2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
61 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
67 .index
= CLOCK_REALTIME
,
68 .get_time
= &ktime_get_real
,
69 .resolution
= KTIME_LOW_RES
,
72 .index
= CLOCK_MONOTONIC
,
73 .get_time
= &ktime_get
,
74 .resolution
= KTIME_LOW_RES
,
77 .index
= CLOCK_BOOTTIME
,
78 .get_time
= &ktime_get_boottime
,
79 .resolution
= KTIME_LOW_RES
,
84 static int hrtimer_clock_to_base_table
[MAX_CLOCKS
];
86 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
88 return hrtimer_clock_to_base_table
[clock_id
];
93 * Get the coarse grained time at the softirq based on xtime and
96 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
98 ktime_t xtim
, mono
, boot
;
99 struct timespec xts
, tom
, slp
;
101 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
103 xtim
= timespec_to_ktime(xts
);
104 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
105 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
106 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
107 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
108 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
112 * Functions and macros which are different for UP/SMP systems are kept in a
118 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
119 * means that all timers which are tied to this base via timer->base are
120 * locked, and the base itself is locked too.
122 * So __run_timers/migrate_timers can safely modify all timers which could
123 * be found on the lists/queues.
125 * When the timer's base is locked, and the timer removed from list, it is
126 * possible to set timer->base = NULL and drop the lock: the timer remains
130 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
131 unsigned long *flags
)
133 struct hrtimer_clock_base
*base
;
137 if (likely(base
!= NULL
)) {
138 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
139 if (likely(base
== timer
->base
))
141 /* The timer has migrated to another CPU: */
142 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
150 * Get the preferred target CPU for NOHZ
152 static int hrtimer_get_target(int this_cpu
, int pinned
)
155 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
156 return get_nohz_timer_target();
162 * With HIGHRES=y we do not migrate the timer when it is expiring
163 * before the next event on the target cpu because we cannot reprogram
164 * the target cpu hardware and we would cause it to fire late.
166 * Called with cpu_base->lock of target cpu held.
169 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
171 #ifdef CONFIG_HIGH_RES_TIMERS
174 if (!new_base
->cpu_base
->hres_active
)
177 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
178 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
185 * Switch the timer base to the current CPU when possible.
187 static inline struct hrtimer_clock_base
*
188 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
191 struct hrtimer_clock_base
*new_base
;
192 struct hrtimer_cpu_base
*new_cpu_base
;
193 int this_cpu
= smp_processor_id();
194 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
195 int basenum
= hrtimer_clockid_to_base(base
->index
);
198 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
199 new_base
= &new_cpu_base
->clock_base
[basenum
];
201 if (base
!= new_base
) {
203 * We are trying to move timer to new_base.
204 * However we can't change timer's base while it is running,
205 * so we keep it on the same CPU. No hassle vs. reprogramming
206 * the event source in the high resolution case. The softirq
207 * code will take care of this when the timer function has
208 * completed. There is no conflict as we hold the lock until
209 * the timer is enqueued.
