USB: io_ti: check firmware version before updating
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob9990074169fa4c6c5f99f840e4b0c24a898036ab
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group;
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
349 struct task_group *tg;
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
378 #else
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
383 return NULL;
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
393 u64 exec_clock;
394 u64 min_vruntime;
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
399 struct list_head tasks;
400 struct list_head *balance_iterator;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity *curr, *next, *last;
408 unsigned int nr_spread_over;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
424 #ifdef CONFIG_SMP
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
436 unsigned long h_load;
439 * this cpu's part of tg->shares
441 unsigned long shares;
444 * load.weight at the time we set shares
446 unsigned long rq_weight;
447 #endif
448 #endif
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
485 #ifdef CONFIG_SMP
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain;
517 #endif
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently;
540 #endif
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load;
543 unsigned long nr_load_updates;
544 u64 nr_switches;
545 u64 nr_migrations_in;
547 struct cfs_rq cfs;
548 struct rt_rq rt;
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
564 unsigned long nr_uninterruptible;
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
570 u64 clock;
572 atomic_t nr_iowait;
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
587 unsigned long avg_load_per_task;
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
641 static inline int cpu_of(struct rq *rq)
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
666 inline void update_rq_clock(struct rq *rq)
668 rq->clock = sched_clock_cpu(cpu_of(rq));
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
681 * runqueue_is_locked
682 * @cpu: the processor in question.
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu)
690 return spin_is_locked(&cpu_rq(cpu)->lock);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
700 enum {
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
713 #undef SCHED_FEAT
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
724 #undef SCHED_FEAT
726 static int sched_feat_show(struct seq_file *m, void *v)
728 int i;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
735 seq_puts(m, "\n");
737 return 0;
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
749 if (cnt > 63)
750 cnt = 63;
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
755 buf[cnt] = 0;
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
774 if (!sched_feat_names[i])
775 return -EINVAL;
777 filp->f_pos += cnt;
779 return cnt;
782 static int sched_feat_open(struct inode *inode, struct file *filp)
784 return single_open(filp, sched_feat_show, NULL);
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
826 unsigned int sysctl_sched_shares_thresh = 4;
829 * period over which we average the RT time consumption, measured
830 * in ms.
832 * default: 1s
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
840 unsigned int sysctl_sched_rt_period = 1000000;
842 static __read_mostly int scheduler_running;
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
848 int sysctl_sched_rt_runtime = 950000;
850 static inline u64 global_rt_period(void)
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
855 static inline u64 global_rt_runtime(void)
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
870 static inline int task_current(struct rq *rq, struct task_struct *p)
872 return rq->curr == p;
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
878 return task_current(rq, p);
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898 spin_unlock_irq(&rq->lock);
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 #ifdef CONFIG_SMP
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 spin_unlock_irq(&rq->lock);
923 #else
924 spin_unlock(&rq->lock);
925 #endif
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 #ifdef CONFIG_SMP
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 spin_unlock(&rq->lock);
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
969 struct rq *rq;
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 spin_unlock_irqrestore(&rq->lock, *flags);
981 void task_rq_unlock_wait(struct task_struct *p)
983 struct rq *rq = task_rq(p);
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 spin_unlock_wait(&rq->lock);
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
992 spin_unlock(&rq->lock);
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
998 spin_unlock_irqrestore(&rq->lock, *flags);
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1007 struct rq *rq;
1009 local_irq_disable();
1010 rq = this_rq();
1011 spin_lock(&rq->lock);
1013 return rq;
1016 #ifdef CONFIG_SCHED_HRTICK
1018 * Use HR-timers to deliver accurate preemption points.
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1033 static inline int hrtick_enabled(struct rq *rq)
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1042 static void hrtick_clear(struct rq *rq)
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058 spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 spin_unlock(&rq->lock);
1063 return HRTIMER_NORESTART;
1066 #ifdef CONFIG_SMP
1068 * called from hardirq (IPI) context
1070 static void __hrtick_start(void *arg)
1072 struct rq *rq = arg;
1074 spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 spin_unlock(&rq->lock);
1081 * Called to set the hrtick timer state.
1083 * called with rq->lock held and irqs disabled
1085 static void hrtick_start(struct rq *rq, u64 delay)
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090 hrtimer_set_expires(timer, time);
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 int cpu = (int)(long)hcpu;
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1116 return NOTIFY_DONE;
1119 static __init void init_hrtick(void)
1121 hotcpu_notifier(hotplug_hrtick, 0);
1123 #else
1125 * Called to set the hrtick timer state.
1127 * called with rq->lock held and irqs disabled
1129 static void hrtick_start(struct rq *rq, u64 delay)
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (test_tsk_need_resched(p))
1187 return;
1189 set_tsk_need_resched(p);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_need_resched(rq->idle);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 static u64 sched_avg_period(void)
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259 static void sched_avg_update(struct rq *rq)
1261 s64 period = sched_avg_period();
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 * Inline assembly required to prevent the compiler
1266 * optimising this loop into a divmod call.
1267 * See __iter_div_u64_rem() for another example of this.
1269 asm("" : "+rm" (rq->age_stamp));
1270 rq->age_stamp += period;
1271 rq->rt_avg /= 2;
1275 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277 rq->rt_avg += rt_delta;
1278 sched_avg_update(rq);
1281 #else /* !CONFIG_SMP */
1282 static void resched_task(struct task_struct *p)
1284 assert_spin_locked(&task_rq(p)->lock);
1285 set_tsk_need_resched(p);
1288 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291 #endif /* CONFIG_SMP */
1293 #if BITS_PER_LONG == 32
1294 # define WMULT_CONST (~0UL)
1295 #else
1296 # define WMULT_CONST (1UL << 32)
1297 #endif
1299 #define WMULT_SHIFT 32
1302 * Shift right and round:
1304 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1307 * delta *= weight / lw
1309 static unsigned long
1310 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1313 u64 tmp;
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1323 tmp = (u64)delta_exec * weight;
1325 * Check whether we'd overflow the 64-bit multiplication:
1327 if (unlikely(tmp > WMULT_CONST))
1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329 WMULT_SHIFT/2);
1330 else
1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1336 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 lw->weight += inc;
1339 lw->inv_weight = 0;
1342 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 lw->weight -= dec;
1345 lw->inv_weight = 0;
1349 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1350 * of tasks with abnormal "nice" values across CPUs the contribution that
1351 * each task makes to its run queue's load is weighted according to its
1352 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1353 * scaled version of the new time slice allocation that they receive on time
1354 * slice expiry etc.
1357 #define WEIGHT_IDLEPRIO 3
1358 #define WMULT_IDLEPRIO 1431655765
1361 * Nice levels are multiplicative, with a gentle 10% change for every
1362 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1363 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1364 * that remained on nice 0.
1366 * The "10% effect" is relative and cumulative: from _any_ nice level,
1367 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1368 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1369 * If a task goes up by ~10% and another task goes down by ~10% then
1370 * the relative distance between them is ~25%.)
1372 static const int prio_to_weight[40] = {
1373 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1374 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1375 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1376 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1377 /* 0 */ 1024, 820, 655, 526, 423,
1378 /* 5 */ 335, 272, 215, 172, 137,
1379 /* 10 */ 110, 87, 70, 56, 45,
1380 /* 15 */ 36, 29, 23, 18, 15,
1384 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 * In cases where the weight does not change often, we can use the
1387 * precalculated inverse to speed up arithmetics by turning divisions
1388 * into multiplications:
1390 static const u32 prio_to_wmult[40] = {
1391 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1392 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1393 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1394 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1395 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1396 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1397 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1398 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1401 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1404 * runqueue iterator, to support SMP load-balancing between different
1405 * scheduling classes, without having to expose their internal data
1406 * structures to the load-balancing proper:
1408 struct rq_iterator {
1409 void *arg;
1410 struct task_struct *(*start)(void *);
1411 struct task_struct *(*next)(void *);
1414 #ifdef CONFIG_SMP
1415 static unsigned long
1416 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 unsigned long max_load_move, struct sched_domain *sd,
1418 enum cpu_idle_type idle, int *all_pinned,
1419 int *this_best_prio, struct rq_iterator *iterator);
1421 static int
1422 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1423 struct sched_domain *sd, enum cpu_idle_type idle,
1424 struct rq_iterator *iterator);
1425 #endif
1427 /* Time spent by the tasks of the cpu accounting group executing in ... */
1428 enum cpuacct_stat_index {
1429 CPUACCT_STAT_USER, /* ... user mode */
1430 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1432 CPUACCT_STAT_NSTATS,
1435 #ifdef CONFIG_CGROUP_CPUACCT
1436 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1437 static void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val);
1439 #else
1440 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1441 static inline void cpuacct_update_stats(struct task_struct *tsk,
1442 enum cpuacct_stat_index idx, cputime_t val) {}
1443 #endif
1445 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1447 update_load_add(&rq->load, load);
1450 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1452 update_load_sub(&rq->load, load);
1455 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1456 typedef int (*tg_visitor)(struct task_group *, void *);
1459 * Iterate the full tree, calling @down when first entering a node and @up when
1460 * leaving it for the final time.
1462 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1464 struct task_group *parent, *child;
1465 int ret;
1467 rcu_read_lock();
1468 parent = &root_task_group;
1469 down:
1470 ret = (*down)(parent, data);
1471 if (ret)
1472 goto out_unlock;
1473 list_for_each_entry_rcu(child, &parent->children, siblings) {
1474 parent = child;
1475 goto down;
1478 continue;
1480 ret = (*up)(parent, data);
1481 if (ret)
1482 goto out_unlock;
1484 child = parent;
1485 parent = parent->parent;
1486 if (parent)
1487 goto up;
1488 out_unlock:
1489 rcu_read_unlock();
1491 return ret;
1494 static int tg_nop(struct task_group *tg, void *data)
1496 return 0;
1498 #endif
1500 #ifdef CONFIG_SMP
1501 /* Used instead of source_load when we know the type == 0 */
1502 static unsigned long weighted_cpuload(const int cpu)
1504 return cpu_rq(cpu)->load.weight;
1508 * Return a low guess at the load of a migration-source cpu weighted
1509 * according to the scheduling class and "nice" value.
1511 * We want to under-estimate the load of migration sources, to
1512 * balance conservatively.
1514 static unsigned long source_load(int cpu, int type)
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long total = weighted_cpuload(cpu);
1519 if (type == 0 || !sched_feat(LB_BIAS))
1520 return total;
1522 return min(rq->cpu_load[type-1], total);
1526 * Return a high guess at the load of a migration-target cpu weighted
1527 * according to the scheduling class and "nice" value.
1529 static unsigned long target_load(int cpu, int type)
1531 struct rq *rq = cpu_rq(cpu);
1532 unsigned long total = weighted_cpuload(cpu);
1534 if (type == 0 || !sched_feat(LB_BIAS))
1535 return total;
1537 return max(rq->cpu_load[type-1], total);
1540 static struct sched_group *group_of(int cpu)
1542 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1544 if (!sd)
1545 return NULL;
1547 return sd->groups;
1550 static unsigned long power_of(int cpu)
1552 struct sched_group *group = group_of(cpu);
1554 if (!group)
1555 return SCHED_LOAD_SCALE;
1557 return group->cpu_power;
1560 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1562 static unsigned long cpu_avg_load_per_task(int cpu)
1564 struct rq *rq = cpu_rq(cpu);
1565 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1567 if (nr_running)
1568 rq->avg_load_per_task = rq->load.weight / nr_running;
1569 else
1570 rq->avg_load_per_task = 0;
1572 return rq->avg_load_per_task;
1575 #ifdef CONFIG_FAIR_GROUP_SCHED
1577 static __read_mostly unsigned long *update_shares_data;
1579 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1582 * Calculate and set the cpu's group shares.
1584 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1585 unsigned long sd_shares,
1586 unsigned long sd_rq_weight,
1587 unsigned long *usd_rq_weight)
1589 unsigned long shares, rq_weight;
1590 int boost = 0;
1592 rq_weight = usd_rq_weight[cpu];
1593 if (!rq_weight) {
1594 boost = 1;
1595 rq_weight = NICE_0_LOAD;
1599 * \Sum_j shares_j * rq_weight_i
1600 * shares_i = -----------------------------
1601 * \Sum_j rq_weight_j
1603 shares = (sd_shares * rq_weight) / sd_rq_weight;
1604 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1606 if (abs(shares - tg->se[cpu]->load.weight) >
1607 sysctl_sched_shares_thresh) {
1608 struct rq *rq = cpu_rq(cpu);
1609 unsigned long flags;
1611 spin_lock_irqsave(&rq->lock, flags);
1612 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1613 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1614 __set_se_shares(tg->se[cpu], shares);
1615 spin_unlock_irqrestore(&rq->lock, flags);
1620 * Re-compute the task group their per cpu shares over the given domain.
1621 * This needs to be done in a bottom-up fashion because the rq weight of a
1622 * parent group depends on the shares of its child groups.
1624 static int tg_shares_up(struct task_group *tg, void *data)
1626 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1627 unsigned long *usd_rq_weight;
1628 struct sched_domain *sd = data;
1629 unsigned long flags;
1630 int i;
1632 if (!tg->se[0])
1633 return 0;
1635 local_irq_save(flags);
1636 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1638 for_each_cpu(i, sched_domain_span(sd)) {
1639 weight = tg->cfs_rq[i]->load.weight;
1640 usd_rq_weight[i] = weight;
1642 rq_weight += weight;
1644 * If there are currently no tasks on the cpu pretend there
1645 * is one of average load so that when a new task gets to
1646 * run here it will not get delayed by group starvation.
1648 if (!weight)
1649 weight = NICE_0_LOAD;
1651 sum_weight += weight;
1652 shares += tg->cfs_rq[i]->shares;
1655 if (!rq_weight)
1656 rq_weight = sum_weight;
1658 if ((!shares && rq_weight) || shares > tg->shares)
1659 shares = tg->shares;
1661 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1662 shares = tg->shares;
1664 for_each_cpu(i, sched_domain_span(sd))
1665 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1667 local_irq_restore(flags);
1669 return 0;
1673 * Compute the cpu's hierarchical load factor for each task group.
1674 * This needs to be done in a top-down fashion because the load of a child
1675 * group is a fraction of its parents load.
1677 static int tg_load_down(struct task_group *tg, void *data)
1679 unsigned long load;
1680 long cpu = (long)data;
1682 if (!tg->parent) {
1683 load = cpu_rq(cpu)->load.weight;
1684 } else {
1685 load = tg->parent->cfs_rq[cpu]->h_load;
1686 load *= tg->cfs_rq[cpu]->shares;
1687 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1690 tg->cfs_rq[cpu]->h_load = load;
1692 return 0;
1695 static void update_shares(struct sched_domain *sd)
1697 s64 elapsed;
1698 u64 now;
1700 if (root_task_group_empty())
1701 return;
1703 now = cpu_clock(raw_smp_processor_id());
1704 elapsed = now - sd->last_update;
1706 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1707 sd->last_update = now;
1708 walk_tg_tree(tg_nop, tg_shares_up, sd);
1712 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1714 if (root_task_group_empty())
1715 return;
1717 spin_unlock(&rq->lock);
1718 update_shares(sd);
1719 spin_lock(&rq->lock);
1722 static void update_h_load(long cpu)
1724 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1727 #else
1729 static inline void update_shares(struct sched_domain *sd)
1733 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1737 #endif
1739 #ifdef CONFIG_PREEMPT
1741 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1744 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1745 * way at the expense of forcing extra atomic operations in all
1746 * invocations. This assures that the double_lock is acquired using the
1747 * same underlying policy as the spinlock_t on this architecture, which
1748 * reduces latency compared to the unfair variant below. However, it
1749 * also adds more overhead and therefore may reduce throughput.
1751 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1752 __releases(this_rq->lock)
1753 __acquires(busiest->lock)
1754 __acquires(this_rq->lock)
1756 spin_unlock(&this_rq->lock);
1757 double_rq_lock(this_rq, busiest);
1759 return 1;
1762 #else
1764 * Unfair double_lock_balance: Optimizes throughput at the expense of
1765 * latency by eliminating extra atomic operations when the locks are
1766 * already in proper order on entry. This favors lower cpu-ids and will
1767 * grant the double lock to lower cpus over higher ids under contention,
1768 * regardless of entry order into the function.
1770 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1771 __releases(this_rq->lock)
1772 __acquires(busiest->lock)
1773 __acquires(this_rq->lock)
1775 int ret = 0;
1777 if (unlikely(!spin_trylock(&busiest->lock))) {
1778 if (busiest < this_rq) {
1779 spin_unlock(&this_rq->lock);
1780 spin_lock(&busiest->lock);
1781 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1782 ret = 1;
1783 } else
1784 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1786 return ret;
1789 #endif /* CONFIG_PREEMPT */
1792 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1794 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1796 if (unlikely(!irqs_disabled())) {
1797 /* printk() doesn't work good under rq->lock */
1798 spin_unlock(&this_rq->lock);
1799 BUG_ON(1);
1802 return _double_lock_balance(this_rq, busiest);
1805 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1806 __releases(busiest->lock)
1808 spin_unlock(&busiest->lock);
1809 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1811 #endif
1813 #ifdef CONFIG_FAIR_GROUP_SCHED
1814 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1816 #ifdef CONFIG_SMP
1817 cfs_rq->shares = shares;
1818 #endif
1820 #endif
1822 static void calc_load_account_active(struct rq *this_rq);
1823 static void update_sysctl(void);
1825 #include "sched_stats.h"
1826 #include "sched_idletask.c"
1827 #include "sched_fair.c"
1828 #include "sched_rt.c"
1829 #ifdef CONFIG_SCHED_DEBUG
1830 # include "sched_debug.c"
1831 #endif
1833 #define sched_class_highest (&rt_sched_class)
1834 #define for_each_class(class) \
1835 for (class = sched_class_highest; class; class = class->next)
1837 static void inc_nr_running(struct rq *rq)
1839 rq->nr_running++;
1842 static void dec_nr_running(struct rq *rq)
1844 rq->nr_running--;
1847 static void set_load_weight(struct task_struct *p)
1849 if (task_has_rt_policy(p)) {
1850 p->se.load.weight = prio_to_weight[0] * 2;
1851 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1852 return;
1856 * SCHED_IDLE tasks get minimal weight:
1858 if (p->policy == SCHED_IDLE) {
1859 p->se.load.weight = WEIGHT_IDLEPRIO;
1860 p->se.load.inv_weight = WMULT_IDLEPRIO;
1861 return;
1864 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1865 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1868 static void update_avg(u64 *avg, u64 sample)
1870 s64 diff = sample - *avg;
1871 *avg += diff >> 3;
1874 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1876 if (wakeup)
1877 p->se.start_runtime = p->se.sum_exec_runtime;
1879 sched_info_queued(p);
1880 p->sched_class->enqueue_task(rq, p, wakeup);
1881 p->se.on_rq = 1;
1884 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1886 if (sleep) {
1887 if (p->se.last_wakeup) {
1888 update_avg(&p->se.avg_overlap,
1889 p->se.sum_exec_runtime - p->se.last_wakeup);
1890 p->se.last_wakeup = 0;
1891 } else {
1892 update_avg(&p->se.avg_wakeup,
1893 sysctl_sched_wakeup_granularity);
1897 sched_info_dequeued(p);
1898 p->sched_class->dequeue_task(rq, p, sleep);
1899 p->se.on_rq = 0;
1903 * __normal_prio - return the priority that is based on the static prio
1905 static inline int __normal_prio(struct task_struct *p)
1907 return p->static_prio;
1911 * Calculate the expected normal priority: i.e. priority
1912 * without taking RT-inheritance into account. Might be
1913 * boosted by interactivity modifiers. Changes upon fork,
1914 * setprio syscalls, and whenever the interactivity
1915 * estimator recalculates.
1917 static inline int normal_prio(struct task_struct *p)
1919 int prio;
1921 if (task_has_rt_policy(p))
1922 prio = MAX_RT_PRIO-1 - p->rt_priority;
1923 else
1924 prio = __normal_prio(p);
1925 return prio;
1929 * Calculate the current priority, i.e. the priority
1930 * taken into account by the scheduler. This value might
1931 * be boosted by RT tasks, or might be boosted by
1932 * interactivity modifiers. Will be RT if the task got
1933 * RT-boosted. If not then it returns p->normal_prio.
1935 static int effective_prio(struct task_struct *p)
1937 p->normal_prio = normal_prio(p);
1939 * If we are RT tasks or we were boosted to RT priority,
1940 * keep the priority unchanged. Otherwise, update priority
1941 * to the normal priority:
1943 if (!rt_prio(p->prio))
1944 return p->normal_prio;
1945 return p->prio;
1949 * activate_task - move a task to the runqueue.
1951 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1953 if (task_contributes_to_load(p))
1954 rq->nr_uninterruptible--;
1956 enqueue_task(rq, p, wakeup);
1957 inc_nr_running(rq);
1961 * deactivate_task - remove a task from the runqueue.
1963 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible++;
1968 dequeue_task(rq, p, sleep);
1969 dec_nr_running(rq);
1973 * task_curr - is this task currently executing on a CPU?
1974 * @p: the task in question.
1976 inline int task_curr(const struct task_struct *p)
1978 return cpu_curr(task_cpu(p)) == p;
1981 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1983 set_task_rq(p, cpu);
1984 #ifdef CONFIG_SMP
1986 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1987 * successfuly executed on another CPU. We must ensure that updates of
1988 * per-task data have been completed by this moment.
1990 smp_wmb();
1991 task_thread_info(p)->cpu = cpu;
1992 #endif
1995 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2008 * kthread_bind - bind a just-created kthread to a cpu.
2009 * @p: thread created by kthread_create().
2010 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2012 * Description: This function is equivalent to set_cpus_allowed(),
2013 * except that @cpu doesn't need to be online, and the thread must be
2014 * stopped (i.e., just returned from kthread_create()).
2016 * Function lives here instead of kthread.c because it messes with
2017 * scheduler internals which require locking.
2019 void kthread_bind(struct task_struct *p, unsigned int cpu)
2021 struct rq *rq = cpu_rq(cpu);
2022 unsigned long flags;
2024 /* Must have done schedule() in kthread() before we set_task_cpu */
2025 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2026 WARN_ON(1);
2027 return;
2030 spin_lock_irqsave(&rq->lock, flags);
2031 set_task_cpu(p, cpu);
2032 p->cpus_allowed = cpumask_of_cpu(cpu);
2033 p->rt.nr_cpus_allowed = 1;
2034 p->flags |= PF_THREAD_BOUND;
2035 spin_unlock_irqrestore(&rq->lock, flags);
2037 EXPORT_SYMBOL(kthread_bind);
2039 #ifdef CONFIG_SMP
2041 * Is this task likely cache-hot:
2043 static int
2044 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2046 s64 delta;
2048 if (p->sched_class != &fair_sched_class)
2049 return 0;
2052 * Buddy candidates are cache hot:
2054 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2055 (&p->se == cfs_rq_of(&p->se)->next ||
2056 &p->se == cfs_rq_of(&p->se)->last))
2057 return 1;
2059 if (sysctl_sched_migration_cost == -1)
2060 return 1;
2061 if (sysctl_sched_migration_cost == 0)
2062 return 0;
2064 delta = now - p->se.exec_start;
2066 return delta < (s64)sysctl_sched_migration_cost;
2070 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2072 int old_cpu = task_cpu(p);
2073 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2074 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2075 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2076 u64 clock_offset;
2078 clock_offset = old_rq->clock - new_rq->clock;
2080 trace_sched_migrate_task(p, new_cpu);
2082 #ifdef CONFIG_SCHEDSTATS
2083 if (p->se.wait_start)
2084 p->se.wait_start -= clock_offset;
2085 if (p->se.sleep_start)
2086 p->se.sleep_start -= clock_offset;
2087 if (p->se.block_start)
2088 p->se.block_start -= clock_offset;
2089 #endif
2090 if (old_cpu != new_cpu) {
2091 p->se.nr_migrations++;
2092 new_rq->nr_migrations_in++;
2093 #ifdef CONFIG_SCHEDSTATS
2094 if (task_hot(p, old_rq->clock, NULL))
2095 schedstat_inc(p, se.nr_forced2_migrations);
2096 #endif
2097 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2098 1, 1, NULL, 0);
2100 p->se.vruntime -= old_cfsrq->min_vruntime -
2101 new_cfsrq->min_vruntime;
2103 __set_task_cpu(p, new_cpu);
2106 struct migration_req {
2107 struct list_head list;
2109 struct task_struct *task;
2110 int dest_cpu;
2112 struct completion done;
2116 * The task's runqueue lock must be held.
2117 * Returns true if you have to wait for migration thread.
2119 static int
2120 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2122 struct rq *rq = task_rq(p);
2125 * If the task is not on a runqueue (and not running), then
2126 * the next wake-up will properly place the task.
2128 if (!p->se.on_rq && !task_running(rq, p))
2129 return 0;
2131 init_completion(&req->done);
2132 req->task = p;
2133 req->dest_cpu = dest_cpu;
2134 list_add(&req->list, &rq->migration_queue);
2136 return 1;
2140 * wait_task_context_switch - wait for a thread to complete at least one
2141 * context switch.
2143 * @p must not be current.
2145 void wait_task_context_switch(struct task_struct *p)
2147 unsigned long nvcsw, nivcsw, flags;
2148 int running;
2149 struct rq *rq;
2151 nvcsw = p->nvcsw;
2152 nivcsw = p->nivcsw;
2153 for (;;) {
2155 * The runqueue is assigned before the actual context
2156 * switch. We need to take the runqueue lock.
2158 * We could check initially without the lock but it is
2159 * very likely that we need to take the lock in every
2160 * iteration.
2162 rq = task_rq_lock(p, &flags);
2163 running = task_running(rq, p);
2164 task_rq_unlock(rq, &flags);
2166 if (likely(!running))
2167 break;
2169 * The switch count is incremented before the actual
2170 * context switch. We thus wait for two switches to be
2171 * sure at least one completed.
2173 if ((p->nvcsw - nvcsw) > 1)
2174 break;
2175 if ((p->nivcsw - nivcsw) > 1)
2176 break;
2178 cpu_relax();
2183 * wait_task_inactive - wait for a thread to unschedule.
2185 * If @match_state is nonzero, it's the @p->state value just checked and
2186 * not expected to change. If it changes, i.e. @p might have woken up,
2187 * then return zero. When we succeed in waiting for @p to be off its CPU,
2188 * we return a positive number (its total switch count). If a second call
2189 * a short while later returns the same number, the caller can be sure that
2190 * @p has remained unscheduled the whole time.
2192 * The caller must ensure that the task *will* unschedule sometime soon,
2193 * else this function might spin for a *long* time. This function can't
2194 * be called with interrupts off, or it may introduce deadlock with
2195 * smp_call_function() if an IPI is sent by the same process we are
2196 * waiting to become inactive.
2198 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2200 unsigned long flags;
2201 int running, on_rq;
2202 unsigned long ncsw;
2203 struct rq *rq;
2205 for (;;) {
2207 * We do the initial early heuristics without holding
2208 * any task-queue locks at all. We'll only try to get
2209 * the runqueue lock when things look like they will
2210 * work out!
2212 rq = task_rq(p);
2215 * If the task is actively running on another CPU
2216 * still, just relax and busy-wait without holding
2217 * any locks.
2219 * NOTE! Since we don't hold any locks, it's not
2220 * even sure that "rq" stays as the right runqueue!
2221 * But we don't care, since "task_running()" will
2222 * return false if the runqueue has changed and p
2223 * is actually now running somewhere else!
2225 while (task_running(rq, p)) {
2226 if (match_state && unlikely(p->state != match_state))
2227 return 0;
2228 cpu_relax();
2232 * Ok, time to look more closely! We need the rq
2233 * lock now, to be *sure*. If we're wrong, we'll
2234 * just go back and repeat.
2236 rq = task_rq_lock(p, &flags);
2237 trace_sched_wait_task(rq, p);
2238 running = task_running(rq, p);
2239 on_rq = p->se.on_rq;
2240 ncsw = 0;
2241 if (!match_state || p->state == match_state)
2242 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2243 task_rq_unlock(rq, &flags);
2246 * If it changed from the expected state, bail out now.
2248 if (unlikely(!ncsw))
2249 break;
2252 * Was it really running after all now that we
2253 * checked with the proper locks actually held?
2255 * Oops. Go back and try again..
2257 if (unlikely(running)) {
2258 cpu_relax();
2259 continue;
2263 * It's not enough that it's not actively running,
2264 * it must be off the runqueue _entirely_, and not
2265 * preempted!
2267 * So if it was still runnable (but just not actively
2268 * running right now), it's preempted, and we should
2269 * yield - it could be a while.
2271 if (unlikely(on_rq)) {
2272 schedule_timeout_uninterruptible(1);
2273 continue;
2277 * Ahh, all good. It wasn't running, and it wasn't
2278 * runnable, which means that it will never become
2279 * running in the future either. We're all done!
2281 break;
2284 return ncsw;
2287 /***
2288 * kick_process - kick a running thread to enter/exit the kernel
2289 * @p: the to-be-kicked thread
2291 * Cause a process which is running on another CPU to enter
2292 * kernel-mode, without any delay. (to get signals handled.)
2294 * NOTE: this function doesnt have to take the runqueue lock,
2295 * because all it wants to ensure is that the remote task enters
2296 * the kernel. If the IPI races and the task has been migrated
2297 * to another CPU then no harm is done and the purpose has been
2298 * achieved as well.
2300 void kick_process(struct task_struct *p)
2302 int cpu;
2304 preempt_disable();
2305 cpu = task_cpu(p);
2306 if ((cpu != smp_processor_id()) && task_curr(p))
2307 smp_send_reschedule(cpu);
2308 preempt_enable();
2310 EXPORT_SYMBOL_GPL(kick_process);
2311 #endif /* CONFIG_SMP */
2314 * task_oncpu_function_call - call a function on the cpu on which a task runs
2315 * @p: the task to evaluate
2316 * @func: the function to be called
2317 * @info: the function call argument
2319 * Calls the function @func when the task is currently running. This might
2320 * be on the current CPU, which just calls the function directly
2322 void task_oncpu_function_call(struct task_struct *p,
2323 void (*func) (void *info), void *info)
2325 int cpu;
2327 preempt_disable();
2328 cpu = task_cpu(p);
2329 if (task_curr(p))
2330 smp_call_function_single(cpu, func, info, 1);
2331 preempt_enable();
2334 /***
2335 * try_to_wake_up - wake up a thread
2336 * @p: the to-be-woken-up thread
2337 * @state: the mask of task states that can be woken
2338 * @sync: do a synchronous wakeup?
2340 * Put it on the run-queue if it's not already there. The "current"
2341 * thread is always on the run-queue (except when the actual
2342 * re-schedule is in progress), and as such you're allowed to do
2343 * the simpler "current->state = TASK_RUNNING" to mark yourself
2344 * runnable without the overhead of this.
2346 * returns failure only if the task is already active.
2348 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2349 int wake_flags)
2351 int cpu, orig_cpu, this_cpu, success = 0;
2352 unsigned long flags;
2353 struct rq *rq, *orig_rq;
2355 if (!sched_feat(SYNC_WAKEUPS))
2356 wake_flags &= ~WF_SYNC;
2358 this_cpu = get_cpu();
2360 smp_wmb();
2361 rq = orig_rq = task_rq_lock(p, &flags);
2362 update_rq_clock(rq);
2363 if (!(p->state & state))
2364 goto out;
2366 if (p->se.on_rq)
2367 goto out_running;
2369 cpu = task_cpu(p);
2370 orig_cpu = cpu;
2372 #ifdef CONFIG_SMP
2373 if (unlikely(task_running(rq, p)))
2374 goto out_activate;
2377 * In order to handle concurrent wakeups and release the rq->lock
2378 * we put the task in TASK_WAKING state.
