2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
80 * (all other bits are reserved and shall be 0)
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
107 * NOTE: only one poll value must be given for every card.
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
120 * Some cards requre specific IO mode, so it cannot be changed.
121 * It may be usefull to set IO mode to register io (REGIO) to solve
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
139 * debug register access (never use this, it will flood your system log)
140 * #define HFC_REGISTER_DEBUG
143 static const char *hfcmulti_revision
= "2.00";
145 #include <linux/module.h>
146 #include <linux/pci.h>
147 #include <linux/delay.h>
148 #include <linux/mISDNhw.h>
149 #include <linux/mISDNdsp.h>
152 #define IRQCOUNT_DEBUG
156 #include "hfc_multi.h"
162 #define MAX_PORTS (8 * MAX_CARDS)
164 static LIST_HEAD(HFClist
);
165 static spinlock_t HFClock
; /* global hfc list lock */
167 static void ph_state_change(struct dchannel
*);
168 static void (*hfc_interrupt
)(void);
169 static void (*register_interrupt
)(void);
170 static int (*unregister_interrupt
)(void);
171 static int interrupt_registered
;
173 static struct hfc_multi
*syncmaster
;
174 int plxsd_master
; /* if we have a master card (yet) */
175 static spinlock_t plx_lock
; /* may not acquire other lock inside */
176 EXPORT_SYMBOL(plx_lock
);
182 static int poll_timer
= 6; /* default = 128 samples = 16ms */
183 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
184 static int nt_t1_count
[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
185 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
186 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
187 (0x60 MUST be included!) */
188 static u_char silence
= 0xff; /* silence by LAW */
190 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
191 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
192 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
198 static uint type
[MAX_CARDS
];
199 static uint pcm
[MAX_CARDS
];
200 static uint dslot
[MAX_CARDS
];
201 static uint iomode
[MAX_CARDS
];
202 static uint port
[MAX_PORTS
];
206 static uint clockdelay_te
= CLKDEL_TE
;
207 static uint clockdelay_nt
= CLKDEL_NT
;
209 static int HFC_cnt
, Port_cnt
, PCM_cnt
= 99;
211 MODULE_AUTHOR("Andreas Eversberg");
212 MODULE_LICENSE("GPL");
213 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
214 module_param(poll
, uint
, S_IRUGO
| S_IWUSR
);
215 module_param(timer
, uint
, S_IRUGO
| S_IWUSR
);
216 module_param(clockdelay_te
, uint
, S_IRUGO
| S_IWUSR
);
217 module_param(clockdelay_nt
, uint
, S_IRUGO
| S_IWUSR
);
218 module_param_array(type
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
219 module_param_array(pcm
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
220 module_param_array(dslot
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
221 module_param_array(iomode
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
222 module_param_array(port
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
224 #ifdef HFC_REGISTER_DEBUG
225 #define HFC_outb(hc, reg, val) \
226 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
227 #define HFC_outb_nodebug(hc, reg, val) \
228 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
229 #define HFC_inb(hc, reg) \
230 (hc->HFC_inb(hc, reg, __func__, __LINE__))
231 #define HFC_inb_nodebug(hc, reg) \
232 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
233 #define HFC_inw(hc, reg) \
234 (hc->HFC_inw(hc, reg, __func__, __LINE__))
235 #define HFC_inw_nodebug(hc, reg) \
236 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
237 #define HFC_wait(hc) \
238 (hc->HFC_wait(hc, __func__, __LINE__))
239 #define HFC_wait_nodebug(hc) \
240 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
242 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
243 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
244 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
245 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
246 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
247 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
248 #define HFC_wait(hc) (hc->HFC_wait(hc))
249 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
252 /* HFC_IO_MODE_PCIMEM */
254 #ifdef HFC_REGISTER_DEBUG
255 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
,
256 const char *function
, int line
)
258 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
)
261 writeb(val
, (hc
->pci_membase
)+reg
);
264 #ifdef HFC_REGISTER_DEBUG
265 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
267 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
)
270 return readb((hc
->pci_membase
)+reg
);
273 #ifdef HFC_REGISTER_DEBUG
274 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
276 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
)
279 return readw((hc
->pci_membase
)+reg
);
282 #ifdef HFC_REGISTER_DEBUG
283 HFC_wait_pcimem(struct hfc_multi
*hc
, const char *function
, int line
)
285 HFC_wait_pcimem(struct hfc_multi
*hc
)
288 while (readb((hc
->pci_membase
)+R_STATUS
) & V_BUSY
);
291 /* HFC_IO_MODE_REGIO */
293 #ifdef HFC_REGISTER_DEBUG
294 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
,
295 const char *function
, int line
)
297 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
)
300 outb(reg
, (hc
->pci_iobase
)+4);
301 outb(val
, hc
->pci_iobase
);
304 #ifdef HFC_REGISTER_DEBUG
305 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
307 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
)
310 outb(reg
, (hc
->pci_iobase
)+4);
311 return inb(hc
->pci_iobase
);
314 #ifdef HFC_REGISTER_DEBUG
315 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
317 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
)
320 outb(reg
, (hc
->pci_iobase
)+4);
321 return inw(hc
->pci_iobase
);
324 #ifdef HFC_REGISTER_DEBUG
325 HFC_wait_regio(struct hfc_multi
*hc
, const char *function
, int line
)
327 HFC_wait_regio(struct hfc_multi
*hc
)
330 outb(R_STATUS
, (hc
->pci_iobase
)+4);
331 while (inb(hc
->pci_iobase
) & V_BUSY
);
334 #ifdef HFC_REGISTER_DEBUG
336 HFC_outb_debug(struct hfc_multi
*hc
, u_char reg
, u_char val
,
337 const char *function
, int line
)
339 char regname
[256] = "", bits
[9] = "xxxxxxxx";
343 while (hfc_register_names
[++i
].name
) {
344 if (hfc_register_names
[i
].reg
== reg
)
345 strcat(regname
, hfc_register_names
[i
].name
);
347 if (regname
[0] == '\0')
348 strcpy(regname
, "register");
350 bits
[7] = '0'+(!!(val
&1));
351 bits
[6] = '0'+(!!(val
&2));
352 bits
[5] = '0'+(!!(val
&4));
353 bits
[4] = '0'+(!!(val
&8));
354 bits
[3] = '0'+(!!(val
&16));
355 bits
[2] = '0'+(!!(val
&32));
356 bits
[1] = '0'+(!!(val
&64));
357 bits
[0] = '0'+(!!(val
&128));
359 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
360 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
361 HFC_outb_nodebug(hc
, reg
, val
);
364 HFC_inb_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
366 char regname
[256] = "", bits
[9] = "xxxxxxxx";
367 u_char val
= HFC_inb_nodebug(hc
, reg
);
371 while (hfc_register_names
[i
++].name
)
373 while (hfc_register_names
[++i
].name
) {
374 if (hfc_register_names
[i
].reg
== reg
)
375 strcat(regname
, hfc_register_names
[i
].name
);
377 if (regname
[0] == '\0')
378 strcpy(regname
, "register");
380 bits
[7] = '0'+(!!(val
&1));
381 bits
[6] = '0'+(!!(val
&2));
382 bits
[5] = '0'+(!!(val
&4));
383 bits
[4] = '0'+(!!(val
&8));
384 bits
[3] = '0'+(!!(val
&16));
385 bits
[2] = '0'+(!!(val
&32));
386 bits
[1] = '0'+(!!(val
&64));
387 bits
[0] = '0'+(!!(val
&128));
389 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
390 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
394 HFC_inw_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
396 char regname
[256] = "";
397 u_short val
= HFC_inw_nodebug(hc
, reg
);
401 while (hfc_register_names
[i
++].name
)
403 while (hfc_register_names
[++i
].name
) {
404 if (hfc_register_names
[i
].reg
== reg
)
405 strcat(regname
, hfc_register_names
[i
].name
);
407 if (regname
[0] == '\0')
408 strcpy(regname
, "register");
411 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
412 hc
->id
, reg
, regname
, val
, function
, line
);
416 HFC_wait_debug(struct hfc_multi
*hc
, const char *function
, int line
)
418 printk(KERN_DEBUG
"HFC_wait(chip %d); in %s() line %d\n",
419 hc
->id
, function
, line
);
420 HFC_wait_nodebug(hc
);
424 /* write fifo data (REGIO) */
426 write_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
428 outb(A_FIFO_DATA0
, (hc
->pci_iobase
)+4);
430 outl(*(u32
*)data
, hc
->pci_iobase
);
435 outw(*(u16
*)data
, hc
->pci_iobase
);
440 outb(*data
, hc
->pci_iobase
);
445 /* write fifo data (PCIMEM) */
447 write_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
450 writel(*(u32
*)data
, (hc
->pci_membase
)+A_FIFO_DATA0
);
455 writew(*(u16
*)data
, (hc
->pci_membase
)+A_FIFO_DATA0
);
460 writeb(*data
, (hc
->pci_membase
)+A_FIFO_DATA0
);
465 /* read fifo data (REGIO) */
467 read_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
469 outb(A_FIFO_DATA0
, (hc
->pci_iobase
)+4);
471 *(u32
*)data
= inl(hc
->pci_iobase
);
476 *(u16
*)data
= inw(hc
->pci_iobase
);
481 *data
= inb(hc
->pci_iobase
);
487 /* read fifo data (PCIMEM) */
489 read_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
493 readl((hc
->pci_membase
)+A_FIFO_DATA0
);
499 readw((hc
->pci_membase
)+A_FIFO_DATA0
);
504 *data
= readb((hc
->pci_membase
)+A_FIFO_DATA0
);
512 enable_hwirq(struct hfc_multi
*hc
)
514 hc
->hw
.r_irq_ctrl
|= V_GLOB_IRQ_EN
;
515 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
519 disable_hwirq(struct hfc_multi
*hc
)
521 hc
->hw
.r_irq_ctrl
&= ~((u_char
)V_GLOB_IRQ_EN
);
522 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
526 #define MAX_TDM_CHAN 32
530 enablepcibridge(struct hfc_multi
*c
)
532 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x3); /* was _io before */
536 disablepcibridge(struct hfc_multi
*c
)
538 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x2); /* was _io before */
542 readpcibridge(struct hfc_multi
*hc
, unsigned char address
)
550 /* slow down a PCI read access by 1 PCI clock cycle */
551 HFC_outb(hc
, R_CTRL
, 0x4); /*was _io before*/
558 /* select local bridge port address by writing to CIP port */
559 /* data = HFC_inb(c, cipv); * was _io before */
560 outw(cipv
, hc
->pci_iobase
+ 4);
561 data
= inb(hc
->pci_iobase
);
563 /* restore R_CTRL for normal PCI read cycle speed */
564 HFC_outb(hc
, R_CTRL
, 0x0); /* was _io before */
570 writepcibridge(struct hfc_multi
*hc
, unsigned char address
, unsigned char data
)
583 /* select local bridge port address by writing to CIP port */
584 outw(cipv
, hc
->pci_iobase
+ 4);
585 /* define a 32 bit dword with 4 identical bytes for write sequence */
586 datav
= data
| ((__u32
) data
<< 8) | ((__u32
) data
<< 16) |
587 ((__u32
) data
<< 24);
590 * write this 32 bit dword to the bridge data port
591 * this will initiate a write sequence of up to 4 writes to the same
592 * address on the local bus interface the number of write accesses
593 * is undefined but >=1 and depends on the next PCI transaction
594 * during write sequence on the local bus
596 outl(datav
, hc
->pci_iobase
);
600 cpld_set_reg(struct hfc_multi
*hc
, unsigned char reg
)
602 /* Do data pin read low byte */
603 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
607 cpld_write_reg(struct hfc_multi
*hc
, unsigned char reg
, unsigned char val
)
609 cpld_set_reg(hc
, reg
);
612 writepcibridge(hc
, 1, val
);
613 disablepcibridge(hc
);
619 cpld_read_reg(struct hfc_multi
*hc
, unsigned char reg
)
621 unsigned char bytein
;
623 cpld_set_reg(hc
, reg
);
625 /* Do data pin read low byte */
626 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
629 bytein
= readpcibridge(hc
, 1);
630 disablepcibridge(hc
);
636 vpm_write_address(struct hfc_multi
*hc
, unsigned short addr
)
638 cpld_write_reg(hc
, 0, 0xff & addr
);
639 cpld_write_reg(hc
, 1, 0x01 & (addr
>> 8));
642 inline unsigned short
643 vpm_read_address(struct hfc_multi
*c
)
646 unsigned short highbit
;
648 addr
= cpld_read_reg(c
, 0);
649 highbit
= cpld_read_reg(c
, 1);
651 addr
= addr
| (highbit
<< 8);
657 vpm_in(struct hfc_multi
*c
, int which
, unsigned short addr
)
661 vpm_write_address(c
, addr
);
669 res
= readpcibridge(c
, 1);
678 vpm_out(struct hfc_multi
*c
, int which
, unsigned short addr
,
681 vpm_write_address(c
, addr
);
690 writepcibridge(c
, 1, data
);
698 regin
= vpm_in(c
, which
, addr
);
700 printk(KERN_DEBUG
"Wrote 0x%x to register 0x%x but got back "
701 "0x%x\n", data
, addr
, regin
);
708 vpm_init(struct hfc_multi
*wc
)
712 unsigned int i
, x
, y
;
715 for (x
= 0; x
< NUM_EC
; x
++) {
718 ver
= vpm_in(wc
, x
, 0x1a0);
719 printk(KERN_DEBUG
"VPM: Chip %d: ver %02x\n", x
, ver
);
722 for (y
= 0; y
< 4; y
++) {
723 vpm_out(wc
, x
, 0x1a8 + y
, 0x00); /* GPIO out */
724 vpm_out(wc
, x
, 0x1ac + y
, 0x00); /* GPIO dir */
725 vpm_out(wc
, x
, 0x1b0 + y
, 0x00); /* GPIO sel */
728 /* Setup TDM path - sets fsync and tdm_clk as inputs */
729 reg
= vpm_in(wc
, x
, 0x1a3); /* misc_con */
730 vpm_out(wc
, x
, 0x1a3, reg
& ~2);
732 /* Setup Echo length (256 taps) */
733 vpm_out(wc
, x
, 0x022, 1);
734 vpm_out(wc
, x
, 0x023, 0xff);
736 /* Setup timeslots */
737 vpm_out(wc
, x
, 0x02f, 0x00);
738 mask
= 0x02020202 << (x
* 4);
740 /* Setup the tdm channel masks for all chips */
741 for (i
= 0; i
< 4; i
++)
742 vpm_out(wc
, x
, 0x33 - i
, (mask
>> (i
<< 3)) & 0xff);
744 /* Setup convergence rate */
745 printk(KERN_DEBUG
"VPM: A-law mode\n");
746 reg
= 0x00 | 0x10 | 0x01;
747 vpm_out(wc
, x
, 0x20, reg
);
748 printk(KERN_DEBUG
"VPM reg 0x20 is %x\n", reg
);
749 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
751 vpm_out(wc
, x
, 0x24, 0x02);
752 reg
= vpm_in(wc
, x
, 0x24);
753 printk(KERN_DEBUG
"NLP Thresh is set to %d (0x%x)\n", reg
, reg
);
755 /* Initialize echo cans */
756 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
757 if (mask
& (0x00000001 << i
))
758 vpm_out(wc
, x
, i
, 0x00);
762 * ARM arch at least disallows a udelay of
763 * more than 2ms... it gives a fake "__bad_udelay"
764 * reference at link-time.
765 * long delays in kernel code are pretty sucky anyway
766 * for now work around it using 5 x 2ms instead of 1 x 10ms
775 /* Put in bypass mode */
776 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
777 if (mask
& (0x00000001 << i
))
778 vpm_out(wc
, x
, i
, 0x01);
782 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
783 if (mask
& (0x00000001 << i
))
784 vpm_out(wc
, x
, 0x78 + i
, 0x01);
791 vpm_check(struct hfc_multi
*hctmp
)
795 gpi2
= HFC_inb(hctmp
, R_GPI_IN2
);
797 if ((gpi2
& 0x3) != 0x3)
798 printk(KERN_DEBUG
"Got interrupt 0x%x from VPM!\n", gpi2
);
803 * Interface to enable/disable the HW Echocan
805 * these functions are called within a spin_lock_irqsave on
806 * the channel instance lock, so we are not disturbed by irqs
808 * we can later easily change the interface to make other
809 * things configurable, for now we configure the taps
814 vpm_echocan_on(struct hfc_multi
*hc
, int ch
, int taps
)
816 unsigned int timeslot
;
818 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
823 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
830 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
831 sizeof(int), &txadj
, GFP_ATOMIC
);
833 recv_Bchannel_skb(bch
, skb
);
836 timeslot
= ((ch
/4)*8) + ((ch
%4)*4) + 1;
839 printk(KERN_NOTICE
"vpm_echocan_on called taps [%d] on timeslot %d\n",
842 vpm_out(hc
, unit
, timeslot
, 0x7e);
846 vpm_echocan_off(struct hfc_multi
*hc
, int ch
)
848 unsigned int timeslot
;
850 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
856 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
863 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
864 sizeof(int), &txadj
, GFP_ATOMIC
);
866 recv_Bchannel_skb(bch
, skb
);
869 timeslot
= ((ch
/4)*8) + ((ch
%4)*4) + 1;
872 printk(KERN_NOTICE
"vpm_echocan_off called on timeslot %d\n",
875 vpm_out(hc
, unit
, timeslot
, 0x01);
880 * Speech Design resync feature
881 * NOTE: This is called sometimes outside interrupt handler.
882 * We must lock irqsave, so no other interrupt (other card) will occurr!
883 * Also multiple interrupts may nest, so must lock each access (lists, card)!
