2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/platform_device.h>
63 #include <linux/ata_platform.h>
64 #include <linux/mbus.h>
65 #include <linux/bitops.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_cmnd.h>
68 #include <scsi/scsi_device.h>
69 #include <linux/libata.h>
71 #define DRV_NAME "sata_mv"
72 #define DRV_VERSION "1.28"
80 module_param(msi
, int, S_IRUGO
);
81 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
84 static int irq_coalescing_io_count
;
85 module_param(irq_coalescing_io_count
, int, S_IRUGO
);
86 MODULE_PARM_DESC(irq_coalescing_io_count
,
87 "IRQ coalescing I/O count threshold (0..255)");
89 static int irq_coalescing_usecs
;
90 module_param(irq_coalescing_usecs
, int, S_IRUGO
);
91 MODULE_PARM_DESC(irq_coalescing_usecs
,
92 "IRQ coalescing time threshold in usecs");
95 /* BAR's are enumerated in terms of pci_resource_start() terms */
96 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
97 MV_IO_BAR
= 2, /* offset 0x18: IO space */
98 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
100 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
101 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
103 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
104 COAL_CLOCKS_PER_USEC
= 150, /* for calculating COAL_TIMEs */
105 MAX_COAL_TIME_THRESHOLD
= ((1 << 24) - 1), /* internal clocks count */
106 MAX_COAL_IO_COUNT
= 255, /* completed I/O count */
111 * Per-chip ("all ports") interrupt coalescing feature.
112 * This is only for GEN_II / GEN_IIE hardware.
114 * Coalescing defers the interrupt until either the IO_THRESHOLD
115 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
117 COAL_REG_BASE
= 0x18000,
118 IRQ_COAL_CAUSE
= (COAL_REG_BASE
+ 0x08),
119 ALL_PORTS_COAL_IRQ
= (1 << 4), /* all ports irq event */
121 IRQ_COAL_IO_THRESHOLD
= (COAL_REG_BASE
+ 0xcc),
122 IRQ_COAL_TIME_THRESHOLD
= (COAL_REG_BASE
+ 0xd0),
125 * Registers for the (unused here) transaction coalescing feature:
127 TRAN_COAL_CAUSE_LO
= (COAL_REG_BASE
+ 0x88),
128 TRAN_COAL_CAUSE_HI
= (COAL_REG_BASE
+ 0x8c),
130 SATAHC0_REG_BASE
= 0x20000,
132 GPIO_PORT_CTL
= 0x104f0,
135 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
136 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
137 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
138 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
141 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
143 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
144 * CRPB needs alignment on a 256B boundary. Size == 256B
145 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
147 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
148 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
150 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
152 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
153 MV_PORT_HC_SHIFT
= 2,
154 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
155 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
156 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
159 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
161 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
162 ATA_FLAG_MMIO
| ATA_FLAG_PIO_POLLING
,
164 MV_GEN_I_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NO_ATAPI
,
166 MV_GEN_II_FLAGS
= MV_COMMON_FLAGS
| ATA_FLAG_NCQ
|
167 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
,
169 MV_GEN_IIE_FLAGS
= MV_GEN_II_FLAGS
| ATA_FLAG_AN
,
171 CRQB_FLAG_READ
= (1 << 0),
173 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
174 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
175 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
176 CRQB_CMD_ADDR_SHIFT
= 8,
177 CRQB_CMD_CS
= (0x2 << 11),
178 CRQB_CMD_LAST
= (1 << 15),
180 CRPB_FLAG_STATUS_SHIFT
= 8,
181 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
182 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
184 EPRD_FLAG_END_OF_TBL
= (1 << 31),
186 /* PCI interface registers */
188 MV_PCI_COMMAND
= 0xc00,
189 MV_PCI_COMMAND_MWRCOM
= (1 << 4), /* PCI Master Write Combining */
190 MV_PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
192 PCI_MAIN_CMD_STS
= 0xd30,
193 STOP_PCI_MASTER
= (1 << 2),
194 PCI_MASTER_EMPTY
= (1 << 3),
195 GLOB_SFT_RST
= (1 << 4),
198 MV_PCI_MODE_MASK
= 0x30,
200 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
201 MV_PCI_DISC_TIMER
= 0xd04,
202 MV_PCI_MSI_TRIGGER
= 0xc38,
203 MV_PCI_SERR_MASK
= 0xc28,
204 MV_PCI_XBAR_TMOUT
= 0x1d04,
205 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
206 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
207 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
208 MV_PCI_ERR_COMMAND
= 0x1d50,
210 PCI_IRQ_CAUSE
= 0x1d58,
211 PCI_IRQ_MASK
= 0x1d5c,
212 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
214 PCIE_IRQ_CAUSE
= 0x1900,
215 PCIE_IRQ_MASK
= 0x1910,
216 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
218 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
219 PCI_HC_MAIN_IRQ_CAUSE
= 0x1d60,
220 PCI_HC_MAIN_IRQ_MASK
= 0x1d64,
221 SOC_HC_MAIN_IRQ_CAUSE
= 0x20020,
222 SOC_HC_MAIN_IRQ_MASK
= 0x20024,
223 ERR_IRQ
= (1 << 0), /* shift by (2 * port #) */
224 DONE_IRQ
= (1 << 1), /* shift by (2 * port #) */
225 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
226 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
227 DONE_IRQ_0_3
= 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
228 DONE_IRQ_4_7
= (DONE_IRQ_0_3
<< HC_SHIFT
), /* 4,5,6,7 */
230 TRAN_COAL_LO_DONE
= (1 << 19), /* transaction coalescing */
231 TRAN_COAL_HI_DONE
= (1 << 20), /* transaction coalescing */
232 PORTS_0_3_COAL_DONE
= (1 << 8), /* HC0 IRQ coalescing */
233 PORTS_4_7_COAL_DONE
= (1 << 17), /* HC1 IRQ coalescing */
234 ALL_PORTS_COAL_DONE
= (1 << 21), /* GEN_II(E) IRQ coalescing */
235 GPIO_INT
= (1 << 22),
236 SELF_INT
= (1 << 23),
237 TWSI_INT
= (1 << 24),
238 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
239 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
240 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
242 /* SATAHC registers */
246 DMA_IRQ
= (1 << 0), /* shift by port # */
247 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
248 DEV_IRQ
= (1 << 8), /* shift by port # */
251 * Per-HC (Host-Controller) interrupt coalescing feature.
252 * This is present on all chip generations.
254 * Coalescing defers the interrupt until either the IO_THRESHOLD
255 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
257 HC_IRQ_COAL_IO_THRESHOLD
= 0x000c,
258 HC_IRQ_COAL_TIME_THRESHOLD
= 0x0010,
261 SOC_LED_CTRL_BLINK
= (1 << 0), /* Active LED blink */
262 SOC_LED_CTRL_ACT_PRESENCE
= (1 << 2), /* Multiplex dev presence */
263 /* with dev activity LED */
265 /* Shadow block registers */
267 SHD_CTL_AST
= 0x20, /* ofs from SHD_BLK */
270 SATA_STATUS
= 0x300, /* ctrl, err regs follow status */
272 FIS_IRQ_CAUSE
= 0x364,
273 FIS_IRQ_CAUSE_AN
= (1 << 9), /* async notification */
275 LTMODE
= 0x30c, /* requires read-after-write */
276 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
281 PHY_MODE4
= 0x314, /* requires read-after-write */
282 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
283 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
284 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
285 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
288 SATA_TESTCTL
= 0x348,
290 VENDOR_UNIQUE_FIS
= 0x35c,
293 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
294 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
296 PHY_MODE9_GEN2
= 0x398,
297 PHY_MODE9_GEN1
= 0x39c,
298 PHYCFG_OFS
= 0x3a0, /* only in 65n devices */
305 MV_M2_PREAMP_MASK
= 0x7e0,
309 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
310 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
311 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
312 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
313 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
314 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
315 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
317 EDMA_ERR_IRQ_CAUSE
= 0x8,
318 EDMA_ERR_IRQ_MASK
= 0xc,
319 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
320 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
321 EDMA_ERR_DEV
= (1 << 2), /* device error */
322 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
323 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
324 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
325 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
326 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
327 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
328 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
329 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
330 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
331 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
332 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
334 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
335 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
336 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
337 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
338 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
340 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
342 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
343 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
344 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
345 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
346 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
347 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
349 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
351 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
352 EDMA_ERR_OVERRUN_5
= (1 << 5),
353 EDMA_ERR_UNDERRUN_5
= (1 << 6),
355 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
356 EDMA_ERR_LNK_CTRL_RX_1
|
357 EDMA_ERR_LNK_CTRL_RX_3
|
358 EDMA_ERR_LNK_CTRL_TX
,
360 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
370 EDMA_ERR_LNK_CTRL_RX_2
|
371 EDMA_ERR_LNK_DATA_RX
|
372 EDMA_ERR_LNK_DATA_TX
|
373 EDMA_ERR_TRANS_PROTO
,
375 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
380 EDMA_ERR_UNDERRUN_5
|
381 EDMA_ERR_SELF_DIS_5
|
387 EDMA_REQ_Q_BASE_HI
= 0x10,
388 EDMA_REQ_Q_IN_PTR
= 0x14, /* also contains BASE_LO */
390 EDMA_REQ_Q_OUT_PTR
= 0x18,
391 EDMA_REQ_Q_PTR_SHIFT
= 5,
393 EDMA_RSP_Q_BASE_HI
= 0x1c,
394 EDMA_RSP_Q_IN_PTR
= 0x20,
395 EDMA_RSP_Q_OUT_PTR
= 0x24, /* also contains BASE_LO */
396 EDMA_RSP_Q_PTR_SHIFT
= 3,
398 EDMA_CMD
= 0x28, /* EDMA command register */
399 EDMA_EN
= (1 << 0), /* enable EDMA */
400 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
401 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
403 EDMA_STATUS
= 0x30, /* EDMA engine status */
404 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
405 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
407 EDMA_IORDY_TMOUT
= 0x34,
410 EDMA_HALTCOND
= 0x60, /* GenIIe halt conditions */
411 EDMA_UNKNOWN_RSVD
= 0x6C, /* GenIIe unknown/reserved */
413 BMDMA_CMD
= 0x224, /* bmdma command register */
414 BMDMA_STATUS
= 0x228, /* bmdma status register */
415 BMDMA_PRD_LOW
= 0x22c, /* bmdma PRD addr 31:0 */
416 BMDMA_PRD_HIGH
= 0x230, /* bmdma PRD addr 63:32 */
418 /* Host private flags (hp_flags) */
419 MV_HP_FLAG_MSI
= (1 << 0),
420 MV_HP_ERRATA_50XXB0
= (1 << 1),
421 MV_HP_ERRATA_50XXB2
= (1 << 2),
422 MV_HP_ERRATA_60X1B2
= (1 << 3),
423 MV_HP_ERRATA_60X1C0
= (1 << 4),
424 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
425 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
426 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
427 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
428 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
429 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
430 MV_HP_QUIRK_LED_BLINK_EN
= (1 << 12), /* is led blinking enabled? */
432 /* Port private flags (pp_flags) */
433 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
434 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
435 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
436 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
437 MV_PP_FLAG_FAKE_ATA_BUSY
= (1 << 4), /* ignore initial ATA_DRDY */
440 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
441 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
442 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
443 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
444 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
446 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
447 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
450 /* DMA boundary 0xffff is required by the s/g splitting
451 * we need on /length/ in mv_fill-sg().
453 MV_DMA_BOUNDARY
= 0xffffU
,
455 /* mask of register bits containing lower 32 bits
456 * of EDMA request queue DMA address
458 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
460 /* ditto, for response queue */
461 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
475 /* Command ReQuest Block: 32B */
491 /* Command ResPonse Block: 8B */
498 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
507 * We keep a local cache of a few frequently accessed port
508 * registers here, to avoid having to read them (very slow)
509 * when switching between EDMA and non-EDMA modes.
511 struct mv_cached_regs
{
518 struct mv_port_priv
{
519 struct mv_crqb
*crqb
;
521 struct mv_crpb
*crpb
;
523 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
524 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
526 unsigned int req_idx
;
527 unsigned int resp_idx
;
530 struct mv_cached_regs cached
;
531 unsigned int delayed_eh_pmp_map
;
534 struct mv_port_signal
{
539 struct mv_host_priv
{
542 struct mv_port_signal signal
[8];
543 const struct mv_hw_ops
*ops
;
546 void __iomem
*main_irq_cause_addr
;
547 void __iomem
*main_irq_mask_addr
;
548 u32 irq_cause_offset
;
552 * These consistent DMA memory pools give us guaranteed
553 * alignment for hardware-accessed data structures,
554 * and less memory waste in accomplishing the alignment.
