mISDN cleanup user interface
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
blob10144e871c06076b0d59c16789a3e0363eac15b3
1 /*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
106 * dslot:
107 * NOTE: only one poll value must be given for every card.
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
116 * iomode:
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
120 * Some cards requre specific IO mode, so it cannot be changed.
121 * It may be usefull to set IO mode to register io (REGIO) to solve
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
125 * clockdelay_nt:
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
131 * clockdelay_te:
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
139 * debug register access (never use this, it will flood your system log)
140 * #define HFC_REGISTER_DEBUG
143 static const char *hfcmulti_revision = "2.00";
145 #include <linux/module.h>
146 #include <linux/pci.h>
147 #include <linux/delay.h>
148 #include <linux/mISDNhw.h>
149 #include <linux/mISDNdsp.h>
152 #define IRQCOUNT_DEBUG
153 #define IRQ_DEBUG
156 #include "hfc_multi.h"
157 #ifdef ECHOPREP
158 #include "gaintab.h"
159 #endif
161 #define MAX_CARDS 8
162 #define MAX_PORTS (8 * MAX_CARDS)
164 static LIST_HEAD(HFClist);
165 static spinlock_t HFClock; /* global hfc list lock */
167 static void ph_state_change(struct dchannel *);
168 static void (*hfc_interrupt)(void);
169 static void (*register_interrupt)(void);
170 static int (*unregister_interrupt)(void);
171 static int interrupt_registered;
173 static struct hfc_multi *syncmaster;
174 int plxsd_master; /* if we have a master card (yet) */
175 static spinlock_t plx_lock; /* may not acquire other lock inside */
176 EXPORT_SYMBOL(plx_lock);
178 #define TYP_E1 1
179 #define TYP_4S 4
180 #define TYP_8S 8
182 static int poll_timer = 6; /* default = 128 samples = 16ms */
183 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
184 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
185 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
186 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
187 (0x60 MUST be included!) */
188 static u_char silence = 0xff; /* silence by LAW */
190 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
191 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
192 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
195 * module stuff
198 static uint type[MAX_CARDS];
199 static uint pcm[MAX_CARDS];
200 static uint dslot[MAX_CARDS];
201 static uint iomode[MAX_CARDS];
202 static uint port[MAX_PORTS];
203 static uint debug;
204 static uint poll;
205 static uint timer;
206 static uint clockdelay_te = CLKDEL_TE;
207 static uint clockdelay_nt = CLKDEL_NT;
209 static int HFC_cnt, Port_cnt, PCM_cnt = 99;
211 MODULE_AUTHOR("Andreas Eversberg");
212 MODULE_LICENSE("GPL");
213 module_param(debug, uint, S_IRUGO | S_IWUSR);
214 module_param(poll, uint, S_IRUGO | S_IWUSR);
215 module_param(timer, uint, S_IRUGO | S_IWUSR);
216 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
217 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
218 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
219 module_param_array(pcm, uint, NULL, S_IRUGO | S_IWUSR);
220 module_param_array(dslot, uint, NULL, S_IRUGO | S_IWUSR);
221 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
222 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
224 #ifdef HFC_REGISTER_DEBUG
225 #define HFC_outb(hc, reg, val) \
226 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
227 #define HFC_outb_nodebug(hc, reg, val) \
228 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
229 #define HFC_inb(hc, reg) \
230 (hc->HFC_inb(hc, reg, __func__, __LINE__))
231 #define HFC_inb_nodebug(hc, reg) \
232 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
233 #define HFC_inw(hc, reg) \
234 (hc->HFC_inw(hc, reg, __func__, __LINE__))
235 #define HFC_inw_nodebug(hc, reg) \
236 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
237 #define HFC_wait(hc) \
238 (hc->HFC_wait(hc, __func__, __LINE__))
239 #define HFC_wait_nodebug(hc) \
240 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
241 #else
242 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
243 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
244 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
245 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
246 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
247 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
248 #define HFC_wait(hc) (hc->HFC_wait(hc))
249 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
250 #endif
252 /* HFC_IO_MODE_PCIMEM */
253 static void
254 #ifdef HFC_REGISTER_DEBUG
255 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
256 const char *function, int line)
257 #else
258 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
259 #endif
261 writeb(val, (hc->pci_membase)+reg);
263 static u_char
264 #ifdef HFC_REGISTER_DEBUG
265 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
266 #else
267 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
268 #endif
270 return readb((hc->pci_membase)+reg);
272 static u_short
273 #ifdef HFC_REGISTER_DEBUG
274 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
275 #else
276 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
277 #endif
279 return readw((hc->pci_membase)+reg);
281 static void
282 #ifdef HFC_REGISTER_DEBUG
283 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
284 #else
285 HFC_wait_pcimem(struct hfc_multi *hc)
286 #endif
288 while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
291 /* HFC_IO_MODE_REGIO */
292 static void
293 #ifdef HFC_REGISTER_DEBUG
294 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
295 const char *function, int line)
296 #else
297 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
298 #endif
300 outb(reg, (hc->pci_iobase)+4);
301 outb(val, hc->pci_iobase);
303 static u_char
304 #ifdef HFC_REGISTER_DEBUG
305 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
306 #else
307 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
308 #endif
310 outb(reg, (hc->pci_iobase)+4);
311 return inb(hc->pci_iobase);
313 static u_short
314 #ifdef HFC_REGISTER_DEBUG
315 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
316 #else
317 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
318 #endif
320 outb(reg, (hc->pci_iobase)+4);
321 return inw(hc->pci_iobase);
323 static void
324 #ifdef HFC_REGISTER_DEBUG
325 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
326 #else
327 HFC_wait_regio(struct hfc_multi *hc)
328 #endif
330 outb(R_STATUS, (hc->pci_iobase)+4);
331 while (inb(hc->pci_iobase) & V_BUSY);
334 #ifdef HFC_REGISTER_DEBUG
335 static void
336 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
337 const char *function, int line)
339 char regname[256] = "", bits[9] = "xxxxxxxx";
340 int i;
342 i = -1;
343 while (hfc_register_names[++i].name) {
344 if (hfc_register_names[i].reg == reg)
345 strcat(regname, hfc_register_names[i].name);
347 if (regname[0] == '\0')
348 strcpy(regname, "register");
350 bits[7] = '0'+(!!(val&1));
351 bits[6] = '0'+(!!(val&2));
352 bits[5] = '0'+(!!(val&4));
353 bits[4] = '0'+(!!(val&8));
354 bits[3] = '0'+(!!(val&16));
355 bits[2] = '0'+(!!(val&32));
356 bits[1] = '0'+(!!(val&64));
357 bits[0] = '0'+(!!(val&128));
358 printk(KERN_DEBUG
359 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
360 hc->id, reg, regname, val, bits, function, line);
361 HFC_outb_nodebug(hc, reg, val);
363 static u_char
364 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
366 char regname[256] = "", bits[9] = "xxxxxxxx";
367 u_char val = HFC_inb_nodebug(hc, reg);
368 int i;
370 i = 0;
371 while (hfc_register_names[i++].name)
373 while (hfc_register_names[++i].name) {
374 if (hfc_register_names[i].reg == reg)
375 strcat(regname, hfc_register_names[i].name);
377 if (regname[0] == '\0')
378 strcpy(regname, "register");
380 bits[7] = '0'+(!!(val&1));
381 bits[6] = '0'+(!!(val&2));
382 bits[5] = '0'+(!!(val&4));
383 bits[4] = '0'+(!!(val&8));
384 bits[3] = '0'+(!!(val&16));
385 bits[2] = '0'+(!!(val&32));
386 bits[1] = '0'+(!!(val&64));
387 bits[0] = '0'+(!!(val&128));
388 printk(KERN_DEBUG
389 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
390 hc->id, reg, regname, val, bits, function, line);
391 return val;
393 static u_short
394 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
396 char regname[256] = "";
397 u_short val = HFC_inw_nodebug(hc, reg);
398 int i;
400 i = 0;
401 while (hfc_register_names[i++].name)
403 while (hfc_register_names[++i].name) {
404 if (hfc_register_names[i].reg == reg)
405 strcat(regname, hfc_register_names[i].name);
407 if (regname[0] == '\0')
408 strcpy(regname, "register");
410 printk(KERN_DEBUG
411 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
412 hc->id, reg, regname, val, function, line);
413 return val;
415 static void
416 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
418 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
419 hc->id, function, line);
420 HFC_wait_nodebug(hc);
422 #endif
424 /* write fifo data (REGIO) */
425 void
426 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
428 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
429 while (len>>2) {
430 outl(*(u32 *)data, hc->pci_iobase);
431 data += 4;
432 len -= 4;
434 while (len>>1) {
435 outw(*(u16 *)data, hc->pci_iobase);
436 data += 2;
437 len -= 2;
439 while (len) {
440 outb(*data, hc->pci_iobase);
441 data++;
442 len--;
445 /* write fifo data (PCIMEM) */
446 void
447 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
449 while (len>>2) {
450 writel(*(u32 *)data, (hc->pci_membase)+A_FIFO_DATA0);
451 data += 4;
452 len -= 4;
454 while (len>>1) {
455 writew(*(u16 *)data, (hc->pci_membase)+A_FIFO_DATA0);
456 data += 2;
457 len -= 2;
459 while (len) {
460 writeb(*data, (hc->pci_membase)+A_FIFO_DATA0);
461 data++;
462 len--;
465 /* read fifo data (REGIO) */
466 void
467 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
469 outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
470 while (len>>2) {
471 *(u32 *)data = inl(hc->pci_iobase);
472 data += 4;
473 len -= 4;
475 while (len>>1) {
476 *(u16 *)data = inw(hc->pci_iobase);
477 data += 2;
478 len -= 2;
480 while (len) {
481 *data = inb(hc->pci_iobase);
482 data++;
483 len--;
487 /* read fifo data (PCIMEM) */
488 void
489 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
491 while (len>>2) {
492 *(u32 *)data =
493 readl((hc->pci_membase)+A_FIFO_DATA0);
494 data += 4;
495 len -= 4;
497 while (len>>1) {
498 *(u16 *)data =
499 readw((hc->pci_membase)+A_FIFO_DATA0);
500 data += 2;
501 len -= 2;
503 while (len) {
504 *data = readb((hc->pci_membase)+A_FIFO_DATA0);
505 data++;
506 len--;
511 static void
512 enable_hwirq(struct hfc_multi *hc)
514 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
515 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
518 static void
519 disable_hwirq(struct hfc_multi *hc)
521 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
522 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
525 #define NUM_EC 2
526 #define MAX_TDM_CHAN 32
529 inline void
530 enablepcibridge(struct hfc_multi *c)
532 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
535 inline void
536 disablepcibridge(struct hfc_multi *c)
538 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
541 inline unsigned char
542 readpcibridge(struct hfc_multi *hc, unsigned char address)
544 unsigned short cipv;
545 unsigned char data;
547 if (!hc->pci_iobase)
548 return 0;
550 /* slow down a PCI read access by 1 PCI clock cycle */
551 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
553 if (address == 0)
554 cipv = 0x4000;
555 else
556 cipv = 0x5800;
558 /* select local bridge port address by writing to CIP port */
559 /* data = HFC_inb(c, cipv); * was _io before */
560 outw(cipv, hc->pci_iobase + 4);
561 data = inb(hc->pci_iobase);
563 /* restore R_CTRL for normal PCI read cycle speed */
564 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
566 return data;
569 inline void
570 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
572 unsigned short cipv;
573 unsigned int datav;
575 if (!hc->pci_iobase)
576 return;
578 if (address == 0)
579 cipv = 0x4000;
580 else
581 cipv = 0x5800;
583 /* select local bridge port address by writing to CIP port */
584 outw(cipv, hc->pci_iobase + 4);
585 /* define a 32 bit dword with 4 identical bytes for write sequence */
586 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
587 ((__u32) data << 24);
590 * write this 32 bit dword to the bridge data port
591 * this will initiate a write sequence of up to 4 writes to the same
592 * address on the local bus interface the number of write accesses
593 * is undefined but >=1 and depends on the next PCI transaction
594 * during write sequence on the local bus
596 outl(datav, hc->pci_iobase);
599 inline void
600 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
602 /* Do data pin read low byte */
603 HFC_outb(hc, R_GPIO_OUT1, reg);
606 inline void
607 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
609 cpld_set_reg(hc, reg);
611 enablepcibridge(hc);
612 writepcibridge(hc, 1, val);
613 disablepcibridge(hc);
615 return;
618 inline unsigned char
619 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
621 unsigned char bytein;
623 cpld_set_reg(hc, reg);
625 /* Do data pin read low byte */
626 HFC_outb(hc, R_GPIO_OUT1, reg);
628 enablepcibridge(hc);
629 bytein = readpcibridge(hc, 1);
630 disablepcibridge(hc);
632 return bytein;
635 inline void
636 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
638 cpld_write_reg(hc, 0, 0xff & addr);
639 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
642 inline unsigned short
643 vpm_read_address(struct hfc_multi *c)
645 unsigned short addr;
646 unsigned short highbit;
648 addr = cpld_read_reg(c, 0);
649 highbit = cpld_read_reg(c, 1);
651 addr = addr | (highbit << 8);
653 return addr & 0x1ff;
656 inline unsigned char
657 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
659 unsigned char res;
661 vpm_write_address(c, addr);
663 if (!which)
664 cpld_set_reg(c, 2);
665 else
666 cpld_set_reg(c, 3);
668 enablepcibridge(c);
669 res = readpcibridge(c, 1);
670 disablepcibridge(c);
672 cpld_set_reg(c, 0);
674 return res;
677 inline void
678 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
679 unsigned char data)
681 vpm_write_address(c, addr);
683 enablepcibridge(c);
685 if (!which)
686 cpld_set_reg(c, 2);
687 else
688 cpld_set_reg(c, 3);
690 writepcibridge(c, 1, data);
692 cpld_set_reg(c, 0);
694 disablepcibridge(c);
697 unsigned char regin;
698 regin = vpm_in(c, which, addr);
699 if (regin != data)
700 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
701 "0x%x\n", data, addr, regin);
707 void
708 vpm_init(struct hfc_multi *wc)
710 unsigned char reg;
711 unsigned int mask;
712 unsigned int i, x, y;
713 unsigned int ver;
715 for (x = 0; x < NUM_EC; x++) {
716 /* Setup GPIO's */
717 if (!x) {
718 ver = vpm_in(wc, x, 0x1a0);
719 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
722 for (y = 0; y < 4; y++) {
723 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
724 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
725 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
728 /* Setup TDM path - sets fsync and tdm_clk as inputs */
729 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
730 vpm_out(wc, x, 0x1a3, reg & ~2);
732 /* Setup Echo length (256 taps) */
733 vpm_out(wc, x, 0x022, 1);
734 vpm_out(wc, x, 0x023, 0xff);
736 /* Setup timeslots */
737 vpm_out(wc, x, 0x02f, 0x00);
738 mask = 0x02020202 << (x * 4);
740 /* Setup the tdm channel masks for all chips */
741 for (i = 0; i < 4; i++)
742 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
744 /* Setup convergence rate */
745 printk(KERN_DEBUG "VPM: A-law mode\n");
746 reg = 0x00 | 0x10 | 0x01;
747 vpm_out(wc, x, 0x20, reg);
748 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
749 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
751 vpm_out(wc, x, 0x24, 0x02);
752 reg = vpm_in(wc, x, 0x24);
753 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
755 /* Initialize echo cans */
756 for (i = 0; i < MAX_TDM_CHAN; i++) {
757 if (mask & (0x00000001 << i))
758 vpm_out(wc, x, i, 0x00);
762 * ARM arch at least disallows a udelay of
763 * more than 2ms... it gives a fake "__bad_udelay"
764 * reference at link-time.
765 * long delays in kernel code are pretty sucky anyway
766 * for now work around it using 5 x 2ms instead of 1 x 10ms
769 udelay(2000);
770 udelay(2000);
771 udelay(2000);
772 udelay(2000);
773 udelay(2000);
775 /* Put in bypass mode */
776 for (i = 0; i < MAX_TDM_CHAN; i++) {
777 if (mask & (0x00000001 << i))
778 vpm_out(wc, x, i, 0x01);
781 /* Enable bypass */
782 for (i = 0; i < MAX_TDM_CHAN; i++) {
783 if (mask & (0x00000001 << i))
784 vpm_out(wc, x, 0x78 + i, 0x01);
790 void
791 vpm_check(struct hfc_multi *hctmp)
793 unsigned char gpi2;
795 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
797 if ((gpi2 & 0x3) != 0x3)
798 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
803 * Interface to enable/disable the HW Echocan
805 * these functions are called within a spin_lock_irqsave on
806 * the channel instance lock, so we are not disturbed by irqs
808 * we can later easily change the interface to make other
809 * things configurable, for now we configure the taps
813 void
814 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
816 unsigned int timeslot;
817 unsigned int unit;
818 struct bchannel *bch = hc->chan[ch].bch;
819 #ifdef TXADJ
820 int txadj = -4;
821 struct sk_buff *skb;
822 #endif
823 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
824 return;
826 if (!bch)
827 return;
829 #ifdef TXADJ
830 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
831 sizeof(int), &txadj, GFP_ATOMIC);
832 if (skb)
833 recv_Bchannel_skb(bch, skb);
834 #endif
836 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
837 unit = ch % 4;
839 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
840 taps, timeslot);
842 vpm_out(hc, unit, timeslot, 0x7e);
845 void
846 vpm_echocan_off(struct hfc_multi *hc, int ch)
848 unsigned int timeslot;
849 unsigned int unit;
850 struct bchannel *bch = hc->chan[ch].bch;
851 #ifdef TXADJ
852 int txadj = 0;
853 struct sk_buff *skb;
854 #endif
856 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
857 return;
859 if (!bch)
860 return;
862 #ifdef TXADJ
863 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
864 sizeof(int), &txadj, GFP_ATOMIC);
865 if (skb)
866 recv_Bchannel_skb(bch, skb);
867 #endif
869 timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
870 unit = ch % 4;
872 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
873 timeslot);
874 /* FILLME */
875 vpm_out(hc, unit, timeslot, 0x01);
880 * Speech Design resync feature
881 * NOTE: This is called sometimes outside interrupt handler.
882 * We must lock irqsave, so no other interrupt (other card) will occurr!
883 * Also multiple interrupts may nest, so must lock each access (lists, card)!