886 hfcmulti_resync(struct hfc_multi
*locked
, struct hfc_multi
*newmaster
, int rm
)
888 struct hfc_multi
*hc
, *next
, *pcmmaster
= 0;
889 u_int
*plx_acc_32
, pv
;
892 spin_lock_irqsave(&HFClock
, flags
);
893 spin_lock(&plx_lock
); /* must be locked inside other locks */
895 if (debug
& DEBUG_HFCMULTI_PLXSD
)
896 printk(KERN_DEBUG
"%s: RESYNC(syncmaster=0x%p)\n",
897 __func__
, syncmaster
);
899 /* select new master */
901 if (debug
& DEBUG_HFCMULTI_PLXSD
)
902 printk(KERN_DEBUG
"using provided controller\n");
904 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
905 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
906 if (hc
->syncronized
) {
914 /* Disable sync of all cards */
915 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
916 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
917 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
918 pv
= readl(plx_acc_32
);
919 pv
&= ~PLX_SYNC_O_EN
;
920 writel(pv
, plx_acc_32
);
921 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
924 if (debug
& DEBUG_HFCMULTI_PLXSD
)
926 "Schedule SYNC_I\n");
927 hc
->e1_resync
|= 1; /* get SYNC_I */
935 if (debug
& DEBUG_HFCMULTI_PLXSD
)
936 printk(KERN_DEBUG
"id=%d (0x%p) = syncronized with "
937 "interface.\n", hc
->id
, hc
);
938 /* Enable new sync master */
939 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
940 pv
= readl(plx_acc_32
);
942 writel(pv
, plx_acc_32
);
943 /* switch to jatt PLL, if not disabled by RX_SYNC */
944 if (hc
->type
== 1 && !test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
)) {
945 if (debug
& DEBUG_HFCMULTI_PLXSD
)
946 printk(KERN_DEBUG
"Schedule jatt PLL\n");
947 hc
->e1_resync
|= 2; /* switch to jatt */
952 if (debug
& DEBUG_HFCMULTI_PLXSD
)
954 "id=%d (0x%p) = PCM master syncronized "
955 "with QUARTZ\n", hc
->id
, hc
);
957 /* Use the crystal clock for the PCM
959 if (debug
& DEBUG_HFCMULTI_PLXSD
)
961 "Schedule QUARTZ for HFC-E1\n");
962 hc
->e1_resync
|= 4; /* switch quartz */
964 if (debug
& DEBUG_HFCMULTI_PLXSD
)
966 "QUARTZ is automatically "
967 "enabled by HFC-%dS\n", hc
->type
);
969 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
970 pv
= readl(plx_acc_32
);
972 writel(pv
, plx_acc_32
);
975 printk(KERN_ERR
"%s no pcm master, this MUST "
976 "not happen!\n", __func__
);
978 syncmaster
= newmaster
;
980 spin_unlock(&plx_lock
);
981 spin_unlock_irqrestore(&HFClock
, flags
);
984 /* This must be called AND hc must be locked irqsave!!! */
986 plxsd_checksync(struct hfc_multi
*hc
, int rm
)
988 if (hc
->syncronized
) {
989 if (syncmaster
== NULL
) {
990 if (debug
& DEBUG_HFCMULTI_PLXSD
)
991 printk(KERN_WARNING
"%s: GOT sync on card %d"
992 " (id=%d)\n", __func__
, hc
->id
+ 1,
994 hfcmulti_resync(hc
, hc
, rm
);
997 if (syncmaster
== hc
) {
998 if (debug
& DEBUG_HFCMULTI_PLXSD
)
999 printk(KERN_WARNING
"%s: LOST sync on card %d"
1000 " (id=%d)\n", __func__
, hc
->id
+ 1,
1002 hfcmulti_resync(hc
, NULL
, rm
);
1009 * free hardware resources used by driver
1012 release_io_hfcmulti(struct hfc_multi
*hc
)
1014 u_int
*plx_acc_32
, pv
;
1017 if (debug
& DEBUG_HFCMULTI_INIT
)
1018 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1020 /* soft reset also masks all interrupts */
1021 hc
->hw
.r_cirm
|= V_SRES
;
1022 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1024 hc
->hw
.r_cirm
&= ~V_SRES
;
1025 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1026 udelay(1000); /* instead of 'wait' that may cause locking */
1028 /* release Speech Design card, if PLX was initialized */
1029 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) && hc
->plx_membase
) {
1030 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1031 printk(KERN_DEBUG
"%s: release PLXSD card %d\n",
1032 __func__
, hc
->id
+ 1);
1033 spin_lock_irqsave(&plx_lock
, plx_flags
);
1034 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
1035 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1036 pv
= readl(plx_acc_32
);
1037 /* Termination off */
1039 /* Disconnect the PCM */
1040 pv
|= PLX_SLAVE_EN_N
;
1041 pv
&= ~PLX_MASTER_EN
;
1042 pv
&= ~PLX_SYNC_O_EN
;
1043 /* Put the DSP in Reset */
1044 pv
&= ~PLX_DSP_RES_N
;
1045 writel(pv
, plx_acc_32
);
1046 if (debug
& DEBUG_HFCMULTI_INIT
)
1047 printk(KERN_WARNING
"%s: PCM off: PLX_GPIO=%x\n",
1049 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1052 /* disable memory mapped ports / io ports */
1053 test_and_clear_bit(HFC_CHIP_PLXSD
, &hc
->chip
); /* prevent resync */
1054 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, 0);
1055 if (hc
->pci_membase
)
1056 iounmap((void *)hc
->pci_membase
);
1057 if (hc
->plx_membase
)
1058 iounmap((void *)hc
->plx_membase
);
1060 release_region(hc
->pci_iobase
, 8);
1063 pci_disable_device(hc
->pci_dev
);
1064 pci_set_drvdata(hc
->pci_dev
, NULL
);
1066 if (debug
& DEBUG_HFCMULTI_INIT
)
1067 printk(KERN_DEBUG
"%s: done\n", __func__
);
1071 * function called to reset the HFC chip. A complete software reset of chip
1072 * and fifos is done. All configuration of the chip is done.
1076 init_chip(struct hfc_multi
*hc
)
1078 u_long flags
, val
, val2
= 0, rev
;
1080 u_char r_conf_en
, rval
;
1081 u_int
*plx_acc_32
, pv
;
1082 u_long plx_flags
, hfc_flags
;
1084 struct hfc_multi
*pos
, *next
, *plx_last_hc
;
1086 spin_lock_irqsave(&hc
->lock
, flags
);
1087 /* reset all registers */
1088 memset(&hc
->hw
, 0, sizeof(struct hfcm_hw
));
1090 /* revision check */
1091 if (debug
& DEBUG_HFCMULTI_INIT
)
1092 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1093 val
= HFC_inb(hc
, R_CHIP_ID
)>>4;
1094 if (val
!= 0x8 && val
!= 0xc && val
!= 0xe) {
1095 printk(KERN_INFO
"HFC_multi: unknown CHIP_ID:%x\n", (u_int
)val
);
1099 rev
= HFC_inb(hc
, R_CHIP_RV
);
1101 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1102 val
, rev
, (rev
== 0) ? " (old FIFO handling)" : "");
1104 test_and_set_bit(HFC_CHIP_REVISION0
, &hc
->chip
);
1106 "HFC_multi: NOTE: Your chip is revision 0, "
1107 "ask Cologne Chip for update. Newer chips "
1108 "have a better FIFO handling. Old chips "
1109 "still work but may have slightly lower "
1110 "HDLC transmit performance.\n");
1113 printk(KERN_WARNING
"HFC_multi: WARNING: This driver doesn't "
1114 "consider chip revision = %ld. The chip / "
1115 "bridge may not work.\n", rev
);
1118 /* set s-ram size */
1122 hc
->DTMFbase
= 0x1000;
1123 if (test_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
)) {
1124 if (debug
& DEBUG_HFCMULTI_INIT
)
1125 printk(KERN_DEBUG
"%s: changing to 128K extenal RAM\n",
1127 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1128 hc
->hw
.r_ram_sz
= 1;
1132 hc
->DTMFbase
= 0x2000;
1134 if (test_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
)) {
1135 if (debug
& DEBUG_HFCMULTI_INIT
)
1136 printk(KERN_DEBUG
"%s: changing to 512K extenal RAM\n",
1138 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1139 hc
->hw
.r_ram_sz
= 2;
1143 hc
->DTMFbase
= 0x2000;
1145 hc
->max_trans
= poll
<< 1;
1146 if (hc
->max_trans
> hc
->Zlen
)
1147 hc
->max_trans
= hc
->Zlen
;
1149 /* Speech Design PLX bridge */
1150 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1151 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1152 printk(KERN_DEBUG
"%s: initializing PLXSD card %d\n",
1153 __func__
, hc
->id
+ 1);
1154 spin_lock_irqsave(&plx_lock
, plx_flags
);
1155 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
1156 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1157 pv
= readl(plx_acc_32
);
1158 /* The first and the last cards are terminating the PCM bus */
1159 pv
|= PLX_TERM_ON
; /* hc is currently the last */
1160 /* Disconnect the PCM */
1161 pv
|= PLX_SLAVE_EN_N
;
1162 pv
&= ~PLX_MASTER_EN
;
1163 pv
&= ~PLX_SYNC_O_EN
;
1164 /* Put the DSP in Reset */
1165 pv
&= ~PLX_DSP_RES_N
;
1166 writel(pv
, plx_acc_32
);
1167 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1168 if (debug
& DEBUG_HFCMULTI_INIT
)
1169 printk(KERN_WARNING
"%s: slave/term: PLX_GPIO=%x\n",
1172 * If we are the 3rd PLXSD card or higher, we must turn
1173 * termination of last PLXSD card off.
1175 spin_lock_irqsave(&HFClock
, hfc_flags
);
1178 list_for_each_entry_safe(pos
, next
, &HFClist
, list
) {
1179 if (test_bit(HFC_CHIP_PLXSD
, &pos
->chip
)) {
1185 if (plx_count
>= 3) {
1186 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1187 printk(KERN_DEBUG
"%s: card %d is between, so "
1188 "we disable termination\n",
1189 __func__
, plx_last_hc
->id
+ 1);
1190 spin_lock_irqsave(&plx_lock
, plx_flags
);
1191 plx_acc_32
= (u_int
*)(plx_last_hc
->plx_membase
1193 pv
= readl(plx_acc_32
);
1195 writel(pv
, plx_acc_32
);
1196 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1197 if (debug
& DEBUG_HFCMULTI_INIT
)
1198 printk(KERN_WARNING
"%s: term off: PLX_GPIO=%x\n",
1201 spin_unlock_irqrestore(&HFClock
, hfc_flags
);
1202 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1205 /* we only want the real Z2 read-pointer for revision > 0 */
1206 if (!test_bit(HFC_CHIP_REVISION0
, &hc
->chip
))
1207 hc
->hw
.r_ram_sz
|= V_FZ_MD
;
1209 /* select pcm mode */
1210 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1211 if (debug
& DEBUG_HFCMULTI_INIT
)
1212 printk(KERN_DEBUG
"%s: setting PCM into slave mode\n",
1215 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
) && !plxsd_master
) {
1216 if (debug
& DEBUG_HFCMULTI_INIT
)
1217 printk(KERN_DEBUG
"%s: setting PCM into master mode\n",
1219 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1221 if (debug
& DEBUG_HFCMULTI_INIT
)
1222 printk(KERN_DEBUG
"%s: performing PCM auto detect\n",
1227 HFC_outb(hc
, R_CTRL
, hc
->hw
.r_ctrl
);
1228 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1229 HFC_outb(hc
, R_FIFO_MD
, 0);
1230 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
| V_RLD_EPR
;
1231 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1234 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1236 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1238 /* Speech Design PLX bridge pcm and sync mode */
1239 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1240 spin_lock_irqsave(&plx_lock
, plx_flags
);
1241 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
1242 pv
= readl(plx_acc_32
);
1244 if (hc
->hw
.r_pcm_md0
& V_PCM_MD
) {
1245 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1246 pv
|= PLX_SYNC_O_EN
;
1247 if (debug
& DEBUG_HFCMULTI_INIT
)
1248 printk(KERN_WARNING
"%s: master: PLX_GPIO=%x\n",
1251 pv
&= ~(PLX_MASTER_EN
| PLX_SLAVE_EN_N
);
1252 pv
&= ~PLX_SYNC_O_EN
;
1253 if (debug
& DEBUG_HFCMULTI_INIT
)
1254 printk(KERN_WARNING
"%s: slave: PLX_GPIO=%x\n",
1257 writel(pv
, plx_acc_32
);
1258 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1262 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x90);
1263 if (hc
->slots
== 32)
1264 HFC_outb(hc
, R_PCM_MD1
, 0x00);
1265 if (hc
->slots
== 64)
1266 HFC_outb(hc
, R_PCM_MD1
, 0x10);
1267 if (hc
->slots
== 128)
1268 HFC_outb(hc
, R_PCM_MD1
, 0x20);
1269 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0xa0);
1270 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
1271 HFC_outb(hc
, R_PCM_MD2
, V_SYNC_SRC
); /* sync via SYNC_I / O */
1273 HFC_outb(hc
, R_PCM_MD2
, 0x00); /* sync from interface */
1274 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1275 for (i
= 0; i
< 256; i
++) {
1276 HFC_outb_nodebug(hc
, R_SLOT
, i
);
1277 HFC_outb_nodebug(hc
, A_SL_CFG
, 0);
1278 HFC_outb_nodebug(hc
, A_CONF
, 0);
1279 hc
->slot_owner
[i
] = -1;
1282 /* set clock speed */
1283 if (test_bit(HFC_CHIP_CLOCK2
, &hc
->chip
)) {
1284 if (debug
& DEBUG_HFCMULTI_INIT
)
1286 "%s: setting double clock\n", __func__
);
1287 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1291 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1292 printk(KERN_NOTICE
"Setting GPIOs\n");
1293 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1294 HFC_outb(hc
, R_GPIO_EN1
, 0x3);
1296 printk(KERN_NOTICE
"calling vpm_init\n");
1300 /* check if R_F0_CNT counts (8 kHz frame count) */
1301 val
= HFC_inb(hc
, R_F0_CNTL
);
1302 val
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1303 if (debug
& DEBUG_HFCMULTI_INIT
)
1305 "HFC_multi F0_CNT %ld after reset\n", val
);
1306 spin_unlock_irqrestore(&hc
->lock
, flags
);
1307 set_current_state(TASK_UNINTERRUPTIBLE
);
1308 schedule_timeout((HZ
/100)?:1); /* Timeout minimum 10ms */
1309 spin_lock_irqsave(&hc
->lock
, flags
);
1310 val2
= HFC_inb(hc
, R_F0_CNTL
);
1311 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1312 if (debug
& DEBUG_HFCMULTI_INIT
)
1314 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1316 if (val2
>= val
+8) { /* 1 ms */
1317 /* it counts, so we keep the pcm mode */
1318 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1319 printk(KERN_INFO
"controller is PCM bus MASTER\n");
1321 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
))
1322 printk(KERN_INFO
"controller is PCM bus SLAVE\n");
1324 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
1325 printk(KERN_INFO
"controller is PCM bus SLAVE "
1326 "(auto detected)\n");
1329 /* does not count */
1330 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
1332 printk(KERN_ERR
"HFC_multi ERROR, getting no 125us "
1333 "pulse. Seems that controller fails.\n");
1337 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1338 printk(KERN_INFO
"controller is PCM bus SLAVE "
1339 "(ignoring missing PCM clock)\n");
1341 /* only one pcm master */
1342 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
1344 printk(KERN_ERR
"HFC_multi ERROR, no clock "
1345 "on another Speech Design card found. "
1346 "Please be sure to connect PCM cable.\n");
1350 /* retry with master clock */
1351 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1352 spin_lock_irqsave(&plx_lock
, plx_flags
);
1353 plx_acc_32
= (u_int
*)(hc
->plx_membase
+
1355 pv
= readl(plx_acc_32
);
1356 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1357 pv
|= PLX_SYNC_O_EN
;
1358 writel(pv
, plx_acc_32
);
1359 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1360 if (debug
& DEBUG_HFCMULTI_INIT
)
1361 printk(KERN_WARNING
"%s: master: PLX_GPIO"
1362 "=%x\n", __func__
, pv
);
1364 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1365 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1366 spin_unlock_irqrestore(&hc
->lock
, flags
);
1367 set_current_state(TASK_UNINTERRUPTIBLE
);
1368 schedule_timeout((HZ
/100)?:1); /* Timeout min. 10ms */
1369 spin_lock_irqsave(&hc
->lock
, flags
);
1370 val2
= HFC_inb(hc
, R_F0_CNTL
);
1371 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1372 if (debug
& DEBUG_HFCMULTI_INIT
)
1373 printk(KERN_DEBUG
"HFC_multi F0_CNT %ld after "
1374 "10 ms (2nd try)\n", val2
);
1375 if (val2
>= val
+8) { /* 1 ms */
1376 test_and_set_bit(HFC_CHIP_PCM_MASTER
,
1378 printk(KERN_INFO
"controller is PCM bus MASTER "
1379 "(auto detected)\n");
1381 goto controller_fail
;
1385 /* Release the DSP Reset */
1386 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1387 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1389 spin_lock_irqsave(&plx_lock
, plx_flags
);
1390 plx_acc_32
= (u_int
*)(hc
->plx_membase
+PLX_GPIOC
);
1391 pv
= readl(plx_acc_32
);
1392 pv
|= PLX_DSP_RES_N
;
1393 writel(pv
, plx_acc_32
);
1394 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1395 if (debug
& DEBUG_HFCMULTI_INIT
)
1396 printk(KERN_WARNING
"%s: reset off: PLX_GPIO=%x\n",
1402 printk(KERN_INFO
"controller has given PCM BUS ID %d\n",
1405 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)
1406 || test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1407 PCM_cnt
++; /* SD has proprietary bridging */
1410 printk(KERN_INFO
"controller has PCM BUS ID %d "
1411 "(auto selected)\n", hc
->pcm
);
1415 HFC_outb(hc
, R_TI_WD
, poll_timer
);
1416 hc
->hw
.r_irqmsk_misc
|= V_TI_IRQMSK
;
1419 * set up 125us interrupt, only if function pointer is available
1420 * and module parameter timer is set
1422 if (timer
&& hfc_interrupt
&& register_interrupt
) {
1423 /* only one chip should use this interrupt */
1425 interrupt_registered
= 1;
1426 hc
->hw
.r_irqmsk_misc
|= V_PROC_IRQMSK
;
1427 /* deactivate other interrupts in ztdummy */
1428 register_interrupt();
1431 /* set E1 state machine IRQ */
1433 hc
->hw
.r_irqmsk_misc
|= V_STA_IRQMSK
;
1435 /* set DTMF detection */
1436 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
1437 if (debug
& DEBUG_HFCMULTI_INIT
)
1438 printk(KERN_DEBUG
"%s: enabling DTMF detection "
1439 "for all B-channel\n", __func__
);
1440 hc
->hw
.r_dtmf
= V_DTMF_EN
| V_DTMF_STOP
;
1441 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1442 hc
->hw
.r_dtmf
|= V_ULAW_SEL
;
1443 HFC_outb(hc
, R_DTMF_N
, 102 - 1);
1444 hc
->hw
.r_irqmsk_misc
|= V_DTMF_IRQMSK
;
1447 /* conference engine */
1448 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1449 r_conf_en
= V_CONF_EN
| V_ULAW
;
1451 r_conf_en
= V_CONF_EN
;
1452 HFC_outb(hc
, R_CONF_EN
, r_conf_en
);
1456 case 1: /* HFC-E1 OEM */
1457 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
1458 HFC_outb(hc
, R_GPIO_SEL
, 0x32);
1460 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1462 HFC_outb(hc
, R_GPIO_EN1
, 0x0f);
1463 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1465 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1468 case 2: /* HFC-4S OEM */
1470 HFC_outb(hc
, R_GPIO_SEL
, 0xf0);
1471 HFC_outb(hc
, R_GPIO_EN1
, 0xff);
1472 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1476 /* set master clock */
1477 if (hc
->masterclk
>= 0) {
1478 if (debug
& DEBUG_HFCMULTI_INIT
)
1479 printk(KERN_DEBUG
"%s: setting ST master clock "
1480 "to port %d (0..%d)\n",
1481 __func__
, hc
->masterclk
, hc
->ports
-1);
1482 hc
->hw
.r_st_sync
= hc
->masterclk
| V_AUTO_SYNC
;
1483 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1486 /* setting misc irq */
1487 HFC_outb(hc
, R_IRQMSK_MISC
, hc
->hw
.r_irqmsk_misc
);
1488 if (debug
& DEBUG_HFCMULTI_INIT
)
1489 printk(KERN_DEBUG
"r_irqmsk_misc.2: 0x%x\n",
1490 hc
->hw
.r_irqmsk_misc
);
1492 /* RAM access test */
1493 HFC_outb(hc
, R_RAM_ADDR0
, 0);
1494 HFC_outb(hc
, R_RAM_ADDR1
, 0);
1495 HFC_outb(hc
, R_RAM_ADDR2
, 0);
1496 for (i
= 0; i
< 256; i
++) {
1497 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1498 HFC_outb_nodebug(hc
, R_RAM_DATA
, ((i
*3)&0xff));
1500 for (i
= 0; i
< 256; i
++) {
1501 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1502 HFC_inb_nodebug(hc
, R_RAM_DATA
);
1503 rval
= HFC_inb_nodebug(hc
, R_INT_DATA
);
1504 if (rval
!= ((i
* 3) & 0xff)) {
1506 "addr:%x val:%x should:%x\n", i
, rval
,
1512 printk(KERN_DEBUG
"aborting - %d RAM access errors\n", err
);
1517 if (debug
& DEBUG_HFCMULTI_INIT
)
1518 printk(KERN_DEBUG
"%s: done\n", __func__
);
1520 spin_unlock_irqrestore(&hc
->lock
, flags
);
1526 * control the watchdog
1529 hfcmulti_watchdog(struct hfc_multi
*hc
)
1533 if (hc
->wdcount
> 10) {
1535 hc
->wdbyte
= hc
->wdbyte
== V_GPIO_OUT2
?