556 struct dma_pool
*crqb_pool
;
557 struct dma_pool
*crpb_pool
;
558 struct dma_pool
*sg_tbl_pool
;
562 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
564 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
565 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
567 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
569 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
570 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
573 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
574 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
575 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
576 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
577 static int mv_port_start(struct ata_port
*ap
);
578 static void mv_port_stop(struct ata_port
*ap
);
579 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
580 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
581 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
582 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
583 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
584 unsigned long deadline
);
585 static void mv_eh_freeze(struct ata_port
*ap
);
586 static void mv_eh_thaw(struct ata_port
*ap
);
587 static void mv6_dev_config(struct ata_device
*dev
);
589 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
591 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
592 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
594 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
596 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
597 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
599 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
601 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
602 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
604 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
606 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
607 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
609 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
611 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
612 void __iomem
*mmio
, unsigned int n_hc
);
613 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
615 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
616 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
617 void __iomem
*mmio
, unsigned int port
);
618 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
619 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
620 unsigned int port_no
);
621 static int mv_stop_edma(struct ata_port
*ap
);
622 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
623 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
);
625 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
626 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
627 unsigned long deadline
);
628 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
629 unsigned long deadline
);
630 static void mv_pmp_error_handler(struct ata_port
*ap
);
631 static void mv_process_crpb_entries(struct ata_port
*ap
,
632 struct mv_port_priv
*pp
);
634 static void mv_sff_irq_clear(struct ata_port
*ap
);
635 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
);
636 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
);
637 static void mv_bmdma_start(struct ata_queued_cmd
*qc
);
638 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
);
639 static u8
mv_bmdma_status(struct ata_port
*ap
);
640 static u8
mv_sff_check_status(struct ata_port
*ap
);
642 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
643 * because we have to allow room for worst case splitting of
644 * PRDs for 64K boundaries in mv_fill_sg().
646 static struct scsi_host_template mv5_sht
= {
647 ATA_BASE_SHT(DRV_NAME
),
648 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
649 .dma_boundary
= MV_DMA_BOUNDARY
,
652 static struct scsi_host_template mv6_sht
= {
653 ATA_NCQ_SHT(DRV_NAME
),
654 .can_queue
= MV_MAX_Q_DEPTH
- 1,
655 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
656 .dma_boundary
= MV_DMA_BOUNDARY
,
659 static struct ata_port_operations mv5_ops
= {
660 .inherits
= &ata_sff_port_ops
,
662 .lost_interrupt
= ATA_OP_NULL
,
664 .qc_defer
= mv_qc_defer
,
665 .qc_prep
= mv_qc_prep
,
666 .qc_issue
= mv_qc_issue
,
668 .freeze
= mv_eh_freeze
,
670 .hardreset
= mv_hardreset
,
671 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
672 .post_internal_cmd
= ATA_OP_NULL
,
674 .scr_read
= mv5_scr_read
,
675 .scr_write
= mv5_scr_write
,
677 .port_start
= mv_port_start
,
678 .port_stop
= mv_port_stop
,
681 static struct ata_port_operations mv6_ops
= {
682 .inherits
= &mv5_ops
,
683 .dev_config
= mv6_dev_config
,
684 .scr_read
= mv_scr_read
,
685 .scr_write
= mv_scr_write
,
687 .pmp_hardreset
= mv_pmp_hardreset
,
688 .pmp_softreset
= mv_softreset
,
689 .softreset
= mv_softreset
,
690 .error_handler
= mv_pmp_error_handler
,
692 .sff_check_status
= mv_sff_check_status
,
693 .sff_irq_clear
= mv_sff_irq_clear
,
694 .check_atapi_dma
= mv_check_atapi_dma
,
695 .bmdma_setup
= mv_bmdma_setup
,
696 .bmdma_start
= mv_bmdma_start
,
697 .bmdma_stop
= mv_bmdma_stop
,
698 .bmdma_status
= mv_bmdma_status
,
701 static struct ata_port_operations mv_iie_ops
= {
702 .inherits
= &mv6_ops
,
703 .dev_config
= ATA_OP_NULL
,
704 .qc_prep
= mv_qc_prep_iie
,
707 static const struct ata_port_info mv_port_info
[] = {
709 .flags
= MV_GEN_I_FLAGS
,
710 .pio_mask
= ATA_PIO4
,
711 .udma_mask
= ATA_UDMA6
,
712 .port_ops
= &mv5_ops
,
715 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
716 .pio_mask
= ATA_PIO4
,
717 .udma_mask
= ATA_UDMA6
,
718 .port_ops
= &mv5_ops
,
721 .flags
= MV_GEN_I_FLAGS
| MV_FLAG_DUAL_HC
,
722 .pio_mask
= ATA_PIO4
,
723 .udma_mask
= ATA_UDMA6
,
724 .port_ops
= &mv5_ops
,
727 .flags
= MV_GEN_II_FLAGS
,
728 .pio_mask
= ATA_PIO4
,
729 .udma_mask
= ATA_UDMA6
,
730 .port_ops
= &mv6_ops
,
733 .flags
= MV_GEN_II_FLAGS
| MV_FLAG_DUAL_HC
,
734 .pio_mask
= ATA_PIO4
,
735 .udma_mask
= ATA_UDMA6
,
736 .port_ops
= &mv6_ops
,
739 .flags
= MV_GEN_IIE_FLAGS
,
740 .pio_mask
= ATA_PIO4
,
741 .udma_mask
= ATA_UDMA6
,
742 .port_ops
= &mv_iie_ops
,
745 .flags
= MV_GEN_IIE_FLAGS
,
746 .pio_mask
= ATA_PIO4
,
747 .udma_mask
= ATA_UDMA6
,
748 .port_ops
= &mv_iie_ops
,
751 .flags
= MV_GEN_IIE_FLAGS
,
752 .pio_mask
= ATA_PIO4
,
753 .udma_mask
= ATA_UDMA6
,
754 .port_ops
= &mv_iie_ops
,
758 static const struct pci_device_id mv_pci_tbl
[] = {
759 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
760 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
761 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
762 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
763 /* RocketRAID 1720/174x have different identifiers */
764 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
765 { PCI_VDEVICE(TTI
, 0x1740), chip_6042
},
766 { PCI_VDEVICE(TTI
, 0x1742), chip_6042
},
768 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
769 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
770 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
771 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
772 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
774 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
777 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
779 /* Marvell 7042 support */
780 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
782 /* Highpoint RocketRAID PCIe series */
783 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
784 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
786 { } /* terminate list */
789 static const struct mv_hw_ops mv5xxx_ops
= {
790 .phy_errata
= mv5_phy_errata
,
791 .enable_leds
= mv5_enable_leds
,
792 .read_preamp
= mv5_read_preamp
,
793 .reset_hc
= mv5_reset_hc
,
794 .reset_flash
= mv5_reset_flash
,
795 .reset_bus
= mv5_reset_bus
,
798 static const struct mv_hw_ops mv6xxx_ops
= {
799 .phy_errata
= mv6_phy_errata
,
800 .enable_leds
= mv6_enable_leds
,
801 .read_preamp
= mv6_read_preamp
,
802 .reset_hc
= mv6_reset_hc
,
803 .reset_flash
= mv6_reset_flash
,
804 .reset_bus
= mv_reset_pci_bus
,
807 static const struct mv_hw_ops mv_soc_ops
= {
808 .phy_errata
= mv6_phy_errata
,
809 .enable_leds
= mv_soc_enable_leds
,
810 .read_preamp
= mv_soc_read_preamp
,
811 .reset_hc
= mv_soc_reset_hc
,
812 .reset_flash
= mv_soc_reset_flash
,
813 .reset_bus
= mv_soc_reset_bus
,
816 static const struct mv_hw_ops mv_soc_65n_ops
= {
817 .phy_errata
= mv_soc_65n_phy_errata
,
818 .enable_leds
= mv_soc_enable_leds
,
819 .reset_hc
= mv_soc_reset_hc
,
820 .reset_flash
= mv_soc_reset_flash
,
821 .reset_bus
= mv_soc_reset_bus
,
828 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
831 (void) readl(addr
); /* flush to avoid PCI posted write */
834 static inline unsigned int mv_hc_from_port(unsigned int port
)
836 return port
>> MV_PORT_HC_SHIFT
;
839 static inline unsigned int mv_hardport_from_port(unsigned int port
)
841 return port
& MV_PORT_MASK
;
845 * Consolidate some rather tricky bit shift calculations.
846 * This is hot-path stuff, so not a function.
847 * Simple code, with two return values, so macro rather than inline.
849 * port is the sole input, in range 0..7.
850 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
851 * hardport is the other output, in range 0..3.
853 * Note that port and hardport may be the same variable in some cases.
855 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
857 shift = mv_hc_from_port(port) * HC_SHIFT; \
858 hardport = mv_hardport_from_port(port); \
859 shift += hardport * 2; \
862 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
864 return (base
+ SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
867 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
870 return mv_hc_base(base
, mv_hc_from_port(port
));
873 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
875 return mv_hc_base_from_port(base
, port
) +
876 MV_SATAHC_ARBTR_REG_SZ
+
877 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
880 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
882 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
883 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
885 return hc_mmio
+ ofs
;
888 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
890 struct mv_host_priv
*hpriv
= host
->private_data
;
894 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
896 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
899 static inline int mv_get_hc_count(unsigned long port_flags
)
901 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
905 * mv_save_cached_regs - (re-)initialize cached port registers
906 * @ap: the port whose registers we are caching
908 * Initialize the local cache of port registers,
909 * so that reading them over and over again can
910 * be avoided on the hotter paths of this driver.
911 * This saves a few microseconds each time we switch
912 * to/from EDMA mode to perform (eg.) a drive cache flush.
914 static void mv_save_cached_regs(struct ata_port
*ap
)
916 void __iomem
*port_mmio
= mv_ap_base(ap
);
917 struct mv_port_priv
*pp
= ap
->private_data
;
919 pp
->cached
.fiscfg
= readl(port_mmio
+ FISCFG
);
920 pp
->cached
.ltmode
= readl(port_mmio
+ LTMODE
);
921 pp
->cached
.haltcond
= readl(port_mmio
+ EDMA_HALTCOND
);
922 pp
->cached
.unknown_rsvd
= readl(port_mmio
+ EDMA_UNKNOWN_RSVD
);
926 * mv_write_cached_reg - write to a cached port register
927 * @addr: hardware address of the register
928 * @old: pointer to cached value of the register
929 * @new: new value for the register
931 * Write a new value to a cached register,
932 * but only if the value is different from before.
934 static inline void mv_write_cached_reg(void __iomem
*addr
, u32
*old
, u32
new)
940 * Workaround for 88SX60x1-B2 FEr SATA#13:
941 * Read-after-write is needed to prevent generating 64-bit
942 * write cycles on the PCI bus for SATA interface registers
943 * at offsets ending in 0x4 or 0xc.
945 * Looks like a lot of fuss, but it avoids an unnecessary
946 * +1 usec read-after-write delay for unaffected registers.
948 laddr
= (long)addr
& 0xffff;
949 if (laddr
>= 0x300 && laddr
<= 0x33c) {
951 if (laddr
== 0x4 || laddr
== 0xc) {
952 writelfl(new, addr
); /* read after write */
956 writel(new, addr
); /* unaffected by the errata */
960 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
961 struct mv_host_priv
*hpriv
,
962 struct mv_port_priv
*pp
)
967 * initialize request queue
969 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
970 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
972 WARN_ON(pp
->crqb_dma
& 0x3ff);
973 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI
);
974 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
975 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
976 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR
);
979 * initialize response queue
981 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
982 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
984 WARN_ON(pp
->crpb_dma
& 0xff);
985 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI
);
986 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR
);
987 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
988 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
991 static void mv_write_main_irq_mask(u32 mask
, struct mv_host_priv
*hpriv
)
994 * When writing to the main_irq_mask in hardware,
995 * we must ensure exclusivity between the interrupt coalescing bits
996 * and the corresponding individual port DONE_IRQ bits.
998 * Note that this register is really an "IRQ enable" register,
999 * not an "IRQ mask" register as Marvell's naming might suggest.
1001 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_0_3_COAL_DONE
))
1002 mask
&= ~DONE_IRQ_0_3
;
1003 if (mask
& (ALL_PORTS_COAL_DONE
| PORTS_4_7_COAL_DONE
))
1004 mask
&= ~DONE_IRQ_4_7
;
1005 writelfl(mask
, hpriv
->main_irq_mask_addr
);
1008 static void mv_set_main_irq_mask(struct ata_host
*host
,
1009 u32 disable_bits
, u32 enable_bits
)
1011 struct mv_host_priv
*hpriv
= host
->private_data
;
1012 u32 old_mask
, new_mask
;
1014 old_mask
= hpriv
->main_irq_mask
;
1015 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
1016 if (new_mask
!= old_mask
) {
1017 hpriv
->main_irq_mask
= new_mask
;
1018 mv_write_main_irq_mask(new_mask
, hpriv
);
1022 static void mv_enable_port_irqs(struct ata_port
*ap
,
1023 unsigned int port_bits
)
1025 unsigned int shift
, hardport
, port
= ap
->port_no
;
1026 u32 disable_bits
, enable_bits
;
1028 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
1030 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
1031 enable_bits
= port_bits
<< shift
;
1032 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
1035 static void mv_clear_and_enable_port_irqs(struct ata_port
*ap
,
1036 void __iomem
*port_mmio
,
1037 unsigned int port_irqs
)
1039 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1040 int hardport
= mv_hardport_from_port(ap
->port_no
);
1041 void __iomem
*hc_mmio
= mv_hc_base_from_port(
1042 mv_host_base(ap
->host
), ap
->port_no
);
1045 /* clear EDMA event indicators, if any */
1046 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
1048 /* clear pending irq events */
1049 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
1050 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
1052 /* clear FIS IRQ Cause */
1053 if (IS_GEN_IIE(hpriv
))
1054 writelfl(0, port_mmio
+ FIS_IRQ_CAUSE
);
1056 mv_enable_port_irqs(ap
, port_irqs
);
1059 static void mv_set_irq_coalescing(struct ata_host
*host
,
1060 unsigned int count
, unsigned int usecs
)
1062 struct mv_host_priv
*hpriv
= host
->private_data
;
1063 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
1064 u32 coal_enable
= 0;
1065 unsigned long flags
;
1066 unsigned int clks
, is_dual_hc
= hpriv
->n_ports
> MV_PORTS_PER_HC
;
1067 const u32 coal_disable
= PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
1068 ALL_PORTS_COAL_DONE
;
1070 /* Disable IRQ coalescing if either threshold is zero */
1071 if (!usecs
|| !count
) {
1074 /* Respect maximum limits of the hardware */
1075 clks
= usecs
* COAL_CLOCKS_PER_USEC
;
1076 if (clks
> MAX_COAL_TIME_THRESHOLD
)
1077 clks
= MAX_COAL_TIME_THRESHOLD
;
1078 if (count
> MAX_COAL_IO_COUNT
)
1079 count
= MAX_COAL_IO_COUNT
;
1082 spin_lock_irqsave(&host
->lock
, flags
);
1083 mv_set_main_irq_mask(host
, coal_disable
, 0);
1085 if (is_dual_hc
&& !IS_GEN_I(hpriv
)) {
1087 * GEN_II/GEN_IIE with dual host controllers:
1088 * one set of global thresholds for the entire chip.