885 static inline void
886 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
888 struct hfc_multi *hc, *next, *pcmmaster = 0;
889 u_int *plx_acc_32, pv;
890 u_long flags;
892 spin_lock_irqsave(&HFClock, flags);
893 spin_lock(&plx_lock); /* must be locked inside other locks */
895 if (debug & DEBUG_HFCMULTI_PLXSD)
896 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
897 __func__, syncmaster);
899 /* select new master */
900 if (newmaster) {
901 if (debug & DEBUG_HFCMULTI_PLXSD)
902 printk(KERN_DEBUG "using provided controller\n");
903 } else {
904 list_for_each_entry_safe(hc, next, &HFClist, list) {
905 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
906 if (hc->syncronized) {
907 newmaster = hc;
908 break;
914 /* Disable sync of all cards */
915 list_for_each_entry_safe(hc, next, &HFClist, list) {
916 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
917 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
918 pv = readl(plx_acc_32);
919 pv &= ~PLX_SYNC_O_EN;
920 writel(pv, plx_acc_32);
921 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
922 pcmmaster = hc;
923 if (hc->type == 1) {
924 if (debug & DEBUG_HFCMULTI_PLXSD)
925 printk(KERN_DEBUG
926 "Schedule SYNC_I\n");
927 hc->e1_resync |= 1; /* get SYNC_I */
933 if (newmaster) {
934 hc = newmaster;
935 if (debug & DEBUG_HFCMULTI_PLXSD)
936 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
937 "interface.\n", hc->id, hc);
938 /* Enable new sync master */
939 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
940 pv = readl(plx_acc_32);
941 pv |= PLX_SYNC_O_EN;
942 writel(pv, plx_acc_32);
943 /* switch to jatt PLL, if not disabled by RX_SYNC */
944 if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
945 if (debug & DEBUG_HFCMULTI_PLXSD)
946 printk(KERN_DEBUG "Schedule jatt PLL\n");
947 hc->e1_resync |= 2; /* switch to jatt */
949 } else {
950 if (pcmmaster) {
951 hc = pcmmaster;
952 if (debug & DEBUG_HFCMULTI_PLXSD)
953 printk(KERN_DEBUG
954 "id=%d (0x%p) = PCM master syncronized "
955 "with QUARTZ\n", hc->id, hc);
956 if (hc->type == 1) {
957 /* Use the crystal clock for the PCM
958 master card */
959 if (debug & DEBUG_HFCMULTI_PLXSD)
960 printk(KERN_DEBUG
961 "Schedule QUARTZ for HFC-E1\n");
962 hc->e1_resync |= 4; /* switch quartz */
963 } else {
964 if (debug & DEBUG_HFCMULTI_PLXSD)
965 printk(KERN_DEBUG
966 "QUARTZ is automatically "
967 "enabled by HFC-%dS\n", hc->type);
969 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
970 pv = readl(plx_acc_32);
971 pv |= PLX_SYNC_O_EN;
972 writel(pv, plx_acc_32);
973 } else
974 if (!rm)
975 printk(KERN_ERR "%s no pcm master, this MUST "
976 "not happen!\n", __func__);
978 syncmaster = newmaster;
980 spin_unlock(&plx_lock);
981 spin_unlock_irqrestore(&HFClock, flags);
984 /* This must be called AND hc must be locked irqsave!!! */
985 inline void
986 plxsd_checksync(struct hfc_multi *hc, int rm)
988 if (hc->syncronized) {
989 if (syncmaster == NULL) {
990 if (debug & DEBUG_HFCMULTI_PLXSD)
991 printk(KERN_WARNING "%s: GOT sync on card %d"
992 " (id=%d)\n", __func__, hc->id + 1,
993 hc->id);
994 hfcmulti_resync(hc, hc, rm);
996 } else {
997 if (syncmaster == hc) {
998 if (debug & DEBUG_HFCMULTI_PLXSD)
999 printk(KERN_WARNING "%s: LOST sync on card %d"
1000 " (id=%d)\n", __func__, hc->id + 1,
1001 hc->id);
1002 hfcmulti_resync(hc, NULL, rm);
1009 * free hardware resources used by driver
1011 static void
1012 release_io_hfcmulti(struct hfc_multi *hc)
1014 u_int *plx_acc_32, pv;
1015 u_long plx_flags;
1017 if (debug & DEBUG_HFCMULTI_INIT)
1018 printk(KERN_DEBUG "%s: entered\n", __func__);
1020 /* soft reset also masks all interrupts */
1021 hc->hw.r_cirm |= V_SRES;
1022 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1023 udelay(1000);
1024 hc->hw.r_cirm &= ~V_SRES;
1025 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1026 udelay(1000); /* instead of 'wait' that may cause locking */
1028 /* release Speech Design card, if PLX was initialized */
1029 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1030 if (debug & DEBUG_HFCMULTI_PLXSD)
1031 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1032 __func__, hc->id + 1);
1033 spin_lock_irqsave(&plx_lock, plx_flags);
1034 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1035 writel(PLX_GPIOC_INIT, plx_acc_32);
1036 pv = readl(plx_acc_32);
1037 /* Termination off */
1038 pv &= ~PLX_TERM_ON;
1039 /* Disconnect the PCM */
1040 pv |= PLX_SLAVE_EN_N;
1041 pv &= ~PLX_MASTER_EN;
1042 pv &= ~PLX_SYNC_O_EN;
1043 /* Put the DSP in Reset */
1044 pv &= ~PLX_DSP_RES_N;
1045 writel(pv, plx_acc_32);
1046 if (debug & DEBUG_HFCMULTI_INIT)
1047 printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1048 __func__, pv);
1049 spin_unlock_irqrestore(&plx_lock, plx_flags);
1052 /* disable memory mapped ports / io ports */
1053 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1054 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1055 if (hc->pci_membase)
1056 iounmap((void *)hc->pci_membase);
1057 if (hc->plx_membase)
1058 iounmap((void *)hc->plx_membase);
1059 if (hc->pci_iobase)
1060 release_region(hc->pci_iobase, 8);
1062 if (hc->pci_dev) {
1063 pci_disable_device(hc->pci_dev);
1064 pci_set_drvdata(hc->pci_dev, NULL);
1066 if (debug & DEBUG_HFCMULTI_INIT)
1067 printk(KERN_DEBUG "%s: done\n", __func__);
1071 * function called to reset the HFC chip. A complete software reset of chip
1072 * and fifos is done. All configuration of the chip is done.
1075 static int
1076 init_chip(struct hfc_multi *hc)
1078 u_long flags, val, val2 = 0, rev;
1079 int i, err = 0;
1080 u_char r_conf_en, rval;
1081 u_int *plx_acc_32, pv;
1082 u_long plx_flags, hfc_flags;
1083 int plx_count;
1084 struct hfc_multi *pos, *next, *plx_last_hc;
1086 spin_lock_irqsave(&hc->lock, flags);
1087 /* reset all registers */
1088 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1090 /* revision check */
1091 if (debug & DEBUG_HFCMULTI_INIT)
1092 printk(KERN_DEBUG "%s: entered\n", __func__);
1093 val = HFC_inb(hc, R_CHIP_ID)>>4;
1094 if (val != 0x8 && val != 0xc && val != 0xe) {
1095 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1096 err = -EIO;
1097 goto out;
1099 rev = HFC_inb(hc, R_CHIP_RV);
1100 printk(KERN_INFO
1101 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1102 val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1103 if (rev == 0) {
1104 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1105 printk(KERN_WARNING
1106 "HFC_multi: NOTE: Your chip is revision 0, "
1107 "ask Cologne Chip for update. Newer chips "
1108 "have a better FIFO handling. Old chips "
1109 "still work but may have slightly lower "
1110 "HDLC transmit performance.\n");
1112 if (rev > 1) {
1113 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1114 "consider chip revision = %ld. The chip / "
1115 "bridge may not work.\n", rev);
1118 /* set s-ram size */
1119 hc->Flen = 0x10;
1120 hc->Zmin = 0x80;
1121 hc->Zlen = 384;
1122 hc->DTMFbase = 0x1000;
1123 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1124 if (debug & DEBUG_HFCMULTI_INIT)
1125 printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1126 __func__);
1127 hc->hw.r_ctrl |= V_EXT_RAM;
1128 hc->hw.r_ram_sz = 1;
1129 hc->Flen = 0x20;
1130 hc->Zmin = 0xc0;
1131 hc->Zlen = 1856;
1132 hc->DTMFbase = 0x2000;
1134 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1135 if (debug & DEBUG_HFCMULTI_INIT)
1136 printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1137 __func__);
1138 hc->hw.r_ctrl |= V_EXT_RAM;
1139 hc->hw.r_ram_sz = 2;
1140 hc->Flen = 0x20;
1141 hc->Zmin = 0xc0;
1142 hc->Zlen = 8000;
1143 hc->DTMFbase = 0x2000;
1145 hc->max_trans = poll << 1;
1146 if (hc->max_trans > hc->Zlen)
1147 hc->max_trans = hc->Zlen;
1149 /* Speech Design PLX bridge */
1150 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1151 if (debug & DEBUG_HFCMULTI_PLXSD)
1152 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1153 __func__, hc->id + 1);
1154 spin_lock_irqsave(&plx_lock, plx_flags);
1155 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1156 writel(PLX_GPIOC_INIT, plx_acc_32);
1157 pv = readl(plx_acc_32);
1158 /* The first and the last cards are terminating the PCM bus */
1159 pv |= PLX_TERM_ON; /* hc is currently the last */
1160 /* Disconnect the PCM */
1161 pv |= PLX_SLAVE_EN_N;
1162 pv &= ~PLX_MASTER_EN;
1163 pv &= ~PLX_SYNC_O_EN;
1164 /* Put the DSP in Reset */
1165 pv &= ~PLX_DSP_RES_N;
1166 writel(pv, plx_acc_32);
1167 spin_unlock_irqrestore(&plx_lock, plx_flags);
1168 if (debug & DEBUG_HFCMULTI_INIT)
1169 printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1170 __func__, pv);
1172 * If we are the 3rd PLXSD card or higher, we must turn
1173 * termination of last PLXSD card off.
1175 spin_lock_irqsave(&HFClock, hfc_flags);
1176 plx_count = 0;
1177 plx_last_hc = NULL;
1178 list_for_each_entry_safe(pos, next, &HFClist, list) {
1179 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1180 plx_count++;
1181 if (pos != hc)
1182 plx_last_hc = pos;
1185 if (plx_count >= 3) {
1186 if (debug & DEBUG_HFCMULTI_PLXSD)
1187 printk(KERN_DEBUG "%s: card %d is between, so "
1188 "we disable termination\n",
1189 __func__, plx_last_hc->id + 1);
1190 spin_lock_irqsave(&plx_lock, plx_flags);
1191 plx_acc_32 = (u_int *)(plx_last_hc->plx_membase
1192 + PLX_GPIOC);
1193 pv = readl(plx_acc_32);
1194 pv &= ~PLX_TERM_ON;
1195 writel(pv, plx_acc_32);
1196 spin_unlock_irqrestore(&plx_lock, plx_flags);
1197 if (debug & DEBUG_HFCMULTI_INIT)
1198 printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1199 __func__, pv);
1201 spin_unlock_irqrestore(&HFClock, hfc_flags);
1202 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1205 /* we only want the real Z2 read-pointer for revision > 0 */
1206 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1207 hc->hw.r_ram_sz |= V_FZ_MD;
1209 /* select pcm mode */
1210 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1211 if (debug & DEBUG_HFCMULTI_INIT)
1212 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1213 __func__);
1214 } else
1215 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1216 if (debug & DEBUG_HFCMULTI_INIT)
1217 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1218 __func__);
1219 hc->hw.r_pcm_md0 |= V_PCM_MD;
1220 } else {
1221 if (debug & DEBUG_HFCMULTI_INIT)
1222 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1223 __func__);
1226 /* soft reset */
1227 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1228 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1229 HFC_outb(hc, R_FIFO_MD, 0);
1230 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1231 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1232 udelay(100);
1233 hc->hw.r_cirm = 0;
1234 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1235 udelay(100);
1236 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1238 /* Speech Design PLX bridge pcm and sync mode */
1239 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1240 spin_lock_irqsave(&plx_lock, plx_flags);
1241 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1242 pv = readl(plx_acc_32);
1243 /* Connect PCM */
1244 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1245 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1246 pv |= PLX_SYNC_O_EN;
1247 if (debug & DEBUG_HFCMULTI_INIT)
1248 printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1249 __func__, pv);
1250 } else {
1251 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1252 pv &= ~PLX_SYNC_O_EN;
1253 if (debug & DEBUG_HFCMULTI_INIT)
1254 printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1255 __func__, pv);
1257 writel(pv, plx_acc_32);
1258 spin_unlock_irqrestore(&plx_lock, plx_flags);
1261 /* PCM setup */
1262 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1263 if (hc->slots == 32)
1264 HFC_outb(hc, R_PCM_MD1, 0x00);
1265 if (hc->slots == 64)
1266 HFC_outb(hc, R_PCM_MD1, 0x10);
1267 if (hc->slots == 128)
1268 HFC_outb(hc, R_PCM_MD1, 0x20);
1269 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1270 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1271 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1272 else
1273 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1274 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1275 for (i = 0; i < 256; i++) {
1276 HFC_outb_nodebug(hc, R_SLOT, i);
1277 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1278 HFC_outb_nodebug(hc, A_CONF, 0);
1279 hc->slot_owner[i] = -1;
1282 /* set clock speed */
1283 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1284 if (debug & DEBUG_HFCMULTI_INIT)
1285 printk(KERN_DEBUG
1286 "%s: setting double clock\n", __func__);
1287 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1290 /* B410P GPIO */
1291 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1292 printk(KERN_NOTICE "Setting GPIOs\n");
1293 HFC_outb(hc, R_GPIO_SEL, 0x30);
1294 HFC_outb(hc, R_GPIO_EN1, 0x3);
1295 udelay(1000);
1296 printk(KERN_NOTICE "calling vpm_init\n");
1297 vpm_init(hc);
1300 /* check if R_F0_CNT counts (8 kHz frame count) */
1301 val = HFC_inb(hc, R_F0_CNTL);
1302 val += HFC_inb(hc, R_F0_CNTH) << 8;
1303 if (debug & DEBUG_HFCMULTI_INIT)
1304 printk(KERN_DEBUG
1305 "HFC_multi F0_CNT %ld after reset\n", val);
1306 spin_unlock_irqrestore(&hc->lock, flags);
1307 set_current_state(TASK_UNINTERRUPTIBLE);
1308 schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1309 spin_lock_irqsave(&hc->lock, flags);
1310 val2 = HFC_inb(hc, R_F0_CNTL);
1311 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1312 if (debug & DEBUG_HFCMULTI_INIT)
1313 printk(KERN_DEBUG
1314 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1315 val2);
1316 if (val2 >= val+8) { /* 1 ms */
1317 /* it counts, so we keep the pcm mode */
1318 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1319 printk(KERN_INFO "controller is PCM bus MASTER\n");
1320 else
1321 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1322 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1323 else {
1324 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1325 printk(KERN_INFO "controller is PCM bus SLAVE "
1326 "(auto detected)\n");
1328 } else {
1329 /* does not count */
1330 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1331 controller_fail:
1332 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1333 "pulse. Seems that controller fails.\n");
1334 err = -EIO;
1335 goto out;
1337 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1338 printk(KERN_INFO "controller is PCM bus SLAVE "
1339 "(ignoring missing PCM clock)\n");
1340 } else {
1341 /* only one pcm master */
1342 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1343 && plxsd_master) {
1344 printk(KERN_ERR "HFC_multi ERROR, no clock "
1345 "on another Speech Design card found. "
1346 "Please be sure to connect PCM cable.\n");
1347 err = -EIO;
1348 goto out;
1350 /* retry with master clock */
1351 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1352 spin_lock_irqsave(&plx_lock, plx_flags);
1353 plx_acc_32 = (u_int *)(hc->plx_membase +
1354 PLX_GPIOC);
1355 pv = readl(plx_acc_32);
1356 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1357 pv |= PLX_SYNC_O_EN;
1358 writel(pv, plx_acc_32);
1359 spin_unlock_irqrestore(&plx_lock, plx_flags);
1360 if (debug & DEBUG_HFCMULTI_INIT)
1361 printk(KERN_WARNING "%s: master: PLX_GPIO"
1362 "=%x\n", __func__, pv);
1364 hc->hw.r_pcm_md0 |= V_PCM_MD;
1365 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1366 spin_unlock_irqrestore(&hc->lock, flags);
1367 set_current_state(TASK_UNINTERRUPTIBLE);
1368 schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1369 spin_lock_irqsave(&hc->lock, flags);
1370 val2 = HFC_inb(hc, R_F0_CNTL);
1371 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1372 if (debug & DEBUG_HFCMULTI_INIT)
1373 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1374 "10 ms (2nd try)\n", val2);
1375 if (val2 >= val+8) { /* 1 ms */
1376 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1377 &hc->chip);
1378 printk(KERN_INFO "controller is PCM bus MASTER "
1379 "(auto detected)\n");
1380 } else
1381 goto controller_fail;
1385 /* Release the DSP Reset */
1386 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1387 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1388 plxsd_master = 1;
1389 spin_lock_irqsave(&plx_lock, plx_flags);
1390 plx_acc_32 = (u_int *)(hc->plx_membase+PLX_GPIOC);
1391 pv = readl(plx_acc_32);
1392 pv |= PLX_DSP_RES_N;
1393 writel(pv, plx_acc_32);
1394 spin_unlock_irqrestore(&plx_lock, plx_flags);
1395 if (debug & DEBUG_HFCMULTI_INIT)
1396 printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1397 __func__, pv);
1400 /* pcm id */
1401 if (hc->pcm)
1402 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1403 hc->pcm);
1404 else {
1405 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1406 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1407 PCM_cnt++; /* SD has proprietary bridging */
1409 hc->pcm = PCM_cnt;
1410 printk(KERN_INFO "controller has PCM BUS ID %d "
1411 "(auto selected)\n", hc->pcm);
1414 /* set up timer */
1415 HFC_outb(hc, R_TI_WD, poll_timer);
1416 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1419 * set up 125us interrupt, only if function pointer is available
1420 * and module parameter timer is set
1422 if (timer && hfc_interrupt && register_interrupt) {
1423 /* only one chip should use this interrupt */
1424 timer = 0;
1425 interrupt_registered = 1;
1426 hc->hw.r_irqmsk_misc |= V_PROC_IRQMSK;
1427 /* deactivate other interrupts in ztdummy */
