894 if (!page)
3895 return -EINVAL;
3897 blocksize = inode->i_sb->s_blocksize;
3898 length = blocksize - (offset & (blocksize - 1));
3899 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3902 * For "nobh" option, we can only work if we don't need to
3903 * read-in the page - otherwise we create buffers to do the IO.
3905 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3906 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3907 zero_user(page, offset, length);
3908 set_page_dirty(page);
3909 goto unlock;
3912 if (!page_has_buffers(page))
3913 create_empty_buffers(page, blocksize, 0);
3915 /* Find the buffer that contains "offset" */
3916 bh = page_buffers(page);
3917 pos = blocksize;
3918 while (offset >= pos) {
3919 bh = bh->b_this_page;
3920 iblock++;
3921 pos += blocksize;
3924 err = 0;
3925 if (buffer_freed(bh)) {
3926 BUFFER_TRACE(bh, "freed: skip");
3927 goto unlock;
3930 if (!buffer_mapped(bh)) {
3931 BUFFER_TRACE(bh, "unmapped");
3932 ext4_get_block(inode, iblock, bh, 0);
3933 /* unmapped? It's a hole - nothing to do */
3934 if (!buffer_mapped(bh)) {
3935 BUFFER_TRACE(bh, "still unmapped");
3936 goto unlock;
3940 /* Ok, it's mapped. Make sure it's up-to-date */
3941 if (PageUptodate(page))
3942 set_buffer_uptodate(bh);
3944 if (!buffer_uptodate(bh)) {
3945 err = -EIO;
3946 ll_rw_block(READ, 1, &bh);
3947 wait_on_buffer(bh);
3948 /* Uhhuh. Read error. Complain and punt. */
3949 if (!buffer_uptodate(bh))
3950 goto unlock;
3953 if (ext4_should_journal_data(inode)) {
3954 BUFFER_TRACE(bh, "get write access");
3955 err = ext4_journal_get_write_access(handle, bh);
3956 if (err)
3957 goto unlock;
3960 zero_user(page, offset, length);
3962 BUFFER_TRACE(bh, "zeroed end of block");
3964 err = 0;
3965 if (ext4_should_journal_data(inode)) {
3966 err = ext4_handle_dirty_metadata(handle, inode, bh);
3967 } else {
3968 if (ext4_should_order_data(inode))
3969 err = ext4_jbd2_file_inode(handle, inode);
3970 mark_buffer_dirty(bh);
3973 unlock:
3974 unlock_page(page);
3975 page_cache_release(page);
3976 return err;
3980 * Probably it should be a library function... search for first non-zero word
3981 * or memcmp with zero_page, whatever is better for particular architecture.
3982 * Linus?
3984 static inline int all_zeroes(__le32 *p, __le32 *q)
3986 while (p < q)
3987 if (*p++)
3988 return 0;
3989 return 1;
3993 * ext4_find_shared - find the indirect blocks for partial truncation.
3994 * @inode: inode in question
3995 * @depth: depth of the affected branch
3996 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3997 * @chain: place to store the pointers to partial indirect blocks
3998 * @top: place to the (detached) top of branch
4000 * This is a helper function used by ext4_truncate().
4002 * When we do truncate() we may have to clean the ends of several
4003 * indirect blocks but leave the blocks themselves alive. Block is
4004 * partially truncated if some data below the new i_size is refered
4005 * from it (and it is on the path to the first completely truncated
4006 * data block, indeed). We have to free the top of that path along
4007 * with everything to the right of the path. Since no allocation
4008 * past the truncation point is possible until ext4_truncate()
4009 * finishes, we may safely do the latter, but top of branch may
4010 * require special attention - pageout below the truncation point
4011 * might try to populate it.
4013 * We atomically detach the top of branch from the tree, store the
4014 * block number of its root in *@top, pointers to buffer_heads of
4015 * partially truncated blocks - in @chain[].bh and pointers to
4016 * their last elements that should not be removed - in
4017 * @chain[].p. Return value is the pointer to last filled element
4018 * of @chain.
4020 * The work left to caller to do the actual freeing of subtrees:
4021 * a) free the subtree starting from *@top
4022 * b) free the subtrees whose roots are stored in
4023 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4024 * c) free the subtrees growing from the inode past the @chain[0].
4025 * (no partially truncated stuff there). */
4027 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4028 ext4_lblk_t offsets[4], Indirect chain[4],
4029 __le32 *top)
4031 Indirect *partial, *p;
4032 int k, err;
4034 *top = 0;
4035 /* Make k index the deepest non-null offset + 1 */
4036 for (k = depth; k > 1 && !offsets[k-1]; k--)
4038 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4039 /* Writer: pointers */
4040 if (!partial)
4041 partial = chain + k-1;
4043 * If the branch acquired continuation since we've looked at it -
4044 * fine, it should all survive and (new) top doesn't belong to us.
4046 if (!partial->key && *partial->p)
4047 /* Writer: end */
4048 goto no_top;
4049 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4052 * OK, we've found the last block that must survive. The rest of our
4053 * branch should be detached before unlocking. However, if that rest
4054 * of branch is all ours and does not grow immediately from the inode
4055 * it's easier to cheat and just decrement partial->p.
4057 if (p == chain + k - 1 && p > chain) {
4058 p->p--;
4059 } else {
4060 *top = *p->p;
4061 /* Nope, don't do this in ext4. Must leave the tree intact */
4062 #if 0
4063 *p->p = 0;
4064 #endif
4066 /* Writer: end */
4068 while (partial > p) {
4069 brelse(partial->bh);
4070 partial--;
4072 no_top:
4073 return partial;
4077 * Zero a number of block pointers in either an inode or an indirect block.
4078 * If we restart the transaction we must again get write access to the
4079 * indirect block for further modification.
4081 * We release `count' blocks on disk, but (last - first) may be greater
4082 * than `count' because there can be holes in there.
4084 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4085 struct buffer_head *bh,
4086 ext4_fsblk_t block_to_free,
4087 unsigned long count, __le32 *first,
4088 __le32 *last)
4090 __le32 *p;
4091 int flags = EXT4_FREE_BLOCKS_FORGET;
4093 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4094 flags |= EXT4_FREE_BLOCKS_METADATA;
4096 if (try_to_extend_transaction(handle, inode)) {
4097 if (bh) {
4098 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4099 ext4_handle_dirty_metadata(handle, inode, bh);
4101 ext4_mark_inode_dirty(handle, inode);
4102 ext4_truncate_restart_trans(handle, inode,
4103 blocks_for_truncate(inode));
4104 if (bh) {
4105 BUFFER_TRACE(bh, "retaking write access");
4106 ext4_journal_get_write_access(handle, bh);
4110 for (p = first; p < last; p++)
4111 *p = 0;
4113 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4117 * ext4_free_data - free a list of data blocks
4118 * @handle: handle for this transaction
4119 * @inode: inode we are dealing with
4120 * @this_bh: indirect buffer_head which contains *@first and *@last
4121 * @first: array of block numbers
4122 * @last: points immediately past the end of array
4124 * We are freeing all blocks refered from that array (numbers are stored as
4125 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4127 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4128 * blocks are contiguous then releasing them at one time will only affect one
4129 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4130 * actually use a lot of journal space.
