[PATCH] md: fix resync speed calculation for restarted resyncs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blob4bd3ccf363bdbb5c6f5fa3cdfcbf7580ab1c0ba9
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/suspend.h>
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
47 #include <linux/init.h>
49 #include <linux/file.h>
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
55 #include <asm/unaligned.h>
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
74 static void md_print_devices(void);
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
99 static inline int speed_max(mddev_t *mddev)
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
105 static struct ctl_table_header *raid_table_header;
107 static ctl_table raid_table[] = {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = 0644,
114 .proc_handler = &proc_dointvec,
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = 0644,
122 .proc_handler = &proc_dointvec,
124 { .ctl_name = 0 }
127 static ctl_table raid_dir_table[] = {
129 .ctl_name = DEV_RAID,
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = 0555,
133 .child = raid_table,
135 { .ctl_name = 0 }
138 static ctl_table raid_root_table[] = {
140 .ctl_name = CTL_DEV,
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
146 { .ctl_name = 0 }
149 static struct block_device_operations md_fops;
151 static int start_readonly;
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
157 * count increases.
159 * Events are:
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 EXPORT_SYMBOL_GPL(md_new_event);
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
176 static void md_new_event_inintr(mddev_t *mddev)
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
197 #define ITERATE_MDDEV(mddev,tmp) \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
201 mddev = NULL;}); \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
209 tmp = tmp->next;}) \
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
215 bio_io_error(bio, bio->bi_size);
216 return 0;
219 static inline mddev_t *mddev_get(mddev_t *mddev)
221 atomic_inc(&mddev->active);
222 return mddev;
225 static void mddev_put(mddev_t *mddev)
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 return;
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
234 } else
235 spin_unlock(&all_mddevs_lock);
238 static mddev_t * mddev_find(dev_t unit)
240 mddev_t *mddev, *new = NULL;
242 retry:
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
246 mddev_get(mddev);
247 spin_unlock(&all_mddevs_lock);
248 kfree(new);
249 return mddev;
252 if (new) {
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
255 return new;
257 spin_unlock(&all_mddevs_lock);
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
260 if (!new)
261 return NULL;
263 new->unit = unit;
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
266 else
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
277 new->queue = blk_alloc_queue(GFP_KERNEL);
278 if (!new->queue) {
279 kfree(new);
280 return NULL;
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
284 blk_queue_make_request(new->queue, md_fail_request);
286 goto retry;
289 static inline int mddev_lock(mddev_t * mddev)
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 static inline int mddev_trylock(mddev_t * mddev)
296 return mutex_trylock(&mddev->reconfig_mutex);
299 static inline void mddev_unlock(mddev_t * mddev)
301 mutex_unlock(&mddev->reconfig_mutex);
303 md_wakeup_thread(mddev->thread);
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
308 mdk_rdev_t * rdev;
309 struct list_head *tmp;
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
313 return rdev;
315 return NULL;
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
320 struct list_head *tmp;
321 mdk_rdev_t *rdev;
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
325 return rdev;
327 return NULL;
330 static struct mdk_personality *find_pers(int level, char *clevel)
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
335 return pers;
336 if (strcmp(pers->name, clevel)==0)
337 return pers;
339 return NULL;
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
350 sector_t size;
352 size = rdev->sb_offset;
354 if (chunk_size)
355 size &= ~((sector_t)chunk_size/1024 - 1);
356 return size;
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
361 if (rdev->sb_page)
362 MD_BUG();
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
367 return -EINVAL;
370 return 0;
373 static void free_disk_sb(mdk_rdev_t * rdev)
375 if (rdev->sb_page) {
376 put_page(rdev->sb_page);
377 rdev->sb_loaded = 0;
378 rdev->sb_page = NULL;
379 rdev->sb_offset = 0;
380 rdev->size = 0;
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
389 if (bio->bi_size)
390 return 1;
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
393 md_error(mddev, rdev);
395 if (atomic_dec_and_test(&mddev->pending_writes))
396 wake_up(&mddev->sb_wait);
397 bio_put(bio);
398 return 0;
401 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
403 struct bio *bio2 = bio->bi_private;
404 mdk_rdev_t *rdev = bio2->bi_private;
405 mddev_t *mddev = rdev->mddev;
406 if (bio->bi_size)
407 return 1;
409 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
410 error == -EOPNOTSUPP) {
411 unsigned long flags;
412 /* barriers don't appear to be supported :-( */
413 set_bit(BarriersNotsupp, &rdev->flags);
414 mddev->barriers_work = 0;
415 spin_lock_irqsave(&mddev->write_lock, flags);
416 bio2->bi_next = mddev->biolist;
417 mddev->biolist = bio2;
418 spin_unlock_irqrestore(&mddev->write_lock, flags);
419 wake_up(&mddev->sb_wait);
420 bio_put(bio);
421 return 0;
423 bio_put(bio2);
424 bio->bi_private = rdev;
425 return super_written(bio, bytes_done, error);
428 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
429 sector_t sector, int size, struct page *page)
431 /* write first size bytes of page to sector of rdev
432 * Increment mddev->pending_writes before returning
433 * and decrement it on completion, waking up sb_wait
434 * if zero is reached.
435 * If an error occurred, call md_error
437 * As we might need to resubmit the request if BIO_RW_BARRIER
438 * causes ENOTSUPP, we allocate a spare bio...
440 struct bio *bio = bio_alloc(GFP_NOIO, 1);
441 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443 bio->bi_bdev = rdev->bdev;
444 bio->bi_sector = sector;
445 bio_add_page(bio, page, size, 0);
446 bio->bi_private = rdev;
447 bio->bi_end_io = super_written;
448 bio->bi_rw = rw;
450 atomic_inc(&mddev->pending_writes);
451 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
452 struct bio *rbio;
453 rw |= (1<<BIO_RW_BARRIER);
454 rbio = bio_clone(bio, GFP_NOIO);
455 rbio->bi_private = bio;
456 rbio->bi_end_io = super_written_barrier;
457 submit_bio(rw, rbio);
458 } else
459 submit_bio(rw, bio);
462 void md_super_wait(mddev_t *mddev)
464 /* wait for all superblock writes that were scheduled to complete.
465 * if any had to be retried (due to BARRIER problems), retry them
467 DEFINE_WAIT(wq);
468 for(;;) {
469 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
470 if (atomic_read(&mddev->pending_writes)==0)
471 break;
472 while (mddev->biolist) {
473 struct bio *bio;
474 spin_lock_irq(&mddev->write_lock);
475 bio = mddev->biolist;
476 mddev->biolist = bio->bi_next ;
477 bio->bi_next = NULL;
478 spin_unlock_irq(&mddev->write_lock);
479 submit_bio(bio->bi_rw, bio);
481 schedule();
483 finish_wait(&mddev->sb_wait, &wq);
486 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
488 if (bio->bi_size)
489 return 1;
491 complete((struct completion*)bio->bi_private);
492 return 0;
495 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
496 struct page *page, int rw)
498 struct bio *bio = bio_alloc(GFP_NOIO, 1);
499 struct completion event;
500 int ret;
502 rw |= (1 << BIO_RW_SYNC);
504 bio->bi_bdev = bdev;
505 bio->bi_sector = sector;
506 bio_add_page(bio, page, size, 0);
507 init_completion(&event);
508 bio->bi_private = &event;
509 bio->bi_end_io = bi_complete;
510 submit_bio(rw, bio);
511 wait_for_completion(&event);
513 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
514 bio_put(bio);
515 return ret;
517 EXPORT_SYMBOL_GPL(sync_page_io);
519 static int read_disk_sb(mdk_rdev_t * rdev, int size)
521 char b[BDEVNAME_SIZE];
522 if (!rdev->sb_page) {
523 MD_BUG();
524 return -EINVAL;
526 if (rdev->sb_loaded)
527 return 0;
530 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
531 goto fail;
532 rdev->sb_loaded = 1;
533 return 0;
535 fail:
536 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
537 bdevname(rdev->bdev,b));
538 return -EINVAL;
541 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
543 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
544 (sb1->set_uuid1 == sb2->set_uuid1) &&
545 (sb1->set_uuid2 == sb2->set_uuid2) &&
546 (sb1->set_uuid3 == sb2->set_uuid3))
548 return 1;
550 return 0;
554 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
556 int ret;
557 mdp_super_t *tmp1, *tmp2;
559 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
560 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
562 if (!tmp1 || !tmp2) {
563 ret = 0;
564 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
565 goto abort;
568 *tmp1 = *sb1;
569 *tmp2 = *sb2;
572 * nr_disks is not constant
574 tmp1->nr_disks = 0;
575 tmp2->nr_disks = 0;
577 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
578 ret = 0;
579 else
580 ret = 1;
582 abort:
583 kfree(tmp1);
584 kfree(tmp2);
585 return ret;
588 static unsigned int calc_sb_csum(mdp_super_t * sb)
590 unsigned int disk_csum, csum;
592 disk_csum = sb->sb_csum;
593 sb->sb_csum = 0;
594 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
595 sb->sb_csum = disk_csum;
596 return csum;
601 * Handle superblock details.
602 * We want to be able to handle multiple superblock formats
603 * so we have a common interface to them all, and an array of
604 * different handlers.
605 * We rely on user-space to write the initial superblock, and support
606 * reading and updating of superblocks.
607 * Interface methods are:
608 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
609 * loads and validates a superblock on dev.
610 * if refdev != NULL, compare superblocks on both devices
611 * Return:
612 * 0 - dev has a superblock that is compatible with refdev
613 * 1 - dev has a superblock that is compatible and newer than refdev
614 * so dev should be used as the refdev in future
615 * -EINVAL superblock incompatible or invalid
616 * -othererror e.g. -EIO
618 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
619 * Verify that dev is acceptable into mddev.
620 * The first time, mddev->raid_disks will be 0, and data from
621 * dev should be merged in. Subsequent calls check that dev
622 * is new enough. Return 0 or -EINVAL
624 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
625 * Update the superblock for rdev with data in mddev
626 * This does not write to disc.
630 struct super_type {
631 char *name;
632 struct module *owner;
633 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
634 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
635 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 * load_super for 0.90.0
641 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
643 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
644 mdp_super_t *sb;
645 int ret;
646 sector_t sb_offset;
649 * Calculate the position of the superblock,
650 * it's at the end of the disk.
652 * It also happens to be a multiple of 4Kb.
654 sb_offset = calc_dev_sboffset(rdev->bdev);
655 rdev->sb_offset = sb_offset;
657 ret = read_disk_sb(rdev, MD_SB_BYTES);
658 if (ret) return ret;
660 ret = -EINVAL;
662 bdevname(rdev->bdev, b);
663 sb = (mdp_super_t*)page_address(rdev->sb_page);
665 if (sb->md_magic != MD_SB_MAGIC) {
666 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
668 goto abort;
671 if (sb->major_version != 0 ||
672 sb->minor_version < 90 ||
673 sb->minor_version > 91) {
674 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
675 sb->major_version, sb->minor_version,
677 goto abort;
680 if (sb->raid_disks <= 0)
681 goto abort;
683 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
684 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
686 goto abort;
689 rdev->preferred_minor = sb->md_minor;
690 rdev->data_offset = 0;
691 rdev->sb_size = MD_SB_BYTES;
693 if (sb->level == LEVEL_MULTIPATH)
694 rdev->desc_nr = -1;
695 else
696 rdev->desc_nr = sb->this_disk.number;
698 if (refdev == 0)
699 ret = 1;
700 else {
701 __u64 ev1, ev2;
702 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
703 if (!uuid_equal(refsb, sb)) {
704 printk(KERN_WARNING "md: %s has different UUID to %s\n",
705 b, bdevname(refdev->bdev,b2));
706 goto abort;
708 if (!sb_equal(refsb, sb)) {
709 printk(KERN_WARNING "md: %s has same UUID"
710 " but different superblock to %s\n",
711 b, bdevname(refdev->bdev, b2));
712 goto abort;
714 ev1 = md_event(sb);
715 ev2 = md_event(refsb);
716 if (ev1 > ev2)
717 ret = 1;
718 else
719 ret = 0;
721 rdev->size = calc_dev_size(rdev, sb->chunk_size);
723 if (rdev->size < sb->size && sb->level > 1)
724 /* "this cannot possibly happen" ... */
725 ret = -EINVAL;
727 abort:
728 return ret;
732 * validate_super for 0.90.0
734 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
736 mdp_disk_t *desc;
737 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
738 __u64 ev1 = md_event(sb);
740 rdev->raid_disk = -1;
741 rdev->flags = 0;
742 if (mddev->raid_disks == 0) {
743 mddev->major_version = 0;
744 mddev->minor_version = sb->minor_version;
745 mddev->patch_version = sb->patch_version;
746 mddev->persistent = ! sb->not_persistent;
747 mddev->chunk_size = sb->chunk_size;
748 mddev->ctime = sb->ctime;
749 mddev->utime = sb->utime;
750 mddev->level = sb->level;
751 mddev->clevel[0] = 0;
752 mddev->layout = sb->layout;
753 mddev->raid_disks = sb->raid_disks;
754 mddev->size = sb->size;
755 mddev->events = ev1;
756 mddev->bitmap_offset = 0;
757 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
759 if (mddev->minor_version >= 91) {
760 mddev->reshape_position = sb->reshape_position;
761 mddev->delta_disks = sb->delta_disks;
762 mddev->new_level = sb->new_level;
763 mddev->new_layout = sb->new_layout;
764 mddev->new_chunk = sb->new_chunk;
765 } else {
766 mddev->reshape_position = MaxSector;
767 mddev->delta_disks = 0;
768 mddev->new_level = mddev->level;
769 mddev->new_layout = mddev->layout;
770 mddev->new_chunk = mddev->chunk_size;
773 if (sb->state & (1<<MD_SB_CLEAN))
774 mddev->recovery_cp = MaxSector;
775 else {
776 if (sb->events_hi == sb->cp_events_hi &&
777 sb->events_lo == sb->cp_events_lo) {
778 mddev->recovery_cp = sb->recovery_cp;
779 } else
780 mddev->recovery_cp = 0;
783 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
784 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
785 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
786 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
788 mddev->max_disks = MD_SB_DISKS;
790 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
791 mddev->bitmap_file == NULL) {
792 if (mddev->level != 1 && mddev->level != 4
793 && mddev->level != 5 && mddev->level != 6
794 && mddev->level != 10) {
795 /* FIXME use a better test */
796 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
797 return -EINVAL;
799 mddev->bitmap_offset = mddev->default_bitmap_offset;
802 } else if (mddev->pers == NULL) {
803 /* Insist on good event counter while assembling */
804 ++ev1;
805 if (ev1 < mddev->events)
806 return -EINVAL;
807 } else if (mddev->bitmap) {
808 /* if adding to array with a bitmap, then we can accept an
809 * older device ... but not too old.
811 if (ev1 < mddev->bitmap->events_cleared)
812 return 0;
813 } else {
814 if (ev1 < mddev->events)
815 /* just a hot-add of a new device, leave raid_disk at -1 */
816 return 0;
819 if (mddev->level != LEVEL_MULTIPATH) {
820 desc = sb->disks + rdev->desc_nr;
822 if (desc->state & (1<<MD_DISK_FAULTY))
823 set_bit(Faulty, &rdev->flags);
824 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
825 desc->raid_disk < mddev->raid_disks */) {
826 set_bit(In_sync, &rdev->flags);
827 rdev->raid_disk = desc->raid_disk;
829 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
830 set_bit(WriteMostly, &rdev->flags);
831 } else /* MULTIPATH are always insync */
832 set_bit(In_sync, &rdev->flags);
833 return 0;
837 * sync_super for 0.90.0
839 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
841 mdp_super_t *sb;
842 struct list_head *tmp;
843 mdk_rdev_t *rdev2;
844 int next_spare = mddev->raid_disks;
847 /* make rdev->sb match mddev data..
849 * 1/ zero out disks
850 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
851 * 3/ any empty disks < next_spare become removed
853 * disks[0] gets initialised to REMOVED because
854 * we cannot be sure from other fields if it has
855 * been initialised or not.
857 int i;
858 int active=0, working=0,failed=0,spare=0,nr_disks=0;
860 rdev->sb_size = MD_SB_BYTES;
862 sb = (mdp_super_t*)page_address(rdev->sb_page);
864 memset(sb, 0, sizeof(*sb));
866 sb->md_magic = MD_SB_MAGIC;
867 sb->major_version = mddev->major_version;
868 sb->patch_version = mddev->patch_version;
869 sb->gvalid_words = 0; /* ignored */
870 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
871 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
872 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
873 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
875 sb->ctime = mddev->ctime;
876 sb->level = mddev->level;
877 sb->size = mddev->size;
878 sb->raid_disks = mddev->raid_disks;
879 sb->md_minor = mddev->md_minor;
880 sb->not_persistent = !mddev->persistent;
881 sb->utime = mddev->utime;
882 sb->state = 0;
883 sb->events_hi = (mddev->events>>32);
884 sb->events_lo = (u32)mddev->events;
886 if (mddev->reshape_position == MaxSector)
887 sb->minor_version = 90;
888 else {
889 sb->minor_version = 91;
890 sb->reshape_position = mddev->reshape_position;
891 sb->new_level = mddev->new_level;
892 sb->delta_disks = mddev->delta_disks;
893 sb->new_layout = mddev->new_layout;
894 sb->new_chunk = mddev->new_chunk;
896 mddev->minor_version = sb->minor_version;
897 if (mddev->in_sync)
899 sb->recovery_cp = mddev->recovery_cp;
900 sb->cp_events_hi = (mddev->events>>32);
901 sb->cp_events_lo = (u32)mddev->events;
902 if (mddev->recovery_cp == MaxSector)
903 sb->state = (1<< MD_SB_CLEAN);
904 } else
905 sb->recovery_cp = 0;
907 sb->layout = mddev->layout;
908 sb->chunk_size = mddev->chunk_size;
910 if (mddev->bitmap && mddev->bitmap_file == NULL)
911 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
913 sb->disks[0].state = (1<<MD_DISK_REMOVED);
914 ITERATE_RDEV(mddev,rdev2,tmp) {
915 mdp_disk_t *d;
916 int desc_nr;
917 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
918 && !test_bit(Faulty, &rdev2->flags))
919 desc_nr = rdev2->raid_disk;
920 else
921 desc_nr = next_spare++;
922 rdev2->desc_nr = desc_nr;
923 d = &sb->disks[rdev2->desc_nr];
924 nr_disks++;
925 d->number = rdev2->desc_nr;
926 d->major = MAJOR(rdev2->bdev->bd_dev);
927 d->minor = MINOR(rdev2->bdev->bd_dev);
928 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
929 && !test_bit(Faulty, &rdev2->flags))
930 d->raid_disk = rdev2->raid_disk;
931 else
932 d->raid_disk = rdev2->desc_nr; /* compatibility */
933 if (test_bit(Faulty, &rdev2->flags))
934 d->state = (1<<MD_DISK_FAULTY);
935 else if (test_bit(In_sync, &rdev2->flags)) {
936 d->state = (1<<MD_DISK_ACTIVE);
937 d->state |= (1<<MD_DISK_SYNC);
938 active++;
939 working++;
940 } else {
941 d->state = 0;
942 spare++;
943 working++;
945 if (test_bit(WriteMostly, &rdev2->flags))
946 d->state |= (1<<MD_DISK_WRITEMOSTLY);
948 /* now set the "removed" and "faulty" bits on any missing devices */
949 for (i=0 ; i < mddev->raid_disks ; i++) {
950 mdp_disk_t *d = &sb->disks[i];
951 if (d->state == 0 && d->number == 0) {
952 d->number = i;
953 d->raid_disk = i;
954 d->state = (1<<MD_DISK_REMOVED);
955 d->state |= (1<<MD_DISK_FAULTY);
956 failed++;
959 sb->nr_disks = nr_disks;
960 sb->active_disks = active;
961 sb->working_disks = working;
962 sb->failed_disks = failed;
963 sb->spare_disks = spare;
965 sb->this_disk = sb->disks[rdev->desc_nr];
966 sb->sb_csum = calc_sb_csum(sb);
970 * version 1 superblock
973 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
975 unsigned int disk_csum, csum;
976 unsigned long long newcsum;
977 int size = 256 + le32_to_cpu(sb->max_dev)*2;
978 unsigned int *isuper = (unsigned int*)sb;
979 int i;
981 disk_csum = sb->sb_csum;
982 sb->sb_csum = 0;
983 newcsum = 0;
984 for (i=0; size>=4; size -= 4 )
985 newcsum += le32_to_cpu(*isuper++);
987 if (size == 2)
988 newcsum += le16_to_cpu(*(unsigned short*) isuper);
990 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
991 sb->sb_csum = disk_csum;
992 return cpu_to_le32(csum);
995 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
997 struct mdp_superblock_1 *sb;
998 int ret;
999 sector_t sb_offset;
1000 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1001 int bmask;
1004 * Calculate the position of the superblock.