1536 V_GPIO_OUT3
: V_GPIO_OUT2
;
1538 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1539 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1540 HFC_outb(hc
, R_GPIO_OUT0
, hc
->wdbyte
);
1550 hfcmulti_leds(struct hfc_multi
*hc
)
1553 unsigned long leddw
;
1554 int i
, state
, active
, leds
;
1555 struct dchannel
*dch
;
1558 hc
->ledcount
+= poll
;
1559 if (hc
->ledcount
> 4096) {
1560 hc
->ledcount
-= 4096;
1561 hc
->ledstate
= 0xAFFEAFFE;
1565 case 1: /* HFC-E1 OEM */
1566 /* 2 red blinking: NT mode deactivate
1567 * 2 red steady: TE mode deactivate
1568 * left green: L1 active
1569 * left red: frame sync, but no L1
1570 * right green: L2 active
1572 if (hc
->chan
[hc
->dslot
].sync
!= 2) { /* no frame sync */
1573 if (hc
->chan
[hc
->dslot
].dch
->dev
.D
.protocol
1577 } else if (hc
->ledcount
>>11) {
1586 } else { /* with frame sync */
1587 /* TODO make it work */
1593 leds
= (led
[0] | (led
[1]<<2) | (led
[2]<<1) | (led
[3]<<3))^0xF;
1594 /* leds are inverted */
1595 if (leds
!= (int)hc
->ledstate
) {
1596 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
);
1597 hc
->ledstate
= leds
;
1601 case 2: /* HFC-4S OEM */
1602 /* red blinking = PH_DEACTIVATE NT Mode
1603 * red steady = PH_DEACTIVATE TE Mode
1604 * green steady = PH_ACTIVATE
1606 for (i
= 0; i
< 4; i
++) {
1609 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1612 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1618 if (state
== active
) {
1619 led
[i
] = 1; /* led green */
1621 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
1622 /* TE mode: led red */
1625 if (hc
->ledcount
>>11)
1632 led
[i
] = 0; /* led off */
1634 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1636 for (i
= 0; i
< 4; i
++) {
1639 leds
|= (0x2 << (i
* 2));
1640 } else if (led
[i
] == 2) {
1642 leds
|= (0x1 << (i
* 2));
1645 if (leds
!= (int)hc
->ledstate
) {
1646 vpm_out(hc
, 0, 0x1a8 + 3, leds
);
1647 hc
->ledstate
= leds
;
1650 leds
= ((led
[3] > 0) << 0) | ((led
[1] > 0) << 1) |
1651 ((led
[0] > 0) << 2) | ((led
[2] > 0) << 3) |
1652 ((led
[3] & 1) << 4) | ((led
[1] & 1) << 5) |
1653 ((led
[0] & 1) << 6) | ((led
[2] & 1) << 7);
1654 if (leds
!= (int)hc
->ledstate
) {
1655 HFC_outb_nodebug(hc
, R_GPIO_EN1
, leds
& 0x0F);
1656 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
>> 4);
1657 hc
->ledstate
= leds
;
1662 case 3: /* HFC 1S/2S Beronet */
1663 /* red blinking = PH_DEACTIVATE NT Mode
1664 * red steady = PH_DEACTIVATE TE Mode
1665 * green steady = PH_ACTIVATE
1667 for (i
= 0; i
< 2; i
++) {
1670 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1673 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1679 if (state
== active
) {
1680 led
[i
] = 1; /* led green */
1682 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
1683 /* TE mode: led red */
1686 if (hc
->ledcount
>> 11)
1693 led
[i
] = 0; /* led off */
1697 leds
= (led
[0] > 0) | ((led
[1] > 0)<<1) | ((led
[0]&1)<<2)
1699 if (leds
!= (int)hc
->ledstate
) {
1700 HFC_outb_nodebug(hc
, R_GPIO_EN1
,
1701 ((led
[0] > 0) << 2) | ((led
[1] > 0) << 3));
1702 HFC_outb_nodebug(hc
, R_GPIO_OUT1
,
1703 ((led
[0] & 1) << 2) | ((led
[1] & 1) << 3));
1704 hc
->ledstate
= leds
;
1707 case 8: /* HFC 8S+ Beronet */
1710 for (i
= 0; i
< 8; i
++) {
1713 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1716 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1722 if (state
== active
) {
1725 if (hc
->ledcount
>> 11)
1732 leddw
= lled
<< 24 | lled
<< 16 | lled
<< 8 | lled
;
1733 if (leddw
!= hc
->ledstate
) {
1734 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1735 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1736 /* was _io before */
1737 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
1738 outw(0x4000, hc
->pci_iobase
+ 4);
1739 outl(leddw
, hc
->pci_iobase
);
1740 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1741 hc
->ledstate
= leddw
;
1747 * read dtmf coefficients
1751 hfcmulti_dtmf(struct hfc_multi
*hc
)
1756 struct bchannel
*bch
= NULL
;
1761 struct sk_buff
*skb
;
1762 struct mISDNhead
*hh
;
1764 if (debug
& DEBUG_HFCMULTI_DTMF
)
1765 printk(KERN_DEBUG
"%s: dtmf detection irq\n", __func__
);
1766 for (ch
= 0; ch
<= 31; ch
++) {
1767 /* only process enabled B-channels */
1768 bch
= hc
->chan
[ch
].bch
;
1771 if (!hc
->created
[hc
->chan
[ch
].port
])
1773 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1775 if (debug
& DEBUG_HFCMULTI_DTMF
)
1776 printk(KERN_DEBUG
"%s: dtmf channel %d:",
1778 coeff
= &(hc
->chan
[ch
].coeff
[hc
->chan
[ch
].coeff_count
* 16]);
1780 for (co
= 0; co
< 8; co
++) {
1781 /* read W(n-1) coefficient */
1782 addr
= hc
->DTMFbase
+ ((co
<<7) | (ch
<<2));
1783 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, addr
);
1784 HFC_outb_nodebug(hc
, R_RAM_ADDR1
, addr
>>8);
1785 HFC_outb_nodebug(hc
, R_RAM_ADDR2
, (addr
>>16)
1787 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1788 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1789 if (debug
& DEBUG_HFCMULTI_DTMF
)
1790 printk(" %04x", w_float
);
1792 /* decode float (see chip doc) */
1793 mantissa
= w_float
& 0x0fff;
1794 if (w_float
& 0x8000)
1795 mantissa
|= 0xfffff000;
1796 exponent
= (w_float
>>12) & 0x7;
1799 mantissa
<<= (exponent
-1);
1802 /* store coefficient */
1803 coeff
[co
<<1] = mantissa
;
1805 /* read W(n) coefficient */
1806 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1807 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1808 if (debug
& DEBUG_HFCMULTI_DTMF
)
1809 printk(" %04x", w_float
);
1811 /* decode float (see chip doc) */
1812 mantissa
= w_float
& 0x0fff;
1813 if (w_float
& 0x8000)
1814 mantissa
|= 0xfffff000;
1815 exponent
= (w_float
>>12) & 0x7;
1818 mantissa
<<= (exponent
-1);
1821 /* store coefficient */
1822 coeff
[(co
<<1)|1] = mantissa
;
1824 if (debug
& DEBUG_HFCMULTI_DTMF
)
1825 printk("%s: DTMF ready %08x %08x %08x %08x "
1826 "%08x %08x %08x %08x\n", __func__
,
1827 coeff
[0], coeff
[1], coeff
[2], coeff
[3],
1828 coeff
[4], coeff
[5], coeff
[6], coeff
[7]);
1829 hc
->chan
[ch
].coeff_count
++;
1830 if (hc
->chan
[ch
].coeff_count
== 8) {
1831 hc
->chan
[ch
].coeff_count
= 0;
1832 skb
= mI_alloc_skb(512, GFP_ATOMIC
);
1834 printk(KERN_WARNING
"%s: No memory for skb\n",
1838 hh
= mISDN_HEAD_P(skb
);
1839 hh
->prim
= PH_CONTROL_IND
;
1840 hh
->id
= DTMF_HFC_COEF
;
1841 memcpy(skb_put(skb
, 512), hc
->chan
[ch
].coeff
, 512);
1842 recv_Bchannel_skb(bch
, skb
);
1846 /* restart DTMF processing */
1849 HFC_outb_nodebug(hc
, R_DTMF
, hc
->hw
.r_dtmf
| V_RST_DTMF
);
1854 * fill fifo as much as possible
1858 hfcmulti_tx(struct hfc_multi
*hc
, int ch
)
1860 int i
, ii
, temp
, len
= 0;
1861 int Zspace
, z1
, z2
; /* must be int for calculation */
1864 int *txpending
, slot_tx
;
1865 struct bchannel
*bch
;
1866 struct dchannel
*dch
;
1867 struct sk_buff
**sp
= NULL
;
1870 bch
= hc
->chan
[ch
].bch
;
1871 dch
= hc
->chan
[ch
].dch
;
1872 if ((!dch
) && (!bch
))
1875 txpending
= &hc
->chan
[ch
].txpending
;
1876 slot_tx
= hc
->chan
[ch
].slot_tx
;
1878 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
1881 idxp
= &dch
->tx_idx
;
1883 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
1886 idxp
= &bch
->tx_idx
;
1891 if ((!len
) && *txpending
!= 1)
1892 return; /* no data */
1894 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
1895 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
1896 (hc
->chan
[ch
].slot_rx
< 0) &&
1897 (hc
->chan
[ch
].slot_tx
< 0))
1898 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1));
1900 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
1901 HFC_wait_nodebug(hc
);
1903 if (*txpending
== 2) {
1905 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
1906 HFC_wait_nodebug(hc
);
1907 HFC_outb(hc
, A_SUBCH_CFG
, 0);
1911 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
1912 f1
= HFC_inb_nodebug(hc
, A_F1
);
1913 f2
= HFC_inb_nodebug(hc
, A_F2
);
1914 while (f2
!= (temp
= HFC_inb_nodebug(hc
, A_F2
))) {
1915 if (debug
& DEBUG_HFCMULTI_FIFO
)
1917 "%s(card %d): reread f2 because %d!=%d\n",
1918 __func__
, hc
->id
+ 1, temp
, f2
);
1919 f2
= temp
; /* repeat until F2 is equal */
1921 Fspace
= f2
- f1
- 1;
1925 * Old FIFO handling doesn't give us the current Z2 read
1926 * pointer, so we cannot send the next frame before the fifo
1927 * is empty. It makes no difference except for a slightly
1928 * lower performance.
1930 if (test_bit(HFC_CHIP_REVISION0
, &hc
->chip
)) {
1936 /* one frame only for ST D-channels, to allow resending */
1937 if (hc
->type
!= 1 && dch
) {
1941 /* F-counter full condition */
1945 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
1946 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
1947 while (z2
!= (temp
= (HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
))) {
1948 if (debug
& DEBUG_HFCMULTI_FIFO
)
1949 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
1950 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
1951 z2
= temp
; /* repeat unti Z2 is equal */
1956 Zspace
-= 4; /* keep not too full, so pointers will not overrun */
1957 /* fill transparent data only to maxinum transparent load (minus 4) */
1958 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1959 Zspace
= Zspace
- hc
->Zlen
+ hc
->max_trans
;
1960 if (Zspace
<= 0) /* no space of 4 bytes */
1965 if (z1
== z2
) { /* empty */
1966 /* if done with FIFO audio data during PCM connection */
1967 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) &&
1968 *txpending
&& slot_tx
>= 0) {
1969 if (debug
& DEBUG_HFCMULTI_MODE
)
1971 "%s: reconnecting PCM due to no "
1972 "more FIFO data: channel %d "
1974 __func__
, ch
, slot_tx
);
1976 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
1977 V_HDLC_TRP
| V_IFF
);
1978 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1 | 1);
1979 HFC_wait_nodebug(hc
);
1980 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
1981 V_HDLC_TRP
| V_IFF
);
1982 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1);
1983 HFC_wait_nodebug(hc
);
1987 return; /* no data */
1990 /* if audio data and connected slot */
1991 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) && (!*txpending
)
1993 if (debug
& DEBUG_HFCMULTI_MODE
)
1994 printk(KERN_DEBUG
"%s: disconnecting PCM due to "
1995 "FIFO data: channel %d slot_tx %d\n",
1996 __func__
, ch
, slot_tx
);
1997 /* disconnect slot */
1998 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 | V_HDLC_TRP
| V_IFF
);
1999 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1 | 1);
2000 HFC_wait_nodebug(hc
);
2001 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 | V_HDLC_TRP
| V_IFF
);
2002 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1);
2003 HFC_wait_nodebug(hc
);
2008 hc
->activity
[hc
->chan
[ch
].port
] = 1;
2010 /* fill fifo to what we have left */
2012 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
))
2017 d
= (*sp
)->data
+ i
;
2018 if (ii
- i
> Zspace
)
2020 if (debug
& DEBUG_HFCMULTI_FIFO
)
2021 printk(KERN_DEBUG
"%s(card %d): fifo(%d) has %d bytes space "
2022 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2023 __func__
, hc
->id
+ 1, ch
, Zspace
, z1
, z2
, ii
-i
, len
-i
,
2024 temp
? "HDLC":"TRANS");
2027 /* Have to prep the audio data */
2028 hc
->write_fifo(hc
, d
, ii
- i
);
2031 /* if not all data has been written */
2033 /* NOTE: fifo is started by the calling function */
2037 /* if all data has been written, terminate frame */
2038 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2039 /* increment f-counter */
2040 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2041 HFC_wait_nodebug(hc
);
2044 /* send confirm, since get_net_bframe will not do it with trans */
2045 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2048 /* check for next frame */
2050 if (bch
&& get_next_bframe(bch
)) { /* hdlc is confirmed here */
2054 if (dch
&& get_next_dframe(dch
)) {
2060 * now we have no more data, so in case of transparent,
2061 * we set the last byte in fifo to 'silence' in case we will get
2062 * no more data at all. this prevents sending an undefined value.