4132 * @this_bh will be %NULL if @first and @last point into the inode's direct
4133 * block pointers.
4135 static void ext4_free_data(handle_t *handle, struct inode *inode,
4136 struct buffer_head *this_bh,
4137 __le32 *first, __le32 *last)
4139 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4140 unsigned long count = 0; /* Number of blocks in the run */
4141 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4142 corresponding to
4143 block_to_free */
4144 ext4_fsblk_t nr; /* Current block # */
4145 __le32 *p; /* Pointer into inode/ind
4146 for current block */
4147 int err;
4149 if (this_bh) { /* For indirect block */
4150 BUFFER_TRACE(this_bh, "get_write_access");
4151 err = ext4_journal_get_write_access(handle, this_bh);
4152 /* Important: if we can't update the indirect pointers
4153 * to the blocks, we can't free them. */
4154 if (err)
4155 return;
4158 for (p = first; p < last; p++) {
4159 nr = le32_to_cpu(*p);
4160 if (nr) {
4161 /* accumulate blocks to free if they're contiguous */
4162 if (count == 0) {
4163 block_to_free = nr;
4164 block_to_free_p = p;
4165 count = 1;
4166 } else if (nr == block_to_free + count) {
4167 count++;
4168 } else {
4169 ext4_clear_blocks(handle, inode, this_bh,
4170 block_to_free,
4171 count, block_to_free_p, p);
4172 block_to_free = nr;
4173 block_to_free_p = p;
4174 count = 1;
4179 if (count > 0)
4180 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4181 count, block_to_free_p, p);
4183 if (this_bh) {
4184 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4187 * The buffer head should have an attached journal head at this
4188 * point. However, if the data is corrupted and an indirect
4189 * block pointed to itself, it would have been detached when
4190 * the block was cleared. Check for this instead of OOPSing.
4192 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4193 ext4_handle_dirty_metadata(handle, inode, this_bh);
4194 else
4195 ext4_error(inode->i_sb, __func__,
4196 "circular indirect block detected, "
4197 "inode=%lu, block=%llu",
4198 inode->i_ino,
4199 (unsigned long long) this_bh->b_blocknr);
4204 * ext4_free_branches - free an array of branches
4205 * @handle: JBD handle for this transaction
4206 * @inode: inode we are dealing with
4207 * @parent_bh: the buffer_head which contains *@first and *@last
4208 * @first: array of block numbers
4209 * @last: pointer immediately past the end of array
4210 * @depth: depth of the branches to free
4212 * We are freeing all blocks refered from these branches (numbers are
4213 * stored as little-endian 32-bit) and updating @inode->i_blocks
4214 * appropriately.
4216 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4217 struct buffer_head *parent_bh,
4218 __le32 *first, __le32 *last, int depth)
4220 ext4_fsblk_t nr;
4221 __le32 *p;
4223 if (ext4_handle_is_aborted(handle))
4224 return;
4226 if (depth--) {
4227 struct buffer_head *bh;
4228 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4229 p = last;
4230 while (--p >= first) {
4231 nr = le32_to_cpu(*p);
4232 if (!nr)
4233 continue; /* A hole */
4235 /* Go read the buffer for the next level down */
4236 bh = sb_bread(inode->i_sb, nr);
4239 * A read failure? Report error and clear slot
4240 * (should be rare).
4242 if (!bh) {
4243 ext4_error(inode->i_sb, "ext4_free_branches",
4244 "Read failure, inode=%lu, block=%llu",
4245 inode->i_ino, nr);
4246 continue;
4249 /* This zaps the entire block. Bottom up. */
4250 BUFFER_TRACE(bh, "free child branches");
4251 ext4_free_branches(handle, inode, bh,
4252 (__le32 *) bh->b_data,
4253 (__le32 *) bh->b_data + addr_per_block,
4254 depth);
4257 * We've probably journalled the indirect block several
4258 * times during the truncate. But it's no longer
4259 * needed and we now drop it from the transaction via
4260 * jbd2_journal_revoke().
4262 * That's easy if it's exclusively part of this
4263 * transaction. But if it's part of the committing
4264 * transaction then jbd2_journal_forget() will simply
4265 * brelse() it. That means that if the underlying
4266 * block is reallocated in ext4_get_block(),
4267 * unmap_underlying_metadata() will find this block
4268 * and will try to get rid of it. damn, damn.
4270 * If this block has already been committed to the
4271 * journal, a revoke record will be written. And
4272 * revoke records must be emitted *before* clearing
4273 * this block's bit in the bitmaps.
4275 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4278 * Everything below this this pointer has been
4279 * released. Now let this top-of-subtree go.
4281 * We want the freeing of this indirect block to be
4282 * atomic in the journal with the updating of the
4283 * bitmap block which owns it. So make some room in
4284 * the journal.
4286 * We zero the parent pointer *after* freeing its
4287 * pointee in the bitmaps, so if extend_transaction()
4288 * for some reason fails to put the bitmap changes and
4289 * the release into the same transaction, recovery
4290 * will merely complain about releasing a free block,
4291 * rather than leaking blocks.
4293 if (ext4_handle_is_aborted(handle))
4294 return;
4295 if (try_to_extend_transaction(handle, inode)) {
4296 ext4_mark_inode_dirty(handle, inode);
4297 ext4_truncate_restart_trans(handle, inode,
4298 blocks_for_truncate(inode));
4301 ext4_free_blocks(handle, inode, 0, nr, 1,
4302 EXT4_FREE_BLOCKS_METADATA);
4304 if (parent_bh) {
4306 * The block which we have just freed is
4307 * pointed to by an indirect block: journal it
4309 BUFFER_TRACE(parent_bh, "get_write_access");
4310 if (!ext4_journal_get_write_access(handle,
4311 parent_bh)){
4312 *p = 0;
4313 BUFFER_TRACE(parent_bh,
4314 "call ext4_handle_dirty_metadata");
4315 ext4_handle_dirty_metadata(handle,
4316 inode,
4317 parent_bh);
4321 } else {
4322 /* We have reached the bottom of the tree. */
4323 BUFFER_TRACE(parent_bh, "free data blocks");
4324 ext4_free_data(handle, inode, parent_bh, first, last);
4328 int ext4_can_truncate(struct inode *inode)
4330 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4331 return 0;
4332 if (S_ISREG(inode->i_mode))
4333 return 1;
4334 if (S_ISDIR(inode->i_mode))
4335 return 1;
4336 if (S_ISLNK(inode->i_mode))
4337 return !ext4_inode_is_fast_symlink(inode);
4338 return 0;
4342 * ext4_truncate()
4344 * We block out ext4_get_block() block instantiations across the entire
4345 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4346 * simultaneously on behalf of the same inode.
