ACPI: thinkpad-acpi: update fan firmware documentation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / log2.h
blobd02e1a547a7e9deb1e8bc21857780bdc2c7693c0
1 /* Integer base 2 logarithm calculation
3 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #ifndef _LINUX_LOG2_H
13 #define _LINUX_LOG2_H
15 #include <linux/types.h>
16 #include <linux/bitops.h>
19 * deal with unrepresentable constant logarithms
21 extern __attribute__((const, noreturn))
22 int ____ilog2_NaN(void);
25 * non-constant log of base 2 calculators
26 * - the arch may override these in asm/bitops.h if they can be implemented
27 * more efficiently than using fls() and fls64()
28 * - the arch is not required to handle n==0 if implementing the fallback
30 #ifndef CONFIG_ARCH_HAS_ILOG2_U32
31 static inline __attribute__((const))
32 int __ilog2_u32(u32 n)
34 return fls(n) - 1;
36 #endif
38 #ifndef CONFIG_ARCH_HAS_ILOG2_U64
39 static inline __attribute__((const))
40 int __ilog2_u64(u64 n)
42 return fls64(n) - 1;
44 #endif
47 * round up to nearest power of two
49 static inline __attribute__((const))
50 unsigned long __roundup_pow_of_two(unsigned long n)
52 return 1UL << fls_long(n - 1);
55 /**
56 * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
57 * @n - parameter
59 * constant-capable log of base 2 calculation
60 * - this can be used to initialise global variables from constant data, hence
61 * the massive ternary operator construction
63 * selects the appropriately-sized optimised version depending on sizeof(n)
65 #define ilog2(n) \
66 ( \
67 __builtin_constant_p(n) ? ( \
68 (n) < 1 ? ____ilog2_NaN() : \
69 (n) & (1ULL << 63) ? 63 : \
70 (n) & (1ULL << 62) ? 62 : \
71 (n) & (1ULL << 61) ? 61 : \
72 (n) & (1ULL << 60) ? 60 : \
73 (n) & (1ULL << 59) ? 59 : \
74 (n) & (1ULL << 58) ? 58 : \
75 (n) & (1ULL << 57) ? 57 : \
76 (n) & (1ULL << 56) ? 56 : \
77 (n) & (1ULL << 55) ? 55 : \
78 (n) & (1ULL << 54) ? 54 : \
79 (n) & (1ULL << 53) ? 53 : \
80 (n) & (1ULL << 52) ? 52 : \
81 (n) & (1ULL << 51) ? 51 : \
82 (n) & (1ULL << 50) ? 50 : \
83 (n) & (1ULL << 49) ? 49 : \
84 (n) & (1ULL << 48) ? 48 : \
85 (n) & (1ULL << 47) ? 47 : \
86 (n) & (1ULL << 46) ? 46 : \
87 (n) & (1ULL << 45) ? 45 : \
88 (n) & (1ULL << 44) ? 44 : \
89 (n) & (1ULL << 43) ? 43 : \
90 (n) & (1ULL << 42) ? 42 : \
91 (n) & (1ULL << 41) ? 41 : \
92 (n) & (1ULL << 40) ? 40 : \
93 (n) & (1ULL << 39) ? 39 : \
94 (n) & (1ULL << 38) ? 38 : \
95 (n) & (1ULL << 37) ? 37 : \
96 (n) & (1ULL << 36) ? 36 : \
97 (n) & (1ULL << 35) ? 35 : \
98 (n) & (1ULL << 34) ? 34 : \
99 (n) & (1ULL << 33) ? 33 : \
100 (n) & (1ULL << 32) ? 32 : \
101 (n) & (1ULL << 31) ? 31 : \
102 (n) & (1ULL << 30) ? 30 : \
103 (n) & (1ULL << 29) ? 29 : \
104 (n) & (1ULL << 28) ? 28 : \
105 (n) & (1ULL << 27) ? 27 : \
106 (n) & (1ULL << 26) ? 26 : \
107 (n) & (1ULL << 25) ? 25 : \
108 (n) & (1ULL << 24) ? 24 : \
109 (n) & (1ULL << 23) ? 23 : \
110 (n) & (1ULL << 22) ? 22 : \
111 (n) & (1ULL << 21) ? 21 : \
112 (n) & (1ULL << 20) ? 20 : \
113 (n) & (1ULL << 19) ? 19 : \
114 (n) & (1ULL << 18) ? 18 : \
115 (n) & (1ULL << 17) ? 17 : \
116 (n) & (1ULL << 16) ? 16 : \
117 (n) & (1ULL << 15) ? 15 : \
118 (n) & (1ULL << 14) ? 14 : \
119 (n) & (1ULL << 13) ? 13 : \
120 (n) & (1ULL << 12) ? 12 : \
121 (n) & (1ULL << 11) ? 11 : \
122 (n) & (1ULL << 10) ? 10 : \
123 (n) & (1ULL << 9) ? 9 : \
124 (n) & (1ULL << 8) ? 8 : \
125 (n) & (1ULL << 7) ? 7 : \
126 (n) & (1ULL << 6) ? 6 : \
127 (n) & (1ULL << 5) ? 5 : \
128 (n) & (1ULL << 4) ? 4 : \
129 (n) & (1ULL << 3) ? 3 : \
130 (n) & (1ULL << 2) ? 2 : \
131 (n) & (1ULL << 1) ? 1 : \
132 (n) & (1ULL << 0) ? 0 : \
133 ____ilog2_NaN() \
134 ) : \
135 (sizeof(n) <= 4) ? \
136 __ilog2_u32(n) : \
137 __ilog2_u64(n) \
141 * roundup_pow_of_two - round the given value up to nearest power of two
142 * @n - parameter
144 * round the given balue up to the nearest power of two
145 * - the result is undefined when n == 0
146 * - this can be used to initialise global variables from constant data
148 #define roundup_pow_of_two(n) \
150 __builtin_constant_p(n) ? ( \
151 (n == 1) ? 0 : \
152 (1UL << (ilog2((n) - 1) + 1)) \
153 ) : \
154 __roundup_pow_of_two(n) \
157 #endif /* _LINUX_LOG2_H */