211 if (unlikely(hrtimer_callback_running(timer
)))
214 /* See the comment in lock_timer_base() */
216 raw_spin_unlock(&base
->cpu_base
->lock
);
217 raw_spin_lock(&new_base
->cpu_base
->lock
);
219 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
221 raw_spin_unlock(&new_base
->cpu_base
->lock
);
222 raw_spin_lock(&base
->cpu_base
->lock
);
226 timer
->base
= new_base
;
231 #else /* CONFIG_SMP */
233 static inline struct hrtimer_clock_base
*
234 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
236 struct hrtimer_clock_base
*base
= timer
->base
;
238 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
243 # define switch_hrtimer_base(t, b, p) (b)
245 #endif /* !CONFIG_SMP */
248 * Functions for the union type storage format of ktime_t which are
249 * too large for inlining:
251 #if BITS_PER_LONG < 64
252 # ifndef CONFIG_KTIME_SCALAR
254 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
256 * @nsec: the scalar nsec value to add
258 * Returns the sum of kt and nsec in ktime_t format
260 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
264 if (likely(nsec
< NSEC_PER_SEC
)) {
267 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
269 tmp
= ktime_set((long)nsec
, rem
);
272 return ktime_add(kt
, tmp
);
275 EXPORT_SYMBOL_GPL(ktime_add_ns
);
278 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
280 * @nsec: the scalar nsec value to subtract
282 * Returns the subtraction of @nsec from @kt in ktime_t format
284 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
288 if (likely(nsec
< NSEC_PER_SEC
)) {
291 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
293 tmp
= ktime_set((long)nsec
, rem
);
296 return ktime_sub(kt
, tmp
);
299 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
300 # endif /* !CONFIG_KTIME_SCALAR */
303 * Divide a ktime value by a nanosecond value
305 u64
ktime_divns(const ktime_t kt
, s64 div
)
310 dclc
= ktime_to_ns(kt
);
311 /* Make sure the divisor is less than 2^32: */
317 do_div(dclc
, (unsigned long) div
);
321 #endif /* BITS_PER_LONG >= 64 */
324 * Add two ktime values and do a safety check for overflow:
326 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
328 ktime_t res
= ktime_add(lhs
, rhs
);
331 * We use KTIME_SEC_MAX here, the maximum timeout which we can
332 * return to user space in a timespec:
334 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
335 res
= ktime_set(KTIME_SEC_MAX
, 0);
340 EXPORT_SYMBOL_GPL(ktime_add_safe
);
342 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 static struct debug_obj_descr hrtimer_debug_descr
;
346 static void *hrtimer_debug_hint(void *addr
)
348 return ((struct hrtimer
*) addr
)->function
;
352 * fixup_init is called when:
353 * - an active object is initialized
355 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
357 struct hrtimer
*timer
= addr
;
360 case ODEBUG_STATE_ACTIVE
:
361 hrtimer_cancel(timer
);
362 debug_object_init(timer
, &hrtimer_debug_descr
);
370 * fixup_activate is called when:
371 * - an active object is activated
372 * - an unknown object is activated (might be a statically initialized object)
374 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
378 case ODEBUG_STATE_NOTAVAILABLE
:
382 case ODEBUG_STATE_ACTIVE
:
391 * fixup_free is called when:
392 * - an active object is freed
394 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
396 struct hrtimer
*timer
= addr
;
399 case ODEBUG_STATE_ACTIVE
:
400 hrtimer_cancel(timer
);
401 debug_object_free(timer
, &hrtimer_debug_descr
);
408 static struct debug_obj_descr hrtimer_debug_descr
= {
410 .debug_hint
= hrtimer_debug_hint
,
411 .fixup_init
= hrtimer_fixup_init
,
412 .fixup_activate
= hrtimer_fixup_activate
,
413 .fixup_free
= hrtimer_fixup_free
,
416 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
418 debug_object_init(timer
, &hrtimer_debug_descr
);
421 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
423 debug_object_activate(timer
, &hrtimer_debug_descr
);
426 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
428 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
431 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
433 debug_object_free(timer
, &hrtimer_debug_descr
);
436 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
437 enum hrtimer_mode mode
);
439 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
440 enum hrtimer_mode mode
)
442 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
443 __hrtimer_init(timer
, clock_id
, mode
);
445 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
447 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
449 debug_object_free(timer
, &hrtimer_debug_descr
);
453 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
454 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
455 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
459 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
460 enum hrtimer_mode mode
)
462 debug_hrtimer_init(timer
);
463 trace_hrtimer_init(timer
, clockid
, mode
);
466 static inline void debug_activate(struct hrtimer
*timer
)
468 debug_hrtimer_activate(timer
);
469 trace_hrtimer_start(timer
);
472 static inline void debug_deactivate(struct hrtimer
*timer
)
474 debug_hrtimer_deactivate(timer
);
475 trace_hrtimer_cancel(timer
);
478 /* High resolution timer related functions */
479 #ifdef CONFIG_HIGH_RES_TIMERS
482 * High resolution timer enabled ?
484 static int hrtimer_hres_enabled __read_mostly
= 1;
487 * Enable / Disable high resolution mode
489 static int __init
setup_hrtimer_hres(char *str
)
491 if (!strcmp(str
, "off"))
492 hrtimer_hres_enabled
= 0;
493 else if (!strcmp(str
, "on"))
494 hrtimer_hres_enabled
= 1;
500 __setup("highres=", setup_hrtimer_hres
);
503 * hrtimer_high_res_enabled - query, if the highres mode is enabled
505 static inline int hrtimer_is_hres_enabled(void)
507 return hrtimer_hres_enabled
;
511 * Is the high resolution mode active ?