2380 * First fix up the nr_uninterruptible count:
2382 if (task_contributes_to_load(p))
2383 rq->nr_uninterruptible--;
2384 p->state = TASK_WAKING;
2385 task_rq_unlock(rq, &flags);
2387 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2388 if (cpu != orig_cpu)
2389 set_task_cpu(p, cpu);
2391 rq = task_rq_lock(p, &flags);
2393 if (rq != orig_rq)
2394 update_rq_clock(rq);
2396 WARN_ON(p->state != TASK_WAKING);
2397 cpu = task_cpu(p);
2399 #ifdef CONFIG_SCHEDSTATS
2400 schedstat_inc(rq, ttwu_count);
2401 if (cpu == this_cpu)
2402 schedstat_inc(rq, ttwu_local);
2403 else {
2404 struct sched_domain *sd;
2405 for_each_domain(this_cpu, sd) {
2406 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2407 schedstat_inc(sd, ttwu_wake_remote);
2408 break;
2412 #endif /* CONFIG_SCHEDSTATS */
2414 out_activate:
2415 #endif /* CONFIG_SMP */
2416 schedstat_inc(p, se.nr_wakeups);
2417 if (wake_flags & WF_SYNC)
2418 schedstat_inc(p, se.nr_wakeups_sync);
2419 if (orig_cpu != cpu)
2420 schedstat_inc(p, se.nr_wakeups_migrate);
2421 if (cpu == this_cpu)
2422 schedstat_inc(p, se.nr_wakeups_local);
2423 else
2424 schedstat_inc(p, se.nr_wakeups_remote);
2425 activate_task(rq, p, 1);
2426 success = 1;
2429 * Only attribute actual wakeups done by this task.
2431 if (!in_interrupt()) {
2432 struct sched_entity *se = &current->se;
2433 u64 sample = se->sum_exec_runtime;
2435 if (se->last_wakeup)
2436 sample -= se->last_wakeup;
2437 else
2438 sample -= se->start_runtime;
2439 update_avg(&se->avg_wakeup, sample);
2441 se->last_wakeup = se->sum_exec_runtime;
2444 out_running:
2445 trace_sched_wakeup(rq, p, success);
2446 check_preempt_curr(rq, p, wake_flags);
2448 p->state = TASK_RUNNING;
2449 #ifdef CONFIG_SMP
2450 if (p->sched_class->task_wake_up)
2451 p->sched_class->task_wake_up(rq, p);
2453 if (unlikely(rq->idle_stamp)) {
2454 u64 delta = rq->clock - rq->idle_stamp;
2455 u64 max = 2*sysctl_sched_migration_cost;
2457 if (delta > max)
2458 rq->avg_idle = max;
2459 else
2460 update_avg(&rq->avg_idle, delta);
2461 rq->idle_stamp = 0;
2463 #endif
2464 out:
2465 task_rq_unlock(rq, &flags);
2466 put_cpu();
2468 return success;
2472 * wake_up_process - Wake up a specific process
2473 * @p: The process to be woken up.
2475 * Attempt to wake up the nominated process and move it to the set of runnable
2476 * processes. Returns 1 if the process was woken up, 0 if it was already
2477 * running.
2479 * It may be assumed that this function implies a write memory barrier before
2480 * changing the task state if and only if any tasks are woken up.
2482 int wake_up_process(struct task_struct *p)
2484 return try_to_wake_up(p, TASK_ALL, 0);
2486 EXPORT_SYMBOL(wake_up_process);
2488 int wake_up_state(struct task_struct *p, unsigned int state)
2490 return try_to_wake_up(p, state, 0);
2494 * Perform scheduler related setup for a newly forked process p.
2495 * p is forked by current.
2497 * __sched_fork() is basic setup used by init_idle() too:
2499 static void __sched_fork(struct task_struct *p)
2501 p->se.exec_start = 0;
2502 p->se.sum_exec_runtime = 0;
2503 p->se.prev_sum_exec_runtime = 0;
2504 p->se.nr_migrations = 0;
2505 p->se.last_wakeup = 0;
2506 p->se.avg_overlap = 0;
2507 p->se.start_runtime = 0;
2508 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2509 p->se.avg_running = 0;
2511 #ifdef CONFIG_SCHEDSTATS
2512 p->se.wait_start = 0;
2513 p->se.wait_max = 0;
2514 p->se.wait_count = 0;
2515 p->se.wait_sum = 0;
2517 p->se.sleep_start = 0;
2518 p->se.sleep_max = 0;
2519 p->se.sum_sleep_runtime = 0;
2521 p->se.block_start = 0;
2522 p->se.block_max = 0;
2523 p->se.exec_max = 0;
2524 p->se.slice_max = 0;
2526 p->se.nr_migrations_cold = 0;
2527 p->se.nr_failed_migrations_affine = 0;
2528 p->se.nr_failed_migrations_running = 0;
2529 p->se.nr_failed_migrations_hot = 0;
2530 p->se.nr_forced_migrations = 0;
2531 p->se.nr_forced2_migrations = 0;
2533 p->se.nr_wakeups = 0;
2534 p->se.nr_wakeups_sync = 0;
2535 p->se.nr_wakeups_migrate = 0;
2536 p->se.nr_wakeups_local = 0;
2537 p->se.nr_wakeups_remote = 0;
2538 p->se.nr_wakeups_affine = 0;
2539 p->se.nr_wakeups_affine_attempts = 0;
2540 p->se.nr_wakeups_passive = 0;
2541 p->se.nr_wakeups_idle = 0;
2543 #endif
2545 INIT_LIST_HEAD(&p->rt.run_list);
2546 p->se.on_rq = 0;
2547 INIT_LIST_HEAD(&p->se.group_node);
2549 #ifdef CONFIG_PREEMPT_NOTIFIERS
2550 INIT_HLIST_HEAD(&p->preempt_notifiers);
2551 #endif
2554 * We mark the process as running here, but have not actually
2555 * inserted it onto the runqueue yet. This guarantees that
2556 * nobody will actually run it, and a signal or other external
2557 * event cannot wake it up and insert it on the runqueue either.
2559 p->state = TASK_RUNNING;
2563 * fork()/clone()-time setup:
2565 void sched_fork(struct task_struct *p, int clone_flags)
2567 int cpu = get_cpu();
2569 __sched_fork(p);
2572 * Revert to default priority/policy on fork if requested.
2574 if (unlikely(p->sched_reset_on_fork)) {
2575 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2576 p->policy = SCHED_NORMAL;
2577 p->normal_prio = p->static_prio;
2580 if (PRIO_TO_NICE(p->static_prio) < 0) {
2581 p->static_prio = NICE_TO_PRIO(0);
2582 p->normal_prio = p->static_prio;
2583 set_load_weight(p);
2587 * We don't need the reset flag anymore after the fork. It has
2588 * fulfilled its duty:
2590 p->sched_reset_on_fork = 0;
2594 * Make sure we do not leak PI boosting priority to the child.
2596 p->prio = current->normal_prio;
2598 if (!rt_prio(p->prio))
2599 p->sched_class = &fair_sched_class;
2601 #ifdef CONFIG_SMP
2602 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2603 #endif
2604 set_task_cpu(p, cpu);
2606 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2607 if (likely(sched_info_on()))
2608 memset(&p->sched_info, 0, sizeof(p->sched_info));
2609 #endif
2610 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2611 p->oncpu = 0;
2612 #endif
2613 #ifdef CONFIG_PREEMPT
2614 /* Want to start with kernel preemption disabled. */
2615 task_thread_info(p)->preempt_count = 1;
2616 #endif
2617 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2619 put_cpu();
2623 * wake_up_new_task - wake up a newly created task for the first time.
2625 * This function will do some initial scheduler statistics housekeeping
2626 * that must be done for every newly created context, then puts the task
2627 * on the runqueue and wakes it.
2629 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2631 unsigned long flags;
2632 struct rq *rq;
2634 rq = task_rq_lock(p, &flags);
2635 BUG_ON(p->state != TASK_RUNNING);
2636 update_rq_clock(rq);
2638 if (!p->sched_class->task_new || !current->se.on_rq) {
2639 activate_task(rq, p, 0);
2640 } else {
2642 * Let the scheduling class do new task startup
2643 * management (if any):
2645 p->sched_class->task_new(rq, p);
2646 inc_nr_running(rq);
2648 trace_sched_wakeup_new(rq, p, 1);
2649 check_preempt_curr(rq, p, WF_FORK);
2650 #ifdef CONFIG_SMP
2651 if (p->sched_class->task_wake_up)
2652 p->sched_class->task_wake_up(rq, p);
2653 #endif
2654 task_rq_unlock(rq, &flags);
2657 #ifdef CONFIG_PREEMPT_NOTIFIERS
2660 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2661 * @notifier: notifier struct to register
2663 void preempt_notifier_register(struct preempt_notifier *notifier)
2665 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2667 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2670 * preempt_notifier_unregister - no longer interested in preemption notifications
2671 * @notifier: notifier struct to unregister
2673 * This is safe to call from within a preemption notifier.
2675 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2677 hlist_del(&notifier->link);
2679 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2681 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2683 struct preempt_notifier *notifier;
2684 struct hlist_node *node;
2686 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2687 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2690 static void
2691 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2692 struct task_struct *next)
2694 struct preempt_notifier *notifier;
2695 struct hlist_node *node;
2697 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2698 notifier->ops->sched_out(notifier, next);
2701 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2703 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2707 static void
2708 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2709 struct task_struct *next)
2713 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2716 * prepare_task_switch - prepare to switch tasks
2717 * @rq: the runqueue preparing to switch
2718 * @prev: the current task that is being switched out
2719 * @next: the task we are going to switch to.
2721 * This is called with the rq lock held and interrupts off. It must
2722 * be paired with a subsequent finish_task_switch after the context
2723 * switch.
2725 * prepare_task_switch sets up locking and calls architecture specific
2726 * hooks.
2728 static inline void
2729 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2730 struct task_struct *next)
2732 fire_sched_out_preempt_notifiers(prev, next);
2733 prepare_lock_switch(rq, next);
2734 prepare_arch_switch(next);
2738 * finish_task_switch - clean up after a task-switch
2739 * @rq: runqueue associated with task-switch
2740 * @prev: the thread we just switched away from.
2742 * finish_task_switch must be called after the context switch, paired
2743 * with a prepare_task_switch call before the context switch.
2744 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2745 * and do any other architecture-specific cleanup actions.
2747 * Note that we may have delayed dropping an mm in context_switch(). If
2748 * so, we finish that here outside of the runqueue lock. (Doing it
2749 * with the lock held can cause deadlocks; see schedule() for
2750 * details.)
2752 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2753 __releases(rq->lock)
2755 struct mm_struct *mm = rq->prev_mm;
2756 long prev_state;
2758 rq->prev_mm = NULL;
2761 * A task struct has one reference for the use as "current".
2762 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2763 * schedule one last time. The schedule call will never return, and
2764 * the scheduled task must drop that reference.
2765 * The test for TASK_DEAD must occur while the runqueue locks are
2766 * still held, otherwise prev could be scheduled on another cpu, die
2767 * there before we look at prev->state, and then the reference would
2768 * be dropped twice.
2769 * Manfred Spraul <manfred@colorfullife.com>
2771 prev_state = prev->state;
2772 finish_arch_switch(prev);
2773 perf_event_task_sched_in(current, cpu_of(rq));
2774 finish_lock_switch(rq, prev);
2776 fire_sched_in_preempt_notifiers(current);
2777 if (mm)
2778 mmdrop(mm);
2779 if (unlikely(prev_state == TASK_DEAD)) {
2781 * Remove function-return probe instances associated with this
2782 * task and put them back on the free list.
2784 kprobe_flush_task(prev);
2785 put_task_struct(prev);
2789 #ifdef CONFIG_SMP
2791 /* assumes rq->lock is held */
2792 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2794 if (prev->sched_class->pre_schedule)
2795 prev->sched_class->pre_schedule(rq, prev);
2798 /* rq->lock is NOT held, but preemption is disabled */
2799 static inline void post_schedule(struct rq *rq)
2801 if (rq->post_schedule) {
2802 unsigned long flags;
2804 spin_lock_irqsave(&rq->lock, flags);
2805 if (rq->curr->sched_class->post_schedule)
2806 rq->curr->sched_class->post_schedule(rq);
2807 spin_unlock_irqrestore(&rq->lock, flags);
2809 rq->post_schedule = 0;
2813 #else
2815 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2819 static inline void post_schedule(struct rq *rq)
2823 #endif
2826 * schedule_tail - first thing a freshly forked thread must call.
2827 * @prev: the thread we just switched away from.
2829 asmlinkage void schedule_tail(struct task_struct *prev)
2830 __releases(rq->lock)
2832 struct rq *rq = this_rq();
2834 finish_task_switch(rq, prev);
2837 * FIXME: do we need to worry about rq being invalidated by the
2838 * task_switch?
2840 post_schedule(rq);
2842 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2843 /* In this case, finish_task_switch does not reenable preemption */
2844 preempt_enable();
2845 #endif
2846 if (current->set_child_tid)
2847 put_user(task_pid_vnr(current), current->set_child_tid);
2851 * context_switch - switch to the new MM and the new
2852 * thread's register state.
2854 static inline void
2855 context_switch(struct rq *rq, struct task_struct *prev,
2856 struct task_struct *next)
2858 struct mm_struct *mm, *oldmm;
2860 prepare_task_switch(rq, prev, next);
2861 trace_sched_switch(rq, prev, next);
2862 mm = next->mm;
2863 oldmm = prev->active_mm;
2865 * For paravirt, this is coupled with an exit in switch_to to
2866 * combine the page table reload and the switch backend into
2867 * one hypercall.
2869 arch_start_context_switch(prev);
2871 if (unlikely(!mm)) {
2872 next->active_mm = oldmm;
2873 atomic_inc(&oldmm->mm_count);
2874 enter_lazy_tlb(oldmm, next);
2875 } else
2876 switch_mm(oldmm, mm, next);
2878 if (unlikely(!prev->mm)) {
2879 prev->active_mm = NULL;
2880 rq->prev_mm = oldmm;
2883 * Since the runqueue lock will be released by the next
2884 * task (which is an invalid locking op but in the case
2885 * of the scheduler it's an obvious special-case), so we
2886 * do an early lockdep release here:
2888 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2889 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2890 #endif
2892 /* Here we just switch the register state and the stack. */
2893 switch_to(prev, next, prev);
2895 barrier();
2897 * this_rq must be evaluated again because prev may have moved
2898 * CPUs since it called schedule(), thus the 'rq' on its stack
2899 * frame will be invalid.
2901 finish_task_switch(this_rq(), prev);
2905 * nr_running, nr_uninterruptible and nr_context_switches:
2907 * externally visible scheduler statistics: current number of runnable
2908 * threads, current number of uninterruptible-sleeping threads, total
2909 * number of context switches performed since bootup.
2911 unsigned long nr_running(void)
2913 unsigned long i, sum = 0;
2915 for_each_online_cpu(i)
2916 sum += cpu_rq(i)->nr_running;
2918 return sum;
2921 unsigned long nr_uninterruptible(void)
2923 unsigned long i, sum = 0;
2925 for_each_possible_cpu(i)
2926 sum += cpu_rq(i)->nr_uninterruptible;
2929 * Since we read the counters lockless, it might be slightly
2930 * inaccurate. Do not allow it to go below zero though:
2932 if (unlikely((long)sum < 0))
2933 sum = 0;
2935 return sum;
2938 unsigned long long nr_context_switches(void)
2940 int i;
2941 unsigned long long sum = 0;
2943 for_each_possible_cpu(i)
2944 sum += cpu_rq(i)->nr_switches;
2946 return sum;
2949 unsigned long nr_iowait(void)
2951 unsigned long i, sum = 0;
2953 for_each_possible_cpu(i)
2954 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2956 return sum;
2959 unsigned long nr_iowait_cpu(void)
2961 struct rq *this = this_rq();
2962 return atomic_read(&this->nr_iowait);
2965 unsigned long this_cpu_load(void)
2967 struct rq *this = this_rq();
2968 return this->cpu_load[0];
2972 /* Variables and functions for calc_load */
2973 static atomic_long_t calc_load_tasks;
2974 static unsigned long calc_load_update;
2975 unsigned long avenrun[3];
2976 EXPORT_SYMBOL(avenrun);
2979 * get_avenrun - get the load average array
2980 * @loads: pointer to dest load array
2981 * @offset: offset to add
2982 * @shift: shift count to shift the result left
2984 * These values are estimates at best, so no need for locking.
2986 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2988 loads[0] = (avenrun[0] + offset) << shift;
2989 loads[1] = (avenrun[1] + offset) << shift;
2990 loads[2] = (avenrun[2] + offset) << shift;
2993 static unsigned long
2994 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2996 load *= exp;
2997 load += active * (FIXED_1 - exp);
2998 return load >> FSHIFT;
3002 * calc_load - update the avenrun load estimates 10 ticks after the
3003 * CPUs have updated calc_load_tasks.
3005 void calc_global_load(void)
3007 unsigned long upd = calc_load_update + 10;
3008 long active;
3010 if (time_before(jiffies, upd))
3011 return;
3013 active = atomic_long_read(&calc_load_tasks);
3014 active = active > 0 ? active * FIXED_1 : 0;
3016 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3017 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3018 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3020 calc_load_update += LOAD_FREQ;
3024 * Either called from update_cpu_load() or from a cpu going idle
3026 static void calc_load_account_active(struct rq *this_rq)
3028 long nr_active, delta;
3030 nr_active = this_rq->nr_running;
3031 nr_active += (long) this_rq->nr_uninterruptible;
3033 if (nr_active != this_rq->calc_load_active) {
3034 delta = nr_active - this_rq->calc_load_active;
3035 this_rq->calc_load_active = nr_active;
3036 atomic_long_add(delta, &calc_load_tasks);
3041 * Externally visible per-cpu scheduler statistics:
3042 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3044 u64 cpu_nr_migrations(int cpu)
3046 return cpu_rq(cpu)->nr_migrations_in;
3050 * Update rq->cpu_load[] statistics. This function is usually called every
3051 * scheduler tick (TICK_NSEC).
3053 static void update_cpu_load(struct rq *this_rq)
3055 unsigned long this_load = this_rq->load.weight;
3056 int i, scale;
3058 this_rq->nr_load_updates++;
3060 /* Update our load: */
3061 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3062 unsigned long old_load, new_load;
3064 /* scale is effectively 1 << i now, and >> i divides by scale */
3066 old_load = this_rq->cpu_load[i];
3067 new_load = this_load;
3069 * Round up the averaging division if load is increasing. This
3070 * prevents us from getting stuck on 9 if the load is 10, for
3071 * example.
3073 if (new_load > old_load)
3074 new_load += scale-1;
3075 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3078 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3079 this_rq->calc_load_update += LOAD_FREQ;
3080 calc_load_account_active(this_rq);
3084 #ifdef CONFIG_SMP
3087 * double_rq_lock - safely lock two runqueues
3089 * Note this does not disable interrupts like task_rq_lock,
3090 * you need to do so manually before calling.
3092 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3093 __acquires(rq1->lock)
3094 __acquires(rq2->lock)
3096 BUG_ON(!irqs_disabled());
3097 if (rq1 == rq2) {
3098 spin_lock(&rq1->lock);
3099 __acquire(rq2->lock); /* Fake it out ;) */
3100 } else {
3101 if (rq1 < rq2) {
3102 spin_lock(&rq1->lock);
3103 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3104 } else {
3105 spin_lock(&rq2->lock);
3106 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3109 update_rq_clock(rq1);
3110 update_rq_clock(rq2);
3114 * double_rq_unlock - safely unlock two runqueues
3116 * Note this does not restore interrupts like task_rq_unlock,
3117 * you need to do so manually after calling.
3119 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3120 __releases(rq1->lock)
3121 __releases(rq2->lock)
3123 spin_unlock(&rq1->lock);
3124 if (rq1 != rq2)
3125 spin_unlock(&rq2->lock);
3126 else
3127 __release(rq2->lock);
3131 * If dest_cpu is allowed for this process, migrate the task to it.
3132 * This is accomplished by forcing the cpu_allowed mask to only
3133 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3134 * the cpu_allowed mask is restored.
3136 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3138 struct migration_req req;
3139 unsigned long flags;
3140 struct rq *rq;
3142 rq = task_rq_lock(p, &flags);
3143 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3144 || unlikely(!cpu_active(dest_cpu)))
3145 goto out;
3147 /* force the process onto the specified CPU */
3148 if (migrate_task(p, dest_cpu, &req)) {
3149 /* Need to wait for migration thread (might exit: take ref). */
3150 struct task_struct *mt = rq->migration_thread;
3152 get_task_struct(mt);
3153 task_rq_unlock(rq, &flags);
3154 wake_up_process(mt);
3155 put_task_struct(mt);
3156 wait_for_completion(&req.done);
3158 return;
3160 out:
3161 task_rq_unlock(rq, &flags);
3165 * sched_exec - execve() is a valuable balancing opportunity, because at
3166 * this point the task has the smallest effective memory and cache footprint.
3168 void sched_exec(void)
3170 int new_cpu, this_cpu = get_cpu();
3171 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3172 put_cpu();
3173 if (new_cpu != this_cpu)
3174 sched_migrate_task(current, new_cpu);
3178 * pull_task - move a task from a remote runqueue to the local runqueue.
3179 * Both runqueues must be locked.
3181 static void pull_task(struct rq *src_rq, struct task_struct *p,
3182 struct rq *this_rq, int this_cpu)
3184 deactivate_task(src_rq, p, 0);
3185 set_task_cpu(p, this_cpu);
3186 activate_task(this_rq, p, 0);
3187 check_preempt_curr(this_rq, p, 0);
3191 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3193 static
3194 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3195 struct sched_domain *sd, enum cpu_idle_type idle,
3196 int *all_pinned)
3198 int tsk_cache_hot = 0;
3200 * We do not migrate tasks that are:
3201 * 1) running (obviously), or
3202 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3203 * 3) are cache-hot on their current CPU.
3205 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3206 schedstat_inc(p, se.nr_failed_migrations_affine);
3207 return 0;
3209 *all_pinned = 0;
3211 if (task_running(rq, p)) {
3212 schedstat_inc(p, se.nr_failed_migrations_running);
3213 return 0;
3217 * Aggressive migration if:
3218 * 1) task is cache cold, or
3219 * 2) too many balance attempts have failed.
3222 tsk_cache_hot = task_hot(p, rq->clock, sd);
3223 if (!tsk_cache_hot ||
3224 sd->nr_balance_failed > sd->cache_nice_tries) {
3225 #ifdef CONFIG_SCHEDSTATS
3226 if (tsk_cache_hot) {
3227 schedstat_inc(sd, lb_hot_gained[idle]);
3228 schedstat_inc(p, se.nr_forced_migrations);
3230 #endif
3231 return 1;
3234 if (tsk_cache_hot) {
3235 schedstat_inc(p, se.nr_failed_migrations_hot);
3236 return 0;
3238 return 1;
3241 static unsigned long
3242 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3243 unsigned long max_load_move, struct sched_domain *sd,
3244 enum cpu_idle_type idle, int *all_pinned,
3245 int *this_best_prio, struct rq_iterator *iterator)
3247 int loops = 0, pulled = 0, pinned = 0;
3248 struct task_struct *p;
3249 long rem_load_move = max_load_move;
3251 if (max_load_move == 0)
3252 goto out;
3254 pinned = 1;
3257 * Start the load-balancing iterator:
3259 p = iterator->start(iterator->arg);
3260 next:
3261 if (!p || loops++ > sysctl_sched_nr_migrate)
3262 goto out;
3264 if ((p->se.load.weight >> 1) > rem_load_move ||
3265 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3266 p = iterator->next(iterator->arg);
3267 goto next;
3270 pull_task(busiest, p, this_rq, this_cpu);
3271 pulled++;
3272 rem_load_move -= p->se.load.weight;
3274 #ifdef CONFIG_PREEMPT
3276 * NEWIDLE balancing is a source of latency, so preemptible kernels
3277 * will stop after the first task is pulled to minimize the critical
3278 * section.
3280 if (idle == CPU_NEWLY_IDLE)
3281 goto out;
3282 #endif
3285 * We only want to steal up to the prescribed amount of weighted load.
3287 if (rem_load_move > 0) {
3288 if (p->prio < *this_best_prio)
3289 *this_best_prio = p->prio;
3290 p = iterator->next(iterator->arg);
3291 goto next;
3293 out:
3295 * Right now, this is one of only two places pull_task() is called,
3296 * so we can safely collect pull_task() stats here rather than
3297 * inside pull_task().
3299 schedstat_add(sd, lb_gained[idle], pulled);
3301 if (all_pinned)
3302 *all_pinned = pinned;
3304 return max_load_move - rem_load_move;
3308 * move_tasks tries to move up to max_load_move weighted load from busiest to
3309 * this_rq, as part of a balancing operation within domain "sd".
3310 * Returns 1 if successful and 0 otherwise.
3312 * Called with both runqueues locked.
3314 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3315 unsigned long max_load_move,
3316 struct sched_domain *sd, enum cpu_idle_type idle,
3317 int *all_pinned)
3319 const struct sched_class *class = sched_class_highest;
3320 unsigned long total_load_moved = 0;
3321 int this_best_prio = this_rq->curr->prio;
3323 do {
3324 total_load_moved +=
3325 class->load_balance(this_rq, this_cpu, busiest,
3326 max_load_move - total_load_moved,
3327 sd, idle, all_pinned, &this_best_prio);
3328 class = class->next;
3330 #ifdef CONFIG_PREEMPT
3332 * NEWIDLE balancing is a source of latency, so preemptible
3333 * kernels will stop after the first task is pulled to minimize
3334 * the critical section.
3336 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3337 break;
3338 #endif
3339 } while (class && max_load_move > total_load_moved);
3341 return total_load_moved > 0;
3344 static int
3345 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3346 struct sched_domain *sd, enum cpu_idle_type idle,
3347 struct rq_iterator *iterator)
3349 struct task_struct *p = iterator->start(iterator->arg);
3350 int pinned = 0;
3352 while (p) {
3353 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3354 pull_task(busiest, p, this_rq, this_cpu);
3356 * Right now, this is only the second place pull_task()
3357 * is called, so we can safely collect pull_task()
3358 * stats here rather than inside pull_task().
3360 schedstat_inc(sd, lb_gained[idle]);
3362 return 1;
3364 p = iterator->next(iterator->arg);
3367 return 0;
3371 * move_one_task tries to move exactly one task from busiest to this_rq, as
3372 * part of active balancing operations within "domain".
3373 * Returns 1 if successful and 0 otherwise.
3375 * Called with both runqueues locked.
3377 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3378 struct sched_domain *sd, enum cpu_idle_type idle)
3380 const struct sched_class *class;
3382 for_each_class(class) {
3383 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3384 return 1;
3387 return 0;
3389 /********** Helpers for find_busiest_group ************************/
3391 * sd_lb_stats - Structure to store the statistics of a sched_domain
3392 * during load balancing.
3394 struct sd_lb_stats {
3395 struct sched_group *busiest; /* Busiest group in this sd */
3396 struct sched_group *this; /* Local group in this sd */
3397 unsigned long total_load; /* Total load of all groups in sd */
3398 unsigned long total_pwr; /* Total power of all groups in sd */
3399 unsigned long avg_load; /* Average load across all groups in sd */
3401 /** Statistics of this group */
3402 unsigned long this_load;
3403 unsigned long this_load_per_task;
3404 unsigned long this_nr_running;
3406 /* Statistics of the busiest group */
3407 unsigned long max_load;
3408 unsigned long busiest_load_per_task;
3409 unsigned long busiest_nr_running;
3410 unsigned long busiest_group_capacity;
3412 int group_imb; /* Is there imbalance in this sd */
3413 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3414 int power_savings_balance; /* Is powersave balance needed for this sd */
3415 struct sched_group *group_min; /* Least loaded group in sd */
3416 struct sched_group *group_leader; /* Group which relieves group_min */
3417 unsigned long min_load_per_task; /* load_per_task in group_min */
3418 unsigned long leader_nr_running; /* Nr running of group_leader */
3419 unsigned long min_nr_running; /* Nr running of group_min */
3420 #endif
3424 * sg_lb_stats - stats of a sched_group required for load_balancing
3426 struct sg_lb_stats {
3427 unsigned long avg_load; /*Avg load across the CPUs of the group */
3428 unsigned long group_load; /* Total load over the CPUs of the group */
3429 unsigned long sum_nr_running; /* Nr tasks running in the group */
3430 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3431 unsigned long group_capacity;
3432 int group_imb; /* Is there an imbalance in the group ? */
3436 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3437 * @group: The group whose first cpu is to be returned.
3439 static inline unsigned int group_first_cpu(struct sched_group *group)
3441 return cpumask_first(sched_group_cpus(group));
3445 * get_sd_load_idx - Obtain the load index for a given sched domain.
3446 * @sd: The sched_domain whose load_idx is to be obtained.
3447 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3449 static inline int get_sd_load_idx(struct sched_domain *sd,
3450 enum cpu_idle_type idle)
3452 int load_idx;
3454 switch (idle) {
3455 case CPU_NOT_IDLE:
3456 load_idx = sd->busy_idx;
3457 break;
3459 case CPU_NEWLY_IDLE:
3460 load_idx = sd->newidle_idx;
3461 break;
3462 default:
3463 load_idx = sd->idle_idx;
3464 break;
3467 return load_idx;
3471 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3473 * init_sd_power_savings_stats - Initialize power savings statistics for
3474 * the given sched_domain, during load balancing.
3476 * @sd: Sched domain whose power-savings statistics are to be initialized.
3477 * @sds: Variable containing the statistics for sd.
3478 * @idle: Idle status of the CPU at which we're performing load-balancing.
3480 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3481 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3484 * Busy processors will not participate in power savings
3485 * balance.
3487 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3488 sds->power_savings_balance = 0;
3489 else {
3490 sds->power_savings_balance = 1;
3491 sds->min_nr_running = ULONG_MAX;
3492 sds->leader_nr_running = 0;
3497 * update_sd_power_savings_stats - Update the power saving stats for a
3498 * sched_domain while performing load balancing.
3500 * @group: sched_group belonging to the sched_domain under consideration.
3501 * @sds: Variable containing the statistics of the sched_domain
3502 * @local_group: Does group contain the CPU for which we're performing
3503 * load balancing ?
3504 * @sgs: Variable containing the statistics of the group.
3506 static inline void update_sd_power_savings_stats(struct sched_group *group,
3507 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3510 if (!sds->power_savings_balance)
3511 return;
3514 * If the local group is idle or completely loaded
3515 * no need to do power savings balance at this domain
3517 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3518 !sds->this_nr_running))
3519 sds->power_savings_balance = 0;
3522 * If a group is already running at full capacity or idle,
3523 * don't include that group in power savings calculations
3525 if (!sds->power_savings_balance ||
3526 sgs->sum_nr_running >= sgs->group_capacity ||
3527 !sgs->sum_nr_running)
3528 return;
3531 * Calculate the group which has the least non-idle load.
3532 * This is the group from where we need to pick up the load
3533 * for saving power
3535 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3536 (sgs->sum_nr_running == sds->min_nr_running &&
3537 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3538 sds->group_min = group;
3539 sds->min_nr_running = sgs->sum_nr_running;
3540 sds->min_load_per_task = sgs->sum_weighted_load /
3541 sgs->sum_nr_running;
3545 * Calculate the group which is almost near its
3546 * capacity but still has some space to pick up some load
3547 * from other group and save more power
3549 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3550 return;
3552 if (sgs->sum_nr_running > sds->leader_nr_running ||
3553 (sgs->sum_nr_running == sds->leader_nr_running &&
3554 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3555 sds->group_leader = group;
3556 sds->leader_nr_running = sgs->sum_nr_running;
3561 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3562 * @sds: Variable containing the statistics of the sched_domain
3563 * under consideration.
3564 * @this_cpu: Cpu at which we're currently performing load-balancing.
3565 * @imbalance: Variable to store the imbalance.
3567 * Description:
3568 * Check if we have potential to perform some power-savings balance.
3569 * If yes, set the busiest group to be the least loaded group in the
3570 * sched_domain, so that it's CPUs can be put to idle.
3572 * Returns 1 if there is potential to perform power-savings balance.
3573 * Else returns 0.