1005 * It is always aligned to a 4K boundary and
1006 * depeding on minor_version, it can be:
1007 * 0: At least 8K, but less than 12K, from end of device
1008 * 1: At start of device
1009 * 2: 4K from start of device.
1011 switch(minor_version) {
1012 case 0:
1013 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1014 sb_offset -= 8*2;
1015 sb_offset &= ~(sector_t)(4*2-1);
1016 /* convert from sectors to K */
1017 sb_offset /= 2;
1018 break;
1019 case 1:
1020 sb_offset = 0;
1021 break;
1022 case 2:
1023 sb_offset = 4;
1024 break;
1025 default:
1026 return -EINVAL;
1028 rdev->sb_offset = sb_offset;
1030 /* superblock is rarely larger than 1K, but it can be larger,
1031 * and it is safe to read 4k, so we do that
1033 ret = read_disk_sb(rdev, 4096);
1034 if (ret) return ret;
1037 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1039 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1040 sb->major_version != cpu_to_le32(1) ||
1041 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1042 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1043 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1044 return -EINVAL;
1046 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1047 printk("md: invalid superblock checksum on %s\n",
1048 bdevname(rdev->bdev,b));
1049 return -EINVAL;
1051 if (le64_to_cpu(sb->data_size) < 10) {
1052 printk("md: data_size too small on %s\n",
1053 bdevname(rdev->bdev,b));
1054 return -EINVAL;
1056 rdev->preferred_minor = 0xffff;
1057 rdev->data_offset = le64_to_cpu(sb->data_offset);
1058 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1060 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1061 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1062 if (rdev->sb_size & bmask)
1063 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1065 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1066 rdev->desc_nr = -1;
1067 else
1068 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1070 if (refdev == 0)
1071 ret = 1;
1072 else {
1073 __u64 ev1, ev2;
1074 struct mdp_superblock_1 *refsb =
1075 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1077 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1078 sb->level != refsb->level ||
1079 sb->layout != refsb->layout ||
1080 sb->chunksize != refsb->chunksize) {
1081 printk(KERN_WARNING "md: %s has strangely different"
1082 " superblock to %s\n",
1083 bdevname(rdev->bdev,b),
1084 bdevname(refdev->bdev,b2));
1085 return -EINVAL;
1087 ev1 = le64_to_cpu(sb->events);
1088 ev2 = le64_to_cpu(refsb->events);
1090 if (ev1 > ev2)
1091 ret = 1;
1092 else
1093 ret = 0;
1095 if (minor_version)
1096 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1097 else
1098 rdev->size = rdev->sb_offset;
1099 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1100 return -EINVAL;
1101 rdev->size = le64_to_cpu(sb->data_size)/2;
1102 if (le32_to_cpu(sb->chunksize))
1103 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1105 if (le32_to_cpu(sb->size) > rdev->size*2)
1106 return -EINVAL;
1107 return ret;
1110 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1112 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1113 __u64 ev1 = le64_to_cpu(sb->events);
1115 rdev->raid_disk = -1;
1116 rdev->flags = 0;
1117 if (mddev->raid_disks == 0) {
1118 mddev->major_version = 1;
1119 mddev->patch_version = 0;
1120 mddev->persistent = 1;
1121 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1122 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1123 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1124 mddev->level = le32_to_cpu(sb->level);
1125 mddev->clevel[0] = 0;
1126 mddev->layout = le32_to_cpu(sb->layout);
1127 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1128 mddev->size = le64_to_cpu(sb->size)/2;
1129 mddev->events = ev1;
1130 mddev->bitmap_offset = 0;
1131 mddev->default_bitmap_offset = 1024 >> 9;
1133 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1134 memcpy(mddev->uuid, sb->set_uuid, 16);
1136 mddev->max_disks = (4096-256)/2;
1138 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1139 mddev->bitmap_file == NULL ) {
1140 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1141 && mddev->level != 10) {
1142 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1143 return -EINVAL;
1145 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1147 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1148 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1149 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1150 mddev->new_level = le32_to_cpu(sb->new_level);
1151 mddev->new_layout = le32_to_cpu(sb->new_layout);
1152 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1153 } else {
1154 mddev->reshape_position = MaxSector;
1155 mddev->delta_disks = 0;
1156 mddev->new_level = mddev->level;
1157 mddev->new_layout = mddev->layout;
1158 mddev->new_chunk = mddev->chunk_size;
1161 } else if (mddev->pers == NULL) {
1162 /* Insist of good event counter while assembling */
1163 ++ev1;
1164 if (ev1 < mddev->events)
1165 return -EINVAL;
1166 } else if (mddev->bitmap) {
1167 /* If adding to array with a bitmap, then we can accept an
1168 * older device, but not too old.
1170 if (ev1 < mddev->bitmap->events_cleared)
1171 return 0;
1172 } else {
1173 if (ev1 < mddev->events)
1174 /* just a hot-add of a new device, leave raid_disk at -1 */
1175 return 0;
1177 if (mddev->level != LEVEL_MULTIPATH) {
1178 int role;
1179 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1180 switch(role) {
1181 case 0xffff: /* spare */
1182 break;
1183 case 0xfffe: /* faulty */
1184 set_bit(Faulty, &rdev->flags);
1185 break;
1186 default:
1187 if ((le32_to_cpu(sb->feature_map) &
1188 MD_FEATURE_RECOVERY_OFFSET))
1189 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1190 else
1191 set_bit(In_sync, &rdev->flags);
1192 rdev->raid_disk = role;
1193 break;
1195 if (sb->devflags & WriteMostly1)
1196 set_bit(WriteMostly, &rdev->flags);
1197 } else /* MULTIPATH are always insync */
1198 set_bit(In_sync, &rdev->flags);
1200 return 0;
1203 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1205 struct mdp_superblock_1 *sb;
1206 struct list_head *tmp;
1207 mdk_rdev_t *rdev2;
1208 int max_dev, i;
1209 /* make rdev->sb match mddev and rdev data. */
1211 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1213 sb->feature_map = 0;
1214 sb->pad0 = 0;
1215 sb->recovery_offset = cpu_to_le64(0);
1216 memset(sb->pad1, 0, sizeof(sb->pad1));
1217 memset(sb->pad2, 0, sizeof(sb->pad2));
1218 memset(sb->pad3, 0, sizeof(sb->pad3));
1220 sb->utime = cpu_to_le64((__u64)mddev->utime);
1221 sb->events = cpu_to_le64(mddev->events);
1222 if (mddev->in_sync)
1223 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1224 else
1225 sb->resync_offset = cpu_to_le64(0);
1227 sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1229 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1230 sb->size = cpu_to_le64(mddev->size<<1);
1232 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1233 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1234 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1237 if (rdev->raid_disk >= 0 &&
1238 !test_bit(In_sync, &rdev->flags) &&
1239 rdev->recovery_offset > 0) {
1240 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1241 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1244 if (mddev->reshape_position != MaxSector) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1246 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1247 sb->new_layout = cpu_to_le32(mddev->new_layout);
1248 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1249 sb->new_level = cpu_to_le32(mddev->new_level);
1250 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1253 max_dev = 0;
1254 ITERATE_RDEV(mddev,rdev2,tmp)
1255 if (rdev2->desc_nr+1 > max_dev)
1256 max_dev = rdev2->desc_nr+1;
1258 sb->max_dev = cpu_to_le32(max_dev);
1259 for (i=0; i<max_dev;i++)
1260 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1262 ITERATE_RDEV(mddev,rdev2,tmp) {
1263 i = rdev2->desc_nr;
1264 if (test_bit(Faulty, &rdev2->flags))
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266 else if (test_bit(In_sync, &rdev2->flags))
1267 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1268 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1269 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1270 else
1271 sb->dev_roles[i] = cpu_to_le16(0xffff);
1274 sb->sb_csum = calc_sb_1_csum(sb);
1278 static struct super_type super_types[] = {
1279 [0] = {
1280 .name = "0.90.0",
1281 .owner = THIS_MODULE,
1282 .load_super = super_90_load,
1283 .validate_super = super_90_validate,
1284 .sync_super = super_90_sync,
1286 [1] = {
1287 .name = "md-1",
1288 .owner = THIS_MODULE,
1289 .load_super = super_1_load,
1290 .validate_super = super_1_validate,
1291 .sync_super = super_1_sync,
1295 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1297 struct list_head *tmp;
1298 mdk_rdev_t *rdev;
1300 ITERATE_RDEV(mddev,rdev,tmp)
1301 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1302 return rdev;
1304 return NULL;
1307 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1309 struct list_head *tmp;
1310 mdk_rdev_t *rdev;
1312 ITERATE_RDEV(mddev1,rdev,tmp)
1313 if (match_dev_unit(mddev2, rdev))
1314 return 1;
1316 return 0;
1319 static LIST_HEAD(pending_raid_disks);
1321 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1323 mdk_rdev_t *same_pdev;
1324 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1325 struct kobject *ko;
1326 char *s;
1328 if (rdev->mddev) {
1329 MD_BUG();
1330 return -EINVAL;
1332 /* make sure rdev->size exceeds mddev->size */
1333 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1334 if (mddev->pers)
1335 /* Cannot change size, so fail */
1336 return -ENOSPC;
1337 else
1338 mddev->size = rdev->size;
1340 same_pdev = match_dev_unit(mddev, rdev);
1341 if (same_pdev)
1342 printk(KERN_WARNING
1343 "%s: WARNING: %s appears to be on the same physical"
1344 " disk as %s. True\n protection against single-disk"
1345 " failure might be compromised.\n",
1346 mdname(mddev), bdevname(rdev->bdev,b),
1347 bdevname(same_pdev->bdev,b2));
1349 /* Verify rdev->desc_nr is unique.
1350 * If it is -1, assign a free number, else
1351 * check number is not in use
1353 if (rdev->desc_nr < 0) {
1354 int choice = 0;
1355 if (mddev->pers) choice = mddev->raid_disks;
1356 while (find_rdev_nr(mddev, choice))
1357 choice++;
1358 rdev->desc_nr = choice;
1359 } else {
1360 if (find_rdev_nr(mddev, rdev->desc_nr))
1361 return -EBUSY;
1363 bdevname(rdev->bdev,b);
1364 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1365 return -ENOMEM;
1366 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1367 *s = '!';
1369 list_add(&rdev->same_set, &mddev->disks);
1370 rdev->mddev = mddev;
1371 printk(KERN_INFO "md: bind<%s>\n", b);
1373 rdev->kobj.parent = &mddev->kobj;
1374 kobject_add(&rdev->kobj);
1376 if (rdev->bdev->bd_part)
1377 ko = &rdev->bdev->bd_part->kobj;
1378 else
1379 ko = &rdev->bdev->bd_disk->kobj;
1380 sysfs_create_link(&rdev->kobj, ko, "block");
1381 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1382 return 0;
1385 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1387 char b[BDEVNAME_SIZE];
1388 if (!rdev->mddev) {
1389 MD_BUG();
1390 return;
1392 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1393 list_del_init(&rdev->same_set);
1394 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1395 rdev->mddev = NULL;
1396 sysfs_remove_link(&rdev->kobj, "block");
1397 kobject_del(&rdev->kobj);
1401 * prevent the device from being mounted, repartitioned or
1402 * otherwise reused by a RAID array (or any other kernel
1403 * subsystem), by bd_claiming the device.
1405 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1407 int err = 0;
1408 struct block_device *bdev;
1409 char b[BDEVNAME_SIZE];
1411 bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1412 if (IS_ERR(bdev)) {
1413 printk(KERN_ERR "md: could not open %s.\n",
1414 __bdevname(dev, b));
1415 return PTR_ERR(bdev);
1417 err = bd_claim(bdev, rdev);
1418 if (err) {
1419 printk(KERN_ERR "md: could not bd_claim %s.\n",
1420 bdevname(bdev, b));
1421 blkdev_put_partition(bdev);
1422 return err;
1424 rdev->bdev = bdev;
1425 return err;
1428 static void unlock_rdev(mdk_rdev_t *rdev)
1430 struct block_device *bdev = rdev->bdev;
1431 rdev->bdev = NULL;
1432 if (!bdev)
1433 MD_BUG();
1434 bd_release(bdev);
1435 blkdev_put_partition(bdev);
1438 void md_autodetect_dev(dev_t dev);
1440 static void export_rdev(mdk_rdev_t * rdev)
1442 char b[BDEVNAME_SIZE];
1443 printk(KERN_INFO "md: export_rdev(%s)\n",
1444 bdevname(rdev->bdev,b));
1445 if (rdev->mddev)
1446 MD_BUG();
1447 free_disk_sb(rdev);
1448 list_del_init(&rdev->same_set);
1449 #ifndef MODULE
1450 md_autodetect_dev(rdev->bdev->bd_dev);
1451 #endif
1452 unlock_rdev(rdev);
1453 kobject_put(&rdev->kobj);
1456 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1458 unbind_rdev_from_array(rdev);
1459 export_rdev(rdev);
1462 static void export_array(mddev_t *mddev)
1464 struct list_head *tmp;
1465 mdk_rdev_t *rdev;
1467 ITERATE_RDEV(mddev,rdev,tmp) {
1468 if (!rdev->mddev) {
1469 MD_BUG();
1470 continue;
1472 kick_rdev_from_array(rdev);
1474 if (!list_empty(&mddev->disks))
1475 MD_BUG();
1476 mddev->raid_disks = 0;
1477 mddev->major_version = 0;
1480 static void print_desc(mdp_disk_t *desc)
1482 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1483 desc->major,desc->minor,desc->raid_disk,desc->state);
1486 static void print_sb(mdp_super_t *sb)
1488 int i;
1490 printk(KERN_INFO
1491 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1492 sb->major_version, sb->minor_version, sb->patch_version,
1493 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1494 sb->ctime);
1495 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1496 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1497 sb->md_minor, sb->layout, sb->chunk_size);
1498 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1499 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1500 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1501 sb->failed_disks, sb->spare_disks,
1502 sb->sb_csum, (unsigned long)sb->events_lo);
1504 printk(KERN_INFO);
1505 for (i = 0; i < MD_SB_DISKS; i++) {
1506 mdp_disk_t *desc;
1508 desc = sb->disks + i;
1509 if (desc->number || desc->major || desc->minor ||
1510 desc->raid_disk || (desc->state && (desc->state != 4))) {
1511 printk(" D %2d: ", i);
1512 print_desc(desc);
1515 printk(KERN_INFO "md: THIS: ");
1516 print_desc(&sb->this_disk);
1520 static void print_rdev(mdk_rdev_t *rdev)
1522 char b[BDEVNAME_SIZE];
1523 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1524 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1525 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1526 rdev->desc_nr);
1527 if (rdev->sb_loaded) {
1528 printk(KERN_INFO "md: rdev superblock:\n");
1529 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1530 } else
1531 printk(KERN_INFO "md: no rdev superblock!\n");
1534 static void md_print_devices(void)
1536 struct list_head *tmp, *tmp2;
1537 mdk_rdev_t *rdev;
1538 mddev_t *mddev;
1539 char b[BDEVNAME_SIZE];
1541 printk("\n");
1542 printk("md: **********************************\n");
1543 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1544 printk("md: **********************************\n");
1545 ITERATE_MDDEV(mddev,tmp) {
1547 if (mddev->bitmap)
1548 bitmap_print_sb(mddev->bitmap);
1549 else
1550 printk("%s: ", mdname(mddev));
1551 ITERATE_RDEV(mddev,rdev,tmp2)
1552 printk("<%s>", bdevname(rdev->bdev,b));
1553 printk("\n");
1555 ITERATE_RDEV(mddev,rdev,tmp2)
1556 print_rdev(rdev);
1558 printk("md: **********************************\n");
1559 printk("\n");
1563 static void sync_sbs(mddev_t * mddev, int nospares)
1565 /* Update each superblock (in-memory image), but
1566 * if we are allowed to, skip spares which already
1567 * have the right event counter, or have one earlier
1568 * (which would mean they aren't being marked as dirty
1569 * with the rest of the array)
1571 mdk_rdev_t *rdev;
1572 struct list_head *tmp;
1574 ITERATE_RDEV(mddev,rdev,tmp) {
1575 if (rdev->sb_events == mddev->events ||
1576 (nospares &&
1577 rdev->raid_disk < 0 &&
1578 (rdev->sb_events&1)==0 &&
1579 rdev->sb_events+1 == mddev->events)) {
1580 /* Don't update this superblock */
1581 rdev->sb_loaded = 2;
1582 } else {
1583 super_types[mddev->major_version].