4348 * As we work through the truncate and commmit bits of it to the journal there
4349 * is one core, guiding principle: the file's tree must always be consistent on
4350 * disk. We must be able to restart the truncate after a crash.
4352 * The file's tree may be transiently inconsistent in memory (although it
4353 * probably isn't), but whenever we close off and commit a journal transaction,
4354 * the contents of (the filesystem + the journal) must be consistent and
4355 * restartable. It's pretty simple, really: bottom up, right to left (although
4356 * left-to-right works OK too).
4358 * Note that at recovery time, journal replay occurs *before* the restart of
4359 * truncate against the orphan inode list.
4361 * The committed inode has the new, desired i_size (which is the same as
4362 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4363 * that this inode's truncate did not complete and it will again call
4364 * ext4_truncate() to have another go. So there will be instantiated blocks
4365 * to the right of the truncation point in a crashed ext4 filesystem. But
4366 * that's fine - as long as they are linked from the inode, the post-crash
4367 * ext4_truncate() run will find them and release them.
4369 void ext4_truncate(struct inode *inode)
4371 handle_t *handle;
4372 struct ext4_inode_info *ei = EXT4_I(inode);
4373 __le32 *i_data = ei->i_data;
4374 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4375 struct address_space *mapping = inode->i_mapping;
4376 ext4_lblk_t offsets[4];
4377 Indirect chain[4];
4378 Indirect *partial;
4379 __le32 nr = 0;
4380 int n;
4381 ext4_lblk_t last_block;
4382 unsigned blocksize = inode->i_sb->s_blocksize;
4384 if (!ext4_can_truncate(inode))
4385 return;
4387 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4388 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4390 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4391 ext4_ext_truncate(inode);
4392 return;
4395 handle = start_transaction(inode);
4396 if (IS_ERR(handle))
4397 return; /* AKPM: return what? */
4399 last_block = (inode->i_size + blocksize-1)
4400 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4402 if (inode->i_size & (blocksize - 1))
4403 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4404 goto out_stop;
4406 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4407 if (n == 0)
4408 goto out_stop; /* error */
4411 * OK. This truncate is going to happen. We add the inode to the
4412 * orphan list, so that if this truncate spans multiple transactions,
4413 * and we crash, we will resume the truncate when the filesystem
4414 * recovers. It also marks the inode dirty, to catch the new size.
4416 * Implication: the file must always be in a sane, consistent
4417 * truncatable state while each transaction commits.
4419 if (ext4_orphan_add(handle, inode))
4420 goto out_stop;
4423 * From here we block out all ext4_get_block() callers who want to
4424 * modify the block allocation tree.
4426 down_write(&ei->i_data_sem);
4428 ext4_discard_preallocations(inode);
4431 * The orphan list entry will now protect us from any crash which
4432 * occurs before the truncate completes, so it is now safe to propagate
4433 * the new, shorter inode size (held for now in i_size) into the
4434 * on-disk inode. We do this via i_disksize, which is the value which
4435 * ext4 *really* writes onto the disk inode.
4437 ei->i_disksize = inode->i_size;
4439 if (n == 1) { /* direct blocks */
4440 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4441 i_data + EXT4_NDIR_BLOCKS);
4442 goto do_indirects;
4445 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4446 /* Kill the top of shared branch (not detached) */
4447 if (nr) {
4448 if (partial == chain) {
4449 /* Shared branch grows from the inode */
4450 ext4_free_branches(handle, inode, NULL,
4451 &nr, &nr+1, (chain+n-1) - partial);
4452 *partial->p = 0;
4454 * We mark the inode dirty prior to restart,
4455 * and prior to stop. No need for it here.
4457 } else {
4458 /* Shared branch grows from an indirect block */
4459 BUFFER_TRACE(partial->bh, "get_write_access");
4460 ext4_free_branches(handle, inode, partial->bh,
4461 partial->p,
4462 partial->p+1, (chain+n-1) - partial);
4465 /* Clear the ends of indirect blocks on the shared branch */
4466 while (partial > chain) {
4467 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4468 (__le32*)partial->bh->b_data+addr_per_block,
4469 (chain+n-1) - partial);
4470 BUFFER_TRACE(partial->bh, "call brelse");
4471 brelse(partial->bh);
4472 partial--;
4474 do_indirects:
4475 /* Kill the remaining (whole) subtrees */
4476 switch (offsets[0]) {
4477 default:
4478 nr = i_data[EXT4_IND_BLOCK];
4479 if (nr) {
4480 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4481 i_data[EXT4_IND_BLOCK] = 0;
4483 case EXT4_IND_BLOCK:
4484 nr = i_data[EXT4_DIND_BLOCK];
4485 if (nr) {
4486 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4487 i_data[EXT4_DIND_BLOCK] = 0;
4489 case EXT4_DIND_BLOCK:
4490 nr = i_data[EXT4_TIND_BLOCK];
4491 if (nr) {
4492 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4493 i_data[EXT4_TIND_BLOCK] = 0;
4495 case EXT4_TIND_BLOCK:
4499 up_write(&ei->i_data_sem);
4500 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4501 ext4_mark_inode_dirty(handle, inode);
4504 * In a multi-transaction truncate, we only make the final transaction
4505 * synchronous
4507 if (IS_SYNC(inode))
4508 ext4_handle_sync(handle);
4509 out_stop:
4511 * If this was a simple ftruncate(), and the file will remain alive
4512 * then we need to clear up the orphan record which we created above.
4513 * However, if this was a real unlink then we were called by
4514 * ext4_delete_inode(), and we allow that function to clean up the
4515 * orphan info for us.
4517 if (inode->i_nlink)
4518 ext4_orphan_del(handle, inode);
4520 ext4_journal_stop(handle);
4524 * ext4_get_inode_loc returns with an extra refcount against the inode's
4525 * underlying buffer_head on success. If 'in_mem' is true, we have all
4526 * data in memory that is needed to recreate the on-disk version of this
4527 * inode.
4529 static int __ext4_get_inode_loc(struct inode *inode,
4530 struct ext4_iloc *iloc, int in_mem)
4532 struct ext4_group_desc *gdp;
4533 struct buffer_head *bh;
4534 struct super_block *sb = inode->i_sb;
4535 ext4_fsblk_t block;
4536 int inodes_per_block, inode_offset;
4538 iloc->bh = NULL;
4539 if (!ext4_valid_inum(sb, inode->i_ino))
4540 return -EIO;
4542 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4543 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4544 if (!gdp)
4545 return -EIO;
4548 * Figure out the offset within the block group inode table
4550 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4551 inode_offset = ((inode->i_ino - 1) %
4552 EXT4_INODES_PER_GROUP(sb));
4553 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4554 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4556 bh = sb_getblk(sb, block);
4557 if (!bh) {
4558 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4559 "inode block - inode=%lu, block=%llu",
4560 inode->i_ino, block);
4561 return -EIO;
4563 if (!buffer_uptodate(bh)) {
4564 lock_buffer(bh);
4567 * If the buffer has the write error flag, we have failed
4568 * to write out another inode in the same block. In this
4569 * case, we don't have to read the block because we may
4570 * read the old inode data successfully.
