2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
53 #define RTC_VERSION "1.12ac"
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/sysctl.h>
77 #include <linux/wait.h>
78 #include <linux/bcd.h>
79 #include <linux/delay.h>
81 #include <asm/current.h>
82 #include <asm/uaccess.h>
83 #include <asm/system.h>
90 #include <linux/pci.h>
93 static unsigned long rtc_port
;
94 static int rtc_irq
= PCI_IRQ_NONE
;
97 #ifdef CONFIG_HPET_RTC_IRQ
102 static int rtc_has_irq
= 1;
105 #ifndef CONFIG_HPET_EMULATE_RTC
106 #define is_hpet_enabled() 0
107 #define hpet_set_alarm_time(hrs, min, sec) 0
108 #define hpet_set_periodic_freq(arg) 0
109 #define hpet_mask_rtc_irq_bit(arg) 0
110 #define hpet_set_rtc_irq_bit(arg) 0
111 #define hpet_rtc_timer_init() do { } while (0)
112 #define hpet_rtc_dropped_irq() 0
114 static irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
120 extern irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
);
124 * We sponge a minor off of the misc major. No need slurping
125 * up another valuable major dev number for this. If you add
126 * an ioctl, make sure you don't conflict with SPARC's RTC
130 static struct fasync_struct
*rtc_async_queue
;
132 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait
);
135 static void rtc_dropped_irq(unsigned long data
);
137 static DEFINE_TIMER(rtc_irq_timer
, rtc_dropped_irq
, 0, 0);
140 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
141 size_t count
, loff_t
*ppos
);
143 static int rtc_ioctl(struct inode
*inode
, struct file
*file
,
144 unsigned int cmd
, unsigned long arg
);
147 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
);
150 static void get_rtc_alm_time (struct rtc_time
*alm_tm
);
152 static void set_rtc_irq_bit_locked(unsigned char bit
);
153 static void mask_rtc_irq_bit_locked(unsigned char bit
);
155 static inline void set_rtc_irq_bit(unsigned char bit
)
157 spin_lock_irq(&rtc_lock
);
158 set_rtc_irq_bit_locked(bit
);
159 spin_unlock_irq(&rtc_lock
);
162 static void mask_rtc_irq_bit(unsigned char bit
)
164 spin_lock_irq(&rtc_lock
);
165 mask_rtc_irq_bit_locked(bit
);
166 spin_unlock_irq(&rtc_lock
);
170 #ifdef CONFIG_PROC_FS
171 static int rtc_proc_open(struct inode
*inode
, struct file
*file
);
175 * Bits in rtc_status. (6 bits of room for future expansion)
178 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
179 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
182 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
183 * protected by the big kernel lock. However, ioctl can still disable the timer
184 * in rtc_status and then with del_timer after the interrupt has read
185 * rtc_status but before mod_timer is called, which would then reenable the
186 * timer (but you would need to have an awful timing before you'd trip on it)
188 static unsigned long rtc_status
= 0; /* bitmapped status byte. */
189 static unsigned long rtc_freq
= 0; /* Current periodic IRQ rate */
190 static unsigned long rtc_irq_data
= 0; /* our output to the world */
191 static unsigned long rtc_max_user_freq
= 64; /* > this, need CAP_SYS_RESOURCE */
195 * rtc_task_lock nests inside rtc_lock.
197 static DEFINE_SPINLOCK(rtc_task_lock
);
198 static rtc_task_t
*rtc_callback
= NULL
;
202 * If this driver ever becomes modularised, it will be really nice
203 * to make the epoch retain its value across module reload...
206 static unsigned long epoch
= 1900; /* year corresponding to 0x00 */
208 static const unsigned char days_in_mo
[] =
209 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212 * Returns true if a clock update is in progress
214 static inline unsigned char rtc_is_updating(void)
219 spin_lock_irqsave(&rtc_lock
, flags
);
220 uip
= (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
221 spin_unlock_irqrestore(&rtc_lock
, flags
);
227 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
228 * but there is possibility of conflicting with the set_rtc_mmss()
229 * call (the rtc irq and the timer irq can easily run at the same
230 * time in two different CPUs). So we need to serialize
231 * accesses to the chip with the rtc_lock spinlock that each
232 * architecture should implement in the timer code.
