ARM: H1940: Correct name of the local platform devices for LED and Bluetooth
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-cpu-timers.c
blob5c9dc228747b2dec39a639e74d48f65bc12d5e23
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
16 void update_rlimit_cpu(unsigned long rlim_new)
18 cputime_t cputime = secs_to_cputime(rlim_new);
19 struct signal_struct *const sig = current->signal;
21 if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
22 cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
23 spin_lock_irq(&current->sighand->siglock);
24 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25 spin_unlock_irq(&current->sighand->siglock);
29 static int check_clock(const clockid_t which_clock)
31 int error = 0;
32 struct task_struct *p;
33 const pid_t pid = CPUCLOCK_PID(which_clock);
35 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36 return -EINVAL;
38 if (pid == 0)
39 return 0;
41 read_lock(&tasklist_lock);
42 p = find_task_by_vpid(pid);
43 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
44 same_thread_group(p, current) : thread_group_leader(p))) {
45 error = -EINVAL;
47 read_unlock(&tasklist_lock);
49 return error;
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
55 union cpu_time_count ret;
56 ret.sched = 0; /* high half always zero when .cpu used */
57 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
58 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
59 } else {
60 ret.cpu = timespec_to_cputime(tp);
62 return ret;
65 static void sample_to_timespec(const clockid_t which_clock,
66 union cpu_time_count cpu,
67 struct timespec *tp)
69 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70 *tp = ns_to_timespec(cpu.sched);
71 else
72 cputime_to_timespec(cpu.cpu, tp);
75 static inline int cpu_time_before(const clockid_t which_clock,
76 union cpu_time_count now,
77 union cpu_time_count then)
79 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80 return now.sched < then.sched;
81 } else {
82 return cputime_lt(now.cpu, then.cpu);
85 static inline void cpu_time_add(const clockid_t which_clock,
86 union cpu_time_count *acc,
87 union cpu_time_count val)
89 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90 acc->sched += val.sched;
91 } else {
92 acc->cpu = cputime_add(acc->cpu, val.cpu);
95 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
96 union cpu_time_count a,
97 union cpu_time_count b)
99 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100 a.sched -= b.sched;
101 } else {
102 a.cpu = cputime_sub(a.cpu, b.cpu);
104 return a;
108 * Divide and limit the result to res >= 1
110 * This is necessary to prevent signal delivery starvation, when the result of
111 * the division would be rounded down to 0.
113 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
115 cputime_t res = cputime_div(time, div);
117 return max_t(cputime_t, res, 1);
121 * Update expiry time from increment, and increase overrun count,
122 * given the current clock sample.
124 static void bump_cpu_timer(struct k_itimer *timer,
125 union cpu_time_count now)
127 int i;
129 if (timer->it.cpu.incr.sched == 0)
130 return;
132 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
133 unsigned long long delta, incr;
135 if (now.sched < timer->it.cpu.expires.sched)
136 return;
137 incr = timer->it.cpu.incr.sched;
138 delta = now.sched + incr - timer->it.cpu.expires.sched;
139 /* Don't use (incr*2 < delta), incr*2 might overflow. */
140 for (i = 0; incr < delta - incr; i++)
141 incr = incr << 1;
142 for (; i >= 0; incr >>= 1, i--) {
143 if (delta < incr)
144 continue;
145 timer->it.cpu.expires.sched += incr;
146 timer->it_overrun += 1 << i;
147 delta -= incr;
149 } else {
150 cputime_t delta, incr;
152 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
153 return;
154 incr = timer->it.cpu.incr.cpu;
155 delta = cputime_sub(cputime_add(now.cpu, incr),
156 timer->it.cpu.expires.cpu);
157 /* Don't use (incr*2 < delta), incr*2 might overflow. */
158 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
159 incr = cputime_add(incr, incr);
160 for (; i >= 0; incr = cputime_halve(incr), i--) {
161 if (cputime_lt(delta, incr))
162 continue;
163 timer->it.cpu.expires.cpu =
164 cputime_add(timer->it.cpu.expires.cpu, incr);
165 timer->it_overrun += 1 << i;
166 delta = cputime_sub(delta, incr);
171 static inline cputime_t prof_ticks(struct task_struct *p)
173 return cputime_add(p->utime, p->stime);
175 static inline cputime_t virt_ticks(struct task_struct *p)
177 return p->utime;
180 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
182 int error = check_clock(which_clock);
183 if (!error) {
184 tp->tv_sec = 0;
185 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
186 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
188 * If sched_clock is using a cycle counter, we
189 * don't have any idea of its true resolution
190 * exported, but it is much more than 1s/HZ.
192 tp->tv_nsec = 1;
195 return error;
198 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
201 * You can never reset a CPU clock, but we check for other errors
202 * in the call before failing with EPERM.
204 int error = check_clock(which_clock);
205 if (error == 0) {
206 error = -EPERM;
208 return error;
213 * Sample a per-thread clock for the given task.