4572 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4573 set_buffer_uptodate(bh);
4575 if (buffer_uptodate(bh)) {
4576 /* someone brought it uptodate while we waited */
4577 unlock_buffer(bh);
4578 goto has_buffer;
4582 * If we have all information of the inode in memory and this
4583 * is the only valid inode in the block, we need not read the
4584 * block.
4586 if (in_mem) {
4587 struct buffer_head *bitmap_bh;
4588 int i, start;
4590 start = inode_offset & ~(inodes_per_block - 1);
4592 /* Is the inode bitmap in cache? */
4593 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4594 if (!bitmap_bh)
4595 goto make_io;
4598 * If the inode bitmap isn't in cache then the
4599 * optimisation may end up performing two reads instead
4600 * of one, so skip it.
4602 if (!buffer_uptodate(bitmap_bh)) {
4603 brelse(bitmap_bh);
4604 goto make_io;
4606 for (i = start; i < start + inodes_per_block; i++) {
4607 if (i == inode_offset)
4608 continue;
4609 if (ext4_test_bit(i, bitmap_bh->b_data))
4610 break;
4612 brelse(bitmap_bh);
4613 if (i == start + inodes_per_block) {
4614 /* all other inodes are free, so skip I/O */
4615 memset(bh->b_data, 0, bh->b_size);
4616 set_buffer_uptodate(bh);
4617 unlock_buffer(bh);
4618 goto has_buffer;
4622 make_io:
4624 * If we need to do any I/O, try to pre-readahead extra
4625 * blocks from the inode table.
4627 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4628 ext4_fsblk_t b, end, table;
4629 unsigned num;
4631 table = ext4_inode_table(sb, gdp);
4632 /* s_inode_readahead_blks is always a power of 2 */
4633 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4634 if (table > b)
4635 b = table;
4636 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4637 num = EXT4_INODES_PER_GROUP(sb);
4638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4639 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4640 num -= ext4_itable_unused_count(sb, gdp);
4641 table += num / inodes_per_block;
4642 if (end > table)
4643 end = table;
4644 while (b <= end)
4645 sb_breadahead(sb, b++);
4649 * There are other valid inodes in the buffer, this inode
4650 * has in-inode xattrs, or we don't have this inode in memory.
4651 * Read the block from disk.
4653 get_bh(bh);
4654 bh->b_end_io = end_buffer_read_sync;
4655 submit_bh(READ_META, bh);
4656 wait_on_buffer(bh);
4657 if (!buffer_uptodate(bh)) {
4658 ext4_error(sb, __func__,
4659 "unable to read inode block - inode=%lu, "
4660 "block=%llu", inode->i_ino, block);
4661 brelse(bh);
4662 return -EIO;
4665 has_buffer:
4666 iloc->bh = bh;
4667 return 0;
4670 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4672 /* We have all inode data except xattrs in memory here. */
4673 return __ext4_get_inode_loc(inode, iloc,
4674 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4677 void ext4_set_inode_flags(struct inode *inode)
4679 unsigned int flags = EXT4_I(inode)->i_flags;
4681 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4682 if (flags & EXT4_SYNC_FL)
4683 inode->i_flags |= S_SYNC;
4684 if (flags & EXT4_APPEND_FL)
4685 inode->i_flags |= S_APPEND;
4686 if (flags & EXT4_IMMUTABLE_FL)
4687 inode->i_flags |= S_IMMUTABLE;
4688 if (flags & EXT4_NOATIME_FL)
4689 inode->i_flags |= S_NOATIME;
4690 if (flags & EXT4_DIRSYNC_FL)
4691 inode->i_flags |= S_DIRSYNC;
4694 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4695 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4697 unsigned int flags = ei->vfs_inode.i_flags;
4699 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4700 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4701 if (flags & S_SYNC)
4702 ei->i_flags |= EXT4_SYNC_FL;
4703 if (flags & S_APPEND)
4704 ei->i_flags |= EXT4_APPEND_FL;
4705 if (flags & S_IMMUTABLE)
4706 ei->i_flags |= EXT4_IMMUTABLE_FL;
4707 if (flags & S_NOATIME)
4708 ei->i_flags |= EXT4_NOATIME_FL;
4709 if (flags & S_DIRSYNC)
4710 ei->i_flags |= EXT4_DIRSYNC_FL;
4713 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4714 struct ext4_inode_info *ei)
4716 blkcnt_t i_blocks ;
4717 struct inode *inode = &(ei->vfs_inode);
4718 struct super_block *sb = inode->i_sb;
4720 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4721 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4722 /* we are using combined 48 bit field */
4723 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4724 le32_to_cpu(raw_inode->i_blocks_lo);
4725 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4726 /* i_blocks represent file system block size */
4727 return i_blocks << (inode->i_blkbits - 9);
4728 } else {
4729 return i_blocks;
4731 } else {
4732 return le32_to_cpu(raw_inode->i_blocks_lo);
4736 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4738 struct ext4_iloc iloc;
4739 struct ext4_inode *raw_inode;
4740 struct ext4_inode_info *ei;
4741 struct inode *inode;
4742 journal_t *journal = EXT4_SB(sb)->s_journal;
4743 long ret;
4744 int block;
4746 inode = iget_locked(sb, ino);
4747 if (!inode)
4748 return ERR_PTR(-ENOMEM);
4749 if (!(inode->i_state & I_NEW))
4750 return inode;
4752 ei = EXT4_I(inode);
4753 iloc.bh = 0;
4755 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4756 if (ret < 0)
4757 goto bad_inode;
4758 raw_inode = ext4_raw_inode(&iloc);
4759 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4760 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4761 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4762 if (!(test_opt(inode->i_sb, NO_UID32))) {
4763 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4764 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4766 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4768 ei->i_state = 0;
4769 ei->i_dir_start_lookup = 0;
4770 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4771 /* We now have enough fields to check if the inode was active or not.
4772 * This is needed because nfsd might try to access dead inodes
4773 * the test is that same one that e2fsck uses
4774 * NeilBrown 1999oct15
4776 if (inode->i_nlink == 0) {
4777 if (inode->i_mode == 0 ||
4778 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4779 /* this inode is deleted */
4780 ret = -ESTALE;
4781 goto bad_inode;
4783 /* The only unlinked inodes we let through here have
4784 * valid i_mode and are being read by the orphan
4785 * recovery code: that's fine, we're about to complete
4786 * the process of deleting those. */
4788 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4789 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4790 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4791 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4792 ei->i_file_acl |=
4793 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4794 inode->i_size = ext4_isize(raw_inode);
4795 ei->i_disksize = inode->i_size;
4796 #ifdef CONFIG_QUOTA
4797 ei->i_reserved_quota = 0;
4798 #endif
4799 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4800 ei->i_block_group = iloc.block_group;
4801 ei->i_last_alloc_group = ~0;
4803 * NOTE! The in-memory inode i_data array is in little-endian order
4804 * even on big-endian machines: we do NOT byteswap the block numbers!