3575 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3576 int this_cpu, unsigned long *imbalance)
3578 if (!sds->power_savings_balance)
3579 return 0;
3581 if (sds->this != sds->group_leader ||
3582 sds->group_leader == sds->group_min)
3583 return 0;
3585 *imbalance = sds->min_load_per_task;
3586 sds->busiest = sds->group_min;
3588 return 1;
3591 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3592 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3593 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3595 return;
3598 static inline void update_sd_power_savings_stats(struct sched_group *group,
3599 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3601 return;
3604 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3605 int this_cpu, unsigned long *imbalance)
3607 return 0;
3609 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3612 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3614 return SCHED_LOAD_SCALE;
3617 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3619 return default_scale_freq_power(sd, cpu);
3622 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3624 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3625 unsigned long smt_gain = sd->smt_gain;
3627 smt_gain /= weight;
3629 return smt_gain;
3632 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3634 return default_scale_smt_power(sd, cpu);
3637 unsigned long scale_rt_power(int cpu)
3639 struct rq *rq = cpu_rq(cpu);
3640 u64 total, available;
3642 sched_avg_update(rq);
3644 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3645 available = total - rq->rt_avg;
3647 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3648 total = SCHED_LOAD_SCALE;
3650 total >>= SCHED_LOAD_SHIFT;
3652 return div_u64(available, total);
3655 static void update_cpu_power(struct sched_domain *sd, int cpu)
3657 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3658 unsigned long power = SCHED_LOAD_SCALE;
3659 struct sched_group *sdg = sd->groups;
3661 if (sched_feat(ARCH_POWER))
3662 power *= arch_scale_freq_power(sd, cpu);
3663 else
3664 power *= default_scale_freq_power(sd, cpu);
3666 power >>= SCHED_LOAD_SHIFT;
3668 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3669 if (sched_feat(ARCH_POWER))
3670 power *= arch_scale_smt_power(sd, cpu);
3671 else
3672 power *= default_scale_smt_power(sd, cpu);
3674 power >>= SCHED_LOAD_SHIFT;
3677 power *= scale_rt_power(cpu);
3678 power >>= SCHED_LOAD_SHIFT;
3680 if (!power)
3681 power = 1;
3683 sdg->cpu_power = power;
3686 static void update_group_power(struct sched_domain *sd, int cpu)
3688 struct sched_domain *child = sd->child;
3689 struct sched_group *group, *sdg = sd->groups;
3690 unsigned long power;
3692 if (!child) {
3693 update_cpu_power(sd, cpu);
3694 return;
3697 power = 0;
3699 group = child->groups;
3700 do {
3701 power += group->cpu_power;
3702 group = group->next;
3703 } while (group != child->groups);
3705 sdg->cpu_power = power;
3709 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3710 * @sd: The sched_domain whose statistics are to be updated.
3711 * @group: sched_group whose statistics are to be updated.
3712 * @this_cpu: Cpu for which load balance is currently performed.
3713 * @idle: Idle status of this_cpu
3714 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3715 * @sd_idle: Idle status of the sched_domain containing group.
3716 * @local_group: Does group contain this_cpu.
3717 * @cpus: Set of cpus considered for load balancing.
3718 * @balance: Should we balance.
3719 * @sgs: variable to hold the statistics for this group.
3721 static inline void update_sg_lb_stats(struct sched_domain *sd,
3722 struct sched_group *group, int this_cpu,
3723 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3724 int local_group, const struct cpumask *cpus,
3725 int *balance, struct sg_lb_stats *sgs)
3727 unsigned long load, max_cpu_load, min_cpu_load;
3728 int i;
3729 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3730 unsigned long avg_load_per_task = 0;
3732 if (local_group) {
3733 balance_cpu = group_first_cpu(group);
3734 if (balance_cpu == this_cpu)
3735 update_group_power(sd, this_cpu);
3738 /* Tally up the load of all CPUs in the group */
3739 max_cpu_load = 0;
3740 min_cpu_load = ~0UL;
3742 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3743 struct rq *rq = cpu_rq(i);
3745 if (*sd_idle && rq->nr_running)
3746 *sd_idle = 0;
3748 /* Bias balancing toward cpus of our domain */
3749 if (local_group) {
3750 if (idle_cpu(i) && !first_idle_cpu) {
3751 first_idle_cpu = 1;
3752 balance_cpu = i;
3755 load = target_load(i, load_idx);
3756 } else {
3757 load = source_load(i, load_idx);
3758 if (load > max_cpu_load)
3759 max_cpu_load = load;
3760 if (min_cpu_load > load)
3761 min_cpu_load = load;
3764 sgs->group_load += load;
3765 sgs->sum_nr_running += rq->nr_running;
3766 sgs->sum_weighted_load += weighted_cpuload(i);
3771 * First idle cpu or the first cpu(busiest) in this sched group
3772 * is eligible for doing load balancing at this and above
3773 * domains. In the newly idle case, we will allow all the cpu's
3774 * to do the newly idle load balance.
3776 if (idle != CPU_NEWLY_IDLE && local_group &&
3777 balance_cpu != this_cpu && balance) {
3778 *balance = 0;
3779 return;
3782 /* Adjust by relative CPU power of the group */
3783 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3786 * Consider the group unbalanced when the imbalance is larger
3787 * than the average weight of two tasks.
3789 * APZ: with cgroup the avg task weight can vary wildly and
3790 * might not be a suitable number - should we keep a
3791 * normalized nr_running number somewhere that negates
3792 * the hierarchy?
3794 if (sgs->sum_nr_running)
3795 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3797 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3798 sgs->group_imb = 1;
3800 sgs->group_capacity =
3801 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3805 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3806 * @sd: sched_domain whose statistics are to be updated.
3807 * @this_cpu: Cpu for which load balance is currently performed.
3808 * @idle: Idle status of this_cpu
3809 * @sd_idle: Idle status of the sched_domain containing group.
3810 * @cpus: Set of cpus considered for load balancing.
3811 * @balance: Should we balance.
3812 * @sds: variable to hold the statistics for this sched_domain.
3814 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3815 enum cpu_idle_type idle, int *sd_idle,
3816 const struct cpumask *cpus, int *balance,
3817 struct sd_lb_stats *sds)
3819 struct sched_domain *child = sd->child;
3820 struct sched_group *group = sd->groups;
3821 struct sg_lb_stats sgs;
3822 int load_idx, prefer_sibling = 0;
3824 if (child && child->flags & SD_PREFER_SIBLING)
3825 prefer_sibling = 1;
3827 init_sd_power_savings_stats(sd, sds, idle);
3828 load_idx = get_sd_load_idx(sd, idle);
3830 do {
3831 int local_group;
3833 local_group = cpumask_test_cpu(this_cpu,
3834 sched_group_cpus(group));
3835 memset(&sgs, 0, sizeof(sgs));
3836 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3837 local_group, cpus, balance, &sgs);
3839 if (local_group && balance && !(*balance))
3840 return;
3842 sds->total_load += sgs.group_load;
3843 sds->total_pwr += group->cpu_power;
3846 * In case the child domain prefers tasks go to siblings
3847 * first, lower the group capacity to one so that we'll try
3848 * and move all the excess tasks away.
3850 if (prefer_sibling)
3851 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3853 if (local_group) {
3854 sds->this_load = sgs.avg_load;
3855 sds->this = group;
3856 sds->this_nr_running = sgs.sum_nr_running;
3857 sds->this_load_per_task = sgs.sum_weighted_load;
3858 } else if (sgs.avg_load > sds->max_load &&
3859 (sgs.sum_nr_running > sgs.group_capacity ||
3860 sgs.group_imb)) {
3861 sds->max_load = sgs.avg_load;
3862 sds->busiest = group;
3863 sds->busiest_nr_running = sgs.sum_nr_running;
3864 sds->busiest_group_capacity = sgs.group_capacity;
3865 sds->busiest_load_per_task = sgs.sum_weighted_load;
3866 sds->group_imb = sgs.group_imb;
3869 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3870 group = group->next;
3871 } while (group != sd->groups);
3875 * fix_small_imbalance - Calculate the minor imbalance that exists
3876 * amongst the groups of a sched_domain, during
3877 * load balancing.
3878 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3879 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3880 * @imbalance: Variable to store the imbalance.
3882 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3883 int this_cpu, unsigned long *imbalance)
3885 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3886 unsigned int imbn = 2;
3887 unsigned long scaled_busy_load_per_task;
3889 if (sds->this_nr_running) {
3890 sds->this_load_per_task /= sds->this_nr_running;
3891 if (sds->busiest_load_per_task >
3892 sds->this_load_per_task)
3893 imbn = 1;
3894 } else
3895 sds->this_load_per_task =
3896 cpu_avg_load_per_task(this_cpu);
3898 scaled_busy_load_per_task = sds->busiest_load_per_task
3899 * SCHED_LOAD_SCALE;
3900 scaled_busy_load_per_task /= sds->busiest->cpu_power;
3902 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3903 (scaled_busy_load_per_task * imbn)) {
3904 *imbalance = sds->busiest_load_per_task;
3905 return;
3909 * OK, we don't have enough imbalance to justify moving tasks,
3910 * however we may be able to increase total CPU power used by
3911 * moving them.
3914 pwr_now += sds->busiest->cpu_power *
3915 min(sds->busiest_load_per_task, sds->max_load);
3916 pwr_now += sds->this->cpu_power *
3917 min(sds->this_load_per_task, sds->this_load);
3918 pwr_now /= SCHED_LOAD_SCALE;
3920 /* Amount of load we'd subtract */
3921 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3922 sds->busiest->cpu_power;
3923 if (sds->max_load > tmp)
3924 pwr_move += sds->busiest->cpu_power *
3925 min(sds->busiest_load_per_task, sds->max_load - tmp);
3927 /* Amount of load we'd add */
3928 if (sds->max_load * sds->busiest->cpu_power <
3929 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3930 tmp = (sds->max_load * sds->busiest->cpu_power) /
3931 sds->this->cpu_power;
3932 else
3933 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3934 sds->this->cpu_power;
3935 pwr_move += sds->this->cpu_power *
3936 min(sds->this_load_per_task, sds->this_load + tmp);
3937 pwr_move /= SCHED_LOAD_SCALE;
3939 /* Move if we gain throughput */
3940 if (pwr_move > pwr_now)
3941 *imbalance = sds->busiest_load_per_task;
3945 * calculate_imbalance - Calculate the amount of imbalance present within the
3946 * groups of a given sched_domain during load balance.
3947 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3948 * @this_cpu: Cpu for which currently load balance is being performed.
3949 * @imbalance: The variable to store the imbalance.
3951 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3952 unsigned long *imbalance)
3954 unsigned long max_pull, load_above_capacity = ~0UL;
3956 sds->busiest_load_per_task /= sds->busiest_nr_running;
3957 if (sds->group_imb) {
3958 sds->busiest_load_per_task =
3959 min(sds->busiest_load_per_task, sds->avg_load);
3963 * In the presence of smp nice balancing, certain scenarios can have
3964 * max load less than avg load(as we skip the groups at or below
3965 * its cpu_power, while calculating max_load..)
3967 if (sds->max_load < sds->avg_load) {
3968 *imbalance = 0;
3969 return fix_small_imbalance(sds, this_cpu, imbalance);
3972 if (!sds->group_imb) {
3974 * Don't want to pull so many tasks that a group would go idle.
3976 load_above_capacity = (sds->busiest_nr_running -
3977 sds->busiest_group_capacity);
3979 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3981 load_above_capacity /= sds->busiest->cpu_power;
3985 * We're trying to get all the cpus to the average_load, so we don't
3986 * want to push ourselves above the average load, nor do we wish to
3987 * reduce the max loaded cpu below the average load. At the same time,
3988 * we also don't want to reduce the group load below the group capacity
3989 * (so that we can implement power-savings policies etc). Thus we look
3990 * for the minimum possible imbalance.
3991 * Be careful of negative numbers as they'll appear as very large values
3992 * with unsigned longs.
3994 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3996 /* How much load to actually move to equalise the imbalance */
3997 *imbalance = min(max_pull * sds->busiest->cpu_power,
3998 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3999 / SCHED_LOAD_SCALE;
4002 * if *imbalance is less than the average load per runnable task
4003 * there is no gaurantee that any tasks will be moved so we'll have
4004 * a think about bumping its value to force at least one task to be
4005 * moved
4007 if (*imbalance < sds->busiest_load_per_task)
4008 return fix_small_imbalance(sds, this_cpu, imbalance);
4011 /******* find_busiest_group() helpers end here *********************/
4014 * find_busiest_group - Returns the busiest group within the sched_domain
4015 * if there is an imbalance. If there isn't an imbalance, and
4016 * the user has opted for power-savings, it returns a group whose
4017 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4018 * such a group exists.
4020 * Also calculates the amount of weighted load which should be moved
4021 * to restore balance.
4023 * @sd: The sched_domain whose busiest group is to be returned.
4024 * @this_cpu: The cpu for which load balancing is currently being performed.
4025 * @imbalance: Variable which stores amount of weighted load which should
4026 * be moved to restore balance/put a group to idle.
4027 * @idle: The idle status of this_cpu.
4028 * @sd_idle: The idleness of sd
4029 * @cpus: The set of CPUs under consideration for load-balancing.
4030 * @balance: Pointer to a variable indicating if this_cpu
4031 * is the appropriate cpu to perform load balancing at this_level.
4033 * Returns: - the busiest group if imbalance exists.
4034 * - If no imbalance and user has opted for power-savings balance,
4035 * return the least loaded group whose CPUs can be
4036 * put to idle by rebalancing its tasks onto our group.
4038 static struct sched_group *
4039 find_busiest_group(struct sched_domain *sd, int this_cpu,
4040 unsigned long *imbalance, enum cpu_idle_type idle,
4041 int *sd_idle, const struct cpumask *cpus, int *balance)
4043 struct sd_lb_stats sds;
4045 memset(&sds, 0, sizeof(sds));
4048 * Compute the various statistics relavent for load balancing at
4049 * this level.
4051 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4052 balance, &sds);
4054 /* Cases where imbalance does not exist from POV of this_cpu */
4055 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4056 * at this level.
4057 * 2) There is no busy sibling group to pull from.
4058 * 3) This group is the busiest group.
4059 * 4) This group is more busy than the avg busieness at this
4060 * sched_domain.
4061 * 5) The imbalance is within the specified limit.
4063 if (balance && !(*balance))
4064 goto ret;
4066 if (!sds.busiest || sds.busiest_nr_running == 0)
4067 goto out_balanced;
4069 if (sds.this_load >= sds.max_load)
4070 goto out_balanced;
4072 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4074 if (sds.this_load >= sds.avg_load)
4075 goto out_balanced;
4077 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4078 goto out_balanced;
4080 /* Looks like there is an imbalance. Compute it */
4081 calculate_imbalance(&sds, this_cpu, imbalance);
4082 return sds.busiest;
4084 out_balanced:
4086 * There is no obvious imbalance. But check if we can do some balancing
4087 * to save power.
4089 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4090 return sds.busiest;
4091 ret:
4092 *imbalance = 0;
4093 return NULL;
4097 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4099 static struct rq *
4100 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4101 unsigned long imbalance, const struct cpumask *cpus)
4103 struct rq *busiest = NULL, *rq;
4104 unsigned long max_load = 0;
4105 int i;
4107 for_each_cpu(i, sched_group_cpus(group)) {
4108 unsigned long power = power_of(i);
4109 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4110 unsigned long wl;
4112 if (!cpumask_test_cpu(i, cpus))
4113 continue;
4115 rq = cpu_rq(i);
4116 wl = weighted_cpuload(i);
4119 * When comparing with imbalance, use weighted_cpuload()
4120 * which is not scaled with the cpu power.
4122 if (capacity && rq->nr_running == 1 && wl > imbalance)
4123 continue;
4126 * For the load comparisons with the other cpu's, consider
4127 * the weighted_cpuload() scaled with the cpu power, so that
4128 * the load can be moved away from the cpu that is potentially
4129 * running at a lower capacity.
4131 wl = (wl * SCHED_LOAD_SCALE) / power;
4133 if (wl > max_load) {
4134 max_load = wl;
4135 busiest = rq;
4139 return busiest;
4143 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4144 * so long as it is large enough.
4146 #define MAX_PINNED_INTERVAL 512
4148 /* Working cpumask for load_balance and load_balance_newidle. */
4149 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4152 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4153 * tasks if there is an imbalance.
4155 static int load_balance(int this_cpu, struct rq *this_rq,
4156 struct sched_domain *sd, enum cpu_idle_type idle,
4157 int *balance)
4159 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4160 struct sched_group *group;
4161 unsigned long imbalance;
4162 struct rq *busiest;
4163 unsigned long flags;
4164 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4166 cpumask_copy(cpus, cpu_active_mask);
4169 * When power savings policy is enabled for the parent domain, idle
4170 * sibling can pick up load irrespective of busy siblings. In this case,
4171 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4172 * portraying it as CPU_NOT_IDLE.
4174 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4175 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4176 sd_idle = 1;
4178 schedstat_inc(sd, lb_count[idle]);
4180 redo:
4181 update_shares(sd);
4182 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4183 cpus, balance);
4185 if (*balance == 0)
4186 goto out_balanced;
4188 if (!group) {
4189 schedstat_inc(sd, lb_nobusyg[idle]);
4190 goto out_balanced;
4193 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4194 if (!busiest) {
4195 schedstat_inc(sd, lb_nobusyq[idle]);
4196 goto out_balanced;
4199 BUG_ON(busiest == this_rq);
4201 schedstat_add(sd, lb_imbalance[idle], imbalance);
4203 ld_moved = 0;
4204 if (busiest->nr_running > 1) {
4206 * Attempt to move tasks. If find_busiest_group has found
4207 * an imbalance but busiest->nr_running <= 1, the group is
4208 * still unbalanced. ld_moved simply stays zero, so it is
4209 * correctly treated as an imbalance.
4211 local_irq_save(flags);
4212 double_rq_lock(this_rq, busiest);
4213 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4214 imbalance, sd, idle, &all_pinned);
4215 double_rq_unlock(this_rq, busiest);
4216 local_irq_restore(flags);
4219 * some other cpu did the load balance for us.
4221 if (ld_moved && this_cpu != smp_processor_id())
4222 resched_cpu(this_cpu);
4224 /* All tasks on this runqueue were pinned by CPU affinity */
4225 if (unlikely(all_pinned)) {
4226 cpumask_clear_cpu(cpu_of(busiest), cpus);
4227 if (!cpumask_empty(cpus))
4228 goto redo;
4229 goto out_balanced;
4233 if (!ld_moved) {
4234 schedstat_inc(sd, lb_failed[idle]);
4235 sd->nr_balance_failed++;
4237 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4239 spin_lock_irqsave(&busiest->lock, flags);
4241 /* don't kick the migration_thread, if the curr
4242 * task on busiest cpu can't be moved to this_cpu
4244 if (!cpumask_test_cpu(this_cpu,
4245 &busiest->curr->cpus_allowed)) {
4246 spin_unlock_irqrestore(&busiest->lock, flags);
4247 all_pinned = 1;
4248 goto out_one_pinned;
4251 if (!busiest->active_balance) {
4252 busiest->active_balance = 1;
4253 busiest->push_cpu = this_cpu;
4254 active_balance = 1;
4256 spin_unlock_irqrestore(&busiest->lock, flags);
4257 if (active_balance)
4258 wake_up_process(busiest->migration_thread);
4261 * We've kicked active balancing, reset the failure
4262 * counter.
4264 sd->nr_balance_failed = sd->cache_nice_tries+1;
4266 } else
4267 sd->nr_balance_failed = 0;
4269 if (likely(!active_balance)) {
4270 /* We were unbalanced, so reset the balancing interval */
4271 sd->balance_interval = sd->min_interval;
4272 } else {
4274 * If we've begun active balancing, start to back off. This
4275 * case may not be covered by the all_pinned logic if there
4276 * is only 1 task on the busy runqueue (because we don't call
4277 * move_tasks).
4279 if (sd->balance_interval < sd->max_interval)
4280 sd->balance_interval *= 2;
4283 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4284 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4285 ld_moved = -1;
4287 goto out;
4289 out_balanced:
4290 schedstat_inc(sd, lb_balanced[idle]);
4292 sd->nr_balance_failed = 0;
4294 out_one_pinned:
4295 /* tune up the balancing interval */
4296 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4297 (sd->balance_interval < sd->max_interval))
4298 sd->balance_interval *= 2;
4300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4302 ld_moved = -1;
4303 else
4304 ld_moved = 0;
4305 out:
4306 if (ld_moved)
4307 update_shares(sd);
4308 return ld_moved;
4312 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4313 * tasks if there is an imbalance.
4315 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4316 * this_rq is locked.
4318 static int
4319 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4321 struct sched_group *group;
4322 struct rq *busiest = NULL;
4323 unsigned long imbalance;
4324 int ld_moved = 0;
4325 int sd_idle = 0;
4326 int all_pinned = 0;
4327 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4329 cpumask_copy(cpus, cpu_active_mask);
4332 * When power savings policy is enabled for the parent domain, idle
4333 * sibling can pick up load irrespective of busy siblings. In this case,
4334 * let the state of idle sibling percolate up as IDLE, instead of
4335 * portraying it as CPU_NOT_IDLE.
4337 if (sd->flags & SD_SHARE_CPUPOWER &&
4338 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4339 sd_idle = 1;
4341 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4342 redo:
4343 update_shares_locked(this_rq, sd);
4344 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4345 &sd_idle, cpus, NULL);
4346 if (!group) {
4347 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4348 goto out_balanced;
4351 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4352 if (!busiest) {
4353 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4354 goto out_balanced;
4357 BUG_ON(busiest == this_rq);
4359 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4361 ld_moved = 0;
4362 if (busiest->nr_running > 1) {
4363 /* Attempt to move tasks */
4364 double_lock_balance(this_rq, busiest);
4365 /* this_rq->clock is already updated */
4366 update_rq_clock(busiest);
4367 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4368 imbalance, sd, CPU_NEWLY_IDLE,
4369 &all_pinned);
4370 double_unlock_balance(this_rq, busiest);
4372 if (unlikely(all_pinned)) {
4373 cpumask_clear_cpu(cpu_of(busiest), cpus);
4374 if (!cpumask_empty(cpus))
4375 goto redo;
4379 if (!ld_moved) {
4380 int active_balance = 0;
4382 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4383 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4384 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4385 return -1;
4387 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4388 return -1;
4390 if (sd->nr_balance_failed++ < 2)
4391 return -1;
4394 * The only task running in a non-idle cpu can be moved to this
4395 * cpu in an attempt to completely freeup the other CPU
4396 * package. The same method used to move task in load_balance()
4397 * have been extended for load_balance_newidle() to speedup
4398 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4400 * The package power saving logic comes from
4401 * find_busiest_group(). If there are no imbalance, then
4402 * f_b_g() will return NULL. However when sched_mc={1,2} then
4403 * f_b_g() will select a group from which a running task may be
4404 * pulled to this cpu in order to make the other package idle.
4405 * If there is no opportunity to make a package idle and if
4406 * there are no imbalance, then f_b_g() will return NULL and no
4407 * action will be taken in load_balance_newidle().
4409 * Under normal task pull operation due to imbalance, there
4410 * will be more than one task in the source run queue and
4411 * move_tasks() will succeed. ld_moved will be true and this
4412 * active balance code will not be triggered.
4415 /* Lock busiest in correct order while this_rq is held */
4416 double_lock_balance(this_rq, busiest);
4419 * don't kick the migration_thread, if the curr
4420 * task on busiest cpu can't be moved to this_cpu
4422 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4423 double_unlock_balance(this_rq, busiest);
4424 all_pinned = 1;
4425 return ld_moved;
4428 if (!busiest->active_balance) {
4429 busiest->active_balance = 1;
4430 busiest->push_cpu = this_cpu;
4431 active_balance = 1;
4434 double_unlock_balance(this_rq, busiest);
4436 * Should not call ttwu while holding a rq->lock
4438 spin_unlock(&this_rq->lock);
4439 if (active_balance)
4440 wake_up_process(busiest->migration_thread);
4441 spin_lock(&this_rq->lock);
4443 } else
4444 sd->nr_balance_failed = 0;
4446 update_shares_locked(this_rq, sd);
4447 return ld_moved;
4449 out_balanced:
4450 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4451 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4452 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4453 return -1;
4454 sd->nr_balance_failed = 0;
4456 return 0;
4460 * idle_balance is called by schedule() if this_cpu is about to become
4461 * idle. Attempts to pull tasks from other CPUs.
4463 static void idle_balance(int this_cpu, struct rq *this_rq)
4465 struct sched_domain *sd;
4466 int pulled_task = 0;
4467 unsigned long next_balance = jiffies + HZ;
4469 this_rq->idle_stamp = this_rq->clock;
4471 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4472 return;
4474 for_each_domain(this_cpu, sd) {
4475 unsigned long interval;
4477 if (!(sd->flags & SD_LOAD_BALANCE))
4478 continue;
4480 if (sd->flags & SD_BALANCE_NEWIDLE)
4481 /* If we've pulled tasks over stop searching: */
4482 pulled_task = load_balance_newidle(this_cpu, this_rq,
4483 sd);
4485 interval = msecs_to_jiffies(sd->balance_interval);
4486 if (time_after(next_balance, sd->last_balance + interval))
4487 next_balance = sd->last_balance + interval;
4488 if (pulled_task) {
4489 this_rq->idle_stamp = 0;
4490 break;
4493 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4495 * We are going idle. next_balance may be set based on
4496 * a busy processor. So reset next_balance.
4498 this_rq->next_balance = next_balance;
4503 * active_load_balance is run by migration threads. It pushes running tasks
4504 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4505 * running on each physical CPU where possible, and avoids physical /
4506 * logical imbalances.
4508 * Called with busiest_rq locked.
4510 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4512 int target_cpu = busiest_rq->push_cpu;
4513 struct sched_domain *sd;
4514 struct rq *target_rq;
4516 /* Is there any task to move? */
4517 if (busiest_rq->nr_running <= 1)
4518 return;
4520 target_rq = cpu_rq(target_cpu);
4523 * This condition is "impossible", if it occurs
4524 * we need to fix it. Originally reported by
4525 * Bjorn Helgaas on a 128-cpu setup.
4527 BUG_ON(busiest_rq == target_rq);
4529 /* move a task from busiest_rq to target_rq */
4530 double_lock_balance(busiest_rq, target_rq);
4531 update_rq_clock(busiest_rq);
4532 update_rq_clock(target_rq);
4534 /* Search for an sd spanning us and the target CPU. */
4535 for_each_domain(target_cpu, sd) {
4536 if ((sd->flags & SD_LOAD_BALANCE) &&
4537 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4538 break;
4541 if (likely(sd)) {
4542 schedstat_inc(sd, alb_count);
4544 if (move_one_task(target_rq, target_cpu, busiest_rq,
4545 sd, CPU_IDLE))
4546 schedstat_inc(sd, alb_pushed);
4547 else
4548 schedstat_inc(sd, alb_failed);
4550 double_unlock_balance(busiest_rq, target_rq);
4553 #ifdef CONFIG_NO_HZ
4554 static struct {
4555 atomic_t load_balancer;
4556 cpumask_var_t cpu_mask;
4557 cpumask_var_t ilb_grp_nohz_mask;
4558 } nohz ____cacheline_aligned = {
4559 .load_balancer = ATOMIC_INIT(-1),
4562 int get_nohz_load_balancer(void)
4564 return atomic_read(&nohz.load_balancer);
4567 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4569 * lowest_flag_domain - Return lowest sched_domain containing flag.
4570 * @cpu: The cpu whose lowest level of sched domain is to
4571 * be returned.
4572 * @flag: The flag to check for the lowest sched_domain
4573 * for the given cpu.
4575 * Returns the lowest sched_domain of a cpu which contains the given flag.
4577 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4579 struct sched_domain *sd;
4581 for_each_domain(cpu, sd)
4582 if (sd && (sd->flags & flag))
4583 break;
4585 return sd;
4589 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4590 * @cpu: The cpu whose domains we're iterating over.
4591 * @sd: variable holding the value of the power_savings_sd
4592 * for cpu.
4593 * @flag: The flag to filter the sched_domains to be iterated.
4595 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4596 * set, starting from the lowest sched_domain to the highest.
4598 #define for_each_flag_domain(cpu, sd, flag) \
4599 for (sd = lowest_flag_domain(cpu, flag); \
4600 (sd && (sd->flags & flag)); sd = sd->parent)
4603 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4604 * @ilb_group: group to be checked for semi-idleness
4606 * Returns: 1 if the group is semi-idle. 0 otherwise.
4608 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4609 * and atleast one non-idle CPU. This helper function checks if the given
4610 * sched_group is semi-idle or not.
4612 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4614 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4615 sched_group_cpus(ilb_group));
4618 * A sched_group is semi-idle when it has atleast one busy cpu
4619 * and atleast one idle cpu.
4621 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4622 return 0;
4624 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4625 return 0;
4627 return 1;
4630 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4631 * @cpu: The cpu which is nominating a new idle_load_balancer.
4633 * Returns: Returns the id of the idle load balancer if it exists,
4634 * Else, returns >= nr_cpu_ids.
4636 * This algorithm picks the idle load balancer such that it belongs to a
4637 * semi-idle powersavings sched_domain. The idea is to try and avoid
4638 * completely idle packages/cores just for the purpose of idle load balancing
4639 * when there are other idle cpu's which are better suited for that job.
4641 static int find_new_ilb(int cpu)
4643 struct sched_domain *sd;
4644 struct sched_group *ilb_group;
4647 * Have idle load balancer selection from semi-idle packages only
4648 * when power-aware load balancing is enabled
4650 if (!(sched_smt_power_savings || sched_mc_power_savings))
4651 goto out_done;
4654 * Optimize for the case when we have no idle CPUs or only one
4655 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4657 if (cpumask_weight(nohz.cpu_mask) < 2)
4658 goto out_done;
4660 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4661 ilb_group = sd->groups;
4663 do {
4664 if (is_semi_idle_group(ilb_group))
4665 return cpumask_first(nohz.ilb_grp_nohz_mask);
4667 ilb_group = ilb_group->next;
4669 } while (ilb_group != sd->groups);
4672 out_done:
4673 return cpumask_first(nohz.cpu_mask);
4675 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4676 static inline int find_new_ilb(int call_cpu)
4678 return cpumask_first(nohz.cpu_mask);
4680 #endif
4683 * This routine will try to nominate the ilb (idle load balancing)
4684 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4685 * load balancing on behalf of all those cpus. If all the cpus in the system
4686 * go into this tickless mode, then there will be no ilb owner (as there is
4687 * no need for one) and all the cpus will sleep till the next wakeup event
4688 * arrives...
4690 * For the ilb owner, tick is not stopped. And this tick will be used
4691 * for idle load balancing. ilb owner will still be part of
4692 * nohz.cpu_mask..
4694 * While stopping the tick, this cpu will become the ilb owner if there
4695 * is no other owner. And will be the owner till that cpu becomes busy
4696 * or if all cpus in the system stop their ticks at which point
4697 * there is no need for ilb owner.
4699 * When the ilb owner becomes busy, it nominates another owner, during the
4700 * next busy scheduler_tick()
4702 int select_nohz_load_balancer(int stop_tick)
4704 int cpu = smp_processor_id();
4706 if (stop_tick) {
4707 cpu_rq(cpu)->in_nohz_recently = 1;
4709 if (!cpu_active(cpu)) {
4710 if (atomic_read(&nohz.load_balancer) != cpu)
4711 return 0;
4714 * If we are going offline and still the leader,
4715 * give up!
4717 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4718 BUG();
4720 return 0;
4723 cpumask_set_cpu(cpu, nohz.cpu_mask);
4725 /* time for ilb owner also to sleep */
4726 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4727 if (atomic_read(&nohz.load_balancer) == cpu)
4728 atomic_set(&nohz.load_balancer, -1);
4729 return 0;
4732 if (atomic_read(&nohz.load_balancer) == -1) {
4733 /* make me the ilb owner */
4734 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4735 return 1;
4736 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4737 int new_ilb;
4739 if (!(sched_smt_power_savings ||
4740 sched_mc_power_savings))
4741 return 1;
4743 * Check to see if there is a more power-efficient
4744 * ilb.
4746 new_ilb = find_new_ilb(cpu);
4747 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4748 atomic_set(&nohz.load_balancer, -1);
4749 resched_cpu(new_ilb);
4750 return 0;
4752 return 1;
4754 } else {
4755 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4756 return 0;
4758 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4760 if (atomic_read(&nohz.load_balancer) == cpu)
4761 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4762 BUG();
4764 return 0;
4766 #endif
4768 static DEFINE_SPINLOCK(balancing);
4771 * It checks each scheduling domain to see if it is due to be balanced,
4772 * and initiates a balancing operation if so.
4774 * Balancing parameters are set up in arch_init_sched_domains.