1090 writel(clks
, mmio
+ IRQ_COAL_TIME_THRESHOLD
);
1091 writel(count
, mmio
+ IRQ_COAL_IO_THRESHOLD
);
1092 /* clear leftover coal IRQ bit */
1093 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
1095 coal_enable
= ALL_PORTS_COAL_DONE
;
1096 clks
= count
= 0; /* force clearing of regular regs below */
1100 * All chips: independent thresholds for each HC on the chip.
1102 hc_mmio
= mv_hc_base_from_port(mmio
, 0);
1103 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1104 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1105 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1107 coal_enable
|= PORTS_0_3_COAL_DONE
;
1109 hc_mmio
= mv_hc_base_from_port(mmio
, MV_PORTS_PER_HC
);
1110 writel(clks
, hc_mmio
+ HC_IRQ_COAL_TIME_THRESHOLD
);
1111 writel(count
, hc_mmio
+ HC_IRQ_COAL_IO_THRESHOLD
);
1112 writel(~HC_COAL_IRQ
, hc_mmio
+ HC_IRQ_CAUSE
);
1114 coal_enable
|= PORTS_4_7_COAL_DONE
;
1117 mv_set_main_irq_mask(host
, 0, coal_enable
);
1118 spin_unlock_irqrestore(&host
->lock
, flags
);
1122 * mv_start_edma - Enable eDMA engine
1123 * @base: port base address
1124 * @pp: port private data
1126 * Verify the local cache of the eDMA state is accurate with a
1130 * Inherited from caller.
1132 static void mv_start_edma(struct ata_port
*ap
, void __iomem
*port_mmio
,
1133 struct mv_port_priv
*pp
, u8 protocol
)
1135 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
1137 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1138 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
1139 if (want_ncq
!= using_ncq
)
1142 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1143 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1145 mv_edma_cfg(ap
, want_ncq
, 1);
1147 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
1148 mv_clear_and_enable_port_irqs(ap
, port_mmio
, DONE_IRQ
|ERR_IRQ
);
1150 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD
);
1151 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
1155 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
1157 void __iomem
*port_mmio
= mv_ap_base(ap
);
1158 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
1159 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
1163 * Wait for the EDMA engine to finish transactions in progress.
1164 * No idea what a good "timeout" value might be, but measurements
1165 * indicate that it often requires hundreds of microseconds
1166 * with two drives in-use. So we use the 15msec value above
1167 * as a rough guess at what even more drives might require.
1169 for (i
= 0; i
< timeout
; ++i
) {
1170 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS
);
1171 if ((edma_stat
& empty_idle
) == empty_idle
)
1175 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1179 * mv_stop_edma_engine - Disable eDMA engine
1180 * @port_mmio: io base address
1183 * Inherited from caller.
1185 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
1189 /* Disable eDMA. The disable bit auto clears. */
1190 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD
);
1192 /* Wait for the chip to confirm eDMA is off. */
1193 for (i
= 10000; i
> 0; i
--) {
1194 u32 reg
= readl(port_mmio
+ EDMA_CMD
);
1195 if (!(reg
& EDMA_EN
))
1202 static int mv_stop_edma(struct ata_port
*ap
)
1204 void __iomem
*port_mmio
= mv_ap_base(ap
);
1205 struct mv_port_priv
*pp
= ap
->private_data
;
1208 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1210 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1211 mv_wait_for_edma_empty_idle(ap
);
1212 if (mv_stop_edma_engine(port_mmio
)) {
1213 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
1216 mv_edma_cfg(ap
, 0, 0);
1221 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
1224 for (b
= 0; b
< bytes
; ) {
1225 DPRINTK("%p: ", start
+ b
);
1226 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1227 printk("%08x ", readl(start
+ b
));
1235 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
1240 for (b
= 0; b
< bytes
; ) {
1241 DPRINTK("%02x: ", b
);
1242 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1243 (void) pci_read_config_dword(pdev
, b
, &dw
);
1244 printk("%08x ", dw
);
1251 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1252 struct pci_dev
*pdev
)
1255 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1256 port
>> MV_PORT_HC_SHIFT
);
1257 void __iomem
*port_base
;
1258 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1261 start_hc
= start_port
= 0;
1262 num_ports
= 8; /* shld be benign for 4 port devs */
1265 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1267 num_ports
= num_hcs
= 1;
1269 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1270 num_ports
> 1 ? num_ports
- 1 : start_port
);
1273 DPRINTK("PCI config space regs:\n");
1274 mv_dump_pci_cfg(pdev
, 0x68);
1276 DPRINTK("PCI regs:\n");
1277 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1278 mv_dump_mem(mmio_base
+0xd00, 0x34);
1279 mv_dump_mem(mmio_base
+0xf00, 0x4);
1280 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1281 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1282 hc_base
= mv_hc_base(mmio_base
, hc
);
1283 DPRINTK("HC regs (HC %i):\n", hc
);
1284 mv_dump_mem(hc_base
, 0x1c);
1286 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1287 port_base
= mv_port_base(mmio_base
, p
);
1288 DPRINTK("EDMA regs (port %i):\n", p
);
1289 mv_dump_mem(port_base
, 0x54);
1290 DPRINTK("SATA regs (port %i):\n", p
);
1291 mv_dump_mem(port_base
+0x300, 0x60);
1296 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1300 switch (sc_reg_in
) {
1304 ofs
= SATA_STATUS
+ (sc_reg_in
* sizeof(u32
));
1307 ofs
= SATA_ACTIVE
; /* active is not with the others */
1316 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1318 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1320 if (ofs
!= 0xffffffffU
) {
1321 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1327 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1329 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1331 if (ofs
!= 0xffffffffU
) {
1332 void __iomem
*addr
= mv_ap_base(link
->ap
) + ofs
;
1333 if (sc_reg_in
== SCR_CONTROL
) {
1335 * Workaround for 88SX60x1 FEr SATA#26:
1337 * COMRESETs have to take care not to accidently
1338 * put the drive to sleep when writing SCR_CONTROL.
1339 * Setting bits 12..15 prevents this problem.
1341 * So if we see an outbound COMMRESET, set those bits.
1342 * Ditto for the followup write that clears the reset.
1344 * The proprietary driver does this for
1345 * all chip versions, and so do we.
1347 if ((val
& 0xf) == 1 || (readl(addr
) & 0xf) == 1)
1350 writelfl(val
, addr
);
1356 static void mv6_dev_config(struct ata_device
*adev
)
1359 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1361 * Gen-II does not support NCQ over a port multiplier
1362 * (no FIS-based switching).
1364 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1365 if (sata_pmp_attached(adev
->link
->ap
)) {
1366 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1367 ata_dev_printk(adev
, KERN_INFO
,
1368 "NCQ disabled for command-based switching\n");
1373 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1375 struct ata_link
*link
= qc
->dev
->link
;
1376 struct ata_port
*ap
= link
->ap
;
1377 struct mv_port_priv
*pp
= ap
->private_data
;
1380 * Don't allow new commands if we're in a delayed EH state
1381 * for NCQ and/or FIS-based switching.
1383 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1384 return ATA_DEFER_PORT
;
1386 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1387 * can run concurrently.
1388 * set excl_link when we want to send a PIO command in DMA mode
1389 * or a non-NCQ command in NCQ mode.
1390 * When we receive a command from that link, and there are no
1391 * outstanding commands, mark a flag to clear excl_link and let
1392 * the command go through.
1394 if (unlikely(ap
->excl_link
)) {
1395 if (link
== ap
->excl_link
) {
1396 if (ap
->nr_active_links
)
1397 return ATA_DEFER_PORT
;
1398 qc
->flags
|= ATA_QCFLAG_CLEAR_EXCL
;
1401 return ATA_DEFER_PORT
;
1405 * If the port is completely idle, then allow the new qc.
1407 if (ap
->nr_active_links
== 0)
1411 * The port is operating in host queuing mode (EDMA) with NCQ
1412 * enabled, allow multiple NCQ commands. EDMA also allows
1413 * queueing multiple DMA commands but libata core currently
1416 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1417 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)) {
1418 if (ata_is_ncq(qc
->tf
.protocol
))
1421 ap
->excl_link
= link
;
1422 return ATA_DEFER_PORT
;
1426 return ATA_DEFER_PORT
;
1429 static void mv_config_fbs(struct ata_port
*ap
, int want_ncq
, int want_fbs
)
1431 struct mv_port_priv
*pp
= ap
->private_data
;
1432 void __iomem
*port_mmio
;
1434 u32 fiscfg
, *old_fiscfg
= &pp
->cached
.fiscfg
;
1435 u32 ltmode
, *old_ltmode
= &pp
->cached
.ltmode
;
1436 u32 haltcond
, *old_haltcond
= &pp
->cached
.haltcond
;
1438 ltmode
= *old_ltmode
& ~LTMODE_BIT8
;
1439 haltcond
= *old_haltcond
| EDMA_ERR_DEV
;
1442 fiscfg
= *old_fiscfg
| FISCFG_SINGLE_SYNC
;
1443 ltmode
= *old_ltmode
| LTMODE_BIT8
;
1445 haltcond
&= ~EDMA_ERR_DEV
;
1447 fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1449 fiscfg
= *old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1452 port_mmio
= mv_ap_base(ap
);
1453 mv_write_cached_reg(port_mmio
+ FISCFG
, old_fiscfg
, fiscfg
);
1454 mv_write_cached_reg(port_mmio
+ LTMODE
, old_ltmode
, ltmode
);
1455 mv_write_cached_reg(port_mmio
+ EDMA_HALTCOND
, old_haltcond
, haltcond
);
1458 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1460 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1463 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1464 old
= readl(hpriv
->base
+ GPIO_PORT_CTL
);
1466 new = old
| (1 << 22);
1468 new = old
& ~(1 << 22);
1470 writel(new, hpriv
->base
+ GPIO_PORT_CTL
);
1474 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1475 * @ap: Port being initialized
1477 * There are two DMA modes on these chips: basic DMA, and EDMA.
1479 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1480 * of basic DMA on the GEN_IIE versions of the chips.
1482 * This bit survives EDMA resets, and must be set for basic DMA
1483 * to function, and should be cleared when EDMA is active.
1485 static void mv_bmdma_enable_iie(struct ata_port
*ap
, int enable_bmdma
)
1487 struct mv_port_priv
*pp
= ap
->private_data
;
1488 u32
new, *old
= &pp
->cached
.unknown_rsvd
;
1494 mv_write_cached_reg(mv_ap_base(ap
) + EDMA_UNKNOWN_RSVD
, old
, new);
1498 * SOC chips have an issue whereby the HDD LEDs don't always blink
1499 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1500 * of the SOC takes care of it, generating a steady blink rate when
1501 * any drive on the chip is active.
1503 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1504 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1506 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1507 * LED operation works then, and provides better (more accurate) feedback.
1509 * Note that this code assumes that an SOC never has more than one HC onboard.