4806 for (block = 0; block < EXT4_N_BLOCKS; block++)
4807 ei->i_data[block] = raw_inode->i_block[block];
4808 INIT_LIST_HEAD(&ei->i_orphan);
4811 * Set transaction id's of transactions that have to be committed
4812 * to finish f[data]sync. We set them to currently running transaction
4813 * as we cannot be sure that the inode or some of its metadata isn't
4814 * part of the transaction - the inode could have been reclaimed and
4815 * now it is reread from disk.
4817 if (journal) {
4818 transaction_t *transaction;
4819 tid_t tid;
4821 spin_lock(&journal->j_state_lock);
4822 if (journal->j_running_transaction)
4823 transaction = journal->j_running_transaction;
4824 else
4825 transaction = journal->j_committing_transaction;
4826 if (transaction)
4827 tid = transaction->t_tid;
4828 else
4829 tid = journal->j_commit_sequence;
4830 spin_unlock(&journal->j_state_lock);
4831 ei->i_sync_tid = tid;
4832 ei->i_datasync_tid = tid;
4835 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4836 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4837 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4838 EXT4_INODE_SIZE(inode->i_sb)) {
4839 ret = -EIO;
4840 goto bad_inode;
4842 if (ei->i_extra_isize == 0) {
4843 /* The extra space is currently unused. Use it. */
4844 ei->i_extra_isize = sizeof(struct ext4_inode) -
4845 EXT4_GOOD_OLD_INODE_SIZE;
4846 } else {
4847 __le32 *magic = (void *)raw_inode +
4848 EXT4_GOOD_OLD_INODE_SIZE +
4849 ei->i_extra_isize;
4850 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4851 ei->i_state |= EXT4_STATE_XATTR;
4853 } else
4854 ei->i_extra_isize = 0;
4856 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4857 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4858 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4859 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4861 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4864 inode->i_version |=
4865 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4868 ret = 0;
4869 if (ei->i_file_acl &&
4870 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4871 ext4_error(sb, __func__,
4872 "bad extended attribute block %llu in inode #%lu",
4873 ei->i_file_acl, inode->i_ino);
4874 ret = -EIO;
4875 goto bad_inode;
4876 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4877 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4878 (S_ISLNK(inode->i_mode) &&
4879 !ext4_inode_is_fast_symlink(inode)))
4880 /* Validate extent which is part of inode */
4881 ret = ext4_ext_check_inode(inode);
4882 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4883 (S_ISLNK(inode->i_mode) &&
4884 !ext4_inode_is_fast_symlink(inode))) {
4885 /* Validate block references which are part of inode */
4886 ret = ext4_check_inode_blockref(inode);
4888 if (ret)
4889 goto bad_inode;
4891 if (S_ISREG(inode->i_mode)) {
4892 inode->i_op = &ext4_file_inode_operations;
4893 inode->i_fop = &ext4_file_operations;
4894 ext4_set_aops(inode);
4895 } else if (S_ISDIR(inode->i_mode)) {
4896 inode->i_op = &ext4_dir_inode_operations;
4897 inode->i_fop = &ext4_dir_operations;
4898 } else if (S_ISLNK(inode->i_mode)) {
4899 if (ext4_inode_is_fast_symlink(inode)) {
4900 inode->i_op = &ext4_fast_symlink_inode_operations;
4901 nd_terminate_link(ei->i_data, inode->i_size,
4902 sizeof(ei->i_data) - 1);
4903 } else {
4904 inode->i_op = &ext4_symlink_inode_operations;
4905 ext4_set_aops(inode);
4907 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4908 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4909 inode->i_op = &ext4_special_inode_operations;
4910 if (raw_inode->i_block[0])
4911 init_special_inode(inode, inode->i_mode,
4912 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4913 else
4914 init_special_inode(inode, inode->i_mode,
4915 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4916 } else {
4917 ret = -EIO;
4918 ext4_error(inode->i_sb, __func__,
4919 "bogus i_mode (%o) for inode=%lu",
4920 inode->i_mode, inode->i_ino);
4921 goto bad_inode;
4923 brelse(iloc.bh);
4924 ext4_set_inode_flags(inode);
4925 unlock_new_inode(inode);
4926 return inode;
4928 bad_inode:
4929 brelse(iloc.bh);
4930 iget_failed(inode);
4931 return ERR_PTR(ret);
4934 static int ext4_inode_blocks_set(handle_t *handle,
4935 struct ext4_inode *raw_inode,
4936 struct ext4_inode_info *ei)
4938 struct inode *inode = &(ei->vfs_inode);
4939 u64 i_blocks = inode->i_blocks;
4940 struct super_block *sb = inode->i_sb;
4942 if (i_blocks <= ~0U) {
4944 * i_blocks can be represnted in a 32 bit variable
4945 * as multiple of 512 bytes
4947 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4948 raw_inode->i_blocks_high = 0;
4949 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4950 return 0;
4952 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4953 return -EFBIG;
4955 if (i_blocks <= 0xffffffffffffULL) {
4957 * i_blocks can be represented in a 48 bit variable
4958 * as multiple of 512 bytes
4960 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4961 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4962 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4963 } else {
4964 ei->i_flags |= EXT4_HUGE_FILE_FL;
4965 /* i_block is stored in file system block size */
4966 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4967 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4968 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4970 return 0;
4974 * Post the struct inode info into an on-disk inode location in the
4975 * buffer-cache. This gobbles the caller's reference to the
4976 * buffer_head in the inode location struct.
4978 * The caller must have write access to iloc->bh.
4980 static int ext4_do_update_inode(handle_t *handle,
4981 struct inode *inode,
4982 struct ext4_iloc *iloc)
4984 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4985 struct ext4_inode_info *ei = EXT4_I(inode);
4986 struct buffer_head *bh = iloc->bh;
4987 int err = 0, rc, block;
4989 /* For fields not not tracking in the in-memory inode,
4990 * initialise them to zero for new inodes. */
4991 if (ei->i_state & EXT4_STATE_NEW)
4992 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4994 ext4_get_inode_flags(ei);
4995 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4996 if (!(test_opt(inode->i_sb, NO_UID32))) {
4997 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4998 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5000 * Fix up interoperability with old kernels. Otherwise, old inodes get
5001 * re-used with the upper 16 bits of the uid/gid intact
5003 if (!ei->i_dtime) {
5004 raw_inode->i_uid_high =
5005 cpu_to_le16(high_16_bits(inode->i_uid));
5006 raw_inode->i_gid_high =
5007 cpu_to_le16(high_16_bits(inode->i_gid));
5008 } else {
5009 raw_inode->i_uid_high = 0;
5010 raw_inode->i_gid_high = 0;
5012 } else {
5013 raw_inode->i_uid_low =
5014 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5015 raw_inode->i_gid_low =
5016 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5017 raw_inode->i_uid_high = 0;
5018 raw_inode->i_gid_high = 0;
5020 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5022 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5023 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5024 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5025 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5027 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5028 goto out_brelse;
5029 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5030 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5031 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5032 cpu_to_le32(EXT4_OS_HURD))
5033 raw_inode->i_file_acl_high =
5034 cpu_to_le16(ei->i_file_acl >> 32);
5035 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5036 ext4_isize_set(raw_inode, ei->i_disksize);
5037 if (ei->i_disksize > 0x7fffffffULL) {
5038 struct super_block *sb = inode->i_sb;
5039 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5040 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5041 EXT4_SB(sb)->s_es->s_rev_level ==
5042 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5043 /* If this is the first large file
5044 * created, add a flag to the superblock.