233 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236 irqreturn_t
rtc_interrupt(int irq
, void *dev_id
)
239 * Can be an alarm interrupt, update complete interrupt,
240 * or a periodic interrupt. We store the status in the
241 * low byte and the number of interrupts received since
242 * the last read in the remainder of rtc_irq_data.
245 spin_lock (&rtc_lock
);
246 rtc_irq_data
+= 0x100;
247 rtc_irq_data
&= ~0xff;
248 if (is_hpet_enabled()) {
250 * In this case it is HPET RTC interrupt handler
251 * calling us, with the interrupt information
252 * passed as arg1, instead of irq.
254 rtc_irq_data
|= (unsigned long)irq
& 0xF0;
256 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0);
259 if (rtc_status
& RTC_TIMER_ON
)
260 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
262 spin_unlock (&rtc_lock
);
264 /* Now do the rest of the actions */
265 spin_lock(&rtc_task_lock
);
267 rtc_callback
->func(rtc_callback
->private_data
);
268 spin_unlock(&rtc_task_lock
);
269 wake_up_interruptible(&rtc_wait
);
271 kill_fasync (&rtc_async_queue
, SIGIO
, POLL_IN
);
278 * sysctl-tuning infrastructure.
280 static ctl_table rtc_table
[] = {
282 .ctl_name
= CTL_UNNUMBERED
,
283 .procname
= "max-user-freq",
284 .data
= &rtc_max_user_freq
,
285 .maxlen
= sizeof(int),
287 .proc_handler
= &proc_dointvec
,
292 static ctl_table rtc_root
[] = {
294 .ctl_name
= CTL_UNNUMBERED
,
302 static ctl_table dev_root
[] = {
312 static struct ctl_table_header
*sysctl_header
;
314 static int __init
init_sysctl(void)
316 sysctl_header
= register_sysctl_table(dev_root
);
320 static void __exit
cleanup_sysctl(void)
322 unregister_sysctl_table(sysctl_header
);
326 * Now all the various file operations that we export.
329 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
330 size_t count
, loff_t
*ppos
)
335 DECLARE_WAITQUEUE(wait
, current
);
339 if (rtc_has_irq
== 0)
343 * Historically this function used to assume that sizeof(unsigned long)
344 * is the same in userspace and kernelspace. This lead to problems
345 * for configurations with multiple ABIs such a the MIPS o32 and 64
346 * ABIs supported on the same kernel. So now we support read of both
347 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350 if (count
!= sizeof(unsigned int) && count
!= sizeof(unsigned long))
353 add_wait_queue(&rtc_wait
, &wait
);
356 /* First make it right. Then make it fast. Putting this whole
357 * block within the parentheses of a while would be too
358 * confusing. And no, xchg() is not the answer. */
360 __set_current_state(TASK_INTERRUPTIBLE
);
362 spin_lock_irq (&rtc_lock
);
365 spin_unlock_irq (&rtc_lock
);
370 if (file
->f_flags
& O_NONBLOCK
) {
374 if (signal_pending(current
)) {
375 retval
= -ERESTARTSYS
;
381 if (count
== sizeof(unsigned int))
382 retval
= put_user(data
, (unsigned int __user
*)buf
) ?: sizeof(int);
384 retval
= put_user(data
, (unsigned long __user
*)buf
) ?: sizeof(long);
388 __set_current_state(TASK_RUNNING
);
389 remove_wait_queue(&rtc_wait
, &wait
);
395 static int rtc_do_ioctl(unsigned int cmd
, unsigned long arg
, int kernel
)
397 struct rtc_time wtime
;
400 if (rtc_has_irq
== 0) {
417 case RTC_AIE_OFF
: /* Mask alarm int. enab. bit */
419 mask_rtc_irq_bit(RTC_AIE
);
422 case RTC_AIE_ON
: /* Allow alarm interrupts. */
424 set_rtc_irq_bit(RTC_AIE
);
427 case RTC_PIE_OFF
: /* Mask periodic int. enab. bit */
429 unsigned long flags
; /* can be called from isr via rtc_control() */
430 spin_lock_irqsave (&rtc_lock
, flags
);
431 mask_rtc_irq_bit_locked(RTC_PIE
);
432 if (rtc_status
& RTC_TIMER_ON
) {
433 rtc_status
&= ~RTC_TIMER_ON
;
434 del_timer(&rtc_irq_timer
);
436 spin_unlock_irqrestore (&rtc_lock
, flags
);
439 case RTC_PIE_ON
: /* Allow periodic ints */
441 unsigned long flags
; /* can be called from isr via rtc_control() */
443 * We don't really want Joe User enabling more
444 * than 64Hz of interrupts on a multi-user machine.