215 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
216 union cpu_time_count *cpu)
218 switch (CPUCLOCK_WHICH(which_clock)) {
219 default:
220 return -EINVAL;
221 case CPUCLOCK_PROF:
222 cpu->cpu = prof_ticks(p);
223 break;
224 case CPUCLOCK_VIRT:
225 cpu->cpu = virt_ticks(p);
226 break;
227 case CPUCLOCK_SCHED:
228 cpu->sched = task_sched_runtime(p);
229 break;
231 return 0;
234 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
236 struct sighand_struct *sighand;
237 struct signal_struct *sig;
238 struct task_struct *t;
240 *times = INIT_CPUTIME;
242 rcu_read_lock();
243 sighand = rcu_dereference(tsk->sighand);
244 if (!sighand)
245 goto out;
247 sig = tsk->signal;
249 t = tsk;
250 do {
251 times->utime = cputime_add(times->utime, t->utime);
252 times->stime = cputime_add(times->stime, t->stime);
253 times->sum_exec_runtime += t->se.sum_exec_runtime;
255 t = next_thread(t);
256 } while (t != tsk);
258 times->utime = cputime_add(times->utime, sig->utime);
259 times->stime = cputime_add(times->stime, sig->stime);
260 times->sum_exec_runtime += sig->sum_sched_runtime;
261 out:
262 rcu_read_unlock();
265 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
267 if (cputime_gt(b->utime, a->utime))
268 a->utime = b->utime;
270 if (cputime_gt(b->stime, a->stime))
271 a->stime = b->stime;
273 if (b->sum_exec_runtime > a->sum_exec_runtime)
274 a->sum_exec_runtime = b->sum_exec_runtime;
277 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
279 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
280 struct task_cputime sum;
281 unsigned long flags;
283 spin_lock_irqsave(&cputimer->lock, flags);
284 if (!cputimer->running) {
285 cputimer->running = 1;
287 * The POSIX timer interface allows for absolute time expiry
288 * values through the TIMER_ABSTIME flag, therefore we have
289 * to synchronize the timer to the clock every time we start
290 * it.
292 thread_group_cputime(tsk, &sum);
293 update_gt_cputime(&cputimer->cputime, &sum);
295 *times = cputimer->cputime;
296 spin_unlock_irqrestore(&cputimer->lock, flags);
300 * Sample a process (thread group) clock for the given group_leader task.
301 * Must be called with tasklist_lock held for reading.
303 static int cpu_clock_sample_group(const clockid_t which_clock,
304 struct task_struct *p,
305 union cpu_time_count *cpu)
307 struct task_cputime cputime;
309 switch (CPUCLOCK_WHICH(which_clock)) {
310 default:
311 return -EINVAL;
312 case CPUCLOCK_PROF:
313 thread_group_cputime(p, &cputime);
314 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
315 break;
316 case CPUCLOCK_VIRT:
317 thread_group_cputime(p, &cputime);
318 cpu->cpu = cputime.utime;
319 break;
320 case CPUCLOCK_SCHED:
321 cpu->sched = thread_group_sched_runtime(p);
322 break;
324 return 0;
328 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
330 const pid_t pid = CPUCLOCK_PID(which_clock);
331 int error = -EINVAL;
332 union cpu_time_count rtn;
334 if (pid == 0) {
336 * Special case constant value for our own clocks.
337 * We don't have to do any lookup to find ourselves.
339 if (CPUCLOCK_PERTHREAD(which_clock)) {
341 * Sampling just ourselves we can do with no locking.
343 error = cpu_clock_sample(which_clock,
344 current, &rtn);
345 } else {
346 read_lock(&tasklist_lock);
347 error = cpu_clock_sample_group(which_clock,
348 current, &rtn);
349 read_unlock(&tasklist_lock);
351 } else {
353 * Find the given PID, and validate that the caller
354 * should be able to see it.
356 struct task_struct *p;
357 rcu_read_lock();
358 p = find_task_by_vpid(pid);
359 if (p) {
360 if (CPUCLOCK_PERTHREAD(which_clock)) {
361 if (same_thread_group(p, current)) {
362 error = cpu_clock_sample(which_clock,
363 p, &rtn);
365 } else {
366 read_lock(&tasklist_lock);
367 if (thread_group_leader(p) && p->signal) {
368 error =
369 cpu_clock_sample_group(which_clock,
370 p, &rtn);
372 read_unlock(&tasklist_lock);
375 rcu_read_unlock();
378 if (error)
379 return error;
380 sample_to_timespec(which_clock, rtn, tp);
381 return 0;
386 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
387 * This is called from sys_timer_create with the new timer already locked.
389 int posix_cpu_timer_create(struct k_itimer *new_timer)
391 int ret = 0;
392 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
393 struct task_struct *p;
395 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
396 return -EINVAL;
398 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
399 new_timer->it.cpu.incr.sched = 0;
400 new_timer->it.cpu.expires.sched = 0;
402 read_lock(&tasklist_lock);
403 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
404 if (pid == 0) {
405 p = current;
406 } else {
407 p = find_task_by_vpid(pid);
408 if (p && !same_thread_group(p, current))
409 p = NULL;
411 } else {
412 if (pid == 0) {
413 p = current->group_leader;
414 } else {
415 p = find_task_by_vpid(pid);
416 if (p && !thread_group_leader(p))
417 p = NULL;
420 new_timer->it.cpu.task = p;
421 if (p) {
422 get_task_struct(p);
423 } else {
424 ret = -EINVAL;
426 read_unlock(&tasklist_lock);
428 return ret;
432 * Clean up a CPU-clock timer that is about to be destroyed.
433 * This is called from timer deletion with the timer already locked.
434 * If we return TIMER_RETRY, it's necessary to release the timer's lock
435 * and try again. (This happens when the timer is in the middle of firing.)
437 int posix_cpu_timer_del(struct k_itimer *timer)
439 struct task_struct *p = timer->it.cpu.task;
440 int ret = 0;
442 if (likely(p != NULL)) {
443 read_lock(&tasklist_lock);
444 if (unlikely(p->signal == NULL)) {
446 * We raced with the reaping of the task.
447 * The deletion should have cleared us off the list.
449 BUG_ON(!list_empty(&timer->it.cpu.entry));
450 } else {
451 spin_lock(&p->sighand->siglock);
452 if (timer->it.cpu.firing)
453 ret = TIMER_RETRY;
454 else
455 list_del(&timer->it.cpu.entry);
456 spin_unlock(&p->sighand->siglock);
458 read_unlock(&tasklist_lock);
460 if (!ret)
461 put_task_struct(p);
464 return ret;
468 * Clean out CPU timers still ticking when a thread exited. The task
469 * pointer is cleared, and the expiry time is replaced with the residual
470 * time for later timer_gettime calls to return.