1428 register_interrupt();
1431 /* set E1 state machine IRQ */
1432 if (hc->type == 1)
1433 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1435 /* set DTMF detection */
1436 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1437 if (debug & DEBUG_HFCMULTI_INIT)
1438 printk(KERN_DEBUG "%s: enabling DTMF detection "
1439 "for all B-channel\n", __func__);
1440 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1441 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1442 hc->hw.r_dtmf |= V_ULAW_SEL;
1443 HFC_outb(hc, R_DTMF_N, 102 - 1);
1444 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1447 /* conference engine */
1448 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1449 r_conf_en = V_CONF_EN | V_ULAW;
1450 else
1451 r_conf_en = V_CONF_EN;
1452 HFC_outb(hc, R_CONF_EN, r_conf_en);
1454 /* setting leds */
1455 switch (hc->leds) {
1456 case 1: /* HFC-E1 OEM */
1457 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1458 HFC_outb(hc, R_GPIO_SEL, 0x32);
1459 else
1460 HFC_outb(hc, R_GPIO_SEL, 0x30);
1462 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1463 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1465 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1466 break;
1468 case 2: /* HFC-4S OEM */
1469 case 3:
1470 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1471 HFC_outb(hc, R_GPIO_EN1, 0xff);
1472 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1473 break;
1476 /* set master clock */
1477 if (hc->masterclk >= 0) {
1478 if (debug & DEBUG_HFCMULTI_INIT)
1479 printk(KERN_DEBUG "%s: setting ST master clock "
1480 "to port %d (0..%d)\n",
1481 __func__, hc->masterclk, hc->ports-1);
1482 hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1483 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1486 /* setting misc irq */
1487 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1488 if (debug & DEBUG_HFCMULTI_INIT)
1489 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1490 hc->hw.r_irqmsk_misc);
1492 /* RAM access test */
1493 HFC_outb(hc, R_RAM_ADDR0, 0);
1494 HFC_outb(hc, R_RAM_ADDR1, 0);
1495 HFC_outb(hc, R_RAM_ADDR2, 0);
1496 for (i = 0; i < 256; i++) {
1497 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1498 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1500 for (i = 0; i < 256; i++) {
1501 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1502 HFC_inb_nodebug(hc, R_RAM_DATA);
1503 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1504 if (rval != ((i * 3) & 0xff)) {
1505 printk(KERN_DEBUG
1506 "addr:%x val:%x should:%x\n", i, rval,
1507 (i * 3) & 0xff);
1508 err++;
1511 if (err) {
1512 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1513 err = -EIO;
1514 goto out;
1517 if (debug & DEBUG_HFCMULTI_INIT)
1518 printk(KERN_DEBUG "%s: done\n", __func__);
1519 out:
1520 spin_unlock_irqrestore(&hc->lock, flags);
1521 return err;
1526 * control the watchdog
1528 static void
1529 hfcmulti_watchdog(struct hfc_multi *hc)
1531 hc->wdcount++;
1533 if (hc->wdcount > 10) {
1534 hc->wdcount = 0;
1535 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1536 V_GPIO_OUT3 : V_GPIO_OUT2;
1538 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1539 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1540 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1547 * output leds
1549 static void
1550 hfcmulti_leds(struct hfc_multi *hc)
1552 unsigned long lled;
1553 unsigned long leddw;
1554 int i, state, active, leds;
1555 struct dchannel *dch;
1556 int led[4];
1558 hc->ledcount += poll;
1559 if (hc->ledcount > 4096) {
1560 hc->ledcount -= 4096;
1561 hc->ledstate = 0xAFFEAFFE;
1564 switch (hc->leds) {
1565 case 1: /* HFC-E1 OEM */
1566 /* 2 red blinking: NT mode deactivate
1567 * 2 red steady: TE mode deactivate
1568 * left green: L1 active
1569 * left red: frame sync, but no L1
1570 * right green: L2 active
1572 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1573 if (hc->chan[hc->dslot].dch->dev.D.protocol
1574 != ISDN_P_NT_E1) {
1575 led[0] = 1;
1576 led[1] = 1;
1577 } else if (hc->ledcount>>11) {
1578 led[0] = 1;
1579 led[1] = 1;
1580 } else {
1581 led[0] = 0;
1582 led[1] = 0;
1584 led[2] = 0;
1585 led[3] = 0;
1586 } else { /* with frame sync */
1587 /* TODO make it work */
1588 led[0] = 0;
1589 led[1] = 0;
1590 led[2] = 0;
1591 led[3] = 1;
1593 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1594 /* leds are inverted */
1595 if (leds != (int)hc->ledstate) {
1596 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1597 hc->ledstate = leds;
1599 break;
1601 case 2: /* HFC-4S OEM */
1602 /* red blinking = PH_DEACTIVATE NT Mode
1603 * red steady = PH_DEACTIVATE TE Mode
1604 * green steady = PH_ACTIVATE
1606 for (i = 0; i < 4; i++) {
1607 state = 0;
1608 active = -1;
1609 dch = hc->chan[(i << 2) | 2].dch;
1610 if (dch) {
1611 state = dch->state;
1612 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1613 active = 3;
1614 else
1615 active = 7;
1617 if (state) {
1618 if (state == active) {
1619 led[i] = 1; /* led green */
1620 } else
1621 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1622 /* TE mode: led red */
1623 led[i] = 2;
1624 else
1625 if (hc->ledcount>>11)
1626 /* led red */
1627 led[i] = 2;
1628 else
1629 /* led off */
1630 led[i] = 0;
1631 } else
1632 led[i] = 0; /* led off */
1634 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1635 leds = 0;
1636 for (i = 0; i < 4; i++) {
1637 if (led[i] == 1) {
1638 /*green*/
1639 leds |= (0x2 << (i * 2));
1640 } else if (led[i] == 2) {
1641 /*red*/
1642 leds |= (0x1 << (i * 2));
1645 if (leds != (int)hc->ledstate) {
1646 vpm_out(hc, 0, 0x1a8 + 3, leds);
1647 hc->ledstate = leds;
1649 } else {
1650 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1651 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1652 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1653 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1654 if (leds != (int)hc->ledstate) {
1655 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1656 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1657 hc->ledstate = leds;
1660 break;
1662 case 3: /* HFC 1S/2S Beronet */
1663 /* red blinking = PH_DEACTIVATE NT Mode
1664 * red steady = PH_DEACTIVATE TE Mode
1665 * green steady = PH_ACTIVATE
1667 for (i = 0; i < 2; i++) {
1668 state = 0;
1669 active = -1;
1670 dch = hc->chan[(i << 2) | 2].dch;
1671 if (dch) {
1672 state = dch->state;
1673 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1674 active = 3;
1675 else
1676 active = 7;
1678 if (state) {
1679 if (state == active) {
1680 led[i] = 1; /* led green */
1681 } else
1682 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1683 /* TE mode: led red */
1684 led[i] = 2;
1685 else
1686 if (hc->ledcount >> 11)
1687 /* led red */
1688 led[i] = 2;
1689 else
1690 /* led off */
1691 led[i] = 0;
1692 } else
1693 led[i] = 0; /* led off */
1697 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1698 | ((led[1]&1)<<3);
1699 if (leds != (int)hc->ledstate) {
1700 HFC_outb_nodebug(hc, R_GPIO_EN1,
1701 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1702 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1703 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1704 hc->ledstate = leds;
1706 break;
1707 case 8: /* HFC 8S+ Beronet */
1708 lled = 0;
1710 for (i = 0; i < 8; i++) {
1711 state = 0;
1712 active = -1;
1713 dch = hc->chan[(i << 2) | 2].dch;
1714 if (dch) {
1715 state = dch->state;
1716 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1717 active = 3;
1718 else
1719 active = 7;
1721 if (state) {
1722 if (state == active) {
1723 lled |= 0 << i;
1724 } else
1725 if (hc->ledcount >> 11)
1726 lled |= 0 << i;
1727 else
1728 lled |= 1 << i;
1729 } else
1730 lled |= 1 << i;
1732 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1733 if (leddw != hc->ledstate) {
1734 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1735 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1736 /* was _io before */
1737 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1738 outw(0x4000, hc->pci_iobase + 4);
1739 outl(leddw, hc->pci_iobase);
1740 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1741 hc->ledstate = leddw;
1743 break;
1747 * read dtmf coefficients
1750 static void
1751 hfcmulti_dtmf(struct hfc_multi *hc)
1753 s32 *coeff;
1754 u_int mantissa;
1755 int co, ch;
1756 struct bchannel *bch = NULL;
1757 u8 exponent;
1758 int dtmf = 0;
1759 int addr;
1760 u16 w_float;
1761 struct sk_buff *skb;
1762 struct mISDNhead *hh;
1764 if (debug & DEBUG_HFCMULTI_DTMF)
1765 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1766 for (ch = 0; ch <= 31; ch++) {
1767 /* only process enabled B-channels */
1768 bch = hc->chan[ch].bch;
1769 if (!bch)
1770 continue;
1771 if (!hc->created[hc->chan[ch].port])
1772 continue;
1773 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1774 continue;
1775 if (debug & DEBUG_HFCMULTI_DTMF)
1776 printk(KERN_DEBUG "%s: dtmf channel %d:",
1777 __func__, ch);
1778 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1779 dtmf = 1;
1780 for (co = 0; co < 8; co++) {
1781 /* read W(n-1) coefficient */
1782 addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1783 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1784 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1785 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1786 | V_ADDR_INC);
1787 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1788 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1789 if (debug & DEBUG_HFCMULTI_DTMF)
1790 printk(" %04x", w_float);
1792 /* decode float (see chip doc) */
1793 mantissa = w_float & 0x0fff;
1794 if (w_float & 0x8000)
1795 mantissa |= 0xfffff000;
1796 exponent = (w_float>>12) & 0x7;
1797 if (exponent) {
1798 mantissa ^= 0x1000;
1799 mantissa <<= (exponent-1);
1802 /* store coefficient */
1803 coeff[co<<1] = mantissa;
1805 /* read W(n) coefficient */
1806 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1807 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1808 if (debug & DEBUG_HFCMULTI_DTMF)
1809 printk(" %04x", w_float);
1811 /* decode float (see chip doc) */
1812 mantissa = w_float & 0x0fff;
1813 if (w_float & 0x8000)
1814 mantissa |= 0xfffff000;
1815 exponent = (w_float>>12) & 0x7;
1816 if (exponent) {
1817 mantissa ^= 0x1000;
1818 mantissa <<= (exponent-1);
1821 /* store coefficient */
1822 coeff[(co<<1)|1] = mantissa;
1824 if (debug & DEBUG_HFCMULTI_DTMF)
1825 printk("%s: DTMF ready %08x %08x %08x %08x "
1826 "%08x %08x %08x %08x\n", __func__,
1827 coeff[0], coeff[1], coeff[2], coeff[3],
1828 coeff[4], coeff[5], coeff[6], coeff[7]);
1829 hc->chan[ch].coeff_count++;
1830 if (hc->chan[ch].coeff_count == 8) {
1831 hc->chan[ch].coeff_count = 0;
1832 skb = mI_alloc_skb(512, GFP_ATOMIC);
1833 if (!skb) {
1834 printk(KERN_WARNING "%s: No memory for skb\n",
1835 __func__);
1836 continue;
1838 hh = mISDN_HEAD_P(skb);
1839 hh->prim = PH_CONTROL_IND;
1840 hh->id = DTMF_HFC_COEF;
1841 memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1842 recv_Bchannel_skb(bch, skb);
1846 /* restart DTMF processing */
1847 hc->dtmf = dtmf;
1848 if (dtmf)
1849 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1854 * fill fifo as much as possible
1857 static void
1858 hfcmulti_tx(struct hfc_multi *hc, int ch)
1860 int i, ii, temp, len = 0;
1861 int Zspace, z1, z2; /* must be int for calculation */
1862 int Fspace, f1, f2;
1863 u_char *d;
1864 int *txpending, slot_tx;
1865 struct bchannel *bch;
1866 struct dchannel *dch;
1867 struct sk_buff **sp = NULL;
1868 int *idxp;
1870 bch = hc->chan[ch].bch;
1871 dch = hc->chan[ch].dch;
1872 if ((!dch) && (!bch))
1873 return;
1875 txpending = &hc->chan[ch].txpending;
1876 slot_tx = hc->chan[ch].slot_tx;
1877 if (dch) {
1878 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1879 return;
1880 sp = &dch->tx_skb;
1881 idxp = &dch->tx_idx;
1882 } else {
1883 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1884 return;
1885 sp = &bch->tx_skb;
1886 idxp = &bch->tx_idx;
1888 if (*sp)
1889 len = (*sp)->len;
1891 if ((!len) && *txpending != 1)
1892 return; /* no data */
1894 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1895 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1896 (hc->chan[ch].slot_rx < 0) &&
1897 (hc->chan[ch].slot_tx < 0))
1898 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1899 else
1900 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1901 HFC_wait_nodebug(hc);
1903 if (*txpending == 2) {
1904 /* reset fifo */
1905 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1906 HFC_wait_nodebug(hc);
1907 HFC_outb(hc, A_SUBCH_CFG, 0);
1908 *txpending = 1;
1910 next_frame:
1911 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1912 f1 = HFC_inb_nodebug(hc, A_F1);
1913 f2 = HFC_inb_nodebug(hc, A_F2);
1914 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1915 if (debug & DEBUG_HFCMULTI_FIFO)
1916 printk(KERN_DEBUG
1917 "%s(card %d): reread f2 because %d!=%d\n",
1918 __func__, hc->id + 1, temp, f2);
1919 f2 = temp; /* repeat until F2 is equal */
1921 Fspace = f2 - f1 - 1;
1922 if (Fspace < 0)
1923 Fspace += hc->Flen;
1925 * Old FIFO handling doesn't give us the current Z2 read
1926 * pointer, so we cannot send the next frame before the fifo
1927 * is empty. It makes no difference except for a slightly
1928 * lower performance.
1930 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1931 if (f1 != f2)
1932 Fspace = 0;
1933 else
1934 Fspace = 1;
1936 /* one frame only for ST D-channels, to allow resending */
1937 if (hc->type != 1 && dch) {
1938 if (f1 != f2)
1939 Fspace = 0;
1941 /* F-counter full condition */
1942 if (Fspace == 0)
1943 return;
1945 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1946 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1947 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1948 if (debug & DEBUG_HFCMULTI_FIFO)
1949 printk(KERN_DEBUG "%s(card %d): reread z2 because "
1950 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1951 z2 = temp; /* repeat unti Z2 is equal */
1953 Zspace = z2 - z1;
1954 if (Zspace <= 0)
1955 Zspace += hc->Zlen;
1956 Zspace -= 4; /* keep not too full, so pointers will not overrun */
1957 /* fill transparent data only to maxinum transparent load (minus 4) */
1958 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1959 Zspace = Zspace - hc->Zlen + hc->max_trans;
1960 if (Zspace <= 0) /* no space of 4 bytes */
1961 return;
1963 /* if no data */
1964 if (!len) {
1965 if (z1 == z2) { /* empty */
1966 /* if done with FIFO audio data during PCM connection */
1967 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1968 *txpending && slot_tx >= 0) {
1969 if (debug & DEBUG_HFCMULTI_MODE)
1970 printk(KERN_DEBUG
1971 "%s: reconnecting PCM due to no "
1972 "more FIFO data: channel %d "
1973 "slot_tx %d\n",
1974 __func__, ch, slot_tx);
1975 /* connect slot */
1976 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1977 V_HDLC_TRP | V_IFF);
1978 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1979 HFC_wait_nodebug(hc);
1980 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1981 V_HDLC_TRP | V_IFF);
1982 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1983 HFC_wait_nodebug(hc);
1985 *txpending = 0;
1987 return; /* no data */
1990 /* if audio data and connected slot */
1991 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
1992 && slot_tx >= 0) {
1993 if (debug & DEBUG_HFCMULTI_MODE)
1994 printk(KERN_DEBUG "%s: disconnecting PCM due to "
1995 "FIFO data: channel %d slot_tx %d\n",
1996 __func__, ch, slot_tx);
1997 /* disconnect slot */
1998 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
1999 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2000 HFC_wait_nodebug(hc);
2001 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2002 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2003 HFC_wait_nodebug(hc);
2005 *txpending = 1;
2007 /* show activity */
2008 hc->activity[hc->chan[ch].port] = 1;
2010 /* fill fifo to what we have left */
2011 ii = len;
2012 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2013 temp = 1;
2014 else
2015 temp = 0;
2016 i = *idxp;
2017 d = (*sp)->data + i;
2018 if (ii - i > Zspace)
2019 ii = Zspace + i;
2020 if (debug & DEBUG_HFCMULTI_FIFO)
2021 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2022 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2023 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2024 temp ? "HDLC":"TRANS");
2027 /* Have to prep the audio data */
2028 hc->write_fifo(hc, d, ii - i);
2029 *idxp = ii;
2031 /* if not all data has been written */
2032 if (ii != len) {
2033 /* NOTE: fifo is started by the calling function */
2034 return;
2037 /* if all data has been written, terminate frame */
2038 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2039 /* increment f-counter */
2040 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2041 HFC_wait_nodebug(hc);
2044 /* send confirm, since get_net_bframe will not do it with trans */
2045 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2046 confirm_Bsend(bch);
2048 /* check for next frame */
2049 dev_kfree_skb(*sp);
2050 if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2051 len = (*sp)->len;
2052 goto next_frame;
2054 if (dch && get_next_dframe(dch)) {
2055 len = (*sp)->len;
2056 goto next_frame;
2060 * now we have no more data, so in case of transparent,
2061 * we set the last byte in fifo to 'silence' in case we will get
2062 * no more data at all. this prevents sending an undefined value.