1511 static void mv_soc_led_blink_enable(struct ata_port
*ap
)
1513 struct ata_host
*host
= ap
->host
;
1514 struct mv_host_priv
*hpriv
= host
->private_data
;
1515 void __iomem
*hc_mmio
;
1518 if (hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
)
1520 hpriv
->hp_flags
|= MV_HP_QUIRK_LED_BLINK_EN
;
1521 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1522 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1523 writel(led_ctrl
| SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1526 static void mv_soc_led_blink_disable(struct ata_port
*ap
)
1528 struct ata_host
*host
= ap
->host
;
1529 struct mv_host_priv
*hpriv
= host
->private_data
;
1530 void __iomem
*hc_mmio
;
1534 if (!(hpriv
->hp_flags
& MV_HP_QUIRK_LED_BLINK_EN
))
1537 /* disable led-blink only if no ports are using NCQ */
1538 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1539 struct ata_port
*this_ap
= host
->ports
[port
];
1540 struct mv_port_priv
*pp
= this_ap
->private_data
;
1542 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1546 hpriv
->hp_flags
&= ~MV_HP_QUIRK_LED_BLINK_EN
;
1547 hc_mmio
= mv_hc_base_from_port(mv_host_base(host
), ap
->port_no
);
1548 led_ctrl
= readl(hc_mmio
+ SOC_LED_CTRL
);
1549 writel(led_ctrl
& ~SOC_LED_CTRL_BLINK
, hc_mmio
+ SOC_LED_CTRL
);
1552 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
, int want_edma
)
1555 struct mv_port_priv
*pp
= ap
->private_data
;
1556 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1557 void __iomem
*port_mmio
= mv_ap_base(ap
);
1559 /* set up non-NCQ EDMA configuration */
1560 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1562 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
1564 if (IS_GEN_I(hpriv
))
1565 cfg
|= (1 << 8); /* enab config burst size mask */
1567 else if (IS_GEN_II(hpriv
)) {
1568 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1569 mv_60x1_errata_sata25(ap
, want_ncq
);
1571 } else if (IS_GEN_IIE(hpriv
)) {
1572 int want_fbs
= sata_pmp_attached(ap
);
1574 * Possible future enhancement:
1576 * The chip can use FBS with non-NCQ, if we allow it,
1577 * But first we need to have the error handling in place
1578 * for this mode (datasheet section 7.3.15.4.2.3).
1579 * So disallow non-NCQ FBS for now.
1581 want_fbs
&= want_ncq
;
1583 mv_config_fbs(ap
, want_ncq
, want_fbs
);
1586 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1587 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1590 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1592 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1594 cfg
|= (1 << 18); /* enab early completion */
1596 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1597 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1598 mv_bmdma_enable_iie(ap
, !want_edma
);
1600 if (IS_SOC(hpriv
)) {
1602 mv_soc_led_blink_enable(ap
);
1604 mv_soc_led_blink_disable(ap
);
1609 cfg
|= EDMA_CFG_NCQ
;
1610 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1613 writelfl(cfg
, port_mmio
+ EDMA_CFG
);
1616 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1618 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1619 struct mv_port_priv
*pp
= ap
->private_data
;
1623 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1627 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1631 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1632 * For later hardware, we have one unique sg_tbl per NCQ tag.
1634 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1635 if (pp
->sg_tbl
[tag
]) {
1636 if (tag
== 0 || !IS_GEN_I(hpriv
))
1637 dma_pool_free(hpriv
->sg_tbl_pool
,
1639 pp
->sg_tbl_dma
[tag
]);
1640 pp
->sg_tbl
[tag
] = NULL
;
1646 * mv_port_start - Port specific init/start routine.
1647 * @ap: ATA channel to manipulate
1649 * Allocate and point to DMA memory, init port private memory,
1653 * Inherited from caller.
1655 static int mv_port_start(struct ata_port
*ap
)
1657 struct device
*dev
= ap
->host
->dev
;
1658 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1659 struct mv_port_priv
*pp
;
1660 unsigned long flags
;
1663 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1666 ap
->private_data
= pp
;
1668 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1671 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1673 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1675 goto out_port_free_dma_mem
;
1676 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1678 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1679 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1680 ap
->flags
|= ATA_FLAG_AN
;
1682 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1683 * For later hardware, we need one unique sg_tbl per NCQ tag.
1685 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1686 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1687 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1688 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1689 if (!pp
->sg_tbl
[tag
])
1690 goto out_port_free_dma_mem
;
1692 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1693 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1697 spin_lock_irqsave(ap
->lock
, flags
);
1698 mv_save_cached_regs(ap
);
1699 mv_edma_cfg(ap
, 0, 0);
1700 spin_unlock_irqrestore(ap
->lock
, flags
);
1704 out_port_free_dma_mem
:
1705 mv_port_free_dma_mem(ap
);
1710 * mv_port_stop - Port specific cleanup/stop routine.
1711 * @ap: ATA channel to manipulate
1713 * Stop DMA, cleanup port memory.
1716 * This routine uses the host lock to protect the DMA stop.
1718 static void mv_port_stop(struct ata_port
*ap
)
1720 unsigned long flags
;
1722 spin_lock_irqsave(ap
->lock
, flags
);
1724 mv_enable_port_irqs(ap
, 0);
1725 spin_unlock_irqrestore(ap
->lock
, flags
);
1726 mv_port_free_dma_mem(ap
);
1730 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1731 * @qc: queued command whose SG list to source from
1733 * Populate the SG list and mark the last entry.
1736 * Inherited from caller.
1738 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1740 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1741 struct scatterlist
*sg
;
1742 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1745 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1746 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1747 dma_addr_t addr
= sg_dma_address(sg
);
1748 u32 sg_len
= sg_dma_len(sg
);
1751 u32 offset
= addr
& 0xffff;
1754 if (offset
+ len
> 0x10000)
1755 len
= 0x10000 - offset
;
1757 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1758 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1759 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1760 mv_sg
->reserved
= 0;
1770 if (likely(last_sg
))
1771 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1772 mb(); /* ensure data structure is visible to the chipset */
1775 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1777 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1778 (last
? CRQB_CMD_LAST
: 0);
1779 *cmdw
= cpu_to_le16(tmp
);
1783 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1784 * @ap: Port associated with this ATA transaction.
1786 * We need this only for ATAPI bmdma transactions,
1787 * as otherwise we experience spurious interrupts
1788 * after libata-sff handles the bmdma interrupts.
1790 static void mv_sff_irq_clear(struct ata_port
*ap
)
1792 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), ERR_IRQ
);
1796 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1797 * @qc: queued command to check for chipset/DMA compatibility.
1799 * The bmdma engines cannot handle speculative data sizes
1800 * (bytecount under/over flow). So only allow DMA for
1801 * data transfer commands with known data sizes.
1804 * Inherited from caller.
1806 static int mv_check_atapi_dma(struct ata_queued_cmd
*qc
)
1808 struct scsi_cmnd
*scmd
= qc
->scsicmd
;
1811 switch (scmd
->cmnd
[0]) {
1819 case GPCMD_SEND_DVD_STRUCTURE
:
1820 case GPCMD_SEND_CUE_SHEET
:
1821 return 0; /* DMA is safe */
1824 return -EOPNOTSUPP
; /* use PIO instead */
1828 * mv_bmdma_setup - Set up BMDMA transaction
1829 * @qc: queued command to prepare DMA for.
1832 * Inherited from caller.
1834 static void mv_bmdma_setup(struct ata_queued_cmd
*qc
)
1836 struct ata_port
*ap
= qc
->ap
;
1837 void __iomem
*port_mmio
= mv_ap_base(ap
);
1838 struct mv_port_priv
*pp
= ap
->private_data
;
1842 /* clear all DMA cmd bits */
1843 writel(0, port_mmio
+ BMDMA_CMD
);
1845 /* load PRD table addr. */
1846 writel((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16,
1847 port_mmio
+ BMDMA_PRD_HIGH
);
1848 writelfl(pp
->sg_tbl_dma
[qc
->tag
],
1849 port_mmio
+ BMDMA_PRD_LOW
);
1851 /* issue r/w command */
1852 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
1856 * mv_bmdma_start - Start a BMDMA transaction
1857 * @qc: queued command to start DMA on.
1860 * Inherited from caller.
1862 static void mv_bmdma_start(struct ata_queued_cmd
*qc
)
1864 struct ata_port
*ap
= qc
->ap
;
1865 void __iomem
*port_mmio
= mv_ap_base(ap
);
1866 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
1867 u32 cmd
= (rw
? 0 : ATA_DMA_WR
) | ATA_DMA_START
;
1869 /* start host DMA transaction */
1870 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1874 * mv_bmdma_stop - Stop BMDMA transfer
1875 * @qc: queued command to stop DMA on.
1877 * Clears the ATA_DMA_START flag in the bmdma control register
1880 * Inherited from caller.
1882 static void mv_bmdma_stop(struct ata_queued_cmd
*qc
)
1884 struct ata_port
*ap
= qc
->ap
;
1885 void __iomem
*port_mmio
= mv_ap_base(ap
);
1888 /* clear start/stop bit */
1889 cmd
= readl(port_mmio
+ BMDMA_CMD
);
1890 cmd
&= ~ATA_DMA_START
;
1891 writelfl(cmd
, port_mmio
+ BMDMA_CMD
);
1893 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1894 ata_sff_dma_pause(ap
);
1898 * mv_bmdma_status - Read BMDMA status
1899 * @ap: port for which to retrieve DMA status.
1901 * Read and return equivalent of the sff BMDMA status register.
1904 * Inherited from caller.
1906 static u8
mv_bmdma_status(struct ata_port
*ap
)
1908 void __iomem
*port_mmio
= mv_ap_base(ap
);
1912 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1913 * and the ATA_DMA_INTR bit doesn't exist.
1915 reg
= readl(port_mmio
+ BMDMA_STATUS
);
1916 if (reg
& ATA_DMA_ACTIVE
)
1917 status
= ATA_DMA_ACTIVE
;
1919 status
= (reg
& ATA_DMA_ERR
) | ATA_DMA_INTR
;
1923 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd
*qc
)
1925 struct ata_taskfile
*tf
= &qc
->tf
;
1927 * Workaround for 88SX60x1 FEr SATA#24.
1929 * Chip may corrupt WRITEs if multi_count >= 4kB.
1930 * Note that READs are unaffected.
1932 * It's not clear if this errata really means "4K bytes",
1933 * or if it always happens for multi_count > 7
1934 * regardless of device sector_size.
1936 * So, for safety, any write with multi_count > 7
1937 * gets converted here into a regular PIO write instead:
1939 if ((tf
->flags
& ATA_TFLAG_WRITE
) && is_multi_taskfile(tf
)) {
1940 if (qc
->dev
->multi_count
> 7) {
1941 switch (tf
->command
) {
1942 case ATA_CMD_WRITE_MULTI
:
1943 tf
->command
= ATA_CMD_PIO_WRITE
;
1945 case ATA_CMD_WRITE_MULTI_FUA_EXT
:
1946 tf
->flags
&= ~ATA_TFLAG_FUA
; /* ugh */
1948 case ATA_CMD_WRITE_MULTI_EXT
:
1949 tf
->command
= ATA_CMD_PIO_WRITE_EXT
;
1957 * mv_qc_prep - Host specific command preparation.
1958 * @qc: queued command to prepare
1960 * This routine simply redirects to the general purpose routine
1961 * if command is not DMA. Else, it handles prep of the CRQB
1962 * (command request block), does some sanity checking, and calls
1963 * the SG load routine.
1966 * Inherited from caller.
1968 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1970 struct ata_port
*ap
= qc
->ap
;
1971 struct mv_port_priv
*pp
= ap
->private_data
;
1973 struct ata_taskfile
*tf
= &qc
->tf
;
1977 switch (tf
->protocol
) {
1980 break; /* continue below */
1982 mv_rw_multi_errata_sata24(qc
);
1988 /* Fill in command request block
1990 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
1991 flags
|= CRQB_FLAG_READ
;
1992 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1993 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1994 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1996 /* get current queue index from software */
1997 in_index
= pp
->req_idx
;
1999 pp
->crqb
[in_index
].sg_addr
=
2000 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2001 pp
->crqb
[in_index
].sg_addr_hi
=
2002 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2003 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
2005 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
2007 /* Sadly, the CRQB cannot accomodate all registers--there are
2008 * only 11 bytes...so we must pick and choose required
2009 * registers based on the command. So, we drop feature and
2010 * hob_feature for [RW] DMA commands, but they are needed for
2011 * NCQ. NCQ will drop hob_nsect, which is not needed there
2012 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2014 switch (tf
->command
) {
2016 case ATA_CMD_READ_EXT
:
2018 case ATA_CMD_WRITE_EXT
:
2019 case ATA_CMD_WRITE_FUA_EXT
:
2020 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
2022 case ATA_CMD_FPDMA_READ
:
2023 case ATA_CMD_FPDMA_WRITE
:
2024 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
2025 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
2028 /* The only other commands EDMA supports in non-queued and
2029 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2030 * of which are defined/used by Linux. If we get here, this
2031 * driver needs work.
2033 * FIXME: modify libata to give qc_prep a return value and
2034 * return error here.
2036 BUG_ON(tf
->command
);
2039 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
2040 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
2041 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
2042 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
2043 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
2044 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
2045 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
2046 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
2047 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
2049 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2055 * mv_qc_prep_iie - Host specific command preparation.
2056 * @qc: queued command to prepare
2058 * This routine simply redirects to the general purpose routine
2059 * if command is not DMA. Else, it handles prep of the CRQB
2060 * (command request block), does some sanity checking, and calls
2061 * the SG load routine.
2064 * Inherited from caller.