471 * This must be called with the siglock held.
473 static void cleanup_timers(struct list_head *head,
474 cputime_t utime, cputime_t stime,
475 unsigned long long sum_exec_runtime)
477 struct cpu_timer_list *timer, *next;
478 cputime_t ptime = cputime_add(utime, stime);
480 list_for_each_entry_safe(timer, next, head, entry) {
481 list_del_init(&timer->entry);
482 if (cputime_lt(timer->expires.cpu, ptime)) {
483 timer->expires.cpu = cputime_zero;
484 } else {
485 timer->expires.cpu = cputime_sub(timer->expires.cpu,
486 ptime);
490 ++head;
491 list_for_each_entry_safe(timer, next, head, entry) {
492 list_del_init(&timer->entry);
493 if (cputime_lt(timer->expires.cpu, utime)) {
494 timer->expires.cpu = cputime_zero;
495 } else {
496 timer->expires.cpu = cputime_sub(timer->expires.cpu,
497 utime);
501 ++head;
502 list_for_each_entry_safe(timer, next, head, entry) {
503 list_del_init(&timer->entry);
504 if (timer->expires.sched < sum_exec_runtime) {
505 timer->expires.sched = 0;
506 } else {
507 timer->expires.sched -= sum_exec_runtime;
513 * These are both called with the siglock held, when the current thread
514 * is being reaped. When the final (leader) thread in the group is reaped,
515 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
517 void posix_cpu_timers_exit(struct task_struct *tsk)
519 cleanup_timers(tsk->cpu_timers,
520 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
523 void posix_cpu_timers_exit_group(struct task_struct *tsk)
525 struct signal_struct *const sig = tsk->signal;
527 cleanup_timers(tsk->signal->cpu_timers,
528 cputime_add(tsk->utime, sig->utime),
529 cputime_add(tsk->stime, sig->stime),
530 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
533 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
536 * That's all for this thread or process.
537 * We leave our residual in expires to be reported.
539 put_task_struct(timer->it.cpu.task);
540 timer->it.cpu.task = NULL;
541 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
542 timer->it.cpu.expires,
543 now);
546 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
548 return cputime_eq(expires, cputime_zero) ||
549 cputime_gt(expires, new_exp);
552 static inline int expires_le(cputime_t expires, cputime_t new_exp)
554 return !cputime_eq(expires, cputime_zero) &&
555 cputime_le(expires, new_exp);
558 * Insert the timer on the appropriate list before any timers that
559 * expire later. This must be called with the tasklist_lock held
560 * for reading, and interrupts disabled.
562 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
564 struct task_struct *p = timer->it.cpu.task;
565 struct list_head *head, *listpos;
566 struct cpu_timer_list *const nt = &timer->it.cpu;
567 struct cpu_timer_list *next;
568 unsigned long i;
570 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
571 p->cpu_timers : p->signal->cpu_timers);
572 head += CPUCLOCK_WHICH(timer->it_clock);
574 BUG_ON(!irqs_disabled());
575 spin_lock(&p->sighand->siglock);
577 listpos = head;
578 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
579 list_for_each_entry(next, head, entry) {
580 if (next->expires.sched > nt->expires.sched)
581 break;
582 listpos = &next->entry;
584 } else {
585 list_for_each_entry(next, head, entry) {
586 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
587 break;
588 listpos = &next->entry;
591 list_add(&nt->entry, listpos);
593 if (listpos == head) {
595 * We are the new earliest-expiring timer.
596 * If we are a thread timer, there can always
597 * be a process timer telling us to stop earlier.
600 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
601 union cpu_time_count *exp = &nt->expires;
603 switch (CPUCLOCK_WHICH(timer->it_clock)) {
604 default:
605 BUG();
606 case CPUCLOCK_PROF:
607 if (expires_gt(p->cputime_expires.prof_exp,
608 exp->cpu))
609 p->cputime_expires.prof_exp = exp->cpu;
610 break;
611 case CPUCLOCK_VIRT:
612 if (expires_gt(p->cputime_expires.virt_exp,
613 exp->cpu))
614 p->cputime_expires.virt_exp = exp->cpu;
615 break;
616 case CPUCLOCK_SCHED:
617 if (p->cputime_expires.sched_exp == 0 ||
618 p->cputime_expires.sched_exp > exp->sched)
619 p->cputime_expires.sched_exp =
620 exp->sched;
621 break;
623 } else {
624 struct signal_struct *const sig = p->signal;
625 union cpu_time_count *exp = &timer->it.cpu.expires;
628 * For a process timer, set the cached expiration time.
630 switch (CPUCLOCK_WHICH(timer->it_clock)) {
631 default:
632 BUG();
633 case CPUCLOCK_VIRT:
634 if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
635 exp->cpu))
636 break;
637 sig->cputime_expires.virt_exp = exp->cpu;
638 break;
639 case CPUCLOCK_PROF:
640 if (expires_le(sig->it[CPUCLOCK_PROF].expires,
641 exp->cpu))
642 break;
643 i = sig->rlim[RLIMIT_CPU].rlim_cur;
644 if (i != RLIM_INFINITY &&
645 i <= cputime_to_secs(exp->cpu))
646 break;
647 sig->cputime_expires.prof_exp = exp->cpu;
648 break;
649 case CPUCLOCK_SCHED:
650 sig->cputime_expires.sched_exp = exp->sched;
651 break;
656 spin_unlock(&p->sighand->siglock);
660 * The timer is locked, fire it and arrange for its reload.
662 static void cpu_timer_fire(struct k_itimer *timer)
664 if (unlikely(timer->sigq == NULL)) {
666 * This a special case for clock_nanosleep,
667 * not a normal timer from sys_timer_create.
669 wake_up_process(timer->it_process);
670 timer->it.cpu.expires.sched = 0;
671 } else if (timer->it.cpu.incr.sched == 0) {
673 * One-shot timer. Clear it as soon as it's fired.