2064 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2065 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2069 /* NOTE: only called if E1 card is in active state */
2070 static void
2071 hfcmulti_rx(struct hfc_multi *hc, int ch)
2073 int temp;
2074 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2075 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2076 int again = 0;
2077 struct bchannel *bch;
2078 struct dchannel *dch;
2079 struct sk_buff *skb, **sp = NULL;
2080 int maxlen;
2082 bch = hc->chan[ch].bch;
2083 dch = hc->chan[ch].dch;
2084 if ((!dch) && (!bch))
2085 return;
2086 if (dch) {
2087 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2088 return;
2089 sp = &dch->rx_skb;
2090 maxlen = dch->maxlen;
2091 } else {
2092 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2093 return;
2094 sp = &bch->rx_skb;
2095 maxlen = bch->maxlen;
2097 next_frame:
2098 /* on first AND before getting next valid frame, R_FIFO must be written
2099 to. */
2100 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2101 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2102 (hc->chan[ch].slot_rx < 0) &&
2103 (hc->chan[ch].slot_tx < 0))
2104 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2105 else
2106 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2107 HFC_wait_nodebug(hc);
2109 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2110 if (hc->chan[ch].rx_off)
2111 return;
2113 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2114 f1 = HFC_inb_nodebug(hc, A_F1);
2115 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2116 if (debug & DEBUG_HFCMULTI_FIFO)
2117 printk(KERN_DEBUG
2118 "%s(card %d): reread f1 because %d!=%d\n",
2119 __func__, hc->id + 1, temp, f1);
2120 f1 = temp; /* repeat until F1 is equal */
2122 f2 = HFC_inb_nodebug(hc, A_F2);
2124 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2125 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2126 if (debug & DEBUG_HFCMULTI_FIFO)
2127 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2128 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2129 z1 = temp; /* repeat until Z1 is equal */
2131 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2132 Zsize = z1 - z2;
2133 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2134 /* complete hdlc frame */
2135 Zsize++;
2136 if (Zsize < 0)
2137 Zsize += hc->Zlen;
2138 /* if buffer is empty */
2139 if (Zsize <= 0)
2140 return;
2142 if (*sp == NULL) {
2143 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2144 if (*sp == NULL) {
2145 printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2146 __func__);
2147 return;
2150 /* show activity */
2151 hc->activity[hc->chan[ch].port] = 1;
2153 /* empty fifo with what we have */
2154 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2155 if (debug & DEBUG_HFCMULTI_FIFO)
2156 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2157 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2158 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2159 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2160 f1, f2, Zsize + (*sp)->len, again);
2161 /* HDLC */
2162 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2163 if (debug & DEBUG_HFCMULTI_FIFO)
2164 printk(KERN_DEBUG
2165 "%s(card %d): hdlc-frame too large.\n",
2166 __func__, hc->id + 1);
2167 skb_trim(*sp, 0);
2168 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2169 HFC_wait_nodebug(hc);
2170 return;
2173 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2175 if (f1 != f2) {
2176 /* increment Z2,F2-counter */
2177 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2178 HFC_wait_nodebug(hc);
2179 /* check size */
2180 if ((*sp)->len < 4) {
2181 if (debug & DEBUG_HFCMULTI_FIFO)
2182 printk(KERN_DEBUG
2183 "%s(card %d): Frame below minimum "
2184 "size\n", __func__, hc->id + 1);
2185 skb_trim(*sp, 0);
2186 goto next_frame;
2188 /* there is at least one complete frame, check crc */
2189 if ((*sp)->data[(*sp)->len - 1]) {
2190 if (debug & DEBUG_HFCMULTI_CRC)
2191 printk(KERN_DEBUG
2192 "%s: CRC-error\n", __func__);
2193 skb_trim(*sp, 0);
2194 goto next_frame;
2196 skb_trim(*sp, (*sp)->len - 3);
2197 if ((*sp)->len < MISDN_COPY_SIZE) {
2198 skb = *sp;
2199 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2200 if (*sp) {
2201 memcpy(skb_put(*sp, skb->len),
2202 skb->data, skb->len);
2203 skb_trim(skb, 0);
2204 } else {
2205 printk(KERN_DEBUG "%s: No mem\n",
2206 __func__);
2207 *sp = skb;
2208 skb = NULL;
2210 } else {
2211 skb = NULL;
2213 if (debug & DEBUG_HFCMULTI_FIFO) {
2214 printk(KERN_DEBUG "%s(card %d):",
2215 __func__, hc->id + 1);
2216 temp = 0;
2217 while (temp < (*sp)->len)
2218 printk(" %02x", (*sp)->data[temp++]);
2219 printk("\n");
2221 if (dch)
2222 recv_Dchannel(dch);
2223 else
2224 recv_Bchannel(bch);
2225 *sp = skb;
2226 again++;
2227 goto next_frame;
2229 /* there is an incomplete frame */
2230 } else {
2231 /* transparent */
2232 if (Zsize > skb_tailroom(*sp))
2233 Zsize = skb_tailroom(*sp);
2234 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2235 if (((*sp)->len) < MISDN_COPY_SIZE) {
2236 skb = *sp;
2237 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2238 if (*sp) {
2239 memcpy(skb_put(*sp, skb->len),
2240 skb->data, skb->len);
2241 skb_trim(skb, 0);
2242 } else {
2243 printk(KERN_DEBUG "%s: No mem\n", __func__);
2244 *sp = skb;
2245 skb = NULL;
2247 } else {
2248 skb = NULL;
2250 if (debug & DEBUG_HFCMULTI_FIFO)
2251 printk(KERN_DEBUG
2252 "%s(card %d): fifo(%d) reading %d bytes "
2253 "(z1=%04x, z2=%04x) TRANS\n",
2254 __func__, hc->id + 1, ch, Zsize, z1, z2);
2255 /* only bch is transparent */
2256 recv_Bchannel(bch);
2257 *sp = skb;
2263 * Interrupt handler
2265 static void
2266 signal_state_up(struct dchannel *dch, int info, char *msg)
2268 struct sk_buff *skb;
2269 int id, data = info;
2271 if (debug & DEBUG_HFCMULTI_STATE)
2272 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2274 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2276 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2277 GFP_ATOMIC);
2278 if (!skb)
2279 return;
2280 recv_Dchannel_skb(dch, skb);
2283 static inline void
2284 handle_timer_irq(struct hfc_multi *hc)
2286 int ch, temp;
2287 struct dchannel *dch;
2288 u_long flags;
2290 /* process queued resync jobs */
2291 if (hc->e1_resync) {
2292 /* lock, so e1_resync gets not changed */
2293 spin_lock_irqsave(&HFClock, flags);
2294 if (hc->e1_resync & 1) {
2295 if (debug & DEBUG_HFCMULTI_PLXSD)
2296 printk(KERN_DEBUG "Enable SYNC_I\n");
2297 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2298 /* disable JATT, if RX_SYNC is set */
2299 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2300 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2302 if (hc->e1_resync & 2) {
2303 if (debug & DEBUG_HFCMULTI_PLXSD)
2304 printk(KERN_DEBUG "Enable jatt PLL\n");
2305 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2307 if (hc->e1_resync & 4) {
2308 if (debug & DEBUG_HFCMULTI_PLXSD)
2309 printk(KERN_DEBUG
2310 "Enable QUARTZ for HFC-E1\n");
2311 /* set jatt to quartz */
2312 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2313 | V_JATT_OFF);
2314 /* switch to JATT, in case it is not already */
2315 HFC_outb(hc, R_SYNC_OUT, 0);
2317 hc->e1_resync = 0;
2318 spin_unlock_irqrestore(&HFClock, flags);
2321 if (hc->type != 1 || hc->e1_state == 1)
2322 for (ch = 0; ch <= 31; ch++) {
2323 if (hc->created[hc->chan[ch].port]) {
2324 hfcmulti_tx(hc, ch);
2325 /* fifo is started when switching to rx-fifo */
2326 hfcmulti_rx(hc, ch);
2327 if (hc->chan[ch].dch &&
2328 hc->chan[ch].nt_timer > -1) {
2329 dch = hc->chan[ch].dch;
2330 if (!(--hc->chan[ch].nt_timer)) {
2331 schedule_event(dch,
2332 FLG_PHCHANGE);
2333 if (debug &
2334 DEBUG_HFCMULTI_STATE)
2335 printk(KERN_DEBUG
2336 "%s: nt_timer at "
2337 "state %x\n",
2338 __func__,
2339 dch->state);
2344 if (hc->type == 1 && hc->created[0]) {
2345 dch = hc->chan[hc->dslot].dch;
2346 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2347 /* LOS */
2348 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2349 if (!temp && hc->chan[hc->dslot].los)
2350 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2351 "LOS detected");
2352 if (temp && !hc->chan[hc->dslot].los)
2353 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2354 "LOS gone");
2355 hc->chan[hc->dslot].los = temp;
2357 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2358 /* AIS */
2359 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2360 if (!temp && hc->chan[hc->dslot].ais)
2361 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2362 "AIS detected");
2363 if (temp && !hc->chan[hc->dslot].ais)
2364 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2365 "AIS gone");
2366 hc->chan[hc->dslot].ais = temp;
2368 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2369 /* SLIP */
2370 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2371 if (!temp && hc->chan[hc->dslot].slip_rx)
2372 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2373 " bit SLIP detected RX");
2374 hc->chan[hc->dslot].slip_rx = temp;
2375 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2376 if (!temp && hc->chan[hc->dslot].slip_tx)
2377 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2378 " bit SLIP detected TX");
2379 hc->chan[hc->dslot].slip_tx = temp;
2381 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2382 /* RDI */
2383 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2384 if (!temp && hc->chan[hc->dslot].rdi)
2385 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2386 "RDI detected");
2387 if (temp && !hc->chan[hc->dslot].rdi)
2388 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2389 "RDI gone");
2390 hc->chan[hc->dslot].rdi = temp;
2392 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2393 switch (hc->chan[hc->dslot].sync) {
2394 case 0:
2395 if ((temp & 0x60) == 0x60) {
2396 if (debug & DEBUG_HFCMULTI_SYNC)
2397 printk(KERN_DEBUG
2398 "%s: (id=%d) E1 now "
2399 "in clock sync\n",
2400 __func__, hc->id);
2401 HFC_outb(hc, R_RX_OFF,
2402 hc->chan[hc->dslot].jitter | V_RX_INIT);
2403 HFC_outb(hc, R_TX_OFF,
2404 hc->chan[hc->dslot].jitter | V_RX_INIT);
2405 hc->chan[hc->dslot].sync = 1;
2406 goto check_framesync;
2408 break;
2409 case 1:
2410 if ((temp & 0x60) != 0x60) {
2411 if (debug & DEBUG_HFCMULTI_SYNC)
2412 printk(KERN_DEBUG
2413 "%s: (id=%d) E1 "
2414 "lost clock sync\n",
2415 __func__, hc->id);
2416 hc->chan[hc->dslot].sync = 0;
2417 break;
2419 check_framesync:
2420 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2421 if (temp == 0x27) {
2422 if (debug & DEBUG_HFCMULTI_SYNC)
2423 printk(KERN_DEBUG
2424 "%s: (id=%d) E1 "
2425 "now in frame sync\n",
2426 __func__, hc->id);
2427 hc->chan[hc->dslot].sync = 2;
2429 break;
2430 case 2:
2431 if ((temp & 0x60) != 0x60) {
2432 if (debug & DEBUG_HFCMULTI_SYNC)
2433 printk(KERN_DEBUG
2434 "%s: (id=%d) E1 lost "
2435 "clock & frame sync\n",
2436 __func__, hc->id);
2437 hc->chan[hc->dslot].sync = 0;
2438 break;
2440 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2441 if (temp != 0x27) {
2442 if (debug & DEBUG_HFCMULTI_SYNC)
2443 printk(KERN_DEBUG
2444 "%s: (id=%d) E1 "
2445 "lost frame sync\n",
2446 __func__, hc->id);
2447 hc->chan[hc->dslot].sync = 1;
2449 break;
2453 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2454 hfcmulti_watchdog(hc);
2456 if (hc->leds)
2457 hfcmulti_leds(hc);
2460 static void
2461 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2463 struct dchannel *dch;
2464 int ch;
2465 int active;
2466 u_char st_status, temp;
2468 /* state machine */
2469 for (ch = 0; ch <= 31; ch++) {
2470 if (hc->chan[ch].dch) {
2471 dch = hc->chan[ch].dch;
2472 if (r_irq_statech & 1) {
2473 HFC_outb_nodebug(hc, R_ST_SEL,
2474 hc->chan[ch].port);
2475 /* undocumented: delay after R_ST_SEL */
2476 udelay(1);
2477 /* undocumented: status changes during read */
2478 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2479 while (st_status != (temp =
2480 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2481 if (debug & DEBUG_HFCMULTI_STATE)
2482 printk(KERN_DEBUG "%s: reread "
2483 "STATE because %d!=%d\n",
2484 __func__, temp,
2485 st_status);
2486 st_status = temp; /* repeat */
2489 /* Speech Design TE-sync indication */
2490 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2491 dch->dev.D.protocol == ISDN_P_TE_S0) {
2492 if (st_status & V_FR_SYNC_ST)
2493 hc->syncronized |=
2494 (1 << hc->chan[ch].port);
2495 else
2496 hc->syncronized &=
2497 ~(1 << hc->chan[ch].port);
2499 dch->state = st_status & 0x0f;
2500 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2501 active = 3;
2502 else
2503 active = 7;
2504 if (dch->state == active) {
2505 HFC_outb_nodebug(hc, R_FIFO,
2506 (ch << 1) | 1);
2507 HFC_wait_nodebug(hc);
2508 HFC_outb_nodebug(hc,
2509 R_INC_RES_FIFO, V_RES_F);
2510 HFC_wait_nodebug(hc);
2511 dch->tx_idx = 0;
2513 schedule_event(dch, FLG_PHCHANGE);
2514 if (debug & DEBUG_HFCMULTI_STATE)
2515 printk(KERN_DEBUG
2516 "%s: S/T newstate %x port %d\n",
2517 __func__, dch->state,
2518 hc->chan[ch].port);
2520 r_irq_statech >>= 1;
2523 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2524 plxsd_checksync(hc, 0);
2527 static void
2528 fifo_irq(struct hfc_multi *hc, int block)
2530 int ch, j;
2531 struct dchannel *dch;
2532 struct bchannel *bch;
2533 u_char r_irq_fifo_bl;
2535 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2536 j = 0;
2537 while (j < 8) {
2538 ch = (block << 2) + (j >> 1);
2539 dch = hc->chan[ch].dch;
2540 bch = hc->chan[ch].bch;
2541 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2542 j += 2;
2543 continue;
2545 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2546 test_bit(FLG_ACTIVE, &dch->Flags)) {
2547 hfcmulti_tx(hc, ch);
2548 /* start fifo */
2549 HFC_outb_nodebug(hc, R_FIFO, 0);
2550 HFC_wait_nodebug(hc);
2552 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2553 test_bit(FLG_ACTIVE, &bch->Flags)) {
2554 hfcmulti_tx(hc, ch);
2555 /* start fifo */
2556 HFC_outb_nodebug(hc, R_FIFO, 0);
2557 HFC_wait_nodebug(hc);
2559 j++;
2560 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2561 test_bit(FLG_ACTIVE, &dch->Flags)) {
2562 hfcmulti_rx(hc, ch);
2564 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2565 test_bit(FLG_ACTIVE, &bch->Flags)) {
2566 hfcmulti_rx(hc, ch);
2568 j++;
2572 #ifdef IRQ_DEBUG
2573 int irqsem;
2574 #endif
2575 static irqreturn_t
2576 hfcmulti_interrupt(int intno, void *dev_id)
2578 #ifdef IRQCOUNT_DEBUG
2579 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2580 iq5 = 0, iq6 = 0, iqcnt = 0;
2581 #endif
2582 static int count;
2583 struct hfc_multi *hc = dev_id;
2584 struct dchannel *dch;
2585 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2586 int i;
2587 u_short *plx_acc, wval;
2588 u_char e1_syncsta, temp;
2589 u_long flags;
2591 if (!hc) {
2592 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2593 return IRQ_NONE;
2596 spin_lock(&hc->lock);
2598 #ifdef IRQ_DEBUG
2599 if (irqsem)
2600 printk(KERN_ERR "irq for card %d during irq from "
2601 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2602 irqsem = hc->id + 1;
2603 #endif
2605 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2606 spin_lock_irqsave(&plx_lock, flags);
2607 plx_acc = (u_short *)(hc->plx_membase + PLX_INTCSR);
2608 wval = readw(plx_acc);
2609 spin_unlock_irqrestore(&plx_lock, flags);
2610 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2611 goto irq_notforus;
2614 status = HFC_inb_nodebug(hc, R_STATUS);
2615 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2616 #ifdef IRQCOUNT_DEBUG
2617 if (r_irq_statech)
2618 iq1++;
2619 if (status & V_DTMF_STA)
2620 iq2++;
2621 if (status & V_LOST_STA)
2622 iq3++;
2623 if (status & V_EXT_IRQSTA)
2624 iq4++;
2625 if (status & V_MISC_IRQSTA)
2626 iq5++;
2627 if (status & V_FR_IRQSTA)
2628 iq6++;
2629 if (iqcnt++ > 5000) {
2630 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2631 iq1, iq2, iq3, iq4, iq5, iq6);
2632 iqcnt = 0;
2634 #endif
2635 if (!r_irq_statech &&
2636 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2637 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2638 /* irq is not for us */
2639 goto irq_notforus;
2641 hc->irqcnt++;
2642 if (r_irq_statech) {
2643 if (hc->type != 1)
2644 ph_state_irq(hc, r_irq_statech);
2646 if (status & V_EXT_IRQSTA)
2647 ; /* external IRQ */
2648 if (status & V_LOST_STA) {
2649 /* LOST IRQ */
2650 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2652 if (status & V_MISC_IRQSTA) {
2653 /* misc IRQ */
2654 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2655 if (r_irq_misc & V_STA_IRQ) {
2656 if (hc->type == 1) {
2657 /* state machine */
2658 dch = hc->chan[hc->dslot].dch;
2659 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2660 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2661 && hc->e1_getclock) {
2662 if (e1_syncsta & V_FR_SYNC_E1)
2663 hc->syncronized = 1;
2664 else
2665 hc->syncronized = 0;
2667 /* undocumented: status changes during read */
2668 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2669 while (dch->state != (temp =
2670 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2671 if (debug & DEBUG_HFCMULTI_STATE)
2672 printk(KERN_DEBUG "%s: reread "
2673 "STATE because %d!=%d\n",
2674 __func__, temp,
2675 dch->state);
2676 dch->state = temp; /* repeat */
2678 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2679 & 0x7;
2680 schedule_event(dch, FLG_PHCHANGE);
2681 if (debug & DEBUG_HFCMULTI_STATE)
2682 printk(KERN_DEBUG
2683 "%s: E1 (id=%d) newstate %x\n",
2684 __func__, hc->id, dch->state);
2685 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2686 plxsd_checksync(hc, 0);
2689 if (r_irq_misc & V_TI_IRQ)
2690 handle_timer_irq(hc);
2692 if (r_irq_misc & V_DTMF_IRQ) {
2693 /* -> DTMF IRQ */
2694 hfcmulti_dtmf(hc);
2696 /* TODO: REPLACE !!!! 125 us Interrupts are not acceptable */
2697 if (r_irq_misc & V_IRQ_PROC) {
2698 /* IRQ every 125us */
2699 count++;
2700 /* generate 1kHz signal */
2701 if (count == 8) {
2702 if (hfc_interrupt)
2703 hfc_interrupt();
2704 count = 0;
2709 if (status & V_FR_IRQSTA) {
2710 /* FIFO IRQ */
2711 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2712 for (i = 0; i < 8; i++) {
2713 if (r_irq_oview & (1 << i))
2714 fifo_irq(hc, i);
2718 #ifdef IRQ_DEBUG
2719 irqsem = 0;
2720 #endif
2721 spin_unlock(&hc->lock);
2722 return IRQ_HANDLED;
2724 irq_notforus:
2725 #ifdef IRQ_DEBUG
2726 irqsem = 0;
2727 #endif
2728 spin_unlock(&hc->lock);
2729 return IRQ_NONE;
2734 * timer callback for D-chan busy resolution. Currently no function
2737 static void
2738 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2744 * activate/deactivate hardware for selected channels and mode
2746 * configure B-channel with the given protocol
2747 * ch eqals to the HFC-channel (0-31)
2748 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2749 * for S/T, 1-31 for E1)
2750 * the hdlc interrupts will be set/unset
2752 static int
2753 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2754 int bank_tx, int slot_rx, int bank_rx)
2756 int flow_tx = 0, flow_rx = 0, routing = 0;
2757 int oslot_tx, oslot_rx;
2758 int conf;
2760 if (ch < 0 || ch > 31)
2761 return EINVAL;
2762 oslot_tx = hc->chan[ch].slot_tx;
2763 oslot_rx = hc->chan[ch].slot_rx;
2764 conf = hc->chan[ch].conf;
2766 if (debug & DEBUG_HFCMULTI_MODE)
2767 printk(KERN_DEBUG
2768 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2769 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2770 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2771 bank_tx, oslot_rx, slot_rx, bank_rx);
2773 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2774 /* remove from slot */
2775 if (debug & DEBUG_HFCMULTI_MODE)