513 static inline int hrtimer_hres_active(void)
515 return __this_cpu_read(hrtimer_bases
.hres_active
);
519 * Reprogram the event source with checking both queues for the
521 * Called with interrupts disabled and base->lock held
524 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
527 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
528 ktime_t expires
, expires_next
;
530 expires_next
.tv64
= KTIME_MAX
;
532 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
533 struct hrtimer
*timer
;
534 struct timerqueue_node
*next
;
536 next
= timerqueue_getnext(&base
->active
);
539 timer
= container_of(next
, struct hrtimer
, node
);
541 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
543 * clock_was_set() has changed base->offset so the
544 * result might be negative. Fix it up to prevent a
545 * false positive in clockevents_program_event()
547 if (expires
.tv64
< 0)
549 if (expires
.tv64
< expires_next
.tv64
)
550 expires_next
= expires
;
553 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
556 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
558 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
559 tick_program_event(cpu_base
->expires_next
, 1);
563 * Shared reprogramming for clock_realtime and clock_monotonic
565 * When a timer is enqueued and expires earlier than the already enqueued
566 * timers, we have to check, whether it expires earlier than the timer for
567 * which the clock event device was armed.
569 * Called with interrupts disabled and base->cpu_base.lock held
571 static int hrtimer_reprogram(struct hrtimer
*timer
,
572 struct hrtimer_clock_base
*base
)
574 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
575 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
578 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
581 * When the callback is running, we do not reprogram the clock event
582 * device. The timer callback is either running on a different CPU or
583 * the callback is executed in the hrtimer_interrupt context. The
584 * reprogramming is handled either by the softirq, which called the
585 * callback or at the end of the hrtimer_interrupt.
587 if (hrtimer_callback_running(timer
))
591 * CLOCK_REALTIME timer might be requested with an absolute
592 * expiry time which is less than base->offset. Nothing wrong
593 * about that, just avoid to call into the tick code, which
594 * has now objections against negative expiry values.
596 if (expires
.tv64
< 0)
599 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
603 * If a hang was detected in the last timer interrupt then we
604 * do not schedule a timer which is earlier than the expiry
605 * which we enforced in the hang detection. We want the system
608 if (cpu_base
->hang_detected
)
612 * Clockevents returns -ETIME, when the event was in the past.
614 res
= tick_program_event(expires
, 0);
615 if (!IS_ERR_VALUE(res
))
616 cpu_base
->expires_next
= expires
;
622 * Retrigger next event is called after clock was set
624 * Called with interrupts disabled via on_each_cpu()
626 static void retrigger_next_event(void *arg
)
628 struct hrtimer_cpu_base
*base
;
629 struct timespec realtime_offset
, wtm
, sleep
;
631 if (!hrtimer_hres_active())
634 get_xtime_and_monotonic_and_sleep_offset(&realtime_offset
, &wtm
,
636 set_normalized_timespec(&realtime_offset
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
638 base
= &__get_cpu_var(hrtimer_bases
);
640 /* Adjust CLOCK_REALTIME offset */
641 raw_spin_lock(&base
->lock
);
642 base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
=
643 timespec_to_ktime(realtime_offset
);
644 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
=
645 timespec_to_ktime(sleep
);
647 hrtimer_force_reprogram(base
, 0);
648 raw_spin_unlock(&base
->lock
);
652 * Clock realtime was set
654 * Change the offset of the realtime clock vs. the monotonic
657 * We might have to reprogram the high resolution timer interrupt. On
658 * SMP we call the architecture specific code to retrigger _all_ high
659 * resolution timer interrupts. On UP we just disable interrupts and
660 * call the high resolution interrupt code.
662 void clock_was_set(void)
664 /* Retrigger the CPU local events everywhere */
665 on_each_cpu(retrigger_next_event
, NULL
, 1);
669 * During resume we might have to reprogram the high resolution timer
670 * interrupt (on the local CPU):
672 void hres_timers_resume(void)
674 WARN_ONCE(!irqs_disabled(),
675 KERN_INFO
"hres_timers_resume() called with IRQs enabled!");
677 retrigger_next_event(NULL
);
681 * Initialize the high resolution related parts of cpu_base
683 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
685 base
->expires_next
.tv64
= KTIME_MAX
;
686 base
->hres_active
= 0;
690 * When High resolution timers are active, try to reprogram. Note, that in case
691 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
692 * check happens. The timer gets enqueued into the rbtree. The reprogramming
693 * and expiry check is done in the hrtimer_interrupt or in the softirq.