1584 sync_super(mddev, rdev);
1585 rdev->sb_loaded = 1;
1590 void md_update_sb(mddev_t * mddev)
1592 int err;
1593 struct list_head *tmp;
1594 mdk_rdev_t *rdev;
1595 int sync_req;
1596 int nospares = 0;
1598 repeat:
1599 spin_lock_irq(&mddev->write_lock);
1600 sync_req = mddev->in_sync;
1601 mddev->utime = get_seconds();
1602 if (mddev->sb_dirty == 3)
1603 /* just a clean<-> dirty transition, possibly leave spares alone,
1604 * though if events isn't the right even/odd, we will have to do
1605 * spares after all
1607 nospares = 1;
1609 /* If this is just a dirty<->clean transition, and the array is clean
1610 * and 'events' is odd, we can roll back to the previous clean state */
1611 if (mddev->sb_dirty == 3
1612 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1613 && (mddev->events & 1))
1614 mddev->events--;
1615 else {
1616 /* otherwise we have to go forward and ... */
1617 mddev->events ++;
1618 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1619 /* .. if the array isn't clean, insist on an odd 'events' */
1620 if ((mddev->events&1)==0) {
1621 mddev->events++;
1622 nospares = 0;
1624 } else {
1625 /* otherwise insist on an even 'events' (for clean states) */
1626 if ((mddev->events&1)) {
1627 mddev->events++;
1628 nospares = 0;
1633 if (!mddev->events) {
1635 * oops, this 64-bit counter should never wrap.
1636 * Either we are in around ~1 trillion A.C., assuming
1637 * 1 reboot per second, or we have a bug:
1639 MD_BUG();
1640 mddev->events --;
1642 mddev->sb_dirty = 2;
1643 sync_sbs(mddev, nospares);
1646 * do not write anything to disk if using
1647 * nonpersistent superblocks
1649 if (!mddev->persistent) {
1650 mddev->sb_dirty = 0;
1651 spin_unlock_irq(&mddev->write_lock);
1652 wake_up(&mddev->sb_wait);
1653 return;
1655 spin_unlock_irq(&mddev->write_lock);
1657 dprintk(KERN_INFO
1658 "md: updating %s RAID superblock on device (in sync %d)\n",
1659 mdname(mddev),mddev->in_sync);
1661 err = bitmap_update_sb(mddev->bitmap);
1662 ITERATE_RDEV(mddev,rdev,tmp) {
1663 char b[BDEVNAME_SIZE];
1664 dprintk(KERN_INFO "md: ");
1665 if (rdev->sb_loaded != 1)
1666 continue; /* no noise on spare devices */
1667 if (test_bit(Faulty, &rdev->flags))
1668 dprintk("(skipping faulty ");
1670 dprintk("%s ", bdevname(rdev->bdev,b));
1671 if (!test_bit(Faulty, &rdev->flags)) {
1672 md_super_write(mddev,rdev,
1673 rdev->sb_offset<<1, rdev->sb_size,
1674 rdev->sb_page);
1675 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1676 bdevname(rdev->bdev,b),
1677 (unsigned long long)rdev->sb_offset);
1678 rdev->sb_events = mddev->events;
1680 } else
1681 dprintk(")\n");
1682 if (mddev->level == LEVEL_MULTIPATH)
1683 /* only need to write one superblock... */
1684 break;
1686 md_super_wait(mddev);
1687 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1689 spin_lock_irq(&mddev->write_lock);
1690 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1691 /* have to write it out again */
1692 spin_unlock_irq(&mddev->write_lock);
1693 goto repeat;
1695 mddev->sb_dirty = 0;
1696 spin_unlock_irq(&mddev->write_lock);
1697 wake_up(&mddev->sb_wait);
1700 EXPORT_SYMBOL_GPL(md_update_sb);
1702 /* words written to sysfs files may, or my not, be \n terminated.
1703 * We want to accept with case. For this we use cmd_match.
1705 static int cmd_match(const char *cmd, const char *str)
1707 /* See if cmd, written into a sysfs file, matches
1708 * str. They must either be the same, or cmd can
1709 * have a trailing newline
1711 while (*cmd && *str && *cmd == *str) {
1712 cmd++;
1713 str++;
1715 if (*cmd == '\n')
1716 cmd++;
1717 if (*str || *cmd)
1718 return 0;
1719 return 1;
1722 struct rdev_sysfs_entry {
1723 struct attribute attr;
1724 ssize_t (*show)(mdk_rdev_t *, char *);
1725 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1728 static ssize_t
1729 state_show(mdk_rdev_t *rdev, char *page)
1731 char *sep = "";
1732 int len=0;
1734 if (test_bit(Faulty, &rdev->flags)) {
1735 len+= sprintf(page+len, "%sfaulty",sep);
1736 sep = ",";
1738 if (test_bit(In_sync, &rdev->flags)) {
1739 len += sprintf(page+len, "%sin_sync",sep);
1740 sep = ",";
1742 if (test_bit(WriteMostly, &rdev->flags)) {
1743 len += sprintf(page+len, "%swrite_mostly",sep);
1744 sep = ",";
1746 if (!test_bit(Faulty, &rdev->flags) &&
1747 !test_bit(In_sync, &rdev->flags)) {
1748 len += sprintf(page+len, "%sspare", sep);
1749 sep = ",";
1751 return len+sprintf(page+len, "\n");
1754 static ssize_t
1755 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1757 /* can write
1758 * faulty - simulates and error
1759 * remove - disconnects the device
1760 * writemostly - sets write_mostly
1761 * -writemostly - clears write_mostly
1763 int err = -EINVAL;
1764 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1765 md_error(rdev->mddev, rdev);
1766 err = 0;
1767 } else if (cmd_match(buf, "remove")) {
1768 if (rdev->raid_disk >= 0)
1769 err = -EBUSY;
1770 else {
1771 mddev_t *mddev = rdev->mddev;
1772 kick_rdev_from_array(rdev);
1773 md_update_sb(mddev);
1774 md_new_event(mddev);
1775 err = 0;
1777 } else if (cmd_match(buf, "writemostly")) {
1778 set_bit(WriteMostly, &rdev->flags);
1779 err = 0;
1780 } else if (cmd_match(buf, "-writemostly")) {
1781 clear_bit(WriteMostly, &rdev->flags);
1782 err = 0;
1784 return err ? err : len;
1786 static struct rdev_sysfs_entry
1787 rdev_state = __ATTR(state, 0644, state_show, state_store);
1789 static ssize_t
1790 super_show(mdk_rdev_t *rdev, char *page)
1792 if (rdev->sb_loaded && rdev->sb_size) {
1793 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1794 return rdev->sb_size;
1795 } else
1796 return 0;
1798 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1800 static ssize_t
1801 errors_show(mdk_rdev_t *rdev, char *page)
1803 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1806 static ssize_t
1807 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1809 char *e;
1810 unsigned long n = simple_strtoul(buf, &e, 10);
1811 if (*buf && (*e == 0 || *e == '\n')) {
1812 atomic_set(&rdev->corrected_errors, n);
1813 return len;
1815 return -EINVAL;
1817 static struct rdev_sysfs_entry rdev_errors =
1818 __ATTR(errors, 0644, errors_show, errors_store);
1820 static ssize_t
1821 slot_show(mdk_rdev_t *rdev, char *page)
1823 if (rdev->raid_disk < 0)
1824 return sprintf(page, "none\n");
1825 else
1826 return sprintf(page, "%d\n", rdev->raid_disk);
1829 static ssize_t
1830 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1832 char *e;
1833 int slot = simple_strtoul(buf, &e, 10);
1834 if (strncmp(buf, "none", 4)==0)
1835 slot = -1;
1836 else if (e==buf || (*e && *e!= '\n'))
1837 return -EINVAL;
1838 if (rdev->mddev->pers)
1839 /* Cannot set slot in active array (yet) */
1840 return -EBUSY;
1841 if (slot >= rdev->mddev->raid_disks)
1842 return -ENOSPC;
1843 rdev->raid_disk = slot;
1844 /* assume it is working */
1845 rdev->flags = 0;
1846 set_bit(In_sync, &rdev->flags);
1847 return len;
1851 static struct rdev_sysfs_entry rdev_slot =
1852 __ATTR(slot, 0644, slot_show, slot_store);
1854 static ssize_t
1855 offset_show(mdk_rdev_t *rdev, char *page)
1857 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1860 static ssize_t
1861 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1863 char *e;
1864 unsigned long long offset = simple_strtoull(buf, &e, 10);
1865 if (e==buf || (*e && *e != '\n'))
1866 return -EINVAL;
1867 if (rdev->mddev->pers)
1868 return -EBUSY;
1869 rdev->data_offset = offset;
1870 return len;
1873 static struct rdev_sysfs_entry rdev_offset =
1874 __ATTR(offset, 0644, offset_show, offset_store);
1876 static ssize_t
1877 rdev_size_show(mdk_rdev_t *rdev, char *page)
1879 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1882 static ssize_t
1883 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1885 char *e;
1886 unsigned long long size = simple_strtoull(buf, &e, 10);
1887 if (e==buf || (*e && *e != '\n'))
1888 return -EINVAL;
1889 if (rdev->mddev->pers)
1890 return -EBUSY;
1891 rdev->size = size;
1892 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1893 rdev->mddev->size = size;
1894 return len;
1897 static struct rdev_sysfs_entry rdev_size =
1898 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1900 static struct attribute *rdev_default_attrs[] = {
1901 &rdev_state.attr,
1902 &rdev_super.attr,
1903 &rdev_errors.attr,
1904 &rdev_slot.attr,
1905 &rdev_offset.attr,
1906 &rdev_size.attr,
1907 NULL,
1909 static ssize_t
1910 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1912 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1913 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1915 if (!entry->show)
1916 return -EIO;
1917 return entry->show(rdev, page);
1920 static ssize_t
1921 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1922 const char *page, size_t length)
1924 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1925 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1927 if (!entry->store)
1928 return -EIO;
1929 return entry->store(rdev, page, length);
1932 static void rdev_free(struct kobject *ko)
1934 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1935 kfree(rdev);
1937 static struct sysfs_ops rdev_sysfs_ops = {
1938 .show = rdev_attr_show,
1939 .store = rdev_attr_store,
1941 static struct kobj_type rdev_ktype = {
1942 .release = rdev_free,
1943 .sysfs_ops = &rdev_sysfs_ops,
1944 .default_attrs = rdev_default_attrs,
1948 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1950 * mark the device faulty if:
1952 * - the device is nonexistent (zero size)
1953 * - the device has no valid superblock
1955 * a faulty rdev _never_ has rdev->sb set.
1957 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1959 char b[BDEVNAME_SIZE];
1960 int err;
1961 mdk_rdev_t *rdev;
1962 sector_t size;
1964 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1965 if (!rdev) {
1966 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1967 return ERR_PTR(-ENOMEM);
1970 if ((err = alloc_disk_sb(rdev)))
1971 goto abort_free;
1973 err = lock_rdev(rdev, newdev);
1974 if (err)
1975 goto abort_free;
1977 rdev->kobj.parent = NULL;
1978 rdev->kobj.ktype = &rdev_ktype;
1979 kobject_init(&rdev->kobj);
1981 rdev->desc_nr = -1;
1982 rdev->flags = 0;
1983 rdev->data_offset = 0;
1984 rdev->sb_events = 0;
1985 atomic_set(&rdev->nr_pending, 0);
1986 atomic_set(&rdev->read_errors, 0);
1987 atomic_set(&rdev->corrected_errors, 0);
1989 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1990 if (!size) {
1991 printk(KERN_WARNING
1992 "md: %s has zero or unknown size, marking faulty!\n",
1993 bdevname(rdev->bdev,b));
1994 err = -EINVAL;
1995 goto abort_free;
1998 if (super_format >= 0) {
1999 err = super_types[super_format].
2000 load_super(rdev, NULL, super_minor);
2001 if (err == -EINVAL) {
2002 printk(KERN_WARNING
2003 "md: %s has invalid sb, not importing!\n",
2004 bdevname(rdev->bdev,b));
2005 goto abort_free;
2007 if (err < 0) {
2008 printk(KERN_WARNING
2009 "md: could not read %s's sb, not importing!\n",
2010 bdevname(rdev->bdev,b));
2011 goto abort_free;
2014 INIT_LIST_HEAD(&rdev->same_set);
2016 return rdev;
2018 abort_free:
2019 if (rdev->sb_page) {
2020 if (rdev->bdev)
2021 unlock_rdev(rdev);
2022 free_disk_sb(rdev);
2024 kfree(rdev);
2025 return ERR_PTR(err);
2029 * Check a full RAID array for plausibility
2033 static void analyze_sbs(mddev_t * mddev)
2035 int i;
2036 struct list_head *tmp;
2037 mdk_rdev_t *rdev, *freshest;
2038 char b[BDEVNAME_SIZE];
2040 freshest = NULL;
2041 ITERATE_RDEV(mddev,rdev,tmp)
2042 switch (super_types[mddev->major_version].
2043 load_super(rdev, freshest, mddev->minor_version)) {
2044 case 1:
2045 freshest = rdev;
2046 break;
2047 case 0:
2048 break;
2049 default:
2050 printk( KERN_ERR \
2051 "md: fatal superblock inconsistency in %s"
2052 " -- removing from array\n",
2053 bdevname(rdev->bdev,b));
2054 kick_rdev_from_array(rdev);
2058 super_types[mddev->major_version].
2059 validate_super(mddev, freshest);
2061 i = 0;
2062 ITERATE_RDEV(mddev,rdev,tmp) {
2063 if (rdev != freshest)
2064 if (super_types[mddev->major_version].
2065 validate_super(mddev, rdev)) {
2066 printk(KERN_WARNING "md: kicking non-fresh %s"
2067 " from array!\n",
2068 bdevname(rdev->bdev,b));
2069 kick_rdev_from_array(rdev);
2070 continue;
2072 if (mddev->level == LEVEL_MULTIPATH) {
2073 rdev->desc_nr = i++;
2074 rdev->raid_disk = rdev->desc_nr;
2075 set_bit(In_sync, &rdev->flags);
2081 if (mddev->recovery_cp != MaxSector &&
2082 mddev->level >= 1)
2083 printk(KERN_ERR "md: %s: raid array is not clean"
2084 " -- starting background reconstruction\n",
2085 mdname(mddev));
2089 static ssize_t
2090 safe_delay_show(mddev_t *mddev, char *page)
2092 int msec = (mddev->safemode_delay*1000)/HZ;
2093 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2095 static ssize_t
2096 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2098 int scale=1;
2099 int dot=0;
2100 int i;
2101 unsigned long msec;
2102 char buf[30];
2103 char *e;
2104 /* remove a period, and count digits after it */
2105 if (len >= sizeof(buf))
2106 return -EINVAL;
2107 strlcpy(buf, cbuf, len);
2108 buf[len] = 0;
2109 for (i=0; i<len; i++) {
2110 if (dot) {
2111 if (isdigit(buf[i])) {
2112 buf[i-1] = buf[i];
2113 scale *= 10;
2115 buf[i] = 0;
2116 } else if (buf[i] == '.') {
2117 dot=1;
2118 buf[i] = 0;
2121 msec = simple_strtoul(buf, &e, 10);
2122 if (e == buf || (*e && *e != '\n'))
2123 return -EINVAL;
2124 msec = (msec * 1000) / scale;
2125 if (msec == 0)
2126 mddev->safemode_delay = 0;
2127 else {
2128 mddev->safemode_delay = (msec*HZ)/1000;
2129 if (mddev->safemode_delay == 0)
2130 mddev->safemode_delay = 1;
2132 return len;
2134 static struct md_sysfs_entry md_safe_delay =
2135 __ATTR(safe_mode_delay, 0644,safe_delay_show, safe_delay_store);
2137 static ssize_t
2138 level_show(mddev_t *mddev, char *page)
2140 struct mdk_personality *p = mddev->pers;
2141 if (p)
2142 return sprintf(page, "%s\n", p->name);
2143 else if (mddev->clevel[0])
2144 return sprintf(page, "%s\n", mddev->clevel);
2145 else if (mddev->level != LEVEL_NONE)
2146 return sprintf(page, "%d\n", mddev->level);
2147 else
2148 return 0;
2151 static ssize_t
2152 level_store(mddev_t *mddev, const char *buf, size_t len)
2154 int rv = len;
2155 if (mddev->pers)
2156 return -EBUSY;
2157 if (len == 0)
2158 return 0;
2159 if (len >= sizeof(mddev->clevel))
2160 return -ENOSPC;
2161 strncpy(mddev->clevel, buf, len);
2162 if (mddev->clevel[len-1] == '\n')
2163 len--;
2164 mddev->clevel[len] = 0;
2165 mddev->level = LEVEL_NONE;
2166 return rv;
2169 static struct md_sysfs_entry md_level =
2170 __ATTR(level, 0644, level_show, level_store);
2173 static ssize_t
2174 layout_show(mddev_t *mddev, char *page)
2176 /* just a number, not meaningful for all levels */
2177 return sprintf(page, "%d\n", mddev->layout);
2180 static ssize_t
2181 layout_store(mddev_t *mddev, const char *buf, size_t len)
2183 char *e;
2184 unsigned long n = simple_strtoul(buf, &e, 10);
2185 if (mddev->pers)
2186 return -EBUSY;
2188 if (!*buf || (*e && *e != '\n'))
2189 return -EINVAL;
2191 mddev->layout = n;
2192 return len;
2194 static struct md_sysfs_entry md_layout =
2195 __ATTR(layout, 0655, layout_show, layout_store);
2198 static ssize_t
2199 raid_disks_show(mddev_t *mddev, char *page)
2201 if (mddev->raid_disks == 0)
2202 return 0;
2203 return sprintf(page, "%d\n", mddev->raid_disks);
2206 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2208 static ssize_t
2209 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2211 /* can only set raid_disks if array is not yet active */
2212 char *e;
2213 int rv = 0;
2214 unsigned long n = simple_strtoul(buf, &e, 10);
2216 if (!*buf || (*e && *e != '\n'))
2217 return -EINVAL;
2219 if (mddev->pers)
2220 rv = update_raid_disks(mddev, n);
2221 else
2222 mddev->raid_disks = n;
2223 return rv ? rv : len;
2225 static struct md_sysfs_entry md_raid_disks =
2226 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2228 static ssize_t
2229 chunk_size_show(mddev_t *mddev, char *page)
2231 return sprintf(page, "%d\n", mddev->chunk_size);
2234 static ssize_t
2235 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2237 /* can only set chunk_size if array is not yet active */
2238 char *e;
2239 unsigned long n = simple_strtoul(buf, &e, 10);
2241 if (mddev->pers)
2242 return -EBUSY;
2243 if (!*buf || (*e && *e != '\n'))
2244 return -EINVAL;
2246 mddev->chunk_size = n;
2247 return len;
2249 static struct md_sysfs_entry md_chunk_size =
2250 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2252 static ssize_t
2253 resync_start_show(mddev_t *mddev, char *page)
2255 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2258 static ssize_t
2259 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2261 /* can only set chunk_size if array is not yet active */
2262 char *e;
2263 unsigned long long n = simple_strtoull(buf, &e, 10);
2265 if (mddev->pers)
2266 return -EBUSY;
2267 if (!*buf || (*e && *e != '\n'))
2268 return -EINVAL;
2270 mddev->recovery_cp = n;
2271 return len;
2273 static struct md_sysfs_entry md_resync_start =
2274 __ATTR(resync_start, 0644, resync_start_show, resync_start_store);
2277 * The array state can be:
2279 * clear
2280 * No devices, no size, no level
2281 * Equivalent to STOP_ARRAY ioctl
2282 * inactive
2283 * May have some settings, but array is not active
2284 * all IO results in error
2285 * When written, doesn't tear down array, but just stops it
2286 * suspended (not supported yet)
2287 * All IO requests will block. The array can be reconfigured.