2066 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
2068 struct ata_port
*ap
= qc
->ap
;
2069 struct mv_port_priv
*pp
= ap
->private_data
;
2070 struct mv_crqb_iie
*crqb
;
2071 struct ata_taskfile
*tf
= &qc
->tf
;
2075 if ((tf
->protocol
!= ATA_PROT_DMA
) &&
2076 (tf
->protocol
!= ATA_PROT_NCQ
))
2079 /* Fill in Gen IIE command request block */
2080 if (!(tf
->flags
& ATA_TFLAG_WRITE
))
2081 flags
|= CRQB_FLAG_READ
;
2083 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
2084 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
2085 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
2086 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
2088 /* get current queue index from software */
2089 in_index
= pp
->req_idx
;
2091 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
2092 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
2093 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
2094 crqb
->flags
= cpu_to_le32(flags
);
2096 crqb
->ata_cmd
[0] = cpu_to_le32(
2097 (tf
->command
<< 16) |
2100 crqb
->ata_cmd
[1] = cpu_to_le32(
2106 crqb
->ata_cmd
[2] = cpu_to_le32(
2107 (tf
->hob_lbal
<< 0) |
2108 (tf
->hob_lbam
<< 8) |
2109 (tf
->hob_lbah
<< 16) |
2110 (tf
->hob_feature
<< 24)
2112 crqb
->ata_cmd
[3] = cpu_to_le32(
2114 (tf
->hob_nsect
<< 8)
2117 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2123 * mv_sff_check_status - fetch device status, if valid
2124 * @ap: ATA port to fetch status from
2126 * When using command issue via mv_qc_issue_fis(),
2127 * the initial ATA_BUSY state does not show up in the
2128 * ATA status (shadow) register. This can confuse libata!
2130 * So we have a hook here to fake ATA_BUSY for that situation,
2131 * until the first time a BUSY, DRQ, or ERR bit is seen.
2133 * The rest of the time, it simply returns the ATA status register.
2135 static u8
mv_sff_check_status(struct ata_port
*ap
)
2137 u8 stat
= ioread8(ap
->ioaddr
.status_addr
);
2138 struct mv_port_priv
*pp
= ap
->private_data
;
2140 if (pp
->pp_flags
& MV_PP_FLAG_FAKE_ATA_BUSY
) {
2141 if (stat
& (ATA_BUSY
| ATA_DRQ
| ATA_ERR
))
2142 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
;
2150 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2151 * @fis: fis to be sent
2152 * @nwords: number of 32-bit words in the fis
2154 static unsigned int mv_send_fis(struct ata_port
*ap
, u32
*fis
, int nwords
)
2156 void __iomem
*port_mmio
= mv_ap_base(ap
);
2157 u32 ifctl
, old_ifctl
, ifstat
;
2158 int i
, timeout
= 200, final_word
= nwords
- 1;
2160 /* Initiate FIS transmission mode */
2161 old_ifctl
= readl(port_mmio
+ SATA_IFCTL
);
2162 ifctl
= 0x100 | (old_ifctl
& 0xf);
2163 writelfl(ifctl
, port_mmio
+ SATA_IFCTL
);
2165 /* Send all words of the FIS except for the final word */
2166 for (i
= 0; i
< final_word
; ++i
)
2167 writel(fis
[i
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2169 /* Flag end-of-transmission, and then send the final word */
2170 writelfl(ifctl
| 0x200, port_mmio
+ SATA_IFCTL
);
2171 writelfl(fis
[final_word
], port_mmio
+ VENDOR_UNIQUE_FIS
);
2174 * Wait for FIS transmission to complete.
2175 * This typically takes just a single iteration.
2178 ifstat
= readl(port_mmio
+ SATA_IFSTAT
);
2179 } while (!(ifstat
& 0x1000) && --timeout
);
2181 /* Restore original port configuration */
2182 writelfl(old_ifctl
, port_mmio
+ SATA_IFCTL
);
2184 /* See if it worked */
2185 if ((ifstat
& 0x3000) != 0x1000) {
2186 ata_port_printk(ap
, KERN_WARNING
,
2187 "%s transmission error, ifstat=%08x\n",
2189 return AC_ERR_OTHER
;
2195 * mv_qc_issue_fis - Issue a command directly as a FIS
2196 * @qc: queued command to start
2198 * Note that the ATA shadow registers are not updated
2199 * after command issue, so the device will appear "READY"
2200 * if polled, even while it is BUSY processing the command.
2202 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2204 * Note: we don't get updated shadow regs on *completion*
2205 * of non-data commands. So avoid sending them via this function,
2206 * as they will appear to have completed immediately.
2208 * GEN_IIE has special registers that we could get the result tf from,
2209 * but earlier chipsets do not. For now, we ignore those registers.
2211 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd
*qc
)
2213 struct ata_port
*ap
= qc
->ap
;
2214 struct mv_port_priv
*pp
= ap
->private_data
;
2215 struct ata_link
*link
= qc
->dev
->link
;
2219 ata_tf_to_fis(&qc
->tf
, link
->pmp
, 1, (void *)fis
);
2220 err
= mv_send_fis(ap
, fis
, sizeof(fis
) / sizeof(fis
[0]));
2224 switch (qc
->tf
.protocol
) {
2225 case ATAPI_PROT_PIO
:
2226 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2228 case ATAPI_PROT_NODATA
:
2229 ap
->hsm_task_state
= HSM_ST_FIRST
;
2232 pp
->pp_flags
|= MV_PP_FLAG_FAKE_ATA_BUSY
;
2233 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
2234 ap
->hsm_task_state
= HSM_ST_FIRST
;
2236 ap
->hsm_task_state
= HSM_ST
;
2239 ap
->hsm_task_state
= HSM_ST_LAST
;
2243 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2244 ata_pio_queue_task(ap
, qc
, 0);
2249 * mv_qc_issue - Initiate a command to the host
2250 * @qc: queued command to start
2252 * This routine simply redirects to the general purpose routine
2253 * if command is not DMA. Else, it sanity checks our local
2254 * caches of the request producer/consumer indices then enables
2255 * DMA and bumps the request producer index.
2258 * Inherited from caller.
2260 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
2262 static int limit_warnings
= 10;
2263 struct ata_port
*ap
= qc
->ap
;
2264 void __iomem
*port_mmio
= mv_ap_base(ap
);
2265 struct mv_port_priv
*pp
= ap
->private_data
;
2267 unsigned int port_irqs
;
2269 pp
->pp_flags
&= ~MV_PP_FLAG_FAKE_ATA_BUSY
; /* paranoia */
2271 switch (qc
->tf
.protocol
) {
2274 mv_start_edma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
2275 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2276 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
2278 /* Write the request in pointer to kick the EDMA to life */
2279 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
2280 port_mmio
+ EDMA_REQ_Q_IN_PTR
);
2285 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2287 * Someday, we might implement special polling workarounds
2288 * for these, but it all seems rather unnecessary since we
2289 * normally use only DMA for commands which transfer more
2290 * than a single block of data.
2292 * Much of the time, this could just work regardless.
2293 * So for now, just log the incident, and allow the attempt.
2295 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
2297 ata_link_printk(qc
->dev
->link
, KERN_WARNING
, DRV_NAME
2298 ": attempting PIO w/multiple DRQ: "
2299 "this may fail due to h/w errata\n");
2302 case ATA_PROT_NODATA
:
2303 case ATAPI_PROT_PIO
:
2304 case ATAPI_PROT_NODATA
:
2305 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
2306 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
2310 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2311 port_irqs
= ERR_IRQ
; /* mask device interrupt when polling */
2313 port_irqs
= ERR_IRQ
| DONE_IRQ
; /* unmask all interrupts */
2316 * We're about to send a non-EDMA capable command to the
2317 * port. Turn off EDMA so there won't be problems accessing
2318 * shadow block, etc registers.
2321 mv_clear_and_enable_port_irqs(ap
, mv_ap_base(ap
), port_irqs
);
2322 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
2324 if (qc
->tf
.command
== ATA_CMD_READ_LOG_EXT
) {
2325 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2327 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2329 * After any NCQ error, the READ_LOG_EXT command
2330 * from libata-eh *must* use mv_qc_issue_fis().
2331 * Otherwise it might fail, due to chip errata.
2333 * Rather than special-case it, we'll just *always*
2334 * use this method here for READ_LOG_EXT, making for
2337 if (IS_GEN_II(hpriv
))
2338 return mv_qc_issue_fis(qc
);
2340 return ata_sff_qc_issue(qc
);
2343 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
2345 struct mv_port_priv
*pp
= ap
->private_data
;
2346 struct ata_queued_cmd
*qc
;
2348 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
2350 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2352 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
2354 else if (!(qc
->flags
& ATA_QCFLAG_ACTIVE
))
2360 static void mv_pmp_error_handler(struct ata_port
*ap
)
2362 unsigned int pmp
, pmp_map
;
2363 struct mv_port_priv
*pp
= ap
->private_data
;
2365 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
2367 * Perform NCQ error analysis on failed PMPs
2368 * before we freeze the port entirely.
2370 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2372 pmp_map
= pp
->delayed_eh_pmp_map
;
2373 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
2374 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2375 unsigned int this_pmp
= (1 << pmp
);
2376 if (pmp_map
& this_pmp
) {
2377 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2378 pmp_map
&= ~this_pmp
;
2379 ata_eh_analyze_ncq_error(link
);
2382 ata_port_freeze(ap
);
2384 sata_pmp_error_handler(ap
);
2387 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
2389 void __iomem
*port_mmio
= mv_ap_base(ap
);
2391 return readl(port_mmio
+ SATA_TESTCTL
) >> 16;
2394 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
2396 struct ata_eh_info
*ehi
;
2400 * Initialize EH info for PMPs which saw device errors
2402 ehi
= &ap
->link
.eh_info
;
2403 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
2404 unsigned int this_pmp
= (1 << pmp
);
2405 if (pmp_map
& this_pmp
) {
2406 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
2408 pmp_map
&= ~this_pmp
;
2409 ehi
= &link
->eh_info
;
2410 ata_ehi_clear_desc(ehi
);
2411 ata_ehi_push_desc(ehi
, "dev err");
2412 ehi
->err_mask
|= AC_ERR_DEV
;
2413 ehi
->action
|= ATA_EH_RESET
;
2414 ata_link_abort(link
);
2419 static int mv_req_q_empty(struct ata_port
*ap
)
2421 void __iomem
*port_mmio
= mv_ap_base(ap
);
2422 u32 in_ptr
, out_ptr
;
2424 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR
)
2425 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2426 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR
)
2427 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2428 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
2431 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
2433 struct mv_port_priv
*pp
= ap
->private_data
;
2435 unsigned int old_map
, new_map
;
2438 * Device error during FBS+NCQ operation:
2440 * Set a port flag to prevent further I/O being enqueued.
2441 * Leave the EDMA running to drain outstanding commands from this port.
2442 * Perform the post-mortem/EH only when all responses are complete.
2443 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2445 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
2446 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
2447 pp
->delayed_eh_pmp_map
= 0;
2449 old_map
= pp
->delayed_eh_pmp_map
;
2450 new_map
= old_map
| mv_get_err_pmp_map(ap
);
2452 if (old_map
!= new_map
) {
2453 pp
->delayed_eh_pmp_map
= new_map
;
2454 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
2456 failed_links
= hweight16(new_map
);
2458 ata_port_printk(ap
, KERN_INFO
, "%s: pmp_map=%04x qc_map=%04x "
2459 "failed_links=%d nr_active_links=%d\n",
2460 __func__
, pp
->delayed_eh_pmp_map
,
2461 ap
->qc_active
, failed_links
,
2462 ap
->nr_active_links
);
2464 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
2465 mv_process_crpb_entries(ap
, pp
);
2468 ata_port_printk(ap
, KERN_INFO
, "%s: done\n", __func__
);
2469 return 1; /* handled */
2471 ata_port_printk(ap
, KERN_INFO
, "%s: waiting\n", __func__
);
2472 return 1; /* handled */
2475 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
2478 * Possible future enhancement:
2480 * FBS+non-NCQ operation is not yet implemented.
2481 * See related notes in mv_edma_cfg().
2483 * Device error during FBS+non-NCQ operation:
2485 * We need to snapshot the shadow registers for each failed command.
2486 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2488 return 0; /* not handled */
2491 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
2493 struct mv_port_priv
*pp
= ap
->private_data
;
2495 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
2496 return 0; /* EDMA was not active: not handled */
2497 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
2498 return 0; /* FBS was not active: not handled */
2500 if (!(edma_err_cause
& EDMA_ERR_DEV
))
2501 return 0; /* non DEV error: not handled */
2502 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
2503 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
2504 return 0; /* other problems: not handled */
2506 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
2508 * EDMA should NOT have self-disabled for this case.
2509 * If it did, then something is wrong elsewhere,
2510 * and we cannot handle it here.
2512 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2513 ata_port_printk(ap
, KERN_WARNING
,
2514 "%s: err_cause=0x%x pp_flags=0x%x\n",
2515 __func__
, edma_err_cause
, pp
->pp_flags
);
2516 return 0; /* not handled */
2518 return mv_handle_fbs_ncq_dev_err(ap
);
2521 * EDMA should have self-disabled for this case.
2522 * If it did not, then something is wrong elsewhere,
2523 * and we cannot handle it here.