446 if (!kernel
&& (rtc_freq
> rtc_max_user_freq
) &&
447 (!capable(CAP_SYS_RESOURCE
)))
450 spin_lock_irqsave (&rtc_lock
, flags
);
451 if (!(rtc_status
& RTC_TIMER_ON
)) {
452 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+
454 rtc_status
|= RTC_TIMER_ON
;
456 set_rtc_irq_bit_locked(RTC_PIE
);
457 spin_unlock_irqrestore (&rtc_lock
, flags
);
460 case RTC_UIE_OFF
: /* Mask ints from RTC updates. */
462 mask_rtc_irq_bit(RTC_UIE
);
465 case RTC_UIE_ON
: /* Allow ints for RTC updates. */
467 set_rtc_irq_bit(RTC_UIE
);
471 case RTC_ALM_READ
: /* Read the present alarm time */
474 * This returns a struct rtc_time. Reading >= 0xc0
475 * means "don't care" or "match all". Only the tm_hour,
476 * tm_min, and tm_sec values are filled in.
478 memset(&wtime
, 0, sizeof(struct rtc_time
));
479 get_rtc_alm_time(&wtime
);
482 case RTC_ALM_SET
: /* Store a time into the alarm */
485 * This expects a struct rtc_time. Writing 0xff means
486 * "don't care" or "match all". Only the tm_hour,
487 * tm_min and tm_sec are used.
489 unsigned char hrs
, min
, sec
;
490 struct rtc_time alm_tm
;
492 if (copy_from_user(&alm_tm
, (struct rtc_time __user
*)arg
,
493 sizeof(struct rtc_time
)))
496 hrs
= alm_tm
.tm_hour
;
500 spin_lock_irq(&rtc_lock
);
501 if (hpet_set_alarm_time(hrs
, min
, sec
)) {
503 * Fallthru and set alarm time in CMOS too,
504 * so that we will get proper value in RTC_ALM_READ
507 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) ||
510 if (sec
< 60) BIN_TO_BCD(sec
);
513 if (min
< 60) BIN_TO_BCD(min
);
516 if (hrs
< 24) BIN_TO_BCD(hrs
);
519 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
520 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
521 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
522 spin_unlock_irq(&rtc_lock
);
526 case RTC_RD_TIME
: /* Read the time/date from RTC */
528 memset(&wtime
, 0, sizeof(struct rtc_time
));
529 rtc_get_rtc_time(&wtime
);
532 case RTC_SET_TIME
: /* Set the RTC */
534 struct rtc_time rtc_tm
;
535 unsigned char mon
, day
, hrs
, min
, sec
, leap_yr
;
536 unsigned char save_control
, save_freq_select
;
538 #ifdef CONFIG_MACH_DECSTATION
539 unsigned int real_yrs
;
542 if (!capable(CAP_SYS_TIME
))
545 if (copy_from_user(&rtc_tm
, (struct rtc_time __user
*)arg
,
546 sizeof(struct rtc_time
)))
549 yrs
= rtc_tm
.tm_year
+ 1900;
550 mon
= rtc_tm
.tm_mon
+ 1; /* tm_mon starts at zero */
551 day
= rtc_tm
.tm_mday
;
552 hrs
= rtc_tm
.tm_hour
;
559 leap_yr
= ((!(yrs
% 4) && (yrs
% 100)) || !(yrs
% 400));
561 if ((mon
> 12) || (day
== 0))
564 if (day
> (days_in_mo
[mon
] + ((mon
== 2) && leap_yr
)))
567 if ((hrs
>= 24) || (min
>= 60) || (sec
>= 60))
570 if ((yrs
-= epoch
) > 255) /* They are unsigned */
573 spin_lock_irq(&rtc_lock
);
574 #ifdef CONFIG_MACH_DECSTATION
579 * We want to keep the year set to 73 until March
580 * for non-leap years, so that Feb, 29th is handled
583 if (!leap_yr
&& mon
< 3) {
588 /* These limits and adjustments are independent of
589 * whether the chip is in binary mode or not.