5046 err = ext4_journal_get_write_access(handle,
5047 EXT4_SB(sb)->s_sbh);
5048 if (err)
5049 goto out_brelse;
5050 ext4_update_dynamic_rev(sb);
5051 EXT4_SET_RO_COMPAT_FEATURE(sb,
5052 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5053 sb->s_dirt = 1;
5054 ext4_handle_sync(handle);
5055 err = ext4_handle_dirty_metadata(handle, inode,
5056 EXT4_SB(sb)->s_sbh);
5059 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5060 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5061 if (old_valid_dev(inode->i_rdev)) {
5062 raw_inode->i_block[0] =
5063 cpu_to_le32(old_encode_dev(inode->i_rdev));
5064 raw_inode->i_block[1] = 0;
5065 } else {
5066 raw_inode->i_block[0] = 0;
5067 raw_inode->i_block[1] =
5068 cpu_to_le32(new_encode_dev(inode->i_rdev));
5069 raw_inode->i_block[2] = 0;
5071 } else
5072 for (block = 0; block < EXT4_N_BLOCKS; block++)
5073 raw_inode->i_block[block] = ei->i_data[block];
5075 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5076 if (ei->i_extra_isize) {
5077 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5078 raw_inode->i_version_hi =
5079 cpu_to_le32(inode->i_version >> 32);
5080 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5083 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5084 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5085 if (!err)
5086 err = rc;
5087 ei->i_state &= ~EXT4_STATE_NEW;
5089 ext4_update_inode_fsync_trans(handle, inode, 0);
5090 out_brelse:
5091 brelse(bh);
5092 ext4_std_error(inode->i_sb, err);
5093 return err;
5097 * ext4_write_inode()
5099 * We are called from a few places:
5101 * - Within generic_file_write() for O_SYNC files.
5102 * Here, there will be no transaction running. We wait for any running
5103 * trasnaction to commit.
5105 * - Within sys_sync(), kupdate and such.
5106 * We wait on commit, if tol to.
5108 * - Within prune_icache() (PF_MEMALLOC == true)
5109 * Here we simply return. We can't afford to block kswapd on the
5110 * journal commit.
5112 * In all cases it is actually safe for us to return without doing anything,
5113 * because the inode has been copied into a raw inode buffer in
5114 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5115 * knfsd.
5117 * Note that we are absolutely dependent upon all inode dirtiers doing the
5118 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5119 * which we are interested.
5121 * It would be a bug for them to not do this. The code:
5123 * mark_inode_dirty(inode)
5124 * stuff();
5125 * inode->i_size = expr;
5127 * is in error because a kswapd-driven write_inode() could occur while
5128 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5129 * will no longer be on the superblock's dirty inode list.
5131 int ext4_write_inode(struct inode *inode, int wait)
5133 int err;
5135 if (current->flags & PF_MEMALLOC)
5136 return 0;
5138 if (EXT4_SB(inode->i_sb)->s_journal) {
5139 if (ext4_journal_current_handle()) {
5140 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5141 dump_stack();
5142 return -EIO;
5145 if (!wait)
5146 return 0;
5148 err = ext4_force_commit(inode->i_sb);
5149 } else {
5150 struct ext4_iloc iloc;
5152 err = ext4_get_inode_loc(inode, &iloc);
5153 if (err)
5154 return err;
5155 if (wait)
5156 sync_dirty_buffer(iloc.bh);
5157 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5158 ext4_error(inode->i_sb, __func__,
5159 "IO error syncing inode, "
5160 "inode=%lu, block=%llu",
5161 inode->i_ino,
5162 (unsigned long long)iloc.bh->b_blocknr);
5163 err = -EIO;
5166 return err;
5170 * ext4_setattr()
5172 * Called from notify_change.
5174 * We want to trap VFS attempts to truncate the file as soon as
5175 * possible. In particular, we want to make sure that when the VFS
5176 * shrinks i_size, we put the inode on the orphan list and modify
5177 * i_disksize immediately, so that during the subsequent flushing of
5178 * dirty pages and freeing of disk blocks, we can guarantee that any
5179 * commit will leave the blocks being flushed in an unused state on
5180 * disk. (On recovery, the inode will get truncated and the blocks will
5181 * be freed, so we have a strong guarantee that no future commit will
5182 * leave these blocks visible to the user.)
5184 * Another thing we have to assure is that if we are in ordered mode
5185 * and inode is still attached to the committing transaction, we must
5186 * we start writeout of all the dirty pages which are being truncated.
5187 * This way we are sure that all the data written in the previous
5188 * transaction are already on disk (truncate waits for pages under
5189 * writeback).
5191 * Called with inode->i_mutex down.
5193 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5195 struct inode *inode = dentry->d_inode;
5196 int error, rc = 0;
5197 const unsigned int ia_valid = attr->ia_valid;
5199 error = inode_change_ok(inode, attr);
5200 if (error)
5201 return error;
5203 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5204 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5205 handle_t *handle;
5207 /* (user+group)*(old+new) structure, inode write (sb,
5208 * inode block, ? - but truncate inode update has it) */
5209 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5210 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5211 if (IS_ERR(handle)) {
5212 error = PTR_ERR(handle);
5213 goto err_out;
5215 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5216 if (error) {
5217 ext4_journal_stop(handle);
5218 return error;
5220 /* Update corresponding info in inode so that everything is in
5221 * one transaction */
5222 if (attr->ia_valid & ATTR_UID)
5223 inode->i_uid = attr->ia_uid;
5224 if (attr->ia_valid & ATTR_GID)
5225 inode->i_gid = attr->ia_gid;
5226 error = ext4_mark_inode_dirty(handle, inode);
5227 ext4_journal_stop(handle);
5230 if (attr->ia_valid & ATTR_SIZE) {
5231 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5232 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5234 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5235 error = -EFBIG;
5236 goto err_out;
5241 if (S_ISREG(inode->i_mode) &&
5242 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5243 handle_t *handle;
5245 handle = ext4_journal_start(inode, 3);
5246 if (IS_ERR(handle)) {
5247 error = PTR_ERR(handle);
5248 goto err_out;
5251 error = ext4_orphan_add(handle, inode);
5252 EXT4_I(inode)->i_disksize = attr->ia_size;
5253 rc = ext4_mark_inode_dirty(handle, inode);
5254 if (!error)
5255 error = rc;
5256 ext4_journal_stop(handle);
5258 if (ext4_should_order_data(inode)) {
5259 error = ext4_begin_ordered_truncate(inode,
5260 attr->ia_size);
5261 if (error) {
5262 /* Do as much error cleanup as possible */
5263 handle = ext4_journal_start(inode, 3);
5264 if (IS_ERR(handle)) {
5265 ext4_orphan_del(NULL, inode);
5266 goto err_out;
5268 ext4_orphan_del(handle, inode);
5269 ext4_journal_stop(handle);
5270 goto err_out;
5275 rc = inode_setattr(inode, attr);
5277 /* If inode_setattr's call to ext4_truncate failed to get a
5278 * transaction handle at all, we need to clean up the in-core
5279 * orphan list manually. */
5280 if (inode->i_nlink)
5281 ext4_orphan_del(NULL, inode);
5283 if (!rc && (ia_valid & ATTR_MODE))
5284 rc = ext4_acl_chmod(inode);
5286 err_out:
5287 ext4_std_error(inode->i_sb, error);
5288 if (!error)
5289 error = rc;
5290 return error;
5293 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5294 struct kstat *stat)
5296 struct inode *inode;
5297 unsigned long delalloc_blocks;
5299 inode = dentry->d_inode;
5300 generic_fillattr(inode, stat);
5303 * We can't update i_blocks if the block allocation is delayed
5304 * otherwise in the case of system crash before the real block
5305 * allocation is done, we will have i_blocks inconsistent with
5306 * on-disk file blocks.