2525 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
2526 ata_port_printk(ap
, KERN_WARNING
,
2527 "%s: err_cause=0x%x pp_flags=0x%x\n",
2528 __func__
, edma_err_cause
, pp
->pp_flags
);
2529 return 0; /* not handled */
2531 return mv_handle_fbs_non_ncq_dev_err(ap
);
2533 return 0; /* not handled */
2536 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
2538 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2539 char *when
= "idle";
2541 ata_ehi_clear_desc(ehi
);
2542 if (ap
->flags
& ATA_FLAG_DISABLED
) {
2544 } else if (edma_was_enabled
) {
2545 when
= "EDMA enabled";
2547 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2548 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
2551 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
2552 ehi
->err_mask
|= AC_ERR_OTHER
;
2553 ehi
->action
|= ATA_EH_RESET
;
2554 ata_port_freeze(ap
);
2558 * mv_err_intr - Handle error interrupts on the port
2559 * @ap: ATA channel to manipulate
2561 * Most cases require a full reset of the chip's state machine,
2562 * which also performs a COMRESET.
2563 * Also, if the port disabled DMA, update our cached copy to match.
2566 * Inherited from caller.
2568 static void mv_err_intr(struct ata_port
*ap
)
2570 void __iomem
*port_mmio
= mv_ap_base(ap
);
2571 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
2573 struct mv_port_priv
*pp
= ap
->private_data
;
2574 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2575 unsigned int action
= 0, err_mask
= 0;
2576 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2577 struct ata_queued_cmd
*qc
;
2581 * Read and clear the SError and err_cause bits.
2582 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2583 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2585 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
2586 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
2588 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2589 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2590 fis_cause
= readl(port_mmio
+ FIS_IRQ_CAUSE
);
2591 writelfl(~fis_cause
, port_mmio
+ FIS_IRQ_CAUSE
);
2593 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
2595 if (edma_err_cause
& EDMA_ERR_DEV
) {
2597 * Device errors during FIS-based switching operation
2598 * require special handling.
2600 if (mv_handle_dev_err(ap
, edma_err_cause
))
2604 qc
= mv_get_active_qc(ap
);
2605 ata_ehi_clear_desc(ehi
);
2606 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
2607 edma_err_cause
, pp
->pp_flags
);
2609 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
2610 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
2611 if (fis_cause
& FIS_IRQ_CAUSE_AN
) {
2612 u32 ec
= edma_err_cause
&
2613 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
2614 sata_async_notification(ap
);
2616 return; /* Just an AN; no need for the nukes */
2617 ata_ehi_push_desc(ehi
, "SDB notify");
2621 * All generations share these EDMA error cause bits:
2623 if (edma_err_cause
& EDMA_ERR_DEV
) {
2624 err_mask
|= AC_ERR_DEV
;
2625 action
|= ATA_EH_RESET
;
2626 ata_ehi_push_desc(ehi
, "dev error");
2628 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
2629 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
2630 EDMA_ERR_INTRL_PAR
)) {
2631 err_mask
|= AC_ERR_ATA_BUS
;
2632 action
|= ATA_EH_RESET
;
2633 ata_ehi_push_desc(ehi
, "parity error");
2635 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
2636 ata_ehi_hotplugged(ehi
);
2637 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
2638 "dev disconnect" : "dev connect");
2639 action
|= ATA_EH_RESET
;
2643 * Gen-I has a different SELF_DIS bit,
2644 * different FREEZE bits, and no SERR bit:
2646 if (IS_GEN_I(hpriv
)) {
2647 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
2648 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
2649 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2650 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2653 eh_freeze_mask
= EDMA_EH_FREEZE
;
2654 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
2655 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2656 ata_ehi_push_desc(ehi
, "EDMA self-disable");
2658 if (edma_err_cause
& EDMA_ERR_SERR
) {
2659 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
2660 err_mask
|= AC_ERR_ATA_BUS
;
2661 action
|= ATA_EH_RESET
;
2666 err_mask
= AC_ERR_OTHER
;
2667 action
|= ATA_EH_RESET
;
2670 ehi
->serror
|= serr
;
2671 ehi
->action
|= action
;
2674 qc
->err_mask
|= err_mask
;
2676 ehi
->err_mask
|= err_mask
;
2678 if (err_mask
== AC_ERR_DEV
) {
2680 * Cannot do ata_port_freeze() here,
2681 * because it would kill PIO access,
2682 * which is needed for further diagnosis.
2686 } else if (edma_err_cause
& eh_freeze_mask
) {
2688 * Note to self: ata_port_freeze() calls ata_port_abort()
2690 ata_port_freeze(ap
);
2697 ata_link_abort(qc
->dev
->link
);
2703 static void mv_process_crpb_response(struct ata_port
*ap
,
2704 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
2706 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
2710 u16 edma_status
= le16_to_cpu(response
->flags
);
2712 * edma_status from a response queue entry:
2713 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2714 * MSB is saved ATA status from command completion.
2717 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2720 * Error will be seen/handled by mv_err_intr().
2721 * So do nothing at all here.
2726 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2727 if (!ac_err_mask(ata_status
))
2728 ata_qc_complete(qc
);
2729 /* else: leave it for mv_err_intr() */
2731 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
2736 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2738 void __iomem
*port_mmio
= mv_ap_base(ap
);
2739 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2741 bool work_done
= false;
2742 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2744 /* Get the hardware queue position index */
2745 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR
)
2746 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2748 /* Process new responses from since the last time we looked */
2749 while (in_index
!= pp
->resp_idx
) {
2751 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2753 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2755 if (IS_GEN_I(hpriv
)) {
2756 /* 50xx: no NCQ, only one command active at a time */
2757 tag
= ap
->link
.active_tag
;
2759 /* Gen II/IIE: get command tag from CRPB entry */
2760 tag
= le16_to_cpu(response
->id
) & 0x1f;
2762 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
2766 /* Update the software queue position index in hardware */
2768 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2769 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2770 port_mmio
+ EDMA_RSP_Q_OUT_PTR
);
2773 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2775 struct mv_port_priv
*pp
;
2776 int edma_was_enabled
;
2778 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2779 mv_unexpected_intr(ap
, 0);
2783 * Grab a snapshot of the EDMA_EN flag setting,
2784 * so that we have a consistent view for this port,
2785 * even if something we call of our routines changes it.
2787 pp
= ap
->private_data
;
2788 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2790 * Process completed CRPB response(s) before other events.
2792 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2793 mv_process_crpb_entries(ap
, pp
);
2794 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2795 mv_handle_fbs_ncq_dev_err(ap
);
2798 * Handle chip-reported errors, or continue on to handle PIO.
2800 if (unlikely(port_cause
& ERR_IRQ
)) {
2802 } else if (!edma_was_enabled
) {
2803 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2805 ata_sff_host_intr(ap
, qc
);
2807 mv_unexpected_intr(ap
, edma_was_enabled
);
2812 * mv_host_intr - Handle all interrupts on the given host controller
2813 * @host: host specific structure
2814 * @main_irq_cause: Main interrupt cause register for the chip.
2817 * Inherited from caller.
2819 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2821 struct mv_host_priv
*hpriv
= host
->private_data
;
2822 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2823 unsigned int handled
= 0, port
;
2825 /* If asserted, clear the "all ports" IRQ coalescing bit */
2826 if (main_irq_cause
& ALL_PORTS_COAL_DONE
)
2827 writel(~ALL_PORTS_COAL_IRQ
, mmio
+ IRQ_COAL_CAUSE
);
2829 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2830 struct ata_port
*ap
= host
->ports
[port
];
2831 unsigned int p
, shift
, hardport
, port_cause
;
2833 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2835 * Each hc within the host has its own hc_irq_cause register,
2836 * where the interrupting ports bits get ack'd.
2838 if (hardport
== 0) { /* first port on this hc ? */
2839 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2840 u32 port_mask
, ack_irqs
;
2842 * Skip this entire hc if nothing pending for any ports
2845 port
+= MV_PORTS_PER_HC
- 1;
2849 * We don't need/want to read the hc_irq_cause register,
2850 * because doing so hurts performance, and
2851 * main_irq_cause already gives us everything we need.
2853 * But we do have to *write* to the hc_irq_cause to ack
2854 * the ports that we are handling this time through.
2856 * This requires that we create a bitmap for those
2857 * ports which interrupted us, and use that bitmap
2858 * to ack (only) those ports via hc_irq_cause.
2861 if (hc_cause
& PORTS_0_3_COAL_DONE
)
2862 ack_irqs
= HC_COAL_IRQ
;
2863 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2864 if ((port
+ p
) >= hpriv
->n_ports
)
2866 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2867 if (hc_cause
& port_mask
)
2868 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2870 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2871 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE
);
2875 * Handle interrupts signalled for this port:
2877 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2879 mv_port_intr(ap
, port_cause
);
2884 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2886 struct mv_host_priv
*hpriv
= host
->private_data
;
2887 struct ata_port
*ap
;
2888 struct ata_queued_cmd
*qc
;
2889 struct ata_eh_info
*ehi
;
2890 unsigned int i
, err_mask
, printed
= 0;
2893 err_cause
= readl(mmio
+ hpriv
->irq_cause_offset
);
2895 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2898 DPRINTK("All regs @ PCI error\n");
2899 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2901 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
2903 for (i
= 0; i
< host
->n_ports
; i
++) {
2904 ap
= host
->ports
[i
];
2905 if (!ata_link_offline(&ap
->link
)) {
2906 ehi
= &ap
->link
.eh_info
;
2907 ata_ehi_clear_desc(ehi
);
2909 ata_ehi_push_desc(ehi
,
2910 "PCI err cause 0x%08x", err_cause
);
2911 err_mask
= AC_ERR_HOST_BUS
;
2912 ehi
->action
= ATA_EH_RESET
;
2913 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2915 qc
->err_mask
|= err_mask
;
2917 ehi
->err_mask
|= err_mask
;
2919 ata_port_freeze(ap
);
2922 return 1; /* handled */
2926 * mv_interrupt - Main interrupt event handler
2928 * @dev_instance: private data; in this case the host structure
2930 * Read the read only register to determine if any host
2931 * controllers have pending interrupts. If so, call lower level
2932 * routine to handle. Also check for PCI errors which are only
2936 * This routine holds the host lock while processing pending
2939 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2941 struct ata_host
*host
= dev_instance
;
2942 struct mv_host_priv
*hpriv
= host
->private_data
;
2943 unsigned int handled
= 0;
2944 int using_msi
= hpriv
->hp_flags
& MV_HP_FLAG_MSI
;
2945 u32 main_irq_cause
, pending_irqs
;
2947 spin_lock(&host
->lock
);
2949 /* for MSI: block new interrupts while in here */
2951 mv_write_main_irq_mask(0, hpriv
);
2953 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2954 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
2956 * Deal with cases where we either have nothing pending, or have read
2957 * a bogus register value which can indicate HW removal or PCI fault.
2959 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
2960 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
2961 handled
= mv_pci_error(host
, hpriv
->base
);
2963 handled
= mv_host_intr(host
, pending_irqs
);
2966 /* for MSI: unmask; interrupt cause bits will retrigger now */
2968 mv_write_main_irq_mask(hpriv
->main_irq_mask
, hpriv
);
2970 spin_unlock(&host
->lock
);
2972 return IRQ_RETVAL(handled
);
2975 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
2979 switch (sc_reg_in
) {
2983 ofs
= sc_reg_in
* sizeof(u32
);
2992 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
2994 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2995 void __iomem
*mmio
= hpriv
->base
;
2996 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2997 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2999 if (ofs
!= 0xffffffffU
) {
3000 *val
= readl(addr
+ ofs
);
3006 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
3008 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
3009 void __iomem
*mmio
= hpriv
->base
;
3010 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
3011 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
3013 if (ofs
!= 0xffffffffU
) {
3014 writelfl(val
, addr
+ ofs
);
3020 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3022 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3025 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
3028 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3030 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3033 mv_reset_pci_bus(host
, mmio
);
3036 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3038 writel(0x0fcfffff, mmio
+ FLASH_CTL
);
3041 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3044 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
3047 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3049 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
3050 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
3053 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3057 writel(0, mmio
+ GPIO_PORT_CTL
);
3059 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3061 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3063 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
3066 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3069 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
3070 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3072 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
3075 tmp
= readl(phy_mmio
+ MV5_LTMODE
);
3077 writel(tmp
, phy_mmio
+ MV5_LTMODE
);
3079 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
3082 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
3085 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
3087 tmp
|= hpriv
->signal
[port
].pre
;
3088 tmp
|= hpriv
->signal
[port
].amps
;
3089 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
3094 #define ZERO(reg) writel(0, port_mmio + (reg))
3095 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3098 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3100 mv_reset_channel(hpriv
, mmio
, port
);
3102 ZERO(0x028); /* command */
3103 writel(0x11f, port_mmio
+ EDMA_CFG
);
3104 ZERO(0x004); /* timer */
3105 ZERO(0x008); /* irq err cause */
3106 ZERO(0x00c); /* irq err mask */
3107 ZERO(0x010); /* rq bah */
3108 ZERO(0x014); /* rq inp */
3109 ZERO(0x018); /* rq outp */
3110 ZERO(0x01c); /* respq bah */
3111 ZERO(0x024); /* respq outp */
3112 ZERO(0x020); /* respq inp */
3113 ZERO(0x02c); /* test control */
3114 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
3118 #define ZERO(reg) writel(0, hc_mmio + (reg))
3119 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3122 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3130 tmp
= readl(hc_mmio
+ 0x20);
3133 writel(tmp
, hc_mmio
+ 0x20);
3137 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3140 unsigned int hc
, port
;
3142 for (hc
= 0; hc
< n_hc
; hc
++) {
3143 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
3144 mv5_reset_hc_port(hpriv
, mmio
,
3145 (hc
* MV_PORTS_PER_HC
) + port
);
3147 mv5_reset_one_hc(hpriv
, mmio
, hc
);
3154 #define ZERO(reg) writel(0, mmio + (reg))
3155 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
3157 struct mv_host_priv
*hpriv
= host
->private_data
;
3160 tmp
= readl(mmio
+ MV_PCI_MODE
);
3162 writel(tmp
, mmio
+ MV_PCI_MODE
);
3164 ZERO(MV_PCI_DISC_TIMER
);
3165 ZERO(MV_PCI_MSI_TRIGGER
);
3166 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
3167 ZERO(MV_PCI_SERR_MASK
);
3168 ZERO(hpriv
->irq_cause_offset
);
3169 ZERO(hpriv
->irq_mask_offset
);
3170 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
3171 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
3172 ZERO(MV_PCI_ERR_ATTRIBUTE
);
3173 ZERO(MV_PCI_ERR_COMMAND
);
3177 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3181 mv5_reset_flash(hpriv
, mmio
);
3183 tmp
= readl(mmio
+ GPIO_PORT_CTL
);
3185 tmp
|= (1 << 5) | (1 << 6);
3186 writel(tmp
, mmio
+ GPIO_PORT_CTL
);
3190 * mv6_reset_hc - Perform the 6xxx global soft reset
3191 * @mmio: base address of the HBA
3193 * This routine only applies to 6xxx parts.