2064 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2065 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, silence
);
2069 /* NOTE: only called if E1 card is in active state */
2071 hfcmulti_rx(struct hfc_multi
*hc
, int ch
)
2074 int Zsize
, z1
, z2
= 0; /* = 0, to make GCC happy */
2075 int f1
= 0, f2
= 0; /* = 0, to make GCC happy */
2077 struct bchannel
*bch
;
2078 struct dchannel
*dch
;
2079 struct sk_buff
*skb
, **sp
= NULL
;
2082 bch
= hc
->chan
[ch
].bch
;
2083 dch
= hc
->chan
[ch
].dch
;
2084 if ((!dch
) && (!bch
))
2087 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
2090 maxlen
= dch
->maxlen
;
2092 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
2095 maxlen
= bch
->maxlen
;
2098 /* on first AND before getting next valid frame, R_FIFO must be written
2100 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2101 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
2102 (hc
->chan
[ch
].slot_rx
< 0) &&
2103 (hc
->chan
[ch
].slot_tx
< 0))
2104 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<<1) | 1);
2106 HFC_outb_nodebug(hc
, R_FIFO
, (ch
<<1)|1);
2107 HFC_wait_nodebug(hc
);
2109 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2110 if (hc
->chan
[ch
].rx_off
)
2113 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2114 f1
= HFC_inb_nodebug(hc
, A_F1
);
2115 while (f1
!= (temp
= HFC_inb_nodebug(hc
, A_F1
))) {
2116 if (debug
& DEBUG_HFCMULTI_FIFO
)
2118 "%s(card %d): reread f1 because %d!=%d\n",
2119 __func__
, hc
->id
+ 1, temp
, f1
);
2120 f1
= temp
; /* repeat until F1 is equal */
2122 f2
= HFC_inb_nodebug(hc
, A_F2
);
2124 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2125 while (z1
!= (temp
= (HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
))) {
2126 if (debug
& DEBUG_HFCMULTI_FIFO
)
2127 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2128 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2129 z1
= temp
; /* repeat until Z1 is equal */
2131 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2133 if ((dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) && f1
!= f2
)
2134 /* complete hdlc frame */
2138 /* if buffer is empty */
2143 *sp
= mI_alloc_skb(maxlen
+ 3, GFP_ATOMIC
);
2145 printk(KERN_DEBUG
"%s: No mem for rx_skb\n",
2151 hc
->activity
[hc
->chan
[ch
].port
] = 1;
2153 /* empty fifo with what we have */
2154 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2155 if (debug
& DEBUG_HFCMULTI_FIFO
)
2156 printk(KERN_DEBUG
"%s(card %d): fifo(%d) reading %d "
2157 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2158 "got=%d (again %d)\n", __func__
, hc
->id
+ 1, ch
,
2159 Zsize
, z1
, z2
, (f1
== f2
) ? "fragment" : "COMPLETE",
2160 f1
, f2
, Zsize
+ (*sp
)->len
, again
);
2162 if ((Zsize
+ (*sp
)->len
) > (maxlen
+ 3)) {
2163 if (debug
& DEBUG_HFCMULTI_FIFO
)
2165 "%s(card %d): hdlc-frame too large.\n",
2166 __func__
, hc
->id
+ 1);
2168 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
2169 HFC_wait_nodebug(hc
);
2173 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2176 /* increment Z2,F2-counter */
2177 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2178 HFC_wait_nodebug(hc
);
2180 if ((*sp
)->len
< 4) {
2181 if (debug
& DEBUG_HFCMULTI_FIFO
)
2183 "%s(card %d): Frame below minimum "
2184 "size\n", __func__
, hc
->id
+ 1);
2188 /* there is at least one complete frame, check crc */
2189 if ((*sp
)->data
[(*sp
)->len
- 1]) {
2190 if (debug
& DEBUG_HFCMULTI_CRC
)
2192 "%s: CRC-error\n", __func__
);
2196 skb_trim(*sp
, (*sp
)->len
- 3);
2197 if ((*sp
)->len
< MISDN_COPY_SIZE
) {
2199 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2201 memcpy(skb_put(*sp
, skb
->len
),
2202 skb
->data
, skb
->len
);
2205 printk(KERN_DEBUG
"%s: No mem\n",
2213 if (debug
& DEBUG_HFCMULTI_FIFO
) {
2214 printk(KERN_DEBUG
"%s(card %d):",
2215 __func__
, hc
->id
+ 1);
2217 while (temp
< (*sp
)->len
)
2218 printk(" %02x", (*sp
)->data
[temp
++]);
2229 /* there is an incomplete frame */
2232 if (Zsize
> skb_tailroom(*sp
))
2233 Zsize
= skb_tailroom(*sp
);
2234 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2235 if (((*sp
)->len
) < MISDN_COPY_SIZE
) {
2237 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2239 memcpy(skb_put(*sp
, skb
->len
),
2240 skb
->data
, skb
->len
);
2243 printk(KERN_DEBUG
"%s: No mem\n", __func__
);
2250 if (debug
& DEBUG_HFCMULTI_FIFO
)
2252 "%s(card %d): fifo(%d) reading %d bytes "
2253 "(z1=%04x, z2=%04x) TRANS\n",
2254 __func__
, hc
->id
+ 1, ch
, Zsize
, z1
, z2
);
2255 /* only bch is transparent */
2266 signal_state_up(struct dchannel
*dch
, int info
, char *msg
)
2268 struct sk_buff
*skb
;
2269 int id
, data
= info
;
2271 if (debug
& DEBUG_HFCMULTI_STATE
)
2272 printk(KERN_DEBUG
"%s: %s\n", __func__
, msg
);
2274 id
= TEI_SAPI
| (GROUP_TEI
<< 8); /* manager address */
2276 skb
= _alloc_mISDN_skb(MPH_INFORMATION_IND
, id
, sizeof(data
), &data
,
2280 recv_Dchannel_skb(dch
, skb
);
2284 handle_timer_irq(struct hfc_multi
*hc
)
2287 struct dchannel
*dch
;
2290 /* process queued resync jobs */
2291 if (hc
->e1_resync
) {
2292 /* lock, so e1_resync gets not changed */
2293 spin_lock_irqsave(&HFClock
, flags
);
2294 if (hc
->e1_resync
& 1) {
2295 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2296 printk(KERN_DEBUG
"Enable SYNC_I\n");
2297 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
);
2298 /* disable JATT, if RX_SYNC is set */
2299 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
2300 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
2302 if (hc
->e1_resync
& 2) {
2303 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2304 printk(KERN_DEBUG
"Enable jatt PLL\n");
2305 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
2307 if (hc
->e1_resync
& 4) {
2308 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2310 "Enable QUARTZ for HFC-E1\n");
2311 /* set jatt to quartz */
2312 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
2314 /* switch to JATT, in case it is not already */
2315 HFC_outb(hc
, R_SYNC_OUT
, 0);
2318 spin_unlock_irqrestore(&HFClock
, flags
);
2321 if (hc
->type
!= 1 || hc
->e1_state
== 1)
2322 for (ch
= 0; ch
<= 31; ch
++) {
2323 if (hc
->created
[hc
->chan
[ch
].port
]) {
2324 hfcmulti_tx(hc
, ch
);
2325 /* fifo is started when switching to rx-fifo */
2326 hfcmulti_rx(hc
, ch
);
2327 if (hc
->chan
[ch
].dch
&&
2328 hc
->chan
[ch
].nt_timer
> -1) {
2329 dch
= hc
->chan
[ch
].dch
;
2330 if (!(--hc
->chan
[ch
].nt_timer
)) {
2334 DEBUG_HFCMULTI_STATE
)
2344 if (hc
->type
== 1 && hc
->created
[0]) {
2345 dch
= hc
->chan
[hc
->dslot
].dch
;
2346 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dslot
].cfg
)) {
2348 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_SIG_LOS
;
2349 if (!temp
&& hc
->chan
[hc
->dslot
].los
)
2350 signal_state_up(dch
, L1_SIGNAL_LOS_ON
,
2352 if (temp
&& !hc
->chan
[hc
->dslot
].los
)
2353 signal_state_up(dch
, L1_SIGNAL_LOS_OFF
,
2355 hc
->chan
[hc
->dslot
].los
= temp
;
2357 if (test_bit(HFC_CFG_REPORT_AIS
, &hc
->chan
[hc
->dslot
].cfg
)) {
2359 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_AIS
;
2360 if (!temp
&& hc
->chan
[hc
->dslot
].ais
)
2361 signal_state_up(dch
, L1_SIGNAL_AIS_ON
,
2363 if (temp
&& !hc
->chan
[hc
->dslot
].ais
)
2364 signal_state_up(dch
, L1_SIGNAL_AIS_OFF
,
2366 hc
->chan
[hc
->dslot
].ais
= temp
;
2368 if (test_bit(HFC_CFG_REPORT_SLIP
, &hc
->chan
[hc
->dslot
].cfg
)) {
2370 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_RX
;
2371 if (!temp
&& hc
->chan
[hc
->dslot
].slip_rx
)
2372 signal_state_up(dch
, L1_SIGNAL_SLIP_RX
,
2373 " bit SLIP detected RX");
2374 hc
->chan
[hc
->dslot
].slip_rx
= temp
;
2375 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_TX
;
2376 if (!temp
&& hc
->chan
[hc
->dslot
].slip_tx
)
2377 signal_state_up(dch
, L1_SIGNAL_SLIP_TX
,
2378 " bit SLIP detected TX");
2379 hc
->chan
[hc
->dslot
].slip_tx
= temp
;
2381 if (test_bit(HFC_CFG_REPORT_RDI
, &hc
->chan
[hc
->dslot
].cfg
)) {
2383 temp
= HFC_inb_nodebug(hc
, R_RX_SL0_0
) & V_A
;
2384 if (!temp
&& hc
->chan
[hc
->dslot
].rdi
)
2385 signal_state_up(dch
, L1_SIGNAL_RDI_ON
,
2387 if (temp
&& !hc
->chan
[hc
->dslot
].rdi
)
2388 signal_state_up(dch
, L1_SIGNAL_RDI_OFF
,
2390 hc
->chan
[hc
->dslot
].rdi
= temp
;
2392 temp
= HFC_inb_nodebug(hc
, R_JATT_DIR
);
2393 switch (hc
->chan
[hc
->dslot
].sync
) {
2395 if ((temp
& 0x60) == 0x60) {
2396 if (debug
& DEBUG_HFCMULTI_SYNC
)
2398 "%s: (id=%d) E1 now "
2401 HFC_outb(hc
, R_RX_OFF
,
2402 hc
->chan
[hc
->dslot
].jitter
| V_RX_INIT
);
2403 HFC_outb(hc
, R_TX_OFF
,
2404 hc
->chan
[hc
->dslot
].jitter
| V_RX_INIT
);
2405 hc
->chan
[hc
->dslot
].sync
= 1;
2406 goto check_framesync
;
2410 if ((temp
& 0x60) != 0x60) {
2411 if (debug
& DEBUG_HFCMULTI_SYNC
)
2414 "lost clock sync\n",
2416 hc
->chan
[hc
->dslot
].sync
= 0;
2420 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2422 if (debug
& DEBUG_HFCMULTI_SYNC
)
2425 "now in frame sync\n",
2427 hc
->chan
[hc
->dslot
].sync
= 2;
2431 if ((temp
& 0x60) != 0x60) {
2432 if (debug
& DEBUG_HFCMULTI_SYNC
)
2434 "%s: (id=%d) E1 lost "
2435 "clock & frame sync\n",
2437 hc
->chan
[hc
->dslot
].sync
= 0;
2440 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2442 if (debug
& DEBUG_HFCMULTI_SYNC
)
2445 "lost frame sync\n",
2447 hc
->chan
[hc
->dslot
].sync
= 1;
2453 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
2454 hfcmulti_watchdog(hc
);
2461 ph_state_irq(struct hfc_multi
*hc
, u_char r_irq_statech
)
2463 struct dchannel
*dch
;
2466 u_char st_status
, temp
;
2469 for (ch
= 0; ch
<= 31; ch
++) {
2470 if (hc
->chan
[ch
].dch
) {
2471 dch
= hc
->chan
[ch
].dch
;
2472 if (r_irq_statech
& 1) {
2473 HFC_outb_nodebug(hc
, R_ST_SEL
,
2475 /* undocumented: delay after R_ST_SEL */
2477 /* undocumented: status changes during read */
2478 st_status
= HFC_inb_nodebug(hc
, A_ST_RD_STATE
);
2479 while (st_status
!= (temp
=
2480 HFC_inb_nodebug(hc
, A_ST_RD_STATE
))) {
2481 if (debug
& DEBUG_HFCMULTI_STATE
)
2482 printk(KERN_DEBUG
"%s: reread "
2483 "STATE because %d!=%d\n",
2486 st_status
= temp
; /* repeat */
2489 /* Speech Design TE-sync indication */
2490 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) &&
2491 dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
2492 if (st_status
& V_FR_SYNC_ST
)
2494 (1 << hc
->chan
[ch
].port
);
2497 ~(1 << hc
->chan
[ch
].port
);
2499 dch
->state
= st_status
& 0x0f;
2500 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
2504 if (dch
->state
== active
) {
2505 HFC_outb_nodebug(hc
, R_FIFO
,
2507 HFC_wait_nodebug(hc
);
2508 HFC_outb_nodebug(hc
,
2509 R_INC_RES_FIFO
, V_RES_F
);
2510 HFC_wait_nodebug(hc
);
2513 schedule_event(dch
, FLG_PHCHANGE
);
2514 if (debug
& DEBUG_HFCMULTI_STATE
)
2516 "%s: S/T newstate %x port %d\n",
2517 __func__
, dch
->state
,
2520 r_irq_statech
>>= 1;
2523 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2524 plxsd_checksync(hc
, 0);
2528 fifo_irq(struct hfc_multi
*hc
, int block
)
2531 struct dchannel
*dch
;
2532 struct bchannel
*bch
;
2533 u_char r_irq_fifo_bl
;
2535 r_irq_fifo_bl
= HFC_inb_nodebug(hc
, R_IRQ_FIFO_BL0
+ block
);
2538 ch
= (block
<< 2) + (j
>> 1);
2539 dch
= hc
->chan
[ch
].dch
;
2540 bch
= hc
->chan
[ch
].bch
;
2541 if (((!dch
) && (!bch
)) || (!hc
->created
[hc
->chan
[ch
].port
])) {
2545 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2546 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2547 hfcmulti_tx(hc
, ch
);
2549 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2550 HFC_wait_nodebug(hc
);
2552 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2553 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2554 hfcmulti_tx(hc
, ch
);
2556 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2557 HFC_wait_nodebug(hc
);
2560 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2561 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2562 hfcmulti_rx(hc
, ch
);
2564 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2565 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2566 hfcmulti_rx(hc
, ch
);
2576 hfcmulti_interrupt(int intno
, void *dev_id
)
2578 #ifdef IRQCOUNT_DEBUG
2579 static int iq1
= 0, iq2
= 0, iq3
= 0, iq4
= 0,
2580 iq5
= 0, iq6
= 0, iqcnt
= 0;
2583 struct hfc_multi
*hc
= dev_id
;
2584 struct dchannel
*dch
;
2585 u_char r_irq_statech
, status
, r_irq_misc
, r_irq_oview
;
2587 u_short
*plx_acc
, wval
;
2588 u_char e1_syncsta
, temp
;
2592 printk(KERN_ERR
"HFC-multi: Spurious interrupt!\n");
2596 spin_lock(&hc
->lock
);
2600 printk(KERN_ERR
"irq for card %d during irq from "
2601 "card %d, this is no bug.\n", hc
->id
+ 1, irqsem
);
2602 irqsem
= hc
->id
+ 1;
2605 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
2606 spin_lock_irqsave(&plx_lock
, flags
);
2607 plx_acc
= (u_short
*)(hc
->plx_membase
+ PLX_INTCSR
);
2608 wval
= readw(plx_acc
);
2609 spin_unlock_irqrestore(&plx_lock
, flags
);
2610 if (!(wval
& PLX_INTCSR_LINTI1_STATUS
))
2614 status
= HFC_inb_nodebug(hc
, R_STATUS
);
2615 r_irq_statech
= HFC_inb_nodebug(hc
, R_IRQ_STATECH
);
2616 #ifdef IRQCOUNT_DEBUG
2619 if (status
& V_DTMF_STA
)
2621 if (status
& V_LOST_STA
)
2623 if (status
& V_EXT_IRQSTA
)
2625 if (status
& V_MISC_IRQSTA
)
2627 if (status
& V_FR_IRQSTA
)
2629 if (iqcnt
++ > 5000) {
2630 printk(KERN_ERR
"iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2631 iq1
, iq2
, iq3
, iq4
, iq5
, iq6
);
2635 if (!r_irq_statech
&&
2636 !(status
& (V_DTMF_STA
| V_LOST_STA
| V_EXT_IRQSTA
|
2637 V_MISC_IRQSTA
| V_FR_IRQSTA
))) {
2638 /* irq is not for us */
2642 if (r_irq_statech
) {
2644 ph_state_irq(hc
, r_irq_statech
);
2646 if (status
& V_EXT_IRQSTA
)
2647 ; /* external IRQ */
2648 if (status
& V_LOST_STA
) {
2650 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_LOST
); /* clear irq! */
2652 if (status
& V_MISC_IRQSTA
) {
2654 r_irq_misc
= HFC_inb_nodebug(hc
, R_IRQ_MISC
);
2655 if (r_irq_misc
& V_STA_IRQ
) {
2656 if (hc
->type
== 1) {
2658 dch
= hc
->chan
[hc
->dslot
].dch
;
2659 e1_syncsta
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2660 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
2661 && hc
->e1_getclock
) {
2662 if (e1_syncsta
& V_FR_SYNC_E1
)
2663 hc
->syncronized
= 1;
2665 hc
->syncronized
= 0;
2667 /* undocumented: status changes during read */
2668 dch
->state
= HFC_inb_nodebug(hc
, R_E1_RD_STA
);
2669 while (dch
->state
!= (temp
=
2670 HFC_inb_nodebug(hc
, R_E1_RD_STA
))) {
2671 if (debug
& DEBUG_HFCMULTI_STATE
)
2672 printk(KERN_DEBUG
"%s: reread "
2673 "STATE because %d!=%d\n",
2676 dch
->state
= temp
; /* repeat */
2678 dch
->state
= HFC_inb_nodebug(hc
, R_E1_RD_STA
)
2680 schedule_event(dch
, FLG_PHCHANGE
);
2681 if (debug
& DEBUG_HFCMULTI_STATE
)
2683 "%s: E1 (id=%d) newstate %x\n",
2684 __func__
, hc
->id
, dch
->state
);
2685 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2686 plxsd_checksync(hc
, 0);
2689 if (r_irq_misc
& V_TI_IRQ
)
2690 handle_timer_irq(hc
);
2692 if (r_irq_misc
& V_DTMF_IRQ
) {
2696 /* TODO: REPLACE !!!! 125 us Interrupts are not acceptable */
2697 if (r_irq_misc
& V_IRQ_PROC
) {
2698 /* IRQ every 125us */
2700 /* generate 1kHz signal */
2709 if (status
& V_FR_IRQSTA
) {
2711 r_irq_oview
= HFC_inb_nodebug(hc
, R_IRQ_OVIEW
);
2712 for (i
= 0; i
< 8; i
++) {
2713 if (r_irq_oview
& (1 << i
))
2721 spin_unlock(&hc
->lock
);
2728 spin_unlock(&hc
->lock
);
2734 * timer callback for D-chan busy resolution. Currently no function
2738 hfcmulti_dbusy_timer(struct hfc_multi
*hc
)
2744 * activate/deactivate hardware for selected channels and mode
2746 * configure B-channel with the given protocol
2747 * ch eqals to the HFC-channel (0-31)
2748 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2749 * for S/T, 1-31 for E1)
2750 * the hdlc interrupts will be set/unset
2753 mode_hfcmulti(struct hfc_multi
*hc
, int ch
, int protocol
, int slot_tx
,
2754 int bank_tx
, int slot_rx
, int bank_rx
)
2756 int flow_tx
= 0, flow_rx
= 0, routing
= 0;
2757 int oslot_tx
, oslot_rx
;
2760 if (ch
< 0 || ch
> 31)
2762 oslot_tx
= hc
->chan
[ch
].slot_tx
;
2763 oslot_rx
= hc
->chan
[ch
].slot_rx
;
2764 conf
= hc
->chan
[ch
].conf
;
2766 if (debug
& DEBUG_HFCMULTI_MODE
)
2768 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2769 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2770 __func__
, hc
->id
, ch
, protocol
, oslot_tx
, slot_tx
,
2771 bank_tx
, oslot_rx
, slot_rx
, bank_rx
);
2773 if (oslot_tx
>= 0 && slot_tx
!= oslot_tx
) {
2774 /* remove from slot */
2775 if (debug
& DEBUG_HFCMULTI_MODE
)
2776 printk(KERN_DEBUG
"%s: remove from slot %d (TX)\n",
2777 __func__
, oslot_tx
);
2778 if (hc
->slot_owner
[oslot_tx
<<1] == ch
) {
2779 HFC_outb(hc
, R_SLOT
, oslot_tx
<< 1);
2780 HFC_outb(hc
, A_SL_CFG
, 0);
2781 HFC_outb(hc
, A_CONF
, 0);
2782 hc
->slot_owner
[oslot_tx
<<1] = -1;
2784 if (debug
& DEBUG_HFCMULTI_MODE
)
2786 "%s: we are not owner of this tx slot "
2787 "anymore, channel %d is.\n",