2288 * Writing this, if accepted, will block until array is quiessent
2289 * readonly
2290 * no resync can happen. no superblocks get written.
2291 * write requests fail
2292 * read-auto
2293 * like readonly, but behaves like 'clean' on a write request.
2295 * clean - no pending writes, but otherwise active.
2296 * When written to inactive array, starts without resync
2297 * If a write request arrives then
2298 * if metadata is known, mark 'dirty' and switch to 'active'.
2299 * if not known, block and switch to write-pending
2300 * If written to an active array that has pending writes, then fails.
2301 * active
2302 * fully active: IO and resync can be happening.
2303 * When written to inactive array, starts with resync
2305 * write-pending
2306 * clean, but writes are blocked waiting for 'active' to be written.
2308 * active-idle
2309 * like active, but no writes have been seen for a while (100msec).
2312 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2313 write_pending, active_idle, bad_word};
2314 static char *array_states[] = {
2315 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2316 "write-pending", "active-idle", NULL };
2318 static int match_word(const char *word, char **list)
2320 int n;
2321 for (n=0; list[n]; n++)
2322 if (cmd_match(word, list[n]))
2323 break;
2324 return n;
2327 static ssize_t
2328 array_state_show(mddev_t *mddev, char *page)
2330 enum array_state st = inactive;
2332 if (mddev->pers)
2333 switch(mddev->ro) {
2334 case 1:
2335 st = readonly;
2336 break;
2337 case 2:
2338 st = read_auto;
2339 break;
2340 case 0:
2341 if (mddev->in_sync)
2342 st = clean;
2343 else if (mddev->safemode)
2344 st = active_idle;
2345 else
2346 st = active;
2348 else {
2349 if (list_empty(&mddev->disks) &&
2350 mddev->raid_disks == 0 &&
2351 mddev->size == 0)
2352 st = clear;
2353 else
2354 st = inactive;
2356 return sprintf(page, "%s\n", array_states[st]);
2359 static int do_md_stop(mddev_t * mddev, int ro);
2360 static int do_md_run(mddev_t * mddev);
2361 static int restart_array(mddev_t *mddev);
2363 static ssize_t
2364 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2366 int err = -EINVAL;
2367 enum array_state st = match_word(buf, array_states);
2368 switch(st) {
2369 case bad_word:
2370 break;
2371 case clear:
2372 /* stopping an active array */
2373 if (mddev->pers) {
2374 if (atomic_read(&mddev->active) > 1)
2375 return -EBUSY;
2376 err = do_md_stop(mddev, 0);
2378 break;
2379 case inactive:
2380 /* stopping an active array */
2381 if (mddev->pers) {
2382 if (atomic_read(&mddev->active) > 1)
2383 return -EBUSY;
2384 err = do_md_stop(mddev, 2);
2386 break;
2387 case suspended:
2388 break; /* not supported yet */
2389 case readonly:
2390 if (mddev->pers)
2391 err = do_md_stop(mddev, 1);
2392 else {
2393 mddev->ro = 1;
2394 err = do_md_run(mddev);
2396 break;
2397 case read_auto:
2398 /* stopping an active array */
2399 if (mddev->pers) {
2400 err = do_md_stop(mddev, 1);
2401 if (err == 0)
2402 mddev->ro = 2; /* FIXME mark devices writable */
2403 } else {
2404 mddev->ro = 2;
2405 err = do_md_run(mddev);
2407 break;
2408 case clean:
2409 if (mddev->pers) {
2410 restart_array(mddev);
2411 spin_lock_irq(&mddev->write_lock);
2412 if (atomic_read(&mddev->writes_pending) == 0) {
2413 mddev->in_sync = 1;
2414 mddev->sb_dirty = 1;
2416 spin_unlock_irq(&mddev->write_lock);
2417 } else {
2418 mddev->ro = 0;
2419 mddev->recovery_cp = MaxSector;
2420 err = do_md_run(mddev);
2422 break;
2423 case active:
2424 if (mddev->pers) {
2425 restart_array(mddev);
2426 mddev->sb_dirty = 0;
2427 wake_up(&mddev->sb_wait);
2428 err = 0;
2429 } else {
2430 mddev->ro = 0;
2431 err = do_md_run(mddev);
2433 break;
2434 case write_pending:
2435 case active_idle:
2436 /* these cannot be set */
2437 break;
2439 if (err)
2440 return err;
2441 else
2442 return len;
2444 static struct md_sysfs_entry md_array_state = __ATTR(array_state, 0644, array_state_show, array_state_store);
2446 static ssize_t
2447 null_show(mddev_t *mddev, char *page)
2449 return -EINVAL;
2452 static ssize_t
2453 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2455 /* buf must be %d:%d\n? giving major and minor numbers */
2456 /* The new device is added to the array.
2457 * If the array has a persistent superblock, we read the
2458 * superblock to initialise info and check validity.
2459 * Otherwise, only checking done is that in bind_rdev_to_array,
2460 * which mainly checks size.
2462 char *e;
2463 int major = simple_strtoul(buf, &e, 10);
2464 int minor;
2465 dev_t dev;
2466 mdk_rdev_t *rdev;
2467 int err;
2469 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2470 return -EINVAL;
2471 minor = simple_strtoul(e+1, &e, 10);
2472 if (*e && *e != '\n')
2473 return -EINVAL;
2474 dev = MKDEV(major, minor);
2475 if (major != MAJOR(dev) ||
2476 minor != MINOR(dev))
2477 return -EOVERFLOW;
2480 if (mddev->persistent) {
2481 rdev = md_import_device(dev, mddev->major_version,
2482 mddev->minor_version);
2483 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2484 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2485 mdk_rdev_t, same_set);
2486 err = super_types[mddev->major_version]
2487 .load_super(rdev, rdev0, mddev->minor_version);
2488 if (err < 0)
2489 goto out;
2491 } else
2492 rdev = md_import_device(dev, -1, -1);
2494 if (IS_ERR(rdev))
2495 return PTR_ERR(rdev);
2496 err = bind_rdev_to_array(rdev, mddev);
2497 out:
2498 if (err)
2499 export_rdev(rdev);
2500 return err ? err : len;
2503 static struct md_sysfs_entry md_new_device =
2504 __ATTR(new_dev, 0200, null_show, new_dev_store);
2506 static ssize_t
2507 size_show(mddev_t *mddev, char *page)
2509 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2512 static int update_size(mddev_t *mddev, unsigned long size);
2514 static ssize_t
2515 size_store(mddev_t *mddev, const char *buf, size_t len)
2517 /* If array is inactive, we can reduce the component size, but
2518 * not increase it (except from 0).
2519 * If array is active, we can try an on-line resize
2521 char *e;
2522 int err = 0;
2523 unsigned long long size = simple_strtoull(buf, &e, 10);
2524 if (!*buf || *buf == '\n' ||
2525 (*e && *e != '\n'))
2526 return -EINVAL;
2528 if (mddev->pers) {
2529 err = update_size(mddev, size);
2530 md_update_sb(mddev);
2531 } else {
2532 if (mddev->size == 0 ||
2533 mddev->size > size)
2534 mddev->size = size;
2535 else
2536 err = -ENOSPC;
2538 return err ? err : len;
2541 static struct md_sysfs_entry md_size =
2542 __ATTR(component_size, 0644, size_show, size_store);
2545 /* Metdata version.
2546 * This is either 'none' for arrays with externally managed metadata,
2547 * or N.M for internally known formats
2549 static ssize_t
2550 metadata_show(mddev_t *mddev, char *page)
2552 if (mddev->persistent)
2553 return sprintf(page, "%d.%d\n",
2554 mddev->major_version, mddev->minor_version);
2555 else
2556 return sprintf(page, "none\n");
2559 static ssize_t
2560 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2562 int major, minor;
2563 char *e;
2564 if (!list_empty(&mddev->disks))
2565 return -EBUSY;
2567 if (cmd_match(buf, "none")) {
2568 mddev->persistent = 0;
2569 mddev->major_version = 0;
2570 mddev->minor_version = 90;
2571 return len;
2573 major = simple_strtoul(buf, &e, 10);
2574 if (e==buf || *e != '.')
2575 return -EINVAL;
2576 buf = e+1;
2577 minor = simple_strtoul(buf, &e, 10);
2578 if (e==buf || *e != '\n')
2579 return -EINVAL;
2580 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2581 super_types[major].name == NULL)
2582 return -ENOENT;
2583 mddev->major_version = major;
2584 mddev->minor_version = minor;
2585 mddev->persistent = 1;
2586 return len;
2589 static struct md_sysfs_entry md_metadata =
2590 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2592 static ssize_t
2593 action_show(mddev_t *mddev, char *page)
2595 char *type = "idle";
2596 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2597 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2598 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2599 type = "reshape";
2600 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2601 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2602 type = "resync";
2603 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2604 type = "check";
2605 else
2606 type = "repair";
2607 } else
2608 type = "recover";
2610 return sprintf(page, "%s\n", type);
2613 static ssize_t
2614 action_store(mddev_t *mddev, const char *page, size_t len)
2616 if (!mddev->pers || !mddev->pers->sync_request)
2617 return -EINVAL;
2619 if (cmd_match(page, "idle")) {
2620 if (mddev->sync_thread) {
2621 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2622 md_unregister_thread(mddev->sync_thread);
2623 mddev->sync_thread = NULL;
2624 mddev->recovery = 0;
2626 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2627 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2628 return -EBUSY;
2629 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2630 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2631 else if (cmd_match(page, "reshape")) {
2632 int err;
2633 if (mddev->pers->start_reshape == NULL)
2634 return -EINVAL;
2635 err = mddev->pers->start_reshape(mddev);
2636 if (err)
2637 return err;
2638 } else {
2639 if (cmd_match(page, "check"))
2640 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2641 else if (!cmd_match(page, "repair"))
2642 return -EINVAL;
2643 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2644 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2646 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2647 md_wakeup_thread(mddev->thread);
2648 return len;
2651 static ssize_t
2652 mismatch_cnt_show(mddev_t *mddev, char *page)
2654 return sprintf(page, "%llu\n",
2655 (unsigned long long) mddev->resync_mismatches);
2658 static struct md_sysfs_entry
2659 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2662 static struct md_sysfs_entry
2663 md_mismatches = __ATTR_RO(mismatch_cnt);
2665 static ssize_t
2666 sync_min_show(mddev_t *mddev, char *page)
2668 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2669 mddev->sync_speed_min ? "local": "system");
2672 static ssize_t
2673 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2675 int min;
2676 char *e;
2677 if (strncmp(buf, "system", 6)==0) {
2678 mddev->sync_speed_min = 0;
2679 return len;
2681 min = simple_strtoul(buf, &e, 10);
2682 if (buf == e || (*e && *e != '\n') || min <= 0)
2683 return -EINVAL;
2684 mddev->sync_speed_min = min;
2685 return len;
2688 static struct md_sysfs_entry md_sync_min =
2689 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2691 static ssize_t
2692 sync_max_show(mddev_t *mddev, char *page)
2694 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2695 mddev->sync_speed_max ? "local": "system");
2698 static ssize_t
2699 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2701 int max;
2702 char *e;
2703 if (strncmp(buf, "system", 6)==0) {
2704 mddev->sync_speed_max = 0;
2705 return len;
2707 max = simple_strtoul(buf, &e, 10);
2708 if (buf == e || (*e && *e != '\n') || max <= 0)
2709 return -EINVAL;
2710 mddev->sync_speed_max = max;
2711 return len;
2714 static struct md_sysfs_entry md_sync_max =
2715 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2718 static ssize_t
2719 sync_speed_show(mddev_t *mddev, char *page)
2721 unsigned long resync, dt, db;
2722 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2723 dt = ((jiffies - mddev->resync_mark) / HZ);
2724 if (!dt) dt++;
2725 db = resync - (mddev->resync_mark_cnt);
2726 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2729 static struct md_sysfs_entry
2730 md_sync_speed = __ATTR_RO(sync_speed);
2732 static ssize_t
2733 sync_completed_show(mddev_t *mddev, char *page)
2735 unsigned long max_blocks, resync;
2737 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2738 max_blocks = mddev->resync_max_sectors;
2739 else
2740 max_blocks = mddev->size << 1;
2742 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2743 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2746 static struct md_sysfs_entry
2747 md_sync_completed = __ATTR_RO(sync_completed);
2749 static ssize_t
2750 suspend_lo_show(mddev_t *mddev, char *page)
2752 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2755 static ssize_t
2756 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2758 char *e;
2759 unsigned long long new = simple_strtoull(buf, &e, 10);
2761 if (mddev->pers->quiesce == NULL)
2762 return -EINVAL;
2763 if (buf == e || (*e && *e != '\n'))
2764 return -EINVAL;
2765 if (new >= mddev->suspend_hi ||
2766 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2767 mddev->suspend_lo = new;
2768 mddev->pers->quiesce(mddev, 2);
2769 return len;
2770 } else
2771 return -EINVAL;
2773 static struct md_sysfs_entry md_suspend_lo =
2774 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2777 static ssize_t
2778 suspend_hi_show(mddev_t *mddev, char *page)
2780 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2783 static ssize_t
2784 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2786 char *e;
2787 unsigned long long new = simple_strtoull(buf, &e, 10);
2789 if (mddev->pers->quiesce == NULL)
2790 return -EINVAL;
2791 if (buf == e || (*e && *e != '\n'))
2792 return -EINVAL;
2793 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2794 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2795 mddev->suspend_hi = new;
2796 mddev->pers->quiesce(mddev, 1);
2797 mddev->pers->quiesce(mddev, 0);
2798 return len;
2799 } else
2800 return -EINVAL;
2802 static struct md_sysfs_entry md_suspend_hi =
2803 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2806 static struct attribute *md_default_attrs[] = {
2807 &md_level.attr,
2808 &md_layout.attr,
2809 &md_raid_disks.attr,
2810 &md_chunk_size.attr,
2811 &md_size.attr,
2812 &md_resync_start.attr,
2813 &md_metadata.attr,
2814 &md_new_device.attr,
2815 &md_safe_delay.attr,
2816 &md_array_state.attr,
2817 NULL,
2820 static struct attribute *md_redundancy_attrs[] = {
2821 &md_scan_mode.attr,
2822 &md_mismatches.attr,
2823 &md_sync_min.attr,
2824 &md_sync_max.attr,
2825 &md_sync_speed.attr,
2826 &md_sync_completed.attr,
2827 &md_suspend_lo.attr,
2828 &md_suspend_hi.attr,
2829 NULL,
2831 static struct attribute_group md_redundancy_group = {
2832 .name = NULL,
2833 .attrs = md_redundancy_attrs,
2837 static ssize_t
2838 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2840 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2841 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2842 ssize_t rv;
2844 if (!entry->show)
2845 return -EIO;
2846 rv = mddev_lock(mddev);
2847 if (!rv) {
2848 rv = entry->show(mddev, page);
2849 mddev_unlock(mddev);
2851 return rv;
2854 static ssize_t
2855 md_attr_store(struct kobject *kobj, struct attribute *attr,
2856 const char *page, size_t length)
2858 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2859 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2860 ssize_t rv;
2862 if (!entry->store)
2863 return -EIO;
2864 rv = mddev_lock(mddev);
2865 if (!rv) {
2866 rv = entry->store(mddev, page, length);
2867 mddev_unlock(mddev);
2869 return rv;
2872 static void md_free(struct kobject *ko)
2874 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2875 kfree(mddev);
2878 static struct sysfs_ops md_sysfs_ops = {
2879 .show = md_attr_show,
2880 .store = md_attr_store,
2882 static struct kobj_type md_ktype = {
2883 .release = md_free,
2884 .sysfs_ops = &md_sysfs_ops,
2885 .default_attrs = md_default_attrs,
2888 int mdp_major = 0;
2890 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2892 static DEFINE_MUTEX(disks_mutex);
2893 mddev_t *mddev = mddev_find(dev);
2894 struct gendisk *disk;
2895 int partitioned = (MAJOR(dev) != MD_MAJOR);
2896 int shift = partitioned ? MdpMinorShift : 0;
2897 int unit = MINOR(dev) >> shift;
2899 if (!mddev)
2900 return NULL;
2902 mutex_lock(&disks_mutex);
2903 if (mddev->gendisk) {
2904 mutex_unlock(&disks_mutex);
2905 mddev_put(mddev);
2906 return NULL;
2908 disk = alloc_disk(1 << shift);
2909 if (!disk) {
2910 mutex_unlock(&disks_mutex);
2911 mddev_put(mddev);
2912 return NULL;
2914 disk->major = MAJOR(dev);
2915 disk->first_minor = unit << shift;
2916 if (partitioned)
2917 sprintf(disk->disk_name, "md_d%d", unit);
2918 else
2919 sprintf(disk->disk_name, "md%d", unit);
2920 disk->fops = &md_fops;
2921 disk->private_data = mddev;
2922 disk->queue = mddev->queue;
2923 add_disk(disk);
2924 mddev->gendisk = disk;
2925 mutex_unlock(&disks_mutex);
2926 mddev->kobj.parent = &disk->kobj;
2927 mddev->kobj.k_name = NULL;
2928 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2929 mddev->kobj.ktype = &md_ktype;
2930 kobject_register(&mddev->kobj);
2931 return NULL;
2934 static void md_safemode_timeout(unsigned long data)
2936 mddev_t *mddev = (mddev_t *) data;
2938 mddev->safemode = 1;
2939 md_wakeup_thread(mddev->thread);
2942 static int start_dirty_degraded;
2944 static int do_md_run(mddev_t * mddev)
2946 int err;
2947 int chunk_size;
2948 struct list_head *tmp;
2949 mdk_rdev_t *rdev;
2950 struct gendisk *disk;
2951 struct mdk_personality *pers;
2952 char b[BDEVNAME_SIZE];
2954 if (list_empty(&mddev->disks))
2955 /* cannot run an array with no devices.. */
2956 return -EINVAL;
2958 if (mddev->pers)
2959 return -EBUSY;
2962 * Analyze all RAID superblock(s)
2964 if (!mddev->raid_disks)
2965 analyze_sbs(mddev);
2967 chunk_size = mddev->chunk_size;
2969 if (chunk_size) {
2970 if (chunk_size > MAX_CHUNK_SIZE) {
2971 printk(KERN_ERR "too big chunk_size: %d > %d\n",
2972 chunk_size, MAX_CHUNK_SIZE);
2973 return -EINVAL;
2976 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2978 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2979 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2980 return -EINVAL;
2982 if (chunk_size < PAGE_SIZE) {
2983 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2984 chunk_size, PAGE_SIZE);
2985 return -EINVAL;
2988 /* devices must have minimum size of one chunk */
2989 ITERATE_RDEV(mddev,rdev,tmp) {
2990 if (test_bit(Faulty, &rdev->flags))
2991 continue;
2992 if (rdev->size < chunk_size / 1024) {
2993 printk(KERN_WARNING
2994 "md: Dev %s smaller than chunk_size:"
2995 " %lluk < %dk\n",
2996 bdevname(rdev->bdev,b),
2997 (unsigned long long)rdev->size,
2998 chunk_size / 1024);
2999 return -EINVAL;
3004 #ifdef CONFIG_KMOD
3005 if (mddev->level != LEVEL_NONE)
3006 request_module("md-level-%d", mddev->level);
3007 else if (mddev->clevel[0])
3008 request_module("md-%s", mddev->clevel);
3009 #endif
3012 * Drop all container device buffers, from now on
3013 * the only valid external interface is through the md
3014 * device.