592 spin_unlock_irq(&rtc_lock
);
598 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
)
608 save_control
= CMOS_READ(RTC_CONTROL
);
609 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
610 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
611 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
613 #ifdef CONFIG_MACH_DECSTATION
614 CMOS_WRITE(real_yrs
, RTC_DEC_YEAR
);
616 CMOS_WRITE(yrs
, RTC_YEAR
);
617 CMOS_WRITE(mon
, RTC_MONTH
);
618 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
619 CMOS_WRITE(hrs
, RTC_HOURS
);
620 CMOS_WRITE(min
, RTC_MINUTES
);
621 CMOS_WRITE(sec
, RTC_SECONDS
);
623 CMOS_WRITE(save_control
, RTC_CONTROL
);
624 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
626 spin_unlock_irq(&rtc_lock
);
630 case RTC_IRQP_READ
: /* Read the periodic IRQ rate. */
632 return put_user(rtc_freq
, (unsigned long __user
*)arg
);
634 case RTC_IRQP_SET
: /* Set periodic IRQ rate. */
638 unsigned long flags
; /* can be called from isr via rtc_control() */
641 * The max we can do is 8192Hz.
643 if ((arg
< 2) || (arg
> 8192))
646 * We don't really want Joe User generating more
647 * than 64Hz of interrupts on a multi-user machine.
649 if (!kernel
&& (arg
> rtc_max_user_freq
) && (!capable(CAP_SYS_RESOURCE
)))
652 while (arg
> (1<<tmp
))
656 * Check that the input was really a power of 2.
661 spin_lock_irqsave(&rtc_lock
, flags
);
662 if (hpet_set_periodic_freq(arg
)) {
663 spin_unlock_irqrestore(&rtc_lock
, flags
);
668 val
= CMOS_READ(RTC_FREQ_SELECT
) & 0xf0;
670 CMOS_WRITE(val
, RTC_FREQ_SELECT
);
671 spin_unlock_irqrestore(&rtc_lock
, flags
);
675 case RTC_EPOCH_READ
: /* Read the epoch. */
677 return put_user (epoch
, (unsigned long __user
*)arg
);
679 case RTC_EPOCH_SET
: /* Set the epoch. */
682 * There were no RTC clocks before 1900.
687 if (!capable(CAP_SYS_TIME
))
696 return copy_to_user((void __user
*)arg
, &wtime
, sizeof wtime
) ? -EFAULT
: 0;
699 static int rtc_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
,
702 return rtc_do_ioctl(cmd
, arg
, 0);
706 * We enforce only one user at a time here with the open/close.
707 * Also clear the previous interrupt data on an open, and clean
708 * up things on a close.
711 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
712 * needed here. Or anywhere else in this driver. */
713 static int rtc_open(struct inode
*inode
, struct file
*file
)
715 spin_lock_irq (&rtc_lock
);
717 if(rtc_status
& RTC_IS_OPEN
)
720 rtc_status
|= RTC_IS_OPEN
;
723 spin_unlock_irq (&rtc_lock
);
727 spin_unlock_irq (&rtc_lock
);
731 static int rtc_fasync (int fd
, struct file
*filp
, int on
)
734 return fasync_helper (fd
, filp
, on
, &rtc_async_queue
);
737 static int rtc_release(struct inode
*inode
, struct file
*file
)
742 if (rtc_has_irq
== 0)
746 * Turn off all interrupts once the device is no longer
747 * in use, and clear the data.