675 posix_timer_event(timer, 0);
676 timer->it.cpu.expires.sched = 0;
677 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
679 * The signal did not get queued because the signal
680 * was ignored, so we won't get any callback to
681 * reload the timer. But we need to keep it
682 * ticking in case the signal is deliverable next time.
684 posix_cpu_timer_schedule(timer);
689 * Sample a process (thread group) timer for the given group_leader task.
690 * Must be called with tasklist_lock held for reading.
692 static int cpu_timer_sample_group(const clockid_t which_clock,
693 struct task_struct *p,
694 union cpu_time_count *cpu)
696 struct task_cputime cputime;
698 thread_group_cputimer(p, &cputime);
699 switch (CPUCLOCK_WHICH(which_clock)) {
700 default:
701 return -EINVAL;
702 case CPUCLOCK_PROF:
703 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
704 break;
705 case CPUCLOCK_VIRT:
706 cpu->cpu = cputime.utime;
707 break;
708 case CPUCLOCK_SCHED:
709 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
710 break;
712 return 0;
716 * Guts of sys_timer_settime for CPU timers.
717 * This is called with the timer locked and interrupts disabled.
718 * If we return TIMER_RETRY, it's necessary to release the timer's lock
719 * and try again. (This happens when the timer is in the middle of firing.)
721 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
722 struct itimerspec *new, struct itimerspec *old)
724 struct task_struct *p = timer->it.cpu.task;
725 union cpu_time_count old_expires, new_expires, val;
726 int ret;
728 if (unlikely(p == NULL)) {
730 * Timer refers to a dead task's clock.
732 return -ESRCH;
735 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
737 read_lock(&tasklist_lock);
739 * We need the tasklist_lock to protect against reaping that
740 * clears p->signal. If p has just been reaped, we can no
741 * longer get any information about it at all.
743 if (unlikely(p->signal == NULL)) {
744 read_unlock(&tasklist_lock);
745 put_task_struct(p);
746 timer->it.cpu.task = NULL;
747 return -ESRCH;
751 * Disarm any old timer after extracting its expiry time.
753 BUG_ON(!irqs_disabled());
755 ret = 0;
756 spin_lock(&p->sighand->siglock);
757 old_expires = timer->it.cpu.expires;
758 if (unlikely(timer->it.cpu.firing)) {
759 timer->it.cpu.firing = -1;
760 ret = TIMER_RETRY;
761 } else
762 list_del_init(&timer->it.cpu.entry);
763 spin_unlock(&p->sighand->siglock);
766 * We need to sample the current value to convert the new
767 * value from to relative and absolute, and to convert the
768 * old value from absolute to relative. To set a process
769 * timer, we need a sample to balance the thread expiry
770 * times (in arm_timer). With an absolute time, we must
771 * check if it's already passed. In short, we need a sample.
773 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
774 cpu_clock_sample(timer->it_clock, p, &val);
775 } else {
776 cpu_timer_sample_group(timer->it_clock, p, &val);
779 if (old) {
780 if (old_expires.sched == 0) {
781 old->it_value.tv_sec = 0;
782 old->it_value.tv_nsec = 0;
783 } else {
785 * Update the timer in case it has
786 * overrun already. If it has,
787 * we'll report it as having overrun
788 * and with the next reloaded timer
789 * already ticking, though we are
790 * swallowing that pending
791 * notification here to install the
792 * new setting.
794 bump_cpu_timer(timer, val);
795 if (cpu_time_before(timer->it_clock, val,
796 timer->it.cpu.expires)) {
797 old_expires = cpu_time_sub(
798 timer->it_clock,
799 timer->it.cpu.expires, val);
800 sample_to_timespec(timer->it_clock,
801 old_expires,
802 &old->it_value);
803 } else {
804 old->it_value.tv_nsec = 1;
805 old->it_value.tv_sec = 0;
810 if (unlikely(ret)) {
812 * We are colliding with the timer actually firing.
813 * Punt after filling in the timer's old value, and
814 * disable this firing since we are already reporting
815 * it as an overrun (thanks to bump_cpu_timer above).
817 read_unlock(&tasklist_lock);
818 goto out;
821 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
822 cpu_time_add(timer->it_clock, &new_expires, val);
826 * Install the new expiry time (or zero).
827 * For a timer with no notification action, we don't actually
828 * arm the timer (we'll just fake it for timer_gettime).
830 timer->it.cpu.expires = new_expires;
831 if (new_expires.sched != 0 &&
832 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
833 cpu_time_before(timer->it_clock, val, new_expires)) {
834 arm_timer(timer, val);
837 read_unlock(&tasklist_lock);
840 * Install the new reload setting, and
841 * set up the signal and overrun bookkeeping.
843 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
844 &new->it_interval);
847 * This acts as a modification timestamp for the timer,
848 * so any automatic reload attempt will punt on seeing
849 * that we have reset the timer manually.
851 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
852 ~REQUEUE_PENDING;
853 timer->it_overrun_last = 0;
854 timer->it_overrun = -1;
856 if (new_expires.sched != 0 &&
857 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
858 !cpu_time_before(timer->it_clock, val, new_expires)) {
860 * The designated time already passed, so we notify
861 * immediately, even if the thread never runs to
862 * accumulate more time on this clock.
864 cpu_timer_fire(timer);
867 ret = 0;
868 out:
869 if (old) {
870 sample_to_timespec(timer->it_clock,
871 timer->it.cpu.incr, &old->it_interval);
873 return ret;
876 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
878 union cpu_time_count now;
879 struct task_struct *p = timer->it.cpu.task;
880 int clear_dead;
883 * Easy part: convert the reload time.