3015 * Also find largest hardsector size
3017 ITERATE_RDEV(mddev,rdev,tmp) {
3018 if (test_bit(Faulty, &rdev->flags))
3019 continue;
3020 sync_blockdev(rdev->bdev);
3021 invalidate_bdev(rdev->bdev, 0);
3024 md_probe(mddev->unit, NULL, NULL);
3025 disk = mddev->gendisk;
3026 if (!disk)
3027 return -ENOMEM;
3029 spin_lock(&pers_lock);
3030 pers = find_pers(mddev->level, mddev->clevel);
3031 if (!pers || !try_module_get(pers->owner)) {
3032 spin_unlock(&pers_lock);
3033 if (mddev->level != LEVEL_NONE)
3034 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3035 mddev->level);
3036 else
3037 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3038 mddev->clevel);
3039 return -EINVAL;
3041 mddev->pers = pers;
3042 spin_unlock(&pers_lock);
3043 mddev->level = pers->level;
3044 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3046 if (mddev->reshape_position != MaxSector &&
3047 pers->start_reshape == NULL) {
3048 /* This personality cannot handle reshaping... */
3049 mddev->pers = NULL;
3050 module_put(pers->owner);
3051 return -EINVAL;
3054 mddev->recovery = 0;
3055 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3056 mddev->barriers_work = 1;
3057 mddev->ok_start_degraded = start_dirty_degraded;
3059 if (start_readonly)
3060 mddev->ro = 2; /* read-only, but switch on first write */
3062 err = mddev->pers->run(mddev);
3063 if (!err && mddev->pers->sync_request) {
3064 err = bitmap_create(mddev);
3065 if (err) {
3066 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3067 mdname(mddev), err);
3068 mddev->pers->stop(mddev);
3071 if (err) {
3072 printk(KERN_ERR "md: pers->run() failed ...\n");
3073 module_put(mddev->pers->owner);
3074 mddev->pers = NULL;
3075 bitmap_destroy(mddev);
3076 return err;
3078 if (mddev->pers->sync_request)
3079 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3080 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3081 mddev->ro = 0;
3083 atomic_set(&mddev->writes_pending,0);
3084 mddev->safemode = 0;
3085 mddev->safemode_timer.function = md_safemode_timeout;
3086 mddev->safemode_timer.data = (unsigned long) mddev;
3087 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3088 mddev->in_sync = 1;
3090 ITERATE_RDEV(mddev,rdev,tmp)
3091 if (rdev->raid_disk >= 0) {
3092 char nm[20];
3093 sprintf(nm, "rd%d", rdev->raid_disk);
3094 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3097 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3099 if (mddev->sb_dirty)
3100 md_update_sb(mddev);
3102 set_capacity(disk, mddev->array_size<<1);
3104 /* If we call blk_queue_make_request here, it will
3105 * re-initialise max_sectors etc which may have been
3106 * refined inside -> run. So just set the bits we need to set.
3107 * Most initialisation happended when we called
3108 * blk_queue_make_request(..., md_fail_request)
3109 * earlier.
3111 mddev->queue->queuedata = mddev;
3112 mddev->queue->make_request_fn = mddev->pers->make_request;
3114 /* If there is a partially-recovered drive we need to
3115 * start recovery here. If we leave it to md_check_recovery,
3116 * it will remove the drives and not do the right thing
3118 if (mddev->degraded && !mddev->sync_thread) {
3119 struct list_head *rtmp;
3120 int spares = 0;
3121 ITERATE_RDEV(mddev,rdev,rtmp)
3122 if (rdev->raid_disk >= 0 &&
3123 !test_bit(In_sync, &rdev->flags) &&
3124 !test_bit(Faulty, &rdev->flags))
3125 /* complete an interrupted recovery */
3126 spares++;
3127 if (spares && mddev->pers->sync_request) {
3128 mddev->recovery = 0;
3129 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3130 mddev->sync_thread = md_register_thread(md_do_sync,
3131 mddev,
3132 "%s_resync");
3133 if (!mddev->sync_thread) {
3134 printk(KERN_ERR "%s: could not start resync"
3135 " thread...\n",
3136 mdname(mddev));
3137 /* leave the spares where they are, it shouldn't hurt */
3138 mddev->recovery = 0;
3142 md_wakeup_thread(mddev->thread);
3143 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3145 mddev->changed = 1;
3146 md_new_event(mddev);
3147 return 0;
3150 static int restart_array(mddev_t *mddev)
3152 struct gendisk *disk = mddev->gendisk;
3153 int err;
3156 * Complain if it has no devices
3158 err = -ENXIO;
3159 if (list_empty(&mddev->disks))
3160 goto out;
3162 if (mddev->pers) {
3163 err = -EBUSY;
3164 if (!mddev->ro)
3165 goto out;
3167 mddev->safemode = 0;
3168 mddev->ro = 0;
3169 set_disk_ro(disk, 0);
3171 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3172 mdname(mddev));
3174 * Kick recovery or resync if necessary
3176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3177 md_wakeup_thread(mddev->thread);
3178 md_wakeup_thread(mddev->sync_thread);
3179 err = 0;
3180 } else
3181 err = -EINVAL;
3183 out:
3184 return err;
3187 /* similar to deny_write_access, but accounts for our holding a reference
3188 * to the file ourselves */
3189 static int deny_bitmap_write_access(struct file * file)
3191 struct inode *inode = file->f_mapping->host;
3193 spin_lock(&inode->i_lock);
3194 if (atomic_read(&inode->i_writecount) > 1) {
3195 spin_unlock(&inode->i_lock);
3196 return -ETXTBSY;
3198 atomic_set(&inode->i_writecount, -1);
3199 spin_unlock(&inode->i_lock);
3201 return 0;
3204 static void restore_bitmap_write_access(struct file *file)
3206 struct inode *inode = file->f_mapping->host;
3208 spin_lock(&inode->i_lock);
3209 atomic_set(&inode->i_writecount, 1);
3210 spin_unlock(&inode->i_lock);
3213 /* mode:
3214 * 0 - completely stop and dis-assemble array
3215 * 1 - switch to readonly
3216 * 2 - stop but do not disassemble array
3218 static int do_md_stop(mddev_t * mddev, int mode)
3220 int err = 0;
3221 struct gendisk *disk = mddev->gendisk;
3223 if (mddev->pers) {
3224 if (atomic_read(&mddev->active)>2) {
3225 printk("md: %s still in use.\n",mdname(mddev));
3226 return -EBUSY;
3229 if (mddev->sync_thread) {
3230 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3231 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3232 md_unregister_thread(mddev->sync_thread);
3233 mddev->sync_thread = NULL;
3236 del_timer_sync(&mddev->safemode_timer);
3238 invalidate_partition(disk, 0);
3240 switch(mode) {
3241 case 1: /* readonly */
3242 err = -ENXIO;
3243 if (mddev->ro==1)
3244 goto out;
3245 mddev->ro = 1;
3246 break;
3247 case 0: /* disassemble */
3248 case 2: /* stop */
3249 bitmap_flush(mddev);
3250 md_super_wait(mddev);
3251 if (mddev->ro)
3252 set_disk_ro(disk, 0);
3253 blk_queue_make_request(mddev->queue, md_fail_request);
3254 mddev->pers->stop(mddev);
3255 if (mddev->pers->sync_request)
3256 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3258 module_put(mddev->pers->owner);
3259 mddev->pers = NULL;
3260 if (mddev->ro)
3261 mddev->ro = 0;
3263 if (!mddev->in_sync || mddev->sb_dirty) {
3264 /* mark array as shutdown cleanly */
3265 mddev->in_sync = 1;
3266 md_update_sb(mddev);
3268 if (mode == 1)
3269 set_disk_ro(disk, 1);
3270 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3274 * Free resources if final stop
3276 if (mode == 0) {
3277 mdk_rdev_t *rdev;
3278 struct list_head *tmp;
3279 struct gendisk *disk;
3280 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3282 bitmap_destroy(mddev);
3283 if (mddev->bitmap_file) {
3284 restore_bitmap_write_access(mddev->bitmap_file);
3285 fput(mddev->bitmap_file);
3286 mddev->bitmap_file = NULL;
3288 mddev->bitmap_offset = 0;
3290 ITERATE_RDEV(mddev,rdev,tmp)
3291 if (rdev->raid_disk >= 0) {
3292 char nm[20];
3293 sprintf(nm, "rd%d", rdev->raid_disk);
3294 sysfs_remove_link(&mddev->kobj, nm);
3297 export_array(mddev);
3299 mddev->array_size = 0;
3300 mddev->size = 0;
3301 mddev->raid_disks = 0;
3302 mddev->recovery_cp = 0;
3304 disk = mddev->gendisk;
3305 if (disk)
3306 set_capacity(disk, 0);
3307 mddev->changed = 1;
3308 } else if (mddev->pers)
3309 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3310 mdname(mddev));
3311 err = 0;
3312 md_new_event(mddev);
3313 out:
3314 return err;
3317 static void autorun_array(mddev_t *mddev)
3319 mdk_rdev_t *rdev;
3320 struct list_head *tmp;
3321 int err;
3323 if (list_empty(&mddev->disks))
3324 return;
3326 printk(KERN_INFO "md: running: ");
3328 ITERATE_RDEV(mddev,rdev,tmp) {
3329 char b[BDEVNAME_SIZE];
3330 printk("<%s>", bdevname(rdev->bdev,b));
3332 printk("\n");
3334 err = do_md_run (mddev);
3335 if (err) {
3336 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3337 do_md_stop (mddev, 0);
3342 * lets try to run arrays based on all disks that have arrived
3343 * until now. (those are in pending_raid_disks)
3345 * the method: pick the first pending disk, collect all disks with
3346 * the same UUID, remove all from the pending list and put them into
3347 * the 'same_array' list. Then order this list based on superblock
3348 * update time (freshest comes first), kick out 'old' disks and
3349 * compare superblocks. If everything's fine then run it.
3351 * If "unit" is allocated, then bump its reference count
3353 static void autorun_devices(int part)
3355 struct list_head *tmp;
3356 mdk_rdev_t *rdev0, *rdev;
3357 mddev_t *mddev;
3358 char b[BDEVNAME_SIZE];
3360 printk(KERN_INFO "md: autorun ...\n");
3361 while (!list_empty(&pending_raid_disks)) {
3362 dev_t dev;
3363 LIST_HEAD(candidates);
3364 rdev0 = list_entry(pending_raid_disks.next,
3365 mdk_rdev_t, same_set);
3367 printk(KERN_INFO "md: considering %s ...\n",
3368 bdevname(rdev0->bdev,b));
3369 INIT_LIST_HEAD(&candidates);
3370 ITERATE_RDEV_PENDING(rdev,tmp)
3371 if (super_90_load(rdev, rdev0, 0) >= 0) {
3372 printk(KERN_INFO "md: adding %s ...\n",
3373 bdevname(rdev->bdev,b));
3374 list_move(&rdev->same_set, &candidates);
3377 * now we have a set of devices, with all of them having
3378 * mostly sane superblocks. It's time to allocate the
3379 * mddev.
3381 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
3382 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3383 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3384 break;
3386 if (part)
3387 dev = MKDEV(mdp_major,
3388 rdev0->preferred_minor << MdpMinorShift);
3389 else
3390 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3392 md_probe(dev, NULL, NULL);
3393 mddev = mddev_find(dev);
3394 if (!mddev) {
3395 printk(KERN_ERR
3396 "md: cannot allocate memory for md drive.\n");
3397 break;
3399 if (mddev_lock(mddev))
3400 printk(KERN_WARNING "md: %s locked, cannot run\n",
3401 mdname(mddev));
3402 else if (mddev->raid_disks || mddev->major_version
3403 || !list_empty(&mddev->disks)) {
3404 printk(KERN_WARNING
3405 "md: %s already running, cannot run %s\n",
3406 mdname(mddev), bdevname(rdev0->bdev,b));
3407 mddev_unlock(mddev);
3408 } else {
3409 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3410 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3411 list_del_init(&rdev->same_set);
3412 if (bind_rdev_to_array(rdev, mddev))
3413 export_rdev(rdev);
3415 autorun_array(mddev);
3416 mddev_unlock(mddev);
3418 /* on success, candidates will be empty, on error
3419 * it won't...
3421 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3422 export_rdev(rdev);
3423 mddev_put(mddev);
3425 printk(KERN_INFO "md: ... autorun DONE.\n");
3429 * import RAID devices based on one partition
3430 * if possible, the array gets run as well.
3433 static int autostart_array(dev_t startdev)
3435 char b[BDEVNAME_SIZE];
3436 int err = -EINVAL, i;
3437 mdp_super_t *sb = NULL;
3438 mdk_rdev_t *start_rdev = NULL, *rdev;
3440 start_rdev = md_import_device(startdev, 0, 0);
3441 if (IS_ERR(start_rdev))
3442 return err;
3445 /* NOTE: this can only work for 0.90.0 superblocks */
3446 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3447 if (sb->major_version != 0 ||
3448 sb->minor_version != 90 ) {
3449 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3450 export_rdev(start_rdev);
3451 return err;
3454 if (test_bit(Faulty, &start_rdev->flags)) {
3455 printk(KERN_WARNING
3456 "md: can not autostart based on faulty %s!\n",
3457 bdevname(start_rdev->bdev,b));
3458 export_rdev(start_rdev);
3459 return err;
3461 list_add(&start_rdev->same_set, &pending_raid_disks);
3463 for (i = 0; i < MD_SB_DISKS; i++) {
3464 mdp_disk_t *desc = sb->disks + i;
3465 dev_t dev = MKDEV(desc->major, desc->minor);
3467 if (!dev)
3468 continue;
3469 if (dev == startdev)
3470 continue;
3471 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3472 continue;
3473 rdev = md_import_device(dev, 0, 0);
3474 if (IS_ERR(rdev))
3475 continue;
3477 list_add(&rdev->same_set, &pending_raid_disks);
3481 * possibly return codes
3483 autorun_devices(0);
3484 return 0;
3489 static int get_version(void __user * arg)
3491 mdu_version_t ver;
3493 ver.major = MD_MAJOR_VERSION;
3494 ver.minor = MD_MINOR_VERSION;
3495 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3497 if (copy_to_user(arg, &ver, sizeof(ver)))
3498 return -EFAULT;
3500 return 0;
3503 static int get_array_info(mddev_t * mddev, void __user * arg)
3505 mdu_array_info_t info;
3506 int nr,working,active,failed,spare;
3507 mdk_rdev_t *rdev;
3508 struct list_head *tmp;
3510 nr=working=active=failed=spare=0;
3511 ITERATE_RDEV(mddev,rdev,tmp) {
3512 nr++;
3513 if (test_bit(Faulty, &rdev->flags))
3514 failed++;
3515 else {
3516 working++;
3517 if (test_bit(In_sync, &rdev->flags))
3518 active++;
3519 else
3520 spare++;
3524 info.major_version = mddev->major_version;
3525 info.minor_version = mddev->minor_version;
3526 info.patch_version = MD_PATCHLEVEL_VERSION;
3527 info.ctime = mddev->ctime;
3528 info.level = mddev->level;
3529 info.size = mddev->size;
3530 if (info.size != mddev->size) /* overflow */
3531 info.size = -1;
3532 info.nr_disks = nr;
3533 info.raid_disks = mddev->raid_disks;
3534 info.md_minor = mddev->md_minor;
3535 info.not_persistent= !mddev->persistent;
3537 info.utime = mddev->utime;
3538 info.state = 0;
3539 if (mddev->in_sync)
3540 info.state = (1<<MD_SB_CLEAN);
3541 if (mddev->bitmap && mddev->bitmap_offset)
3542 info.state = (1<<MD_SB_BITMAP_PRESENT);
3543 info.active_disks = active;
3544 info.working_disks = working;
3545 info.failed_disks = failed;
3546 info.spare_disks = spare;
3548 info.layout = mddev->layout;
3549 info.chunk_size = mddev->chunk_size;
3551 if (copy_to_user(arg, &info, sizeof(info)))
3552 return -EFAULT;
3554 return 0;
3557 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3559 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3560 char *ptr, *buf = NULL;
3561 int err = -ENOMEM;
3563 file = kmalloc(sizeof(*file), GFP_KERNEL);
3564 if (!file)
3565 goto out;
3567 /* bitmap disabled, zero the first byte and copy out */
3568 if (!mddev->bitmap || !mddev->bitmap->file) {
3569 file->pathname[0] = '\0';
3570 goto copy_out;
3573 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3574 if (!buf)
3575 goto out;
3577 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3578 if (!ptr)
3579 goto out;
3581 strcpy(file->pathname, ptr);
3583 copy_out:
3584 err = 0;
3585 if (copy_to_user(arg, file, sizeof(*file)))
3586 err = -EFAULT;
3587 out:
3588 kfree(buf);
3589 kfree(file);
3590 return err;
3593 static int get_disk_info(mddev_t * mddev, void __user * arg)
3595 mdu_disk_info_t info;
3596 unsigned int nr;
3597 mdk_rdev_t *rdev;
3599 if (copy_from_user(&info, arg, sizeof(info)))
3600 return -EFAULT;
3602 nr = info.number;
3604 rdev = find_rdev_nr(mddev, nr);
3605 if (rdev) {
3606 info.major = MAJOR(rdev->bdev->bd_dev);
3607 info.minor = MINOR(rdev->bdev->bd_dev);
3608 info.raid_disk = rdev->raid_disk;
3609 info.state = 0;
3610 if (test_bit(Faulty, &rdev->flags))
3611 info.state |= (1<<MD_DISK_FAULTY);
3612 else if (test_bit(In_sync, &rdev->flags)) {
3613 info.state |= (1<<MD_DISK_ACTIVE);
3614 info.state |= (1<<MD_DISK_SYNC);
3616 if (test_bit(WriteMostly, &rdev->flags))
3617 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3618 } else {
3619 info.major = info.minor = 0;
3620 info.raid_disk = -1;
3621 info.state = (1<<MD_DISK_REMOVED);
3624 if (copy_to_user(arg, &info, sizeof(info)))
3625 return -EFAULT;
3627 return 0;
3630 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3632 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3633 mdk_rdev_t *rdev;
3634 dev_t dev = MKDEV(info->major,info->minor);
3636 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3637 return -EOVERFLOW;
3639 if (!mddev->raid_disks) {
3640 int err;
3641 /* expecting a device which has a superblock */
3642 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3643 if (IS_ERR(rdev)) {
3644 printk(KERN_WARNING
3645 "md: md_import_device returned %ld\n",
3646 PTR_ERR(rdev));
3647 return PTR_ERR(rdev);
3649 if (!list_empty(&mddev->disks)) {
3650 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3651 mdk_rdev_t, same_set);
3652 int err = super_types[mddev->major_version]
3653 .load_super(rdev, rdev0, mddev->minor_version);
3654 if (err < 0) {
3655 printk(KERN_WARNING
3656 "md: %s has different UUID to %s\n",
3657 bdevname(rdev->bdev,b),
3658 bdevname(rdev0->bdev,b2));
3659 export_rdev(rdev);
3660 return -EINVAL;
3663 err = bind_rdev_to_array(rdev, mddev);
3664 if (err)
3665 export_rdev(rdev);
3666 return err;
3670 * add_new_disk can be used once the array is assembled
3671 * to add "hot spares". They must already have a superblock
3672 * written
3674 if (mddev->pers) {
3675 int err;
3676 if (!mddev->pers->hot_add_disk) {
3677 printk(KERN_WARNING
3678 "%s: personality does not support diskops!\n",
3679 mdname(mddev));
3680 return -EINVAL;
3682 if (mddev->persistent)
3683 rdev = md_import_device(dev, mddev->major_version,
3684 mddev->minor_version);
3685 else
3686 rdev = md_import_device(dev, -1, -1);
3687 if (IS_ERR(rdev)) {
3688 printk(KERN_WARNING
3689 "md: md_import_device returned %ld\n",
3690 PTR_ERR(rdev));
3691 return PTR_ERR(rdev);
3693 /* set save_raid_disk if appropriate */
3694 if (!mddev->persistent) {
3695 if (info->state & (1<<MD_DISK_SYNC) &&
3696 info->raid_disk < mddev->raid_disks)
3697 rdev->raid_disk = info->raid_disk;
3698 else
3699 rdev->raid_disk = -1;
3700 } else
3701 super_types[mddev->major_version].