2776 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2777 __func__, oslot_tx);
2778 if (hc->slot_owner[oslot_tx<<1] == ch) {
2779 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2780 HFC_outb(hc, A_SL_CFG, 0);
2781 HFC_outb(hc, A_CONF, 0);
2782 hc->slot_owner[oslot_tx<<1] = -1;
2783 } else {
2784 if (debug & DEBUG_HFCMULTI_MODE)
2785 printk(KERN_DEBUG
2786 "%s: we are not owner of this tx slot "
2787 "anymore, channel %d is.\n",
2788 __func__, hc->slot_owner[oslot_tx<<1]);
2792 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2793 /* remove from slot */
2794 if (debug & DEBUG_HFCMULTI_MODE)
2795 printk(KERN_DEBUG
2796 "%s: remove from slot %d (RX)\n",
2797 __func__, oslot_rx);
2798 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2799 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2800 HFC_outb(hc, A_SL_CFG, 0);
2801 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2802 } else {
2803 if (debug & DEBUG_HFCMULTI_MODE)
2804 printk(KERN_DEBUG
2805 "%s: we are not owner of this rx slot "
2806 "anymore, channel %d is.\n",
2807 __func__,
2808 hc->slot_owner[(oslot_rx << 1) | 1]);
2812 if (slot_tx < 0) {
2813 flow_tx = 0x80; /* FIFO->ST */
2814 /* disable pcm slot */
2815 hc->chan[ch].slot_tx = -1;
2816 hc->chan[ch].bank_tx = 0;
2817 } else {
2818 /* set pcm slot */
2819 if (hc->chan[ch].txpending)
2820 flow_tx = 0x80; /* FIFO->ST */
2821 else
2822 flow_tx = 0xc0; /* PCM->ST */
2823 /* put on slot */
2824 routing = bank_tx ? 0xc0 : 0x80;
2825 if (conf >= 0 || bank_tx > 1)
2826 routing = 0x40; /* loop */
2827 if (debug & DEBUG_HFCMULTI_MODE)
2828 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2829 " %d flow %02x routing %02x conf %d (TX)\n",
2830 __func__, ch, slot_tx, bank_tx,
2831 flow_tx, routing, conf);
2832 HFC_outb(hc, R_SLOT, slot_tx << 1);
2833 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2834 HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2835 hc->slot_owner[slot_tx << 1] = ch;
2836 hc->chan[ch].slot_tx = slot_tx;
2837 hc->chan[ch].bank_tx = bank_tx;
2839 if (slot_rx < 0) {
2840 /* disable pcm slot */
2841 flow_rx = 0x80; /* ST->FIFO */
2842 hc->chan[ch].slot_rx = -1;
2843 hc->chan[ch].bank_rx = 0;
2844 } else {
2845 /* set pcm slot */
2846 if (hc->chan[ch].txpending)
2847 flow_rx = 0x80; /* ST->FIFO */
2848 else
2849 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2850 /* put on slot */
2851 routing = bank_rx?0x80:0xc0; /* reversed */
2852 if (conf >= 0 || bank_rx > 1)
2853 routing = 0x40; /* loop */
2854 if (debug & DEBUG_HFCMULTI_MODE)
2855 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2856 " %d flow %02x routing %02x conf %d (RX)\n",
2857 __func__, ch, slot_rx, bank_rx,
2858 flow_rx, routing, conf);
2859 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2860 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2861 hc->slot_owner[(slot_rx<<1)|1] = ch;
2862 hc->chan[ch].slot_rx = slot_rx;
2863 hc->chan[ch].bank_rx = bank_rx;
2866 switch (protocol) {
2867 case (ISDN_P_NONE):
2868 /* disable TX fifo */
2869 HFC_outb(hc, R_FIFO, ch << 1);
2870 HFC_wait(hc);
2871 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2872 HFC_outb(hc, A_SUBCH_CFG, 0);
2873 HFC_outb(hc, A_IRQ_MSK, 0);
2874 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2875 HFC_wait(hc);
2876 /* disable RX fifo */
2877 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2878 HFC_wait(hc);
2879 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2880 HFC_outb(hc, A_SUBCH_CFG, 0);
2881 HFC_outb(hc, A_IRQ_MSK, 0);
2882 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2883 HFC_wait(hc);
2884 if (hc->chan[ch].bch && hc->type != 1) {
2885 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2886 ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2887 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2888 /* undocumented: delay after R_ST_SEL */
2889 udelay(1);
2890 HFC_outb(hc, A_ST_CTRL0,
2891 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2893 if (hc->chan[ch].bch) {
2894 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2895 test_and_clear_bit(FLG_TRANSPARENT,
2896 &hc->chan[ch].bch->Flags);
2898 break;
2899 case (ISDN_P_B_RAW): /* B-channel */
2901 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2902 (hc->chan[ch].slot_rx < 0) &&
2903 (hc->chan[ch].slot_tx < 0)) {
2905 printk(KERN_DEBUG
2906 "Setting B-channel %d to echo cancelable "
2907 "state on PCM slot %d\n", ch,
2908 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2909 printk(KERN_DEBUG
2910 "Enabling pass through for channel\n");
2911 vpm_out(hc, ch, ((ch / 4) * 8) +
2912 ((ch % 4) * 4) + 1, 0x01);
2913 /* rx path */
2914 /* S/T -> PCM */
2915 HFC_outb(hc, R_FIFO, (ch << 1));
2916 HFC_wait(hc);
2917 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2918 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2919 ((ch % 4) * 4) + 1) << 1);
2920 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2922 /* PCM -> FIFO */
2923 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2924 HFC_wait(hc);
2925 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2926 HFC_outb(hc, A_SUBCH_CFG, 0);
2927 HFC_outb(hc, A_IRQ_MSK, 0);
2928 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2929 HFC_wait(hc);
2930 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2931 ((ch % 4) * 4) + 1) << 1) | 1);
2932 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2934 /* tx path */
2935 /* PCM -> S/T */
2936 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2937 HFC_wait(hc);
2938 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2939 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2940 ((ch % 4) * 4)) << 1) | 1);
2941 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2943 /* FIFO -> PCM */
2944 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2945 HFC_wait(hc);
2946 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2947 HFC_outb(hc, A_SUBCH_CFG, 0);
2948 HFC_outb(hc, A_IRQ_MSK, 0);
2949 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2950 HFC_wait(hc);
2951 /* tx silence */
2952 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2953 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2954 ((ch % 4) * 4)) << 1);
2955 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2956 } else {
2957 /* enable TX fifo */
2958 HFC_outb(hc, R_FIFO, ch << 1);
2959 HFC_wait(hc);
2960 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2961 V_HDLC_TRP | V_IFF);
2962 HFC_outb(hc, A_SUBCH_CFG, 0);
2963 HFC_outb(hc, A_IRQ_MSK, 0);
2964 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2965 HFC_wait(hc);
2966 /* tx silence */
2967 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
2968 /* enable RX fifo */
2969 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2970 HFC_wait(hc);
2971 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2972 HFC_outb(hc, A_SUBCH_CFG, 0);
2973 HFC_outb(hc, A_IRQ_MSK, 0);
2974 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2975 HFC_wait(hc);
2977 if (hc->type != 1) {
2978 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2979 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2980 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2981 /* undocumented: delay after R_ST_SEL */
2982 udelay(1);
2983 HFC_outb(hc, A_ST_CTRL0,
2984 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2986 if (hc->chan[ch].bch)
2987 test_and_set_bit(FLG_TRANSPARENT,
2988 &hc->chan[ch].bch->Flags);
2989 break;
2990 case (ISDN_P_B_HDLC): /* B-channel */
2991 case (ISDN_P_TE_S0): /* D-channel */
2992 case (ISDN_P_NT_S0):
2993 case (ISDN_P_TE_E1):
2994 case (ISDN_P_NT_E1):
2995 /* enable TX fifo */
2996 HFC_outb(hc, R_FIFO, ch<<1);
2997 HFC_wait(hc);
2998 if (hc->type == 1 || hc->chan[ch].bch) {
2999 /* E1 or B-channel */
3000 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3001 HFC_outb(hc, A_SUBCH_CFG, 0);
3002 } else {
3003 /* D-Channel without HDLC fill flags */
3004 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3005 HFC_outb(hc, A_SUBCH_CFG, 2);
3007 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3008 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3009 HFC_wait(hc);
3010 /* enable RX fifo */
3011 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3012 HFC_wait(hc);
3013 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3014 if (hc->type == 1 || hc->chan[ch].bch)
3015 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3016 else
3017 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3018 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3019 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3020 HFC_wait(hc);
3021 if (hc->chan[ch].bch) {
3022 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3023 if (hc->type != 1) {
3024 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3025 ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3026 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3027 /* undocumented: delay after R_ST_SEL */
3028 udelay(1);
3029 HFC_outb(hc, A_ST_CTRL0,
3030 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3033 break;
3034 default:
3035 printk(KERN_DEBUG "%s: protocol not known %x\n",
3036 __func__, protocol);
3037 hc->chan[ch].protocol = ISDN_P_NONE;
3038 return -ENOPROTOOPT;
3040 hc->chan[ch].protocol = protocol;
3041 return 0;
3046 * connect/disconnect PCM
3049 static void
3050 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3051 int slot_rx, int bank_rx)
3053 if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3054 /* disable PCM */
3055 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3056 return;
3059 /* enable pcm */
3060 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3061 slot_rx, bank_rx);
3065 * set/disable conference
3068 static void
3069 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3071 if (num >= 0 && num <= 7)
3072 hc->chan[ch].conf = num;
3073 else
3074 hc->chan[ch].conf = -1;
3075 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3076 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3077 hc->chan[ch].bank_rx);
3082 * set/disable sample loop
3085 /* NOTE: this function is experimental and therefore disabled */
3088 * Layer 1 callback function
3090 static int
3091 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3093 struct hfc_multi *hc = dch->hw;
3094 u_long flags;
3096 switch (cmd) {
3097 case INFO3_P8:
3098 case INFO3_P10:
3099 break;
3100 case HW_RESET_REQ:
3101 /* start activation */
3102 spin_lock_irqsave(&hc->lock, flags);
3103 if (hc->type == 1) {
3104 if (debug & DEBUG_HFCMULTI_MSG)
3105 printk(KERN_DEBUG
3106 "%s: HW_RESET_REQ no BRI\n",
3107 __func__);
3108 } else {
3109 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3110 /* undocumented: delay after R_ST_SEL */
3111 udelay(1);
3112 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3113 udelay(6); /* wait at least 5,21us */
3114 HFC_outb(hc, A_ST_WR_STATE, 3);
3115 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3116 /* activate */
3118 spin_unlock_irqrestore(&hc->lock, flags);
3119 l1_event(dch->l1, HW_POWERUP_IND);
3120 break;
3121 case HW_DEACT_REQ:
3122 /* start deactivation */
3123 spin_lock_irqsave(&hc->lock, flags);
3124 if (hc->type == 1) {
3125 if (debug & DEBUG_HFCMULTI_MSG)
3126 printk(KERN_DEBUG
3127 "%s: HW_DEACT_REQ no BRI\n",
3128 __func__);
3129 } else {
3130 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3131 /* undocumented: delay after R_ST_SEL */
3132 udelay(1);
3133 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3134 /* deactivate */
3135 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3136 hc->syncronized &=
3137 ~(1 << hc->chan[dch->slot].port);
3138 plxsd_checksync(hc, 0);
3141 skb_queue_purge(&dch->squeue);
3142 if (dch->tx_skb) {
3143 dev_kfree_skb(dch->tx_skb);
3144 dch->tx_skb = NULL;
3146 dch->tx_idx = 0;
3147 if (dch->rx_skb) {
3148 dev_kfree_skb(dch->rx_skb);
3149 dch->rx_skb = NULL;
3151 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3152 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3153 del_timer(&dch->timer);
3154 spin_unlock_irqrestore(&hc->lock, flags);
3155 break;
3156 case HW_POWERUP_REQ:
3157 spin_lock_irqsave(&hc->lock, flags);
3158 if (hc->type == 1) {
3159 if (debug & DEBUG_HFCMULTI_MSG)
3160 printk(KERN_DEBUG
3161 "%s: HW_POWERUP_REQ no BRI\n",
3162 __func__);
3163 } else {
3164 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3165 /* undocumented: delay after R_ST_SEL */
3166 udelay(1);
3167 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3168 udelay(6); /* wait at least 5,21us */
3169 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3171 spin_unlock_irqrestore(&hc->lock, flags);
3172 break;
3173 case PH_ACTIVATE_IND:
3174 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3175 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3176 GFP_ATOMIC);
3177 break;
3178 case PH_DEACTIVATE_IND:
3179 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3180 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3181 GFP_ATOMIC);
3182 break;
3183 default:
3184 if (dch->debug & DEBUG_HW)
3185 printk(KERN_DEBUG "%s: unknown command %x\n",
3186 __func__, cmd);
3187 return -1;
3189 return 0;
3193 * Layer2 -> Layer 1 Transfer
3196 static int
3197 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3199 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3200 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3201 struct hfc_multi *hc = dch->hw;
3202 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3203 int ret = -EINVAL;
3204 unsigned int id;
3205 u_long flags;
3207 switch (hh->prim) {
3208 case PH_DATA_REQ:
3209 if (skb->len < 1)
3210 break;
3211 spin_lock_irqsave(&hc->lock, flags);
3212 ret = dchannel_senddata(dch, skb);
3213 if (ret > 0) { /* direct TX */
3214 id = hh->id; /* skb can be freed */
3215 hfcmulti_tx(hc, dch->slot);
3216 ret = 0;
3217 /* start fifo */
3218 HFC_outb(hc, R_FIFO, 0);
3219 HFC_wait(hc);
3220 spin_unlock_irqrestore(&hc->lock, flags);
3221 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3222 } else
3223 spin_unlock_irqrestore(&hc->lock, flags);
3224 return ret;
3225 case PH_ACTIVATE_REQ:
3226 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3227 spin_lock_irqsave(&hc->lock, flags);
3228 ret = 0;
3229 if (debug & DEBUG_HFCMULTI_MSG)
3230 printk(KERN_DEBUG
3231 "%s: PH_ACTIVATE port %d (0..%d)\n",
3232 __func__, hc->chan[dch->slot].port,
3233 hc->ports-1);
3234 /* start activation */
3235 if (hc->type == 1) {
3236 ph_state_change(dch);
3237 if (debug & DEBUG_HFCMULTI_STATE)
3238 printk(KERN_DEBUG
3239 "%s: E1 report state %x \n",
3240 __func__, dch->state);
3241 } else {
3242 HFC_outb(hc, R_ST_SEL,
3243 hc->chan[dch->slot].port);
3244 /* undocumented: delay after R_ST_SEL */
3245 udelay(1);
3246 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3247 /* G1 */
3248 udelay(6); /* wait at least 5,21us */
3249 HFC_outb(hc, A_ST_WR_STATE, 1);
3250 HFC_outb(hc, A_ST_WR_STATE, 1 |
3251 (V_ST_ACT*3)); /* activate */
3252 dch->state = 1;
3254 spin_unlock_irqrestore(&hc->lock, flags);
3255 } else
3256 ret = l1_event(dch->l1, hh->prim);
3257 break;
3258 case PH_DEACTIVATE_REQ:
3259 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3260 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3261 spin_lock_irqsave(&hc->lock, flags);
3262 if (debug & DEBUG_HFCMULTI_MSG)
3263 printk(KERN_DEBUG
3264 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3265 __func__, hc->chan[dch->slot].port,
3266 hc->ports-1);
3267 /* start deactivation */
3268 if (hc->type == 1) {
3269 if (debug & DEBUG_HFCMULTI_MSG)
3270 printk(KERN_DEBUG
3271 "%s: PH_DEACTIVATE no BRI\n",
3272 __func__);
3273 } else {
3274 HFC_outb(hc, R_ST_SEL,
3275 hc->chan[dch->slot].port);
3276 /* undocumented: delay after R_ST_SEL */
3277 udelay(1);
3278 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3279 /* deactivate */
3280 dch->state = 1;
3282 skb_queue_purge(&dch->squeue);
3283 if (dch->tx_skb) {
3284 dev_kfree_skb(dch->tx_skb);
3285 dch->tx_skb = NULL;
3287 dch->tx_idx = 0;
3288 if (dch->rx_skb) {
3289 dev_kfree_skb(dch->rx_skb);
3290 dch->rx_skb = NULL;
3292 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3293 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3294 del_timer(&dch->timer);
3295 #ifdef FIXME
3296 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3297 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3298 #endif
3299 ret = 0;
3300 spin_unlock_irqrestore(&hc->lock, flags);
3301 } else
3302 ret = l1_event(dch->l1, hh->prim);
3303 break;
3305 if (!ret)
3306 dev_kfree_skb(skb);
3307 return ret;
3310 static void
3311 deactivate_bchannel(struct bchannel *bch)
3313 struct hfc_multi *hc = bch->hw;
3314 u_long flags;
3316 spin_lock_irqsave(&hc->lock, flags);
3317 if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3318 dev_kfree_skb(bch->next_skb);
3319 bch->next_skb = NULL;
3321 if (bch->tx_skb) {
3322 dev_kfree_skb(bch->tx_skb);
3323 bch->tx_skb = NULL;
3325 bch->tx_idx = 0;
3326 if (bch->rx_skb) {
3327 dev_kfree_skb(bch->rx_skb);
3328 bch->rx_skb = NULL;
3330 hc->chan[bch->slot].coeff_count = 0;
3331 test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3332 test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3333 hc->chan[bch->slot].rx_off = 0;
3334 hc->chan[bch->slot].conf = -1;
3335 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3336 spin_unlock_irqrestore(&hc->lock, flags);
3339 static int
3340 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3342 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3343 struct hfc_multi *hc = bch->hw;
3344 int ret = -EINVAL;
3345 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3346 unsigned int id;
3347 u_long flags;
3349 switch (hh->prim) {
3350 case PH_DATA_REQ:
3351 if (!skb->len)
3352 break;
3353 spin_lock_irqsave(&hc->lock, flags);
3354 ret = bchannel_senddata(bch, skb);
3355 if (ret > 0) { /* direct TX */
3356 id = hh->id; /* skb can be freed */
3357 hfcmulti_tx(hc, bch->slot);
3358 ret = 0;
3359 /* start fifo */
3360 HFC_outb_nodebug(hc, R_FIFO, 0);
3361 HFC_wait_nodebug(hc);
3362 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3363 spin_unlock_irqrestore(&hc->lock, flags);
3364 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3365 } else
3366 spin_unlock_irqrestore(&hc->lock, flags);
3367 } else
3368 spin_unlock_irqrestore(&hc->lock, flags);
3369 return ret;
3370 case PH_ACTIVATE_REQ:
3371 if (debug & DEBUG_HFCMULTI_MSG)
3372 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3373 __func__, bch->slot);
3374 spin_lock_irqsave(&hc->lock, flags);
3375 /* activate B-channel if not already activated */
3376 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3377 hc->chan[bch->slot].txpending = 0;
3378 ret = mode_hfcmulti(hc, bch->slot,
3379 ch->protocol,
3380 hc->chan[bch->slot].slot_tx,
3381 hc->chan[bch->slot].bank_tx,
3382 hc->chan[bch->slot].slot_rx,
3383 hc->chan[bch->slot].bank_rx);
3384 if (!ret) {
3385 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3386 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3387 /* start decoder */
3388 hc->dtmf = 1;
3389 if (debug & DEBUG_HFCMULTI_DTMF)
3390 printk(KERN_DEBUG
3391 "%s: start dtmf decoder\n",
3392 __func__);
3393 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3394 V_RST_DTMF);
3397 } else
3398 ret = 0;
3399 spin_unlock_irqrestore(&hc->lock, flags);
3400 if (!ret)
3401 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3402 GFP_KERNEL);
3403 break;
3404 case PH_CONTROL_REQ:
3405 spin_lock_irqsave(&hc->lock, flags);
3406 switch (hh->id) {
3407 case HFC_SPL_LOOP_ON: /* set sample loop */
3408 if (debug & DEBUG_HFCMULTI_MSG)
3409 printk(KERN_DEBUG
3410 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3411 __func__, skb->len);