885 sample_to_timespec(timer->it_clock,
886 timer->it.cpu.incr, &itp->it_interval);
888 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
889 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
890 return;
893 if (unlikely(p == NULL)) {
895 * This task already died and the timer will never fire.
896 * In this case, expires is actually the dead value.
898 dead:
899 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
900 &itp->it_value);
901 return;
905 * Sample the clock to take the difference with the expiry time.
907 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
908 cpu_clock_sample(timer->it_clock, p, &now);
909 clear_dead = p->exit_state;
910 } else {
911 read_lock(&tasklist_lock);
912 if (unlikely(p->signal == NULL)) {
914 * The process has been reaped.
915 * We can't even collect a sample any more.
916 * Call the timer disarmed, nothing else to do.
918 put_task_struct(p);
919 timer->it.cpu.task = NULL;
920 timer->it.cpu.expires.sched = 0;
921 read_unlock(&tasklist_lock);
922 goto dead;
923 } else {
924 cpu_timer_sample_group(timer->it_clock, p, &now);
925 clear_dead = (unlikely(p->exit_state) &&
926 thread_group_empty(p));
928 read_unlock(&tasklist_lock);
931 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
932 if (timer->it.cpu.incr.sched == 0 &&
933 cpu_time_before(timer->it_clock,
934 timer->it.cpu.expires, now)) {
936 * Do-nothing timer expired and has no reload,
937 * so it's as if it was never set.
939 timer->it.cpu.expires.sched = 0;
940 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
941 return;
944 * Account for any expirations and reloads that should
945 * have happened.
947 bump_cpu_timer(timer, now);
950 if (unlikely(clear_dead)) {
952 * We've noticed that the thread is dead, but
953 * not yet reaped. Take this opportunity to
954 * drop our task ref.
956 clear_dead_task(timer, now);
957 goto dead;
960 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
961 sample_to_timespec(timer->it_clock,
962 cpu_time_sub(timer->it_clock,
963 timer->it.cpu.expires, now),
964 &itp->it_value);
965 } else {
967 * The timer should have expired already, but the firing
968 * hasn't taken place yet. Say it's just about to expire.
970 itp->it_value.tv_nsec = 1;
971 itp->it_value.tv_sec = 0;
976 * Check for any per-thread CPU timers that have fired and move them off
977 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
978 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
980 static void check_thread_timers(struct task_struct *tsk,
981 struct list_head *firing)
983 int maxfire;
984 struct list_head *timers = tsk->cpu_timers;
985 struct signal_struct *const sig = tsk->signal;
987 maxfire = 20;
988 tsk->cputime_expires.prof_exp = cputime_zero;
989 while (!list_empty(timers)) {
990 struct cpu_timer_list *t = list_first_entry(timers,
991 struct cpu_timer_list,
992 entry);
993 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
994 tsk->cputime_expires.prof_exp = t->expires.cpu;
995 break;
997 t->firing = 1;
998 list_move_tail(&t->entry, firing);
1001 ++timers;
1002 maxfire = 20;
1003 tsk->cputime_expires.virt_exp = cputime_zero;
1004 while (!list_empty(timers)) {
1005 struct cpu_timer_list *t = list_first_entry(timers,
1006 struct cpu_timer_list,
1007 entry);
1008 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1009 tsk->cputime_expires.virt_exp = t->expires.cpu;
1010 break;
1012 t->firing = 1;
1013 list_move_tail(&t->entry, firing);
1016 ++timers;
1017 maxfire = 20;
1018 tsk->cputime_expires.sched_exp = 0;
1019 while (!list_empty(timers)) {
1020 struct cpu_timer_list *t = list_first_entry(timers,
1021 struct cpu_timer_list,
1022 entry);
1023 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1024 tsk->cputime_expires.sched_exp = t->expires.sched;
1025 break;
1027 t->firing = 1;
1028 list_move_tail(&t->entry, firing);
1032 * Check for the special case thread timers.
1034 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1035 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1036 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1038 if (hard != RLIM_INFINITY &&
1039 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1041 * At the hard limit, we just die.
1042 * No need to calculate anything else now.
1044 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1045 return;
1047 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1049 * At the soft limit, send a SIGXCPU every second.
1051 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1052 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1053 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1054 USEC_PER_SEC;
1056 printk(KERN_INFO
1057 "RT Watchdog Timeout: %s[%d]\n",
1058 tsk->comm, task_pid_nr(tsk));
1059 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1064 static void stop_process_timers(struct task_struct *tsk)
1066 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1067 unsigned long flags;
1069 if (!cputimer->running)
1070 return;
1072 spin_lock_irqsave(&cputimer->lock, flags);
1073 cputimer->running = 0;
1074 spin_unlock_irqrestore(&cputimer->lock, flags);
1077 static u32 onecputick;
1079 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1080 cputime_t *expires, cputime_t cur_time, int signo)
1082 if (cputime_eq(it->expires, cputime_zero))
1083 return;
1085 if (cputime_ge(cur_time, it->expires)) {
1086 if (!cputime_eq(it->incr, cputime_zero)) {
1087 it->expires = cputime_add(it->expires, it->incr);
1088 it->error += it->incr_error;
1089 if (it->error >= onecputick) {
1090 it->expires = cputime_sub(it->expires,
1091 cputime_one_jiffy);
1092 it->error -= onecputick;
1094 } else {
1095 it->expires = cputime_zero;
1098 trace_itimer_expire(signo == SIGPROF ?
1099 ITIMER_PROF : ITIMER_VIRTUAL,
1100 tsk->signal->leader_pid, cur_time);
1101 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1104 if (!cputime_eq(it->expires, cputime_zero) &&
1105 (cputime_eq(*expires, cputime_zero) ||
1106 cputime_lt(it->expires, *expires))) {
1107 *expires = it->expires;
1112 * Check for any per-thread CPU timers that have fired and move them
1113 * off the tsk->*_timers list onto the firing list. Per-thread timers
1114 * have already been taken off.