4776 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4778 int balance = 1;
4779 struct rq *rq = cpu_rq(cpu);
4780 unsigned long interval;
4781 struct sched_domain *sd;
4782 /* Earliest time when we have to do rebalance again */
4783 unsigned long next_balance = jiffies + 60*HZ;
4784 int update_next_balance = 0;
4785 int need_serialize;
4787 for_each_domain(cpu, sd) {
4788 if (!(sd->flags & SD_LOAD_BALANCE))
4789 continue;
4791 interval = sd->balance_interval;
4792 if (idle != CPU_IDLE)
4793 interval *= sd->busy_factor;
4795 /* scale ms to jiffies */
4796 interval = msecs_to_jiffies(interval);
4797 if (unlikely(!interval))
4798 interval = 1;
4799 if (interval > HZ*NR_CPUS/10)
4800 interval = HZ*NR_CPUS/10;
4802 need_serialize = sd->flags & SD_SERIALIZE;
4804 if (need_serialize) {
4805 if (!spin_trylock(&balancing))
4806 goto out;
4809 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4810 if (load_balance(cpu, rq, sd, idle, &balance)) {
4812 * We've pulled tasks over so either we're no
4813 * longer idle, or one of our SMT siblings is
4814 * not idle.
4816 idle = CPU_NOT_IDLE;
4818 sd->last_balance = jiffies;
4820 if (need_serialize)
4821 spin_unlock(&balancing);
4822 out:
4823 if (time_after(next_balance, sd->last_balance + interval)) {
4824 next_balance = sd->last_balance + interval;
4825 update_next_balance = 1;
4829 * Stop the load balance at this level. There is another
4830 * CPU in our sched group which is doing load balancing more
4831 * actively.
4833 if (!balance)
4834 break;
4838 * next_balance will be updated only when there is a need.
4839 * When the cpu is attached to null domain for ex, it will not be
4840 * updated.
4842 if (likely(update_next_balance))
4843 rq->next_balance = next_balance;
4847 * run_rebalance_domains is triggered when needed from the scheduler tick.
4848 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4849 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4851 static void run_rebalance_domains(struct softirq_action *h)
4853 int this_cpu = smp_processor_id();
4854 struct rq *this_rq = cpu_rq(this_cpu);
4855 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4856 CPU_IDLE : CPU_NOT_IDLE;
4858 rebalance_domains(this_cpu, idle);
4860 #ifdef CONFIG_NO_HZ
4862 * If this cpu is the owner for idle load balancing, then do the
4863 * balancing on behalf of the other idle cpus whose ticks are
4864 * stopped.
4866 if (this_rq->idle_at_tick &&
4867 atomic_read(&nohz.load_balancer) == this_cpu) {
4868 struct rq *rq;
4869 int balance_cpu;
4871 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4872 if (balance_cpu == this_cpu)
4873 continue;
4876 * If this cpu gets work to do, stop the load balancing
4877 * work being done for other cpus. Next load
4878 * balancing owner will pick it up.
4880 if (need_resched())
4881 break;
4883 rebalance_domains(balance_cpu, CPU_IDLE);
4885 rq = cpu_rq(balance_cpu);
4886 if (time_after(this_rq->next_balance, rq->next_balance))
4887 this_rq->next_balance = rq->next_balance;
4890 #endif
4893 static inline int on_null_domain(int cpu)
4895 return !rcu_dereference(cpu_rq(cpu)->sd);
4899 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4901 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4902 * idle load balancing owner or decide to stop the periodic load balancing,
4903 * if the whole system is idle.
4905 static inline void trigger_load_balance(struct rq *rq, int cpu)
4907 #ifdef CONFIG_NO_HZ
4909 * If we were in the nohz mode recently and busy at the current
4910 * scheduler tick, then check if we need to nominate new idle
4911 * load balancer.
4913 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4914 rq->in_nohz_recently = 0;
4916 if (atomic_read(&nohz.load_balancer) == cpu) {
4917 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4918 atomic_set(&nohz.load_balancer, -1);
4921 if (atomic_read(&nohz.load_balancer) == -1) {
4922 int ilb = find_new_ilb(cpu);
4924 if (ilb < nr_cpu_ids)
4925 resched_cpu(ilb);
4930 * If this cpu is idle and doing idle load balancing for all the
4931 * cpus with ticks stopped, is it time for that to stop?
4933 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4934 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4935 resched_cpu(cpu);
4936 return;
4940 * If this cpu is idle and the idle load balancing is done by
4941 * someone else, then no need raise the SCHED_SOFTIRQ
4943 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4944 cpumask_test_cpu(cpu, nohz.cpu_mask))
4945 return;
4946 #endif
4947 /* Don't need to rebalance while attached to NULL domain */
4948 if (time_after_eq(jiffies, rq->next_balance) &&
4949 likely(!on_null_domain(cpu)))
4950 raise_softirq(SCHED_SOFTIRQ);
4953 #else /* CONFIG_SMP */
4956 * on UP we do not need to balance between CPUs:
4958 static inline void idle_balance(int cpu, struct rq *rq)
4962 #endif
4964 DEFINE_PER_CPU(struct kernel_stat, kstat);
4966 EXPORT_PER_CPU_SYMBOL(kstat);
4969 * Return any ns on the sched_clock that have not yet been accounted in
4970 * @p in case that task is currently running.
4972 * Called with task_rq_lock() held on @rq.
4974 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4976 u64 ns = 0;
4978 if (task_current(rq, p)) {
4979 update_rq_clock(rq);
4980 ns = rq->clock - p->se.exec_start;
4981 if ((s64)ns < 0)
4982 ns = 0;
4985 return ns;
4988 unsigned long long task_delta_exec(struct task_struct *p)
4990 unsigned long flags;
4991 struct rq *rq;
4992 u64 ns = 0;
4994 rq = task_rq_lock(p, &flags);
4995 ns = do_task_delta_exec(p, rq);
4996 task_rq_unlock(rq, &flags);
4998 return ns;
5002 * Return accounted runtime for the task.
5003 * In case the task is currently running, return the runtime plus current's
5004 * pending runtime that have not been accounted yet.
5006 unsigned long long task_sched_runtime(struct task_struct *p)
5008 unsigned long flags;
5009 struct rq *rq;
5010 u64 ns = 0;
5012 rq = task_rq_lock(p, &flags);
5013 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5014 task_rq_unlock(rq, &flags);
5016 return ns;
5020 * Return sum_exec_runtime for the thread group.
5021 * In case the task is currently running, return the sum plus current's
5022 * pending runtime that have not been accounted yet.
5024 * Note that the thread group might have other running tasks as well,
5025 * so the return value not includes other pending runtime that other
5026 * running tasks might have.
5028 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5030 struct task_cputime totals;
5031 unsigned long flags;
5032 struct rq *rq;
5033 u64 ns;
5035 rq = task_rq_lock(p, &flags);
5036 thread_group_cputime(p, &totals);
5037 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5038 task_rq_unlock(rq, &flags);
5040 return ns;
5044 * Account user cpu time to a process.
5045 * @p: the process that the cpu time gets accounted to
5046 * @cputime: the cpu time spent in user space since the last update
5047 * @cputime_scaled: cputime scaled by cpu frequency
5049 void account_user_time(struct task_struct *p, cputime_t cputime,
5050 cputime_t cputime_scaled)
5052 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5053 cputime64_t tmp;
5055 /* Add user time to process. */
5056 p->utime = cputime_add(p->utime, cputime);
5057 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5058 account_group_user_time(p, cputime);
5060 /* Add user time to cpustat. */
5061 tmp = cputime_to_cputime64(cputime);
5062 if (TASK_NICE(p) > 0)
5063 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5064 else
5065 cpustat->user = cputime64_add(cpustat->user, tmp);
5067 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5068 /* Account for user time used */
5069 acct_update_integrals(p);
5073 * Account guest cpu time to a process.
5074 * @p: the process that the cpu time gets accounted to
5075 * @cputime: the cpu time spent in virtual machine since the last update
5076 * @cputime_scaled: cputime scaled by cpu frequency
5078 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5079 cputime_t cputime_scaled)
5081 cputime64_t tmp;
5082 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5084 tmp = cputime_to_cputime64(cputime);
5086 /* Add guest time to process. */
5087 p->utime = cputime_add(p->utime, cputime);
5088 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5089 account_group_user_time(p, cputime);
5090 p->gtime = cputime_add(p->gtime, cputime);
5092 /* Add guest time to cpustat. */
5093 cpustat->user = cputime64_add(cpustat->user, tmp);
5094 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5098 * Account system cpu time to a process.
5099 * @p: the process that the cpu time gets accounted to
5100 * @hardirq_offset: the offset to subtract from hardirq_count()
5101 * @cputime: the cpu time spent in kernel space since the last update
5102 * @cputime_scaled: cputime scaled by cpu frequency
5104 void account_system_time(struct task_struct *p, int hardirq_offset,
5105 cputime_t cputime, cputime_t cputime_scaled)
5107 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5108 cputime64_t tmp;
5110 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5111 account_guest_time(p, cputime, cputime_scaled);
5112 return;
5115 /* Add system time to process. */
5116 p->stime = cputime_add(p->stime, cputime);
5117 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5118 account_group_system_time(p, cputime);
5120 /* Add system time to cpustat. */
5121 tmp = cputime_to_cputime64(cputime);
5122 if (hardirq_count() - hardirq_offset)
5123 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5124 else if (softirq_count())
5125 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5126 else
5127 cpustat->system = cputime64_add(cpustat->system, tmp);
5129 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5131 /* Account for system time used */
5132 acct_update_integrals(p);
5136 * Account for involuntary wait time.
5137 * @steal: the cpu time spent in involuntary wait
5139 void account_steal_time(cputime_t cputime)
5141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5142 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5144 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5148 * Account for idle time.
5149 * @cputime: the cpu time spent in idle wait
5151 void account_idle_time(cputime_t cputime)
5153 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5154 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5155 struct rq *rq = this_rq();
5157 if (atomic_read(&rq->nr_iowait) > 0)
5158 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5159 else
5160 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5163 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5166 * Account a single tick of cpu time.
5167 * @p: the process that the cpu time gets accounted to
5168 * @user_tick: indicates if the tick is a user or a system tick
5170 void account_process_tick(struct task_struct *p, int user_tick)
5172 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5173 struct rq *rq = this_rq();
5175 if (user_tick)
5176 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5177 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5178 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5179 one_jiffy_scaled);
5180 else
5181 account_idle_time(cputime_one_jiffy);
5185 * Account multiple ticks of steal time.
5186 * @p: the process from which the cpu time has been stolen
5187 * @ticks: number of stolen ticks
5189 void account_steal_ticks(unsigned long ticks)
5191 account_steal_time(jiffies_to_cputime(ticks));
5195 * Account multiple ticks of idle time.
5196 * @ticks: number of stolen ticks
5198 void account_idle_ticks(unsigned long ticks)
5200 account_idle_time(jiffies_to_cputime(ticks));
5203 #endif
5206 * Use precise platform statistics if available:
5208 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5209 cputime_t task_utime(struct task_struct *p)
5211 return p->utime;
5214 cputime_t task_stime(struct task_struct *p)
5216 return p->stime;
5219 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5221 struct task_cputime cputime;
5223 thread_group_cputime(p, &cputime);
5225 *ut = cputime.utime;
5226 *st = cputime.stime;
5228 #else
5230 #ifndef nsecs_to_cputime
5231 # define nsecs_to_cputime(__nsecs) \
5232 msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
5233 #endif
5235 cputime_t task_utime(struct task_struct *p)
5237 cputime_t utime = p->utime, total = utime + p->stime;
5238 u64 temp;
5241 * Use CFS's precise accounting:
5243 temp = (u64)nsecs_to_cputime(p->se.sum_exec_runtime);
5245 if (total) {
5246 temp *= utime;
5247 do_div(temp, total);
5249 utime = (cputime_t)temp;
5251 p->prev_utime = max(p->prev_utime, utime);
5252 return p->prev_utime;
5255 cputime_t task_stime(struct task_struct *p)
5257 cputime_t stime;
5260 * Use CFS's precise accounting. (we subtract utime from
5261 * the total, to make sure the total observed by userspace
5262 * grows monotonically - apps rely on that):
5264 stime = nsecs_to_cputime(p->se.sum_exec_runtime) - task_utime(p);
5266 if (stime >= 0)
5267 p->prev_stime = max(p->prev_stime, stime);
5269 return p->prev_stime;
5273 * Must be called with siglock held.
5275 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5277 struct signal_struct *sig = p->signal;
5278 struct task_cputime cputime;
5279 cputime_t rtime, utime, total;
5281 thread_group_cputime(p, &cputime);
5283 total = cputime_add(cputime.utime, cputime.stime);
5284 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5286 if (total) {
5287 u64 temp;
5289 temp = (u64)(rtime * cputime.utime);
5290 do_div(temp, total);
5291 utime = (cputime_t)temp;
5292 } else
5293 utime = rtime;
5295 sig->prev_utime = max(sig->prev_utime, utime);
5296 sig->prev_stime = max(sig->prev_stime,
5297 cputime_sub(rtime, sig->prev_utime));
5299 *ut = sig->prev_utime;
5300 *st = sig->prev_stime;
5302 #endif
5304 inline cputime_t task_gtime(struct task_struct *p)
5306 return p->gtime;
5310 * This function gets called by the timer code, with HZ frequency.
5311 * We call it with interrupts disabled.
5313 * It also gets called by the fork code, when changing the parent's
5314 * timeslices.
5316 void scheduler_tick(void)
5318 int cpu = smp_processor_id();
5319 struct rq *rq = cpu_rq(cpu);
5320 struct task_struct *curr = rq->curr;
5322 sched_clock_tick();
5324 spin_lock(&rq->lock);
5325 update_rq_clock(rq);
5326 update_cpu_load(rq);
5327 curr->sched_class->task_tick(rq, curr, 0);
5328 spin_unlock(&rq->lock);
5330 perf_event_task_tick(curr, cpu);
5332 #ifdef CONFIG_SMP
5333 rq->idle_at_tick = idle_cpu(cpu);
5334 trigger_load_balance(rq, cpu);
5335 #endif
5338 notrace unsigned long get_parent_ip(unsigned long addr)
5340 if (in_lock_functions(addr)) {
5341 addr = CALLER_ADDR2;
5342 if (in_lock_functions(addr))
5343 addr = CALLER_ADDR3;
5345 return addr;
5348 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5349 defined(CONFIG_PREEMPT_TRACER))
5351 void __kprobes add_preempt_count(int val)
5353 #ifdef CONFIG_DEBUG_PREEMPT
5355 * Underflow?
5357 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5358 return;
5359 #endif
5360 preempt_count() += val;
5361 #ifdef CONFIG_DEBUG_PREEMPT
5363 * Spinlock count overflowing soon?
5365 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5366 PREEMPT_MASK - 10);
5367 #endif
5368 if (preempt_count() == val)
5369 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5371 EXPORT_SYMBOL(add_preempt_count);
5373 void __kprobes sub_preempt_count(int val)
5375 #ifdef CONFIG_DEBUG_PREEMPT
5377 * Underflow?
5379 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5380 return;
5382 * Is the spinlock portion underflowing?
5384 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5385 !(preempt_count() & PREEMPT_MASK)))
5386 return;
5387 #endif
5389 if (preempt_count() == val)
5390 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5391 preempt_count() -= val;
5393 EXPORT_SYMBOL(sub_preempt_count);
5395 #endif
5398 * Print scheduling while atomic bug:
5400 static noinline void __schedule_bug(struct task_struct *prev)
5402 struct pt_regs *regs = get_irq_regs();
5404 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5405 prev->comm, prev->pid, preempt_count());
5407 debug_show_held_locks(prev);
5408 print_modules();
5409 if (irqs_disabled())
5410 print_irqtrace_events(prev);
5412 if (regs)
5413 show_regs(regs);
5414 else
5415 dump_stack();
5419 * Various schedule()-time debugging checks and statistics:
5421 static inline void schedule_debug(struct task_struct *prev)
5424 * Test if we are atomic. Since do_exit() needs to call into
5425 * schedule() atomically, we ignore that path for now.
5426 * Otherwise, whine if we are scheduling when we should not be.
5428 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5429 __schedule_bug(prev);
5431 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5433 schedstat_inc(this_rq(), sched_count);
5434 #ifdef CONFIG_SCHEDSTATS
5435 if (unlikely(prev->lock_depth >= 0)) {
5436 schedstat_inc(this_rq(), bkl_count);
5437 schedstat_inc(prev, sched_info.bkl_count);
5439 #endif
5442 static void put_prev_task(struct rq *rq, struct task_struct *p)
5444 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5446 update_avg(&p->se.avg_running, runtime);
5448 if (p->state == TASK_RUNNING) {
5450 * In order to avoid avg_overlap growing stale when we are
5451 * indeed overlapping and hence not getting put to sleep, grow
5452 * the avg_overlap on preemption.
5454 * We use the average preemption runtime because that
5455 * correlates to the amount of cache footprint a task can
5456 * build up.
5458 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5459 update_avg(&p->se.avg_overlap, runtime);
5460 } else {
5461 update_avg(&p->se.avg_running, 0);
5463 p->sched_class->put_prev_task(rq, p);
5467 * Pick up the highest-prio task:
5469 static inline struct task_struct *
5470 pick_next_task(struct rq *rq)
5472 const struct sched_class *class;
5473 struct task_struct *p;
5476 * Optimization: we know that if all tasks are in
5477 * the fair class we can call that function directly:
5479 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5480 p = fair_sched_class.pick_next_task(rq);
5481 if (likely(p))
5482 return p;
5485 class = sched_class_highest;
5486 for ( ; ; ) {
5487 p = class->pick_next_task(rq);
5488 if (p)
5489 return p;
5491 * Will never be NULL as the idle class always
5492 * returns a non-NULL p:
5494 class = class->next;
5499 * schedule() is the main scheduler function.
5501 asmlinkage void __sched schedule(void)
5503 struct task_struct *prev, *next;
5504 unsigned long *switch_count;
5505 struct rq *rq;
5506 int cpu;
5508 need_resched:
5509 preempt_disable();
5510 cpu = smp_processor_id();
5511 rq = cpu_rq(cpu);
5512 rcu_sched_qs(cpu);
5513 prev = rq->curr;
5514 switch_count = &prev->nivcsw;
5516 release_kernel_lock(prev);
5517 need_resched_nonpreemptible:
5519 schedule_debug(prev);
5521 if (sched_feat(HRTICK))
5522 hrtick_clear(rq);
5524 spin_lock_irq(&rq->lock);
5525 update_rq_clock(rq);
5526 clear_tsk_need_resched(prev);
5528 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5529 if (unlikely(signal_pending_state(prev->state, prev)))
5530 prev->state = TASK_RUNNING;
5531 else
5532 deactivate_task(rq, prev, 1);
5533 switch_count = &prev->nvcsw;
5536 pre_schedule(rq, prev);
5538 if (unlikely(!rq->nr_running))
5539 idle_balance(cpu, rq);
5541 put_prev_task(rq, prev);
5542 next = pick_next_task(rq);
5544 if (likely(prev != next)) {
5545 sched_info_switch(prev, next);
5546 perf_event_task_sched_out(prev, next, cpu);
5548 rq->nr_switches++;
5549 rq->curr = next;
5550 ++*switch_count;
5552 context_switch(rq, prev, next); /* unlocks the rq */
5554 * the context switch might have flipped the stack from under
5555 * us, hence refresh the local variables.
5557 cpu = smp_processor_id();
5558 rq = cpu_rq(cpu);
5559 } else
5560 spin_unlock_irq(&rq->lock);
5562 post_schedule(rq);
5564 if (unlikely(reacquire_kernel_lock(current) < 0))
5565 goto need_resched_nonpreemptible;
5567 preempt_enable_no_resched();
5568 if (need_resched())
5569 goto need_resched;
5571 EXPORT_SYMBOL(schedule);
5573 #ifdef CONFIG_SMP
5575 * Look out! "owner" is an entirely speculative pointer
5576 * access and not reliable.
5578 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5580 unsigned int cpu;
5581 struct rq *rq;
5583 if (!sched_feat(OWNER_SPIN))
5584 return 0;
5586 #ifdef CONFIG_DEBUG_PAGEALLOC
5588 * Need to access the cpu field knowing that
5589 * DEBUG_PAGEALLOC could have unmapped it if
5590 * the mutex owner just released it and exited.
5592 if (probe_kernel_address(&owner->cpu, cpu))
5593 return 0;
5594 #else
5595 cpu = owner->cpu;
5596 #endif
5599 * Even if the access succeeded (likely case),
5600 * the cpu field may no longer be valid.
5602 if (cpu >= nr_cpumask_bits)
5603 return 0;
5606 * We need to validate that we can do a
5607 * get_cpu() and that we have the percpu area.
5609 if (!cpu_online(cpu))
5610 return 0;
5612 rq = cpu_rq(cpu);
5614 for (;;) {
5616 * Owner changed, break to re-assess state.
5618 if (lock->owner != owner)
5619 break;
5622 * Is that owner really running on that cpu?
5624 if (task_thread_info(rq->curr) != owner || need_resched())
5625 return 0;
5627 cpu_relax();
5630 return 1;
5632 #endif
5634 #ifdef CONFIG_PREEMPT
5636 * this is the entry point to schedule() from in-kernel preemption
5637 * off of preempt_enable. Kernel preemptions off return from interrupt
5638 * occur there and call schedule directly.
5640 asmlinkage void __sched preempt_schedule(void)
5642 struct thread_info *ti = current_thread_info();
5645 * If there is a non-zero preempt_count or interrupts are disabled,
5646 * we do not want to preempt the current task. Just return..
5648 if (likely(ti->preempt_count || irqs_disabled()))
5649 return;
5651 do {
5652 add_preempt_count(PREEMPT_ACTIVE);
5653 schedule();
5654 sub_preempt_count(PREEMPT_ACTIVE);
5657 * Check again in case we missed a preemption opportunity
5658 * between schedule and now.
5660 barrier();
5661 } while (need_resched());
5663 EXPORT_SYMBOL(preempt_schedule);
5666 * this is the entry point to schedule() from kernel preemption
5667 * off of irq context.
5668 * Note, that this is called and return with irqs disabled. This will
5669 * protect us against recursive calling from irq.
5671 asmlinkage void __sched preempt_schedule_irq(void)
5673 struct thread_info *ti = current_thread_info();
5675 /* Catch callers which need to be fixed */
5676 BUG_ON(ti->preempt_count || !irqs_disabled());
5678 do {
5679 add_preempt_count(PREEMPT_ACTIVE);
5680 local_irq_enable();
5681 schedule();
5682 local_irq_disable();
5683 sub_preempt_count(PREEMPT_ACTIVE);
5686 * Check again in case we missed a preemption opportunity
5687 * between schedule and now.
5689 barrier();
5690 } while (need_resched());
5693 #endif /* CONFIG_PREEMPT */
5695 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5696 void *key)
5698 return try_to_wake_up(curr->private, mode, wake_flags);
5700 EXPORT_SYMBOL(default_wake_function);
5703 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5704 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5705 * number) then we wake all the non-exclusive tasks and one exclusive task.
5707 * There are circumstances in which we can try to wake a task which has already
5708 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5709 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5711 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5712 int nr_exclusive, int wake_flags, void *key)
5714 wait_queue_t *curr, *next;
5716 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5717 unsigned flags = curr->flags;
5719 if (curr->func(curr, mode, wake_flags, key) &&
5720 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5721 break;
5726 * __wake_up - wake up threads blocked on a waitqueue.
5727 * @q: the waitqueue
5728 * @mode: which threads
5729 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5730 * @key: is directly passed to the wakeup function
5732 * It may be assumed that this function implies a write memory barrier before
5733 * changing the task state if and only if any tasks are woken up.
5735 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5736 int nr_exclusive, void *key)
5738 unsigned long flags;
5740 spin_lock_irqsave(&q->lock, flags);
5741 __wake_up_common(q, mode, nr_exclusive, 0, key);
5742 spin_unlock_irqrestore(&q->lock, flags);
5744 EXPORT_SYMBOL(__wake_up);
5747 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5749 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5751 __wake_up_common(q, mode, 1, 0, NULL);
5754 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5756 __wake_up_common(q, mode, 1, 0, key);
5760 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5761 * @q: the waitqueue
5762 * @mode: which threads
5763 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5764 * @key: opaque value to be passed to wakeup targets
5766 * The sync wakeup differs that the waker knows that it will schedule
5767 * away soon, so while the target thread will be woken up, it will not
5768 * be migrated to another CPU - ie. the two threads are 'synchronized'
5769 * with each other. This can prevent needless bouncing between CPUs.
5771 * On UP it can prevent extra preemption.
5773 * It may be assumed that this function implies a write memory barrier before
5774 * changing the task state if and only if any tasks are woken up.
5776 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5777 int nr_exclusive, void *key)
5779 unsigned long flags;
5780 int wake_flags = WF_SYNC;
5782 if (unlikely(!q))
5783 return;
5785 if (unlikely(!nr_exclusive))
5786 wake_flags = 0;
5788 spin_lock_irqsave(&q->lock, flags);
5789 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5790 spin_unlock_irqrestore(&q->lock, flags);
5792 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5795 * __wake_up_sync - see __wake_up_sync_key()
5797 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5799 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5801 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5804 * complete: - signals a single thread waiting on this completion
5805 * @x: holds the state of this particular completion
5807 * This will wake up a single thread waiting on this completion. Threads will be
5808 * awakened in the same order in which they were queued.
5810 * See also complete_all(), wait_for_completion() and related routines.
5812 * It may be assumed that this function implies a write memory barrier before
5813 * changing the task state if and only if any tasks are woken up.
5815 void complete(struct completion *x)
5817 unsigned long flags;
5819 spin_lock_irqsave(&x->wait.lock, flags);
5820 x->done++;
5821 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5822 spin_unlock_irqrestore(&x->wait.lock, flags);
5824 EXPORT_SYMBOL(complete);
5827 * complete_all: - signals all threads waiting on this completion
5828 * @x: holds the state of this particular completion
5830 * This will wake up all threads waiting on this particular completion event.
5832 * It may be assumed that this function implies a write memory barrier before
5833 * changing the task state if and only if any tasks are woken up.
5835 void complete_all(struct completion *x)
5837 unsigned long flags;
5839 spin_lock_irqsave(&x->wait.lock, flags);
5840 x->done += UINT_MAX/2;
5841 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5842 spin_unlock_irqrestore(&x->wait.lock, flags);
5844 EXPORT_SYMBOL(complete_all);
5846 static inline long __sched
5847 do_wait_for_common(struct completion *x, long timeout, int state)
5849 if (!x->done) {
5850 DECLARE_WAITQUEUE(wait, current);
5852 wait.flags |= WQ_FLAG_EXCLUSIVE;
5853 __add_wait_queue_tail(&x->wait, &wait);
5854 do {
5855 if (signal_pending_state(state, current)) {
5856 timeout = -ERESTARTSYS;
5857 break;
5859 __set_current_state(state);
5860 spin_unlock_irq(&x->wait.lock);
5861 timeout = schedule_timeout(timeout);
5862 spin_lock_irq(&x->wait.lock);
5863 } while (!x->done && timeout);
5864 __remove_wait_queue(&x->wait, &wait);
5865 if (!x->done)
5866 return timeout;
5868 x->done--;
5869 return timeout ?: 1;
5872 static long __sched
5873 wait_for_common(struct completion *x, long timeout, int state)
5875 might_sleep();
5877 spin_lock_irq(&x->wait.lock);
5878 timeout = do_wait_for_common(x, timeout, state);
5879 spin_unlock_irq(&x->wait.lock);
5880 return timeout;
5884 * wait_for_completion: - waits for completion of a task
5885 * @x: holds the state of this particular completion
5887 * This waits to be signaled for completion of a specific task. It is NOT
5888 * interruptible and there is no timeout.
5890 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5891 * and interrupt capability. Also see complete().
5893 void __sched wait_for_completion(struct completion *x)
5895 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5897 EXPORT_SYMBOL(wait_for_completion);
5900 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5901 * @x: holds the state of this particular completion
5902 * @timeout: timeout value in jiffies
5904 * This waits for either a completion of a specific task to be signaled or for a
5905 * specified timeout to expire. The timeout is in jiffies. It is not
5906 * interruptible.
5908 unsigned long __sched
5909 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5911 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5913 EXPORT_SYMBOL(wait_for_completion_timeout);
5916 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5917 * @x: holds the state of this particular completion
5919 * This waits for completion of a specific task to be signaled. It is
5920 * interruptible.
5922 int __sched wait_for_completion_interruptible(struct completion *x)
5924 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5925 if (t == -ERESTARTSYS)
5926 return t;
5927 return 0;
5929 EXPORT_SYMBOL(wait_for_completion_interruptible);
5932 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5933 * @x: holds the state of this particular completion
5934 * @timeout: timeout value in jiffies
5936 * This waits for either a completion of a specific task to be signaled or for a
5937 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5939 unsigned long __sched
5940 wait_for_completion_interruptible_timeout(struct completion *x,
5941 unsigned long timeout)
5943 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5945 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5948 * wait_for_completion_killable: - waits for completion of a task (killable)
5949 * @x: holds the state of this particular completion
5951 * This waits to be signaled for completion of a specific task. It can be
5952 * interrupted by a kill signal.
5954 int __sched wait_for_completion_killable(struct completion *x)
5956 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5957 if (t == -ERESTARTSYS)
5958 return t;
5959 return 0;
5961 EXPORT_SYMBOL(wait_for_completion_killable);
5964 * try_wait_for_completion - try to decrement a completion without blocking
5965 * @x: completion structure
5967 * Returns: 0 if a decrement cannot be done without blocking
5968 * 1 if a decrement succeeded.
5970 * If a completion is being used as a counting completion,
5971 * attempt to decrement the counter without blocking. This
5972 * enables us to avoid waiting if the resource the completion
5973 * is protecting is not available.
5975 bool try_wait_for_completion(struct completion *x)
5977 int ret = 1;
5979 spin_lock_irq(&x->wait.lock);
5980 if (!x->done)
5981 ret = 0;
5982 else
5983 x->done--;
5984 spin_unlock_irq(&x->wait.lock);
5985 return ret;
5987 EXPORT_SYMBOL(try_wait_for_completion);
5990 * completion_done - Test to see if a completion has any waiters
5991 * @x: completion structure
5993 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5994 * 1 if there are no waiters.
5997 bool completion_done(struct completion *x)
5999 int ret = 1;
6001 spin_lock_irq(&x->wait.lock);
6002 if (!x->done)
6003 ret = 0;
6004 spin_unlock_irq(&x->wait.lock);
6005 return ret;
6007 EXPORT_SYMBOL(completion_done);
6009 static long __sched
6010 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
6012 unsigned long flags;
6013 wait_queue_t wait;
6015 init_waitqueue_entry(&wait, current);
6017 __set_current_state(state);
6019 spin_lock_irqsave(&q->lock, flags);
6020 __add_wait_queue(q, &wait);
6021 spin_unlock(&q->lock);
6022 timeout = schedule_timeout(timeout);
6023 spin_lock_irq(&q->lock);
6024 __remove_wait_queue(q, &wait);
6025 spin_unlock_irqrestore(&q->lock, flags);
6027 return timeout;
6030 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6032 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6034 EXPORT_SYMBOL(interruptible_sleep_on);
6036 long __sched
6037 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6039 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6041 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6043 void __sched sleep_on(wait_queue_head_t *q)
6045 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6047 EXPORT_SYMBOL(sleep_on);
6049 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6051 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6053 EXPORT_SYMBOL(sleep_on_timeout);
6055 #ifdef CONFIG_RT_MUTEXES
6058 * rt_mutex_setprio - set the current priority of a task
6059 * @p: task
6060 * @prio: prio value (kernel-internal form)
6062 * This function changes the 'effective' priority of a task. It does
6063 * not touch ->normal_prio like __setscheduler().
6065 * Used by the rt_mutex code to implement priority inheritance logic.