695 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
696 struct hrtimer_clock_base
*base
,
699 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
701 raw_spin_unlock(&base
->cpu_base
->lock
);
702 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
703 raw_spin_lock(&base
->cpu_base
->lock
);
705 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
714 * Switch to high resolution mode
716 static int hrtimer_switch_to_hres(void)
718 int cpu
= smp_processor_id();
719 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
722 if (base
->hres_active
)
725 local_irq_save(flags
);
727 if (tick_init_highres()) {
728 local_irq_restore(flags
);
729 printk(KERN_WARNING
"Could not switch to high resolution "
730 "mode on CPU %d\n", cpu
);
733 base
->hres_active
= 1;
734 base
->clock_base
[HRTIMER_BASE_REALTIME
].resolution
= KTIME_HIGH_RES
;
735 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
736 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].resolution
= KTIME_HIGH_RES
;
738 tick_setup_sched_timer();
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL
);
742 local_irq_restore(flags
);
748 static inline int hrtimer_hres_active(void) { return 0; }
749 static inline int hrtimer_is_hres_enabled(void) { return 0; }
750 static inline int hrtimer_switch_to_hres(void) { return 0; }
752 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
753 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
754 struct hrtimer_clock_base
*base
,
759 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
761 #endif /* CONFIG_HIGH_RES_TIMERS */
763 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
765 #ifdef CONFIG_TIMER_STATS
766 if (timer
->start_site
)
768 timer
->start_site
= __builtin_return_address(0);
769 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
770 timer
->start_pid
= current
->pid
;
774 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
776 #ifdef CONFIG_TIMER_STATS
777 timer
->start_site
= NULL
;
781 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
783 #ifdef CONFIG_TIMER_STATS
784 if (likely(!timer_stats_active
))
786 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
787 timer
->function
, timer
->start_comm
, 0);
792 * Counterpart to lock_hrtimer_base above:
795 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
797 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
801 * hrtimer_forward - forward the timer expiry
802 * @timer: hrtimer to forward
803 * @now: forward past this time
804 * @interval: the interval to forward
806 * Forward the timer expiry so it will expire in the future.
807 * Returns the number of overruns.
809 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
814 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
819 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
820 interval
.tv64
= timer
->base
->resolution
.tv64
;
822 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
823 s64 incr
= ktime_to_ns(interval
);
825 orun
= ktime_divns(delta
, incr
);
826 hrtimer_add_expires_ns(timer
, incr
* orun
);
827 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
830 * This (and the ktime_add() below) is the
831 * correction for exact:
835 hrtimer_add_expires(timer
, interval
);
839 EXPORT_SYMBOL_GPL(hrtimer_forward
);
842 * enqueue_hrtimer - internal function to (re)start a timer
844 * The timer is inserted in expiry order. Insertion into the
845 * red black tree is O(log(n)). Must hold the base lock.
847 * Returns 1 when the new timer is the leftmost timer in the tree.
849 static int enqueue_hrtimer(struct hrtimer
*timer
,
850 struct hrtimer_clock_base
*base
)
852 debug_activate(timer
);
854 timerqueue_add(&base
->active
, &timer
->node
);
857 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
858 * state of a possibly running callback.
860 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
862 return (&timer
->node
== base
->active
.next
);
866 * __remove_hrtimer - internal function to remove a timer
868 * Caller must hold the base lock.