2788 __func__
, hc
->slot_owner
[oslot_tx
<<1]);
2792 if (oslot_rx
>= 0 && slot_rx
!= oslot_rx
) {
2793 /* remove from slot */
2794 if (debug
& DEBUG_HFCMULTI_MODE
)
2796 "%s: remove from slot %d (RX)\n",
2797 __func__
, oslot_rx
);
2798 if (hc
->slot_owner
[(oslot_rx
<< 1) | 1] == ch
) {
2799 HFC_outb(hc
, R_SLOT
, (oslot_rx
<< 1) | V_SL_DIR
);
2800 HFC_outb(hc
, A_SL_CFG
, 0);
2801 hc
->slot_owner
[(oslot_rx
<< 1) | 1] = -1;
2803 if (debug
& DEBUG_HFCMULTI_MODE
)
2805 "%s: we are not owner of this rx slot "
2806 "anymore, channel %d is.\n",
2808 hc
->slot_owner
[(oslot_rx
<< 1) | 1]);
2813 flow_tx
= 0x80; /* FIFO->ST */
2814 /* disable pcm slot */
2815 hc
->chan
[ch
].slot_tx
= -1;
2816 hc
->chan
[ch
].bank_tx
= 0;
2819 if (hc
->chan
[ch
].txpending
)
2820 flow_tx
= 0x80; /* FIFO->ST */
2822 flow_tx
= 0xc0; /* PCM->ST */
2824 routing
= bank_tx
? 0xc0 : 0x80;
2825 if (conf
>= 0 || bank_tx
> 1)
2826 routing
= 0x40; /* loop */
2827 if (debug
& DEBUG_HFCMULTI_MODE
)
2828 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2829 " %d flow %02x routing %02x conf %d (TX)\n",
2830 __func__
, ch
, slot_tx
, bank_tx
,
2831 flow_tx
, routing
, conf
);
2832 HFC_outb(hc
, R_SLOT
, slot_tx
<< 1);
2833 HFC_outb(hc
, A_SL_CFG
, (ch
<<1) | routing
);
2834 HFC_outb(hc
, A_CONF
, (conf
< 0) ? 0 : (conf
| V_CONF_SL
));
2835 hc
->slot_owner
[slot_tx
<< 1] = ch
;
2836 hc
->chan
[ch
].slot_tx
= slot_tx
;
2837 hc
->chan
[ch
].bank_tx
= bank_tx
;
2840 /* disable pcm slot */
2841 flow_rx
= 0x80; /* ST->FIFO */
2842 hc
->chan
[ch
].slot_rx
= -1;
2843 hc
->chan
[ch
].bank_rx
= 0;
2846 if (hc
->chan
[ch
].txpending
)
2847 flow_rx
= 0x80; /* ST->FIFO */
2849 flow_rx
= 0xc0; /* ST->(FIFO,PCM) */
2851 routing
= bank_rx
?0x80:0xc0; /* reversed */
2852 if (conf
>= 0 || bank_rx
> 1)
2853 routing
= 0x40; /* loop */
2854 if (debug
& DEBUG_HFCMULTI_MODE
)
2855 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2856 " %d flow %02x routing %02x conf %d (RX)\n",
2857 __func__
, ch
, slot_rx
, bank_rx
,
2858 flow_rx
, routing
, conf
);
2859 HFC_outb(hc
, R_SLOT
, (slot_rx
<<1) | V_SL_DIR
);
2860 HFC_outb(hc
, A_SL_CFG
, (ch
<<1) | V_CH_DIR
| routing
);
2861 hc
->slot_owner
[(slot_rx
<<1)|1] = ch
;
2862 hc
->chan
[ch
].slot_rx
= slot_rx
;
2863 hc
->chan
[ch
].bank_rx
= bank_rx
;
2868 /* disable TX fifo */
2869 HFC_outb(hc
, R_FIFO
, ch
<< 1);
2871 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 | V_IFF
);
2872 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2873 HFC_outb(hc
, A_IRQ_MSK
, 0);
2874 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2876 /* disable RX fifo */
2877 HFC_outb(hc
, R_FIFO
, (ch
<<1)|1);
2879 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00);
2880 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2881 HFC_outb(hc
, A_IRQ_MSK
, 0);
2882 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2884 if (hc
->chan
[ch
].bch
&& hc
->type
!= 1) {
2885 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] &=
2886 ((ch
& 0x3) == 0)? ~V_B1_EN
: ~V_B2_EN
;
2887 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
2888 /* undocumented: delay after R_ST_SEL */
2890 HFC_outb(hc
, A_ST_CTRL0
,
2891 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
2893 if (hc
->chan
[ch
].bch
) {
2894 test_and_clear_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
2895 test_and_clear_bit(FLG_TRANSPARENT
,
2896 &hc
->chan
[ch
].bch
->Flags
);
2899 case (ISDN_P_B_RAW
): /* B-channel */
2901 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2902 (hc
->chan
[ch
].slot_rx
< 0) &&
2903 (hc
->chan
[ch
].slot_tx
< 0)) {
2906 "Setting B-channel %d to echo cancelable "
2907 "state on PCM slot %d\n", ch
,
2908 ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1);
2910 "Enabling pass through for channel\n");
2911 vpm_out(hc
, ch
, ((ch
/ 4) * 8) +
2912 ((ch
% 4) * 4) + 1, 0x01);
2915 HFC_outb(hc
, R_FIFO
, (ch
<< 1));
2917 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
2918 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
2919 ((ch
% 4) * 4) + 1) << 1);
2920 HFC_outb(hc
, A_SL_CFG
, 0x80 | (ch
<< 1));
2923 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
2925 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
2926 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2927 HFC_outb(hc
, A_IRQ_MSK
, 0);
2928 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2930 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
2931 ((ch
% 4) * 4) + 1) << 1) | 1);
2932 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1) | 1);
2936 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
2938 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
2939 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
2940 ((ch
% 4) * 4)) << 1) | 1);
2941 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x40 | (ch
<< 1) | 1);
2944 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1));
2946 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
2947 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2948 HFC_outb(hc
, A_IRQ_MSK
, 0);
2949 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2952 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, silence
);
2953 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
2954 ((ch
% 4) * 4)) << 1);
2955 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1));
2957 /* enable TX fifo */
2958 HFC_outb(hc
, R_FIFO
, ch
<< 1);
2960 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 |
2961 V_HDLC_TRP
| V_IFF
);
2962 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2963 HFC_outb(hc
, A_IRQ_MSK
, 0);
2964 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2967 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, silence
);
2968 /* enable RX fifo */
2969 HFC_outb(hc
, R_FIFO
, (ch
<<1)|1);
2971 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00 | V_HDLC_TRP
);
2972 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2973 HFC_outb(hc
, A_IRQ_MSK
, 0);
2974 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2977 if (hc
->type
!= 1) {
2978 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
2979 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
2980 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
2981 /* undocumented: delay after R_ST_SEL */
2983 HFC_outb(hc
, A_ST_CTRL0
,
2984 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
2986 if (hc
->chan
[ch
].bch
)
2987 test_and_set_bit(FLG_TRANSPARENT
,
2988 &hc
->chan
[ch
].bch
->Flags
);
2990 case (ISDN_P_B_HDLC
): /* B-channel */
2991 case (ISDN_P_TE_S0
): /* D-channel */
2992 case (ISDN_P_NT_S0
):
2993 case (ISDN_P_TE_E1
):
2994 case (ISDN_P_NT_E1
):
2995 /* enable TX fifo */
2996 HFC_outb(hc
, R_FIFO
, ch
<<1);
2998 if (hc
->type
== 1 || hc
->chan
[ch
].bch
) {
2999 /* E1 or B-channel */
3000 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04);
3001 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3003 /* D-Channel without HDLC fill flags */
3004 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04 | V_IFF
);
3005 HFC_outb(hc
, A_SUBCH_CFG
, 2);
3007 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3008 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3010 /* enable RX fifo */
3011 HFC_outb(hc
, R_FIFO
, (ch
<<1)|1);
3013 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x04);
3014 if (hc
->type
== 1 || hc
->chan
[ch
].bch
)
3015 HFC_outb(hc
, A_SUBCH_CFG
, 0); /* full 8 bits */
3017 HFC_outb(hc
, A_SUBCH_CFG
, 2); /* 2 bits dchannel */
3018 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3019 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3021 if (hc
->chan
[ch
].bch
) {
3022 test_and_set_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3023 if (hc
->type
!= 1) {
3024 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3025 ((ch
&0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3026 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3027 /* undocumented: delay after R_ST_SEL */
3029 HFC_outb(hc
, A_ST_CTRL0
,
3030 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3035 printk(KERN_DEBUG
"%s: protocol not known %x\n",
3036 __func__
, protocol
);
3037 hc
->chan
[ch
].protocol
= ISDN_P_NONE
;
3038 return -ENOPROTOOPT
;
3040 hc
->chan
[ch
].protocol
= protocol
;
3046 * connect/disconnect PCM
3050 hfcmulti_pcm(struct hfc_multi
*hc
, int ch
, int slot_tx
, int bank_tx
,
3051 int slot_rx
, int bank_rx
)
3053 if (slot_rx
< 0 || slot_rx
< 0 || bank_tx
< 0 || bank_rx
< 0) {
3055 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, -1, 0, -1, 0);
3060 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, slot_tx
, bank_tx
,
3065 * set/disable conference
3069 hfcmulti_conf(struct hfc_multi
*hc
, int ch
, int num
)
3071 if (num
>= 0 && num
<= 7)
3072 hc
->chan
[ch
].conf
= num
;
3074 hc
->chan
[ch
].conf
= -1;
3075 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, hc
->chan
[ch
].slot_tx
,
3076 hc
->chan
[ch
].bank_tx
, hc
->chan
[ch
].slot_rx
,
3077 hc
->chan
[ch
].bank_rx
);
3082 * set/disable sample loop
3085 /* NOTE: this function is experimental and therefore disabled */
3088 * Layer 1 callback function
3091 hfcm_l1callback(struct dchannel
*dch
, u_int cmd
)
3093 struct hfc_multi
*hc
= dch
->hw
;
3101 /* start activation */
3102 spin_lock_irqsave(&hc
->lock
, flags
);
3103 if (hc
->type
== 1) {
3104 if (debug
& DEBUG_HFCMULTI_MSG
)
3106 "%s: HW_RESET_REQ no BRI\n",
3109 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3110 /* undocumented: delay after R_ST_SEL */
3112 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 3); /* F3 */
3113 udelay(6); /* wait at least 5,21us */
3114 HFC_outb(hc
, A_ST_WR_STATE
, 3);
3115 HFC_outb(hc
, A_ST_WR_STATE
, 3 | (V_ST_ACT
*3));
3118 spin_unlock_irqrestore(&hc
->lock
, flags
);
3119 l1_event(dch
->l1
, HW_POWERUP_IND
);
3122 /* start deactivation */
3123 spin_lock_irqsave(&hc
->lock
, flags
);
3124 if (hc
->type
== 1) {
3125 if (debug
& DEBUG_HFCMULTI_MSG
)
3127 "%s: HW_DEACT_REQ no BRI\n",
3130 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3131 /* undocumented: delay after R_ST_SEL */
3133 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
*2);
3135 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3137 ~(1 << hc
->chan
[dch
->slot
].port
);
3138 plxsd_checksync(hc
, 0);
3141 skb_queue_purge(&dch
->squeue
);
3143 dev_kfree_skb(dch
->tx_skb
);
3148 dev_kfree_skb(dch
->rx_skb
);
3151 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3152 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3153 del_timer(&dch
->timer
);
3154 spin_unlock_irqrestore(&hc
->lock
, flags
);
3156 case HW_POWERUP_REQ
:
3157 spin_lock_irqsave(&hc
->lock
, flags
);
3158 if (hc
->type
== 1) {
3159 if (debug
& DEBUG_HFCMULTI_MSG
)
3161 "%s: HW_POWERUP_REQ no BRI\n",
3164 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3165 /* undocumented: delay after R_ST_SEL */
3167 HFC_outb(hc
, A_ST_WR_STATE
, 3 | 0x10); /* activate */
3168 udelay(6); /* wait at least 5,21us */
3169 HFC_outb(hc
, A_ST_WR_STATE
, 3); /* activate */
3171 spin_unlock_irqrestore(&hc
->lock
, flags
);
3173 case PH_ACTIVATE_IND
:
3174 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3175 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3178 case PH_DEACTIVATE_IND
:
3179 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3180 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3184 if (dch
->debug
& DEBUG_HW
)
3185 printk(KERN_DEBUG
"%s: unknown command %x\n",
3193 * Layer2 -> Layer 1 Transfer
3197 handle_dmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3199 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
3200 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
3201 struct hfc_multi
*hc
= dch
->hw
;
3202 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3211 spin_lock_irqsave(&hc
->lock
, flags
);
3212 ret
= dchannel_senddata(dch
, skb
);
3213 if (ret
> 0) { /* direct TX */
3214 id
= hh
->id
; /* skb can be freed */
3215 hfcmulti_tx(hc
, dch
->slot
);
3218 HFC_outb(hc
, R_FIFO
, 0);
3220 spin_unlock_irqrestore(&hc
->lock
, flags
);
3221 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3223 spin_unlock_irqrestore(&hc
->lock
, flags
);
3225 case PH_ACTIVATE_REQ
:
3226 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3227 spin_lock_irqsave(&hc
->lock
, flags
);
3229 if (debug
& DEBUG_HFCMULTI_MSG
)
3231 "%s: PH_ACTIVATE port %d (0..%d)\n",
3232 __func__
, hc
->chan
[dch
->slot
].port
,
3234 /* start activation */
3235 if (hc
->type
== 1) {
3236 ph_state_change(dch
);
3237 if (debug
& DEBUG_HFCMULTI_STATE
)
3239 "%s: E1 report state %x \n",
3240 __func__
, dch
->state
);
3242 HFC_outb(hc
, R_ST_SEL
,
3243 hc
->chan
[dch
->slot
].port
);
3244 /* undocumented: delay after R_ST_SEL */
3246 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 1);
3248 udelay(6); /* wait at least 5,21us */
3249 HFC_outb(hc
, A_ST_WR_STATE
, 1);
3250 HFC_outb(hc
, A_ST_WR_STATE
, 1 |
3251 (V_ST_ACT
*3)); /* activate */
3254 spin_unlock_irqrestore(&hc
->lock
, flags
);
3256 ret
= l1_event(dch
->l1
, hh
->prim
);
3258 case PH_DEACTIVATE_REQ
:
3259 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
3260 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3261 spin_lock_irqsave(&hc
->lock
, flags
);
3262 if (debug
& DEBUG_HFCMULTI_MSG
)
3264 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3265 __func__
, hc
->chan
[dch
->slot
].port
,
3267 /* start deactivation */
3268 if (hc
->type
== 1) {
3269 if (debug
& DEBUG_HFCMULTI_MSG
)
3271 "%s: PH_DEACTIVATE no BRI\n",
3274 HFC_outb(hc
, R_ST_SEL
,
3275 hc
->chan
[dch
->slot
].port
);
3276 /* undocumented: delay after R_ST_SEL */
3278 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3282 skb_queue_purge(&dch
->squeue
);
3284 dev_kfree_skb(dch
->tx_skb
);
3289 dev_kfree_skb(dch
->rx_skb
);
3292 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3293 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3294 del_timer(&dch
->timer
);
3296 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
3297 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
3300 spin_unlock_irqrestore(&hc
->lock
, flags
);
3302 ret
= l1_event(dch
->l1
, hh
->prim
);
3311 deactivate_bchannel(struct bchannel
*bch
)
3313 struct hfc_multi
*hc
= bch
->hw
;
3316 spin_lock_irqsave(&hc
->lock
, flags
);
3317 if (test_and_clear_bit(FLG_TX_NEXT
, &bch
->Flags
)) {
3318 dev_kfree_skb(bch
->next_skb
);
3319 bch
->next_skb
= NULL
;
3322 dev_kfree_skb(bch
->tx_skb
);
3327 dev_kfree_skb(bch
->rx_skb
);
3330 hc
->chan
[bch
->slot
].coeff_count
= 0;
3331 test_and_clear_bit(FLG_ACTIVE
, &bch
->Flags
);
3332 test_and_clear_bit(FLG_TX_BUSY
, &bch
->Flags
);
3333 hc
->chan
[bch
->slot
].rx_off
= 0;
3334 hc
->chan
[bch
->slot
].conf
= -1;
3335 mode_hfcmulti(hc
, bch
->slot
, ISDN_P_NONE
, -1, 0, -1, 0);
3336 spin_unlock_irqrestore(&hc
->lock
, flags
);
3340 handle_bmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3342 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3343 struct hfc_multi
*hc
= bch
->hw
;
3345 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3353 spin_lock_irqsave(&hc
->lock
, flags
);
3354 ret
= bchannel_senddata(bch
, skb
);
3355 if (ret
> 0) { /* direct TX */
3356 id
= hh
->id
; /* skb can be freed */
3357 hfcmulti_tx(hc
, bch
->slot
);
3360 HFC_outb_nodebug(hc
, R_FIFO
, 0);
3361 HFC_wait_nodebug(hc
);
3362 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
)) {
3363 spin_unlock_irqrestore(&hc
->lock
, flags
);
3364 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3366 spin_unlock_irqrestore(&hc
->lock
, flags
);
3368 spin_unlock_irqrestore(&hc
->lock
, flags
);
3370 case PH_ACTIVATE_REQ
:
3371 if (debug
& DEBUG_HFCMULTI_MSG
)
3372 printk(KERN_DEBUG
"%s: PH_ACTIVATE ch %d (0..32)\n",
3373 __func__
, bch
->slot
);
3374 spin_lock_irqsave(&hc
->lock
, flags
);
3375 /* activate B-channel if not already activated */
3376 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
)) {
3377 hc
->chan
[bch
->slot
].txpending
= 0;
3378 ret
= mode_hfcmulti(hc
, bch
->slot
,
3380 hc
->chan
[bch
->slot
].slot_tx
,
3381 hc
->chan
[bch
->slot
].bank_tx
,
3382 hc
->chan
[bch
->slot
].slot_rx
,
3383 hc
->chan
[bch
->slot
].bank_rx
);
3385 if (ch
->protocol
== ISDN_P_B_RAW
&& !hc
->dtmf
3386 && test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
3389 if (debug
& DEBUG_HFCMULTI_DTMF
)
3391 "%s: start dtmf decoder\n",
3393 HFC_outb(hc
, R_DTMF
, hc
->hw
.r_dtmf
|
3399 spin_unlock_irqrestore(&hc
->lock
, flags
);
3401 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3404 case PH_CONTROL_REQ
:
3405 spin_lock_irqsave(&hc
->lock
, flags
);
3407 case HFC_SPL_LOOP_ON
: /* set sample loop */
3408 if (debug
& DEBUG_HFCMULTI_MSG
)
3410 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3411 __func__
, skb
->len
);
3414 case HFC_SPL_LOOP_OFF
: /* set silence */
3415 if (debug
& DEBUG_HFCMULTI_MSG
)
3416 printk(KERN_DEBUG
"%s: HFC_SPL_LOOP_OFF\n",