6067 void rt_mutex_setprio(struct task_struct *p, int prio)
6069 unsigned long flags;
6070 int oldprio, on_rq, running;
6071 struct rq *rq;
6072 const struct sched_class *prev_class;
6074 BUG_ON(prio < 0 || prio > MAX_PRIO);
6076 rq = task_rq_lock(p, &flags);
6077 update_rq_clock(rq);
6079 oldprio = p->prio;
6080 prev_class = p->sched_class;
6081 on_rq = p->se.on_rq;
6082 running = task_current(rq, p);
6083 if (on_rq)
6084 dequeue_task(rq, p, 0);
6085 if (running)
6086 p->sched_class->put_prev_task(rq, p);
6088 if (rt_prio(prio))
6089 p->sched_class = &rt_sched_class;
6090 else
6091 p->sched_class = &fair_sched_class;
6093 p->prio = prio;
6095 if (running)
6096 p->sched_class->set_curr_task(rq);
6097 if (on_rq) {
6098 enqueue_task(rq, p, 0);
6100 check_class_changed(rq, p, prev_class, oldprio, running);
6102 task_rq_unlock(rq, &flags);
6105 #endif
6107 void set_user_nice(struct task_struct *p, long nice)
6109 int old_prio, delta, on_rq;
6110 unsigned long flags;
6111 struct rq *rq;
6113 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6114 return;
6116 * We have to be careful, if called from sys_setpriority(),
6117 * the task might be in the middle of scheduling on another CPU.
6119 rq = task_rq_lock(p, &flags);
6120 update_rq_clock(rq);
6122 * The RT priorities are set via sched_setscheduler(), but we still
6123 * allow the 'normal' nice value to be set - but as expected
6124 * it wont have any effect on scheduling until the task is
6125 * SCHED_FIFO/SCHED_RR:
6127 if (task_has_rt_policy(p)) {
6128 p->static_prio = NICE_TO_PRIO(nice);
6129 goto out_unlock;
6131 on_rq = p->se.on_rq;
6132 if (on_rq)
6133 dequeue_task(rq, p, 0);
6135 p->static_prio = NICE_TO_PRIO(nice);
6136 set_load_weight(p);
6137 old_prio = p->prio;
6138 p->prio = effective_prio(p);
6139 delta = p->prio - old_prio;
6141 if (on_rq) {
6142 enqueue_task(rq, p, 0);
6144 * If the task increased its priority or is running and
6145 * lowered its priority, then reschedule its CPU:
6147 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6148 resched_task(rq->curr);
6150 out_unlock:
6151 task_rq_unlock(rq, &flags);
6153 EXPORT_SYMBOL(set_user_nice);
6156 * can_nice - check if a task can reduce its nice value
6157 * @p: task
6158 * @nice: nice value
6160 int can_nice(const struct task_struct *p, const int nice)
6162 /* convert nice value [19,-20] to rlimit style value [1,40] */
6163 int nice_rlim = 20 - nice;
6165 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6166 capable(CAP_SYS_NICE));
6169 #ifdef __ARCH_WANT_SYS_NICE
6172 * sys_nice - change the priority of the current process.
6173 * @increment: priority increment
6175 * sys_setpriority is a more generic, but much slower function that
6176 * does similar things.
6178 SYSCALL_DEFINE1(nice, int, increment)
6180 long nice, retval;
6183 * Setpriority might change our priority at the same moment.
6184 * We don't have to worry. Conceptually one call occurs first
6185 * and we have a single winner.
6187 if (increment < -40)
6188 increment = -40;
6189 if (increment > 40)
6190 increment = 40;
6192 nice = TASK_NICE(current) + increment;
6193 if (nice < -20)
6194 nice = -20;
6195 if (nice > 19)
6196 nice = 19;
6198 if (increment < 0 && !can_nice(current, nice))
6199 return -EPERM;
6201 retval = security_task_setnice(current, nice);
6202 if (retval)
6203 return retval;
6205 set_user_nice(current, nice);
6206 return 0;
6209 #endif
6212 * task_prio - return the priority value of a given task.
6213 * @p: the task in question.
6215 * This is the priority value as seen by users in /proc.
6216 * RT tasks are offset by -200. Normal tasks are centered
6217 * around 0, value goes from -16 to +15.
6219 int task_prio(const struct task_struct *p)
6221 return p->prio - MAX_RT_PRIO;
6225 * task_nice - return the nice value of a given task.
6226 * @p: the task in question.
6228 int task_nice(const struct task_struct *p)
6230 return TASK_NICE(p);
6232 EXPORT_SYMBOL(task_nice);
6235 * idle_cpu - is a given cpu idle currently?
6236 * @cpu: the processor in question.
6238 int idle_cpu(int cpu)
6240 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6244 * idle_task - return the idle task for a given cpu.
6245 * @cpu: the processor in question.
6247 struct task_struct *idle_task(int cpu)
6249 return cpu_rq(cpu)->idle;
6253 * find_process_by_pid - find a process with a matching PID value.
6254 * @pid: the pid in question.
6256 static struct task_struct *find_process_by_pid(pid_t pid)
6258 return pid ? find_task_by_vpid(pid) : current;
6261 /* Actually do priority change: must hold rq lock. */
6262 static void
6263 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6265 BUG_ON(p->se.on_rq);
6267 p->policy = policy;
6268 switch (p->policy) {
6269 case SCHED_NORMAL:
6270 case SCHED_BATCH:
6271 case SCHED_IDLE:
6272 p->sched_class = &fair_sched_class;
6273 break;
6274 case SCHED_FIFO:
6275 case SCHED_RR:
6276 p->sched_class = &rt_sched_class;
6277 break;
6280 p->rt_priority = prio;
6281 p->normal_prio = normal_prio(p);
6282 /* we are holding p->pi_lock already */
6283 p->prio = rt_mutex_getprio(p);
6284 set_load_weight(p);
6288 * check the target process has a UID that matches the current process's
6290 static bool check_same_owner(struct task_struct *p)
6292 const struct cred *cred = current_cred(), *pcred;
6293 bool match;
6295 rcu_read_lock();
6296 pcred = __task_cred(p);
6297 match = (cred->euid == pcred->euid ||
6298 cred->euid == pcred->uid);
6299 rcu_read_unlock();
6300 return match;
6303 static int __sched_setscheduler(struct task_struct *p, int policy,
6304 struct sched_param *param, bool user)
6306 int retval, oldprio, oldpolicy = -1, on_rq, running;
6307 unsigned long flags;
6308 const struct sched_class *prev_class;
6309 struct rq *rq;
6310 int reset_on_fork;
6312 /* may grab non-irq protected spin_locks */
6313 BUG_ON(in_interrupt());
6314 recheck:
6315 /* double check policy once rq lock held */
6316 if (policy < 0) {
6317 reset_on_fork = p->sched_reset_on_fork;
6318 policy = oldpolicy = p->policy;
6319 } else {
6320 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6321 policy &= ~SCHED_RESET_ON_FORK;
6323 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6324 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6325 policy != SCHED_IDLE)
6326 return -EINVAL;
6330 * Valid priorities for SCHED_FIFO and SCHED_RR are
6331 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6332 * SCHED_BATCH and SCHED_IDLE is 0.
6334 if (param->sched_priority < 0 ||
6335 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6336 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6337 return -EINVAL;
6338 if (rt_policy(policy) != (param->sched_priority != 0))
6339 return -EINVAL;
6342 * Allow unprivileged RT tasks to decrease priority:
6344 if (user && !capable(CAP_SYS_NICE)) {
6345 if (rt_policy(policy)) {
6346 unsigned long rlim_rtprio;
6348 if (!lock_task_sighand(p, &flags))
6349 return -ESRCH;
6350 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6351 unlock_task_sighand(p, &flags);
6353 /* can't set/change the rt policy */
6354 if (policy != p->policy && !rlim_rtprio)
6355 return -EPERM;
6357 /* can't increase priority */
6358 if (param->sched_priority > p->rt_priority &&
6359 param->sched_priority > rlim_rtprio)
6360 return -EPERM;
6363 * Like positive nice levels, dont allow tasks to
6364 * move out of SCHED_IDLE either:
6366 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6367 return -EPERM;
6369 /* can't change other user's priorities */
6370 if (!check_same_owner(p))
6371 return -EPERM;
6373 /* Normal users shall not reset the sched_reset_on_fork flag */
6374 if (p->sched_reset_on_fork && !reset_on_fork)
6375 return -EPERM;
6378 if (user) {
6379 #ifdef CONFIG_RT_GROUP_SCHED
6381 * Do not allow realtime tasks into groups that have no runtime
6382 * assigned.
6384 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6385 task_group(p)->rt_bandwidth.rt_runtime == 0)
6386 return -EPERM;
6387 #endif
6389 retval = security_task_setscheduler(p, policy, param);
6390 if (retval)
6391 return retval;
6395 * make sure no PI-waiters arrive (or leave) while we are
6396 * changing the priority of the task:
6398 spin_lock_irqsave(&p->pi_lock, flags);
6400 * To be able to change p->policy safely, the apropriate
6401 * runqueue lock must be held.
6403 rq = __task_rq_lock(p);
6404 /* recheck policy now with rq lock held */
6405 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6406 policy = oldpolicy = -1;
6407 __task_rq_unlock(rq);
6408 spin_unlock_irqrestore(&p->pi_lock, flags);
6409 goto recheck;
6411 update_rq_clock(rq);
6412 on_rq = p->se.on_rq;
6413 running = task_current(rq, p);
6414 if (on_rq)
6415 deactivate_task(rq, p, 0);
6416 if (running)
6417 p->sched_class->put_prev_task(rq, p);
6419 p->sched_reset_on_fork = reset_on_fork;
6421 oldprio = p->prio;
6422 prev_class = p->sched_class;
6423 __setscheduler(rq, p, policy, param->sched_priority);
6425 if (running)
6426 p->sched_class->set_curr_task(rq);
6427 if (on_rq) {
6428 activate_task(rq, p, 0);
6430 check_class_changed(rq, p, prev_class, oldprio, running);
6432 __task_rq_unlock(rq);
6433 spin_unlock_irqrestore(&p->pi_lock, flags);
6435 rt_mutex_adjust_pi(p);
6437 return 0;
6441 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6442 * @p: the task in question.
6443 * @policy: new policy.
6444 * @param: structure containing the new RT priority.
6446 * NOTE that the task may be already dead.
6448 int sched_setscheduler(struct task_struct *p, int policy,
6449 struct sched_param *param)
6451 return __sched_setscheduler(p, policy, param, true);
6453 EXPORT_SYMBOL_GPL(sched_setscheduler);
6456 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6457 * @p: the task in question.
6458 * @policy: new policy.
6459 * @param: structure containing the new RT priority.
6461 * Just like sched_setscheduler, only don't bother checking if the
6462 * current context has permission. For example, this is needed in
6463 * stop_machine(): we create temporary high priority worker threads,
6464 * but our caller might not have that capability.
6466 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6467 struct sched_param *param)
6469 return __sched_setscheduler(p, policy, param, false);
6472 static int
6473 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6475 struct sched_param lparam;
6476 struct task_struct *p;
6477 int retval;
6479 if (!param || pid < 0)
6480 return -EINVAL;
6481 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6482 return -EFAULT;
6484 rcu_read_lock();
6485 retval = -ESRCH;
6486 p = find_process_by_pid(pid);
6487 if (p != NULL)
6488 retval = sched_setscheduler(p, policy, &lparam);
6489 rcu_read_unlock();
6491 return retval;
6495 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6496 * @pid: the pid in question.
6497 * @policy: new policy.
6498 * @param: structure containing the new RT priority.
6500 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6501 struct sched_param __user *, param)
6503 /* negative values for policy are not valid */
6504 if (policy < 0)
6505 return -EINVAL;
6507 return do_sched_setscheduler(pid, policy, param);
6511 * sys_sched_setparam - set/change the RT priority of a thread
6512 * @pid: the pid in question.
6513 * @param: structure containing the new RT priority.
6515 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6517 return do_sched_setscheduler(pid, -1, param);
6521 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6522 * @pid: the pid in question.
6524 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6526 struct task_struct *p;
6527 int retval;
6529 if (pid < 0)
6530 return -EINVAL;
6532 retval = -ESRCH;
6533 read_lock(&tasklist_lock);
6534 p = find_process_by_pid(pid);
6535 if (p) {
6536 retval = security_task_getscheduler(p);
6537 if (!retval)
6538 retval = p->policy
6539 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6541 read_unlock(&tasklist_lock);
6542 return retval;
6546 * sys_sched_getparam - get the RT priority of a thread
6547 * @pid: the pid in question.
6548 * @param: structure containing the RT priority.
6550 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6552 struct sched_param lp;
6553 struct task_struct *p;
6554 int retval;
6556 if (!param || pid < 0)
6557 return -EINVAL;
6559 read_lock(&tasklist_lock);
6560 p = find_process_by_pid(pid);
6561 retval = -ESRCH;
6562 if (!p)
6563 goto out_unlock;
6565 retval = security_task_getscheduler(p);
6566 if (retval)
6567 goto out_unlock;
6569 lp.sched_priority = p->rt_priority;
6570 read_unlock(&tasklist_lock);
6573 * This one might sleep, we cannot do it with a spinlock held ...
6575 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6577 return retval;
6579 out_unlock:
6580 read_unlock(&tasklist_lock);
6581 return retval;
6584 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6586 cpumask_var_t cpus_allowed, new_mask;
6587 struct task_struct *p;
6588 int retval;
6590 get_online_cpus();
6591 read_lock(&tasklist_lock);
6593 p = find_process_by_pid(pid);
6594 if (!p) {
6595 read_unlock(&tasklist_lock);
6596 put_online_cpus();
6597 return -ESRCH;
6601 * It is not safe to call set_cpus_allowed with the
6602 * tasklist_lock held. We will bump the task_struct's
6603 * usage count and then drop tasklist_lock.
6605 get_task_struct(p);
6606 read_unlock(&tasklist_lock);
6608 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6609 retval = -ENOMEM;
6610 goto out_put_task;
6612 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6613 retval = -ENOMEM;
6614 goto out_free_cpus_allowed;
6616 retval = -EPERM;
6617 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6618 goto out_unlock;
6620 retval = security_task_setscheduler(p, 0, NULL);
6621 if (retval)
6622 goto out_unlock;
6624 cpuset_cpus_allowed(p, cpus_allowed);
6625 cpumask_and(new_mask, in_mask, cpus_allowed);
6626 again:
6627 retval = set_cpus_allowed_ptr(p, new_mask);
6629 if (!retval) {
6630 cpuset_cpus_allowed(p, cpus_allowed);
6631 if (!cpumask_subset(new_mask, cpus_allowed)) {
6633 * We must have raced with a concurrent cpuset
6634 * update. Just reset the cpus_allowed to the
6635 * cpuset's cpus_allowed
6637 cpumask_copy(new_mask, cpus_allowed);
6638 goto again;
6641 out_unlock:
6642 free_cpumask_var(new_mask);
6643 out_free_cpus_allowed:
6644 free_cpumask_var(cpus_allowed);
6645 out_put_task:
6646 put_task_struct(p);
6647 put_online_cpus();
6648 return retval;
6651 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6652 struct cpumask *new_mask)
6654 if (len < cpumask_size())
6655 cpumask_clear(new_mask);
6656 else if (len > cpumask_size())
6657 len = cpumask_size();
6659 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6663 * sys_sched_setaffinity - set the cpu affinity of a process
6664 * @pid: pid of the process
6665 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6666 * @user_mask_ptr: user-space pointer to the new cpu mask
6668 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6669 unsigned long __user *, user_mask_ptr)
6671 cpumask_var_t new_mask;
6672 int retval;
6674 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6675 return -ENOMEM;
6677 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6678 if (retval == 0)
6679 retval = sched_setaffinity(pid, new_mask);
6680 free_cpumask_var(new_mask);
6681 return retval;
6684 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6686 struct task_struct *p;
6687 int retval;
6689 get_online_cpus();
6690 read_lock(&tasklist_lock);
6692 retval = -ESRCH;
6693 p = find_process_by_pid(pid);
6694 if (!p)
6695 goto out_unlock;
6697 retval = security_task_getscheduler(p);
6698 if (retval)
6699 goto out_unlock;
6701 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6703 out_unlock:
6704 read_unlock(&tasklist_lock);
6705 put_online_cpus();
6707 return retval;
6711 * sys_sched_getaffinity - get the cpu affinity of a process
6712 * @pid: pid of the process
6713 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6714 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6716 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6717 unsigned long __user *, user_mask_ptr)
6719 int ret;
6720 cpumask_var_t mask;
6722 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6723 return -EINVAL;
6724 if (len & (sizeof(unsigned long)-1))
6725 return -EINVAL;
6727 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6728 return -ENOMEM;
6730 ret = sched_getaffinity(pid, mask);
6731 if (ret == 0) {
6732 size_t retlen = min_t(size_t, len, cpumask_size());
6734 if (copy_to_user(user_mask_ptr, mask, retlen))
6735 ret = -EFAULT;
6736 else
6737 ret = retlen;
6739 free_cpumask_var(mask);
6741 return ret;
6745 * sys_sched_yield - yield the current processor to other threads.
6747 * This function yields the current CPU to other tasks. If there are no
6748 * other threads running on this CPU then this function will return.
6750 SYSCALL_DEFINE0(sched_yield)
6752 struct rq *rq = this_rq_lock();
6754 schedstat_inc(rq, yld_count);
6755 current->sched_class->yield_task(rq);
6758 * Since we are going to call schedule() anyway, there's
6759 * no need to preempt or enable interrupts:
6761 __release(rq->lock);
6762 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6763 _raw_spin_unlock(&rq->lock);
6764 preempt_enable_no_resched();
6766 schedule();
6768 return 0;
6771 static inline int should_resched(void)
6773 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6776 static void __cond_resched(void)
6778 add_preempt_count(PREEMPT_ACTIVE);
6779 schedule();
6780 sub_preempt_count(PREEMPT_ACTIVE);
6783 int __sched _cond_resched(void)
6785 if (should_resched()) {
6786 __cond_resched();
6787 return 1;
6789 return 0;
6791 EXPORT_SYMBOL(_cond_resched);
6794 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6795 * call schedule, and on return reacquire the lock.
6797 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6798 * operations here to prevent schedule() from being called twice (once via
6799 * spin_unlock(), once by hand).
6801 int __cond_resched_lock(spinlock_t *lock)
6803 int resched = should_resched();
6804 int ret = 0;
6806 lockdep_assert_held(lock);
6808 if (spin_needbreak(lock) || resched) {
6809 spin_unlock(lock);
6810 if (resched)
6811 __cond_resched();
6812 else
6813 cpu_relax();
6814 ret = 1;
6815 spin_lock(lock);
6817 return ret;
6819 EXPORT_SYMBOL(__cond_resched_lock);
6821 int __sched __cond_resched_softirq(void)
6823 BUG_ON(!in_softirq());
6825 if (should_resched()) {
6826 local_bh_enable();
6827 __cond_resched();
6828 local_bh_disable();
6829 return 1;
6831 return 0;
6833 EXPORT_SYMBOL(__cond_resched_softirq);
6836 * yield - yield the current processor to other threads.
6838 * This is a shortcut for kernel-space yielding - it marks the
6839 * thread runnable and calls sys_sched_yield().
6841 void __sched yield(void)
6843 set_current_state(TASK_RUNNING);
6844 sys_sched_yield();
6846 EXPORT_SYMBOL(yield);
6849 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6850 * that process accounting knows that this is a task in IO wait state.
6852 void __sched io_schedule(void)
6854 struct rq *rq = raw_rq();
6856 delayacct_blkio_start();
6857 atomic_inc(&rq->nr_iowait);
6858 current->in_iowait = 1;
6859 schedule();
6860 current->in_iowait = 0;
6861 atomic_dec(&rq->nr_iowait);
6862 delayacct_blkio_end();
6864 EXPORT_SYMBOL(io_schedule);
6866 long __sched io_schedule_timeout(long timeout)
6868 struct rq *rq = raw_rq();
6869 long ret;
6871 delayacct_blkio_start();
6872 atomic_inc(&rq->nr_iowait);
6873 current->in_iowait = 1;
6874 ret = schedule_timeout(timeout);
6875 current->in_iowait = 0;
6876 atomic_dec(&rq->nr_iowait);
6877 delayacct_blkio_end();
6878 return ret;
6882 * sys_sched_get_priority_max - return maximum RT priority.
6883 * @policy: scheduling class.
6885 * this syscall returns the maximum rt_priority that can be used
6886 * by a given scheduling class.
6888 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6890 int ret = -EINVAL;
6892 switch (policy) {
6893 case SCHED_FIFO:
6894 case SCHED_RR:
6895 ret = MAX_USER_RT_PRIO-1;
6896 break;
6897 case SCHED_NORMAL:
6898 case SCHED_BATCH:
6899 case SCHED_IDLE:
6900 ret = 0;
6901 break;
6903 return ret;
6907 * sys_sched_get_priority_min - return minimum RT priority.
6908 * @policy: scheduling class.
6910 * this syscall returns the minimum rt_priority that can be used
6911 * by a given scheduling class.
6913 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6915 int ret = -EINVAL;
6917 switch (policy) {
6918 case SCHED_FIFO:
6919 case SCHED_RR:
6920 ret = 1;
6921 break;
6922 case SCHED_NORMAL:
6923 case SCHED_BATCH:
6924 case SCHED_IDLE:
6925 ret = 0;
6927 return ret;
6931 * sys_sched_rr_get_interval - return the default timeslice of a process.
6932 * @pid: pid of the process.
6933 * @interval: userspace pointer to the timeslice value.
6935 * this syscall writes the default timeslice value of a given process
6936 * into the user-space timespec buffer. A value of '0' means infinity.
6938 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6939 struct timespec __user *, interval)
6941 struct task_struct *p;
6942 unsigned int time_slice;
6943 int retval;
6944 struct timespec t;
6946 if (pid < 0)
6947 return -EINVAL;
6949 retval = -ESRCH;
6950 read_lock(&tasklist_lock);
6951 p = find_process_by_pid(pid);
6952 if (!p)
6953 goto out_unlock;
6955 retval = security_task_getscheduler(p);
6956 if (retval)
6957 goto out_unlock;
6959 time_slice = p->sched_class->get_rr_interval(p);
6961 read_unlock(&tasklist_lock);
6962 jiffies_to_timespec(time_slice, &t);
6963 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6964 return retval;
6966 out_unlock:
6967 read_unlock(&tasklist_lock);
6968 return retval;
6971 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6973 void sched_show_task(struct task_struct *p)
6975 unsigned long free = 0;
6976 unsigned state;
6978 state = p->state ? __ffs(p->state) + 1 : 0;
6979 printk(KERN_INFO "%-13.13s %c", p->comm,
6980 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6981 #if BITS_PER_LONG == 32
6982 if (state == TASK_RUNNING)
6983 printk(KERN_CONT " running ");
6984 else
6985 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6986 #else
6987 if (state == TASK_RUNNING)
6988 printk(KERN_CONT " running task ");
6989 else
6990 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6991 #endif
6992 #ifdef CONFIG_DEBUG_STACK_USAGE
6993 free = stack_not_used(p);
6994 #endif
6995 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6996 task_pid_nr(p), task_pid_nr(p->real_parent),
6997 (unsigned long)task_thread_info(p)->flags);
6999 show_stack(p, NULL);
7002 void show_state_filter(unsigned long state_filter)
7004 struct task_struct *g, *p;
7006 #if BITS_PER_LONG == 32
7007 printk(KERN_INFO
7008 " task PC stack pid father\n");
7009 #else
7010 printk(KERN_INFO
7011 " task PC stack pid father\n");
7012 #endif
7013 read_lock(&tasklist_lock);
7014 do_each_thread(g, p) {
7016 * reset the NMI-timeout, listing all files on a slow
7017 * console might take alot of time:
7019 touch_nmi_watchdog();
7020 if (!state_filter || (p->state & state_filter))
7021 sched_show_task(p);
7022 } while_each_thread(g, p);
7024 touch_all_softlockup_watchdogs();
7026 #ifdef CONFIG_SCHED_DEBUG
7027 sysrq_sched_debug_show();
7028 #endif
7029 read_unlock(&tasklist_lock);
7031 * Only show locks if all tasks are dumped:
7033 if (state_filter == -1)
7034 debug_show_all_locks();
7037 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7039 idle->sched_class = &idle_sched_class;
7043 * init_idle - set up an idle thread for a given CPU
7044 * @idle: task in question
7045 * @cpu: cpu the idle task belongs to
7047 * NOTE: this function does not set the idle thread's NEED_RESCHED
7048 * flag, to make booting more robust.
7050 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7052 struct rq *rq = cpu_rq(cpu);
7053 unsigned long flags;
7055 spin_lock_irqsave(&rq->lock, flags);
7057 __sched_fork(idle);
7058 idle->se.exec_start = sched_clock();
7060 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7061 __set_task_cpu(idle, cpu);
7063 rq->curr = rq->idle = idle;
7064 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7065 idle->oncpu = 1;
7066 #endif
7067 spin_unlock_irqrestore(&rq->lock, flags);
7069 /* Set the preempt count _outside_ the spinlocks! */
7070 #if defined(CONFIG_PREEMPT)
7071 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7072 #else
7073 task_thread_info(idle)->preempt_count = 0;
7074 #endif
7076 * The idle tasks have their own, simple scheduling class:
7078 idle->sched_class = &idle_sched_class;
7079 ftrace_graph_init_task(idle);
7083 * In a system that switches off the HZ timer nohz_cpu_mask
7084 * indicates which cpus entered this state. This is used
7085 * in the rcu update to wait only for active cpus. For system
7086 * which do not switch off the HZ timer nohz_cpu_mask should
7087 * always be CPU_BITS_NONE.
7089 cpumask_var_t nohz_cpu_mask;
7092 * Increase the granularity value when there are more CPUs,
7093 * because with more CPUs the 'effective latency' as visible
7094 * to users decreases. But the relationship is not linear,
7095 * so pick a second-best guess by going with the log2 of the
7096 * number of CPUs.
7098 * This idea comes from the SD scheduler of Con Kolivas:
7100 static void update_sysctl(void)
7102 unsigned int cpus = min(num_online_cpus(), 8U);
7103 unsigned int factor = 1 + ilog2(cpus);
7105 #define SET_SYSCTL(name) \
7106 (sysctl_##name = (factor) * normalized_sysctl_##name)
7107 SET_SYSCTL(sched_min_granularity);
7108 SET_SYSCTL(sched_latency);
7109 SET_SYSCTL(sched_wakeup_granularity);
7110 SET_SYSCTL(sched_shares_ratelimit);
7111 #undef SET_SYSCTL
7114 static inline void sched_init_granularity(void)
7116 update_sysctl();
7119 #ifdef CONFIG_SMP
7121 * This is how migration works:
7123 * 1) we queue a struct migration_req structure in the source CPU's
7124 * runqueue and wake up that CPU's migration thread.
7125 * 2) we down() the locked semaphore => thread blocks.
7126 * 3) migration thread wakes up (implicitly it forces the migrated
7127 * thread off the CPU)
7128 * 4) it gets the migration request and checks whether the migrated
7129 * task is still in the wrong runqueue.
7130 * 5) if it's in the wrong runqueue then the migration thread removes
7131 * it and puts it into the right queue.
7132 * 6) migration thread up()s the semaphore.
7133 * 7) we wake up and the migration is done.
7137 * Change a given task's CPU affinity. Migrate the thread to a
7138 * proper CPU and schedule it away if the CPU it's executing on
7139 * is removed from the allowed bitmask.
7141 * NOTE: the caller must have a valid reference to the task, the
7142 * task must not exit() & deallocate itself prematurely. The
7143 * call is not atomic; no spinlocks may be held.
7145 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7147 struct migration_req req;
7148 unsigned long flags;
7149 struct rq *rq;
7150 int ret = 0;
7152 rq = task_rq_lock(p, &flags);
7153 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7154 ret = -EINVAL;
7155 goto out;
7158 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7159 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7160 ret = -EINVAL;
7161 goto out;
7164 if (p->sched_class->set_cpus_allowed)
7165 p->sched_class->set_cpus_allowed(p, new_mask);
7166 else {
7167 cpumask_copy(&p->cpus_allowed, new_mask);
7168 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7171 /* Can the task run on the task's current CPU? If so, we're done */
7172 if (cpumask_test_cpu(task_cpu(p), new_mask))
7173 goto out;
7175 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7176 /* Need help from migration thread: drop lock and wait. */
7177 struct task_struct *mt = rq->migration_thread;
7179 get_task_struct(mt);
7180 task_rq_unlock(rq, &flags);
7181 wake_up_process(rq->migration_thread);
7182 put_task_struct(mt);
7183 wait_for_completion(&req.done);
7184 tlb_migrate_finish(p->mm);
7185 return 0;
7187 out:
7188 task_rq_unlock(rq, &flags);
7190 return ret;
7192 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7195 * Move (not current) task off this cpu, onto dest cpu. We're doing
7196 * this because either it can't run here any more (set_cpus_allowed()
7197 * away from this CPU, or CPU going down), or because we're
7198 * attempting to rebalance this task on exec (sched_exec).
7200 * So we race with normal scheduler movements, but that's OK, as long
7201 * as the task is no longer on this CPU.
7203 * Returns non-zero if task was successfully migrated.
7205 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7207 struct rq *rq_dest, *rq_src;
7208 int ret = 0, on_rq;
7210 if (unlikely(!cpu_active(dest_cpu)))
7211 return ret;
7213 rq_src = cpu_rq(src_cpu);
7214 rq_dest = cpu_rq(dest_cpu);
7216 double_rq_lock(rq_src, rq_dest);
7217 /* Already moved. */
7218 if (task_cpu(p) != src_cpu)
7219 goto done;
7220 /* Waking up, don't get in the way of try_to_wake_up(). */
7221 if (p->state == TASK_WAKING)
7222 goto fail;
7223 /* Affinity changed (again). */
7224 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7225 goto fail;
7227 on_rq = p->se.on_rq;
7228 if (on_rq)
7229 deactivate_task(rq_src, p, 0);
7231 set_task_cpu(p, dest_cpu);
7232 if (on_rq) {
7233 activate_task(rq_dest, p, 0);
7234 check_preempt_curr(rq_dest, p, 0);
7236 done:
7237 ret = 1;
7238 fail:
7239 double_rq_unlock(rq_src, rq_dest);
7240 return ret;
7243 #define RCU_MIGRATION_IDLE 0
7244 #define RCU_MIGRATION_NEED_QS 1
7245 #define RCU_MIGRATION_GOT_QS 2
7246 #define RCU_MIGRATION_MUST_SYNC 3
7249 * migration_thread - this is a highprio system thread that performs
7250 * thread migration by bumping thread off CPU then 'pushing' onto
7251 * another runqueue.
7253 static int migration_thread(void *data)
7255 int badcpu;
7256 int cpu = (long)data;
7257 struct rq *rq;
7259 rq = cpu_rq(cpu);
7260 BUG_ON(rq->migration_thread != current);
7262 set_current_state(TASK_INTERRUPTIBLE);
7263 while (!kthread_should_stop()) {
7264 struct migration_req *req;
7265 struct list_head *head;
7267 spin_lock_irq(&rq->lock);
7269 if (cpu_is_offline(cpu)) {
7270 spin_unlock_irq(&rq->lock);
7271 break;
7274 if (rq->active_balance) {
7275 active_load_balance(rq, cpu);
7276 rq->active_balance = 0;
7279 head = &rq->migration_queue;
7281 if (list_empty(head)) {
7282 spin_unlock_irq(&rq->lock);
7283 schedule();
7284 set_current_state(TASK_INTERRUPTIBLE);
7285 continue;
7287 req = list_entry(head->next, struct migration_req, list);
7288 list_del_init(head->next);
7290 if (req->task != NULL) {
7291 spin_unlock(&rq->lock);
7292 __migrate_task(req->task, cpu, req->dest_cpu);
7293 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7294 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7295 spin_unlock(&rq->lock);
7296 } else {
7297 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7298 spin_unlock(&rq->lock);
7299 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7301 local_irq_enable();
7303 complete(&req->done);
7305 __set_current_state(TASK_RUNNING);
7307 return 0;
7310 #ifdef CONFIG_HOTPLUG_CPU
7312 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7314 int ret;
7316 local_irq_disable();
7317 ret = __migrate_task(p, src_cpu, dest_cpu);
7318 local_irq_enable();
7319 return ret;
7323 * Figure out where task on dead CPU should go, use force if necessary.