1116 static void check_process_timers(struct task_struct *tsk,
1117 struct list_head *firing)
1119 int maxfire;
1120 struct signal_struct *const sig = tsk->signal;
1121 cputime_t utime, ptime, virt_expires, prof_expires;
1122 unsigned long long sum_sched_runtime, sched_expires;
1123 struct list_head *timers = sig->cpu_timers;
1124 struct task_cputime cputime;
1127 * Don't sample the current process CPU clocks if there are no timers.
1129 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1130 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1131 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1132 list_empty(&timers[CPUCLOCK_VIRT]) &&
1133 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
1134 list_empty(&timers[CPUCLOCK_SCHED])) {
1135 stop_process_timers(tsk);
1136 return;
1140 * Collect the current process totals.
1142 thread_group_cputimer(tsk, &cputime);
1143 utime = cputime.utime;
1144 ptime = cputime_add(utime, cputime.stime);
1145 sum_sched_runtime = cputime.sum_exec_runtime;
1146 maxfire = 20;
1147 prof_expires = cputime_zero;
1148 while (!list_empty(timers)) {
1149 struct cpu_timer_list *tl = list_first_entry(timers,
1150 struct cpu_timer_list,
1151 entry);
1152 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1153 prof_expires = tl->expires.cpu;
1154 break;
1156 tl->firing = 1;
1157 list_move_tail(&tl->entry, firing);
1160 ++timers;
1161 maxfire = 20;
1162 virt_expires = cputime_zero;
1163 while (!list_empty(timers)) {
1164 struct cpu_timer_list *tl = list_first_entry(timers,
1165 struct cpu_timer_list,
1166 entry);
1167 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1168 virt_expires = tl->expires.cpu;
1169 break;
1171 tl->firing = 1;
1172 list_move_tail(&tl->entry, firing);
1175 ++timers;
1176 maxfire = 20;
1177 sched_expires = 0;
1178 while (!list_empty(timers)) {
1179 struct cpu_timer_list *tl = list_first_entry(timers,
1180 struct cpu_timer_list,
1181 entry);
1182 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1183 sched_expires = tl->expires.sched;
1184 break;
1186 tl->firing = 1;
1187 list_move_tail(&tl->entry, firing);
1191 * Check for the special case process timers.
1193 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1194 SIGPROF);
1195 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1196 SIGVTALRM);
1198 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1199 unsigned long psecs = cputime_to_secs(ptime);
1200 cputime_t x;
1201 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1203 * At the hard limit, we just die.
1204 * No need to calculate anything else now.
1206 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1207 return;
1209 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1211 * At the soft limit, send a SIGXCPU every second.
1213 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1214 if (sig->rlim[RLIMIT_CPU].rlim_cur
1215 < sig->rlim[RLIMIT_CPU].rlim_max) {
1216 sig->rlim[RLIMIT_CPU].rlim_cur++;
1219 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1220 if (cputime_eq(prof_expires, cputime_zero) ||
1221 cputime_lt(x, prof_expires)) {
1222 prof_expires = x;
1226 if (!cputime_eq(prof_expires, cputime_zero) &&
1227 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1228 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1229 sig->cputime_expires.prof_exp = prof_expires;
1230 if (!cputime_eq(virt_expires, cputime_zero) &&
1231 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1232 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1233 sig->cputime_expires.virt_exp = virt_expires;
1234 if (sched_expires != 0 &&
1235 (sig->cputime_expires.sched_exp == 0 ||
1236 sig->cputime_expires.sched_exp > sched_expires))
1237 sig->cputime_expires.sched_exp = sched_expires;
1241 * This is called from the signal code (via do_schedule_next_timer)
1242 * when the last timer signal was delivered and we have to reload the timer.
1244 void posix_cpu_timer_schedule(struct k_itimer *timer)
1246 struct task_struct *p = timer->it.cpu.task;
1247 union cpu_time_count now;
1249 if (unlikely(p == NULL))
1251 * The task was cleaned up already, no future firings.
1253 goto out;
1256 * Fetch the current sample and update the timer's expiry time.
1258 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1259 cpu_clock_sample(timer->it_clock, p, &now);
1260 bump_cpu_timer(timer, now);
1261 if (unlikely(p->exit_state)) {
1262 clear_dead_task(timer, now);
1263 goto out;
1265 read_lock(&tasklist_lock); /* arm_timer needs it. */
1266 } else {
1267 read_lock(&tasklist_lock);
1268 if (unlikely(p->signal == NULL)) {
1270 * The process has been reaped.
1271 * We can't even collect a sample any more.
1273 put_task_struct(p);
1274 timer->it.cpu.task = p = NULL;
1275 timer->it.cpu.expires.sched = 0;
1276 goto out_unlock;
1277 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1279 * We've noticed that the thread is dead, but
1280 * not yet reaped. Take this opportunity to
1281 * drop our task ref.
1283 clear_dead_task(timer, now);
1284 goto out_unlock;
1286 cpu_timer_sample_group(timer->it_clock, p, &now);
1287 bump_cpu_timer(timer, now);
1288 /* Leave the tasklist_lock locked for the call below. */
1292 * Now re-arm for the new expiry time.
1294 arm_timer(timer, now);
1296 out_unlock:
1297 read_unlock(&tasklist_lock);
1299 out:
1300 timer->it_overrun_last = timer->it_overrun;
1301 timer->it_overrun = -1;
1302 ++timer->it_requeue_pending;
1306 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1308 * @cputime: The struct to compare.
1310 * Checks @cputime to see if all fields are zero. Returns true if all fields
1311 * are zero, false if any field is nonzero.
1313 static inline int task_cputime_zero(const struct task_cputime *cputime)
1315 if (cputime_eq(cputime->utime, cputime_zero) &&
1316 cputime_eq(cputime->stime, cputime_zero) &&
1317 cputime->sum_exec_runtime == 0)
1318 return 1;
1319 return 0;
1323 * task_cputime_expired - Compare two task_cputime entities.