750 spin_lock_irq(&rtc_lock
);
751 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
752 tmp
= CMOS_READ(RTC_CONTROL
);
756 CMOS_WRITE(tmp
, RTC_CONTROL
);
757 CMOS_READ(RTC_INTR_FLAGS
);
759 if (rtc_status
& RTC_TIMER_ON
) {
760 rtc_status
&= ~RTC_TIMER_ON
;
761 del_timer(&rtc_irq_timer
);
763 spin_unlock_irq(&rtc_lock
);
765 if (file
->f_flags
& FASYNC
) {
766 rtc_fasync (-1, file
, 0);
771 spin_lock_irq (&rtc_lock
);
773 rtc_status
&= ~RTC_IS_OPEN
;
774 spin_unlock_irq (&rtc_lock
);
779 /* Called without the kernel lock - fine */
780 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
)
784 if (rtc_has_irq
== 0)
787 poll_wait(file
, &rtc_wait
, wait
);
789 spin_lock_irq (&rtc_lock
);
791 spin_unlock_irq (&rtc_lock
);
794 return POLLIN
| POLLRDNORM
;
803 EXPORT_SYMBOL(rtc_register
);
804 EXPORT_SYMBOL(rtc_unregister
);
805 EXPORT_SYMBOL(rtc_control
);
807 int rtc_register(rtc_task_t
*task
)
812 if (task
== NULL
|| task
->func
== NULL
)
814 spin_lock_irq(&rtc_lock
);
815 if (rtc_status
& RTC_IS_OPEN
) {
816 spin_unlock_irq(&rtc_lock
);
819 spin_lock(&rtc_task_lock
);
821 spin_unlock(&rtc_task_lock
);
822 spin_unlock_irq(&rtc_lock
);
825 rtc_status
|= RTC_IS_OPEN
;
827 spin_unlock(&rtc_task_lock
);
828 spin_unlock_irq(&rtc_lock
);
833 int rtc_unregister(rtc_task_t
*task
)
840 spin_lock_irq(&rtc_lock
);
841 spin_lock(&rtc_task_lock
);
842 if (rtc_callback
!= task
) {
843 spin_unlock(&rtc_task_lock
);
844 spin_unlock_irq(&rtc_lock
);
849 /* disable controls */
850 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
851 tmp
= CMOS_READ(RTC_CONTROL
);
855 CMOS_WRITE(tmp
, RTC_CONTROL
);
856 CMOS_READ(RTC_INTR_FLAGS
);
858 if (rtc_status
& RTC_TIMER_ON
) {
859 rtc_status
&= ~RTC_TIMER_ON
;
860 del_timer(&rtc_irq_timer
);
862 rtc_status
&= ~RTC_IS_OPEN
;
863 spin_unlock(&rtc_task_lock
);
864 spin_unlock_irq(&rtc_lock
);
869 int rtc_control(rtc_task_t
*task
, unsigned int cmd
, unsigned long arg
)
875 if (cmd
!= RTC_PIE_ON
&& cmd
!= RTC_PIE_OFF
&& cmd
!= RTC_IRQP_SET
)
877 spin_lock_irqsave(&rtc_task_lock
, flags
);
878 if (rtc_callback
!= task
) {
879 spin_unlock_irqrestore(&rtc_task_lock
, flags
);
882 spin_unlock_irqrestore(&rtc_task_lock
, flags
);
883 return rtc_do_ioctl(cmd
, arg
, 1);
889 * The various file operations we support.