7325 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7327 int dest_cpu;
7328 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7330 again:
7331 /* Look for allowed, online CPU in same node. */
7332 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7333 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7334 goto move;
7336 /* Any allowed, online CPU? */
7337 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7338 if (dest_cpu < nr_cpu_ids)
7339 goto move;
7341 /* No more Mr. Nice Guy. */
7342 if (dest_cpu >= nr_cpu_ids) {
7343 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7344 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7347 * Don't tell them about moving exiting tasks or
7348 * kernel threads (both mm NULL), since they never
7349 * leave kernel.
7351 if (p->mm && printk_ratelimit()) {
7352 printk(KERN_INFO "process %d (%s) no "
7353 "longer affine to cpu%d\n",
7354 task_pid_nr(p), p->comm, dead_cpu);
7358 move:
7359 /* It can have affinity changed while we were choosing. */
7360 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7361 goto again;
7365 * While a dead CPU has no uninterruptible tasks queued at this point,
7366 * it might still have a nonzero ->nr_uninterruptible counter, because
7367 * for performance reasons the counter is not stricly tracking tasks to
7368 * their home CPUs. So we just add the counter to another CPU's counter,
7369 * to keep the global sum constant after CPU-down:
7371 static void migrate_nr_uninterruptible(struct rq *rq_src)
7373 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7374 unsigned long flags;
7376 local_irq_save(flags);
7377 double_rq_lock(rq_src, rq_dest);
7378 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7379 rq_src->nr_uninterruptible = 0;
7380 double_rq_unlock(rq_src, rq_dest);
7381 local_irq_restore(flags);
7384 /* Run through task list and migrate tasks from the dead cpu. */
7385 static void migrate_live_tasks(int src_cpu)
7387 struct task_struct *p, *t;
7389 read_lock(&tasklist_lock);
7391 do_each_thread(t, p) {
7392 if (p == current)
7393 continue;
7395 if (task_cpu(p) == src_cpu)
7396 move_task_off_dead_cpu(src_cpu, p);
7397 } while_each_thread(t, p);
7399 read_unlock(&tasklist_lock);
7403 * Schedules idle task to be the next runnable task on current CPU.
7404 * It does so by boosting its priority to highest possible.
7405 * Used by CPU offline code.
7407 void sched_idle_next(void)
7409 int this_cpu = smp_processor_id();
7410 struct rq *rq = cpu_rq(this_cpu);
7411 struct task_struct *p = rq->idle;
7412 unsigned long flags;
7414 /* cpu has to be offline */
7415 BUG_ON(cpu_online(this_cpu));
7418 * Strictly not necessary since rest of the CPUs are stopped by now
7419 * and interrupts disabled on the current cpu.
7421 spin_lock_irqsave(&rq->lock, flags);
7423 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7425 update_rq_clock(rq);
7426 activate_task(rq, p, 0);
7428 spin_unlock_irqrestore(&rq->lock, flags);
7432 * Ensures that the idle task is using init_mm right before its cpu goes
7433 * offline.
7435 void idle_task_exit(void)
7437 struct mm_struct *mm = current->active_mm;
7439 BUG_ON(cpu_online(smp_processor_id()));
7441 if (mm != &init_mm)
7442 switch_mm(mm, &init_mm, current);
7443 mmdrop(mm);
7446 /* called under rq->lock with disabled interrupts */
7447 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7449 struct rq *rq = cpu_rq(dead_cpu);
7451 /* Must be exiting, otherwise would be on tasklist. */
7452 BUG_ON(!p->exit_state);
7454 /* Cannot have done final schedule yet: would have vanished. */
7455 BUG_ON(p->state == TASK_DEAD);
7457 get_task_struct(p);
7460 * Drop lock around migration; if someone else moves it,
7461 * that's OK. No task can be added to this CPU, so iteration is
7462 * fine.
7464 spin_unlock_irq(&rq->lock);
7465 move_task_off_dead_cpu(dead_cpu, p);
7466 spin_lock_irq(&rq->lock);
7468 put_task_struct(p);
7471 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7472 static void migrate_dead_tasks(unsigned int dead_cpu)
7474 struct rq *rq = cpu_rq(dead_cpu);
7475 struct task_struct *next;
7477 for ( ; ; ) {
7478 if (!rq->nr_running)
7479 break;
7480 update_rq_clock(rq);
7481 next = pick_next_task(rq);
7482 if (!next)
7483 break;
7484 next->sched_class->put_prev_task(rq, next);
7485 migrate_dead(dead_cpu, next);
7491 * remove the tasks which were accounted by rq from calc_load_tasks.
7493 static void calc_global_load_remove(struct rq *rq)
7495 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7496 rq->calc_load_active = 0;
7498 #endif /* CONFIG_HOTPLUG_CPU */
7500 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7502 static struct ctl_table sd_ctl_dir[] = {
7504 .procname = "sched_domain",
7505 .mode = 0555,
7507 {0, },
7510 static struct ctl_table sd_ctl_root[] = {
7512 .ctl_name = CTL_KERN,
7513 .procname = "kernel",
7514 .mode = 0555,
7515 .child = sd_ctl_dir,
7517 {0, },
7520 static struct ctl_table *sd_alloc_ctl_entry(int n)
7522 struct ctl_table *entry =
7523 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7525 return entry;
7528 static void sd_free_ctl_entry(struct ctl_table **tablep)
7530 struct ctl_table *entry;
7533 * In the intermediate directories, both the child directory and
7534 * procname are dynamically allocated and could fail but the mode
7535 * will always be set. In the lowest directory the names are
7536 * static strings and all have proc handlers.
7538 for (entry = *tablep; entry->mode; entry++) {
7539 if (entry->child)
7540 sd_free_ctl_entry(&entry->child);
7541 if (entry->proc_handler == NULL)
7542 kfree(entry->procname);
7545 kfree(*tablep);
7546 *tablep = NULL;
7549 static void
7550 set_table_entry(struct ctl_table *entry,
7551 const char *procname, void *data, int maxlen,
7552 mode_t mode, proc_handler *proc_handler)
7554 entry->procname = procname;
7555 entry->data = data;
7556 entry->maxlen = maxlen;
7557 entry->mode = mode;
7558 entry->proc_handler = proc_handler;
7561 static struct ctl_table *
7562 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7564 struct ctl_table *table = sd_alloc_ctl_entry(13);
7566 if (table == NULL)
7567 return NULL;
7569 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7570 sizeof(long), 0644, proc_doulongvec_minmax);
7571 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7572 sizeof(long), 0644, proc_doulongvec_minmax);
7573 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7574 sizeof(int), 0644, proc_dointvec_minmax);
7575 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7576 sizeof(int), 0644, proc_dointvec_minmax);
7577 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7578 sizeof(int), 0644, proc_dointvec_minmax);
7579 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7580 sizeof(int), 0644, proc_dointvec_minmax);
7581 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7582 sizeof(int), 0644, proc_dointvec_minmax);
7583 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7584 sizeof(int), 0644, proc_dointvec_minmax);
7585 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7586 sizeof(int), 0644, proc_dointvec_minmax);
7587 set_table_entry(&table[9], "cache_nice_tries",
7588 &sd->cache_nice_tries,
7589 sizeof(int), 0644, proc_dointvec_minmax);
7590 set_table_entry(&table[10], "flags", &sd->flags,
7591 sizeof(int), 0644, proc_dointvec_minmax);
7592 set_table_entry(&table[11], "name", sd->name,
7593 CORENAME_MAX_SIZE, 0444, proc_dostring);
7594 /* &table[12] is terminator */
7596 return table;
7599 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7601 struct ctl_table *entry, *table;
7602 struct sched_domain *sd;
7603 int domain_num = 0, i;
7604 char buf[32];
7606 for_each_domain(cpu, sd)
7607 domain_num++;
7608 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7609 if (table == NULL)
7610 return NULL;
7612 i = 0;
7613 for_each_domain(cpu, sd) {
7614 snprintf(buf, 32, "domain%d", i);
7615 entry->procname = kstrdup(buf, GFP_KERNEL);
7616 entry->mode = 0555;
7617 entry->child = sd_alloc_ctl_domain_table(sd);
7618 entry++;
7619 i++;
7621 return table;
7624 static struct ctl_table_header *sd_sysctl_header;
7625 static void register_sched_domain_sysctl(void)
7627 int i, cpu_num = num_possible_cpus();
7628 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7629 char buf[32];
7631 WARN_ON(sd_ctl_dir[0].child);
7632 sd_ctl_dir[0].child = entry;
7634 if (entry == NULL)
7635 return;
7637 for_each_possible_cpu(i) {
7638 snprintf(buf, 32, "cpu%d", i);
7639 entry->procname = kstrdup(buf, GFP_KERNEL);
7640 entry->mode = 0555;
7641 entry->child = sd_alloc_ctl_cpu_table(i);
7642 entry++;
7645 WARN_ON(sd_sysctl_header);
7646 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7649 /* may be called multiple times per register */
7650 static void unregister_sched_domain_sysctl(void)
7652 if (sd_sysctl_header)
7653 unregister_sysctl_table(sd_sysctl_header);
7654 sd_sysctl_header = NULL;
7655 if (sd_ctl_dir[0].child)
7656 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7658 #else
7659 static void register_sched_domain_sysctl(void)
7662 static void unregister_sched_domain_sysctl(void)
7665 #endif
7667 static void set_rq_online(struct rq *rq)
7669 if (!rq->online) {
7670 const struct sched_class *class;
7672 cpumask_set_cpu(rq->cpu, rq->rd->online);
7673 rq->online = 1;
7675 for_each_class(class) {
7676 if (class->rq_online)
7677 class->rq_online(rq);
7682 static void set_rq_offline(struct rq *rq)
7684 if (rq->online) {
7685 const struct sched_class *class;
7687 for_each_class(class) {
7688 if (class->rq_offline)
7689 class->rq_offline(rq);
7692 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7693 rq->online = 0;
7698 * migration_call - callback that gets triggered when a CPU is added.
7699 * Here we can start up the necessary migration thread for the new CPU.
7701 static int __cpuinit
7702 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7704 struct task_struct *p;
7705 int cpu = (long)hcpu;
7706 unsigned long flags;
7707 struct rq *rq;
7709 switch (action) {
7711 case CPU_UP_PREPARE:
7712 case CPU_UP_PREPARE_FROZEN:
7713 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7714 if (IS_ERR(p))
7715 return NOTIFY_BAD;
7716 kthread_bind(p, cpu);
7717 /* Must be high prio: stop_machine expects to yield to it. */
7718 rq = task_rq_lock(p, &flags);
7719 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7720 task_rq_unlock(rq, &flags);
7721 get_task_struct(p);
7722 cpu_rq(cpu)->migration_thread = p;
7723 rq->calc_load_update = calc_load_update;
7724 break;
7726 case CPU_ONLINE:
7727 case CPU_ONLINE_FROZEN:
7728 /* Strictly unnecessary, as first user will wake it. */
7729 wake_up_process(cpu_rq(cpu)->migration_thread);
7731 /* Update our root-domain */
7732 rq = cpu_rq(cpu);
7733 spin_lock_irqsave(&rq->lock, flags);
7734 if (rq->rd) {
7735 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7737 set_rq_online(rq);
7739 spin_unlock_irqrestore(&rq->lock, flags);
7740 break;
7742 #ifdef CONFIG_HOTPLUG_CPU
7743 case CPU_UP_CANCELED:
7744 case CPU_UP_CANCELED_FROZEN:
7745 if (!cpu_rq(cpu)->migration_thread)
7746 break;
7747 /* Unbind it from offline cpu so it can run. Fall thru. */
7748 kthread_bind(cpu_rq(cpu)->migration_thread,
7749 cpumask_any(cpu_online_mask));
7750 kthread_stop(cpu_rq(cpu)->migration_thread);
7751 put_task_struct(cpu_rq(cpu)->migration_thread);
7752 cpu_rq(cpu)->migration_thread = NULL;
7753 break;
7755 case CPU_DEAD:
7756 case CPU_DEAD_FROZEN:
7757 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7758 migrate_live_tasks(cpu);
7759 rq = cpu_rq(cpu);
7760 kthread_stop(rq->migration_thread);
7761 put_task_struct(rq->migration_thread);
7762 rq->migration_thread = NULL;
7763 /* Idle task back to normal (off runqueue, low prio) */
7764 spin_lock_irq(&rq->lock);
7765 update_rq_clock(rq);
7766 deactivate_task(rq, rq->idle, 0);
7767 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7768 rq->idle->sched_class = &idle_sched_class;
7769 migrate_dead_tasks(cpu);
7770 spin_unlock_irq(&rq->lock);
7771 cpuset_unlock();
7772 migrate_nr_uninterruptible(rq);
7773 BUG_ON(rq->nr_running != 0);
7774 calc_global_load_remove(rq);
7776 * No need to migrate the tasks: it was best-effort if
7777 * they didn't take sched_hotcpu_mutex. Just wake up
7778 * the requestors.
7780 spin_lock_irq(&rq->lock);
7781 while (!list_empty(&rq->migration_queue)) {
7782 struct migration_req *req;
7784 req = list_entry(rq->migration_queue.next,
7785 struct migration_req, list);
7786 list_del_init(&req->list);
7787 spin_unlock_irq(&rq->lock);
7788 complete(&req->done);
7789 spin_lock_irq(&rq->lock);
7791 spin_unlock_irq(&rq->lock);
7792 break;
7794 case CPU_DYING:
7795 case CPU_DYING_FROZEN:
7796 /* Update our root-domain */
7797 rq = cpu_rq(cpu);
7798 spin_lock_irqsave(&rq->lock, flags);
7799 if (rq->rd) {
7800 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7801 set_rq_offline(rq);
7803 spin_unlock_irqrestore(&rq->lock, flags);
7804 break;
7805 #endif
7807 return NOTIFY_OK;
7811 * Register at high priority so that task migration (migrate_all_tasks)
7812 * happens before everything else. This has to be lower priority than
7813 * the notifier in the perf_event subsystem, though.
7815 static struct notifier_block __cpuinitdata migration_notifier = {
7816 .notifier_call = migration_call,
7817 .priority = 10
7820 static int __init migration_init(void)
7822 void *cpu = (void *)(long)smp_processor_id();
7823 int err;
7825 /* Start one for the boot CPU: */
7826 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7827 BUG_ON(err == NOTIFY_BAD);
7828 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7829 register_cpu_notifier(&migration_notifier);
7831 return 0;
7833 early_initcall(migration_init);
7834 #endif
7836 #ifdef CONFIG_SMP
7838 #ifdef CONFIG_SCHED_DEBUG
7840 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7841 struct cpumask *groupmask)
7843 struct sched_group *group = sd->groups;
7844 char str[256];
7846 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7847 cpumask_clear(groupmask);
7849 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7851 if (!(sd->flags & SD_LOAD_BALANCE)) {
7852 printk("does not load-balance\n");
7853 if (sd->parent)
7854 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7855 " has parent");
7856 return -1;
7859 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7861 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7862 printk(KERN_ERR "ERROR: domain->span does not contain "
7863 "CPU%d\n", cpu);
7865 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7866 printk(KERN_ERR "ERROR: domain->groups does not contain"
7867 " CPU%d\n", cpu);
7870 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7871 do {
7872 if (!group) {
7873 printk("\n");
7874 printk(KERN_ERR "ERROR: group is NULL\n");
7875 break;
7878 if (!group->cpu_power) {
7879 printk(KERN_CONT "\n");
7880 printk(KERN_ERR "ERROR: domain->cpu_power not "
7881 "set\n");
7882 break;
7885 if (!cpumask_weight(sched_group_cpus(group))) {
7886 printk(KERN_CONT "\n");
7887 printk(KERN_ERR "ERROR: empty group\n");
7888 break;
7891 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7892 printk(KERN_CONT "\n");
7893 printk(KERN_ERR "ERROR: repeated CPUs\n");
7894 break;
7897 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7899 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7901 printk(KERN_CONT " %s", str);
7902 if (group->cpu_power != SCHED_LOAD_SCALE) {
7903 printk(KERN_CONT " (cpu_power = %d)",
7904 group->cpu_power);
7907 group = group->next;
7908 } while (group != sd->groups);
7909 printk(KERN_CONT "\n");
7911 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7912 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7914 if (sd->parent &&
7915 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7916 printk(KERN_ERR "ERROR: parent span is not a superset "
7917 "of domain->span\n");
7918 return 0;
7921 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7923 cpumask_var_t groupmask;
7924 int level = 0;
7926 if (!sd) {
7927 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7928 return;
7931 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7933 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7934 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7935 return;
7938 for (;;) {
7939 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7940 break;
7941 level++;
7942 sd = sd->parent;
7943 if (!sd)
7944 break;
7946 free_cpumask_var(groupmask);
7948 #else /* !CONFIG_SCHED_DEBUG */
7949 # define sched_domain_debug(sd, cpu) do { } while (0)
7950 #endif /* CONFIG_SCHED_DEBUG */
7952 static int sd_degenerate(struct sched_domain *sd)
7954 if (cpumask_weight(sched_domain_span(sd)) == 1)
7955 return 1;
7957 /* Following flags need at least 2 groups */
7958 if (sd->flags & (SD_LOAD_BALANCE |
7959 SD_BALANCE_NEWIDLE |
7960 SD_BALANCE_FORK |
7961 SD_BALANCE_EXEC |
7962 SD_SHARE_CPUPOWER |
7963 SD_SHARE_PKG_RESOURCES)) {
7964 if (sd->groups != sd->groups->next)
7965 return 0;
7968 /* Following flags don't use groups */
7969 if (sd->flags & (SD_WAKE_AFFINE))
7970 return 0;
7972 return 1;
7975 static int
7976 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7978 unsigned long cflags = sd->flags, pflags = parent->flags;
7980 if (sd_degenerate(parent))
7981 return 1;
7983 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7984 return 0;
7986 /* Flags needing groups don't count if only 1 group in parent */
7987 if (parent->groups == parent->groups->next) {
7988 pflags &= ~(SD_LOAD_BALANCE |
7989 SD_BALANCE_NEWIDLE |
7990 SD_BALANCE_FORK |
7991 SD_BALANCE_EXEC |
7992 SD_SHARE_CPUPOWER |
7993 SD_SHARE_PKG_RESOURCES);
7994 if (nr_node_ids == 1)
7995 pflags &= ~SD_SERIALIZE;
7997 if (~cflags & pflags)
7998 return 0;
8000 return 1;
8003 static void free_rootdomain(struct root_domain *rd)
8005 synchronize_sched();
8007 cpupri_cleanup(&rd->cpupri);
8009 free_cpumask_var(rd->rto_mask);
8010 free_cpumask_var(rd->online);
8011 free_cpumask_var(rd->span);
8012 kfree(rd);
8015 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8017 struct root_domain *old_rd = NULL;
8018 unsigned long flags;
8020 spin_lock_irqsave(&rq->lock, flags);
8022 if (rq->rd) {
8023 old_rd = rq->rd;
8025 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8026 set_rq_offline(rq);
8028 cpumask_clear_cpu(rq->cpu, old_rd->span);
8031 * If we dont want to free the old_rt yet then
8032 * set old_rd to NULL to skip the freeing later
8033 * in this function:
8035 if (!atomic_dec_and_test(&old_rd->refcount))
8036 old_rd = NULL;
8039 atomic_inc(&rd->refcount);
8040 rq->rd = rd;
8042 cpumask_set_cpu(rq->cpu, rd->span);
8043 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8044 set_rq_online(rq);
8046 spin_unlock_irqrestore(&rq->lock, flags);
8048 if (old_rd)
8049 free_rootdomain(old_rd);
8052 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8054 gfp_t gfp = GFP_KERNEL;
8056 memset(rd, 0, sizeof(*rd));
8058 if (bootmem)
8059 gfp = GFP_NOWAIT;
8061 if (!alloc_cpumask_var(&rd->span, gfp))
8062 goto out;
8063 if (!alloc_cpumask_var(&rd->online, gfp))
8064 goto free_span;
8065 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8066 goto free_online;
8068 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8069 goto free_rto_mask;
8070 return 0;
8072 free_rto_mask:
8073 free_cpumask_var(rd->rto_mask);
8074 free_online:
8075 free_cpumask_var(rd->online);
8076 free_span:
8077 free_cpumask_var(rd->span);
8078 out:
8079 return -ENOMEM;
8082 static void init_defrootdomain(void)
8084 init_rootdomain(&def_root_domain, true);
8086 atomic_set(&def_root_domain.refcount, 1);
8089 static struct root_domain *alloc_rootdomain(void)
8091 struct root_domain *rd;
8093 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8094 if (!rd)
8095 return NULL;
8097 if (init_rootdomain(rd, false) != 0) {
8098 kfree(rd);
8099 return NULL;
8102 return rd;
8106 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8107 * hold the hotplug lock.
8109 static void
8110 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8112 struct rq *rq = cpu_rq(cpu);
8113 struct sched_domain *tmp;
8115 /* Remove the sched domains which do not contribute to scheduling. */
8116 for (tmp = sd; tmp; ) {
8117 struct sched_domain *parent = tmp->parent;
8118 if (!parent)
8119 break;
8121 if (sd_parent_degenerate(tmp, parent)) {
8122 tmp->parent = parent->parent;
8123 if (parent->parent)
8124 parent->parent->child = tmp;
8125 } else
8126 tmp = tmp->parent;
8129 if (sd && sd_degenerate(sd)) {
8130 sd = sd->parent;
8131 if (sd)
8132 sd->child = NULL;
8135 sched_domain_debug(sd, cpu);
8137 rq_attach_root(rq, rd);
8138 rcu_assign_pointer(rq->sd, sd);
8141 /* cpus with isolated domains */
8142 static cpumask_var_t cpu_isolated_map;
8144 /* Setup the mask of cpus configured for isolated domains */
8145 static int __init isolated_cpu_setup(char *str)
8147 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8148 cpulist_parse(str, cpu_isolated_map);
8149 return 1;
8152 __setup("isolcpus=", isolated_cpu_setup);
8155 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8156 * to a function which identifies what group(along with sched group) a CPU
8157 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8158 * (due to the fact that we keep track of groups covered with a struct cpumask).
8160 * init_sched_build_groups will build a circular linked list of the groups
8161 * covered by the given span, and will set each group's ->cpumask correctly,
8162 * and ->cpu_power to 0.
8164 static void
8165 init_sched_build_groups(const struct cpumask *span,
8166 const struct cpumask *cpu_map,
8167 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8168 struct sched_group **sg,
8169 struct cpumask *tmpmask),
8170 struct cpumask *covered, struct cpumask *tmpmask)
8172 struct sched_group *first = NULL, *last = NULL;
8173 int i;
8175 cpumask_clear(covered);
8177 for_each_cpu(i, span) {
8178 struct sched_group *sg;
8179 int group = group_fn(i, cpu_map, &sg, tmpmask);
8180 int j;
8182 if (cpumask_test_cpu(i, covered))
8183 continue;
8185 cpumask_clear(sched_group_cpus(sg));
8186 sg->cpu_power = 0;
8188 for_each_cpu(j, span) {
8189 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8190 continue;
8192 cpumask_set_cpu(j, covered);
8193 cpumask_set_cpu(j, sched_group_cpus(sg));
8195 if (!first)
8196 first = sg;
8197 if (last)
8198 last->next = sg;
8199 last = sg;
8201 last->next = first;
8204 #define SD_NODES_PER_DOMAIN 16
8206 #ifdef CONFIG_NUMA
8209 * find_next_best_node - find the next node to include in a sched_domain
8210 * @node: node whose sched_domain we're building
8211 * @used_nodes: nodes already in the sched_domain
8213 * Find the next node to include in a given scheduling domain. Simply
8214 * finds the closest node not already in the @used_nodes map.
8216 * Should use nodemask_t.
8218 static int find_next_best_node(int node, nodemask_t *used_nodes)
8220 int i, n, val, min_val, best_node = 0;
8222 min_val = INT_MAX;
8224 for (i = 0; i < nr_node_ids; i++) {
8225 /* Start at @node */
8226 n = (node + i) % nr_node_ids;
8228 if (!nr_cpus_node(n))
8229 continue;
8231 /* Skip already used nodes */
8232 if (node_isset(n, *used_nodes))
8233 continue;
8235 /* Simple min distance search */
8236 val = node_distance(node, n);
8238 if (val < min_val) {
8239 min_val = val;
8240 best_node = n;
8244 node_set(best_node, *used_nodes);
8245 return best_node;
8249 * sched_domain_node_span - get a cpumask for a node's sched_domain
8250 * @node: node whose cpumask we're constructing
8251 * @span: resulting cpumask
8253 * Given a node, construct a good cpumask for its sched_domain to span. It
8254 * should be one that prevents unnecessary balancing, but also spreads tasks
8255 * out optimally.
8257 static void sched_domain_node_span(int node, struct cpumask *span)
8259 nodemask_t used_nodes;
8260 int i;
8262 cpumask_clear(span);
8263 nodes_clear(used_nodes);
8265 cpumask_or(span, span, cpumask_of_node(node));
8266 node_set(node, used_nodes);
8268 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8269 int next_node = find_next_best_node(node, &used_nodes);
8271 cpumask_or(span, span, cpumask_of_node(next_node));
8274 #endif /* CONFIG_NUMA */
8276 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8279 * The cpus mask in sched_group and sched_domain hangs off the end.
8281 * ( See the the comments in include/linux/sched.h:struct sched_group
8282 * and struct sched_domain. )
8284 struct static_sched_group {
8285 struct sched_group sg;
8286 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8289 struct static_sched_domain {
8290 struct sched_domain sd;
8291 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8294 struct s_data {
8295 #ifdef CONFIG_NUMA
8296 int sd_allnodes;
8297 cpumask_var_t domainspan;
8298 cpumask_var_t covered;
8299 cpumask_var_t notcovered;
8300 #endif
8301 cpumask_var_t nodemask;
8302 cpumask_var_t this_sibling_map;
8303 cpumask_var_t this_core_map;
8304 cpumask_var_t send_covered;
8305 cpumask_var_t tmpmask;
8306 struct sched_group **sched_group_nodes;
8307 struct root_domain *rd;
8310 enum s_alloc {
8311 sa_sched_groups = 0,
8312 sa_rootdomain,
8313 sa_tmpmask,
8314 sa_send_covered,
8315 sa_this_core_map,
8316 sa_this_sibling_map,
8317 sa_nodemask,
8318 sa_sched_group_nodes,
8319 #ifdef CONFIG_NUMA
8320 sa_notcovered,
8321 sa_covered,
8322 sa_domainspan,
8323 #endif
8324 sa_none,
8328 * SMT sched-domains:
8330 #ifdef CONFIG_SCHED_SMT
8331 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8332 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8334 static int
8335 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8336 struct sched_group **sg, struct cpumask *unused)
8338 if (sg)
8339 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8340 return cpu;
8342 #endif /* CONFIG_SCHED_SMT */
8345 * multi-core sched-domains:
8347 #ifdef CONFIG_SCHED_MC
8348 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8349 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8350 #endif /* CONFIG_SCHED_MC */
8352 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8353 static int
8354 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8355 struct sched_group **sg, struct cpumask *mask)
8357 int group;
8359 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8360 group = cpumask_first(mask);
8361 if (sg)
8362 *sg = &per_cpu(sched_group_core, group).sg;
8363 return group;
8365 #elif defined(CONFIG_SCHED_MC)
8366 static int
8367 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8368 struct sched_group **sg, struct cpumask *unused)
8370 if (sg)
8371 *sg = &per_cpu(sched_group_core, cpu).sg;
8372 return cpu;
8374 #endif
8376 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8377 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8379 static int
8380 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8381 struct sched_group **sg, struct cpumask *mask)
8383 int group;
8384 #ifdef CONFIG_SCHED_MC
8385 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8386 group = cpumask_first(mask);
8387 #elif defined(CONFIG_SCHED_SMT)
8388 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8389 group = cpumask_first(mask);
8390 #else
8391 group = cpu;
8392 #endif
8393 if (sg)
8394 *sg = &per_cpu(sched_group_phys, group).sg;
8395 return group;
8398 #ifdef CONFIG_NUMA
8400 * The init_sched_build_groups can't handle what we want to do with node
8401 * groups, so roll our own. Now each node has its own list of groups which
8402 * gets dynamically allocated.
8404 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8405 static struct sched_group ***sched_group_nodes_bycpu;
8407 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8408 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8410 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8411 struct sched_group **sg,
8412 struct cpumask *nodemask)
8414 int group;
8416 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8417 group = cpumask_first(nodemask);
8419 if (sg)
8420 *sg = &per_cpu(sched_group_allnodes, group).sg;
8421 return group;
8424 static void init_numa_sched_groups_power(struct sched_group *group_head)
8426 struct sched_group *sg = group_head;
8427 int j;
8429 if (!sg)
8430 return;
8431 do {
8432 for_each_cpu(j, sched_group_cpus(sg)) {
8433 struct sched_domain *sd;
8435 sd = &per_cpu(phys_domains, j).sd;
8436 if (j != group_first_cpu(sd->groups)) {
8438 * Only add "power" once for each
8439 * physical package.
8441 continue;
8444 sg->cpu_power += sd->groups->cpu_power;
8446 sg = sg->next;
8447 } while (sg != group_head);
8450 static int build_numa_sched_groups(struct s_data *d,
8451 const struct cpumask *cpu_map, int num)
8453 struct sched_domain *sd;
8454 struct sched_group *sg, *prev;
8455 int n, j;
8457 cpumask_clear(d->covered);
8458 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8459 if (cpumask_empty(d->nodemask)) {
8460 d->sched_group_nodes[num] = NULL;
8461 goto out;
8464 sched_domain_node_span(num, d->domainspan);
8465 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8467 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8468 GFP_KERNEL, num);
8469 if (!sg) {
8470 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8471 num);
8472 return -ENOMEM;
8474 d->sched_group_nodes[num] = sg;
8476 for_each_cpu(j, d->nodemask) {
8477 sd = &per_cpu(node_domains, j).sd;
8478 sd->groups = sg;
8481 sg->cpu_power = 0;
8482 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8483 sg->next = sg;
8484 cpumask_or(d->covered, d->covered, d->nodemask);
8486 prev = sg;
8487 for (j = 0; j < nr_node_ids; j++) {
8488 n = (num + j) % nr_node_ids;
8489 cpumask_complement(d->notcovered, d->covered);
8490 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8491 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8492 if (cpumask_empty(d->tmpmask))
8493 break;
8494 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8495 if (cpumask_empty(d->tmpmask))
8496 continue;
8497 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8498 GFP_KERNEL, num);
8499 if (!sg) {
8500 printk(KERN_WARNING
8501 "Can not alloc domain group for node %d\n", j);
8502 return -ENOMEM;
8504 sg->cpu_power = 0;
8505 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8506 sg->next = prev->next;
8507 cpumask_or(d->covered, d->covered, d->tmpmask);
8508 prev->next = sg;
8509 prev = sg;
8511 out:
8512 return 0;
8514 #endif /* CONFIG_NUMA */
8516 #ifdef CONFIG_NUMA
8517 /* Free memory allocated for various sched_group structures */
8518 static void free_sched_groups(const struct cpumask *cpu_map,
8519 struct cpumask *nodemask)
8521 int cpu, i;
8523 for_each_cpu(cpu, cpu_map) {
8524 struct sched_group **sched_group_nodes
8525 = sched_group_nodes_bycpu[cpu];
8527 if (!sched_group_nodes)
8528 continue;
8530 for (i = 0; i < nr_node_ids; i++) {
8531 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8533 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8534 if (cpumask_empty(nodemask))
8535 continue;
8537 if (sg == NULL)
8538 continue;
8539 sg = sg->next;
8540 next_sg:
8541 oldsg = sg;
8542 sg = sg->next;
8543 kfree(oldsg);
8544 if (oldsg != sched_group_nodes[i])
8545 goto next_sg;
8547 kfree(sched_group_nodes);
8548 sched_group_nodes_bycpu[cpu] = NULL;
8551 #else /* !CONFIG_NUMA */
8552 static void free_sched_groups(const struct cpumask *cpu_map,
8553 struct cpumask *nodemask)
8556 #endif /* CONFIG_NUMA */
8559 * Initialize sched groups cpu_power.
8561 * cpu_power indicates the capacity of sched group, which is used while
8562 * distributing the load between different sched groups in a sched domain.
8563 * Typically cpu_power for all the groups in a sched domain will be same unless
8564 * there are asymmetries in the topology. If there are asymmetries, group
8565 * having more cpu_power will pickup more load compared to the group having
8566 * less cpu_power.