1325 * @sample: The task_cputime structure to be checked for expiration.
1326 * @expires: Expiration times, against which @sample will be checked.
1328 * Checks @sample against @expires to see if any field of @sample has expired.
1329 * Returns true if any field of the former is greater than the corresponding
1330 * field of the latter if the latter field is set. Otherwise returns false.
1332 static inline int task_cputime_expired(const struct task_cputime *sample,
1333 const struct task_cputime *expires)
1335 if (!cputime_eq(expires->utime, cputime_zero) &&
1336 cputime_ge(sample->utime, expires->utime))
1337 return 1;
1338 if (!cputime_eq(expires->stime, cputime_zero) &&
1339 cputime_ge(cputime_add(sample->utime, sample->stime),
1340 expires->stime))
1341 return 1;
1342 if (expires->sum_exec_runtime != 0 &&
1343 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1344 return 1;
1345 return 0;
1349 * fastpath_timer_check - POSIX CPU timers fast path.
1351 * @tsk: The task (thread) being checked.
1353 * Check the task and thread group timers. If both are zero (there are no
1354 * timers set) return false. Otherwise snapshot the task and thread group
1355 * timers and compare them with the corresponding expiration times. Return
1356 * true if a timer has expired, else return false.
1358 static inline int fastpath_timer_check(struct task_struct *tsk)
1360 struct signal_struct *sig;
1362 /* tsk == current, ensure it is safe to use ->signal/sighand */
1363 if (unlikely(tsk->exit_state))
1364 return 0;
1366 if (!task_cputime_zero(&tsk->cputime_expires)) {
1367 struct task_cputime task_sample = {
1368 .utime = tsk->utime,
1369 .stime = tsk->stime,
1370 .sum_exec_runtime = tsk->se.sum_exec_runtime
1373 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1374 return 1;
1377 sig = tsk->signal;
1378 if (!task_cputime_zero(&sig->cputime_expires)) {
1379 struct task_cputime group_sample;
1381 thread_group_cputimer(tsk, &group_sample);
1382 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1383 return 1;
1386 return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
1390 * This is called from the timer interrupt handler. The irq handler has
1391 * already updated our counts. We need to check if any timers fire now.
1392 * Interrupts are disabled.
1394 void run_posix_cpu_timers(struct task_struct *tsk)
1396 LIST_HEAD(firing);
1397 struct k_itimer *timer, *next;
1399 BUG_ON(!irqs_disabled());
1402 * The fast path checks that there are no expired thread or thread
1403 * group timers. If that's so, just return.
1405 if (!fastpath_timer_check(tsk))
1406 return;
1408 spin_lock(&tsk->sighand->siglock);
1410 * Here we take off tsk->signal->cpu_timers[N] and
1411 * tsk->cpu_timers[N] all the timers that are firing, and
1412 * put them on the firing list.
1414 check_thread_timers(tsk, &firing);
1415 check_process_timers(tsk, &firing);
1418 * We must release these locks before taking any timer's lock.
1419 * There is a potential race with timer deletion here, as the
1420 * siglock now protects our private firing list. We have set
1421 * the firing flag in each timer, so that a deletion attempt
1422 * that gets the timer lock before we do will give it up and
1423 * spin until we've taken care of that timer below.
1425 spin_unlock(&tsk->sighand->siglock);
1428 * Now that all the timers on our list have the firing flag,
1429 * noone will touch their list entries but us. We'll take
1430 * each timer's lock before clearing its firing flag, so no
1431 * timer call will interfere.
1433 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1434 int cpu_firing;
1436 spin_lock(&timer->it_lock);
1437 list_del_init(&timer->it.cpu.entry);
1438 cpu_firing = timer->it.cpu.firing;
1439 timer->it.cpu.firing = 0;
1441 * The firing flag is -1 if we collided with a reset
1442 * of the timer, which already reported this
1443 * almost-firing as an overrun. So don't generate an event.
1445 if (likely(cpu_firing >= 0))
1446 cpu_timer_fire(timer);
1447 spin_unlock(&timer->it_lock);
1452 * Set one of the process-wide special case CPU timers.
1453 * The tsk->sighand->siglock must be held by the caller.
1454 * The *newval argument is relative and we update it to be absolute, *oldval
1455 * is absolute and we update it to be relative.
1457 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1458 cputime_t *newval, cputime_t *oldval)
1460 union cpu_time_count now;
1461 struct list_head *head;
1463 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1464 cpu_timer_sample_group(clock_idx, tsk, &now);
1466 if (oldval) {
1467 if (!cputime_eq(*oldval, cputime_zero)) {
1468 if (cputime_le(*oldval, now.cpu)) {
1469 /* Just about to fire. */
1470 *oldval = cputime_one_jiffy;
1471 } else {
1472 *oldval = cputime_sub(*oldval, now.cpu);
1476 if (cputime_eq(*newval, cputime_zero))
1477 return;
1478 *newval = cputime_add(*newval, now.cpu);
1481 * If the RLIMIT_CPU timer will expire before the
1482 * ITIMER_PROF timer, we have nothing else to do.
1484 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1485 < cputime_to_secs(*newval))
1486 return;
1490 * Check whether there are any process timers already set to fire
1491 * before this one. If so, we don't have anything more to do.
1493 head = &tsk->signal->cpu_timers[clock_idx];
1494 if (list_empty(head) ||
1495 cputime_ge(list_first_entry(head,
1496 struct cpu_timer_list, entry)->expires.cpu,
1497 *newval)) {
1498 switch (clock_idx) {
1499 case CPUCLOCK_PROF:
1500 tsk->signal->cputime_expires.prof_exp = *newval;
1501 break;
1502 case CPUCLOCK_VIRT:
1503 tsk->signal->cputime_expires.virt_exp = *newval;
1504 break;
1509 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1510 struct timespec *rqtp, struct itimerspec *it)
1512 struct k_itimer timer;
1513 int error;
1516 * Set up a temporary timer and then wait for it to go off.