5307 * We always keep i_blocks updated together with real
5308 * allocation. But to not confuse with user, stat
5309 * will return the blocks that include the delayed allocation
5310 * blocks for this file.
5312 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5313 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5314 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5316 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5317 return 0;
5320 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5321 int chunk)
5323 int indirects;
5325 /* if nrblocks are contiguous */
5326 if (chunk) {
5328 * With N contiguous data blocks, it need at most
5329 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5330 * 2 dindirect blocks
5331 * 1 tindirect block
5333 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5334 return indirects + 3;
5337 * if nrblocks are not contiguous, worse case, each block touch
5338 * a indirect block, and each indirect block touch a double indirect
5339 * block, plus a triple indirect block
5341 indirects = nrblocks * 2 + 1;
5342 return indirects;
5345 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5347 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5348 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5349 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5353 * Account for index blocks, block groups bitmaps and block group
5354 * descriptor blocks if modify datablocks and index blocks
5355 * worse case, the indexs blocks spread over different block groups
5357 * If datablocks are discontiguous, they are possible to spread over
5358 * different block groups too. If they are contiuguous, with flexbg,
5359 * they could still across block group boundary.
5361 * Also account for superblock, inode, quota and xattr blocks
5363 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5365 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5366 int gdpblocks;
5367 int idxblocks;
5368 int ret = 0;
5371 * How many index blocks need to touch to modify nrblocks?
5372 * The "Chunk" flag indicating whether the nrblocks is
5373 * physically contiguous on disk
5375 * For Direct IO and fallocate, they calls get_block to allocate
5376 * one single extent at a time, so they could set the "Chunk" flag
5378 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5380 ret = idxblocks;
5383 * Now let's see how many group bitmaps and group descriptors need
5384 * to account
5386 groups = idxblocks;
5387 if (chunk)
5388 groups += 1;
5389 else
5390 groups += nrblocks;
5392 gdpblocks = groups;
5393 if (groups > ngroups)
5394 groups = ngroups;
5395 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5396 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5398 /* bitmaps and block group descriptor blocks */
5399 ret += groups + gdpblocks;
5401 /* Blocks for super block, inode, quota and xattr blocks */
5402 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5404 return ret;
5408 * Calulate the total number of credits to reserve to fit
5409 * the modification of a single pages into a single transaction,
5410 * which may include multiple chunks of block allocations.
5412 * This could be called via ext4_write_begin()
5414 * We need to consider the worse case, when
5415 * one new block per extent.
5417 int ext4_writepage_trans_blocks(struct inode *inode)
5419 int bpp = ext4_journal_blocks_per_page(inode);
5420 int ret;
5422 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5424 /* Account for data blocks for journalled mode */
5425 if (ext4_should_journal_data(inode))
5426 ret += bpp;
5427 return ret;
5431 * Calculate the journal credits for a chunk of data modification.
5433 * This is called from DIO, fallocate or whoever calling
5434 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5436 * journal buffers for data blocks are not included here, as DIO
5437 * and fallocate do no need to journal data buffers.
5439 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5441 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5445 * The caller must have previously called ext4_reserve_inode_write().
5446 * Give this, we know that the caller already has write access to iloc->bh.
5448 int ext4_mark_iloc_dirty(handle_t *handle,
5449 struct inode *inode, struct ext4_iloc *iloc)
5451 int err = 0;
5453 if (test_opt(inode->i_sb, I_VERSION))
5454 inode_inc_iversion(inode);
5456 /* the do_update_inode consumes one bh->b_count */
5457 get_bh(iloc->bh);
5459 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5460 err = ext4_do_update_inode(handle, inode, iloc);
5461 put_bh(iloc->bh);
5462 return err;
5466 * On success, We end up with an outstanding reference count against
5467 * iloc->bh. This _must_ be cleaned up later.
5471 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5472 struct ext4_iloc *iloc)
5474 int err;
5476 err = ext4_get_inode_loc(inode, iloc);
5477 if (!err) {
5478 BUFFER_TRACE(iloc->bh, "get_write_access");
5479 err = ext4_journal_get_write_access(handle, iloc->bh);
5480 if (err) {
5481 brelse(iloc->bh);
5482 iloc->bh = NULL;
5485 ext4_std_error(inode->i_sb, err);
5486 return err;
5490 * Expand an inode by new_extra_isize bytes.
5491 * Returns 0 on success or negative error number on failure.
5493 static int ext4_expand_extra_isize(struct inode *inode,
5494 unsigned int new_extra_isize,
5495 struct ext4_iloc iloc,
5496 handle_t *handle)
5498 struct ext4_inode *raw_inode;
5499 struct ext4_xattr_ibody_header *header;
5500 struct ext4_xattr_entry *entry;
5502 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5503 return 0;
5505 raw_inode = ext4_raw_inode(&iloc);
5507 header = IHDR(inode, raw_inode);
5508 entry = IFIRST(header);
5510 /* No extended attributes present */
5511 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5512 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5513 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5514 new_extra_isize);
5515 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5516 return 0;
5519 /* try to expand with EAs present */
5520 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5521 raw_inode, handle);
5525 * What we do here is to mark the in-core inode as clean with respect to inode
5526 * dirtiness (it may still be data-dirty).
5527 * This means that the in-core inode may be reaped by prune_icache
5528 * without having to perform any I/O. This is a very good thing,
5529 * because *any* task may call prune_icache - even ones which
5530 * have a transaction open against a different journal.
5532 * Is this cheating? Not really. Sure, we haven't written the
5533 * inode out, but prune_icache isn't a user-visible syncing function.