3412 ret = 0;
3413 break;
3414 case HFC_SPL_LOOP_OFF: /* set silence */
3415 if (debug & DEBUG_HFCMULTI_MSG)
3416 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3417 __func__);
3418 ret = 0;
3419 break;
3420 default:
3421 printk(KERN_ERR
3422 "%s: unknown PH_CONTROL_REQ info %x\n",
3423 __func__, hh->id);
3424 ret = -EINVAL;
3426 spin_unlock_irqrestore(&hc->lock, flags);
3427 break;
3428 case PH_DEACTIVATE_REQ:
3429 deactivate_bchannel(bch); /* locked there */
3430 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3431 GFP_KERNEL);
3432 ret = 0;
3433 break;
3435 if (!ret)
3436 dev_kfree_skb(skb);
3437 return ret;
3441 * bchannel control function
3443 static int
3444 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3446 int ret = 0;
3447 struct dsp_features *features =
3448 (struct dsp_features *)(*((u_long *)&cq->p1));
3449 struct hfc_multi *hc = bch->hw;
3450 int slot_tx;
3451 int bank_tx;
3452 int slot_rx;
3453 int bank_rx;
3454 int num;
3456 switch (cq->op) {
3457 case MISDN_CTRL_GETOP:
3458 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3459 | MISDN_CTRL_RX_OFF;
3460 break;
3461 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3462 hc->chan[bch->slot].rx_off = !!cq->p1;
3463 if (!hc->chan[bch->slot].rx_off) {
3464 /* reset fifo on rx on */
3465 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3466 HFC_wait_nodebug(hc);
3467 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3468 HFC_wait_nodebug(hc);
3470 if (debug & DEBUG_HFCMULTI_MSG)
3471 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3472 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3473 break;
3474 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3475 if (debug & DEBUG_HFCMULTI_MSG)
3476 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3477 __func__);
3478 /* create confirm */
3479 features->hfc_id = hc->id;
3480 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3481 features->hfc_dtmf = 1;
3482 features->hfc_loops = 0;
3483 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3484 features->hfc_echocanhw = 1;
3485 } else {
3486 features->pcm_id = hc->pcm;
3487 features->pcm_slots = hc->slots;
3488 features->pcm_banks = 2;
3490 break;
3491 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3492 slot_tx = cq->p1 & 0xff;
3493 bank_tx = cq->p1 >> 8;
3494 slot_rx = cq->p2 & 0xff;
3495 bank_rx = cq->p2 >> 8;
3496 if (debug & DEBUG_HFCMULTI_MSG)
3497 printk(KERN_DEBUG
3498 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3499 "slot %d bank %d (RX)\n",
3500 __func__, slot_tx, bank_tx,
3501 slot_rx, bank_rx);
3502 if (slot_tx < hc->slots && bank_tx <= 2 &&
3503 slot_rx < hc->slots && bank_rx <= 2)
3504 hfcmulti_pcm(hc, bch->slot,
3505 slot_tx, bank_tx, slot_rx, bank_rx);
3506 else {
3507 printk(KERN_WARNING
3508 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3509 "slot %d bank %d (RX) out of range\n",
3510 __func__, slot_tx, bank_tx,
3511 slot_rx, bank_rx);
3512 ret = -EINVAL;
3514 break;
3515 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3516 if (debug & DEBUG_HFCMULTI_MSG)
3517 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3518 __func__);
3519 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3520 break;
3521 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3522 num = cq->p1 & 0xff;
3523 if (debug & DEBUG_HFCMULTI_MSG)
3524 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3525 __func__, num);
3526 if (num <= 7)
3527 hfcmulti_conf(hc, bch->slot, num);
3528 else {
3529 printk(KERN_WARNING
3530 "%s: HW_CONF_JOIN conf %d out of range\n",
3531 __func__, num);
3532 ret = -EINVAL;
3534 break;
3535 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3536 if (debug & DEBUG_HFCMULTI_MSG)
3537 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3538 hfcmulti_conf(hc, bch->slot, -1);
3539 break;
3540 case MISDN_CTRL_HFC_ECHOCAN_ON:
3541 if (debug & DEBUG_HFCMULTI_MSG)
3542 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3543 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3544 vpm_echocan_on(hc, bch->slot, cq->p1);
3545 else
3546 ret = -EINVAL;
3547 break;
3549 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3550 if (debug & DEBUG_HFCMULTI_MSG)
3551 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3552 __func__);
3553 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3554 vpm_echocan_off(hc, bch->slot);
3555 else
3556 ret = -EINVAL;
3557 break;
3558 default:
3559 printk(KERN_WARNING "%s: unknown Op %x\n",
3560 __func__, cq->op);
3561 ret = -EINVAL;
3562 break;
3564 return ret;
3567 static int
3568 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3570 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3571 struct hfc_multi *hc = bch->hw;
3572 int err = -EINVAL;
3573 u_long flags;
3575 if (bch->debug & DEBUG_HW)
3576 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3577 __func__, cmd, arg);
3578 switch (cmd) {
3579 case CLOSE_CHANNEL:
3580 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3581 if (test_bit(FLG_ACTIVE, &bch->Flags))
3582 deactivate_bchannel(bch); /* locked there */
3583 ch->protocol = ISDN_P_NONE;
3584 ch->peer = NULL;
3585 module_put(THIS_MODULE);
3586 err = 0;
3587 break;
3588 case CONTROL_CHANNEL:
3589 spin_lock_irqsave(&hc->lock, flags);
3590 err = channel_bctrl(bch, arg);
3591 spin_unlock_irqrestore(&hc->lock, flags);
3592 break;
3593 default:
3594 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3595 __func__, cmd);
3597 return err;
3601 * handle D-channel events
3603 * handle state change event
3605 static void
3606 ph_state_change(struct dchannel *dch)
3608 struct hfc_multi *hc = dch->hw;
3609 int ch, i;
3611 if (!dch) {
3612 printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3613 __func__);
3614 return;
3616 ch = dch->slot;
3618 if (hc->type == 1) {
3619 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3620 if (debug & DEBUG_HFCMULTI_STATE)
3621 printk(KERN_DEBUG
3622 "%s: E1 TE (id=%d) newstate %x\n",
3623 __func__, hc->id, dch->state);
3624 } else {
3625 if (debug & DEBUG_HFCMULTI_STATE)
3626 printk(KERN_DEBUG
3627 "%s: E1 NT (id=%d) newstate %x\n",
3628 __func__, hc->id, dch->state);
3630 switch (dch->state) {
3631 case (1):
3632 if (hc->e1_state != 1) {
3633 for (i = 1; i <= 31; i++) {
3634 /* reset fifos on e1 activation */
3635 HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3636 HFC_wait_nodebug(hc);
3637 HFC_outb_nodebug(hc,
3638 R_INC_RES_FIFO, V_RES_F);
3639 HFC_wait_nodebug(hc);
3642 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3643 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3644 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3645 break;
3647 default:
3648 if (hc->e1_state != 1)
3649 return;
3650 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3651 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3652 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3654 hc->e1_state = dch->state;
3655 } else {
3656 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3657 if (debug & DEBUG_HFCMULTI_STATE)
3658 printk(KERN_DEBUG
3659 "%s: S/T TE newstate %x\n",
3660 __func__, dch->state);
3661 switch (dch->state) {
3662 case (0):
3663 l1_event(dch->l1, HW_RESET_IND);
3664 break;
3665 case (3):
3666 l1_event(dch->l1, HW_DEACT_IND);
3667 break;
3668 case (5):
3669 case (8):
3670 l1_event(dch->l1, ANYSIGNAL);
3671 break;
3672 case (6):
3673 l1_event(dch->l1, INFO2);
3674 break;
3675 case (7):
3676 l1_event(dch->l1, INFO4_P8);
3677 break;
3679 } else {
3680 if (debug & DEBUG_HFCMULTI_STATE)
3681 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3682 __func__, dch->state);
3683 switch (dch->state) {
3684 case (2):
3685 if (hc->chan[ch].nt_timer == 0) {
3686 hc->chan[ch].nt_timer = -1;
3687 HFC_outb(hc, R_ST_SEL,
3688 hc->chan[ch].port);
3689 /* undocumented: delay after R_ST_SEL */
3690 udelay(1);
3691 HFC_outb(hc, A_ST_WR_STATE, 4 |
3692 V_ST_LD_STA); /* G4 */
3693 udelay(6); /* wait at least 5,21us */
3694 HFC_outb(hc, A_ST_WR_STATE, 4);
3695 dch->state = 4;
3696 } else {
3697 /* one extra count for the next event */
3698 hc->chan[ch].nt_timer =
3699 nt_t1_count[poll_timer] + 1;
3700 HFC_outb(hc, R_ST_SEL,
3701 hc->chan[ch].port);
3702 /* undocumented: delay after R_ST_SEL */
3703 udelay(1);
3704 /* allow G2 -> G3 transition */
3705 HFC_outb(hc, A_ST_WR_STATE, 2 |
3706 V_SET_G2_G3);
3708 break;
3709 case (1):
3710 hc->chan[ch].nt_timer = -1;
3711 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3712 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3713 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3714 break;
3715 case (4):
3716 hc->chan[ch].nt_timer = -1;
3717 break;
3718 case (3):
3719 hc->chan[ch].nt_timer = -1;
3720 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3721 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3722 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3723 break;
3730 * called for card mode init message
3733 static void
3734 hfcmulti_initmode(struct dchannel *dch)
3736 struct hfc_multi *hc = dch->hw;
3737 u_char a_st_wr_state, r_e1_wr_sta;
3738 int i, pt;
3740 if (debug & DEBUG_HFCMULTI_INIT)
3741 printk(KERN_DEBUG "%s: entered\n", __func__);
3743 if (hc->type == 1) {
3744 hc->chan[hc->dslot].slot_tx = -1;
3745 hc->chan[hc->dslot].slot_rx = -1;
3746 hc->chan[hc->dslot].conf = -1;
3747 if (hc->dslot) {
3748 mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3749 -1, 0, -1, 0);
3750 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3751 dch->timer.data = (long) dch;
3752 init_timer(&dch->timer);
3754 for (i = 1; i <= 31; i++) {
3755 if (i == hc->dslot)
3756 continue;
3757 hc->chan[i].slot_tx = -1;
3758 hc->chan[i].slot_rx = -1;
3759 hc->chan[i].conf = -1;
3760 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3762 /* E1 */
3763 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3764 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3765 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3767 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3768 HFC_outb(hc, R_RX0, 0);
3769 hc->hw.r_tx0 = 0 | V_OUT_EN;
3770 } else {
3771 HFC_outb(hc, R_RX0, 1);
3772 hc->hw.r_tx0 = 1 | V_OUT_EN;
3774 hc->hw.r_tx1 = V_ATX | V_NTRI;
3775 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3776 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3777 HFC_outb(hc, R_TX_FR0, 0x00);
3778 HFC_outb(hc, R_TX_FR1, 0xf8);
3780 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3781 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3783 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3785 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3786 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3788 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3789 if (debug & DEBUG_HFCMULTI_INIT)
3790 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3791 __func__);
3792 r_e1_wr_sta = 0; /* G0 */
3793 hc->e1_getclock = 0;
3794 } else {
3795 if (debug & DEBUG_HFCMULTI_INIT)
3796 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3797 __func__);
3798 r_e1_wr_sta = 0; /* F0 */
3799 hc->e1_getclock = 1;
3801 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3802 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3803 else
3804 HFC_outb(hc, R_SYNC_OUT, 0);
3805 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3806 hc->e1_getclock = 1;
3807 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3808 hc->e1_getclock = 0;
3809 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3810 /* SLAVE (clock master) */
3811 if (debug & DEBUG_HFCMULTI_INIT)
3812 printk(KERN_DEBUG
3813 "%s: E1 port is clock master "
3814 "(clock from PCM)\n", __func__);
3815 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3816 } else {
3817 if (hc->e1_getclock) {
3818 /* MASTER (clock slave) */
3819 if (debug & DEBUG_HFCMULTI_INIT)
3820 printk(KERN_DEBUG
3821 "%s: E1 port is clock slave "
3822 "(clock to PCM)\n", __func__);
3823 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3824 } else {
3825 /* MASTER (clock master) */
3826 if (debug & DEBUG_HFCMULTI_INIT)
3827 printk(KERN_DEBUG "%s: E1 port is "
3828 "clock master "
3829 "(clock from QUARTZ)\n",
3830 __func__);
3831 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3832 V_PCM_SYNC | V_JATT_OFF);
3833 HFC_outb(hc, R_SYNC_OUT, 0);
3836 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3837 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3838 HFC_outb(hc, R_PWM0, 0x50);
3839 HFC_outb(hc, R_PWM1, 0xff);
3840 /* state machine setup */
3841 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3842 udelay(6); /* wait at least 5,21us */
3843 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3844 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3845 hc->syncronized = 0;
3846 plxsd_checksync(hc, 0);
3848 } else {
3849 i = dch->slot;
3850 hc->chan[i].slot_tx = -1;
3851 hc->chan[i].slot_rx = -1;
3852 hc->chan[i].conf = -1;
3853 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3854 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3855 dch->timer.data = (long) dch;
3856 init_timer(&dch->timer);
3857 hc->chan[i - 2].slot_tx = -1;
3858 hc->chan[i - 2].slot_rx = -1;
3859 hc->chan[i - 2].conf = -1;
3860 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3861 hc->chan[i - 1].slot_tx = -1;
3862 hc->chan[i - 1].slot_rx = -1;
3863 hc->chan[i - 1].conf = -1;
3864 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3865 /* ST */
3866 pt = hc->chan[i].port;
3867 /* select interface */
3868 HFC_outb(hc, R_ST_SEL, pt);
3869 /* undocumented: delay after R_ST_SEL */
3870 udelay(1);
3871 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3872 if (debug & DEBUG_HFCMULTI_INIT)
3873 printk(KERN_DEBUG
3874 "%s: ST port %d is NT-mode\n",
3875 __func__, pt);
3876 /* clock delay */
3877 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3878 a_st_wr_state = 1; /* G1 */
3879 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3880 } else {
3881 if (debug & DEBUG_HFCMULTI_INIT)
3882 printk(KERN_DEBUG
3883 "%s: ST port %d is TE-mode\n",
3884 __func__, pt);
3885 /* clock delay */
3886 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3887 a_st_wr_state = 2; /* F2 */
3888 hc->hw.a_st_ctrl0[pt] = 0;
3890 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3891 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3892 /* line setup */
3893 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3894 /* disable E-channel */
3895 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3896 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3897 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3898 else
3899 HFC_outb(hc, A_ST_CTRL1, 0);
3900 /* enable B-channel receive */
3901 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
3902 /* state machine setup */
3903 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3904 udelay(6); /* wait at least 5,21us */
3905 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3906 hc->hw.r_sci_msk |= 1 << pt;
3907 /* state machine interrupts */
3908 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3909 /* unset sync on port */
3910 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3911 hc->syncronized &=
3912 ~(1 << hc->chan[dch->slot].port);
3913 plxsd_checksync(hc, 0);
3916 if (debug & DEBUG_HFCMULTI_INIT)
3917 printk("%s: done\n", __func__);
3921 static int
3922 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3923 struct channel_req *rq)
3925 int err = 0;
3926 u_long flags;
3928 if (debug & DEBUG_HW_OPEN)
3929 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3930 dch->dev.id, __builtin_return_address(0));
3931 if (rq->protocol == ISDN_P_NONE)
3932 return -EINVAL;
3933 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3934 (dch->dev.D.protocol != rq->protocol)) {
3935 if (debug & DEBUG_HFCMULTI_MODE)
3936 printk(KERN_WARNING "%s: change protocol %x to %x\n",
3937 __func__, dch->dev.D.protocol, rq->protocol);
3939 if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3940 && (rq->protocol != ISDN_P_TE_S0))
3941 l1_event(dch->l1, CLOSE_CHANNEL);
3942 if (dch->dev.D.protocol != rq->protocol) {
3943 if (rq->protocol == ISDN_P_TE_S0) {
3944 err = create_l1(dch, hfcm_l1callback);
3945 if (err)
3946 return err;
3948 dch->dev.D.protocol = rq->protocol;
3949 spin_lock_irqsave(&hc->lock, flags);
3950 hfcmulti_initmode(dch);
3951 spin_unlock_irqrestore(&hc->lock, flags);
3954 if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3955 ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3956 ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3957 ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3958 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3959 0, NULL, GFP_KERNEL);
3961 rq->ch = &dch->dev.D;
3962 if (!try_module_get(THIS_MODULE))
3963 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3964 return 0;
3967 static int
3968 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3969 struct channel_req *rq)
3971 struct bchannel *bch;
3972 int ch;
3974 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3975 return -EINVAL;
3976 if (rq->protocol == ISDN_P_NONE)
3977 return -EINVAL;
3978 if (hc->type == 1)
3979 ch = rq->adr.channel;
3980 else
3981 ch = (rq->adr.channel - 1) + (dch->slot - 2);
3982 bch = hc->chan[ch].bch;
3983 if (!bch) {
3984 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
3985 __func__, ch);
3986 return -EINVAL;
3988 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
3989 return -EBUSY; /* b-channel can be only open once */
3990 bch->ch.protocol = rq->protocol;
3991 hc->chan[ch].rx_off = 0;
3992 rq->ch = &bch->ch;
3993 if (!try_module_get(THIS_MODULE))
3994 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3995 return 0;
3999 * device control function
4001 static int
4002 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4004 int ret = 0;
4006 switch (cq->op) {
4007 case MISDN_CTRL_GETOP:
4008 cq->op = 0;
4009 break;
4010 default:
4011 printk(KERN_WARNING "%s: unknown Op %x\n",
4012 __func__, cq->op);
4013 ret = -EINVAL;
4014 break;
4016 return ret;
4019 static int
4020 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4022 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4023 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4024 struct hfc_multi *hc = dch->hw;
4025 struct channel_req *rq;
4026 int err = 0;
4027 u_long flags;
4029 if (dch->debug & DEBUG_HW)
4030 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4031 __func__, cmd, arg);
4032 switch (cmd) {
4033 case OPEN_CHANNEL:
4034 rq = arg;
4035 switch (rq->protocol) {
4036 case ISDN_P_TE_S0:
4037 case ISDN_P_NT_S0:
4038 if (hc->type == 1) {
4039 err = -EINVAL;
4040 break;
4042 err = open_dchannel(hc, dch, rq); /* locked there */
4043 break;
4044 case ISDN_P_TE_E1:
4045 case ISDN_P_NT_E1:
4046 if (hc->type != 1) {
4047 err = -EINVAL;
4048 break;
4050 err = open_dchannel(hc, dch, rq); /* locked there */
4051 break;
4052 default:
4053 spin_lock_irqsave(&hc->lock, flags);
4054 err = open_bchannel(hc, dch, rq);
4055 spin_unlock_irqrestore(&hc->lock, flags);
4057 break;
4058 case CLOSE_CHANNEL:
4059 if (debug & DEBUG_HW_OPEN)
4060 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4061 __func__, dch->dev.id,
4062 __builtin_return_address(0));
4063 module_put(THIS_MODULE);
4064 break;
4065 case CONTROL_CHANNEL:
4066 spin_lock_irqsave(&hc->lock, flags);
4067 err = channel_dctrl(dch, arg);
4068 spin_unlock_irqrestore(&hc->lock, flags);
4069 break;
4070 default:
4071 if (dch->debug & DEBUG_HW)
4072 printk(KERN_DEBUG "%s: unknown command %x\n",
4073 __func__, cmd);
4074 err = -EINVAL;
4076 return err;
4080 * initialize the card
4084 * start timer irq, wait some time and check if we have interrupts.