8568 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8570 struct sched_domain *child;
8571 struct sched_group *group;
8572 long power;
8573 int weight;
8575 WARN_ON(!sd || !sd->groups);
8577 if (cpu != group_first_cpu(sd->groups))
8578 return;
8580 child = sd->child;
8582 sd->groups->cpu_power = 0;
8584 if (!child) {
8585 power = SCHED_LOAD_SCALE;
8586 weight = cpumask_weight(sched_domain_span(sd));
8588 * SMT siblings share the power of a single core.
8589 * Usually multiple threads get a better yield out of
8590 * that one core than a single thread would have,
8591 * reflect that in sd->smt_gain.
8593 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8594 power *= sd->smt_gain;
8595 power /= weight;
8596 power >>= SCHED_LOAD_SHIFT;
8598 sd->groups->cpu_power += power;
8599 return;
8603 * Add cpu_power of each child group to this groups cpu_power.
8605 group = child->groups;
8606 do {
8607 sd->groups->cpu_power += group->cpu_power;
8608 group = group->next;
8609 } while (group != child->groups);
8613 * Initializers for schedule domains
8614 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8617 #ifdef CONFIG_SCHED_DEBUG
8618 # define SD_INIT_NAME(sd, type) sd->name = #type
8619 #else
8620 # define SD_INIT_NAME(sd, type) do { } while (0)
8621 #endif
8623 #define SD_INIT(sd, type) sd_init_##type(sd)
8625 #define SD_INIT_FUNC(type) \
8626 static noinline void sd_init_##type(struct sched_domain *sd) \
8628 memset(sd, 0, sizeof(*sd)); \
8629 *sd = SD_##type##_INIT; \
8630 sd->level = SD_LV_##type; \
8631 SD_INIT_NAME(sd, type); \
8634 SD_INIT_FUNC(CPU)
8635 #ifdef CONFIG_NUMA
8636 SD_INIT_FUNC(ALLNODES)
8637 SD_INIT_FUNC(NODE)
8638 #endif
8639 #ifdef CONFIG_SCHED_SMT
8640 SD_INIT_FUNC(SIBLING)
8641 #endif
8642 #ifdef CONFIG_SCHED_MC
8643 SD_INIT_FUNC(MC)
8644 #endif
8646 static int default_relax_domain_level = -1;
8648 static int __init setup_relax_domain_level(char *str)
8650 unsigned long val;
8652 val = simple_strtoul(str, NULL, 0);
8653 if (val < SD_LV_MAX)
8654 default_relax_domain_level = val;
8656 return 1;
8658 __setup("relax_domain_level=", setup_relax_domain_level);
8660 static void set_domain_attribute(struct sched_domain *sd,
8661 struct sched_domain_attr *attr)
8663 int request;
8665 if (!attr || attr->relax_domain_level < 0) {
8666 if (default_relax_domain_level < 0)
8667 return;
8668 else
8669 request = default_relax_domain_level;
8670 } else
8671 request = attr->relax_domain_level;
8672 if (request < sd->level) {
8673 /* turn off idle balance on this domain */
8674 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8675 } else {
8676 /* turn on idle balance on this domain */
8677 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8681 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8682 const struct cpumask *cpu_map)
8684 switch (what) {
8685 case sa_sched_groups:
8686 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8687 d->sched_group_nodes = NULL;
8688 case sa_rootdomain:
8689 free_rootdomain(d->rd); /* fall through */
8690 case sa_tmpmask:
8691 free_cpumask_var(d->tmpmask); /* fall through */
8692 case sa_send_covered:
8693 free_cpumask_var(d->send_covered); /* fall through */
8694 case sa_this_core_map:
8695 free_cpumask_var(d->this_core_map); /* fall through */
8696 case sa_this_sibling_map:
8697 free_cpumask_var(d->this_sibling_map); /* fall through */
8698 case sa_nodemask:
8699 free_cpumask_var(d->nodemask); /* fall through */
8700 case sa_sched_group_nodes:
8701 #ifdef CONFIG_NUMA
8702 kfree(d->sched_group_nodes); /* fall through */
8703 case sa_notcovered:
8704 free_cpumask_var(d->notcovered); /* fall through */
8705 case sa_covered:
8706 free_cpumask_var(d->covered); /* fall through */
8707 case sa_domainspan:
8708 free_cpumask_var(d->domainspan); /* fall through */
8709 #endif
8710 case sa_none:
8711 break;
8715 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8716 const struct cpumask *cpu_map)
8718 #ifdef CONFIG_NUMA
8719 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8720 return sa_none;
8721 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8722 return sa_domainspan;
8723 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8724 return sa_covered;
8725 /* Allocate the per-node list of sched groups */
8726 d->sched_group_nodes = kcalloc(nr_node_ids,
8727 sizeof(struct sched_group *), GFP_KERNEL);
8728 if (!d->sched_group_nodes) {
8729 printk(KERN_WARNING "Can not alloc sched group node list\n");
8730 return sa_notcovered;
8732 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8733 #endif
8734 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8735 return sa_sched_group_nodes;
8736 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8737 return sa_nodemask;
8738 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8739 return sa_this_sibling_map;
8740 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8741 return sa_this_core_map;
8742 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8743 return sa_send_covered;
8744 d->rd = alloc_rootdomain();
8745 if (!d->rd) {
8746 printk(KERN_WARNING "Cannot alloc root domain\n");
8747 return sa_tmpmask;
8749 return sa_rootdomain;
8752 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8753 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8755 struct sched_domain *sd = NULL;
8756 #ifdef CONFIG_NUMA
8757 struct sched_domain *parent;
8759 d->sd_allnodes = 0;
8760 if (cpumask_weight(cpu_map) >
8761 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8762 sd = &per_cpu(allnodes_domains, i).sd;
8763 SD_INIT(sd, ALLNODES);
8764 set_domain_attribute(sd, attr);
8765 cpumask_copy(sched_domain_span(sd), cpu_map);
8766 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8767 d->sd_allnodes = 1;
8769 parent = sd;
8771 sd = &per_cpu(node_domains, i).sd;
8772 SD_INIT(sd, NODE);
8773 set_domain_attribute(sd, attr);
8774 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8775 sd->parent = parent;
8776 if (parent)
8777 parent->child = sd;
8778 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8779 #endif
8780 return sd;
8783 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8784 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8785 struct sched_domain *parent, int i)
8787 struct sched_domain *sd;
8788 sd = &per_cpu(phys_domains, i).sd;
8789 SD_INIT(sd, CPU);
8790 set_domain_attribute(sd, attr);
8791 cpumask_copy(sched_domain_span(sd), d->nodemask);
8792 sd->parent = parent;
8793 if (parent)
8794 parent->child = sd;
8795 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8796 return sd;
8799 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8800 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8801 struct sched_domain *parent, int i)
8803 struct sched_domain *sd = parent;
8804 #ifdef CONFIG_SCHED_MC
8805 sd = &per_cpu(core_domains, i).sd;
8806 SD_INIT(sd, MC);
8807 set_domain_attribute(sd, attr);
8808 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8809 sd->parent = parent;
8810 parent->child = sd;
8811 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8812 #endif
8813 return sd;
8816 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8817 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8818 struct sched_domain *parent, int i)
8820 struct sched_domain *sd = parent;
8821 #ifdef CONFIG_SCHED_SMT
8822 sd = &per_cpu(cpu_domains, i).sd;
8823 SD_INIT(sd, SIBLING);
8824 set_domain_attribute(sd, attr);
8825 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8826 sd->parent = parent;
8827 parent->child = sd;
8828 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8829 #endif
8830 return sd;
8833 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8834 const struct cpumask *cpu_map, int cpu)
8836 switch (l) {
8837 #ifdef CONFIG_SCHED_SMT
8838 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8839 cpumask_and(d->this_sibling_map, cpu_map,
8840 topology_thread_cpumask(cpu));
8841 if (cpu == cpumask_first(d->this_sibling_map))
8842 init_sched_build_groups(d->this_sibling_map, cpu_map,
8843 &cpu_to_cpu_group,
8844 d->send_covered, d->tmpmask);
8845 break;
8846 #endif
8847 #ifdef CONFIG_SCHED_MC
8848 case SD_LV_MC: /* set up multi-core groups */
8849 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8850 if (cpu == cpumask_first(d->this_core_map))
8851 init_sched_build_groups(d->this_core_map, cpu_map,
8852 &cpu_to_core_group,
8853 d->send_covered, d->tmpmask);
8854 break;
8855 #endif
8856 case SD_LV_CPU: /* set up physical groups */
8857 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8858 if (!cpumask_empty(d->nodemask))
8859 init_sched_build_groups(d->nodemask, cpu_map,
8860 &cpu_to_phys_group,
8861 d->send_covered, d->tmpmask);
8862 break;
8863 #ifdef CONFIG_NUMA
8864 case SD_LV_ALLNODES:
8865 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8866 d->send_covered, d->tmpmask);
8867 break;
8868 #endif
8869 default:
8870 break;
8875 * Build sched domains for a given set of cpus and attach the sched domains
8876 * to the individual cpus
8878 static int __build_sched_domains(const struct cpumask *cpu_map,
8879 struct sched_domain_attr *attr)
8881 enum s_alloc alloc_state = sa_none;
8882 struct s_data d;
8883 struct sched_domain *sd;
8884 int i;
8885 #ifdef CONFIG_NUMA
8886 d.sd_allnodes = 0;
8887 #endif
8889 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8890 if (alloc_state != sa_rootdomain)
8891 goto error;
8892 alloc_state = sa_sched_groups;
8895 * Set up domains for cpus specified by the cpu_map.
8897 for_each_cpu(i, cpu_map) {
8898 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8899 cpu_map);
8901 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8902 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8903 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8904 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8907 for_each_cpu(i, cpu_map) {
8908 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8909 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8912 /* Set up physical groups */
8913 for (i = 0; i < nr_node_ids; i++)
8914 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8916 #ifdef CONFIG_NUMA
8917 /* Set up node groups */
8918 if (d.sd_allnodes)
8919 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8921 for (i = 0; i < nr_node_ids; i++)
8922 if (build_numa_sched_groups(&d, cpu_map, i))
8923 goto error;
8924 #endif
8926 /* Calculate CPU power for physical packages and nodes */
8927 #ifdef CONFIG_SCHED_SMT
8928 for_each_cpu(i, cpu_map) {
8929 sd = &per_cpu(cpu_domains, i).sd;
8930 init_sched_groups_power(i, sd);
8932 #endif
8933 #ifdef CONFIG_SCHED_MC
8934 for_each_cpu(i, cpu_map) {
8935 sd = &per_cpu(core_domains, i).sd;
8936 init_sched_groups_power(i, sd);
8938 #endif
8940 for_each_cpu(i, cpu_map) {
8941 sd = &per_cpu(phys_domains, i).sd;
8942 init_sched_groups_power(i, sd);
8945 #ifdef CONFIG_NUMA
8946 for (i = 0; i < nr_node_ids; i++)
8947 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8949 if (d.sd_allnodes) {
8950 struct sched_group *sg;
8952 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8953 d.tmpmask);
8954 init_numa_sched_groups_power(sg);
8956 #endif
8958 /* Attach the domains */
8959 for_each_cpu(i, cpu_map) {
8960 #ifdef CONFIG_SCHED_SMT
8961 sd = &per_cpu(cpu_domains, i).sd;
8962 #elif defined(CONFIG_SCHED_MC)
8963 sd = &per_cpu(core_domains, i).sd;
8964 #else
8965 sd = &per_cpu(phys_domains, i).sd;
8966 #endif
8967 cpu_attach_domain(sd, d.rd, i);
8970 d.sched_group_nodes = NULL; /* don't free this we still need it */
8971 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8972 return 0;
8974 error:
8975 __free_domain_allocs(&d, alloc_state, cpu_map);
8976 return -ENOMEM;
8979 static int build_sched_domains(const struct cpumask *cpu_map)
8981 return __build_sched_domains(cpu_map, NULL);
8984 static struct cpumask *doms_cur; /* current sched domains */
8985 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8986 static struct sched_domain_attr *dattr_cur;
8987 /* attribues of custom domains in 'doms_cur' */
8990 * Special case: If a kmalloc of a doms_cur partition (array of
8991 * cpumask) fails, then fallback to a single sched domain,
8992 * as determined by the single cpumask fallback_doms.
8994 static cpumask_var_t fallback_doms;
8997 * arch_update_cpu_topology lets virtualized architectures update the
8998 * cpu core maps. It is supposed to return 1 if the topology changed
8999 * or 0 if it stayed the same.
9001 int __attribute__((weak)) arch_update_cpu_topology(void)
9003 return 0;
9007 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9008 * For now this just excludes isolated cpus, but could be used to
9009 * exclude other special cases in the future.
9011 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9013 int err;
9015 arch_update_cpu_topology();
9016 ndoms_cur = 1;
9017 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
9018 if (!doms_cur)
9019 doms_cur = fallback_doms;
9020 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9021 dattr_cur = NULL;
9022 err = build_sched_domains(doms_cur);
9023 register_sched_domain_sysctl();
9025 return err;
9028 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9029 struct cpumask *tmpmask)
9031 free_sched_groups(cpu_map, tmpmask);
9035 * Detach sched domains from a group of cpus specified in cpu_map
9036 * These cpus will now be attached to the NULL domain
9038 static void detach_destroy_domains(const struct cpumask *cpu_map)
9040 /* Save because hotplug lock held. */
9041 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9042 int i;
9044 for_each_cpu(i, cpu_map)
9045 cpu_attach_domain(NULL, &def_root_domain, i);
9046 synchronize_sched();
9047 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9050 /* handle null as "default" */
9051 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9052 struct sched_domain_attr *new, int idx_new)
9054 struct sched_domain_attr tmp;
9056 /* fast path */
9057 if (!new && !cur)
9058 return 1;
9060 tmp = SD_ATTR_INIT;
9061 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9062 new ? (new + idx_new) : &tmp,
9063 sizeof(struct sched_domain_attr));
9067 * Partition sched domains as specified by the 'ndoms_new'
9068 * cpumasks in the array doms_new[] of cpumasks. This compares
9069 * doms_new[] to the current sched domain partitioning, doms_cur[].
9070 * It destroys each deleted domain and builds each new domain.
9072 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9073 * The masks don't intersect (don't overlap.) We should setup one
9074 * sched domain for each mask. CPUs not in any of the cpumasks will
9075 * not be load balanced. If the same cpumask appears both in the
9076 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9077 * it as it is.
9079 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9080 * ownership of it and will kfree it when done with it. If the caller
9081 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9082 * ndoms_new == 1, and partition_sched_domains() will fallback to
9083 * the single partition 'fallback_doms', it also forces the domains
9084 * to be rebuilt.
9086 * If doms_new == NULL it will be replaced with cpu_online_mask.
9087 * ndoms_new == 0 is a special case for destroying existing domains,
9088 * and it will not create the default domain.
9090 * Call with hotplug lock held
9092 /* FIXME: Change to struct cpumask *doms_new[] */
9093 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9094 struct sched_domain_attr *dattr_new)
9096 int i, j, n;
9097 int new_topology;
9099 mutex_lock(&sched_domains_mutex);
9101 /* always unregister in case we don't destroy any domains */
9102 unregister_sched_domain_sysctl();
9104 /* Let architecture update cpu core mappings. */
9105 new_topology = arch_update_cpu_topology();
9107 n = doms_new ? ndoms_new : 0;
9109 /* Destroy deleted domains */
9110 for (i = 0; i < ndoms_cur; i++) {
9111 for (j = 0; j < n && !new_topology; j++) {
9112 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9113 && dattrs_equal(dattr_cur, i, dattr_new, j))
9114 goto match1;
9116 /* no match - a current sched domain not in new doms_new[] */
9117 detach_destroy_domains(doms_cur + i);
9118 match1:
9122 if (doms_new == NULL) {
9123 ndoms_cur = 0;
9124 doms_new = fallback_doms;
9125 cpumask_andnot(&doms_new[0], cpu_active_mask, cpu_isolated_map);
9126 WARN_ON_ONCE(dattr_new);
9129 /* Build new domains */
9130 for (i = 0; i < ndoms_new; i++) {
9131 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9132 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9133 && dattrs_equal(dattr_new, i, dattr_cur, j))
9134 goto match2;
9136 /* no match - add a new doms_new */
9137 __build_sched_domains(doms_new + i,
9138 dattr_new ? dattr_new + i : NULL);
9139 match2:
9143 /* Remember the new sched domains */
9144 if (doms_cur != fallback_doms)
9145 kfree(doms_cur);
9146 kfree(dattr_cur); /* kfree(NULL) is safe */
9147 doms_cur = doms_new;
9148 dattr_cur = dattr_new;
9149 ndoms_cur = ndoms_new;
9151 register_sched_domain_sysctl();
9153 mutex_unlock(&sched_domains_mutex);
9156 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9157 static void arch_reinit_sched_domains(void)
9159 get_online_cpus();
9161 /* Destroy domains first to force the rebuild */
9162 partition_sched_domains(0, NULL, NULL);
9164 rebuild_sched_domains();
9165 put_online_cpus();
9168 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9170 unsigned int level = 0;
9172 if (sscanf(buf, "%u", &level) != 1)
9173 return -EINVAL;
9176 * level is always be positive so don't check for
9177 * level < POWERSAVINGS_BALANCE_NONE which is 0
9178 * What happens on 0 or 1 byte write,
9179 * need to check for count as well?
9182 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9183 return -EINVAL;
9185 if (smt)
9186 sched_smt_power_savings = level;
9187 else
9188 sched_mc_power_savings = level;
9190 arch_reinit_sched_domains();
9192 return count;
9195 #ifdef CONFIG_SCHED_MC
9196 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9197 char *page)
9199 return sprintf(page, "%u\n", sched_mc_power_savings);
9201 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9202 const char *buf, size_t count)
9204 return sched_power_savings_store(buf, count, 0);
9206 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9207 sched_mc_power_savings_show,
9208 sched_mc_power_savings_store);
9209 #endif
9211 #ifdef CONFIG_SCHED_SMT
9212 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9213 char *page)
9215 return sprintf(page, "%u\n", sched_smt_power_savings);
9217 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9218 const char *buf, size_t count)
9220 return sched_power_savings_store(buf, count, 1);
9222 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9223 sched_smt_power_savings_show,
9224 sched_smt_power_savings_store);
9225 #endif
9227 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9229 int err = 0;
9231 #ifdef CONFIG_SCHED_SMT
9232 if (smt_capable())
9233 err = sysfs_create_file(&cls->kset.kobj,
9234 &attr_sched_smt_power_savings.attr);
9235 #endif
9236 #ifdef CONFIG_SCHED_MC
9237 if (!err && mc_capable())
9238 err = sysfs_create_file(&cls->kset.kobj,
9239 &attr_sched_mc_power_savings.attr);
9240 #endif
9241 return err;
9243 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9245 #ifndef CONFIG_CPUSETS
9247 * Add online and remove offline CPUs from the scheduler domains.
9248 * When cpusets are enabled they take over this function.
9250 static int update_sched_domains(struct notifier_block *nfb,
9251 unsigned long action, void *hcpu)
9253 switch (action) {
9254 case CPU_ONLINE:
9255 case CPU_ONLINE_FROZEN:
9256 case CPU_DOWN_PREPARE:
9257 case CPU_DOWN_PREPARE_FROZEN:
9258 case CPU_DOWN_FAILED:
9259 case CPU_DOWN_FAILED_FROZEN:
9260 partition_sched_domains(1, NULL, NULL);
9261 return NOTIFY_OK;
9263 default:
9264 return NOTIFY_DONE;
9267 #endif
9269 static int update_runtime(struct notifier_block *nfb,
9270 unsigned long action, void *hcpu)
9272 int cpu = (int)(long)hcpu;
9274 switch (action) {
9275 case CPU_DOWN_PREPARE:
9276 case CPU_DOWN_PREPARE_FROZEN:
9277 disable_runtime(cpu_rq(cpu));
9278 return NOTIFY_OK;
9280 case CPU_DOWN_FAILED:
9281 case CPU_DOWN_FAILED_FROZEN:
9282 case CPU_ONLINE:
9283 case CPU_ONLINE_FROZEN:
9284 enable_runtime(cpu_rq(cpu));
9285 return NOTIFY_OK;
9287 default:
9288 return NOTIFY_DONE;
9292 void __init sched_init_smp(void)
9294 cpumask_var_t non_isolated_cpus;
9296 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9297 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9299 #if defined(CONFIG_NUMA)
9300 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9301 GFP_KERNEL);
9302 BUG_ON(sched_group_nodes_bycpu == NULL);
9303 #endif
9304 get_online_cpus();
9305 mutex_lock(&sched_domains_mutex);
9306 arch_init_sched_domains(cpu_active_mask);
9307 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9308 if (cpumask_empty(non_isolated_cpus))
9309 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9310 mutex_unlock(&sched_domains_mutex);
9311 put_online_cpus();
9313 #ifndef CONFIG_CPUSETS
9314 /* XXX: Theoretical race here - CPU may be hotplugged now */
9315 hotcpu_notifier(update_sched_domains, 0);
9316 #endif
9318 /* RT runtime code needs to handle some hotplug events */
9319 hotcpu_notifier(update_runtime, 0);
9321 init_hrtick();
9323 /* Move init over to a non-isolated CPU */
9324 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9325 BUG();
9326 sched_init_granularity();
9327 free_cpumask_var(non_isolated_cpus);
9329 init_sched_rt_class();
9331 #else
9332 void __init sched_init_smp(void)
9334 sched_init_granularity();
9336 #endif /* CONFIG_SMP */
9338 const_debug unsigned int sysctl_timer_migration = 1;
9340 int in_sched_functions(unsigned long addr)
9342 return in_lock_functions(addr) ||
9343 (addr >= (unsigned long)__sched_text_start
9344 && addr < (unsigned long)__sched_text_end);
9347 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9349 cfs_rq->tasks_timeline = RB_ROOT;
9350 INIT_LIST_HEAD(&cfs_rq->tasks);
9351 #ifdef CONFIG_FAIR_GROUP_SCHED
9352 cfs_rq->rq = rq;
9353 #endif
9354 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9357 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9359 struct rt_prio_array *array;
9360 int i;
9362 array = &rt_rq->active;
9363 for (i = 0; i < MAX_RT_PRIO; i++) {
9364 INIT_LIST_HEAD(array->queue + i);
9365 __clear_bit(i, array->bitmap);
9367 /* delimiter for bitsearch: */
9368 __set_bit(MAX_RT_PRIO, array->bitmap);
9370 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9371 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9372 #ifdef CONFIG_SMP
9373 rt_rq->highest_prio.next = MAX_RT_PRIO;
9374 #endif
9375 #endif
9376 #ifdef CONFIG_SMP
9377 rt_rq->rt_nr_migratory = 0;
9378 rt_rq->overloaded = 0;
9379 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9380 #endif
9382 rt_rq->rt_time = 0;
9383 rt_rq->rt_throttled = 0;
9384 rt_rq->rt_runtime = 0;
9385 spin_lock_init(&rt_rq->rt_runtime_lock);
9387 #ifdef CONFIG_RT_GROUP_SCHED
9388 rt_rq->rt_nr_boosted = 0;
9389 rt_rq->rq = rq;
9390 #endif
9393 #ifdef CONFIG_FAIR_GROUP_SCHED
9394 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9395 struct sched_entity *se, int cpu, int add,
9396 struct sched_entity *parent)
9398 struct rq *rq = cpu_rq(cpu);
9399 tg->cfs_rq[cpu] = cfs_rq;
9400 init_cfs_rq(cfs_rq, rq);
9401 cfs_rq->tg = tg;
9402 if (add)
9403 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9405 tg->se[cpu] = se;
9406 /* se could be NULL for init_task_group */
9407 if (!se)
9408 return;
9410 if (!parent)
9411 se->cfs_rq = &rq->cfs;
9412 else
9413 se->cfs_rq = parent->my_q;
9415 se->my_q = cfs_rq;
9416 se->load.weight = tg->shares;
9417 se->load.inv_weight = 0;
9418 se->parent = parent;
9420 #endif
9422 #ifdef CONFIG_RT_GROUP_SCHED
9423 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9424 struct sched_rt_entity *rt_se, int cpu, int add,
9425 struct sched_rt_entity *parent)
9427 struct rq *rq = cpu_rq(cpu);
9429 tg->rt_rq[cpu] = rt_rq;
9430 init_rt_rq(rt_rq, rq);
9431 rt_rq->tg = tg;
9432 rt_rq->rt_se = rt_se;
9433 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9434 if (add)
9435 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9437 tg->rt_se[cpu] = rt_se;
9438 if (!rt_se)
9439 return;
9441 if (!parent)
9442 rt_se->rt_rq = &rq->rt;
9443 else
9444 rt_se->rt_rq = parent->my_q;
9446 rt_se->my_q = rt_rq;
9447 rt_se->parent = parent;
9448 INIT_LIST_HEAD(&rt_se->run_list);
9450 #endif
9452 void __init sched_init(void)
9454 int i, j;
9455 unsigned long alloc_size = 0, ptr;
9457 #ifdef CONFIG_FAIR_GROUP_SCHED
9458 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9459 #endif
9460 #ifdef CONFIG_RT_GROUP_SCHED
9461 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9462 #endif
9463 #ifdef CONFIG_USER_SCHED
9464 alloc_size *= 2;
9465 #endif
9466 #ifdef CONFIG_CPUMASK_OFFSTACK
9467 alloc_size += num_possible_cpus() * cpumask_size();
9468 #endif
9470 * As sched_init() is called before page_alloc is setup,
9471 * we use alloc_bootmem().
9473 if (alloc_size) {
9474 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9476 #ifdef CONFIG_FAIR_GROUP_SCHED
9477 init_task_group.se = (struct sched_entity **)ptr;
9478 ptr += nr_cpu_ids * sizeof(void **);
9480 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9481 ptr += nr_cpu_ids * sizeof(void **);
9483 #ifdef CONFIG_USER_SCHED
9484 root_task_group.se = (struct sched_entity **)ptr;
9485 ptr += nr_cpu_ids * sizeof(void **);
9487 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9488 ptr += nr_cpu_ids * sizeof(void **);
9489 #endif /* CONFIG_USER_SCHED */
9490 #endif /* CONFIG_FAIR_GROUP_SCHED */
9491 #ifdef CONFIG_RT_GROUP_SCHED
9492 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9493 ptr += nr_cpu_ids * sizeof(void **);
9495 init_task_group.rt_rq = (struct rt_rq **)ptr;
9496 ptr += nr_cpu_ids * sizeof(void **);
9498 #ifdef CONFIG_USER_SCHED
9499 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **);
9502 root_task_group.rt_rq = (struct rt_rq **)ptr;
9503 ptr += nr_cpu_ids * sizeof(void **);
9504 #endif /* CONFIG_USER_SCHED */
9505 #endif /* CONFIG_RT_GROUP_SCHED */
9506 #ifdef CONFIG_CPUMASK_OFFSTACK
9507 for_each_possible_cpu(i) {
9508 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9509 ptr += cpumask_size();
9511 #endif /* CONFIG_CPUMASK_OFFSTACK */
9514 #ifdef CONFIG_SMP
9515 init_defrootdomain();
9516 #endif
9518 init_rt_bandwidth(&def_rt_bandwidth,
9519 global_rt_period(), global_rt_runtime());
9521 #ifdef CONFIG_RT_GROUP_SCHED
9522 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9523 global_rt_period(), global_rt_runtime());
9524 #ifdef CONFIG_USER_SCHED
9525 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9526 global_rt_period(), RUNTIME_INF);
9527 #endif /* CONFIG_USER_SCHED */
9528 #endif /* CONFIG_RT_GROUP_SCHED */
9530 #ifdef CONFIG_GROUP_SCHED
9531 list_add(&init_task_group.list, &task_groups);
9532 INIT_LIST_HEAD(&init_task_group.children);
9534 #ifdef CONFIG_USER_SCHED
9535 INIT_LIST_HEAD(&root_task_group.children);
9536 init_task_group.parent = &root_task_group;
9537 list_add(&init_task_group.siblings, &root_task_group.children);
9538 #endif /* CONFIG_USER_SCHED */
9539 #endif /* CONFIG_GROUP_SCHED */
9541 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9542 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9543 __alignof__(unsigned long));
9544 #endif
9545 for_each_possible_cpu(i) {
9546 struct rq *rq;
9548 rq = cpu_rq(i);
9549 spin_lock_init(&rq->lock);
9550 rq->nr_running = 0;
9551 rq->calc_load_active = 0;
9552 rq->calc_load_update = jiffies + LOAD_FREQ;
9553 init_cfs_rq(&rq->cfs, rq);
9554 init_rt_rq(&rq->rt, rq);
9555 #ifdef CONFIG_FAIR_GROUP_SCHED
9556 init_task_group.shares = init_task_group_load;
9557 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9558 #ifdef CONFIG_CGROUP_SCHED
9560 * How much cpu bandwidth does init_task_group get?
9562 * In case of task-groups formed thr' the cgroup filesystem, it
9563 * gets 100% of the cpu resources in the system. This overall
9564 * system cpu resource is divided among the tasks of
9565 * init_task_group and its child task-groups in a fair manner,
9566 * based on each entity's (task or task-group's) weight
9567 * (se->load.weight).
9569 * In other words, if init_task_group has 10 tasks of weight
9570 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9571 * then A0's share of the cpu resource is:
9573 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9575 * We achieve this by letting init_task_group's tasks sit
9576 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9578 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9579 #elif defined CONFIG_USER_SCHED
9580 root_task_group.shares = NICE_0_LOAD;
9581 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9583 * In case of task-groups formed thr' the user id of tasks,
9584 * init_task_group represents tasks belonging to root user.
9585 * Hence it forms a sibling of all subsequent groups formed.
9586 * In this case, init_task_group gets only a fraction of overall
9587 * system cpu resource, based on the weight assigned to root
9588 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9589 * by letting tasks of init_task_group sit in a separate cfs_rq
9590 * (init_tg_cfs_rq) and having one entity represent this group of
9591 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9593 init_tg_cfs_entry(&init_task_group,
9594 &per_cpu(init_tg_cfs_rq, i),
9595 &per_cpu(init_sched_entity, i), i, 1,
9596 root_task_group.se[i]);
9598 #endif
9599 #endif /* CONFIG_FAIR_GROUP_SCHED */
9601 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9602 #ifdef CONFIG_RT_GROUP_SCHED
9603 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9604 #ifdef CONFIG_CGROUP_SCHED
9605 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9606 #elif defined CONFIG_USER_SCHED
9607 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9608 init_tg_rt_entry(&init_task_group,
9609 &per_cpu(init_rt_rq, i),
9610 &per_cpu(init_sched_rt_entity, i), i, 1,
9611 root_task_group.rt_se[i]);
9612 #endif
9613 #endif
9615 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9616 rq->cpu_load[j] = 0;
9617 #ifdef CONFIG_SMP
9618 rq->sd = NULL;
9619 rq->rd = NULL;
9620 rq->post_schedule = 0;
9621 rq->active_balance = 0;
9622 rq->next_balance = jiffies;
9623 rq->push_cpu = 0;
9624 rq->cpu = i;
9625 rq->online = 0;
9626 rq->migration_thread = NULL;
9627 rq->idle_stamp = 0;
9628 rq->avg_idle = 2*sysctl_sched_migration_cost;
9629 INIT_LIST_HEAD(&rq->migration_queue);
9630 rq_attach_root(rq, &def_root_domain);
9631 #endif
9632 init_rq_hrtick(rq);
9633 atomic_set(&rq->nr_iowait, 0);
9636 set_load_weight(&init_task);
9638 #ifdef CONFIG_PREEMPT_NOTIFIERS
9639 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9640 #endif
9642 #ifdef CONFIG_SMP
9643 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9644 #endif
9646 #ifdef CONFIG_RT_MUTEXES
9647 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9648 #endif
9651 * The boot idle thread does lazy MMU switching as well:
9653 atomic_inc(&init_mm.mm_count);
9654 enter_lazy_tlb(&init_mm, current);
9657 * Make us the idle thread. Technically, schedule() should not be
9658 * called from this thread, however somewhere below it might be,
9659 * but because we are the idle thread, we just pick up running again
9660 * when this runqueue becomes "idle".