5534 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5535 * we start and wait on commits.
5537 * Is this efficient/effective? Well, we're being nice to the system
5538 * by cleaning up our inodes proactively so they can be reaped
5539 * without I/O. But we are potentially leaving up to five seconds'
5540 * worth of inodes floating about which prune_icache wants us to
5541 * write out. One way to fix that would be to get prune_icache()
5542 * to do a write_super() to free up some memory. It has the desired
5543 * effect.
5545 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5547 struct ext4_iloc iloc;
5548 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5549 static unsigned int mnt_count;
5550 int err, ret;
5552 might_sleep();
5553 err = ext4_reserve_inode_write(handle, inode, &iloc);
5554 if (ext4_handle_valid(handle) &&
5555 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5556 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5558 * We need extra buffer credits since we may write into EA block
5559 * with this same handle. If journal_extend fails, then it will
5560 * only result in a minor loss of functionality for that inode.
5561 * If this is felt to be critical, then e2fsck should be run to
5562 * force a large enough s_min_extra_isize.
5564 if ((jbd2_journal_extend(handle,
5565 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5566 ret = ext4_expand_extra_isize(inode,
5567 sbi->s_want_extra_isize,
5568 iloc, handle);
5569 if (ret) {
5570 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5571 if (mnt_count !=
5572 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5573 ext4_warning(inode->i_sb, __func__,
5574 "Unable to expand inode %lu. Delete"
5575 " some EAs or run e2fsck.",
5576 inode->i_ino);
5577 mnt_count =
5578 le16_to_cpu(sbi->s_es->s_mnt_count);
5583 if (!err)
5584 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5585 return err;
5589 * ext4_dirty_inode() is called from __mark_inode_dirty()
5591 * We're really interested in the case where a file is being extended.
5592 * i_size has been changed by generic_commit_write() and we thus need
5593 * to include the updated inode in the current transaction.
5595 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5596 * are allocated to the file.
5598 * If the inode is marked synchronous, we don't honour that here - doing
5599 * so would cause a commit on atime updates, which we don't bother doing.
5600 * We handle synchronous inodes at the highest possible level.
5602 void ext4_dirty_inode(struct inode *inode)
5604 handle_t *handle;
5606 handle = ext4_journal_start(inode, 2);
5607 if (IS_ERR(handle))
5608 goto out;
5610 ext4_mark_inode_dirty(handle, inode);
5612 ext4_journal_stop(handle);
5613 out:
5614 return;
5617 #if 0
5619 * Bind an inode's backing buffer_head into this transaction, to prevent
5620 * it from being flushed to disk early. Unlike
5621 * ext4_reserve_inode_write, this leaves behind no bh reference and
5622 * returns no iloc structure, so the caller needs to repeat the iloc
5623 * lookup to mark the inode dirty later.
5625 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5627 struct ext4_iloc iloc;
5629 int err = 0;
5630 if (handle) {
5631 err = ext4_get_inode_loc(inode, &iloc);
5632 if (!err) {
5633 BUFFER_TRACE(iloc.bh, "get_write_access");
5634 err = jbd2_journal_get_write_access(handle, iloc.bh);
5635 if (!err)
5636 err = ext4_handle_dirty_metadata(handle,
5637 inode,
5638 iloc.bh);
5639 brelse(iloc.bh);
5642 ext4_std_error(inode->i_sb, err);
5643 return err;
5645 #endif
5647 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5649 journal_t *journal;
5650 handle_t *handle;
5651 int err;
5654 * We have to be very careful here: changing a data block's
5655 * journaling status dynamically is dangerous. If we write a
5656 * data block to the journal, change the status and then delete
5657 * that block, we risk forgetting to revoke the old log record
5658 * from the journal and so a subsequent replay can corrupt data.
5659 * So, first we make sure that the journal is empty and that
5660 * nobody is changing anything.
5663 journal = EXT4_JOURNAL(inode);
5664 if (!journal)
5665 return 0;
5666 if (is_journal_aborted(journal))
5667 return -EROFS;
5669 jbd2_journal_lock_updates(journal);
5670 jbd2_journal_flush(journal);
5673 * OK, there are no updates running now, and all cached data is
5674 * synced to disk. We are now in a completely consistent state
5675 * which doesn't have anything in the journal, and we know that
5676 * no filesystem updates are running, so it is safe to modify
5677 * the inode's in-core data-journaling state flag now.
5680 if (val)
5681 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5682 else
5683 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5684 ext4_set_aops(inode);
5686 jbd2_journal_unlock_updates(journal);
5688 /* Finally we can mark the inode as dirty. */
5690 handle = ext4_journal_start(inode, 1);
5691 if (IS_ERR(handle))
5692 return PTR_ERR(handle);
5694 err = ext4_mark_inode_dirty(handle, inode);
5695 ext4_handle_sync(handle);
5696 ext4_journal_stop(handle);
5697 ext4_std_error(inode->i_sb, err);
5699 return err;
5702 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5704 return !buffer_mapped(bh);
5707 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5709 struct page *page = vmf->page;
5710 loff_t size;
5711 unsigned long len;
5712 int ret = -EINVAL;
5713 void *fsdata;
5714 struct file *file = vma->vm_file;
5715 struct inode *inode = file->f_path.dentry->d_inode;
5716 struct address_space *mapping = inode->i_mapping;
5719 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5720 * get i_mutex because we are already holding mmap_sem.
5722 down_read(&inode->i_alloc_sem);
5723 size = i_size_read(inode);
5724 if (page->mapping != mapping || size <= page_offset(page)
5725 || !PageUptodate(page)) {
5726 /* page got truncated from under us? */
5727 goto out_unlock;
5729 ret = 0;
5730 if (PageMappedToDisk(page))
5731 goto out_unlock;
5733 if (page->index == size >> PAGE_CACHE_SHIFT)
5734 len = size & ~PAGE_CACHE_MASK;
5735 else
5736 len = PAGE_CACHE_SIZE;
5738 lock_page(page);
5740 * return if we have all the buffers mapped. This avoid
5741 * the need to call write_begin/write_end which does a
5742 * journal_start/journal_stop which can block and take
5743 * long time
5745 if (page_has_buffers(page)) {
5746 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5747 ext4_bh_unmapped)) {
5748 unlock_page(page);
5749 goto out_unlock;
5752 unlock_page(page);
5754 * OK, we need to fill the hole... Do write_begin write_end
5755 * to do block allocation/reservation.We are not holding
5756 * inode.i__mutex here. That allow * parallel write_begin,
5757 * write_end call. lock_page prevent this from happening
5758 * on the same page though
5760 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5761 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5762 if (ret < 0)
5763 goto out_unlock;
5764 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5765 len, len, page, fsdata);
5766 if (ret < 0)
5767 goto out_unlock;
5768 ret = 0;
5769 out_unlock:
5770 if (ret)
5771 ret = VM_FAULT_SIGBUS;
5772 up_read(&inode->i_alloc_sem);
5773 return ret;