892 static const struct file_operations rtc_fops
= {
893 .owner
= THIS_MODULE
,
901 .release
= rtc_release
,
902 .fasync
= rtc_fasync
,
905 static struct miscdevice rtc_dev
= {
911 #ifdef CONFIG_PROC_FS
912 static const struct file_operations rtc_proc_fops
= {
913 .owner
= THIS_MODULE
,
914 .open
= rtc_proc_open
,
917 .release
= single_release
,
921 static int __init
rtc_init(void)
923 #ifdef CONFIG_PROC_FS
924 struct proc_dir_entry
*ent
;
926 #if defined(__alpha__) || defined(__mips__)
927 unsigned int year
, ctrl
;
930 #ifdef CONFIG_SPARC32
931 struct linux_ebus
*ebus
;
932 struct linux_ebus_device
*edev
;
936 irq_handler_t rtc_int_handler_ptr
;
940 #ifdef CONFIG_SPARC32
941 for_each_ebus(ebus
) {
942 for_each_ebusdev(edev
, ebus
) {
943 if(strcmp(edev
->prom_node
->name
, "rtc") == 0) {
944 rtc_port
= edev
->resource
[0].start
;
945 rtc_irq
= edev
->irqs
[0];
951 printk(KERN_ERR
"rtc_init: no PC rtc found\n");
955 if (rtc_irq
== PCI_IRQ_NONE
) {
961 * XXX Interrupt pin #7 in Espresso is shared between RTC and
962 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
964 if (request_irq(rtc_irq
, rtc_interrupt
, IRQF_SHARED
, "rtc", (void *)&rtc_port
)) {
966 printk(KERN_ERR
"rtc: cannot register IRQ %d\n", rtc_irq
);
972 r
= request_region(RTC_PORT(0), RTC_IO_EXTENT
, "rtc");
974 r
= request_mem_region(RTC_PORT(0), RTC_IO_EXTENT
, "rtc");
979 printk(KERN_ERR
"rtc: I/O resource %lx is not free.\n",
980 (long)(RTC_PORT(0)));
985 if (is_hpet_enabled()) {
986 rtc_int_handler_ptr
= hpet_rtc_interrupt
;
988 rtc_int_handler_ptr
= rtc_interrupt
;
991 if(request_irq(RTC_IRQ
, rtc_int_handler_ptr
, IRQF_DISABLED
, "rtc", NULL
)) {
992 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
994 printk(KERN_ERR
"rtc: IRQ %d is not free.\n", RTC_IRQ
);
996 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
998 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT
);
1001 hpet_rtc_timer_init();
1005 #endif /* CONFIG_SPARC32 vs. others */
1007 if (misc_register(&rtc_dev
)) {
1009 free_irq(RTC_IRQ
, NULL
);
1012 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
1016 #ifdef CONFIG_PROC_FS
1017 ent
= create_proc_entry("driver/rtc", 0, NULL
);
1019 ent
->proc_fops
= &rtc_proc_fops
;
1021 printk(KERN_WARNING
"rtc: Failed to register with procfs.\n");
1024 #if defined(__alpha__) || defined(__mips__)
1027 /* Each operating system on an Alpha uses its own epoch.
1028 Let's try to guess which one we are using now. */
1030 if (rtc_is_updating() != 0)
1033 spin_lock_irq(&rtc_lock
);
1034 year
= CMOS_READ(RTC_YEAR
);
1035 ctrl
= CMOS_READ(RTC_CONTROL
);
1036 spin_unlock_irq(&rtc_lock
);
1038 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1039 BCD_TO_BIN(year
); /* This should never happen... */
1043 guess
= "SRM (post-2000)";
1044 } else if (year
>= 20 && year
< 48) {
1046 guess
= "ARC console";
1047 } else if (year
>= 48 && year
< 72) {
1049 guess
= "Digital UNIX";
1050 #if defined(__mips__)
1051 } else if (year
>= 72 && year
< 74) {
1053 guess
= "Digital DECstation";
1055 } else if (year
>= 70) {
1057 guess
= "Standard PC (1900)";
1061 printk(KERN_INFO
"rtc: %s epoch (%lu) detected\n", guess
, epoch
);
1064 if (rtc_has_irq
== 0)
1067 spin_lock_irq(&rtc_lock
);
1069 if (!hpet_set_periodic_freq(rtc_freq
)) {
1070 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1071 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT
) & 0xF0) | 0x06), RTC_FREQ_SELECT
);
1073 spin_unlock_irq(&rtc_lock
);
1077 (void) init_sysctl();
1079 printk(KERN_INFO
"Real Time Clock Driver v" RTC_VERSION
"\n");
1084 static void __exit
rtc_exit (void)
1087 remove_proc_entry ("driver/rtc", NULL
);
1088 misc_deregister(&rtc_dev
);
1090 #ifdef CONFIG_SPARC32
1092 free_irq (rtc_irq
, &rtc_port
);
1095 release_region(RTC_PORT(0), RTC_IO_EXTENT
);
1097 release_mem_region(RTC_PORT(0), RTC_IO_EXTENT
);
1100 free_irq (RTC_IRQ
, NULL
);
1102 #endif /* CONFIG_SPARC32 */
1105 module_init(rtc_init
);
1106 module_exit(rtc_exit
);
1110 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1111 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1112 * Since the interrupt handler doesn't get called, the IRQ status
1113 * byte doesn't get read, and the RTC stops generating interrupts.