9662 init_idle(current, smp_processor_id());
9664 calc_load_update = jiffies + LOAD_FREQ;
9667 * During early bootup we pretend to be a normal task:
9669 current->sched_class = &fair_sched_class;
9671 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9672 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9673 #ifdef CONFIG_SMP
9674 #ifdef CONFIG_NO_HZ
9675 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9676 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9677 #endif
9678 /* May be allocated at isolcpus cmdline parse time */
9679 if (cpu_isolated_map == NULL)
9680 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9681 #endif /* SMP */
9683 perf_event_init();
9685 scheduler_running = 1;
9688 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9689 static inline int preempt_count_equals(int preempt_offset)
9691 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9693 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9696 void __might_sleep(char *file, int line, int preempt_offset)
9698 #ifdef in_atomic
9699 static unsigned long prev_jiffy; /* ratelimiting */
9701 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9702 system_state != SYSTEM_RUNNING || oops_in_progress)
9703 return;
9704 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9705 return;
9706 prev_jiffy = jiffies;
9708 printk(KERN_ERR
9709 "BUG: sleeping function called from invalid context at %s:%d\n",
9710 file, line);
9711 printk(KERN_ERR
9712 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9713 in_atomic(), irqs_disabled(),
9714 current->pid, current->comm);
9716 debug_show_held_locks(current);
9717 if (irqs_disabled())
9718 print_irqtrace_events(current);
9719 dump_stack();
9720 #endif
9722 EXPORT_SYMBOL(__might_sleep);
9723 #endif
9725 #ifdef CONFIG_MAGIC_SYSRQ
9726 static void normalize_task(struct rq *rq, struct task_struct *p)
9728 int on_rq;
9730 update_rq_clock(rq);
9731 on_rq = p->se.on_rq;
9732 if (on_rq)
9733 deactivate_task(rq, p, 0);
9734 __setscheduler(rq, p, SCHED_NORMAL, 0);
9735 if (on_rq) {
9736 activate_task(rq, p, 0);
9737 resched_task(rq->curr);
9741 void normalize_rt_tasks(void)
9743 struct task_struct *g, *p;
9744 unsigned long flags;
9745 struct rq *rq;
9747 read_lock_irqsave(&tasklist_lock, flags);
9748 do_each_thread(g, p) {
9750 * Only normalize user tasks:
9752 if (!p->mm)
9753 continue;
9755 p->se.exec_start = 0;
9756 #ifdef CONFIG_SCHEDSTATS
9757 p->se.wait_start = 0;
9758 p->se.sleep_start = 0;
9759 p->se.block_start = 0;
9760 #endif
9762 if (!rt_task(p)) {
9764 * Renice negative nice level userspace
9765 * tasks back to 0:
9767 if (TASK_NICE(p) < 0 && p->mm)
9768 set_user_nice(p, 0);
9769 continue;
9772 spin_lock(&p->pi_lock);
9773 rq = __task_rq_lock(p);
9775 normalize_task(rq, p);
9777 __task_rq_unlock(rq);
9778 spin_unlock(&p->pi_lock);
9779 } while_each_thread(g, p);
9781 read_unlock_irqrestore(&tasklist_lock, flags);
9784 #endif /* CONFIG_MAGIC_SYSRQ */
9786 #ifdef CONFIG_IA64
9788 * These functions are only useful for the IA64 MCA handling.
9790 * They can only be called when the whole system has been
9791 * stopped - every CPU needs to be quiescent, and no scheduling
9792 * activity can take place. Using them for anything else would
9793 * be a serious bug, and as a result, they aren't even visible
9794 * under any other configuration.
9798 * curr_task - return the current task for a given cpu.
9799 * @cpu: the processor in question.
9801 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9803 struct task_struct *curr_task(int cpu)
9805 return cpu_curr(cpu);
9809 * set_curr_task - set the current task for a given cpu.
9810 * @cpu: the processor in question.
9811 * @p: the task pointer to set.
9813 * Description: This function must only be used when non-maskable interrupts
9814 * are serviced on a separate stack. It allows the architecture to switch the
9815 * notion of the current task on a cpu in a non-blocking manner. This function
9816 * must be called with all CPU's synchronized, and interrupts disabled, the
9817 * and caller must save the original value of the current task (see
9818 * curr_task() above) and restore that value before reenabling interrupts and
9819 * re-starting the system.
9821 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9823 void set_curr_task(int cpu, struct task_struct *p)
9825 cpu_curr(cpu) = p;
9828 #endif
9830 #ifdef CONFIG_FAIR_GROUP_SCHED
9831 static void free_fair_sched_group(struct task_group *tg)
9833 int i;
9835 for_each_possible_cpu(i) {
9836 if (tg->cfs_rq)
9837 kfree(tg->cfs_rq[i]);
9838 if (tg->se)
9839 kfree(tg->se[i]);
9842 kfree(tg->cfs_rq);
9843 kfree(tg->se);
9846 static
9847 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9849 struct cfs_rq *cfs_rq;
9850 struct sched_entity *se;
9851 struct rq *rq;
9852 int i;
9854 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9855 if (!tg->cfs_rq)
9856 goto err;
9857 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9858 if (!tg->se)
9859 goto err;
9861 tg->shares = NICE_0_LOAD;
9863 for_each_possible_cpu(i) {
9864 rq = cpu_rq(i);
9866 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9867 GFP_KERNEL, cpu_to_node(i));
9868 if (!cfs_rq)
9869 goto err;
9871 se = kzalloc_node(sizeof(struct sched_entity),
9872 GFP_KERNEL, cpu_to_node(i));
9873 if (!se)
9874 goto err;
9876 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9879 return 1;
9881 err:
9882 return 0;
9885 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9887 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9888 &cpu_rq(cpu)->leaf_cfs_rq_list);
9891 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9893 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9895 #else /* !CONFG_FAIR_GROUP_SCHED */
9896 static inline void free_fair_sched_group(struct task_group *tg)
9900 static inline
9901 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9903 return 1;
9906 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9910 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9913 #endif /* CONFIG_FAIR_GROUP_SCHED */
9915 #ifdef CONFIG_RT_GROUP_SCHED
9916 static void free_rt_sched_group(struct task_group *tg)
9918 int i;
9920 destroy_rt_bandwidth(&tg->rt_bandwidth);
9922 for_each_possible_cpu(i) {
9923 if (tg->rt_rq)
9924 kfree(tg->rt_rq[i]);
9925 if (tg->rt_se)
9926 kfree(tg->rt_se[i]);
9929 kfree(tg->rt_rq);
9930 kfree(tg->rt_se);
9933 static
9934 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9936 struct rt_rq *rt_rq;
9937 struct sched_rt_entity *rt_se;
9938 struct rq *rq;
9939 int i;
9941 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9942 if (!tg->rt_rq)
9943 goto err;
9944 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9945 if (!tg->rt_se)
9946 goto err;
9948 init_rt_bandwidth(&tg->rt_bandwidth,
9949 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9951 for_each_possible_cpu(i) {
9952 rq = cpu_rq(i);
9954 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9955 GFP_KERNEL, cpu_to_node(i));
9956 if (!rt_rq)
9957 goto err;
9959 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9960 GFP_KERNEL, cpu_to_node(i));
9961 if (!rt_se)
9962 goto err;
9964 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9967 return 1;
9969 err:
9970 return 0;
9973 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9975 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9976 &cpu_rq(cpu)->leaf_rt_rq_list);
9979 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9981 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9983 #else /* !CONFIG_RT_GROUP_SCHED */
9984 static inline void free_rt_sched_group(struct task_group *tg)
9988 static inline
9989 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9991 return 1;
9994 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9998 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10001 #endif /* CONFIG_RT_GROUP_SCHED */
10003 #ifdef CONFIG_GROUP_SCHED
10004 static void free_sched_group(struct task_group *tg)
10006 free_fair_sched_group(tg);
10007 free_rt_sched_group(tg);
10008 kfree(tg);
10011 /* allocate runqueue etc for a new task group */
10012 struct task_group *sched_create_group(struct task_group *parent)
10014 struct task_group *tg;
10015 unsigned long flags;
10016 int i;
10018 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10019 if (!tg)
10020 return ERR_PTR(-ENOMEM);
10022 if (!alloc_fair_sched_group(tg, parent))
10023 goto err;
10025 if (!alloc_rt_sched_group(tg, parent))
10026 goto err;
10028 spin_lock_irqsave(&task_group_lock, flags);
10029 for_each_possible_cpu(i) {
10030 register_fair_sched_group(tg, i);
10031 register_rt_sched_group(tg, i);
10033 list_add_rcu(&tg->list, &task_groups);
10035 WARN_ON(!parent); /* root should already exist */
10037 tg->parent = parent;
10038 INIT_LIST_HEAD(&tg->children);
10039 list_add_rcu(&tg->siblings, &parent->children);
10040 spin_unlock_irqrestore(&task_group_lock, flags);
10042 return tg;
10044 err:
10045 free_sched_group(tg);
10046 return ERR_PTR(-ENOMEM);
10049 /* rcu callback to free various structures associated with a task group */
10050 static void free_sched_group_rcu(struct rcu_head *rhp)
10052 /* now it should be safe to free those cfs_rqs */
10053 free_sched_group(container_of(rhp, struct task_group, rcu));
10056 /* Destroy runqueue etc associated with a task group */
10057 void sched_destroy_group(struct task_group *tg)
10059 unsigned long flags;
10060 int i;
10062 spin_lock_irqsave(&task_group_lock, flags);
10063 for_each_possible_cpu(i) {
10064 unregister_fair_sched_group(tg, i);
10065 unregister_rt_sched_group(tg, i);
10067 list_del_rcu(&tg->list);
10068 list_del_rcu(&tg->siblings);
10069 spin_unlock_irqrestore(&task_group_lock, flags);
10071 /* wait for possible concurrent references to cfs_rqs complete */
10072 call_rcu(&tg->rcu, free_sched_group_rcu);
10075 /* change task's runqueue when it moves between groups.
10076 * The caller of this function should have put the task in its new group
10077 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10078 * reflect its new group.
10080 void sched_move_task(struct task_struct *tsk)
10082 int on_rq, running;
10083 unsigned long flags;
10084 struct rq *rq;
10086 rq = task_rq_lock(tsk, &flags);
10088 update_rq_clock(rq);
10090 running = task_current(rq, tsk);
10091 on_rq = tsk->se.on_rq;
10093 if (on_rq)
10094 dequeue_task(rq, tsk, 0);
10095 if (unlikely(running))
10096 tsk->sched_class->put_prev_task(rq, tsk);
10098 set_task_rq(tsk, task_cpu(tsk));
10100 #ifdef CONFIG_FAIR_GROUP_SCHED
10101 if (tsk->sched_class->moved_group)
10102 tsk->sched_class->moved_group(tsk);
10103 #endif
10105 if (unlikely(running))
10106 tsk->sched_class->set_curr_task(rq);
10107 if (on_rq)
10108 enqueue_task(rq, tsk, 0);
10110 task_rq_unlock(rq, &flags);
10112 #endif /* CONFIG_GROUP_SCHED */
10114 #ifdef CONFIG_FAIR_GROUP_SCHED
10115 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10117 struct cfs_rq *cfs_rq = se->cfs_rq;
10118 int on_rq;
10120 on_rq = se->on_rq;
10121 if (on_rq)
10122 dequeue_entity(cfs_rq, se, 0);
10124 se->load.weight = shares;
10125 se->load.inv_weight = 0;
10127 if (on_rq)
10128 enqueue_entity(cfs_rq, se, 0);
10131 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10133 struct cfs_rq *cfs_rq = se->cfs_rq;
10134 struct rq *rq = cfs_rq->rq;
10135 unsigned long flags;
10137 spin_lock_irqsave(&rq->lock, flags);
10138 __set_se_shares(se, shares);
10139 spin_unlock_irqrestore(&rq->lock, flags);
10142 static DEFINE_MUTEX(shares_mutex);
10144 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10146 int i;
10147 unsigned long flags;
10150 * We can't change the weight of the root cgroup.
10152 if (!tg->se[0])
10153 return -EINVAL;
10155 if (shares < MIN_SHARES)
10156 shares = MIN_SHARES;
10157 else if (shares > MAX_SHARES)
10158 shares = MAX_SHARES;
10160 mutex_lock(&shares_mutex);
10161 if (tg->shares == shares)
10162 goto done;
10164 spin_lock_irqsave(&task_group_lock, flags);
10165 for_each_possible_cpu(i)
10166 unregister_fair_sched_group(tg, i);
10167 list_del_rcu(&tg->siblings);
10168 spin_unlock_irqrestore(&task_group_lock, flags);
10170 /* wait for any ongoing reference to this group to finish */
10171 synchronize_sched();
10174 * Now we are free to modify the group's share on each cpu
10175 * w/o tripping rebalance_share or load_balance_fair.
10177 tg->shares = shares;
10178 for_each_possible_cpu(i) {
10180 * force a rebalance
10182 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10183 set_se_shares(tg->se[i], shares);
10187 * Enable load balance activity on this group, by inserting it back on
10188 * each cpu's rq->leaf_cfs_rq_list.
10190 spin_lock_irqsave(&task_group_lock, flags);
10191 for_each_possible_cpu(i)
10192 register_fair_sched_group(tg, i);
10193 list_add_rcu(&tg->siblings, &tg->parent->children);
10194 spin_unlock_irqrestore(&task_group_lock, flags);
10195 done:
10196 mutex_unlock(&shares_mutex);
10197 return 0;
10200 unsigned long sched_group_shares(struct task_group *tg)
10202 return tg->shares;
10204 #endif
10206 #ifdef CONFIG_RT_GROUP_SCHED
10208 * Ensure that the real time constraints are schedulable.
10210 static DEFINE_MUTEX(rt_constraints_mutex);
10212 static unsigned long to_ratio(u64 period, u64 runtime)
10214 if (runtime == RUNTIME_INF)
10215 return 1ULL << 20;
10217 return div64_u64(runtime << 20, period);
10220 /* Must be called with tasklist_lock held */
10221 static inline int tg_has_rt_tasks(struct task_group *tg)
10223 struct task_struct *g, *p;
10225 do_each_thread(g, p) {
10226 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10227 return 1;
10228 } while_each_thread(g, p);
10230 return 0;
10233 struct rt_schedulable_data {
10234 struct task_group *tg;
10235 u64 rt_period;
10236 u64 rt_runtime;
10239 static int tg_schedulable(struct task_group *tg, void *data)
10241 struct rt_schedulable_data *d = data;
10242 struct task_group *child;
10243 unsigned long total, sum = 0;
10244 u64 period, runtime;
10246 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10247 runtime = tg->rt_bandwidth.rt_runtime;
10249 if (tg == d->tg) {
10250 period = d->rt_period;
10251 runtime = d->rt_runtime;
10254 #ifdef CONFIG_USER_SCHED
10255 if (tg == &root_task_group) {
10256 period = global_rt_period();
10257 runtime = global_rt_runtime();
10259 #endif
10262 * Cannot have more runtime than the period.
10264 if (runtime > period && runtime != RUNTIME_INF)
10265 return -EINVAL;
10268 * Ensure we don't starve existing RT tasks.
10270 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10271 return -EBUSY;
10273 total = to_ratio(period, runtime);
10276 * Nobody can have more than the global setting allows.
10278 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10279 return -EINVAL;
10282 * The sum of our children's runtime should not exceed our own.
10284 list_for_each_entry_rcu(child, &tg->children, siblings) {
10285 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10286 runtime = child->rt_bandwidth.rt_runtime;
10288 if (child == d->tg) {
10289 period = d->rt_period;
10290 runtime = d->rt_runtime;
10293 sum += to_ratio(period, runtime);
10296 if (sum > total)
10297 return -EINVAL;
10299 return 0;
10302 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10304 struct rt_schedulable_data data = {
10305 .tg = tg,
10306 .rt_period = period,
10307 .rt_runtime = runtime,
10310 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10313 static int tg_set_bandwidth(struct task_group *tg,
10314 u64 rt_period, u64 rt_runtime)
10316 int i, err = 0;
10318 mutex_lock(&rt_constraints_mutex);
10319 read_lock(&tasklist_lock);
10320 err = __rt_schedulable(tg, rt_period, rt_runtime);
10321 if (err)
10322 goto unlock;
10324 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10325 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10326 tg->rt_bandwidth.rt_runtime = rt_runtime;
10328 for_each_possible_cpu(i) {
10329 struct rt_rq *rt_rq = tg->rt_rq[i];
10331 spin_lock(&rt_rq->rt_runtime_lock);
10332 rt_rq->rt_runtime = rt_runtime;
10333 spin_unlock(&rt_rq->rt_runtime_lock);
10335 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10336 unlock:
10337 read_unlock(&tasklist_lock);
10338 mutex_unlock(&rt_constraints_mutex);
10340 return err;
10343 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10345 u64 rt_runtime, rt_period;
10347 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10348 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10349 if (rt_runtime_us < 0)
10350 rt_runtime = RUNTIME_INF;
10352 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10355 long sched_group_rt_runtime(struct task_group *tg)
10357 u64 rt_runtime_us;
10359 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10360 return -1;
10362 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10363 do_div(rt_runtime_us, NSEC_PER_USEC);
10364 return rt_runtime_us;
10367 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10369 u64 rt_runtime, rt_period;
10371 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10372 rt_runtime = tg->rt_bandwidth.rt_runtime;
10374 if (rt_period == 0)
10375 return -EINVAL;
10377 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10380 long sched_group_rt_period(struct task_group *tg)
10382 u64 rt_period_us;
10384 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10385 do_div(rt_period_us, NSEC_PER_USEC);
10386 return rt_period_us;
10389 static int sched_rt_global_constraints(void)
10391 u64 runtime, period;
10392 int ret = 0;
10394 if (sysctl_sched_rt_period <= 0)
10395 return -EINVAL;
10397 runtime = global_rt_runtime();
10398 period = global_rt_period();
10401 * Sanity check on the sysctl variables.
10403 if (runtime > period && runtime != RUNTIME_INF)
10404 return -EINVAL;
10406 mutex_lock(&rt_constraints_mutex);
10407 read_lock(&tasklist_lock);
10408 ret = __rt_schedulable(NULL, 0, 0);
10409 read_unlock(&tasklist_lock);
10410 mutex_unlock(&rt_constraints_mutex);
10412 return ret;
10415 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10417 /* Don't accept realtime tasks when there is no way for them to run */
10418 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10419 return 0;
10421 return 1;
10424 #else /* !CONFIG_RT_GROUP_SCHED */
10425 static int sched_rt_global_constraints(void)
10427 unsigned long flags;
10428 int i;
10430 if (sysctl_sched_rt_period <= 0)
10431 return -EINVAL;
10434 * There's always some RT tasks in the root group
10435 * -- migration, kstopmachine etc..
10437 if (sysctl_sched_rt_runtime == 0)
10438 return -EBUSY;
10440 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10441 for_each_possible_cpu(i) {
10442 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10444 spin_lock(&rt_rq->rt_runtime_lock);
10445 rt_rq->rt_runtime = global_rt_runtime();
10446 spin_unlock(&rt_rq->rt_runtime_lock);
10448 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10450 return 0;
10452 #endif /* CONFIG_RT_GROUP_SCHED */
10454 int sched_rt_handler(struct ctl_table *table, int write,
10455 void __user *buffer, size_t *lenp,
10456 loff_t *ppos)
10458 int ret;
10459 int old_period, old_runtime;
10460 static DEFINE_MUTEX(mutex);
10462 mutex_lock(&mutex);
10463 old_period = sysctl_sched_rt_period;
10464 old_runtime = sysctl_sched_rt_runtime;
10466 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10468 if (!ret && write) {
10469 ret = sched_rt_global_constraints();
10470 if (ret) {
10471 sysctl_sched_rt_period = old_period;
10472 sysctl_sched_rt_runtime = old_runtime;
10473 } else {
10474 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10475 def_rt_bandwidth.rt_period =
10476 ns_to_ktime(global_rt_period());
10479 mutex_unlock(&mutex);
10481 return ret;
10484 #ifdef CONFIG_CGROUP_SCHED
10486 /* return corresponding task_group object of a cgroup */
10487 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10489 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10490 struct task_group, css);
10493 static struct cgroup_subsys_state *
10494 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10496 struct task_group *tg, *parent;
10498 if (!cgrp->parent) {
10499 /* This is early initialization for the top cgroup */
10500 return &init_task_group.css;
10503 parent = cgroup_tg(cgrp->parent);
10504 tg = sched_create_group(parent);
10505 if (IS_ERR(tg))
10506 return ERR_PTR(-ENOMEM);
10508 return &tg->css;
10511 static void
10512 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10514 struct task_group *tg = cgroup_tg(cgrp);
10516 sched_destroy_group(tg);
10519 static int
10520 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10522 #ifdef CONFIG_RT_GROUP_SCHED
10523 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10524 return -EINVAL;
10525 #else
10526 /* We don't support RT-tasks being in separate groups */
10527 if (tsk->sched_class != &fair_sched_class)
10528 return -EINVAL;
10529 #endif
10530 return 0;
10533 static int
10534 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10535 struct task_struct *tsk, bool threadgroup)
10537 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10538 if (retval)
10539 return retval;
10540 if (threadgroup) {
10541 struct task_struct *c;
10542 rcu_read_lock();
10543 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10544 retval = cpu_cgroup_can_attach_task(cgrp, c);
10545 if (retval) {
10546 rcu_read_unlock();
10547 return retval;
10550 rcu_read_unlock();
10552 return 0;
10555 static void
10556 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10557 struct cgroup *old_cont, struct task_struct *tsk,
10558 bool threadgroup)
10560 sched_move_task(tsk);
10561 if (threadgroup) {
10562 struct task_struct *c;
10563 rcu_read_lock();
10564 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10565 sched_move_task(c);
10567 rcu_read_unlock();
10571 #ifdef CONFIG_FAIR_GROUP_SCHED
10572 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10573 u64 shareval)
10575 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10578 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10580 struct task_group *tg = cgroup_tg(cgrp);
10582 return (u64) tg->shares;
10584 #endif /* CONFIG_FAIR_GROUP_SCHED */
10586 #ifdef CONFIG_RT_GROUP_SCHED
10587 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10588 s64 val)
10590 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10593 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10595 return sched_group_rt_runtime(cgroup_tg(cgrp));
10598 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10599 u64 rt_period_us)
10601 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10604 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10606 return sched_group_rt_period(cgroup_tg(cgrp));
10608 #endif /* CONFIG_RT_GROUP_SCHED */
10610 static struct cftype cpu_files[] = {
10611 #ifdef CONFIG_FAIR_GROUP_SCHED
10613 .name = "shares",
10614 .read_u64 = cpu_shares_read_u64,
10615 .write_u64 = cpu_shares_write_u64,
10617 #endif
10618 #ifdef CONFIG_RT_GROUP_SCHED
10620 .name = "rt_runtime_us",
10621 .read_s64 = cpu_rt_runtime_read,
10622 .write_s64 = cpu_rt_runtime_write,
10625 .name = "rt_period_us",
10626 .read_u64 = cpu_rt_period_read_uint,
10627 .write_u64 = cpu_rt_period_write_uint,
10629 #endif
10632 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10634 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10637 struct cgroup_subsys cpu_cgroup_subsys = {
10638 .name = "cpu",
10639 .create = cpu_cgroup_create,
10640 .destroy = cpu_cgroup_destroy,
10641 .can_attach = cpu_cgroup_can_attach,
10642 .attach = cpu_cgroup_attach,
10643 .populate = cpu_cgroup_populate,
10644 .subsys_id = cpu_cgroup_subsys_id,
10645 .early_init = 1,
10648 #endif /* CONFIG_CGROUP_SCHED */
10650 #ifdef CONFIG_CGROUP_CPUACCT
10653 * CPU accounting code for task groups.
10655 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10656 * (balbir@in.ibm.com).
10659 /* track cpu usage of a group of tasks and its child groups */
10660 struct cpuacct {
10661 struct cgroup_subsys_state css;
10662 /* cpuusage holds pointer to a u64-type object on every cpu */
10663 u64 *cpuusage;
10664 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10665 struct cpuacct *parent;
10668 struct cgroup_subsys cpuacct_subsys;
10670 /* return cpu accounting group corresponding to this container */
10671 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10673 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10674 struct cpuacct, css);
10677 /* return cpu accounting group to which this task belongs */
10678 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10680 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10681 struct cpuacct, css);
10684 /* create a new cpu accounting group */
10685 static struct cgroup_subsys_state *cpuacct_create(
10686 struct cgroup_subsys *ss, struct cgroup *cgrp)
10688 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10689 int i;
10691 if (!ca)
10692 goto out;
10694 ca->cpuusage = alloc_percpu(u64);
10695 if (!ca->cpuusage)
10696 goto out_free_ca;
10698 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10699 if (percpu_counter_init(&ca->cpustat[i], 0))
10700 goto out_free_counters;
10702 if (cgrp->parent)
10703 ca->parent = cgroup_ca(cgrp->parent);
10705 return &ca->css;
10707 out_free_counters:
10708 while (--i >= 0)
10709 percpu_counter_destroy(&ca->cpustat[i]);
10710 free_percpu(ca->cpuusage);
10711 out_free_ca:
10712 kfree(ca);
10713 out:
10714 return ERR_PTR(-ENOMEM);
10717 /* destroy an existing cpu accounting group */
10718 static void
10719 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10721 struct cpuacct *ca = cgroup_ca(cgrp);
10722 int i;
10724 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10725 percpu_counter_destroy(&ca->cpustat[i]);
10726 free_percpu(ca->cpuusage);
10727 kfree(ca);
10730 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10732 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10733 u64 data;
10735 #ifndef CONFIG_64BIT
10737 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10739 spin_lock_irq(&cpu_rq(cpu)->lock);
10740 data = *cpuusage;
10741 spin_unlock_irq(&cpu_rq(cpu)->lock);
10742 #else
10743 data = *cpuusage;
10744 #endif
10746 return data;
10749 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10751 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10753 #ifndef CONFIG_64BIT
10755 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10757 spin_lock_irq(&cpu_rq(cpu)->lock);
10758 *cpuusage = val;
10759 spin_unlock_irq(&cpu_rq(cpu)->lock);
10760 #else
10761 *cpuusage = val;
10762 #endif
10765 /* return total cpu usage (in nanoseconds) of a group */
10766 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10768 struct cpuacct *ca = cgroup_ca(cgrp);
10769 u64 totalcpuusage = 0;
10770 int i;
10772 for_each_present_cpu(i)
10773 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10775 return totalcpuusage;
10778 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10779 u64 reset)
10781 struct cpuacct *ca = cgroup_ca(cgrp);
10782 int err = 0;
10783 int i;
10785 if (reset) {
10786 err = -EINVAL;
10787 goto out;
10790 for_each_present_cpu(i)
10791 cpuacct_cpuusage_write(ca, i, 0);
10793 out:
10794 return err;
10797 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10798 struct seq_file *m)
10800 struct cpuacct *ca = cgroup_ca(cgroup);
10801 u64 percpu;
10802 int i;
10804 for_each_present_cpu(i) {
10805 percpu = cpuacct_cpuusage_read(ca, i);
10806 seq_printf(m, "%llu ", (unsigned long long) percpu);
10808 seq_printf(m, "\n");
10809 return 0;
10812 static const char *cpuacct_stat_desc[] = {
10813 [CPUACCT_STAT_USER] = "user",
10814 [CPUACCT_STAT_SYSTEM] = "system",
10817 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10818 struct cgroup_map_cb *cb)
10820 struct cpuacct *ca = cgroup_ca(cgrp);
10821 int i;
10823 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10824 s64 val = percpu_counter_read(&ca->cpustat[i]);
10825 val = cputime64_to_clock_t(val);
10826 cb->fill(cb, cpuacct_stat_desc[i], val);
10828 return 0;
10831 static struct cftype files[] = {
10833 .name = "usage",
10834 .read_u64 = cpuusage_read,
10835 .write_u64 = cpuusage_write,
10838 .name = "usage_percpu",
10839 .read_seq_string = cpuacct_percpu_seq_read,
10842 .name = "stat",
10843 .read_map = cpuacct_stats_show,
10847 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10849 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10853 * charge this task's execution time to its accounting group.
10855 * called with rq->lock held.
10857 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10859 struct cpuacct *ca;
10860 int cpu;
10862 if (unlikely(!cpuacct_subsys.active))
10863 return;
10865 cpu = task_cpu(tsk);
10867 rcu_read_lock();
10869 ca = task_ca(tsk);
10871 for (; ca; ca = ca->parent) {
10872 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10873 *cpuusage += cputime;
10876 rcu_read_unlock();
10880 * Charge the system/user time to the task's accounting group.
10882 static void cpuacct_update_stats(struct task_struct *tsk,
10883 enum cpuacct_stat_index idx, cputime_t val)
10885 struct cpuacct *ca;
10887 if (unlikely(!cpuacct_subsys.active))
10888 return;
10890 rcu_read_lock();
10891 ca = task_ca(tsk);
10893 do {
10894 percpu_counter_add(&ca->cpustat[idx], val);
10895 ca = ca->parent;
10896 } while (ca);
10897 rcu_read_unlock();
10900 struct cgroup_subsys cpuacct_subsys = {
10901 .name = "cpuacct",
10902 .create = cpuacct_create,
10903 .destroy = cpuacct_destroy,
10904 .populate = cpuacct_populate,
10905 .subsys_id = cpuacct_subsys_id,
10907 #endif /* CONFIG_CGROUP_CPUACCT */
10909 #ifndef CONFIG_SMP
10911 int rcu_expedited_torture_stats(char *page)
10913 return 0;
10915 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10917 void synchronize_sched_expedited(void)
10920 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10922 #else /* #ifndef CONFIG_SMP */
10924 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10925 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10927 #define RCU_EXPEDITED_STATE_POST -2
10928 #define RCU_EXPEDITED_STATE_IDLE -1
10930 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10932 int rcu_expedited_torture_stats(char *page)
10934 int cnt = 0;
10935 int cpu;
10937 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10938 for_each_online_cpu(cpu) {
10939 cnt += sprintf(&page[cnt], " %d:%d",
10940 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10942 cnt += sprintf(&page[cnt], "\n");
10943 return cnt;
10945 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10947 static long synchronize_sched_expedited_count;
10950 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10951 * approach to force grace period to end quickly. This consumes
10952 * significant time on all CPUs, and is thus not recommended for
10953 * any sort of common-case code.
10955 * Note that it is illegal to call this function while holding any
10956 * lock that is acquired by a CPU-hotplug notifier. Failing to
10957 * observe this restriction will result in deadlock.
10959 void synchronize_sched_expedited(void)
10961 int cpu;
10962 unsigned long flags;
10963 bool need_full_sync = 0;
10964 struct rq *rq;
10965 struct migration_req *req;
10966 long snap;
10967 int trycount = 0;
10969 smp_mb(); /* ensure prior mod happens before capturing snap. */
10970 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10971 get_online_cpus();
10972 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10973 put_online_cpus();
10974 if (trycount++ < 10)
10975 udelay(trycount * num_online_cpus());
10976 else {
10977 synchronize_sched();
10978 return;
10980 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10981 smp_mb(); /* ensure test happens before caller kfree */
10982 return;
10984 get_online_cpus();
10986 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10987 for_each_online_cpu(cpu) {
10988 rq = cpu_rq(cpu);
10989 req = &per_cpu(rcu_migration_req, cpu);
10990 init_completion(&req->done);
10991 req->task = NULL;
10992 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10993 spin_lock_irqsave(&rq->lock, flags);
10994 list_add(&req->list, &rq->migration_queue);
10995 spin_unlock_irqrestore(&rq->lock, flags);
10996 wake_up_process(rq->migration_thread);
10998 for_each_online_cpu(cpu) {
10999 rcu_expedited_state = cpu;
11000 req = &per_cpu(rcu_migration_req, cpu);
11001 rq = cpu_rq(cpu);
11002 wait_for_completion(&req->done);
11003 spin_lock_irqsave(&rq->lock, flags);
11004 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11005 need_full_sync = 1;
11006 req->dest_cpu = RCU_MIGRATION_IDLE;
11007 spin_unlock_irqrestore(&rq->lock, flags);
11009 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11010 mutex_unlock(&rcu_sched_expedited_mutex);
11011 put_online_cpus();
11012 if (need_full_sync)
11013 synchronize_sched();
11015 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11017 #endif /* #else #ifndef CONFIG_SMP */