1518 memset(&timer, 0, sizeof timer);
1519 spin_lock_init(&timer.it_lock);
1520 timer.it_clock = which_clock;
1521 timer.it_overrun = -1;
1522 error = posix_cpu_timer_create(&timer);
1523 timer.it_process = current;
1524 if (!error) {
1525 static struct itimerspec zero_it;
1527 memset(it, 0, sizeof *it);
1528 it->it_value = *rqtp;
1530 spin_lock_irq(&timer.it_lock);
1531 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1532 if (error) {
1533 spin_unlock_irq(&timer.it_lock);
1534 return error;
1537 while (!signal_pending(current)) {
1538 if (timer.it.cpu.expires.sched == 0) {
1540 * Our timer fired and was reset.
1542 spin_unlock_irq(&timer.it_lock);
1543 return 0;
1547 * Block until cpu_timer_fire (or a signal) wakes us.
1549 __set_current_state(TASK_INTERRUPTIBLE);
1550 spin_unlock_irq(&timer.it_lock);
1551 schedule();
1552 spin_lock_irq(&timer.it_lock);
1556 * We were interrupted by a signal.
1558 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1559 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1560 spin_unlock_irq(&timer.it_lock);
1562 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1564 * It actually did fire already.
1566 return 0;
1569 error = -ERESTART_RESTARTBLOCK;
1572 return error;
1575 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1576 struct timespec *rqtp, struct timespec __user *rmtp)
1578 struct restart_block *restart_block =
1579 &current_thread_info()->restart_block;
1580 struct itimerspec it;
1581 int error;
1584 * Diagnose required errors first.
1586 if (CPUCLOCK_PERTHREAD(which_clock) &&
1587 (CPUCLOCK_PID(which_clock) == 0 ||
1588 CPUCLOCK_PID(which_clock) == current->pid))
1589 return -EINVAL;
1591 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1593 if (error == -ERESTART_RESTARTBLOCK) {
1595 if (flags & TIMER_ABSTIME)
1596 return -ERESTARTNOHAND;
1598 * Report back to the user the time still remaining.
1600 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1601 return -EFAULT;
1603 restart_block->fn = posix_cpu_nsleep_restart;
1604 restart_block->arg0 = which_clock;
1605 restart_block->arg1 = (unsigned long) rmtp;
1606 restart_block->arg2 = rqtp->tv_sec;
1607 restart_block->arg3 = rqtp->tv_nsec;
1609 return error;
1612 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1614 clockid_t which_clock = restart_block->arg0;
1615 struct timespec __user *rmtp;
1616 struct timespec t;
1617 struct itimerspec it;
1618 int error;
1620 rmtp = (struct timespec __user *) restart_block->arg1;
1621 t.tv_sec = restart_block->arg2;
1622 t.tv_nsec = restart_block->arg3;
1624 restart_block->fn = do_no_restart_syscall;
1625 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1627 if (error == -ERESTART_RESTARTBLOCK) {
1629 * Report back to the user the time still remaining.
1631 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1632 return -EFAULT;
1634 restart_block->fn = posix_cpu_nsleep_restart;
1635 restart_block->arg0 = which_clock;
1636 restart_block->arg1 = (unsigned long) rmtp;
1637 restart_block->arg2 = t.tv_sec;
1638 restart_block->arg3 = t.tv_nsec;
1640 return error;
1645 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1646 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1648 static int process_cpu_clock_getres(const clockid_t which_clock,
1649 struct timespec *tp)
1651 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1653 static int process_cpu_clock_get(const clockid_t which_clock,
1654 struct timespec *tp)
1656 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1658 static int process_cpu_timer_create(struct k_itimer *timer)
1660 timer->it_clock = PROCESS_CLOCK;
1661 return posix_cpu_timer_create(timer);
1663 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1664 struct timespec *rqtp,
1665 struct timespec __user *rmtp)
1667 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1669 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1671 return -EINVAL;
1673 static int thread_cpu_clock_getres(const clockid_t which_clock,
1674 struct timespec *tp)
1676 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1678 static int thread_cpu_clock_get(const clockid_t which_clock,
1679 struct timespec *tp)
1681 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1683 static int thread_cpu_timer_create(struct k_itimer *timer)
1685 timer->it_clock = THREAD_CLOCK;
1686 return posix_cpu_timer_create(timer);
1688 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1689 struct timespec *rqtp, struct timespec __user *rmtp)
1691 return -EINVAL;
1693 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1695 return -EINVAL;
1698 static __init int init_posix_cpu_timers(void)
1700 struct k_clock process = {
1701 .clock_getres = process_cpu_clock_getres,
1702 .clock_get = process_cpu_clock_get,
1703 .clock_set = do_posix_clock_nosettime,
1704 .timer_create = process_cpu_timer_create,
1705 .nsleep = process_cpu_nsleep,
1706 .nsleep_restart = process_cpu_nsleep_restart,
1708 struct k_clock thread = {
1709 .clock_getres = thread_cpu_clock_getres,
1710 .clock_get = thread_cpu_clock_get,
1711 .clock_set = do_posix_clock_nosettime,
1712 .timer_create = thread_cpu_timer_create,
1713 .nsleep = thread_cpu_nsleep,
1714 .nsleep_restart = thread_cpu_nsleep_restart,
1716 struct timespec ts;
1718 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1719 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1721 cputime_to_timespec(cputime_one_jiffy, &ts);
1722 onecputick = ts.tv_nsec;
1723 WARN_ON(ts.tv_sec != 0);
1725 return 0;
1727 __initcall(init_posix_cpu_timers);