3422 "%s: unknown PH_CONTROL_REQ info %x\n",
3426 spin_unlock_irqrestore(&hc
->lock
, flags
);
3428 case PH_DEACTIVATE_REQ
:
3429 deactivate_bchannel(bch
); /* locked there */
3430 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3441 * bchannel control function
3444 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
3447 struct dsp_features
*features
=
3448 (struct dsp_features
*)(*((u_long
*)&cq
->p1
));
3449 struct hfc_multi
*hc
= bch
->hw
;
3457 case MISDN_CTRL_GETOP
:
3458 cq
->op
= MISDN_CTRL_HFC_OP
| MISDN_CTRL_HW_FEATURES_OP
3459 | MISDN_CTRL_RX_OFF
;
3461 case MISDN_CTRL_RX_OFF
: /* turn off / on rx stream */
3462 hc
->chan
[bch
->slot
].rx_off
= !!cq
->p1
;
3463 if (!hc
->chan
[bch
->slot
].rx_off
) {
3464 /* reset fifo on rx on */
3465 HFC_outb_nodebug(hc
, R_FIFO
, (bch
->slot
<< 1) | 1);
3466 HFC_wait_nodebug(hc
);
3467 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
3468 HFC_wait_nodebug(hc
);
3470 if (debug
& DEBUG_HFCMULTI_MSG
)
3471 printk(KERN_DEBUG
"%s: RX_OFF request (nr=%d off=%d)\n",
3472 __func__
, bch
->nr
, hc
->chan
[bch
->slot
].rx_off
);
3474 case MISDN_CTRL_HW_FEATURES
: /* fill features structure */
3475 if (debug
& DEBUG_HFCMULTI_MSG
)
3476 printk(KERN_DEBUG
"%s: HW_FEATURE request\n",
3478 /* create confirm */
3479 features
->hfc_id
= hc
->id
;
3480 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
))
3481 features
->hfc_dtmf
= 1;
3482 features
->hfc_loops
= 0;
3483 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
3484 features
->hfc_echocanhw
= 1;
3486 features
->pcm_id
= hc
->pcm
;
3487 features
->pcm_slots
= hc
->slots
;
3488 features
->pcm_banks
= 2;
3491 case MISDN_CTRL_HFC_PCM_CONN
: /* connect to pcm timeslot (0..N) */
3492 slot_tx
= cq
->p1
& 0xff;
3493 bank_tx
= cq
->p1
>> 8;
3494 slot_rx
= cq
->p2
& 0xff;
3495 bank_rx
= cq
->p2
>> 8;
3496 if (debug
& DEBUG_HFCMULTI_MSG
)
3498 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3499 "slot %d bank %d (RX)\n",
3500 __func__
, slot_tx
, bank_tx
,
3502 if (slot_tx
< hc
->slots
&& bank_tx
<= 2 &&
3503 slot_rx
< hc
->slots
&& bank_rx
<= 2)
3504 hfcmulti_pcm(hc
, bch
->slot
,
3505 slot_tx
, bank_tx
, slot_rx
, bank_rx
);
3508 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3509 "slot %d bank %d (RX) out of range\n",
3510 __func__
, slot_tx
, bank_tx
,
3515 case MISDN_CTRL_HFC_PCM_DISC
: /* release interface from pcm timeslot */
3516 if (debug
& DEBUG_HFCMULTI_MSG
)
3517 printk(KERN_DEBUG
"%s: HFC_PCM_DISC\n",
3519 hfcmulti_pcm(hc
, bch
->slot
, -1, 0, -1, 0);
3521 case MISDN_CTRL_HFC_CONF_JOIN
: /* join conference (0..7) */
3522 num
= cq
->p1
& 0xff;
3523 if (debug
& DEBUG_HFCMULTI_MSG
)
3524 printk(KERN_DEBUG
"%s: HFC_CONF_JOIN conf %d\n",
3527 hfcmulti_conf(hc
, bch
->slot
, num
);
3530 "%s: HW_CONF_JOIN conf %d out of range\n",
3535 case MISDN_CTRL_HFC_CONF_SPLIT
: /* split conference */
3536 if (debug
& DEBUG_HFCMULTI_MSG
)
3537 printk(KERN_DEBUG
"%s: HFC_CONF_SPLIT\n", __func__
);
3538 hfcmulti_conf(hc
, bch
->slot
, -1);
3540 case MISDN_CTRL_HFC_ECHOCAN_ON
:
3541 if (debug
& DEBUG_HFCMULTI_MSG
)
3542 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_ON\n", __func__
);
3543 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3544 vpm_echocan_on(hc
, bch
->slot
, cq
->p1
);
3549 case MISDN_CTRL_HFC_ECHOCAN_OFF
:
3550 if (debug
& DEBUG_HFCMULTI_MSG
)
3551 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_OFF\n",
3553 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3554 vpm_echocan_off(hc
, bch
->slot
);
3559 printk(KERN_WARNING
"%s: unknown Op %x\n",
3568 hfcm_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
3570 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3571 struct hfc_multi
*hc
= bch
->hw
;
3575 if (bch
->debug
& DEBUG_HW
)
3576 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
3577 __func__
, cmd
, arg
);
3580 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
3581 if (test_bit(FLG_ACTIVE
, &bch
->Flags
))
3582 deactivate_bchannel(bch
); /* locked there */
3583 ch
->protocol
= ISDN_P_NONE
;
3585 module_put(THIS_MODULE
);
3588 case CONTROL_CHANNEL
:
3589 spin_lock_irqsave(&hc
->lock
, flags
);
3590 err
= channel_bctrl(bch
, arg
);
3591 spin_unlock_irqrestore(&hc
->lock
, flags
);
3594 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
3601 * handle D-channel events
3603 * handle state change event
3606 ph_state_change(struct dchannel
*dch
)
3608 struct hfc_multi
*hc
= dch
->hw
;
3612 printk(KERN_WARNING
"%s: ERROR given dch is NULL\n",
3618 if (hc
->type
== 1) {
3619 if (dch
->dev
.D
.protocol
== ISDN_P_TE_E1
) {
3620 if (debug
& DEBUG_HFCMULTI_STATE
)
3622 "%s: E1 TE (id=%d) newstate %x\n",
3623 __func__
, hc
->id
, dch
->state
);
3625 if (debug
& DEBUG_HFCMULTI_STATE
)
3627 "%s: E1 NT (id=%d) newstate %x\n",
3628 __func__
, hc
->id
, dch
->state
);
3630 switch (dch
->state
) {
3632 if (hc
->e1_state
!= 1) {
3633 for (i
= 1; i
<= 31; i
++) {
3634 /* reset fifos on e1 activation */
3635 HFC_outb_nodebug(hc
, R_FIFO
, (i
<< 1) | 1);
3636 HFC_wait_nodebug(hc
);
3637 HFC_outb_nodebug(hc
,
3638 R_INC_RES_FIFO
, V_RES_F
);
3639 HFC_wait_nodebug(hc
);
3642 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3643 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3644 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3648 if (hc
->e1_state
!= 1)
3650 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3651 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3652 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3654 hc
->e1_state
= dch
->state
;
3656 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
3657 if (debug
& DEBUG_HFCMULTI_STATE
)
3659 "%s: S/T TE newstate %x\n",
3660 __func__
, dch
->state
);
3661 switch (dch
->state
) {
3663 l1_event(dch
->l1
, HW_RESET_IND
);
3666 l1_event(dch
->l1
, HW_DEACT_IND
);
3670 l1_event(dch
->l1
, ANYSIGNAL
);
3673 l1_event(dch
->l1
, INFO2
);
3676 l1_event(dch
->l1
, INFO4_P8
);
3680 if (debug
& DEBUG_HFCMULTI_STATE
)
3681 printk(KERN_DEBUG
"%s: S/T NT newstate %x\n",
3682 __func__
, dch
->state
);
3683 switch (dch
->state
) {
3685 if (hc
->chan
[ch
].nt_timer
== 0) {
3686 hc
->chan
[ch
].nt_timer
= -1;
3687 HFC_outb(hc
, R_ST_SEL
,
3689 /* undocumented: delay after R_ST_SEL */
3691 HFC_outb(hc
, A_ST_WR_STATE
, 4 |
3692 V_ST_LD_STA
); /* G4 */
3693 udelay(6); /* wait at least 5,21us */
3694 HFC_outb(hc
, A_ST_WR_STATE
, 4);
3697 /* one extra count for the next event */
3698 hc
->chan
[ch
].nt_timer
=
3699 nt_t1_count
[poll_timer
] + 1;
3700 HFC_outb(hc
, R_ST_SEL
,
3702 /* undocumented: delay after R_ST_SEL */
3704 /* allow G2 -> G3 transition */
3705 HFC_outb(hc
, A_ST_WR_STATE
, 2 |
3710 hc
->chan
[ch
].nt_timer
= -1;
3711 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3712 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3713 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3716 hc
->chan
[ch
].nt_timer
= -1;
3719 hc
->chan
[ch
].nt_timer
= -1;
3720 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3721 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3722 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3730 * called for card mode init message
3734 hfcmulti_initmode(struct dchannel
*dch
)
3736 struct hfc_multi
*hc
= dch
->hw
;
3737 u_char a_st_wr_state
, r_e1_wr_sta
;
3740 if (debug
& DEBUG_HFCMULTI_INIT
)
3741 printk(KERN_DEBUG
"%s: entered\n", __func__
);
3743 if (hc
->type
== 1) {
3744 hc
->chan
[hc
->dslot
].slot_tx
= -1;
3745 hc
->chan
[hc
->dslot
].slot_rx
= -1;
3746 hc
->chan
[hc
->dslot
].conf
= -1;
3748 mode_hfcmulti(hc
, hc
->dslot
, dch
->dev
.D
.protocol
,
3750 dch
->timer
.function
= (void *) hfcmulti_dbusy_timer
;
3751 dch
->timer
.data
= (long) dch
;
3752 init_timer(&dch
->timer
);
3754 for (i
= 1; i
<= 31; i
++) {
3757 hc
->chan
[i
].slot_tx
= -1;
3758 hc
->chan
[i
].slot_rx
= -1;
3759 hc
->chan
[i
].conf
= -1;
3760 mode_hfcmulti(hc
, i
, ISDN_P_NONE
, -1, 0, -1, 0);
3763 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dslot
].cfg
)) {
3764 HFC_outb(hc
, R_LOS0
, 255); /* 2 ms */
3765 HFC_outb(hc
, R_LOS1
, 255); /* 512 ms */
3767 if (test_bit(HFC_CFG_OPTICAL
, &hc
->chan
[hc
->dslot
].cfg
)) {
3768 HFC_outb(hc
, R_RX0
, 0);
3769 hc
->hw
.r_tx0
= 0 | V_OUT_EN
;
3771 HFC_outb(hc
, R_RX0
, 1);
3772 hc
->hw
.r_tx0
= 1 | V_OUT_EN
;
3774 hc
->hw
.r_tx1
= V_ATX
| V_NTRI
;
3775 HFC_outb(hc
, R_TX0
, hc
->hw
.r_tx0
);
3776 HFC_outb(hc
, R_TX1
, hc
->hw
.r_tx1
);
3777 HFC_outb(hc
, R_TX_FR0
, 0x00);
3778 HFC_outb(hc
, R_TX_FR1
, 0xf8);
3780 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dslot
].cfg
))
3781 HFC_outb(hc
, R_TX_FR2
, V_TX_MF
| V_TX_E
| V_NEG_E
);
3783 HFC_outb(hc
, R_RX_FR0
, V_AUTO_RESYNC
| V_AUTO_RECO
| 0);
3785 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dslot
].cfg
))
3786 HFC_outb(hc
, R_RX_FR1
, V_RX_MF
| V_RX_MF_SYNC
);
3788 if (dch
->dev
.D
.protocol
== ISDN_P_NT_E1
) {
3789 if (debug
& DEBUG_HFCMULTI_INIT
)
3790 printk(KERN_DEBUG
"%s: E1 port is NT-mode\n",
3792 r_e1_wr_sta
= 0; /* G0 */
3793 hc
->e1_getclock
= 0;
3795 if (debug
& DEBUG_HFCMULTI_INIT
)
3796 printk(KERN_DEBUG
"%s: E1 port is TE-mode\n",
3798 r_e1_wr_sta
= 0; /* F0 */
3799 hc
->e1_getclock
= 1;
3801 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
3802 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
3804 HFC_outb(hc
, R_SYNC_OUT
, 0);
3805 if (test_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
))
3806 hc
->e1_getclock
= 1;
3807 if (test_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
))
3808 hc
->e1_getclock
= 0;
3809 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
3810 /* SLAVE (clock master) */
3811 if (debug
& DEBUG_HFCMULTI_INIT
)
3813 "%s: E1 port is clock master "
3814 "(clock from PCM)\n", __func__
);
3815 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
| V_PCM_SYNC
);
3817 if (hc
->e1_getclock
) {
3818 /* MASTER (clock slave) */
3819 if (debug
& DEBUG_HFCMULTI_INIT
)
3821 "%s: E1 port is clock slave "
3822 "(clock to PCM)\n", __func__
);
3823 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
3825 /* MASTER (clock master) */
3826 if (debug
& DEBUG_HFCMULTI_INIT
)
3827 printk(KERN_DEBUG
"%s: E1 port is "
3829 "(clock from QUARTZ)\n",
3831 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
|
3832 V_PCM_SYNC
| V_JATT_OFF
);
3833 HFC_outb(hc
, R_SYNC_OUT
, 0);
3836 HFC_outb(hc
, R_JATT_ATT
, 0x9c); /* undoc register */
3837 HFC_outb(hc
, R_PWM_MD
, V_PWM0_MD
);
3838 HFC_outb(hc
, R_PWM0
, 0x50);
3839 HFC_outb(hc
, R_PWM1
, 0xff);
3840 /* state machine setup */
3841 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
| V_E1_LD_STA
);
3842 udelay(6); /* wait at least 5,21us */
3843 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
);
3844 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3845 hc
->syncronized
= 0;
3846 plxsd_checksync(hc
, 0);
3850 hc
->chan
[i
].slot_tx
= -1;
3851 hc
->chan
[i
].slot_rx
= -1;
3852 hc
->chan
[i
].conf
= -1;
3853 mode_hfcmulti(hc
, i
, dch
->dev
.D
.protocol
, -1, 0, -1, 0);
3854 dch
->timer
.function
= (void *)hfcmulti_dbusy_timer
;
3855 dch
->timer
.data
= (long) dch
;
3856 init_timer(&dch
->timer
);
3857 hc
->chan
[i
- 2].slot_tx
= -1;
3858 hc
->chan
[i
- 2].slot_rx
= -1;
3859 hc
->chan
[i
- 2].conf
= -1;
3860 mode_hfcmulti(hc
, i
- 2, ISDN_P_NONE
, -1, 0, -1, 0);
3861 hc
->chan
[i
- 1].slot_tx
= -1;
3862 hc
->chan
[i
- 1].slot_rx
= -1;
3863 hc
->chan
[i
- 1].conf
= -1;
3864 mode_hfcmulti(hc
, i
- 1, ISDN_P_NONE
, -1, 0, -1, 0);
3866 pt
= hc
->chan
[i
].port
;
3867 /* select interface */
3868 HFC_outb(hc
, R_ST_SEL
, pt
);
3869 /* undocumented: delay after R_ST_SEL */
3871 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) {
3872 if (debug
& DEBUG_HFCMULTI_INIT
)
3874 "%s: ST port %d is NT-mode\n",
3877 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_nt
);
3878 a_st_wr_state
= 1; /* G1 */
3879 hc
->hw
.a_st_ctrl0
[pt
] = V_ST_MD
;
3881 if (debug
& DEBUG_HFCMULTI_INIT
)
3883 "%s: ST port %d is TE-mode\n",
3886 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_te
);
3887 a_st_wr_state
= 2; /* F2 */
3888 hc
->hw
.a_st_ctrl0
[pt
] = 0;
3890 if (!test_bit(HFC_CFG_NONCAP_TX
, &hc
->chan
[i
].cfg
))
3891 hc
->hw
.a_st_ctrl0
[pt
] |= V_TX_LI
;
3893 HFC_outb(hc
, A_ST_CTRL0
, hc
->hw
.a_st_ctrl0
[pt
]);
3894 /* disable E-channel */
3895 if ((dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) ||
3896 test_bit(HFC_CFG_DIS_ECHANNEL
, &hc
->chan
[i
].cfg
))
3897 HFC_outb(hc
, A_ST_CTRL1
, V_E_IGNO
);
3899 HFC_outb(hc
, A_ST_CTRL1
, 0);
3900 /* enable B-channel receive */
3901 HFC_outb(hc
, A_ST_CTRL2
, V_B1_RX_EN
| V_B2_RX_EN
);
3902 /* state machine setup */
3903 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
| V_ST_LD_STA
);
3904 udelay(6); /* wait at least 5,21us */
3905 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
);
3906 hc
->hw
.r_sci_msk
|= 1 << pt
;
3907 /* state machine interrupts */
3908 HFC_outb(hc
, R_SCI_MSK
, hc
->hw
.r_sci_msk
);
3909 /* unset sync on port */
3910 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3912 ~(1 << hc
->chan
[dch
->slot
].port
);
3913 plxsd_checksync(hc
, 0);
3916 if (debug
& DEBUG_HFCMULTI_INIT
)
3917 printk("%s: done\n", __func__
);
3922 open_dchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
3923 struct channel_req
*rq
)
3928 if (debug
& DEBUG_HW_OPEN
)
3929 printk(KERN_DEBUG
"%s: dev(%d) open from %p\n", __func__
,
3930 dch
->dev
.id
, __builtin_return_address(0));
3931 if (rq
->protocol
== ISDN_P_NONE
)
3933 if ((dch
->dev
.D
.protocol
!= ISDN_P_NONE
) &&
3934 (dch
->dev
.D
.protocol
!= rq
->protocol
)) {
3935 if (debug
& DEBUG_HFCMULTI_MODE
)
3936 printk(KERN_WARNING
"%s: change protocol %x to %x\n",
3937 __func__
, dch
->dev
.D
.protocol
, rq
->protocol
);
3939 if ((dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
3940 && (rq
->protocol
!= ISDN_P_TE_S0
))
3941 l1_event(dch
->l1
, CLOSE_CHANNEL
);
3942 if (dch
->dev
.D
.protocol
!= rq
->protocol
) {
3943 if (rq
->protocol
== ISDN_P_TE_S0
) {
3944 err
= create_l1(dch
, hfcm_l1callback
);
3948 dch
->dev
.D
.protocol
= rq
->protocol
;
3949 spin_lock_irqsave(&hc
->lock
, flags
);
3950 hfcmulti_initmode(dch
);
3951 spin_unlock_irqrestore(&hc
->lock
, flags
);
3954 if (((rq
->protocol
== ISDN_P_NT_S0
) && (dch
->state
== 3)) ||
3955 ((rq
->protocol
== ISDN_P_TE_S0
) && (dch
->state
== 7)) ||
3956 ((rq
->protocol
== ISDN_P_NT_E1
) && (dch
->state
== 1)) ||
3957 ((rq
->protocol
== ISDN_P_TE_E1
) && (dch
->state
== 1))) {
3958 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
3959 0, NULL
, GFP_KERNEL
);
3961 rq
->ch
= &dch
->dev
.D
;
3962 if (!try_module_get(THIS_MODULE
))
3963 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
3968 open_bchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
3969 struct channel_req
*rq
)
3971 struct bchannel
*bch
;
3974 if (!test_channelmap(rq
->adr
.channel
, dch
->dev
.channelmap
))
3976 if (rq
->protocol
== ISDN_P_NONE
)
3979 ch
= rq
->adr
.channel
;
3981 ch
= (rq
->adr
.channel
- 1) + (dch
->slot
- 2);
3982 bch
= hc
->chan
[ch
].bch
;
3984 printk(KERN_ERR
"%s:internal error ch %d has no bch\n",
3988 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
3989 return -EBUSY
; /* b-channel can be only open once */
3990 bch
->ch
.protocol
= rq
->protocol
;
3991 hc
->chan
[ch
].rx_off
= 0;
3993 if (!try_module_get(THIS_MODULE
))
3994 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
3999 * device control function
4002 channel_dctrl(struct dchannel
*dch
, struct mISDN_ctrl_req
*cq
)
4007 case MISDN_CTRL_GETOP
:
4011 printk(KERN_WARNING
"%s: unknown Op %x\n",
4020 hfcm_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
4022 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
4023 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
4024 struct hfc_multi
*hc
= dch
->hw
;
4025 struct channel_req
*rq
;
4029 if (dch
->debug
& DEBUG_HW
)
4030 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
4031 __func__
, cmd
, arg
);
4035 switch (rq
->protocol
) {
4038 if (hc
->type
== 1) {
4042 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4046 if (hc
->type
!= 1) {
4050 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4053 spin_lock_irqsave(&hc
->lock
, flags
);
4054 err
= open_bchannel(hc
, dch
, rq
);
4055 spin_unlock_irqrestore(&hc
->lock
, flags
);
4059 if (debug
& DEBUG_HW_OPEN
)
4060 printk(KERN_DEBUG
"%s: dev(%d) close from %p\n",
4061 __func__
, dch
->dev
.id
,
4062 __builtin_return_address(0));
4063 module_put(THIS_MODULE
);
4065 case CONTROL_CHANNEL
:
4066 spin_lock_irqsave(&hc
->lock
, flags
);
4067 err
= channel_dctrl(dch
, arg
);
4068 spin_unlock_irqrestore(&hc
->lock
, flags
);
4071 if (dch
->debug
& DEBUG_HW
)
4072 printk(KERN_DEBUG
"%s: unknown command %x\n",
4080 * initialize the card
4084 * start timer irq, wait some time and check if we have interrupts.
4085 * if not, reset chip and try again.