3702 validate_super(mddev, rdev);
3703 rdev->saved_raid_disk = rdev->raid_disk;
3705 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3706 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3707 set_bit(WriteMostly, &rdev->flags);
3709 rdev->raid_disk = -1;
3710 err = bind_rdev_to_array(rdev, mddev);
3711 if (!err && !mddev->pers->hot_remove_disk) {
3712 /* If there is hot_add_disk but no hot_remove_disk
3713 * then added disks for geometry changes,
3714 * and should be added immediately.
3716 super_types[mddev->major_version].
3717 validate_super(mddev, rdev);
3718 err = mddev->pers->hot_add_disk(mddev, rdev);
3719 if (err)
3720 unbind_rdev_from_array(rdev);
3722 if (err)
3723 export_rdev(rdev);
3725 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3726 md_wakeup_thread(mddev->thread);
3727 return err;
3730 /* otherwise, add_new_disk is only allowed
3731 * for major_version==0 superblocks
3733 if (mddev->major_version != 0) {
3734 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3735 mdname(mddev));
3736 return -EINVAL;
3739 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3740 int err;
3741 rdev = md_import_device (dev, -1, 0);
3742 if (IS_ERR(rdev)) {
3743 printk(KERN_WARNING
3744 "md: error, md_import_device() returned %ld\n",
3745 PTR_ERR(rdev));
3746 return PTR_ERR(rdev);
3748 rdev->desc_nr = info->number;
3749 if (info->raid_disk < mddev->raid_disks)
3750 rdev->raid_disk = info->raid_disk;
3751 else
3752 rdev->raid_disk = -1;
3754 rdev->flags = 0;
3756 if (rdev->raid_disk < mddev->raid_disks)
3757 if (info->state & (1<<MD_DISK_SYNC))
3758 set_bit(In_sync, &rdev->flags);
3760 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3761 set_bit(WriteMostly, &rdev->flags);
3763 if (!mddev->persistent) {
3764 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3765 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3766 } else
3767 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3768 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3770 err = bind_rdev_to_array(rdev, mddev);
3771 if (err) {
3772 export_rdev(rdev);
3773 return err;
3777 return 0;
3780 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3782 char b[BDEVNAME_SIZE];
3783 mdk_rdev_t *rdev;
3785 if (!mddev->pers)
3786 return -ENODEV;
3788 rdev = find_rdev(mddev, dev);
3789 if (!rdev)
3790 return -ENXIO;
3792 if (rdev->raid_disk >= 0)
3793 goto busy;
3795 kick_rdev_from_array(rdev);
3796 md_update_sb(mddev);
3797 md_new_event(mddev);
3799 return 0;
3800 busy:
3801 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3802 bdevname(rdev->bdev,b), mdname(mddev));
3803 return -EBUSY;
3806 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3808 char b[BDEVNAME_SIZE];
3809 int err;
3810 unsigned int size;
3811 mdk_rdev_t *rdev;
3813 if (!mddev->pers)
3814 return -ENODEV;
3816 if (mddev->major_version != 0) {
3817 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3818 " version-0 superblocks.\n",
3819 mdname(mddev));
3820 return -EINVAL;
3822 if (!mddev->pers->hot_add_disk) {
3823 printk(KERN_WARNING
3824 "%s: personality does not support diskops!\n",
3825 mdname(mddev));
3826 return -EINVAL;
3829 rdev = md_import_device (dev, -1, 0);
3830 if (IS_ERR(rdev)) {
3831 printk(KERN_WARNING
3832 "md: error, md_import_device() returned %ld\n",
3833 PTR_ERR(rdev));
3834 return -EINVAL;
3837 if (mddev->persistent)
3838 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3839 else
3840 rdev->sb_offset =
3841 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3843 size = calc_dev_size(rdev, mddev->chunk_size);
3844 rdev->size = size;
3846 if (test_bit(Faulty, &rdev->flags)) {
3847 printk(KERN_WARNING
3848 "md: can not hot-add faulty %s disk to %s!\n",
3849 bdevname(rdev->bdev,b), mdname(mddev));
3850 err = -EINVAL;
3851 goto abort_export;
3853 clear_bit(In_sync, &rdev->flags);
3854 rdev->desc_nr = -1;
3855 err = bind_rdev_to_array(rdev, mddev);
3856 if (err)
3857 goto abort_export;
3860 * The rest should better be atomic, we can have disk failures
3861 * noticed in interrupt contexts ...
3864 if (rdev->desc_nr == mddev->max_disks) {
3865 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3866 mdname(mddev));
3867 err = -EBUSY;
3868 goto abort_unbind_export;
3871 rdev->raid_disk = -1;
3873 md_update_sb(mddev);
3876 * Kick recovery, maybe this spare has to be added to the
3877 * array immediately.
3879 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3880 md_wakeup_thread(mddev->thread);
3881 md_new_event(mddev);
3882 return 0;
3884 abort_unbind_export:
3885 unbind_rdev_from_array(rdev);
3887 abort_export:
3888 export_rdev(rdev);
3889 return err;
3892 static int set_bitmap_file(mddev_t *mddev, int fd)
3894 int err;
3896 if (mddev->pers) {
3897 if (!mddev->pers->quiesce)
3898 return -EBUSY;
3899 if (mddev->recovery || mddev->sync_thread)
3900 return -EBUSY;
3901 /* we should be able to change the bitmap.. */
3905 if (fd >= 0) {
3906 if (mddev->bitmap)
3907 return -EEXIST; /* cannot add when bitmap is present */
3908 mddev->bitmap_file = fget(fd);
3910 if (mddev->bitmap_file == NULL) {
3911 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3912 mdname(mddev));
3913 return -EBADF;
3916 err = deny_bitmap_write_access(mddev->bitmap_file);
3917 if (err) {
3918 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3919 mdname(mddev));
3920 fput(mddev->bitmap_file);
3921 mddev->bitmap_file = NULL;
3922 return err;
3924 mddev->bitmap_offset = 0; /* file overrides offset */
3925 } else if (mddev->bitmap == NULL)
3926 return -ENOENT; /* cannot remove what isn't there */
3927 err = 0;
3928 if (mddev->pers) {
3929 mddev->pers->quiesce(mddev, 1);
3930 if (fd >= 0)
3931 err = bitmap_create(mddev);
3932 if (fd < 0 || err) {
3933 bitmap_destroy(mddev);
3934 fd = -1; /* make sure to put the file */
3936 mddev->pers->quiesce(mddev, 0);
3938 if (fd < 0) {
3939 if (mddev->bitmap_file) {
3940 restore_bitmap_write_access(mddev->bitmap_file);
3941 fput(mddev->bitmap_file);
3943 mddev->bitmap_file = NULL;
3946 return err;
3950 * set_array_info is used two different ways
3951 * The original usage is when creating a new array.
3952 * In this usage, raid_disks is > 0 and it together with
3953 * level, size, not_persistent,layout,chunksize determine the
3954 * shape of the array.
3955 * This will always create an array with a type-0.90.0 superblock.
3956 * The newer usage is when assembling an array.
3957 * In this case raid_disks will be 0, and the major_version field is
3958 * use to determine which style super-blocks are to be found on the devices.
3959 * The minor and patch _version numbers are also kept incase the
3960 * super_block handler wishes to interpret them.
3962 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3965 if (info->raid_disks == 0) {
3966 /* just setting version number for superblock loading */
3967 if (info->major_version < 0 ||
3968 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3969 super_types[info->major_version].name == NULL) {
3970 /* maybe try to auto-load a module? */
3971 printk(KERN_INFO
3972 "md: superblock version %d not known\n",
3973 info->major_version);
3974 return -EINVAL;
3976 mddev->major_version = info->major_version;
3977 mddev->minor_version = info->minor_version;
3978 mddev->patch_version = info->patch_version;
3979 return 0;
3981 mddev->major_version = MD_MAJOR_VERSION;
3982 mddev->minor_version = MD_MINOR_VERSION;
3983 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3984 mddev->ctime = get_seconds();
3986 mddev->level = info->level;
3987 mddev->clevel[0] = 0;
3988 mddev->size = info->size;
3989 mddev->raid_disks = info->raid_disks;
3990 /* don't set md_minor, it is determined by which /dev/md* was
3991 * openned
3993 if (info->state & (1<<MD_SB_CLEAN))
3994 mddev->recovery_cp = MaxSector;
3995 else
3996 mddev->recovery_cp = 0;
3997 mddev->persistent = ! info->not_persistent;
3999 mddev->layout = info->layout;
4000 mddev->chunk_size = info->chunk_size;
4002 mddev->max_disks = MD_SB_DISKS;
4004 mddev->sb_dirty = 1;
4006 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4007 mddev->bitmap_offset = 0;
4009 mddev->reshape_position = MaxSector;
4012 * Generate a 128 bit UUID
4014 get_random_bytes(mddev->uuid, 16);
4016 mddev->new_level = mddev->level;
4017 mddev->new_chunk = mddev->chunk_size;
4018 mddev->new_layout = mddev->layout;
4019 mddev->delta_disks = 0;
4021 return 0;
4024 static int update_size(mddev_t *mddev, unsigned long size)
4026 mdk_rdev_t * rdev;
4027 int rv;
4028 struct list_head *tmp;
4029 int fit = (size == 0);
4031 if (mddev->pers->resize == NULL)
4032 return -EINVAL;
4033 /* The "size" is the amount of each device that is used.
4034 * This can only make sense for arrays with redundancy.
4035 * linear and raid0 always use whatever space is available
4036 * We can only consider changing the size if no resync
4037 * or reconstruction is happening, and if the new size
4038 * is acceptable. It must fit before the sb_offset or,
4039 * if that is <data_offset, it must fit before the
4040 * size of each device.
4041 * If size is zero, we find the largest size that fits.
4043 if (mddev->sync_thread)
4044 return -EBUSY;
4045 ITERATE_RDEV(mddev,rdev,tmp) {
4046 sector_t avail;
4047 if (rdev->sb_offset > rdev->data_offset)
4048 avail = (rdev->sb_offset*2) - rdev->data_offset;
4049 else
4050 avail = get_capacity(rdev->bdev->bd_disk)
4051 - rdev->data_offset;
4052 if (fit && (size == 0 || size > avail/2))
4053 size = avail/2;
4054 if (avail < ((sector_t)size << 1))
4055 return -ENOSPC;
4057 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4058 if (!rv) {
4059 struct block_device *bdev;
4061 bdev = bdget_disk(mddev->gendisk, 0);
4062 if (bdev) {
4063 mutex_lock(&bdev->bd_inode->i_mutex);
4064 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4065 mutex_unlock(&bdev->bd_inode->i_mutex);
4066 bdput(bdev);
4069 return rv;
4072 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4074 int rv;
4075 /* change the number of raid disks */
4076 if (mddev->pers->check_reshape == NULL)
4077 return -EINVAL;
4078 if (raid_disks <= 0 ||
4079 raid_disks >= mddev->max_disks)
4080 return -EINVAL;
4081 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4082 return -EBUSY;
4083 mddev->delta_disks = raid_disks - mddev->raid_disks;
4085 rv = mddev->pers->check_reshape(mddev);
4086 return rv;
4091 * update_array_info is used to change the configuration of an
4092 * on-line array.
4093 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4094 * fields in the info are checked against the array.
4095 * Any differences that cannot be handled will cause an error.
4096 * Normally, only one change can be managed at a time.
4098 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4100 int rv = 0;
4101 int cnt = 0;
4102 int state = 0;
4104 /* calculate expected state,ignoring low bits */
4105 if (mddev->bitmap && mddev->bitmap_offset)
4106 state |= (1 << MD_SB_BITMAP_PRESENT);
4108 if (mddev->major_version != info->major_version ||
4109 mddev->minor_version != info->minor_version ||
4110 /* mddev->patch_version != info->patch_version || */
4111 mddev->ctime != info->ctime ||
4112 mddev->level != info->level ||
4113 /* mddev->layout != info->layout || */
4114 !mddev->persistent != info->not_persistent||
4115 mddev->chunk_size != info->chunk_size ||
4116 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4117 ((state^info->state) & 0xfffffe00)
4119 return -EINVAL;
4120 /* Check there is only one change */
4121 if (info->size >= 0 && mddev->size != info->size) cnt++;
4122 if (mddev->raid_disks != info->raid_disks) cnt++;
4123 if (mddev->layout != info->layout) cnt++;
4124 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4125 if (cnt == 0) return 0;
4126 if (cnt > 1) return -EINVAL;
4128 if (mddev->layout != info->layout) {
4129 /* Change layout
4130 * we don't need to do anything at the md level, the
4131 * personality will take care of it all.
4133 if (mddev->pers->reconfig == NULL)
4134 return -EINVAL;
4135 else
4136 return mddev->pers->reconfig(mddev, info->layout, -1);
4138 if (info->size >= 0 && mddev->size != info->size)
4139 rv = update_size(mddev, info->size);
4141 if (mddev->raid_disks != info->raid_disks)
4142 rv = update_raid_disks(mddev, info->raid_disks);
4144 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4145 if (mddev->pers->quiesce == NULL)
4146 return -EINVAL;
4147 if (mddev->recovery || mddev->sync_thread)
4148 return -EBUSY;
4149 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4150 /* add the bitmap */
4151 if (mddev->bitmap)
4152 return -EEXIST;
4153 if (mddev->default_bitmap_offset == 0)
4154 return -EINVAL;
4155 mddev->bitmap_offset = mddev->default_bitmap_offset;
4156 mddev->pers->quiesce(mddev, 1);
4157 rv = bitmap_create(mddev);
4158 if (rv)
4159 bitmap_destroy(mddev);
4160 mddev->pers->quiesce(mddev, 0);
4161 } else {
4162 /* remove the bitmap */
4163 if (!mddev->bitmap)
4164 return -ENOENT;
4165 if (mddev->bitmap->file)
4166 return -EINVAL;
4167 mddev->pers->quiesce(mddev, 1);
4168 bitmap_destroy(mddev);
4169 mddev->pers->quiesce(mddev, 0);
4170 mddev->bitmap_offset = 0;
4173 md_update_sb(mddev);
4174 return rv;
4177 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4179 mdk_rdev_t *rdev;
4181 if (mddev->pers == NULL)
4182 return -ENODEV;
4184 rdev = find_rdev(mddev, dev);
4185 if (!rdev)
4186 return -ENODEV;
4188 md_error(mddev, rdev);
4189 return 0;
4192 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4194 mddev_t *mddev = bdev->bd_disk->private_data;
4196 geo->heads = 2;
4197 geo->sectors = 4;
4198 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4199 return 0;
4202 static int md_ioctl(struct inode *inode, struct file *file,
4203 unsigned int cmd, unsigned long arg)
4205 int err = 0;
4206 void __user *argp = (void __user *)arg;
4207 mddev_t *mddev = NULL;
4209 if (!capable(CAP_SYS_ADMIN))
4210 return -EACCES;
4213 * Commands dealing with the RAID driver but not any
4214 * particular array:
4216 switch (cmd)
4218 case RAID_VERSION:
4219 err = get_version(argp);
4220 goto done;
4222 case PRINT_RAID_DEBUG:
4223 err = 0;
4224 md_print_devices();
4225 goto done;
4227 #ifndef MODULE
4228 case RAID_AUTORUN:
4229 err = 0;
4230 autostart_arrays(arg);
4231 goto done;
4232 #endif
4233 default:;
4237 * Commands creating/starting a new array:
4240 mddev = inode->i_bdev->bd_disk->private_data;
4242 if (!mddev) {
4243 BUG();
4244 goto abort;
4248 if (cmd == START_ARRAY) {
4249 /* START_ARRAY doesn't need to lock the array as autostart_array
4250 * does the locking, and it could even be a different array
4252 static int cnt = 3;
4253 if (cnt > 0 ) {
4254 printk(KERN_WARNING
4255 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
4256 "This will not be supported beyond July 2006\n",
4257 current->comm, current->pid);
4258 cnt--;
4260 err = autostart_array(new_decode_dev(arg));
4261 if (err) {
4262 printk(KERN_WARNING "md: autostart failed!\n");
4263 goto abort;
4265 goto done;
4268 err = mddev_lock(mddev);
4269 if (err) {
4270 printk(KERN_INFO
4271 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4272 err, cmd);
4273 goto abort;
4276 switch (cmd)
4278 case SET_ARRAY_INFO:
4280 mdu_array_info_t info;
4281 if (!arg)
4282 memset(&info, 0, sizeof(info));
4283 else if (copy_from_user(&info, argp, sizeof(info))) {
4284 err = -EFAULT;
4285 goto abort_unlock;
4287 if (mddev->pers) {
4288 err = update_array_info(mddev, &info);
4289 if (err) {
4290 printk(KERN_WARNING "md: couldn't update"
4291 " array info. %d\n", err);
4292 goto abort_unlock;
4294 goto done_unlock;
4296 if (!list_empty(&mddev->disks)) {
4297 printk(KERN_WARNING
4298 "md: array %s already has disks!\n",
4299 mdname(mddev));
4300 err = -EBUSY;
4301 goto abort_unlock;
4303 if (mddev->raid_disks) {
4304 printk(KERN_WARNING
4305 "md: array %s already initialised!\n",
4306 mdname(mddev));
4307 err = -EBUSY;
4308 goto abort_unlock;
4310 err = set_array_info(mddev, &info);
4311 if (err) {
4312 printk(KERN_WARNING "md: couldn't set"
4313 " array info. %d\n", err);
4314 goto abort_unlock;
4317 goto done_unlock;
4319 default:;
4323 * Commands querying/configuring an existing array:
4325 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4326 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4327 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4328 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4329 err = -ENODEV;
4330 goto abort_unlock;
4334 * Commands even a read-only array can execute:
4336 switch (cmd)
4338 case GET_ARRAY_INFO:
4339 err = get_array_info(mddev, argp);
4340 goto done_unlock;
4342 case GET_BITMAP_FILE:
4343 err = get_bitmap_file(mddev, argp);
4344 goto done_unlock;
4346 case GET_DISK_INFO:
4347 err = get_disk_info(mddev, argp);
4348 goto done_unlock;
4350 case RESTART_ARRAY_RW:
4351 err = restart_array(mddev);
4352 goto done_unlock;
4354 case STOP_ARRAY:
4355 err = do_md_stop (mddev, 0);
4356 goto done_unlock;
4358 case STOP_ARRAY_RO:
4359 err = do_md_stop (mddev, 1);
4360 goto done_unlock;
4363 * We have a problem here : there is no easy way to give a CHS
4364 * virtual geometry. We currently pretend that we have a 2 heads
4365 * 4 sectors (with a BIG number of cylinders...). This drives
4366 * dosfs just mad... ;-)
4371 * The remaining ioctls are changing the state of the
4372 * superblock, so we do not allow them on read-only arrays.