3196 * Inherited from caller.
3198 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3201 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS
;
3205 /* Following procedure defined in PCI "main command and status
3209 writel(t
| STOP_PCI_MASTER
, reg
);
3211 for (i
= 0; i
< 1000; i
++) {
3214 if (PCI_MASTER_EMPTY
& t
)
3217 if (!(PCI_MASTER_EMPTY
& t
)) {
3218 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
3226 writel(t
| GLOB_SFT_RST
, reg
);
3229 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
3231 if (!(GLOB_SFT_RST
& t
)) {
3232 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
3237 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3240 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
3243 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
3245 if (GLOB_SFT_RST
& t
) {
3246 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
3253 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3256 void __iomem
*port_mmio
;
3259 tmp
= readl(mmio
+ RESET_CFG
);
3260 if ((tmp
& (1 << 0)) == 0) {
3261 hpriv
->signal
[idx
].amps
= 0x7 << 8;
3262 hpriv
->signal
[idx
].pre
= 0x1 << 5;
3266 port_mmio
= mv_port_base(mmio
, idx
);
3267 tmp
= readl(port_mmio
+ PHY_MODE2
);
3269 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3270 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3273 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
3275 writel(0x00000060, mmio
+ GPIO_PORT_CTL
);
3278 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3281 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3283 u32 hp_flags
= hpriv
->hp_flags
;
3285 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3287 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
3290 if (fix_phy_mode2
) {
3291 m2
= readl(port_mmio
+ PHY_MODE2
);
3294 writel(m2
, port_mmio
+ PHY_MODE2
);
3298 m2
= readl(port_mmio
+ PHY_MODE2
);
3299 m2
&= ~((1 << 16) | (1 << 31));
3300 writel(m2
, port_mmio
+ PHY_MODE2
);
3306 * Gen-II/IIe PHY_MODE3 errata RM#2:
3307 * Achieves better receiver noise performance than the h/w default:
3309 m3
= readl(port_mmio
+ PHY_MODE3
);
3310 m3
= (m3
& 0x1f) | (0x5555601 << 5);
3312 /* Guideline 88F5182 (GL# SATA-S11) */
3316 if (fix_phy_mode4
) {
3317 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
3319 * Enforce reserved-bit restrictions on GenIIe devices only.
3320 * For earlier chipsets, force only the internal config field
3321 * (workaround for errata FEr SATA#10 part 1).
3323 if (IS_GEN_IIE(hpriv
))
3324 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
3326 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
3327 writel(m4
, port_mmio
+ PHY_MODE4
);
3330 * Workaround for 60x1-B2 errata SATA#13:
3331 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3332 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3333 * Or ensure we use writelfl() when writing PHY_MODE4.
3335 writel(m3
, port_mmio
+ PHY_MODE3
);
3337 /* Revert values of pre-emphasis and signal amps to the saved ones */
3338 m2
= readl(port_mmio
+ PHY_MODE2
);
3340 m2
&= ~MV_M2_PREAMP_MASK
;
3341 m2
|= hpriv
->signal
[port
].amps
;
3342 m2
|= hpriv
->signal
[port
].pre
;
3345 /* according to mvSata 3.6.1, some IIE values are fixed */
3346 if (IS_GEN_IIE(hpriv
)) {
3351 writel(m2
, port_mmio
+ PHY_MODE2
);
3354 /* TODO: use the generic LED interface to configure the SATA Presence */
3355 /* & Acitivy LEDs on the board */
3356 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
3362 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
3365 void __iomem
*port_mmio
;
3368 port_mmio
= mv_port_base(mmio
, idx
);
3369 tmp
= readl(port_mmio
+ PHY_MODE2
);
3371 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
3372 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
3376 #define ZERO(reg) writel(0, port_mmio + (reg))
3377 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
3378 void __iomem
*mmio
, unsigned int port
)
3380 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3382 mv_reset_channel(hpriv
, mmio
, port
);
3384 ZERO(0x028); /* command */
3385 writel(0x101f, port_mmio
+ EDMA_CFG
);
3386 ZERO(0x004); /* timer */
3387 ZERO(0x008); /* irq err cause */
3388 ZERO(0x00c); /* irq err mask */
3389 ZERO(0x010); /* rq bah */
3390 ZERO(0x014); /* rq inp */
3391 ZERO(0x018); /* rq outp */
3392 ZERO(0x01c); /* respq bah */
3393 ZERO(0x024); /* respq outp */
3394 ZERO(0x020); /* respq inp */
3395 ZERO(0x02c); /* test control */
3396 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
3401 #define ZERO(reg) writel(0, hc_mmio + (reg))
3402 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
3405 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
3415 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
3416 void __iomem
*mmio
, unsigned int n_hc
)
3420 for (port
= 0; port
< hpriv
->n_ports
; port
++)
3421 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
3423 mv_soc_reset_one_hc(hpriv
, mmio
);
3428 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
3434 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
3439 static void mv_soc_65n_phy_errata(struct mv_host_priv
*hpriv
,
3440 void __iomem
*mmio
, unsigned int port
)
3442 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3445 reg
= readl(port_mmio
+ PHY_MODE3
);
3446 reg
&= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3448 reg
&= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3450 writel(reg
, port_mmio
+ PHY_MODE3
);
3452 reg
= readl(port_mmio
+ PHY_MODE4
);
3453 reg
&= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3455 writel(reg
, port_mmio
+ PHY_MODE4
);
3457 reg
= readl(port_mmio
+ PHY_MODE9_GEN2
);
3458 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3460 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3461 writel(reg
, port_mmio
+ PHY_MODE9_GEN2
);
3463 reg
= readl(port_mmio
+ PHY_MODE9_GEN1
);
3464 reg
&= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3466 reg
&= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3467 writel(reg
, port_mmio
+ PHY_MODE9_GEN1
);
3471 * soc_is_65 - check if the soc is 65 nano device
3473 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3474 * register, this register should contain non-zero value and it exists only
3475 * in the 65 nano devices, when reading it from older devices we get 0.
3477 static bool soc_is_65n(struct mv_host_priv
*hpriv
)
3479 void __iomem
*port0_mmio
= mv_port_base(hpriv
->base
, 0);
3481 if (readl(port0_mmio
+ PHYCFG_OFS
))
3486 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
3488 u32 ifcfg
= readl(port_mmio
+ SATA_IFCFG
);
3490 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
3492 ifcfg
|= (1 << 7); /* enable gen2i speed */
3493 writelfl(ifcfg
, port_mmio
+ SATA_IFCFG
);
3496 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
3497 unsigned int port_no
)
3499 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
3502 * The datasheet warns against setting EDMA_RESET when EDMA is active
3503 * (but doesn't say what the problem might be). So we first try
3504 * to disable the EDMA engine before doing the EDMA_RESET operation.
3506 mv_stop_edma_engine(port_mmio
);
3507 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3509 if (!IS_GEN_I(hpriv
)) {
3510 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3511 mv_setup_ifcfg(port_mmio
, 1);
3514 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3515 * link, and physical layers. It resets all SATA interface registers
3516 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3518 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD
);
3519 udelay(25); /* allow reset propagation */
3520 writelfl(0, port_mmio
+ EDMA_CMD
);
3522 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
3524 if (IS_GEN_I(hpriv
))
3528 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
3530 if (sata_pmp_supported(ap
)) {
3531 void __iomem
*port_mmio
= mv_ap_base(ap
);
3532 u32 reg
= readl(port_mmio
+ SATA_IFCTL
);
3533 int old
= reg
& 0xf;
3536 reg
= (reg
& ~0xf) | pmp
;
3537 writelfl(reg
, port_mmio
+ SATA_IFCTL
);
3542 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
3543 unsigned long deadline
)
3545 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3546 return sata_std_hardreset(link
, class, deadline
);
3549 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
3550 unsigned long deadline
)
3552 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
3553 return ata_sff_softreset(link
, class, deadline
);
3556 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
3557 unsigned long deadline
)
3559 struct ata_port
*ap
= link
->ap
;
3560 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3561 struct mv_port_priv
*pp
= ap
->private_data
;
3562 void __iomem
*mmio
= hpriv
->base
;
3563 int rc
, attempts
= 0, extra
= 0;
3567 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
3568 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
3570 ~(MV_PP_FLAG_FBS_EN
| MV_PP_FLAG_NCQ_EN
| MV_PP_FLAG_FAKE_ATA_BUSY
);
3572 /* Workaround for errata FEr SATA#10 (part 2) */
3574 const unsigned long *timing
=
3575 sata_ehc_deb_timing(&link
->eh_context
);
3577 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
3579 rc
= online
? -EAGAIN
: rc
;
3582 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3583 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
3584 /* Force 1.5gb/s link speed and try again */
3585 mv_setup_ifcfg(mv_ap_base(ap
), 0);
3586 if (time_after(jiffies
+ HZ
, deadline
))
3587 extra
= HZ
; /* only extend it once, max */
3589 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
3590 mv_save_cached_regs(ap
);
3591 mv_edma_cfg(ap
, 0, 0);
3596 static void mv_eh_freeze(struct ata_port
*ap
)
3599 mv_enable_port_irqs(ap
, 0);
3602 static void mv_eh_thaw(struct ata_port
*ap
)
3604 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
3605 unsigned int port
= ap
->port_no
;
3606 unsigned int hardport
= mv_hardport_from_port(port
);
3607 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
3608 void __iomem
*port_mmio
= mv_ap_base(ap
);
3611 /* clear EDMA errors on this port */
3612 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3614 /* clear pending irq events */
3615 hc_irq_cause
= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
3616 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE
);
3618 mv_enable_port_irqs(ap
, ERR_IRQ
);
3622 * mv_port_init - Perform some early initialization on a single port.
3623 * @port: libata data structure storing shadow register addresses
3624 * @port_mmio: base address of the port
3626 * Initialize shadow register mmio addresses, clear outstanding
3627 * interrupts on the port, and unmask interrupts for the future
3628 * start of the port.
3631 * Inherited from caller.