4088 init_card(struct hfc_multi
*hc
)
4095 if (debug
& DEBUG_HFCMULTI_INIT
)
4096 printk(KERN_DEBUG
"%s: entered\n", __func__
);
4098 spin_lock_irqsave(&hc
->lock
, flags
);
4099 /* set interrupts but leave global interrupt disabled */
4100 hc
->hw
.r_irq_ctrl
= V_FIFO_IRQ
;
4102 spin_unlock_irqrestore(&hc
->lock
, flags
);
4104 if (request_irq(hc
->pci_dev
->irq
, hfcmulti_interrupt
, IRQF_SHARED
,
4106 printk(KERN_WARNING
"mISDN: Could not get interrupt %d.\n",
4110 hc
->irq
= hc
->pci_dev
->irq
;
4112 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4113 spin_lock_irqsave(&plx_lock
, plx_flags
);
4114 plx_acc
= (u_short
*)(hc
->plx_membase
+PLX_INTCSR
);
4115 writew((PLX_INTCSR_PCIINT_ENABLE
| PLX_INTCSR_LINTI1_ENABLE
),
4116 plx_acc
); /* enable PCI & LINT1 irq */
4117 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4120 if (debug
& DEBUG_HFCMULTI_INIT
)
4121 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4122 __func__
, hc
->irq
, hc
->irqcnt
);
4123 err
= init_chip(hc
);
4127 * Finally enable IRQ output
4128 * this is only allowed, if an IRQ routine is allready
4129 * established for this HFC, so don't do that earlier
4131 spin_lock_irqsave(&hc
->lock
, flags
);
4133 spin_unlock_irqrestore(&hc
->lock
, flags
);
4134 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4135 set_current_state(TASK_UNINTERRUPTIBLE
);
4136 schedule_timeout((100*HZ
)/1000); /* Timeout 100ms */
4137 /* turn IRQ off until chip is completely initialized */
4138 spin_lock_irqsave(&hc
->lock
, flags
);
4140 spin_unlock_irqrestore(&hc
->lock
, flags
);
4141 if (debug
& DEBUG_HFCMULTI_INIT
)
4142 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4143 __func__
, hc
->irq
, hc
->irqcnt
);
4145 if (debug
& DEBUG_HFCMULTI_INIT
)
4146 printk(KERN_DEBUG
"%s: done\n", __func__
);
4150 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
4151 printk(KERN_INFO
"ignoring missing interrupts\n");
4155 printk(KERN_ERR
"HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4161 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4162 spin_lock_irqsave(&plx_lock
, plx_flags
);
4163 plx_acc
= (u_short
*)(hc
->plx_membase
+PLX_INTCSR
);
4164 writew(0x00, plx_acc
); /*disable IRQs*/
4165 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4168 if (debug
& DEBUG_HFCMULTI_INIT
)
4169 printk(KERN_WARNING
"%s: free irq %d\n", __func__
, hc
->irq
);
4171 free_irq(hc
->irq
, hc
);
4175 if (debug
& DEBUG_HFCMULTI_INIT
)
4176 printk(KERN_DEBUG
"%s: done (err=%d)\n", __func__
, err
);
4181 * find pci device and set it up
4185 setup_pci(struct hfc_multi
*hc
, struct pci_dev
*pdev
,
4186 const struct pci_device_id
*ent
)
4188 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
4191 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4192 m
->vendor_name
, m
->card_name
, m
->clock2
? "double" : "normal");
4196 test_and_set_bit(HFC_CHIP_CLOCK2
, &hc
->chip
);
4198 if (ent
->device
== 0xB410) {
4199 test_and_set_bit(HFC_CHIP_B410P
, &hc
->chip
);
4200 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
4201 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4205 if (hc
->pci_dev
->irq
<= 0) {
4206 printk(KERN_WARNING
"HFC-multi: No IRQ for PCI card found.\n");
4209 if (pci_enable_device(hc
->pci_dev
)) {
4210 printk(KERN_WARNING
"HFC-multi: Error enabling PCI card.\n");
4214 hc
->ledstate
= 0xAFFEAFFE;
4215 hc
->opticalsupport
= m
->opticalsupport
;
4217 /* set memory access methods */
4218 if (m
->io_mode
) /* use mode from card config */
4219 hc
->io_mode
= m
->io_mode
;
4220 switch (hc
->io_mode
) {
4221 case HFC_IO_MODE_PLXSD
:
4222 test_and_set_bit(HFC_CHIP_PLXSD
, &hc
->chip
);
4223 hc
->slots
= 128; /* required */
4225 case HFC_IO_MODE_PCIMEM
:
4226 hc
->HFC_outb
= HFC_outb_pcimem
;
4227 hc
->HFC_inb
= HFC_inb_pcimem
;
4228 hc
->HFC_inw
= HFC_inw_pcimem
;
4229 hc
->HFC_wait
= HFC_wait_pcimem
;
4230 hc
->read_fifo
= read_fifo_pcimem
;
4231 hc
->write_fifo
= write_fifo_pcimem
;
4233 case HFC_IO_MODE_REGIO
:
4234 hc
->HFC_outb
= HFC_outb_regio
;
4235 hc
->HFC_inb
= HFC_inb_regio
;
4236 hc
->HFC_inw
= HFC_inw_regio
;
4237 hc
->HFC_wait
= HFC_wait_regio
;
4238 hc
->read_fifo
= read_fifo_regio
;
4239 hc
->write_fifo
= write_fifo_regio
;
4242 printk(KERN_WARNING
"HFC-multi: Invalid IO mode.\n");
4243 pci_disable_device(hc
->pci_dev
);
4246 hc
->HFC_outb_nodebug
= hc
->HFC_outb
;
4247 hc
->HFC_inb_nodebug
= hc
->HFC_inb
;
4248 hc
->HFC_inw_nodebug
= hc
->HFC_inw
;
4249 hc
->HFC_wait_nodebug
= hc
->HFC_wait
;
4250 #ifdef HFC_REGISTER_DEBUG
4251 hc
->HFC_outb
= HFC_outb_debug
;
4252 hc
->HFC_inb
= HFC_inb_debug
;
4253 hc
->HFC_inw
= HFC_inw_debug
;
4254 hc
->HFC_wait
= HFC_wait_debug
;
4257 hc
->pci_membase
= NULL
;
4258 hc
->plx_membase
= NULL
;
4260 switch (hc
->io_mode
) {
4261 case HFC_IO_MODE_PLXSD
:
4262 hc
->plx_origmembase
= hc
->pci_dev
->resource
[0].start
;
4263 /* MEMBASE 1 is PLX PCI Bridge */
4265 if (!hc
->plx_origmembase
) {
4267 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4268 pci_disable_device(hc
->pci_dev
);
4272 hc
->plx_membase
= ioremap(hc
->plx_origmembase
, 0x80);
4273 if (!hc
->plx_membase
) {
4275 "HFC-multi: failed to remap plx address space. "
4276 "(internal error)\n");
4277 pci_disable_device(hc
->pci_dev
);
4281 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4282 (u_long
)hc
->plx_membase
, hc
->plx_origmembase
);
4284 hc
->pci_origmembase
= hc
->pci_dev
->resource
[2].start
;
4285 /* MEMBASE 1 is PLX PCI Bridge */
4286 if (!hc
->pci_origmembase
) {
4288 "HFC-multi: No IO-Memory for PCI card found\n");
4289 pci_disable_device(hc
->pci_dev
);
4293 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 0x400);
4294 if (!hc
->pci_membase
) {
4295 printk(KERN_WARNING
"HFC-multi: failed to remap io "
4296 "address space. (internal error)\n");
4297 pci_disable_device(hc
->pci_dev
);
4302 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4304 hc
->id
, (u_long
)hc
->pci_membase
, hc
->pci_origmembase
,
4305 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4306 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4308 case HFC_IO_MODE_PCIMEM
:
4309 hc
->pci_origmembase
= hc
->pci_dev
->resource
[1].start
;
4310 if (!hc
->pci_origmembase
) {
4312 "HFC-multi: No IO-Memory for PCI card found\n");
4313 pci_disable_device(hc
->pci_dev
);
4317 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 256);
4318 if (!hc
->pci_membase
) {
4320 "HFC-multi: failed to remap io address space. "
4321 "(internal error)\n");
4322 pci_disable_device(hc
->pci_dev
);
4325 printk(KERN_INFO
"card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4326 "HZ %d leds-type %d\n", hc
->id
, (u_long
)hc
->pci_membase
,
4327 hc
->pci_origmembase
, hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4328 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4330 case HFC_IO_MODE_REGIO
:
4331 hc
->pci_iobase
= (u_int
) hc
->pci_dev
->resource
[0].start
;
4332 if (!hc
->pci_iobase
) {
4334 "HFC-multi: No IO for PCI card found\n");
4335 pci_disable_device(hc
->pci_dev
);
4339 if (!request_region(hc
->pci_iobase
, 8, "hfcmulti")) {
4340 printk(KERN_WARNING
"HFC-multi: failed to request "
4341 "address space at 0x%08lx (internal error)\n",
4343 pci_disable_device(hc
->pci_dev
);
4348 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4349 m
->vendor_name
, m
->card_name
, (u_int
) hc
->pci_iobase
,
4350 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4351 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_REGIO
);
4354 printk(KERN_WARNING
"HFC-multi: Invalid IO mode.\n");
4355 pci_disable_device(hc
->pci_dev
);
4359 pci_set_drvdata(hc
->pci_dev
, hc
);
4361 /* At this point the needed PCI config is done */
4362 /* fifos are still not enabled */
4372 release_port(struct hfc_multi
*hc
, struct dchannel
*dch
)
4376 struct bchannel
*pb
;
4379 pt
= hc
->chan
[ci
].port
;
4381 if (debug
& DEBUG_HFCMULTI_INIT
)
4382 printk(KERN_DEBUG
"%s: entered for port %d\n",
4385 if (pt
>= hc
->ports
) {
4386 printk(KERN_WARNING
"%s: ERROR port out of range (%d).\n",
4391 if (debug
& DEBUG_HFCMULTI_INIT
)
4392 printk(KERN_DEBUG
"%s: releasing port=%d\n",
4395 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
4396 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4398 hc
->chan
[ci
].dch
= NULL
;
4400 if (hc
->created
[pt
]) {
4401 hc
->created
[pt
] = 0;
4402 mISDN_unregister_device(&dch
->dev
);
4405 spin_lock_irqsave(&hc
->lock
, flags
);
4407 if (dch
->timer
.function
) {
4408 del_timer(&dch
->timer
);
4409 dch
->timer
.function
= NULL
;
4412 if (hc
->type
== 1) { /* E1 */
4414 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4415 hc
->syncronized
= 0;
4416 plxsd_checksync(hc
, 1);
4419 for (i
= 0; i
<= 31; i
++) {
4420 if (hc
->chan
[i
].bch
) {
4421 if (debug
& DEBUG_HFCMULTI_INIT
)
4423 "%s: free port %d channel %d\n",
4424 __func__
, hc
->chan
[i
].port
+1, i
);
4425 pb
= hc
->chan
[i
].bch
;
4426 hc
->chan
[i
].bch
= NULL
;
4427 spin_unlock_irqrestore(&hc
->lock
, flags
);
4428 mISDN_freebchannel(pb
);
4430 kfree(hc
->chan
[i
].coeff
);
4431 spin_lock_irqsave(&hc
->lock
, flags
);
4436 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4438 ~(1 << hc
->chan
[ci
].port
);
4439 plxsd_checksync(hc
, 1);
4442 if (hc
->chan
[ci
- 2].bch
) {
4443 if (debug
& DEBUG_HFCMULTI_INIT
)
4445 "%s: free port %d channel %d\n",
4446 __func__
, hc
->chan
[ci
- 2].port
+1,
4448 pb
= hc
->chan
[ci
- 2].bch
;
4449 hc
->chan
[ci
- 2].bch
= NULL
;
4450 spin_unlock_irqrestore(&hc
->lock
, flags
);
4451 mISDN_freebchannel(pb
);
4453 kfree(hc
->chan
[ci
- 2].coeff
);
4454 spin_lock_irqsave(&hc
->lock
, flags
);
4456 if (hc
->chan
[ci
- 1].bch
) {
4457 if (debug
& DEBUG_HFCMULTI_INIT
)
4459 "%s: free port %d channel %d\n",
4460 __func__
, hc
->chan
[ci
- 1].port
+1,
4462 pb
= hc
->chan
[ci
- 1].bch
;
4463 hc
->chan
[ci
- 1].bch
= NULL
;
4464 spin_unlock_irqrestore(&hc
->lock
, flags
);
4465 mISDN_freebchannel(pb
);
4467 kfree(hc
->chan
[ci
- 1].coeff
);
4468 spin_lock_irqsave(&hc
->lock
, flags
);
4472 spin_unlock_irqrestore(&hc
->lock
, flags
);
4474 if (debug
& DEBUG_HFCMULTI_INIT
)
4475 printk(KERN_DEBUG
"%s: free port %d channel D\n", __func__
, pt
);
4476 mISDN_freedchannel(dch
);
4479 if (debug
& DEBUG_HFCMULTI_INIT
)
4480 printk(KERN_DEBUG
"%s: done!\n", __func__
);
4484 release_card(struct hfc_multi
*hc
)
4489 if (debug
& DEBUG_HFCMULTI_INIT
)
4490 printk(KERN_WARNING
"%s: release card (%d) entered\n",
4493 spin_lock_irqsave(&hc
->lock
, flags
);
4495 spin_unlock_irqrestore(&hc
->lock
, flags
);
4503 /* disable D-channels & B-channels */
4504 if (debug
& DEBUG_HFCMULTI_INIT
)
4505 printk(KERN_DEBUG
"%s: disable all channels (d and b)\n",
4507 for (ch
= 0; ch
<= 31; ch
++) {
4508 if (hc
->chan
[ch
].dch
)
4509 release_port(hc
, hc
->chan
[ch
].dch
);
4512 /* release hardware & irq */
4514 if (debug
& DEBUG_HFCMULTI_INIT
)
4515 printk(KERN_WARNING
"%s: free irq %d\n",
4517 free_irq(hc
->irq
, hc
);
4521 release_io_hfcmulti(hc
);
4523 if (debug
& DEBUG_HFCMULTI_INIT
)
4524 printk(KERN_WARNING
"%s: remove instance from list\n",
4526 list_del(&hc
->list
);
4528 if (debug
& DEBUG_HFCMULTI_INIT
)
4529 printk(KERN_WARNING
"%s: delete instance\n", __func__
);
4530 if (hc
== syncmaster
)
4533 if (debug
& DEBUG_HFCMULTI_INIT
)
4534 printk(KERN_WARNING
"%s: card successfully removed\n",
4539 init_e1_port(struct hfc_multi
*hc
, struct hm_map
*m
)
4541 struct dchannel
*dch
;
4542 struct bchannel
*bch
;
4544 char name
[MISDN_MAX_IDLEN
];
4546 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4550 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4552 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_E1
) | (1 << ISDN_P_NT_E1
);
4553 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4554 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4555 dch
->dev
.D
.send
= handle_dmsg
;
4556 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4557 dch
->dev
.nrbchan
= (hc
->dslot
)?30:31;
4558 dch
->slot
= hc
->dslot
;
4559 hc
->chan
[hc
->dslot
].dch
= dch
;
4560 hc
->chan
[hc
->dslot
].port
= 0;
4561 hc
->chan
[hc
->dslot
].nt_timer
= -1;
4562 for (ch
= 1; ch
<= 31; ch
++) {
4563 if (ch
== hc
->dslot
) /* skip dchannel */
4565 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4567 printk(KERN_ERR
"%s: no memory for bchannel\n",
4572 hc
->chan
[ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4573 if (!hc
->chan
[ch
].coeff
) {
4574 printk(KERN_ERR
"%s: no memory for coeffs\n",
4582 mISDN_initbchannel(bch
, MAX_DATA_MEM
);
4584 bch
->ch
.send
= handle_bmsg
;
4585 bch
->ch
.ctrl
= hfcm_bctrl
;
4587 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4588 hc
->chan
[ch
].bch
= bch
;
4589 hc
->chan
[ch
].port
= 0;
4590 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4592 /* set optical line type */
4593 if (port
[Port_cnt
] & 0x001) {
4594 if (!m
->opticalsupport
) {
4596 "This board has no optical "
4599 if (debug
& DEBUG_HFCMULTI_INIT
)
4601 "%s: PORT set optical "
4602 "interfacs: card(%d) "
4606 test_and_set_bit(HFC_CFG_OPTICAL
,
4607 &hc
->chan
[hc
->dslot
].cfg
);
4610 /* set LOS report */
4611 if (port
[Port_cnt
] & 0x004) {
4612 if (debug
& DEBUG_HFCMULTI_INIT
)
4613 printk(KERN_DEBUG
"%s: PORT set "
4614 "LOS report: card(%d) port(%d)\n",
4615 __func__
, HFC_cnt
+ 1, 1);
4616 test_and_set_bit(HFC_CFG_REPORT_LOS
,
4617 &hc
->chan
[hc
->dslot
].cfg
);
4619 /* set AIS report */
4620 if (port
[Port_cnt
] & 0x008) {
4621 if (debug
& DEBUG_HFCMULTI_INIT
)
4622 printk(KERN_DEBUG
"%s: PORT set "
4623 "AIS report: card(%d) port(%d)\n",
4624 __func__
, HFC_cnt
+ 1, 1);
4625 test_and_set_bit(HFC_CFG_REPORT_AIS
,
4626 &hc
->chan
[hc
->dslot
].cfg
);
4628 /* set SLIP report */
4629 if (port
[Port_cnt
] & 0x010) {
4630 if (debug
& DEBUG_HFCMULTI_INIT
)
4632 "%s: PORT set SLIP report: "
4633 "card(%d) port(%d)\n",
4634 __func__
, HFC_cnt
+ 1, 1);
4635 test_and_set_bit(HFC_CFG_REPORT_SLIP
,
4636 &hc
->chan
[hc
->dslot
].cfg
);
4638 /* set RDI report */
4639 if (port
[Port_cnt
] & 0x020) {
4640 if (debug
& DEBUG_HFCMULTI_INIT
)
4642 "%s: PORT set RDI report: "
4643 "card(%d) port(%d)\n",
4644 __func__
, HFC_cnt
+ 1, 1);
4645 test_and_set_bit(HFC_CFG_REPORT_RDI
,
4646 &hc
->chan
[hc
->dslot
].cfg
);
4648 /* set CRC-4 Mode */
4649 if (!(port
[Port_cnt
] & 0x100)) {
4650 if (debug
& DEBUG_HFCMULTI_INIT
)
4651 printk(KERN_DEBUG
"%s: PORT turn on CRC4 report:"
4652 " card(%d) port(%d)\n",
4653 __func__
, HFC_cnt
+ 1, 1);
4654 test_and_set_bit(HFC_CFG_CRC4
,
4655 &hc
->chan
[hc
->dslot
].cfg
);
4657 if (debug
& DEBUG_HFCMULTI_INIT
)
4658 printk(KERN_DEBUG
"%s: PORT turn off CRC4"
4659 " report: card(%d) port(%d)\n",
4660 __func__
, HFC_cnt
+ 1, 1);
4662 /* set forced clock */
4663 if (port
[Port_cnt
] & 0x0200) {
4664 if (debug
& DEBUG_HFCMULTI_INIT
)
4665 printk(KERN_DEBUG
"%s: PORT force getting clock from "
4666 "E1: card(%d) port(%d)\n",
4667 __func__
, HFC_cnt
+ 1, 1);
4668 test_and_set_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
);
4670 if (port
[Port_cnt
] & 0x0400) {
4671 if (debug
& DEBUG_HFCMULTI_INIT
)
4672 printk(KERN_DEBUG
"%s: PORT force putting clock to "
4673 "E1: card(%d) port(%d)\n",
4674 __func__
, HFC_cnt
+ 1, 1);
4675 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
);
4678 if (port
[Port_cnt
] & 0x0800) {
4679 if (debug
& DEBUG_HFCMULTI_INIT
)
4680 printk(KERN_DEBUG
"%s: PORT disable JATT PLL on "
4681 "E1: card(%d) port(%d)\n",
4682 __func__
, HFC_cnt
+ 1, 1);
4683 test_and_set_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
);
4685 /* set elastic jitter buffer */
4686 if (port
[Port_cnt
] & 0x3000) {
4687 hc
->chan
[hc
->dslot
].jitter
= (port
[Port_cnt
]>>12) & 0x3;
4688 if (debug
& DEBUG_HFCMULTI_INIT
)
4690 "%s: PORT set elastic "
4691 "buffer to %d: card(%d) port(%d)\n",
4692 __func__
, hc
->chan
[hc
->dslot
].jitter
,
4695 hc
->chan
[hc
->dslot
].jitter
= 2; /* default */
4696 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d", HFC_cnt
+ 1);
4697 ret
= mISDN_register_device(&dch
->dev
, name
);
4703 release_port(hc
, dch
);
4708 init_multi_port(struct hfc_multi
*hc
, int pt
)
4710 struct dchannel
*dch
;
4711 struct bchannel
*bch
;
4713 char name
[MISDN_MAX_IDLEN
];
4715 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4719 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4721 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
4722 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4723 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4724 dch
->dev
.D
.send
= handle_dmsg
;
4725 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4726 dch
->dev
.nrbchan
= 2;
4729 hc
->chan
[i
+ 2].dch
= dch
;
4730 hc
->chan
[i
+ 2].port
= pt
;
4731 hc
->chan
[i
+ 2].nt_timer
= -1;
4732 for (ch
= 0; ch
< dch
->dev
.nrbchan
; ch
++) {
4733 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4735 printk(KERN_ERR
"%s: no memory for bchannel\n",
4740 hc
->chan
[i
+ ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4741 if (!hc
->chan
[i
+ ch
].coeff
) {
4742 printk(KERN_ERR
"%s: no memory for coeffs\n",
4750 mISDN_initbchannel(bch