4373 * However non-MD ioctls (e.g. get-size) will still come through
4374 * here and hit the 'default' below, so only disallow
4375 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4377 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4378 mddev->ro && mddev->pers) {
4379 if (mddev->ro == 2) {
4380 mddev->ro = 0;
4381 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4382 md_wakeup_thread(mddev->thread);
4384 } else {
4385 err = -EROFS;
4386 goto abort_unlock;
4390 switch (cmd)
4392 case ADD_NEW_DISK:
4394 mdu_disk_info_t info;
4395 if (copy_from_user(&info, argp, sizeof(info)))
4396 err = -EFAULT;
4397 else
4398 err = add_new_disk(mddev, &info);
4399 goto done_unlock;
4402 case HOT_REMOVE_DISK:
4403 err = hot_remove_disk(mddev, new_decode_dev(arg));
4404 goto done_unlock;
4406 case HOT_ADD_DISK:
4407 err = hot_add_disk(mddev, new_decode_dev(arg));
4408 goto done_unlock;
4410 case SET_DISK_FAULTY:
4411 err = set_disk_faulty(mddev, new_decode_dev(arg));
4412 goto done_unlock;
4414 case RUN_ARRAY:
4415 err = do_md_run (mddev);
4416 goto done_unlock;
4418 case SET_BITMAP_FILE:
4419 err = set_bitmap_file(mddev, (int)arg);
4420 goto done_unlock;
4422 default:
4423 err = -EINVAL;
4424 goto abort_unlock;
4427 done_unlock:
4428 abort_unlock:
4429 mddev_unlock(mddev);
4431 return err;
4432 done:
4433 if (err)
4434 MD_BUG();
4435 abort:
4436 return err;
4439 static int md_open(struct inode *inode, struct file *file)
4442 * Succeed if we can lock the mddev, which confirms that
4443 * it isn't being stopped right now.
4445 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4446 int err;
4448 if ((err = mddev_lock(mddev)))
4449 goto out;
4451 err = 0;
4452 mddev_get(mddev);
4453 mddev_unlock(mddev);
4455 check_disk_change(inode->i_bdev);
4456 out:
4457 return err;
4460 static int md_release(struct inode *inode, struct file * file)
4462 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4464 if (!mddev)
4465 BUG();
4466 mddev_put(mddev);
4468 return 0;
4471 static int md_media_changed(struct gendisk *disk)
4473 mddev_t *mddev = disk->private_data;
4475 return mddev->changed;
4478 static int md_revalidate(struct gendisk *disk)
4480 mddev_t *mddev = disk->private_data;
4482 mddev->changed = 0;
4483 return 0;
4485 static struct block_device_operations md_fops =
4487 .owner = THIS_MODULE,
4488 .open = md_open,
4489 .release = md_release,
4490 .ioctl = md_ioctl,
4491 .getgeo = md_getgeo,
4492 .media_changed = md_media_changed,
4493 .revalidate_disk= md_revalidate,
4496 static int md_thread(void * arg)
4498 mdk_thread_t *thread = arg;
4501 * md_thread is a 'system-thread', it's priority should be very
4502 * high. We avoid resource deadlocks individually in each
4503 * raid personality. (RAID5 does preallocation) We also use RR and
4504 * the very same RT priority as kswapd, thus we will never get
4505 * into a priority inversion deadlock.
4507 * we definitely have to have equal or higher priority than
4508 * bdflush, otherwise bdflush will deadlock if there are too
4509 * many dirty RAID5 blocks.
4512 allow_signal(SIGKILL);
4513 while (!kthread_should_stop()) {
4515 /* We need to wait INTERRUPTIBLE so that
4516 * we don't add to the load-average.
4517 * That means we need to be sure no signals are
4518 * pending
4520 if (signal_pending(current))
4521 flush_signals(current);
4523 wait_event_interruptible_timeout
4524 (thread->wqueue,
4525 test_bit(THREAD_WAKEUP, &thread->flags)
4526 || kthread_should_stop(),
4527 thread->timeout);
4528 try_to_freeze();
4530 clear_bit(THREAD_WAKEUP, &thread->flags);
4532 thread->run(thread->mddev);
4535 return 0;
4538 void md_wakeup_thread(mdk_thread_t *thread)
4540 if (thread) {
4541 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4542 set_bit(THREAD_WAKEUP, &thread->flags);
4543 wake_up(&thread->wqueue);
4547 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4548 const char *name)
4550 mdk_thread_t *thread;
4552 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4553 if (!thread)
4554 return NULL;
4556 init_waitqueue_head(&thread->wqueue);
4558 thread->run = run;
4559 thread->mddev = mddev;
4560 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4561 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4562 if (IS_ERR(thread->tsk)) {
4563 kfree(thread);
4564 return NULL;
4566 return thread;
4569 void md_unregister_thread(mdk_thread_t *thread)
4571 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4573 kthread_stop(thread->tsk);
4574 kfree(thread);
4577 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4579 if (!mddev) {
4580 MD_BUG();
4581 return;
4584 if (!rdev || test_bit(Faulty, &rdev->flags))
4585 return;
4587 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4588 mdname(mddev),
4589 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4590 __builtin_return_address(0),__builtin_return_address(1),
4591 __builtin_return_address(2),__builtin_return_address(3));
4593 if (!mddev->pers->error_handler)
4594 return;
4595 mddev->pers->error_handler(mddev,rdev);
4596 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4598 md_wakeup_thread(mddev->thread);
4599 md_new_event_inintr(mddev);
4602 /* seq_file implementation /proc/mdstat */
4604 static void status_unused(struct seq_file *seq)
4606 int i = 0;
4607 mdk_rdev_t *rdev;
4608 struct list_head *tmp;
4610 seq_printf(seq, "unused devices: ");
4612 ITERATE_RDEV_PENDING(rdev,tmp) {
4613 char b[BDEVNAME_SIZE];
4614 i++;
4615 seq_printf(seq, "%s ",
4616 bdevname(rdev->bdev,b));
4618 if (!i)
4619 seq_printf(seq, "<none>");
4621 seq_printf(seq, "\n");
4625 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4627 sector_t max_blocks, resync, res;
4628 unsigned long dt, db, rt;
4629 int scale;
4630 unsigned int per_milli;
4632 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4634 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4635 max_blocks = mddev->resync_max_sectors >> 1;
4636 else
4637 max_blocks = mddev->size;
4640 * Should not happen.
4642 if (!max_blocks) {
4643 MD_BUG();
4644 return;
4646 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4647 * in a sector_t, and (max_blocks>>scale) will fit in a
4648 * u32, as those are the requirements for sector_div.
4649 * Thus 'scale' must be at least 10
4651 scale = 10;
4652 if (sizeof(sector_t) > sizeof(unsigned long)) {
4653 while ( max_blocks/2 > (1ULL<<(scale+32)))
4654 scale++;
4656 res = (resync>>scale)*1000;
4657 sector_div(res, (u32)((max_blocks>>scale)+1));
4659 per_milli = res;
4661 int i, x = per_milli/50, y = 20-x;
4662 seq_printf(seq, "[");
4663 for (i = 0; i < x; i++)
4664 seq_printf(seq, "=");
4665 seq_printf(seq, ">");
4666 for (i = 0; i < y; i++)
4667 seq_printf(seq, ".");
4668 seq_printf(seq, "] ");
4670 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4671 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4672 "reshape" :
4673 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4674 "resync" : "recovery")),
4675 per_milli/10, per_milli % 10,
4676 (unsigned long long) resync,
4677 (unsigned long long) max_blocks);
4680 * We do not want to overflow, so the order of operands and
4681 * the * 100 / 100 trick are important. We do a +1 to be
4682 * safe against division by zero. We only estimate anyway.
4684 * dt: time from mark until now
4685 * db: blocks written from mark until now
4686 * rt: remaining time
4688 dt = ((jiffies - mddev->resync_mark) / HZ);
4689 if (!dt) dt++;
4690 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4691 - mddev->resync_mark_cnt;
4692 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4694 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4696 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4699 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4701 struct list_head *tmp;
4702 loff_t l = *pos;
4703 mddev_t *mddev;
4705 if (l >= 0x10000)
4706 return NULL;
4707 if (!l--)
4708 /* header */
4709 return (void*)1;
4711 spin_lock(&all_mddevs_lock);
4712 list_for_each(tmp,&all_mddevs)
4713 if (!l--) {
4714 mddev = list_entry(tmp, mddev_t, all_mddevs);
4715 mddev_get(mddev);
4716 spin_unlock(&all_mddevs_lock);
4717 return mddev;
4719 spin_unlock(&all_mddevs_lock);
4720 if (!l--)
4721 return (void*)2;/* tail */
4722 return NULL;
4725 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4727 struct list_head *tmp;
4728 mddev_t *next_mddev, *mddev = v;
4730 ++*pos;
4731 if (v == (void*)2)
4732 return NULL;
4734 spin_lock(&all_mddevs_lock);
4735 if (v == (void*)1)
4736 tmp = all_mddevs.next;
4737 else
4738 tmp = mddev->all_mddevs.next;
4739 if (tmp != &all_mddevs)
4740 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4741 else {
4742 next_mddev = (void*)2;
4743 *pos = 0x10000;
4745 spin_unlock(&all_mddevs_lock);
4747 if (v != (void*)1)
4748 mddev_put(mddev);
4749 return next_mddev;
4753 static void md_seq_stop(struct seq_file *seq, void *v)
4755 mddev_t *mddev = v;
4757 if (mddev && v != (void*)1 && v != (void*)2)
4758 mddev_put(mddev);
4761 struct mdstat_info {
4762 int event;
4765 static int md_seq_show(struct seq_file *seq, void *v)
4767 mddev_t *mddev = v;
4768 sector_t size;
4769 struct list_head *tmp2;
4770 mdk_rdev_t *rdev;
4771 struct mdstat_info *mi = seq->private;
4772 struct bitmap *bitmap;
4774 if (v == (void*)1) {
4775 struct mdk_personality *pers;
4776 seq_printf(seq, "Personalities : ");
4777 spin_lock(&pers_lock);
4778 list_for_each_entry(pers, &pers_list, list)
4779 seq_printf(seq, "[%s] ", pers->name);
4781 spin_unlock(&pers_lock);
4782 seq_printf(seq, "\n");
4783 mi->event = atomic_read(&md_event_count);
4784 return 0;
4786 if (v == (void*)2) {
4787 status_unused(seq);
4788 return 0;
4791 if (mddev_lock(mddev) < 0)
4792 return -EINTR;
4794 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4795 seq_printf(seq, "%s : %sactive", mdname(mddev),
4796 mddev->pers ? "" : "in");
4797 if (mddev->pers) {
4798 if (mddev->ro==1)
4799 seq_printf(seq, " (read-only)");
4800 if (mddev->ro==2)
4801 seq_printf(seq, "(auto-read-only)");
4802 seq_printf(seq, " %s", mddev->pers->name);
4805 size = 0;
4806 ITERATE_RDEV(mddev,rdev,tmp2) {
4807 char b[BDEVNAME_SIZE];
4808 seq_printf(seq, " %s[%d]",
4809 bdevname(rdev->bdev,b), rdev->desc_nr);
4810 if (test_bit(WriteMostly, &rdev->flags))
4811 seq_printf(seq, "(W)");
4812 if (test_bit(Faulty, &rdev->flags)) {
4813 seq_printf(seq, "(F)");
4814 continue;
4815 } else if (rdev->raid_disk < 0)
4816 seq_printf(seq, "(S)"); /* spare */
4817 size += rdev->size;
4820 if (!list_empty(&mddev->disks)) {
4821 if (mddev->pers)
4822 seq_printf(seq, "\n %llu blocks",
4823 (unsigned long long)mddev->array_size);
4824 else
4825 seq_printf(seq, "\n %llu blocks",
4826 (unsigned long long)size);
4828 if (mddev->persistent) {
4829 if (mddev->major_version != 0 ||
4830 mddev->minor_version != 90) {
4831 seq_printf(seq," super %d.%d",
4832 mddev->major_version,
4833 mddev->minor_version);
4835 } else
4836 seq_printf(seq, " super non-persistent");
4838 if (mddev->pers) {
4839 mddev->pers->status (seq, mddev);
4840 seq_printf(seq, "\n ");
4841 if (mddev->pers->sync_request) {
4842 if (mddev->curr_resync > 2) {
4843 status_resync (seq, mddev);
4844 seq_printf(seq, "\n ");
4845 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4846 seq_printf(seq, "\tresync=DELAYED\n ");
4847 else if (mddev->recovery_cp < MaxSector)
4848 seq_printf(seq, "\tresync=PENDING\n ");
4850 } else
4851 seq_printf(seq, "\n ");
4853 if ((bitmap = mddev->bitmap)) {
4854 unsigned long chunk_kb;
4855 unsigned long flags;
4856 spin_lock_irqsave(&bitmap->lock, flags);
4857 chunk_kb = bitmap->chunksize >> 10;
4858 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4859 "%lu%s chunk",
4860 bitmap->pages - bitmap->missing_pages,
4861 bitmap->pages,
4862 (bitmap->pages - bitmap->missing_pages)
4863 << (PAGE_SHIFT - 10),
4864 chunk_kb ? chunk_kb : bitmap->chunksize,
4865 chunk_kb ? "KB" : "B");
4866 if (bitmap->file) {
4867 seq_printf(seq, ", file: ");
4868 seq_path(seq, bitmap->file->f_vfsmnt,
4869 bitmap->file->f_dentry," \t\n");
4872 seq_printf(seq, "\n");
4873 spin_unlock_irqrestore(&bitmap->lock, flags);
4876 seq_printf(seq, "\n");
4878 mddev_unlock(mddev);
4880 return 0;
4883 static struct seq_operations md_seq_ops = {
4884 .start = md_seq_start,
4885 .next = md_seq_next,
4886 .stop = md_seq_stop,
4887 .show = md_seq_show,
4890 static int md_seq_open(struct inode *inode, struct file *file)
4892 int error;
4893 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4894 if (mi == NULL)
4895 return -ENOMEM;
4897 error = seq_open(file, &md_seq_ops);
4898 if (error)
4899 kfree(mi);
4900 else {
4901 struct seq_file *p = file->private_data;
4902 p->private = mi;
4903 mi->event = atomic_read(&md_event_count);
4905 return error;
4908 static int md_seq_release(struct inode *inode, struct file *file)
4910 struct seq_file *m = file->private_data;
4911 struct mdstat_info *mi = m->private;
4912 m->private = NULL;
4913 kfree(mi);
4914 return seq_release(inode, file);
4917 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4919 struct seq_file *m = filp->private_data;
4920 struct mdstat_info *mi = m->private;
4921 int mask;
4923 poll_wait(filp, &md_event_waiters, wait);
4925 /* always allow read */
4926 mask = POLLIN | POLLRDNORM;
4928 if (mi->event != atomic_read(&md_event_count))
4929 mask |= POLLERR | POLLPRI;
4930 return mask;
4933 static struct file_operations md_seq_fops = {
4934 .open = md_seq_open,
4935 .read = seq_read,
4936 .llseek = seq_lseek,
4937 .release = md_seq_release,
4938 .poll = mdstat_poll,
4941 int register_md_personality(struct mdk_personality *p)
4943 spin_lock(&pers_lock);
4944 list_add_tail(&p->list, &pers_list);
4945 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4946 spin_unlock(&pers_lock);
4947 return 0;
4950 int unregister_md_personality(struct mdk_personality *p)
4952 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4953 spin_lock(&pers_lock);
4954 list_del_init(&p->list);
4955 spin_unlock(&pers_lock);
4956 return 0;
4959 static int is_mddev_idle(mddev_t *mddev)
4961 mdk_rdev_t * rdev;
4962 struct list_head *tmp;
4963 int idle;
4964 unsigned long curr_events;
4966 idle = 1;
4967 ITERATE_RDEV(mddev,rdev,tmp) {
4968 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4969 curr_events = disk_stat_read(disk, sectors[0]) +
4970 disk_stat_read(disk, sectors[1]) -
4971 atomic_read(&disk->sync_io);
4972 /* The difference between curr_events and last_events
4973 * will be affected by any new non-sync IO (making
4974 * curr_events bigger) and any difference in the amount of
4975 * in-flight syncio (making current_events bigger or smaller)
4976 * The amount in-flight is currently limited to
4977 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4978 * which is at most 4096 sectors.
4979 * These numbers are fairly fragile and should be made
4980 * more robust, probably by enforcing the
4981 * 'window size' that md_do_sync sort-of uses.
4983 * Note: the following is an unsigned comparison.
4985 if ((curr_events - rdev->last_events + 4096) > 8192) {
4986 rdev->last_events = curr_events;
4987 idle = 0;
4990 return idle;
4993 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4995 /* another "blocks" (512byte) blocks have been synced */
4996 atomic_sub(blocks, &mddev->recovery_active);
4997 wake_up(&mddev->recovery_wait);
4998 if (!ok) {
4999 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5000 md_wakeup_thread(mddev->thread);
5001 // stop recovery, signal do_sync ....