3633 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
3635 void __iomem
*serr
, *shd_base
= port_mmio
+ SHD_BLK
;
3637 /* PIO related setup
3639 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
3641 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
3642 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
3643 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
3644 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
3645 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
3646 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
3648 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
3649 /* special case: control/altstatus doesn't have ATA_REG_ address */
3650 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST
;
3653 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
3655 /* Clear any currently outstanding port interrupt conditions */
3656 serr
= port_mmio
+ mv_scr_offset(SCR_ERROR
);
3657 writelfl(readl(serr
), serr
);
3658 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE
);
3660 /* unmask all non-transient EDMA error interrupts */
3661 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK
);
3663 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3664 readl(port_mmio
+ EDMA_CFG
),
3665 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE
),
3666 readl(port_mmio
+ EDMA_ERR_IRQ_MASK
));
3669 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
3671 struct mv_host_priv
*hpriv
= host
->private_data
;
3672 void __iomem
*mmio
= hpriv
->base
;
3675 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
3676 return 0; /* not PCI-X capable */
3677 reg
= readl(mmio
+ MV_PCI_MODE
);
3678 if ((reg
& MV_PCI_MODE_MASK
) == 0)
3679 return 0; /* conventional PCI mode */
3680 return 1; /* chip is in PCI-X mode */
3683 static int mv_pci_cut_through_okay(struct ata_host
*host
)
3685 struct mv_host_priv
*hpriv
= host
->private_data
;
3686 void __iomem
*mmio
= hpriv
->base
;
3689 if (!mv_in_pcix_mode(host
)) {
3690 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3691 if (reg
& MV_PCI_COMMAND_MRDTRIG
)
3692 return 0; /* not okay */
3694 return 1; /* okay */
3697 static void mv_60x1b2_errata_pci7(struct ata_host
*host
)
3699 struct mv_host_priv
*hpriv
= host
->private_data
;
3700 void __iomem
*mmio
= hpriv
->base
;
3702 /* workaround for 60x1-B2 errata PCI#7 */
3703 if (mv_in_pcix_mode(host
)) {
3704 u32 reg
= readl(mmio
+ MV_PCI_COMMAND
);
3705 writelfl(reg
& ~MV_PCI_COMMAND_MWRCOM
, mmio
+ MV_PCI_COMMAND
);
3709 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
3711 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3712 struct mv_host_priv
*hpriv
= host
->private_data
;
3713 u32 hp_flags
= hpriv
->hp_flags
;
3715 switch (board_idx
) {
3717 hpriv
->ops
= &mv5xxx_ops
;
3718 hp_flags
|= MV_HP_GEN_I
;
3720 switch (pdev
->revision
) {
3722 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3725 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3728 dev_printk(KERN_WARNING
, &pdev
->dev
,
3729 "Applying 50XXB2 workarounds to unknown rev\n");
3730 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3737 hpriv
->ops
= &mv5xxx_ops
;
3738 hp_flags
|= MV_HP_GEN_I
;
3740 switch (pdev
->revision
) {
3742 hp_flags
|= MV_HP_ERRATA_50XXB0
;
3745 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3748 dev_printk(KERN_WARNING
, &pdev
->dev
,
3749 "Applying B2 workarounds to unknown rev\n");
3750 hp_flags
|= MV_HP_ERRATA_50XXB2
;
3757 hpriv
->ops
= &mv6xxx_ops
;
3758 hp_flags
|= MV_HP_GEN_II
;
3760 switch (pdev
->revision
) {
3762 mv_60x1b2_errata_pci7(host
);
3763 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3766 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3769 dev_printk(KERN_WARNING
, &pdev
->dev
,
3770 "Applying B2 workarounds to unknown rev\n");
3771 hp_flags
|= MV_HP_ERRATA_60X1B2
;
3777 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
3778 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
3779 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
3782 * Highpoint RocketRAID PCIe 23xx series cards:
3784 * Unconfigured drives are treated as "Legacy"
3785 * by the BIOS, and it overwrites sector 8 with
3786 * a "Lgcy" metadata block prior to Linux boot.
3788 * Configured drives (RAID or JBOD) leave sector 8
3789 * alone, but instead overwrite a high numbered
3790 * sector for the RAID metadata. This sector can
3791 * be determined exactly, by truncating the physical
3792 * drive capacity to a nice even GB value.
3794 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3796 * Warn the user, lest they think we're just buggy.
3798 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
3799 " BIOS CORRUPTS DATA on all attached drives,"
3800 " regardless of if/how they are configured."
3802 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3803 " use sectors 8-9 on \"Legacy\" drives,"
3804 " and avoid the final two gigabytes on"
3805 " all RocketRAID BIOS initialized drives.\n");
3809 hpriv
->ops
= &mv6xxx_ops
;
3810 hp_flags
|= MV_HP_GEN_IIE
;
3811 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3812 hp_flags
|= MV_HP_CUT_THROUGH
;
3814 switch (pdev
->revision
) {
3815 case 0x2: /* Rev.B0: the first/only public release */
3816 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3819 dev_printk(KERN_WARNING
, &pdev
->dev
,
3820 "Applying 60X1C0 workarounds to unknown rev\n");
3821 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3826 if (soc_is_65n(hpriv
))
3827 hpriv
->ops
= &mv_soc_65n_ops
;
3829 hpriv
->ops
= &mv_soc_ops
;
3830 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3831 MV_HP_ERRATA_60X1C0
;
3835 dev_printk(KERN_ERR
, host
->dev
,
3836 "BUG: invalid board index %u\n", board_idx
);
3840 hpriv
->hp_flags
= hp_flags
;
3841 if (hp_flags
& MV_HP_PCIE
) {
3842 hpriv
->irq_cause_offset
= PCIE_IRQ_CAUSE
;
3843 hpriv
->irq_mask_offset
= PCIE_IRQ_MASK
;
3844 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3846 hpriv
->irq_cause_offset
= PCI_IRQ_CAUSE
;
3847 hpriv
->irq_mask_offset
= PCI_IRQ_MASK
;
3848 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3855 * mv_init_host - Perform some early initialization of the host.
3856 * @host: ATA host to initialize
3857 * @board_idx: controller index
3859 * If possible, do an early global reset of the host. Then do
3860 * our port init and clear/unmask all/relevant host interrupts.
3863 * Inherited from caller.
3865 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
3867 int rc
= 0, n_hc
, port
, hc
;
3868 struct mv_host_priv
*hpriv
= host
->private_data
;
3869 void __iomem
*mmio
= hpriv
->base
;
3871 rc
= mv_chip_id(host
, board_idx
);
3875 if (IS_SOC(hpriv
)) {
3876 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE
;
3877 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK
;
3879 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE
;
3880 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK
;
3883 /* initialize shadow irq mask with register's value */
3884 hpriv
->main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
3886 /* global interrupt mask: 0 == mask everything */
3887 mv_set_main_irq_mask(host
, ~0, 0);
3889 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3891 for (port
= 0; port
< host
->n_ports
; port
++)
3892 if (hpriv
->ops
->read_preamp
)
3893 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3895 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3899 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3900 hpriv
->ops
->reset_bus(host
, mmio
);
3901 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3903 for (port
= 0; port
< host
->n_ports
; port
++) {
3904 struct ata_port
*ap
= host
->ports
[port
];
3905 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3907 mv_port_init(&ap
->ioaddr
, port_mmio
);
3910 if (!IS_SOC(hpriv
)) {
3911 unsigned int offset
= port_mmio
- mmio
;
3912 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
3913 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
3918 for (hc
= 0; hc
< n_hc
; hc
++) {
3919 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3921 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3922 "(before clear)=0x%08x\n", hc
,
3923 readl(hc_mmio
+ HC_CFG
),
3924 readl(hc_mmio
+ HC_IRQ_CAUSE
));
3926 /* Clear any currently outstanding hc interrupt conditions */
3927 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE
);
3930 if (!IS_SOC(hpriv
)) {
3931 /* Clear any currently outstanding host interrupt conditions */
3932 writelfl(0, mmio
+ hpriv
->irq_cause_offset
);
3934 /* and unmask interrupt generation for host regs */
3935 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_offset
);
3939 * enable only global host interrupts for now.
3940 * The per-port interrupts get done later as ports are set up.
3942 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3943 mv_set_irq_coalescing(host
, irq_coalescing_io_count
,
3944 irq_coalescing_usecs
);
3949 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3951 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3953 if (!hpriv
->crqb_pool
)
3956 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3958 if (!hpriv
->crpb_pool
)
3961 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3963 if (!hpriv
->sg_tbl_pool
)
3969 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3970 struct mbus_dram_target_info
*dram
)
3974 for (i
= 0; i
< 4; i
++) {
3975 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3976 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
3979 for (i
= 0; i
< dram
->num_cs
; i
++) {
3980 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3982 writel(((cs
->size
- 1) & 0xffff0000) |
3983 (cs
->mbus_attr
<< 8) |
3984 (dram
->mbus_dram_target_id
<< 4) | 1,
3985 hpriv
->base
+ WINDOW_CTRL(i
));
3986 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
3991 * mv_platform_probe - handle a positive probe of an soc Marvell
3993 * @pdev: platform device found
3996 * Inherited from caller.
3998 static int mv_platform_probe(struct platform_device
*pdev
)
4000 static int printed_version
;
4001 const struct mv_sata_platform_data
*mv_platform_data
;
4002 const struct ata_port_info
*ppi
[] =
4003 { &mv_port_info
[chip_soc
], NULL
};
4004 struct ata_host
*host
;
4005 struct mv_host_priv
*hpriv
;
4006 struct resource
*res
;
4009 if (!printed_version
++)
4010 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
4013 * Simple resource validation ..
4015 if (unlikely(pdev
->num_resources
!= 2)) {
4016 dev_err(&pdev
->dev
, "invalid number of resources\n");
4021 * Get the register base first
4023 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
4028 mv_platform_data
= pdev
->dev
.platform_data
;
4029 n_ports
= mv_platform_data
->n_ports
;
4031 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4032 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4034 if (!host
|| !hpriv
)
4036 host
->private_data
= hpriv
;
4037 hpriv
->n_ports
= n_ports
;
4040 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
4041 resource_size(res
));
4042 hpriv
->base
-= SATAHC0_REG_BASE
;
4045 * (Re-)program MBUS remapping windows if we are asked to.
4047 if (mv_platform_data
->dram
!= NULL
)
4048 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
4050 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4054 /* initialize adapter */
4055 rc
= mv_init_host(host
, chip_soc
);
4059 dev_printk(KERN_INFO
, &pdev
->dev
,
4060 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
4063 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
4064 IRQF_SHARED
, &mv6_sht
);
4069 * mv_platform_remove - unplug a platform interface
4070 * @pdev: platform device
4072 * A platform bus SATA device has been unplugged. Perform the needed
4073 * cleanup. Also called on module unload for any active devices.
4075 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
4077 struct device
*dev
= &pdev
->dev
;
4078 struct ata_host
*host
= dev_get_drvdata(dev
);
4080 ata_host_detach(host
);
4084 static struct platform_driver mv_platform_driver
= {
4085 .probe
= mv_platform_probe
,
4086 .remove
= __devexit_p(mv_platform_remove
),
4089 .owner
= THIS_MODULE
,
4095 static int mv_pci_init_one(struct pci_dev
*pdev
,
4096 const struct pci_device_id
*ent
);
4099 static struct pci_driver mv_pci_driver
= {
4101 .id_table
= mv_pci_tbl
,
4102 .probe
= mv_pci_init_one
,
4103 .remove
= ata_pci_remove_one
,
4106 /* move to PCI layer or libata core? */
4107 static int pci_go_64(struct pci_dev
*pdev
)
4111 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4112 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4114 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4116 dev_printk(KERN_ERR
, &pdev
->dev
,
4117 "64-bit DMA enable failed\n");
4122 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4124 dev_printk(KERN_ERR
, &pdev
->dev
,
4125 "32-bit DMA enable failed\n");
4128 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4130 dev_printk(KERN_ERR
, &pdev
->dev
,
4131 "32-bit consistent DMA enable failed\n");
4140 * mv_print_info - Dump key info to kernel log for perusal.
4141 * @host: ATA host to print info about
4143 * FIXME: complete this.
4146 * Inherited from caller.
4148 static void mv_print_info(struct ata_host
*host
)
4150 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
4151 struct mv_host_priv
*hpriv
= host
->private_data
;
4153 const char *scc_s
, *gen
;
4155 /* Use this to determine the HW stepping of the chip so we know
4156 * what errata to workaround
4158 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
4161 else if (scc
== 0x01)
4166 if (IS_GEN_I(hpriv
))
4168 else if (IS_GEN_II(hpriv
))
4170 else if (IS_GEN_IIE(hpriv
))
4175 dev_printk(KERN_INFO
, &pdev
->dev
,
4176 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4177 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
4178 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
4182 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4183 * @pdev: PCI device found
4184 * @ent: PCI device ID entry for the matched host
4187 * Inherited from caller.
4189 static int mv_pci_init_one(struct pci_dev
*pdev
,
4190 const struct pci_device_id
*ent
)
4192 static int printed_version
;
4193 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
4194 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
4195 struct ata_host
*host
;
4196 struct mv_host_priv
*hpriv
;
4199 if (!printed_version
++)
4200 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
4203 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
4205 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
4206 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
4207 if (!host
|| !hpriv
)
4209 host
->private_data
= hpriv
;
4210 hpriv
->n_ports
= n_ports
;
4212 /* acquire resources */
4213 rc
= pcim_enable_device(pdev
);
4217 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
4219 pcim_pin_device(pdev
);
4222 host
->iomap
= pcim_iomap_table(pdev
);
4223 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
4225 rc
= pci_go_64(pdev
);
4229 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
4233 /* initialize adapter */
4234 rc
= mv_init_host(host
, board_idx
);
4238 /* Enable message-switched interrupts, if requested */
4239 if (msi
&& pci_enable_msi(pdev
) == 0)
4240 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
4242 mv_dump_pci_cfg(pdev
, 0x68);
4243 mv_print_info(host
);
4245 pci_set_master(pdev
);
4246 pci_try_set_mwi(pdev
);
4247 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
4248 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
4252 static int mv_platform_probe(struct platform_device
*pdev
);
4253 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
4255 static int __init
mv_init(void)
4259 rc
= pci_register_driver(&mv_pci_driver
);
4263 rc
= platform_driver_register(&mv_platform_driver
);
4267 pci_unregister_driver(&mv_pci_driver
);
4272 static void __exit
mv_exit(void)
4275 pci_unregister_driver(&mv_pci_driver
);
4277 platform_driver_unregister(&mv_platform_driver
);
4280 MODULE_AUTHOR("Brett Russ");
4281 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4282 MODULE_LICENSE("GPL");
4283 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
4284 MODULE_VERSION(DRV_VERSION
);
4285 MODULE_ALIAS("platform:" DRV_NAME
);
4287 module_init(mv_init
);
4288 module_exit(mv_exit
);