1114 * A timer is set, and will call this function if/when that happens.
1115 * To get it out of this stalled state, we just read the status.
1116 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1117 * (You *really* shouldn't be trying to use a non-realtime system
1118 * for something that requires a steady > 1KHz signal anyways.)
1121 static void rtc_dropped_irq(unsigned long data
)
1125 spin_lock_irq (&rtc_lock
);
1127 if (hpet_rtc_dropped_irq()) {
1128 spin_unlock_irq(&rtc_lock
);
1132 /* Just in case someone disabled the timer from behind our back... */
1133 if (rtc_status
& RTC_TIMER_ON
)
1134 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
1136 rtc_irq_data
+= ((rtc_freq
/HZ
)<<8);
1137 rtc_irq_data
&= ~0xff;
1138 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0); /* restart */
1142 spin_unlock_irq(&rtc_lock
);
1144 if (printk_ratelimit())
1145 printk(KERN_WARNING
"rtc: lost some interrupts at %ldHz.\n", freq
);
1147 /* Now we have new data */
1148 wake_up_interruptible(&rtc_wait
);
1150 kill_fasync (&rtc_async_queue
, SIGIO
, POLL_IN
);
1154 #ifdef CONFIG_PROC_FS
1156 * Info exported via "/proc/driver/rtc".
1159 static int rtc_proc_show(struct seq_file
*seq
, void *v
)
1161 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1162 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1164 unsigned char batt
, ctrl
;
1167 spin_lock_irq(&rtc_lock
);
1168 batt
= CMOS_READ(RTC_VALID
) & RTC_VRT
;
1169 ctrl
= CMOS_READ(RTC_CONTROL
);
1171 spin_unlock_irq(&rtc_lock
);
1174 rtc_get_rtc_time(&tm
);
1177 * There is no way to tell if the luser has the RTC set for local
1178 * time or for Universal Standard Time (GMT). Probably local though.
1181 "rtc_time\t: %02d:%02d:%02d\n"
1182 "rtc_date\t: %04d-%02d-%02d\n"
1183 "rtc_epoch\t: %04lu\n",
1184 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
1185 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
, epoch
);
1187 get_rtc_alm_time(&tm
);
1190 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1191 * match any value for that particular field. Values that are
1192 * greater than a valid time, but less than 0xc0 shouldn't appear.
1194 seq_puts(seq
, "alarm\t\t: ");
1195 if (tm
.tm_hour
<= 24)
1196 seq_printf(seq
, "%02d:", tm
.tm_hour
);
1198 seq_puts(seq
, "**:");
1200 if (tm
.tm_min
<= 59)
1201 seq_printf(seq
, "%02d:", tm
.tm_min
);
1203 seq_puts(seq
, "**:");
1205 if (tm
.tm_sec
<= 59)
1206 seq_printf(seq
, "%02d\n", tm
.tm_sec
);
1208 seq_puts(seq
, "**\n");
1211 "DST_enable\t: %s\n"
1214 "square_wave\t: %s\n"
1216 "update_IRQ\t: %s\n"
1217 "periodic_IRQ\t: %s\n"
1218 "periodic_freq\t: %ld\n"
1219 "batt_status\t: %s\n",
1228 batt
? "okay" : "dead");
1235 static int rtc_proc_open(struct inode
*inode
, struct file
*file
)
1237 return single_open(file
, rtc_proc_show
, NULL
);
1241 void rtc_get_rtc_time(struct rtc_time
*rtc_tm
)
1243 unsigned long uip_watchdog
= jiffies
, flags
;
1245 #ifdef CONFIG_MACH_DECSTATION
1246 unsigned int real_year
;
1250 * read RTC once any update in progress is done. The update
1251 * can take just over 2ms. We wait 20ms. There is no need to
1252 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1253 * If you need to know *exactly* when a second has started, enable
1254 * periodic update complete interrupts, (via ioctl) and then
1255 * immediately read /dev/rtc which will block until you get the IRQ.