5006 /* md_write_start(mddev, bi)
5007 * If we need to update some array metadata (e.g. 'active' flag
5008 * in superblock) before writing, schedule a superblock update
5009 * and wait for it to complete.
5011 void md_write_start(mddev_t *mddev, struct bio *bi)
5013 if (bio_data_dir(bi) != WRITE)
5014 return;
5016 BUG_ON(mddev->ro == 1);
5017 if (mddev->ro == 2) {
5018 /* need to switch to read/write */
5019 mddev->ro = 0;
5020 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5021 md_wakeup_thread(mddev->thread);
5023 atomic_inc(&mddev->writes_pending);
5024 if (mddev->in_sync) {
5025 spin_lock_irq(&mddev->write_lock);
5026 if (mddev->in_sync) {
5027 mddev->in_sync = 0;
5028 mddev->sb_dirty = 3;
5029 md_wakeup_thread(mddev->thread);
5031 spin_unlock_irq(&mddev->write_lock);
5033 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
5036 void md_write_end(mddev_t *mddev)
5038 if (atomic_dec_and_test(&mddev->writes_pending)) {
5039 if (mddev->safemode == 2)
5040 md_wakeup_thread(mddev->thread);
5041 else if (mddev->safemode_delay)
5042 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5046 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5048 #define SYNC_MARKS 10
5049 #define SYNC_MARK_STEP (3*HZ)
5050 void md_do_sync(mddev_t *mddev)
5052 mddev_t *mddev2;
5053 unsigned int currspeed = 0,
5054 window;
5055 sector_t max_sectors,j, io_sectors;
5056 unsigned long mark[SYNC_MARKS];
5057 sector_t mark_cnt[SYNC_MARKS];
5058 int last_mark,m;
5059 struct list_head *tmp;
5060 sector_t last_check;
5061 int skipped = 0;
5062 struct list_head *rtmp;
5063 mdk_rdev_t *rdev;
5065 /* just incase thread restarts... */
5066 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5067 return;
5068 if (mddev->ro) /* never try to sync a read-only array */
5069 return;
5071 /* we overload curr_resync somewhat here.
5072 * 0 == not engaged in resync at all
5073 * 2 == checking that there is no conflict with another sync
5074 * 1 == like 2, but have yielded to allow conflicting resync to
5075 * commense
5076 * other == active in resync - this many blocks
5078 * Before starting a resync we must have set curr_resync to
5079 * 2, and then checked that every "conflicting" array has curr_resync
5080 * less than ours. When we find one that is the same or higher
5081 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5082 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5083 * This will mean we have to start checking from the beginning again.
5087 do {
5088 mddev->curr_resync = 2;
5090 try_again:
5091 if (kthread_should_stop()) {
5092 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5093 goto skip;
5095 ITERATE_MDDEV(mddev2,tmp) {
5096 if (mddev2 == mddev)
5097 continue;
5098 if (mddev2->curr_resync &&
5099 match_mddev_units(mddev,mddev2)) {
5100 DEFINE_WAIT(wq);
5101 if (mddev < mddev2 && mddev->curr_resync == 2) {
5102 /* arbitrarily yield */
5103 mddev->curr_resync = 1;
5104 wake_up(&resync_wait);
5106 if (mddev > mddev2 && mddev->curr_resync == 1)
5107 /* no need to wait here, we can wait the next
5108 * time 'round when curr_resync == 2
5110 continue;
5111 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5112 if (!kthread_should_stop() &&
5113 mddev2->curr_resync >= mddev->curr_resync) {
5114 printk(KERN_INFO "md: delaying resync of %s"
5115 " until %s has finished resync (they"
5116 " share one or more physical units)\n",
5117 mdname(mddev), mdname(mddev2));
5118 mddev_put(mddev2);
5119 schedule();
5120 finish_wait(&resync_wait, &wq);
5121 goto try_again;
5123 finish_wait(&resync_wait, &wq);
5126 } while (mddev->curr_resync < 2);
5128 j = 0;
5129 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5130 /* resync follows the size requested by the personality,
5131 * which defaults to physical size, but can be virtual size
5133 max_sectors = mddev->resync_max_sectors;
5134 mddev->resync_mismatches = 0;
5135 /* we don't use the checkpoint if there's a bitmap */
5136 if (!mddev->bitmap &&
5137 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5138 j = mddev->recovery_cp;
5139 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5140 max_sectors = mddev->size << 1;
5141 else {
5142 /* recovery follows the physical size of devices */
5143 max_sectors = mddev->size << 1;
5144 j = MaxSector;
5145 ITERATE_RDEV(mddev,rdev,rtmp)
5146 if (rdev->raid_disk >= 0 &&
5147 !test_bit(Faulty, &rdev->flags) &&
5148 !test_bit(In_sync, &rdev->flags) &&
5149 rdev->recovery_offset < j)
5150 j = rdev->recovery_offset;
5153 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
5154 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
5155 " %d KB/sec/disc.\n", speed_min(mddev));
5156 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5157 "(but not more than %d KB/sec) for reconstruction.\n",
5158 speed_max(mddev));
5160 is_mddev_idle(mddev); /* this also initializes IO event counters */
5162 io_sectors = 0;
5163 for (m = 0; m < SYNC_MARKS; m++) {
5164 mark[m] = jiffies;
5165 mark_cnt[m] = io_sectors;
5167 last_mark = 0;
5168 mddev->resync_mark = mark[last_mark];
5169 mddev->resync_mark_cnt = mark_cnt[last_mark];
5172 * Tune reconstruction:
5174 window = 32*(PAGE_SIZE/512);
5175 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5176 window/2,(unsigned long long) max_sectors/2);
5178 atomic_set(&mddev->recovery_active, 0);
5179 init_waitqueue_head(&mddev->recovery_wait);
5180 last_check = 0;
5182 if (j>2) {
5183 printk(KERN_INFO
5184 "md: resuming recovery of %s from checkpoint.\n",
5185 mdname(mddev));
5186 mddev->curr_resync = j;
5189 while (j < max_sectors) {
5190 sector_t sectors;
5192 skipped = 0;
5193 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5194 currspeed < speed_min(mddev));
5195 if (sectors == 0) {
5196 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5197 goto out;
5200 if (!skipped) { /* actual IO requested */
5201 io_sectors += sectors;
5202 atomic_add(sectors, &mddev->recovery_active);
5205 j += sectors;
5206 if (j>1) mddev->curr_resync = j;
5207 mddev->curr_mark_cnt = io_sectors;
5208 if (last_check == 0)
5209 /* this is the earliers that rebuilt will be
5210 * visible in /proc/mdstat
5212 md_new_event(mddev);
5214 if (last_check + window > io_sectors || j == max_sectors)
5215 continue;
5217 last_check = io_sectors;
5219 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5220 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5221 break;
5223 repeat:
5224 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5225 /* step marks */
5226 int next = (last_mark+1) % SYNC_MARKS;
5228 mddev->resync_mark = mark[next];
5229 mddev->resync_mark_cnt = mark_cnt[next];
5230 mark[next] = jiffies;
5231 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5232 last_mark = next;
5236 if (kthread_should_stop()) {
5238 * got a signal, exit.
5240 printk(KERN_INFO
5241 "md: md_do_sync() got signal ... exiting\n");
5242 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5243 goto out;
5247 * this loop exits only if either when we are slower than
5248 * the 'hard' speed limit, or the system was IO-idle for
5249 * a jiffy.
5250 * the system might be non-idle CPU-wise, but we only care
5251 * about not overloading the IO subsystem. (things like an
5252 * e2fsck being done on the RAID array should execute fast)
5254 mddev->queue->unplug_fn(mddev->queue);
5255 cond_resched();
5257 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5258 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5260 if (currspeed > speed_min(mddev)) {
5261 if ((currspeed > speed_max(mddev)) ||
5262 !is_mddev_idle(mddev)) {
5263 msleep(500);
5264 goto repeat;
5268 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
5270 * this also signals 'finished resyncing' to md_stop
5272 out:
5273 mddev->queue->unplug_fn(mddev->queue);
5275 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5277 /* tell personality that we are finished */
5278 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5280 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5281 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5282 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5283 mddev->curr_resync > 2) {
5284 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5285 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5286 if (mddev->curr_resync >= mddev->recovery_cp) {
5287 printk(KERN_INFO
5288 "md: checkpointing recovery of %s.\n",
5289 mdname(mddev));
5290 mddev->recovery_cp = mddev->curr_resync;
5292 } else
5293 mddev->recovery_cp = MaxSector;
5294 } else {
5295 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5296 mddev->curr_resync = MaxSector;
5297 ITERATE_RDEV(mddev,rdev,rtmp)
5298 if (rdev->raid_disk >= 0 &&
5299 !test_bit(Faulty, &rdev->flags) &&
5300 !test_bit(In_sync, &rdev->flags) &&
5301 rdev->recovery_offset < mddev->curr_resync)
5302 rdev->recovery_offset = mddev->curr_resync;
5303 mddev->sb_dirty = 1;
5307 skip:
5308 mddev->curr_resync = 0;
5309 wake_up(&resync_wait);
5310 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5311 md_wakeup_thread(mddev->thread);
5313 EXPORT_SYMBOL_GPL(md_do_sync);
5317 * This routine is regularly called by all per-raid-array threads to
5318 * deal with generic issues like resync and super-block update.
5319 * Raid personalities that don't have a thread (linear/raid0) do not
5320 * need this as they never do any recovery or update the superblock.
5322 * It does not do any resync itself, but rather "forks" off other threads
5323 * to do that as needed.
5324 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5325 * "->recovery" and create a thread at ->sync_thread.
5326 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5327 * and wakeups up this thread which will reap the thread and finish up.
5328 * This thread also removes any faulty devices (with nr_pending == 0).
5330 * The overall approach is:
5331 * 1/ if the superblock needs updating, update it.
5332 * 2/ If a recovery thread is running, don't do anything else.
5333 * 3/ If recovery has finished, clean up, possibly marking spares active.
5334 * 4/ If there are any faulty devices, remove them.
5335 * 5/ If array is degraded, try to add spares devices
5336 * 6/ If array has spares or is not in-sync, start a resync thread.
5338 void md_check_recovery(mddev_t *mddev)
5340 mdk_rdev_t *rdev;
5341 struct list_head *rtmp;
5344 if (mddev->bitmap)
5345 bitmap_daemon_work(mddev->bitmap);
5347 if (mddev->ro)
5348 return;
5350 if (signal_pending(current)) {
5351 if (mddev->pers->sync_request) {
5352 printk(KERN_INFO "md: %s in immediate safe mode\n",
5353 mdname(mddev));
5354 mddev->safemode = 2;
5356 flush_signals(current);
5359 if ( ! (
5360 mddev->sb_dirty ||
5361 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5362 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5363 (mddev->safemode == 1) ||
5364 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5365 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5367 return;
5369 if (mddev_trylock(mddev)) {
5370 int spares =0;
5372 spin_lock_irq(&mddev->write_lock);
5373 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5374 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5375 mddev->in_sync = 1;
5376 mddev->sb_dirty = 3;
5378 if (mddev->safemode == 1)
5379 mddev->safemode = 0;
5380 spin_unlock_irq(&mddev->write_lock);
5382 if (mddev->sb_dirty)
5383 md_update_sb(mddev);
5386 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5387 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5388 /* resync/recovery still happening */
5389 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5390 goto unlock;
5392 if (mddev->sync_thread) {
5393 /* resync has finished, collect result */
5394 md_unregister_thread(mddev->sync_thread);
5395 mddev->sync_thread = NULL;
5396 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5397 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5398 /* success...*/
5399 /* activate any spares */
5400 mddev->pers->spare_active(mddev);
5402 md_update_sb(mddev);
5404 /* if array is no-longer degraded, then any saved_raid_disk
5405 * information must be scrapped
5407 if (!mddev->degraded)
5408 ITERATE_RDEV(mddev,rdev,rtmp)
5409 rdev->saved_raid_disk = -1;
5411 mddev->recovery = 0;
5412 /* flag recovery needed just to double check */
5413 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5414 md_new_event(mddev);
5415 goto unlock;
5417 /* Clear some bits that don't mean anything, but
5418 * might be left set
5420 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5421 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5422 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5423 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5425 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5426 goto unlock;
5427 /* no recovery is running.
5428 * remove any failed drives, then
5429 * add spares if possible.
5430 * Spare are also removed and re-added, to allow
5431 * the personality to fail the re-add.
5433 ITERATE_RDEV(mddev,rdev,rtmp)
5434 if (rdev->raid_disk >= 0 &&
5435 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5436 atomic_read(&rdev->nr_pending)==0) {
5437 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5438 char nm[20];
5439 sprintf(nm,"rd%d", rdev->raid_disk);
5440 sysfs_remove_link(&mddev->kobj, nm);
5441 rdev->raid_disk = -1;
5445 if (mddev->degraded) {
5446 ITERATE_RDEV(mddev,rdev,rtmp)
5447 if (rdev->raid_disk < 0
5448 && !test_bit(Faulty, &rdev->flags)) {
5449 rdev->recovery_offset = 0;
5450 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5451 char nm[20];
5452 sprintf(nm, "rd%d", rdev->raid_disk);
5453 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5454 spares++;
5455 md_new_event(mddev);
5456 } else
5457 break;
5461 if (spares) {
5462 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5463 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5464 } else if (mddev->recovery_cp < MaxSector) {
5465 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5466 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5467 /* nothing to be done ... */
5468 goto unlock;
5470 if (mddev->pers->sync_request) {
5471 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5472 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5473 /* We are adding a device or devices to an array
5474 * which has the bitmap stored on all devices.
5475 * So make sure all bitmap pages get written
5477 bitmap_write_all(mddev->bitmap);
5479 mddev->sync_thread = md_register_thread(md_do_sync,
5480 mddev,
5481 "%s_resync");
5482 if (!mddev->sync_thread) {
5483 printk(KERN_ERR "%s: could not start resync"
5484 " thread...\n",
5485 mdname(mddev));
5486 /* leave the spares where they are, it shouldn't hurt */
5487 mddev->recovery = 0;
5488 } else
5489 md_wakeup_thread(mddev->sync_thread);
5490 md_new_event(mddev);
5492 unlock:
5493 mddev_unlock(mddev);
5497 static int md_notify_reboot(struct notifier_block *this,
5498 unsigned long code, void *x)
5500 struct list_head *tmp;
5501 mddev_t *mddev;
5503 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5505 printk(KERN_INFO "md: stopping all md devices.\n");
5507 ITERATE_MDDEV(mddev,tmp)
5508 if (mddev_trylock(mddev)) {
5509 do_md_stop (mddev, 1);
5510 mddev_unlock(mddev);
5513 * certain more exotic SCSI devices are known to be
5514 * volatile wrt too early system reboots. While the
5515 * right place to handle this issue is the given
5516 * driver, we do want to have a safe RAID driver ...
5518 mdelay(1000*1);
5520 return NOTIFY_DONE;
5523 static struct notifier_block md_notifier = {
5524 .notifier_call = md_notify_reboot,
5525 .next = NULL,
5526 .priority = INT_MAX, /* before any real devices */
5529 static void md_geninit(void)
5531 struct proc_dir_entry *p;
5533 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5535 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5536 if (p)
5537 p->proc_fops = &md_seq_fops;
5540 static int __init md_init(void)
5542 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5543 " MD_SB_DISKS=%d\n",
5544 MD_MAJOR_VERSION, MD_MINOR_VERSION,
5545 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5546 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5547 BITMAP_MINOR);
5549 if (register_blkdev(MAJOR_NR, "md"))
5550 return -1;
5551 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5552 unregister_blkdev(MAJOR_NR, "md");
5553 return -1;
5555 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5556 md_probe, NULL, NULL);
5557 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5558 md_probe, NULL, NULL);
5560 register_reboot_notifier(&md_notifier);
5561 raid_table_header = register_sysctl_table(raid_root_table, 1);
5563 md_geninit();
5564 return (0);
5568 #ifndef MODULE
5571 * Searches all registered partitions for autorun RAID arrays
5572 * at boot time.
5574 static dev_t detected_devices[128];
5575 static int dev_cnt;
5577 void md_autodetect_dev(dev_t dev)
5579 if (dev_cnt >= 0 && dev_cnt < 127)
5580 detected_devices[dev_cnt++] = dev;
5584 static void autostart_arrays(int part)
5586 mdk_rdev_t *rdev;
5587 int i;
5589 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5591 for (i = 0; i < dev_cnt; i++) {
5592 dev_t dev = detected_devices[i];
5594 rdev = md_import_device(dev,0, 0);
5595 if (IS_ERR(rdev))
5596 continue;
5598 if (test_bit(Faulty, &rdev->flags)) {
5599 MD_BUG();
5600 continue;
5602 list_add(&rdev->same_set, &pending_raid_disks);
5604 dev_cnt = 0;
5606 autorun_devices(part);
5609 #endif
5611 static __exit void md_exit(void)
5613 mddev_t *mddev;
5614 struct list_head *tmp;
5616 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5617 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5619 unregister_blkdev(MAJOR_NR,"md");
5620 unregister_blkdev(mdp_major, "mdp");
5621 unregister_reboot_notifier(&md_notifier);
5622 unregister_sysctl_table(raid_table_header);
5623 remove_proc_entry("mdstat", NULL);
5624 ITERATE_MDDEV(mddev,tmp) {
5625 struct gendisk *disk = mddev->gendisk;
5626 if (!disk)
5627 continue;
5628 export_array(mddev);
5629 del_gendisk(disk);
5630 put_disk(disk);
5631 mddev->gendisk = NULL;
5632 mddev_put(mddev);
5636 module_init(md_init)
5637 module_exit(md_exit)
5639 static int get_ro(char *buffer, struct kernel_param *kp)
5641 return sprintf(buffer, "%d", start_readonly);
5643 static int set_ro(const char *val, struct kernel_param *kp)
5645 char *e;
5646 int num = simple_strtoul(val, &e, 10);
5647 if (*val && (*e == '\0' || *e == '\n')) {
5648 start_readonly = num;
5649 return 0;
5651 return -EINVAL;
5654 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5655 module_param(start_dirty_degraded, int, 0644);
5658 EXPORT_SYMBOL(register_md_personality);
5659 EXPORT_SYMBOL(unregister_md_personality);
5660 EXPORT_SYMBOL(md_error);
5661 EXPORT_SYMBOL(md_done_sync);
5662 EXPORT_SYMBOL(md_write_start);
5663 EXPORT_SYMBOL(md_write_end);
5664 EXPORT_SYMBOL(md_register_thread);
5665 EXPORT_SYMBOL(md_unregister_thread);
5666 EXPORT_SYMBOL(md_wakeup_thread);
5667 EXPORT_SYMBOL(md_check_recovery);
5668 MODULE_LICENSE("GPL");
5669 MODULE_ALIAS("md");
5670 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);