, MAX_DATA_MEM
);
4752 bch
->ch
.send
= handle_bmsg
;
4753 bch
->ch
.ctrl
= hfcm_bctrl
;
4754 bch
->ch
.nr
= ch
+ 1;
4755 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4756 hc
->chan
[i
+ ch
].bch
= bch
;
4757 hc
->chan
[i
+ ch
].port
= pt
;
4758 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4760 /* set master clock */
4761 if (port
[Port_cnt
] & 0x001) {
4762 if (debug
& DEBUG_HFCMULTI_INIT
)
4764 "%s: PROTOCOL set master clock: "
4765 "card(%d) port(%d)\n",
4766 __func__
, HFC_cnt
+ 1, pt
+ 1);
4767 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
4768 printk(KERN_ERR
"Error: Master clock "
4769 "for port(%d) of card(%d) is only"
4770 " possible with TE-mode\n",
4771 pt
+ 1, HFC_cnt
+ 1);
4775 if (hc
->masterclk
>= 0) {
4776 printk(KERN_ERR
"Error: Master clock "
4777 "for port(%d) of card(%d) already "
4778 "defined for port(%d)\n",
4779 pt
+ 1, HFC_cnt
+ 1, hc
->masterclk
+1);
4785 /* set transmitter line to non capacitive */
4786 if (port
[Port_cnt
] & 0x002) {
4787 if (debug
& DEBUG_HFCMULTI_INIT
)
4789 "%s: PROTOCOL set non capacitive "
4790 "transmitter: card(%d) port(%d)\n",
4791 __func__
, HFC_cnt
+ 1, pt
+ 1);
4792 test_and_set_bit(HFC_CFG_NONCAP_TX
,
4793 &hc
->chan
[i
+ 2].cfg
);
4795 /* disable E-channel */
4796 if (port
[Port_cnt
] & 0x004) {
4797 if (debug
& DEBUG_HFCMULTI_INIT
)
4799 "%s: PROTOCOL disable E-channel: "
4800 "card(%d) port(%d)\n",
4801 __func__
, HFC_cnt
+ 1, pt
+ 1);
4802 test_and_set_bit(HFC_CFG_DIS_ECHANNEL
,
4803 &hc
->chan
[i
+ 2].cfg
);
4805 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-%ds.%d/%d",
4806 hc
->type
, HFC_cnt
+ 1, pt
+ 1);
4807 ret
= mISDN_register_device(&dch
->dev
, name
);
4810 hc
->created
[pt
] = 1;
4813 release_port(hc
, dch
);
4818 hfcmulti_init(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4820 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
4823 struct hfc_multi
*hc
;
4825 u_char dips
= 0, pmj
= 0; /* dip settings, port mode Jumpers */
4827 if (HFC_cnt
>= MAX_CARDS
) {
4828 printk(KERN_ERR
"too many cards (max=%d).\n",
4832 if ((type
[HFC_cnt
] & 0xff) && (type
[HFC_cnt
] & 0xff) != m
->type
) {
4833 printk(KERN_WARNING
"HFC-MULTI: Card '%s:%s' type %d found but "
4834 "type[%d] %d was supplied as module parameter\n",
4835 m
->vendor_name
, m
->card_name
, m
->type
, HFC_cnt
,
4836 type
[HFC_cnt
] & 0xff);
4837 printk(KERN_WARNING
"HFC-MULTI: Load module without parameters "
4838 "first, to see cards and their types.");
4841 if (debug
& DEBUG_HFCMULTI_INIT
)
4842 printk(KERN_DEBUG
"%s: Registering %s:%s chip type %d (0x%x)\n",
4843 __func__
, m
->vendor_name
, m
->card_name
, m
->type
,
4846 /* allocate card+fifo structure */
4847 hc
= kzalloc(sizeof(struct hfc_multi
), GFP_KERNEL
);
4849 printk(KERN_ERR
"No kmem for HFC-Multi card\n");
4852 spin_lock_init(&hc
->lock
);
4855 hc
->ports
= m
->ports
;
4857 hc
->pcm
= pcm
[HFC_cnt
];
4858 hc
->io_mode
= iomode
[HFC_cnt
];
4859 if (dslot
[HFC_cnt
] < 0) {
4861 printk(KERN_INFO
"HFC-E1 card has disabled D-channel, but "
4863 } if (dslot
[HFC_cnt
] > 0 && dslot
[HFC_cnt
] < 32) {
4864 hc
->dslot
= dslot
[HFC_cnt
];
4865 printk(KERN_INFO
"HFC-E1 card has alternating D-channel on "
4866 "time slot %d\n", dslot
[HFC_cnt
]);
4870 /* set chip specific features */
4872 if (type
[HFC_cnt
] & 0x100) {
4873 test_and_set_bit(HFC_CHIP_ULAW
, &hc
->chip
);
4874 silence
= 0xff; /* ulaw silence */
4876 silence
= 0x2a; /* alaw silence */
4877 if (!(type
[HFC_cnt
] & 0x200))
4878 test_and_set_bit(HFC_CHIP_DTMF
, &hc
->chip
);
4880 if (type
[HFC_cnt
] & 0x800)
4881 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4882 if (type
[HFC_cnt
] & 0x1000) {
4883 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
4884 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4886 if (type
[HFC_cnt
] & 0x4000)
4887 test_and_set_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
);
4888 if (type
[HFC_cnt
] & 0x8000)
4889 test_and_set_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
);
4891 if (type
[HFC_cnt
] & 0x10000)
4893 if (type
[HFC_cnt
] & 0x20000)
4895 if (type
[HFC_cnt
] & 0x80000) {
4896 test_and_set_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
);
4898 hc
->wdbyte
= V_GPIO_OUT2
;
4899 printk(KERN_NOTICE
"Watchdog enabled\n");
4902 /* setup pci, hc->slots may change due to PLXSD */
4903 ret_err
= setup_pci(hc
, pdev
, ent
);
4905 if (hc
== syncmaster
)
4911 /* crate channels */
4912 for (pt
= 0; pt
< hc
->ports
; pt
++) {
4913 if (Port_cnt
>= MAX_PORTS
) {
4914 printk(KERN_ERR
"too many ports (max=%d).\n",
4920 ret_err
= init_e1_port(hc
, m
);
4922 ret_err
= init_multi_port(hc
, pt
);
4923 if (debug
& DEBUG_HFCMULTI_INIT
)
4925 "%s: Registering D-channel, card(%d) port(%d)"
4927 __func__
, HFC_cnt
+ 1, pt
, ret_err
);
4930 while (pt
) { /* release already registered ports */
4932 release_port(hc
, hc
->chan
[(pt
<< 2) + 2].dch
);
4940 switch (m
->dip_type
) {
4943 * get DIP Setting for beroNet 1S/2S/4S cards
4944 * check if Port Jumper config matches
4945 * module param 'protocol'
4946 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4947 * GPI 19/23 (R_GPI_IN2))
4949 dips
= ((~HFC_inb(hc
, R_GPIO_IN1
) & 0xE0) >> 5) |
4950 ((~HFC_inb(hc
, R_GPI_IN2
) & 0x80) >> 3) |
4951 (~HFC_inb(hc
, R_GPI_IN2
) & 0x08);
4953 /* Port mode (TE/NT) jumpers */
4954 pmj
= ((HFC_inb(hc
, R_GPI_IN3
) >> 4) & 0xf);
4956 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
4959 printk(KERN_INFO
"%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4960 m
->vendor_name
, m
->card_name
, dips
, pmj
);
4964 * get DIP Setting for beroNet 8S0+ cards
4966 * enable PCI auxbridge function
4968 HFC_outb(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
4969 /* prepare access to auxport */
4970 outw(0x4000, hc
->pci_iobase
+ 4);
4972 * some dummy reads are required to
4973 * read valid DIP switch data
4975 dips
= inb(hc
->pci_iobase
);
4976 dips
= inb(hc
->pci_iobase
);
4977 dips
= inb(hc
->pci_iobase
);
4978 dips
= ~inb(hc
->pci_iobase
) & 0x3F;
4979 outw(0x0, hc
->pci_iobase
+ 4);
4980 /* disable PCI auxbridge function */
4981 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
4982 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
4983 m
->vendor_name
, m
->card_name
, dips
);
4987 * get DIP Setting for beroNet E1 cards
4988 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
4990 dips
= (~HFC_inb(hc
, R_GPI_IN0
) & 0xF0)>>4;
4991 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
4992 m
->vendor_name
, m
->card_name
, dips
);
4997 spin_lock_irqsave(&HFClock
, flags
);
4998 list_add_tail(&hc
->list
, &HFClist
);
4999 spin_unlock_irqrestore(&HFClock
, flags
);
5001 /* initialize hardware */
5002 ret_err
= init_card(hc
);
5004 printk(KERN_ERR
"init card returns %d\n", ret_err
);
5009 /* start IRQ and return */
5010 spin_lock_irqsave(&hc
->lock
, flags
);
5012 spin_unlock_irqrestore(&hc
->lock
, flags
);
5016 release_io_hfcmulti(hc
);
5017 if (hc
== syncmaster
)
5023 static void __devexit
hfc_remove_pci(struct pci_dev
*pdev
)
5025 struct hfc_multi
*card
= pci_get_drvdata(pdev
);
5029 printk(KERN_INFO
"removing hfc_multi card vendor:%x "
5030 "device:%x subvendor:%x subdevice:%x\n",
5031 pdev
->vendor
, pdev
->device
,
5032 pdev
->subsystem_vendor
, pdev
->subsystem_device
);
5035 spin_lock_irqsave(&HFClock
, flags
);
5037 spin_unlock_irqrestore(&HFClock
, flags
);
5040 printk(KERN_WARNING
"%s: drvdata allready removed\n",
5045 #define VENDOR_CCD "Cologne Chip AG"
5046 #define VENDOR_BN "beroNet GmbH"
5047 #define VENDOR_DIG "Digium Inc."
5048 #define VENDOR_JH "Junghanns.NET GmbH"
5049 #define VENDOR_PRIM "PrimuX"
5051 static const struct hm_map hfcm_map
[] = {
5052 /*0*/ {VENDOR_BN
, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S
, 0},
5053 /*1*/ {VENDOR_BN
, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S
},
5054 /*2*/ {VENDOR_BN
, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S
, 0},
5055 /*3*/ {VENDOR_BN
, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S
, 0},
5056 /*4*/ {VENDOR_BN
, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5057 /*5*/ {VENDOR_CCD
, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5058 /*6*/ {VENDOR_CCD
, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, 0, 0},
5059 /*7*/ {VENDOR_CCD
, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5060 /*8*/ {VENDOR_DIG
, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO
},
5061 /*9*/ {VENDOR_CCD
, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5062 /*10*/ {VENDOR_JH
, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5063 /*11*/ {VENDOR_PRIM
, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5065 /*12*/ {VENDOR_BN
, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5066 /*13*/ {VENDOR_BN
, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S
,
5068 /*14*/ {VENDOR_CCD
, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5069 /*15*/ {VENDOR_CCD
, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5071 /*16*/ {VENDOR_CCD
, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5072 /*17*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5073 /*18*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5075 /*19*/ {VENDOR_BN
, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1
, 0},
5076 /*20*/ {VENDOR_BN
, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5077 /*21*/ {VENDOR_BN
, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0},
5078 /*22*/ {VENDOR_BN
, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0},
5080 /*23*/ {VENDOR_CCD
, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5081 /*24*/ {VENDOR_CCD
, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5082 /*25*/ {VENDOR_CCD
, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5084 /*26*/ {VENDOR_CCD
, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5086 /*27*/ {VENDOR_CCD
, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5088 /*28*/ {VENDOR_CCD
, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5089 /*29*/ {VENDOR_CCD
, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5090 /*30*/ {VENDOR_CCD
, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5094 #define H(x) ((unsigned long)&hfcm_map[x])
5095 static struct pci_device_id hfmultipci_ids
[] __devinitdata
= {
5097 /* Cards with HFC-4S Chip */
5098 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5099 PCI_SUBDEVICE_ID_CCD_BN1SM
, 0, 0, H(0)}, /* BN1S mini PCI */
5100 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5101 PCI_SUBDEVICE_ID_CCD_BN2S
, 0, 0, H(1)}, /* BN2S */
5102 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5103 PCI_SUBDEVICE_ID_CCD_BN2SM
, 0, 0, H(2)}, /* BN2S mini PCI */
5104 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5105 PCI_SUBDEVICE_ID_CCD_BN4S
, 0, 0, H(3)}, /* BN4S */
5106 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5107 PCI_SUBDEVICE_ID_CCD_BN4SM
, 0, 0, H(4)}, /* BN4S mini PCI */
5108 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5109 PCI_DEVICE_ID_CCD_HFC4S
, 0, 0, H(5)}, /* Old Eval */
5110 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5111 PCI_SUBDEVICE_ID_CCD_IOB4ST
, 0, 0, H(6)}, /* IOB4ST */
5112 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5113 PCI_SUBDEVICE_ID_CCD_HFC4S
, 0, 0, H(7)}, /* 4S */
5114 { PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
,
5115 PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
, 0, 0, H(8)},
5116 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5117 PCI_SUBDEVICE_ID_CCD_SWYX4S
, 0, 0, H(9)}, /* 4S Swyx */
5118 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5119 PCI_SUBDEVICE_ID_CCD_JH4S20
, 0, 0, H(10)},
5120 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5121 PCI_SUBDEVICE_ID_CCD_PMX2S
, 0, 0, H(11)}, /* Primux */
5122 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5123 PCI_SUBDEVICE_ID_CCD_OV4S
, 0, 0, H(28)}, /* OpenVox 4 */
5124 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5125 PCI_SUBDEVICE_ID_CCD_OV2S
, 0, 0, H(29)}, /* OpenVox 2 */
5127 /* Cards with HFC-8S Chip */
5128 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5129 PCI_SUBDEVICE_ID_CCD_BN8S
, 0, 0, H(12)}, /* BN8S */
5130 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5131 PCI_SUBDEVICE_ID_CCD_BN8SP
, 0, 0, H(13)}, /* BN8S+ */
5132 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5133 PCI_DEVICE_ID_CCD_HFC8S
, 0, 0, H(14)}, /* old Eval */
5134 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5135 PCI_SUBDEVICE_ID_CCD_IOB8STR
, 0, 0, H(15)},
5136 /* IOB8ST Recording */
5137 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5138 PCI_SUBDEVICE_ID_CCD_IOB8ST
, 0, 0, H(16)}, /* IOB8ST */
5139 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5140 PCI_SUBDEVICE_ID_CCD_IOB8ST_1
, 0, 0, H(17)}, /* IOB8ST */
5141 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5142 PCI_SUBDEVICE_ID_CCD_HFC8S
, 0, 0, H(18)}, /* 8S */
5143 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5144 PCI_SUBDEVICE_ID_CCD_OV8S
, 0, 0, H(30)}, /* OpenVox 8 */
5147 /* Cards with HFC-E1 Chip */
5148 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5149 PCI_SUBDEVICE_ID_CCD_BNE1
, 0, 0, H(19)}, /* BNE1 */
5150 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5151 PCI_SUBDEVICE_ID_CCD_BNE1M
, 0, 0, H(20)}, /* BNE1 mini PCI */
5152 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5153 PCI_SUBDEVICE_ID_CCD_BNE1DP
, 0, 0, H(21)}, /* BNE1 + (Dual) */
5154 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5155 PCI_SUBDEVICE_ID_CCD_BNE1D
, 0, 0, H(22)}, /* BNE1 (Dual) */
5157 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5158 PCI_DEVICE_ID_CCD_HFCE1
, 0, 0, H(23)}, /* Old Eval */
5159 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5160 PCI_SUBDEVICE_ID_CCD_IOB1E1
, 0, 0, H(24)}, /* IOB1E1 */
5161 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5162 PCI_SUBDEVICE_ID_CCD_HFCE1
, 0, 0, H(25)}, /* E1 */
5164 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5165 PCI_SUBDEVICE_ID_CCD_SPD4S
, 0, 0, H(26)}, /* PLX PCI Bridge */
5166 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5167 PCI_SUBDEVICE_ID_CCD_SPDE1
, 0, 0, H(27)}, /* PLX PCI Bridge */
5168 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_ANY_ID
, PCI_ANY_ID
,
5170 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_ANY_ID
, PCI_ANY_ID
,
5172 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_ANY_ID
, PCI_ANY_ID
,
5178 MODULE_DEVICE_TABLE(pci
, hfmultipci_ids
);
5181 hfcmulti_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5183 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
5187 if (ent
->vendor
== PCI_VENDOR_ID_CCD
)
5188 if (ent
->device
== PCI_DEVICE_ID_CCD_HFC4S
||
5189 ent
->device
== PCI_DEVICE_ID_CCD_HFC8S
||
5190 ent
->device
== PCI_DEVICE_ID_CCD_HFCE1
)
5192 "unknown HFC multiport controller "
5193 "(vendor:%x device:%x subvendor:%x "
5194 "subdevice:%x) Please contact the "
5195 "driver maintainer for support.\n",
5196 ent
->vendor
, ent
->device
,
5197 ent
->subvendor
, ent
->subdevice
);
5200 ret
= hfcmulti_init(pdev
, ent
);
5204 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5208 static struct pci_driver hfcmultipci_driver
= {
5209 .name
= "hfc_multi",
5210 .probe
= hfcmulti_probe
,
5211 .remove
= __devexit_p(hfc_remove_pci
),
5212 .id_table
= hfmultipci_ids
,
5216 HFCmulti_cleanup(void)
5218 struct hfc_multi
*card
, *next
;
5220 /* unload interrupt function symbol */
5222 symbol_put(ztdummy_extern_interrupt
);
5223 if (register_interrupt
)
5224 symbol_put(ztdummy_register_interrupt
);
5225 if (unregister_interrupt
) {
5226 if (interrupt_registered
) {
5227 interrupt_registered
= 0;
5228 unregister_interrupt();
5230 symbol_put(ztdummy_unregister_interrupt
);
5233 list_for_each_entry_safe(card
, next
, &HFClist
, list
)
5235 /* get rid of all devices of this driver */
5236 pci_unregister_driver(&hfcmultipci_driver
);
5245 printk(KERN_ERR
"%s: IRQ_DEBUG IS ENABLED!\n", __func__
);
5248 spin_lock_init(&HFClock
);
5249 spin_lock_init(&plx_lock
);
5251 if (debug
& DEBUG_HFCMULTI_INIT
)
5252 printk(KERN_DEBUG
"%s: init entered\n", __func__
);
5255 #error "not running on big endian machines now"
5257 hfc_interrupt
= symbol_get(ztdummy_extern_interrupt
);
5258 register_interrupt
= symbol_get(ztdummy_register_interrupt
);
5259 unregister_interrupt
= symbol_get(ztdummy_unregister_interrupt
);
5260 printk(KERN_INFO
"mISDN: HFC-multi driver %s\n",
5269 * wenn dieses break nochmal verschwindet,
5270 * gibt es heisse ohren :-)
5271 * "without the break you will get hot ears ???"
5293 "%s: Wrong poll value (%d).\n", __func__
, poll
);
5299 err
= pci_register_driver(&hfcmultipci_driver
);
5301 printk(KERN_ERR
"error registering pci driver: %x\n", err
);
5303 symbol_put(ztdummy_extern_interrupt
);
5304 if (register_interrupt
)
5305 symbol_put(ztdummy_register_interrupt
);
5306 if (unregister_interrupt
) {
5307 if (interrupt_registered
) {
5308 interrupt_registered
= 0;
5309 unregister_interrupt();
5311 symbol_put(ztdummy_unregister_interrupt
);
5319 module_init(HFCmulti_init
);
5320 module_exit(HFCmulti_cleanup
);