1256 * Once the read clears, read the RTC time (again via ioctl). Easy.
1259 while (rtc_is_updating() != 0 && jiffies
- uip_watchdog
< 2*HZ
/100)
1263 * Only the values that we read from the RTC are set. We leave
1264 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1265 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1266 * only updated by the RTC when initially set to a non-zero value.
1268 spin_lock_irqsave(&rtc_lock
, flags
);
1269 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1270 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1271 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1272 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1273 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1274 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1275 /* Only set from 2.6.16 onwards */
1276 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1278 #ifdef CONFIG_MACH_DECSTATION
1279 real_year
= CMOS_READ(RTC_DEC_YEAR
);
1281 ctrl
= CMOS_READ(RTC_CONTROL
);
1282 spin_unlock_irqrestore(&rtc_lock
, flags
);
1284 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1286 BCD_TO_BIN(rtc_tm
->tm_sec
);
1287 BCD_TO_BIN(rtc_tm
->tm_min
);
1288 BCD_TO_BIN(rtc_tm
->tm_hour
);
1289 BCD_TO_BIN(rtc_tm
->tm_mday
);
1290 BCD_TO_BIN(rtc_tm
->tm_mon
);
1291 BCD_TO_BIN(rtc_tm
->tm_year
);
1292 BCD_TO_BIN(rtc_tm
->tm_wday
);
1295 #ifdef CONFIG_MACH_DECSTATION
1296 rtc_tm
->tm_year
+= real_year
- 72;
1300 * Account for differences between how the RTC uses the values
1301 * and how they are defined in a struct rtc_time;
1303 if ((rtc_tm
->tm_year
+= (epoch
- 1900)) <= 69)
1304 rtc_tm
->tm_year
+= 100;
1309 static void get_rtc_alm_time(struct rtc_time
*alm_tm
)
1314 * Only the values that we read from the RTC are set. That
1315 * means only tm_hour, tm_min, and tm_sec.
1317 spin_lock_irq(&rtc_lock
);
1318 alm_tm
->tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
1319 alm_tm
->tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
1320 alm_tm
->tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
1321 ctrl
= CMOS_READ(RTC_CONTROL
);
1322 spin_unlock_irq(&rtc_lock
);
1324 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1326 BCD_TO_BIN(alm_tm
->tm_sec
);
1327 BCD_TO_BIN(alm_tm
->tm_min
);
1328 BCD_TO_BIN(alm_tm
->tm_hour
);
1334 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1335 * Rumour has it that if you frob the interrupt enable/disable
1336 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1337 * ensure you actually start getting interrupts. Probably for
1338 * compatibility with older/broken chipset RTC implementations.
1339 * We also clear out any old irq data after an ioctl() that
1340 * meddles with the interrupt enable/disable bits.
1343 static void mask_rtc_irq_bit_locked(unsigned char bit
)
1347 if (hpet_mask_rtc_irq_bit(bit
))
1349 val
= CMOS_READ(RTC_CONTROL
);
1351 CMOS_WRITE(val
, RTC_CONTROL
);
1352 CMOS_READ(RTC_INTR_FLAGS
);
1357 static void set_rtc_irq_bit_locked(unsigned char bit
)
1361 if (hpet_set_rtc_irq_bit(bit
))
1363 val
= CMOS_READ(RTC_CONTROL
);
1365 CMOS_WRITE(val
, RTC_CONTROL
);
1366 CMOS_READ(RTC_INTR_FLAGS
);
1372 MODULE_AUTHOR("Paul Gortmaker");
1373 MODULE_LICENSE("GPL");
1374 MODULE_ALIAS_MISCDEV(RTC_MINOR
);