4085 * if not, reset chip and try again.
4087 static int
4088 init_card(struct hfc_multi *hc)
4090 int err = -EIO;
4091 u_long flags;
4092 u_short *plx_acc;
4093 u_long plx_flags;
4095 if (debug & DEBUG_HFCMULTI_INIT)
4096 printk(KERN_DEBUG "%s: entered\n", __func__);
4098 spin_lock_irqsave(&hc->lock, flags);
4099 /* set interrupts but leave global interrupt disabled */
4100 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4101 disable_hwirq(hc);
4102 spin_unlock_irqrestore(&hc->lock, flags);
4104 if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4105 "HFC-multi", hc)) {
4106 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4107 hc->pci_dev->irq);
4108 return -EIO;
4110 hc->irq = hc->pci_dev->irq;
4112 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4113 spin_lock_irqsave(&plx_lock, plx_flags);
4114 plx_acc = (u_short *)(hc->plx_membase+PLX_INTCSR);
4115 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4116 plx_acc); /* enable PCI & LINT1 irq */
4117 spin_unlock_irqrestore(&plx_lock, plx_flags);
4120 if (debug & DEBUG_HFCMULTI_INIT)
4121 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4122 __func__, hc->irq, hc->irqcnt);
4123 err = init_chip(hc);
4124 if (err)
4125 goto error;
4127 * Finally enable IRQ output
4128 * this is only allowed, if an IRQ routine is allready
4129 * established for this HFC, so don't do that earlier
4131 spin_lock_irqsave(&hc->lock, flags);
4132 enable_hwirq(hc);
4133 spin_unlock_irqrestore(&hc->lock, flags);
4134 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4135 set_current_state(TASK_UNINTERRUPTIBLE);
4136 schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4137 /* turn IRQ off until chip is completely initialized */
4138 spin_lock_irqsave(&hc->lock, flags);
4139 disable_hwirq(hc);
4140 spin_unlock_irqrestore(&hc->lock, flags);
4141 if (debug & DEBUG_HFCMULTI_INIT)
4142 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4143 __func__, hc->irq, hc->irqcnt);
4144 if (hc->irqcnt) {
4145 if (debug & DEBUG_HFCMULTI_INIT)
4146 printk(KERN_DEBUG "%s: done\n", __func__);
4148 return 0;
4150 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4151 printk(KERN_INFO "ignoring missing interrupts\n");
4152 return 0;
4155 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4156 hc->irq);
4158 err = -EIO;
4160 error:
4161 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4162 spin_lock_irqsave(&plx_lock, plx_flags);
4163 plx_acc = (u_short *)(hc->plx_membase+PLX_INTCSR);
4164 writew(0x00, plx_acc); /*disable IRQs*/
4165 spin_unlock_irqrestore(&plx_lock, plx_flags);
4168 if (debug & DEBUG_HFCMULTI_INIT)
4169 printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4170 if (hc->irq) {
4171 free_irq(hc->irq, hc);
4172 hc->irq = 0;
4175 if (debug & DEBUG_HFCMULTI_INIT)
4176 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4177 return err;
4181 * find pci device and set it up
4184 static int
4185 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4186 const struct pci_device_id *ent)
4188 struct hm_map *m = (struct hm_map *)ent->driver_data;
4190 printk(KERN_INFO
4191 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4192 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4194 hc->pci_dev = pdev;
4195 if (m->clock2)
4196 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4198 if (ent->device == 0xB410) {
4199 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4200 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4201 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4202 hc->slots = 32;
4205 if (hc->pci_dev->irq <= 0) {
4206 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4207 return -EIO;
4209 if (pci_enable_device(hc->pci_dev)) {
4210 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4211 return -EIO;
4213 hc->leds = m->leds;
4214 hc->ledstate = 0xAFFEAFFE;
4215 hc->opticalsupport = m->opticalsupport;
4217 /* set memory access methods */
4218 if (m->io_mode) /* use mode from card config */
4219 hc->io_mode = m->io_mode;
4220 switch (hc->io_mode) {
4221 case HFC_IO_MODE_PLXSD:
4222 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4223 hc->slots = 128; /* required */
4224 /* fall through */
4225 case HFC_IO_MODE_PCIMEM:
4226 hc->HFC_outb = HFC_outb_pcimem;
4227 hc->HFC_inb = HFC_inb_pcimem;
4228 hc->HFC_inw = HFC_inw_pcimem;
4229 hc->HFC_wait = HFC_wait_pcimem;
4230 hc->read_fifo = read_fifo_pcimem;
4231 hc->write_fifo = write_fifo_pcimem;
4232 break;
4233 case HFC_IO_MODE_REGIO:
4234 hc->HFC_outb = HFC_outb_regio;
4235 hc->HFC_inb = HFC_inb_regio;
4236 hc->HFC_inw = HFC_inw_regio;
4237 hc->HFC_wait = HFC_wait_regio;
4238 hc->read_fifo = read_fifo_regio;
4239 hc->write_fifo = write_fifo_regio;
4240 break;
4241 default:
4242 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4243 pci_disable_device(hc->pci_dev);
4244 return -EIO;
4246 hc->HFC_outb_nodebug = hc->HFC_outb;
4247 hc->HFC_inb_nodebug = hc->HFC_inb;
4248 hc->HFC_inw_nodebug = hc->HFC_inw;
4249 hc->HFC_wait_nodebug = hc->HFC_wait;
4250 #ifdef HFC_REGISTER_DEBUG
4251 hc->HFC_outb = HFC_outb_debug;
4252 hc->HFC_inb = HFC_inb_debug;
4253 hc->HFC_inw = HFC_inw_debug;
4254 hc->HFC_wait = HFC_wait_debug;
4255 #endif
4256 hc->pci_iobase = 0;
4257 hc->pci_membase = NULL;
4258 hc->plx_membase = NULL;
4260 switch (hc->io_mode) {
4261 case HFC_IO_MODE_PLXSD:
4262 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4263 /* MEMBASE 1 is PLX PCI Bridge */
4265 if (!hc->plx_origmembase) {
4266 printk(KERN_WARNING
4267 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4268 pci_disable_device(hc->pci_dev);
4269 return -EIO;
4272 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4273 if (!hc->plx_membase) {
4274 printk(KERN_WARNING
4275 "HFC-multi: failed to remap plx address space. "
4276 "(internal error)\n");
4277 pci_disable_device(hc->pci_dev);
4278 return -EIO;
4280 printk(KERN_INFO
4281 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4282 (u_long)hc->plx_membase, hc->plx_origmembase);
4284 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4285 /* MEMBASE 1 is PLX PCI Bridge */
4286 if (!hc->pci_origmembase) {
4287 printk(KERN_WARNING
4288 "HFC-multi: No IO-Memory for PCI card found\n");
4289 pci_disable_device(hc->pci_dev);
4290 return -EIO;
4293 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4294 if (!hc->pci_membase) {
4295 printk(KERN_WARNING "HFC-multi: failed to remap io "
4296 "address space. (internal error)\n");
4297 pci_disable_device(hc->pci_dev);
4298 return -EIO;
4301 printk(KERN_INFO
4302 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4303 "leds-type %d\n",
4304 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4305 hc->pci_dev->irq, HZ, hc->leds);
4306 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4307 break;
4308 case HFC_IO_MODE_PCIMEM:
4309 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4310 if (!hc->pci_origmembase) {
4311 printk(KERN_WARNING
4312 "HFC-multi: No IO-Memory for PCI card found\n");
4313 pci_disable_device(hc->pci_dev);
4314 return -EIO;
4317 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4318 if (!hc->pci_membase) {
4319 printk(KERN_WARNING
4320 "HFC-multi: failed to remap io address space. "
4321 "(internal error)\n");
4322 pci_disable_device(hc->pci_dev);
4323 return -EIO;
4325 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4326 "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4327 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4328 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4329 break;
4330 case HFC_IO_MODE_REGIO:
4331 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4332 if (!hc->pci_iobase) {
4333 printk(KERN_WARNING
4334 "HFC-multi: No IO for PCI card found\n");
4335 pci_disable_device(hc->pci_dev);
4336 return -EIO;
4339 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4340 printk(KERN_WARNING "HFC-multi: failed to request "
4341 "address space at 0x%08lx (internal error)\n",
4342 hc->pci_iobase);
4343 pci_disable_device(hc->pci_dev);
4344 return -EIO;
4347 printk(KERN_INFO
4348 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4349 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4350 hc->pci_dev->irq, HZ, hc->leds);
4351 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4352 break;
4353 default:
4354 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4355 pci_disable_device(hc->pci_dev);
4356 return -EIO;
4359 pci_set_drvdata(hc->pci_dev, hc);
4361 /* At this point the needed PCI config is done */
4362 /* fifos are still not enabled */
4363 return 0;
4368 * remove port
4371 static void
4372 release_port(struct hfc_multi *hc, struct dchannel *dch)
4374 int pt, ci, i = 0;
4375 u_long flags;
4376 struct bchannel *pb;
4378 ci = dch->slot;
4379 pt = hc->chan[ci].port;
4381 if (debug & DEBUG_HFCMULTI_INIT)
4382 printk(KERN_DEBUG "%s: entered for port %d\n",
4383 __func__, pt + 1);
4385 if (pt >= hc->ports) {
4386 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4387 __func__, pt + 1);
4388 return;
4391 if (debug & DEBUG_HFCMULTI_INIT)
4392 printk(KERN_DEBUG "%s: releasing port=%d\n",
4393 __func__, pt + 1);
4395 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4396 l1_event(dch->l1, CLOSE_CHANNEL);
4398 hc->chan[ci].dch = NULL;
4400 if (hc->created[pt]) {
4401 hc->created[pt] = 0;
4402 mISDN_unregister_device(&dch->dev);
4405 spin_lock_irqsave(&hc->lock, flags);
4407 if (dch->timer.function) {
4408 del_timer(&dch->timer);
4409 dch->timer.function = NULL;
4412 if (hc->type == 1) { /* E1 */
4413 /* remove sync */
4414 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4415 hc->syncronized = 0;
4416 plxsd_checksync(hc, 1);
4418 /* free channels */
4419 for (i = 0; i <= 31; i++) {
4420 if (hc->chan[i].bch) {
4421 if (debug & DEBUG_HFCMULTI_INIT)
4422 printk(KERN_DEBUG
4423 "%s: free port %d channel %d\n",
4424 __func__, hc->chan[i].port+1, i);
4425 pb = hc->chan[i].bch;
4426 hc->chan[i].bch = NULL;
4427 spin_unlock_irqrestore(&hc->lock, flags);
4428 mISDN_freebchannel(pb);
4429 kfree(pb);
4430 kfree(hc->chan[i].coeff);
4431 spin_lock_irqsave(&hc->lock, flags);
4434 } else {
4435 /* remove sync */
4436 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4437 hc->syncronized &=
4438 ~(1 << hc->chan[ci].port);
4439 plxsd_checksync(hc, 1);
4441 /* free channels */
4442 if (hc->chan[ci - 2].bch) {
4443 if (debug & DEBUG_HFCMULTI_INIT)
4444 printk(KERN_DEBUG
4445 "%s: free port %d channel %d\n",
4446 __func__, hc->chan[ci - 2].port+1,
4447 ci - 2);
4448 pb = hc->chan[ci - 2].bch;
4449 hc->chan[ci - 2].bch = NULL;
4450 spin_unlock_irqrestore(&hc->lock, flags);
4451 mISDN_freebchannel(pb);
4452 kfree(pb);
4453 kfree(hc->chan[ci - 2].coeff);
4454 spin_lock_irqsave(&hc->lock, flags);
4456 if (hc->chan[ci - 1].bch) {
4457 if (debug & DEBUG_HFCMULTI_INIT)
4458 printk(KERN_DEBUG
4459 "%s: free port %d channel %d\n",
4460 __func__, hc->chan[ci - 1].port+1,
4461 ci - 1);
4462 pb = hc->chan[ci - 1].bch;
4463 hc->chan[ci - 1].bch = NULL;
4464 spin_unlock_irqrestore(&hc->lock, flags);
4465 mISDN_freebchannel(pb);
4466 kfree(pb);
4467 kfree(hc->chan[ci - 1].coeff);
4468 spin_lock_irqsave(&hc->lock, flags);
4472 spin_unlock_irqrestore(&hc->lock, flags);
4474 if (debug & DEBUG_HFCMULTI_INIT)
4475 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4476 mISDN_freedchannel(dch);
4477 kfree(dch);
4479 if (debug & DEBUG_HFCMULTI_INIT)
4480 printk(KERN_DEBUG "%s: done!\n", __func__);
4483 static void
4484 release_card(struct hfc_multi *hc)
4486 u_long flags;
4487 int ch;
4489 if (debug & DEBUG_HFCMULTI_INIT)
4490 printk(KERN_WARNING "%s: release card (%d) entered\n",
4491 __func__, hc->id);
4493 spin_lock_irqsave(&hc->lock, flags);
4494 disable_hwirq(hc);
4495 spin_unlock_irqrestore(&hc->lock, flags);
4497 udelay(1000);
4499 /* dimm leds */
4500 if (hc->leds)
4501 hfcmulti_leds(hc);
4503 /* disable D-channels & B-channels */
4504 if (debug & DEBUG_HFCMULTI_INIT)
4505 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4506 __func__);
4507 for (ch = 0; ch <= 31; ch++) {
4508 if (hc->chan[ch].dch)
4509 release_port(hc, hc->chan[ch].dch);
4512 /* release hardware & irq */
4513 if (hc->irq) {
4514 if (debug & DEBUG_HFCMULTI_INIT)
4515 printk(KERN_WARNING "%s: free irq %d\n",
4516 __func__, hc->irq);
4517 free_irq(hc->irq, hc);
4518 hc->irq = 0;
4521 release_io_hfcmulti(hc);
4523 if (debug & DEBUG_HFCMULTI_INIT)
4524 printk(KERN_WARNING "%s: remove instance from list\n",
4525 __func__);
4526 list_del(&hc->list);
4528 if (debug & DEBUG_HFCMULTI_INIT)
4529 printk(KERN_WARNING "%s: delete instance\n", __func__);
4530 if (hc == syncmaster)
4531 syncmaster = NULL;
4532 kfree(hc);
4533 if (debug & DEBUG_HFCMULTI_INIT)
4534 printk(KERN_WARNING "%s: card successfully removed\n",
4535 __func__);
4538 static int
4539 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4541 struct dchannel *dch;
4542 struct bchannel *bch;
4543 int ch, ret = 0;
4544 char name[MISDN_MAX_IDLEN];
4546 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4547 if (!dch)
4548 return -ENOMEM;
4549 dch->debug = debug;
4550 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4551 dch->hw = hc;
4552 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4553 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4554 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4555 dch->dev.D.send = handle_dmsg;
4556 dch->dev.D.ctrl = hfcm_dctrl;
4557 dch->dev.nrbchan = (hc->dslot)?30:31;
4558 dch->slot = hc->dslot;
4559 hc->chan[hc->dslot].dch = dch;
4560 hc->chan[hc->dslot].port = 0;
4561 hc->chan[hc->dslot].nt_timer = -1;
4562 for (ch = 1; ch <= 31; ch++) {
4563 if (ch == hc->dslot) /* skip dchannel */
4564 continue;
4565 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4566 if (!bch) {
4567 printk(KERN_ERR "%s: no memory for bchannel\n",
4568 __func__);
4569 ret = -ENOMEM;
4570 goto free_chan;
4572 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4573 if (!hc->chan[ch].coeff) {
4574 printk(KERN_ERR "%s: no memory for coeffs\n",
4575 __func__);
4576 ret = -ENOMEM;
4577 goto free_chan;
4579 bch->nr = ch;
4580 bch->slot = ch;
4581 bch->debug = debug;
4582 mISDN_initbchannel(bch, MAX_DATA_MEM);
4583 bch->hw = hc;
4584 bch->ch.send = handle_bmsg;
4585 bch->ch.ctrl = hfcm_bctrl;
4586 bch->ch.nr = ch;
4587 list_add(&bch->ch.list, &dch->dev.bchannels);
4588 hc->chan[ch].bch = bch;
4589 hc->chan[ch].port = 0;
4590 set_channelmap(bch->nr, dch->dev.channelmap);
4592 /* set optical line type */
4593 if (port[Port_cnt] & 0x001) {
4594 if (!m->opticalsupport) {
4595 printk(KERN_INFO
4596 "This board has no optical "
4597 "support\n");
4598 } else {
4599 if (debug & DEBUG_HFCMULTI_INIT)
4600 printk(KERN_DEBUG
4601 "%s: PORT set optical "
4602 "interfacs: card(%d) "
4603 "port(%d)\n",
4604 __func__,
4605 HFC_cnt + 1, 1);
4606 test_and_set_bit(HFC_CFG_OPTICAL,
4607 &hc->chan[hc->dslot].cfg);
4610 /* set LOS report */
4611 if (port[Port_cnt] & 0x004) {
4612 if (debug & DEBUG_HFCMULTI_INIT)
4613 printk(KERN_DEBUG "%s: PORT set "
4614 "LOS report: card(%d) port(%d)\n",
4615 __func__, HFC_cnt + 1, 1);
4616 test_and_set_bit(HFC_CFG_REPORT_LOS,
4617 &hc->chan[hc->dslot].cfg);
4619 /* set AIS report */
4620 if (port[Port_cnt] & 0x008) {
4621 if (debug & DEBUG_HFCMULTI_INIT)
4622 printk(KERN_DEBUG "%s: PORT set "
4623 "AIS report: card(%d) port(%d)\n",
4624 __func__, HFC_cnt + 1, 1);
4625 test_and_set_bit(HFC_CFG_REPORT_AIS,
4626 &hc->chan[hc->dslot].cfg);
4628 /* set SLIP report */
4629 if (port[Port_cnt] & 0x010) {
4630 if (debug & DEBUG_HFCMULTI_INIT)
4631 printk(KERN_DEBUG
4632 "%s: PORT set SLIP report: "
4633 "card(%d) port(%d)\n",
4634 __func__, HFC_cnt + 1, 1);
4635 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4636 &hc->chan[hc->dslot].cfg);
4638 /* set RDI report */
4639 if (port[Port_cnt] & 0x020) {
4640 if (debug & DEBUG_HFCMULTI_INIT)
4641 printk(KERN_DEBUG
4642 "%s: PORT set RDI report: "
4643 "card(%d) port(%d)\n",
4644 __func__, HFC_cnt + 1, 1);
4645 test_and_set_bit(HFC_CFG_REPORT_RDI,
4646 &hc->chan[hc->dslot].cfg);
4648 /* set CRC-4 Mode */
4649 if (!(port[Port_cnt] & 0x100)) {
4650 if (debug & DEBUG_HFCMULTI_INIT)
4651 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4652 " card(%d) port(%d)\n",
4653 __func__, HFC_cnt + 1, 1);
4654 test_and_set_bit(HFC_CFG_CRC4,
4655 &hc->chan[hc->dslot].cfg);
4656 } else {
4657 if (debug & DEBUG_HFCMULTI_INIT)
4658 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4659 " report: card(%d) port(%d)\n",
4660 __func__, HFC_cnt + 1, 1);
4662 /* set forced clock */
4663 if (port[Port_cnt] & 0x0200) {
4664 if (debug & DEBUG_HFCMULTI_INIT)
4665 printk(KERN_DEBUG "%s: PORT force getting clock from "
4666 "E1: card(%d) port(%d)\n",
4667 __func__, HFC_cnt + 1, 1);
4668 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4669 } else
4670 if (port[Port_cnt] & 0x0400) {
4671 if (debug & DEBUG_HFCMULTI_INIT)
4672 printk(KERN_DEBUG "%s: PORT force putting clock to "
4673 "E1: card(%d) port(%d)\n",
4674 __func__, HFC_cnt + 1, 1);
4675 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4677 /* set JATT PLL */
4678 if (port[Port_cnt] & 0x0800) {
4679 if (debug & DEBUG_HFCMULTI_INIT)
4680 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4681 "E1: card(%d) port(%d)\n",
4682 __func__, HFC_cnt + 1, 1);
4683 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4685 /* set elastic jitter buffer */
4686 if (port[Port_cnt] & 0x3000) {
4687 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4688 if (debug & DEBUG_HFCMULTI_INIT)
4689 printk(KERN_DEBUG
4690 "%s: PORT set elastic "
4691 "buffer to %d: card(%d) port(%d)\n",
4692 __func__, hc->chan[hc->dslot].jitter,
4693 HFC_cnt + 1, 1);
4694 } else
4695 hc->chan[hc->dslot].jitter = 2; /* default */
4696 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4697 ret = mISDN_register_device(&dch->dev, name);
4698 if (ret)
4699 goto free_chan;
4700 hc->created[0] = 1;
4701 return ret;
4702 free_chan:
4703 release_port(hc, dch);
4704 return ret;
4707 static int
4708 init_multi_port(struct hfc_multi *hc, int pt)
4710 struct dchannel *dch;
4711 struct bchannel *bch;
4712 int ch, i, ret = 0;
4713 char name[MISDN_MAX_IDLEN];
4715 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4716 if (!dch)
4717 return -ENOMEM;
4718 dch->debug = debug;
4719 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4720 dch->hw = hc;
4721 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4722 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4723 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4724 dch->dev.D.send = handle_dmsg;
4725 dch->dev.D.ctrl = hfcm_dctrl;
4726 dch->dev.nrbchan = 2;
4727 i = pt << 2;
4728 dch->slot = i + 2;
4729 hc->chan[i + 2].dch = dch;
4730 hc->chan[i + 2].port = pt;
4731 hc->chan[i + 2].nt_timer = -1;
4732 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4733 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4734 if (!bch) {
4735 printk(KERN_ERR "%s: no memory for bchannel\n",
4736 __func__);
4737 ret = -ENOMEM;
4738 goto free_chan;
4740 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4741 if (!hc->chan[i + ch].coeff) {
4742 printk(KERN_ERR "%s: no memory for coeffs\n",
4743 __func__);
4744 ret = -ENOMEM;
4745 goto free_chan;
4747 bch->nr = ch + 1;
4748 bch->slot = i + ch;
4749 bch->debug = debug;
4750 mISDN_initbchannel(bch, MAX_DATA_MEM);
4751 bch->hw = hc;
4752 bch->ch.send = handle_bmsg;
4753 bch->ch.ctrl = hfcm_bctrl;
4754 bch->ch.nr = ch + 1;
4755 list_add(&bch->ch.list, &dch->dev.bchannels);
4756 hc->chan[i + ch].bch = bch;
4757 hc->chan[i + ch].port = pt;
4758 set_channelmap(bch->nr, dch->dev.channelmap);
4760 /* set master clock */
4761 if (port[Port_cnt] & 0x001) {
4762 if (debug & DEBUG_HFCMULTI_INIT)
4763 printk(KERN_DEBUG
4764 "%s: PROTOCOL set master clock: "
4765 "card(%d) port(%d)\n",
4766 __func__, HFC_cnt + 1, pt + 1);
4767 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4768 printk(KERN_ERR "Error: Master clock "
4769 "for port(%d) of card(%d) is only"
4770 " possible with TE-mode\n",
4771 pt + 1, HFC_cnt + 1);
4772 ret = -EINVAL;
4773 goto free_chan;
4775 if (hc->masterclk >= 0) {
4776 printk(KERN_ERR "Error: Master clock "
4777 "for port(%d) of card(%d) already "
4778 "defined for port(%d)\n",
4779 pt + 1, HFC_cnt + 1, hc->masterclk+1);
4780 ret = -EINVAL;
4781 goto free_chan;
4783 hc->masterclk = pt;
4785 /* set transmitter line to non capacitive */
4786 if (port[Port_cnt] & 0x002) {
4787 if (debug & DEBUG_HFCMULTI_INIT)
4788 printk(KERN_DEBUG
4789 "%s: PROTOCOL set non capacitive "
4790 "transmitter: card(%d) port(%d)\n",
4791 __func__, HFC_cnt + 1, pt + 1);
4792 test_and_set_bit(HFC_CFG_NONCAP_TX,
4793 &hc->chan[i + 2].cfg);
4795 /* disable E-channel */
4796 if (port[Port_cnt] & 0x004) {
4797 if (debug & DEBUG_HFCMULTI_INIT)
4798 printk(KERN_DEBUG
4799 "%s: PROTOCOL disable E-channel: "
4800 "card(%d) port(%d)\n",
4801 __func__, HFC_cnt + 1, pt + 1);
4802 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4803 &hc->chan[i + 2].cfg);
4805 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d/%d",
4806 hc->type, HFC_cnt + 1, pt + 1);
4807 ret = mISDN_register_device(&dch->dev, name);
4808 if (ret)
4809 goto free_chan;
4810 hc->created[pt] = 1;
4811 return ret;
4812 free_chan:
4813 release_port(hc, dch);
4814 return ret;
4817 static int
4818 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4820 struct hm_map *m = (struct hm_map *)ent->driver_data;
4821 int ret_err = 0;
4822 int pt;
4823 struct hfc_multi *hc;
4824 u_long flags;
4825 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4827 if (HFC_cnt >= MAX_CARDS) {
4828 printk(KERN_ERR "too many cards (max=%d).\n",
4829 MAX_CARDS);
4830 return -EINVAL;
4832 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4833 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4834 "type[%d] %d was supplied as module parameter\n",
4835 m->vendor_name, m->card_name, m->type, HFC_cnt,
4836 type[HFC_cnt] & 0xff);
4837 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4838 "first, to see cards and their types.");
4839 return -EINVAL;
4841 if (debug & DEBUG_HFCMULTI_INIT)
4842 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4843 __func__, m->vendor_name, m->card_name, m->type,
4844 type[HFC_cnt]);
4846 /* allocate card+fifo structure */
4847 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4848 if (!hc) {
4849 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4850 return -ENOMEM;
4852 spin_lock_init(&hc->lock);
4853 hc->mtyp = m;
4854 hc->type = m->type;
4855 hc->ports = m->ports;
4856 hc->id = HFC_cnt;
4857 hc->pcm = pcm[HFC_cnt];
4858 hc->io_mode = iomode[HFC_cnt];
4859 if (dslot[HFC_cnt] < 0) {
4860 hc->dslot = 0;
4861 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4862 "31 B-channels\n");
4863 } if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32) {
4864 hc->dslot = dslot[HFC_cnt];
4865 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4866 "time slot %d\n", dslot[HFC_cnt]);
4867 } else
4868 hc->dslot = 16;
4870 /* set chip specific features */
4871 hc->masterclk = -1;
4872 if (type[HFC_cnt] & 0x100) {
4873 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4874 silence = 0xff; /* ulaw silence */
4875 } else
4876 silence = 0x2a; /* alaw silence */
4877 if (!(type[HFC_cnt] & 0x200))
4878 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4880 if (type[HFC_cnt] & 0x800)
4881 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4882 if (type[HFC_cnt] & 0x1000) {
4883 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4884 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4886 if (type[HFC_cnt] & 0x4000)
4887 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4888 if (type[HFC_cnt] & 0x8000)
4889 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4890 hc->slots = 32;
4891 if (type[HFC_cnt] & 0x10000)
4892 hc->slots = 64;
4893 if (type[HFC_cnt] & 0x20000)
4894 hc->slots = 128;
4895 if (type[HFC_cnt] & 0x80000) {
4896 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4897 hc->wdcount = 0;
4898 hc->wdbyte = V_GPIO_OUT2;
4899 printk(KERN_NOTICE "Watchdog enabled\n");
4902 /* setup pci, hc->slots may change due to PLXSD */
4903 ret_err = setup_pci(hc, pdev, ent);
4904 if (ret_err) {
4905 if (hc == syncmaster)
4906 syncmaster = NULL;
4907 kfree(hc);
4908 return ret_err;
4911 /* crate channels */
4912 for (pt = 0; pt < hc->ports; pt++) {
4913 if (Port_cnt >= MAX_PORTS) {
4914 printk(KERN_ERR "too many ports (max=%d).\n",
4915 MAX_PORTS);
4916 ret_err = -EINVAL;
4917 goto free_card;
4919 if (hc->type == 1)
4920 ret_err = init_e1_port(hc, m);
4921 else
4922 ret_err = init_multi_port(hc, pt);
4923 if (debug & DEBUG_HFCMULTI_INIT)
4924 printk(KERN_DEBUG
4925 "%s: Registering D-channel, card(%d) port(%d)"
4926 "result %d\n",
4927 __func__, HFC_cnt + 1, pt, ret_err);
4929 if (ret_err) {
4930 while (pt) { /* release already registered ports */
4931 pt--;
4932 release_port(hc, hc->chan[(pt << 2) + 2].dch);
4934 goto free_card;
4936 Port_cnt++;
4939 /* disp switches */
4940 switch (m->dip_type) {
4941 case DIP_4S:
4943 * get DIP Setting for beroNet 1S/2S/4S cards
4944 * check if Port Jumper config matches
4945 * module param 'protocol'
4946 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
4947 * GPI 19/23 (R_GPI_IN2))
4949 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
4950 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
4951 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
4953 /* Port mode (TE/NT) jumpers */
4954 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
4956 if (test_bit(HFC_CHIP_B410P, &hc->chip))
4957 pmj = ~pmj & 0xf;
4959 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
4960 m->vendor_name, m->card_name, dips, pmj);
4961 break;
4962 case DIP_8S:
4964 * get DIP Setting for beroNet 8S0+ cards
4966 * enable PCI auxbridge function
4968 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
4969 /* prepare access to auxport */
4970 outw(0x4000, hc->pci_iobase + 4);
4972 * some dummy reads are required to
4973 * read valid DIP switch data
4975 dips = inb(hc->pci_iobase);
4976 dips = inb(hc->pci_iobase);
4977 dips = inb(hc->pci_iobase);
4978 dips = ~inb(hc->pci_iobase) & 0x3F;
4979 outw(0x0, hc->pci_iobase + 4);
4980 /* disable PCI auxbridge function */
4981 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
4982 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4983 m->vendor_name, m->card_name, dips);
4984 break;
4985 case DIP_E1:
4987 * get DIP Setting for beroNet E1 cards
4988 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
4990 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
4991 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
4992 m->vendor_name, m->card_name, dips);
4993 break;
4996 /* add to list */
4997 spin_lock_irqsave(&HFClock, flags);
4998 list_add_tail(&hc->list, &HFClist);
4999 spin_unlock_irqrestore(&HFClock, flags);
5001 /* initialize hardware */
5002 ret_err = init_card(hc);
5003 if (ret_err) {
5004 printk(KERN_ERR "init card returns %d\n", ret_err);
5005 release_card(hc);
5006 return ret_err;
5009 /* start IRQ and return */
5010 spin_lock_irqsave(&hc->lock, flags);
5011 enable_hwirq(hc);
5012 spin_unlock_irqrestore(&hc->lock, flags);
5013 return 0;
5015 free_card:
5016 release_io_hfcmulti(hc);
5017 if (hc == syncmaster)
5018 syncmaster = NULL;
5019 kfree(hc);
5020 return ret_err;
5023 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5025 struct hfc_multi *card = pci_get_drvdata(pdev);
5026 u_long flags;
5028 if (debug)
5029 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5030 "device:%x subvendor:%x subdevice:%x\n",
5031 pdev->vendor, pdev->device,
5032 pdev->subsystem_vendor, pdev->subsystem_device);
5034 if (card) {
5035 spin_lock_irqsave(&HFClock, flags);
5036 release_card(card);
5037 spin_unlock_irqrestore(&HFClock, flags);
5038 } else {
5039 if (debug)
5040 printk(KERN_WARNING "%s: drvdata allready removed\n",
5041 __func__);
5045 #define VENDOR_CCD "Cologne Chip AG"
5046 #define VENDOR_BN "beroNet GmbH"
5047 #define VENDOR_DIG "Digium Inc."
5048 #define VENDOR_JH "Junghanns.NET GmbH"
5049 #define VENDOR_PRIM "PrimuX"
5051 static const struct hm_map hfcm_map[] = {
5052 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5053 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S},
5054 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5055 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5056 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5057 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5058 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, 0, 0},
5059 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5060 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5061 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5062 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5063 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5065 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5066 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5067 HFC_IO_MODE_REGIO},
5068 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5069 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5071 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5072 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5073 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5075 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5076 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5077 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5078 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5080 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5081 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5082 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5084 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5085 HFC_IO_MODE_PLXSD},
5086 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5087 HFC_IO_MODE_PLXSD},
5088 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5089 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5090 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5093 #undef H
5094 #define H(x) ((unsigned long)&hfcm_map[x])
5095 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5097 /* Cards with HFC-4S Chip */
5098 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5099 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5100 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5101 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5102 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5103 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5104 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5105 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5106 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5107 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5108 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5109 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5110 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5111 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5112 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5113 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5114 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5115 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5116 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5117 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5118 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5119 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5120 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5121 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5122 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5123 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5124 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5125 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5127 /* Cards with HFC-8S Chip */
5128 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5129 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5130 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5131 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5132 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5133 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5134 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5135 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)},
5136 /* IOB8ST Recording */
5137 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5138 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5139 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5140 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5141 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5142 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5143 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5144 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5147 /* Cards with HFC-E1 Chip */
5148 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5149 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5150 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5151 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5152 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5153 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5154 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5155 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5157 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5158 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5159 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5160 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5161 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5162 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5164 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5165 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5166 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5167 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5168 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5169 0, 0, 0},
5170 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5171 0, 0, 0},
5172 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5173 0, 0, 0},
5174 {0, }
5176 #undef H
5178 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5180 static int
5181 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5183 struct hm_map *m = (struct hm_map *)ent->driver_data;
5184 int ret;
5186 if (m == NULL) {
5187 if (ent->vendor == PCI_VENDOR_ID_CCD)
5188 if (ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5189 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5190 ent->device == PCI_DEVICE_ID_CCD_HFCE1)
5191 printk(KERN_ERR
5192 "unknown HFC multiport controller "
5193 "(vendor:%x device:%x subvendor:%x "
5194 "subdevice:%x) Please contact the "
5195 "driver maintainer for support.\n",
5196 ent->vendor, ent->device,
5197 ent->subvendor, ent->subdevice);
5198 return -ENODEV;
5200 ret = hfcmulti_init(pdev, ent);
5201 if (ret)
5202 return ret;
5203 HFC_cnt++;
5204 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5205 return 0;
5208 static struct pci_driver hfcmultipci_driver = {
5209 .name = "hfc_multi",
5210 .probe = hfcmulti_probe,
5211 .remove = __devexit_p(hfc_remove_pci),
5212 .id_table = hfmultipci_ids,
5215 static void __exit
5216 HFCmulti_cleanup(void)
5218 struct hfc_multi *card, *next;
5220 /* unload interrupt function symbol */
5221 if (hfc_interrupt)
5222 symbol_put(ztdummy_extern_interrupt);
5223 if (register_interrupt)
5224 symbol_put(ztdummy_register_interrupt);
5225 if (unregister_interrupt) {
5226 if (interrupt_registered) {
5227 interrupt_registered = 0;
5228 unregister_interrupt();
5230 symbol_put(ztdummy_unregister_interrupt);
5233 list_for_each_entry_safe(card, next, &HFClist, list)
5234 release_card(card);
5235 /* get rid of all devices of this driver */
5236 pci_unregister_driver(&hfcmultipci_driver);
5239 static int __init
5240 HFCmulti_init(void)
5242 int err;
5244 #ifdef IRQ_DEBUG
5245 printk(KERN_ERR "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5246 #endif
5248 spin_lock_init(&HFClock);
5249 spin_lock_init(&plx_lock);
5251 if (debug & DEBUG_HFCMULTI_INIT)
5252 printk(KERN_DEBUG "%s: init entered\n", __func__);
5254 #ifdef __BIG_ENDIAN
5255 #error "not running on big endian machines now"
5256 #endif
5257 hfc_interrupt = symbol_get(ztdummy_extern_interrupt);
5258 register_interrupt = symbol_get(ztdummy_register_interrupt);
5259 unregister_interrupt = symbol_get(ztdummy_unregister_interrupt);
5260 printk(KERN_INFO "mISDN: HFC-multi driver %s\n",
5261 hfcmulti_revision);
5263 switch (poll) {
5264 case 0:
5265 poll_timer = 6;
5266 poll = 128;
5267 break;
5269 * wenn dieses break nochmal verschwindet,
5270 * gibt es heisse ohren :-)
5271 * "without the break you will get hot ears ???"
5273 case 8:
5274 poll_timer = 2;
5275 break;
5276 case 16:
5277 poll_timer = 3;
5278 break;
5279 case 32:
5280 poll_timer = 4;
5281 break;
5282 case 64:
5283 poll_timer = 5;
5284 break;
5285 case 128:
5286 poll_timer = 6;
5287 break;
5288 case 256:
5289 poll_timer = 7;
5290 break;
5291 default:
5292 printk(KERN_ERR
5293 "%s: Wrong poll value (%d).\n", __func__, poll);
5294 err = -EINVAL;
5295 return err;
5299 err = pci_register_driver(&hfcmultipci_driver);
5300 if (err < 0) {
5301 printk(KERN_ERR "error registering pci driver: %x\n", err);
5302 if (hfc_interrupt)
5303 symbol_put(ztdummy_extern_interrupt);
5304 if (register_interrupt)
5305 symbol_put(ztdummy_register_interrupt);
5306 if (unregister_interrupt) {
5307 if (interrupt_registered) {
5308 interrupt_registered = 0;
5309 unregister_interrupt();
5311 symbol_put(ztdummy_unregister_interrupt);
5313 return err;
5315 return 0;
5319 module_init(HFCmulti_init);
5320 module_exit(HFCmulti_cleanup);