870 * High resolution timer mode reprograms the clock event device when the
871 * timer is the one which expires next. The caller can disable this by setting
872 * reprogram to zero. This is useful, when the context does a reprogramming
873 * anyway (e.g. timer interrupt)
875 static void __remove_hrtimer(struct hrtimer
*timer
,
876 struct hrtimer_clock_base
*base
,
877 unsigned long newstate
, int reprogram
)
879 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
882 if (&timer
->node
== timerqueue_getnext(&base
->active
)) {
883 #ifdef CONFIG_HIGH_RES_TIMERS
884 /* Reprogram the clock event device. if enabled */
885 if (reprogram
&& hrtimer_hres_active()) {
888 expires
= ktime_sub(hrtimer_get_expires(timer
),
890 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
891 hrtimer_force_reprogram(base
->cpu_base
, 1);
895 timerqueue_del(&base
->active
, &timer
->node
);
897 timer
->state
= newstate
;
901 * remove hrtimer, called with base lock held
904 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
906 if (hrtimer_is_queued(timer
)) {
911 * Remove the timer and force reprogramming when high
912 * resolution mode is active and the timer is on the current
913 * CPU. If we remove a timer on another CPU, reprogramming is
914 * skipped. The interrupt event on this CPU is fired and
915 * reprogramming happens in the interrupt handler. This is a
916 * rare case and less expensive than a smp call.
918 debug_deactivate(timer
);
919 timer_stats_hrtimer_clear_start_info(timer
);
920 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
922 * We must preserve the CALLBACK state flag here,
923 * otherwise we could move the timer base in
924 * switch_hrtimer_base.
926 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
927 __remove_hrtimer(timer
, base
, state
, reprogram
);
933 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
934 unsigned long delta_ns
, const enum hrtimer_mode mode
,
937 struct hrtimer_clock_base
*base
, *new_base
;
941 base
= lock_hrtimer_base(timer
, &flags
);
943 /* Remove an active timer from the queue: */
944 ret
= remove_hrtimer(timer
, base
);
946 /* Switch the timer base, if necessary: */
947 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
949 if (mode
& HRTIMER_MODE_REL
) {
950 tim
= ktime_add_safe(tim
, new_base
->get_time());
952 * CONFIG_TIME_LOW_RES is a temporary way for architectures
953 * to signal that they simply return xtime in
954 * do_gettimeoffset(). In this case we want to round up by
955 * resolution when starting a relative timer, to avoid short
956 * timeouts. This will go away with the GTOD framework.
958 #ifdef CONFIG_TIME_LOW_RES
959 tim
= ktime_add_safe(tim
, base
->resolution
);
963 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
965 timer_stats_hrtimer_set_start_info(timer
);
967 leftmost
= enqueue_hrtimer(timer
, new_base
);
970 * Only allow reprogramming if the new base is on this CPU.
971 * (it might still be on another CPU if the timer was pending)
973 * XXX send_remote_softirq() ?
975 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
))
976 hrtimer_enqueue_reprogram(timer
, new_base
, wakeup
);
978 unlock_hrtimer_base(timer
, &flags
);
984 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
985 * @timer: the timer to be added
987 * @delta_ns: "slack" range for the timer
988 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
992 * 1 when the timer was active
994 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
995 unsigned long delta_ns
, const enum hrtimer_mode mode
)
997 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
999 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1002 * hrtimer_start - (re)start an hrtimer on the current CPU
1003 * @timer: the timer to be added
1005 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1009 * 1 when the timer was active
1012 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1014 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1016 EXPORT_SYMBOL_GPL(hrtimer_start
);
1020 * hrtimer_try_to_cancel - try to deactivate a timer
1021 * @timer: hrtimer to stop
1024 * 0 when the timer was not active
1025 * 1 when the timer was active
1026 * -1 when the timer is currently excuting the callback function and
1029 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1031 struct hrtimer_clock_base
*base
;
1032 unsigned long flags
;
1035 base
= lock_hrtimer_base(timer
, &flags
);
1037 if (!hrtimer_callback_running(timer
))
1038 ret
= remove_hrtimer(timer
, base
);
1040 unlock_hrtimer_base(timer
, &flags
);
1045 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1048 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1049 * @timer: the timer to be cancelled
1052 * 0 when the timer was not active
1053 * 1 when the timer was active
1055 int hrtimer_cancel(struct hrtimer
*timer
)
1058 int ret
= hrtimer_try_to_cancel(timer
);
1065 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1068 * hrtimer_get_remaining - get remaining time for the timer
1069 * @timer: the timer to read
1071 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1073 unsigned long flags
;
1076 lock_hrtimer_base(timer
, &flags
);
1077 rem
= hrtimer_expires_remaining(timer
);
1078 unlock_hrtimer_base(timer
, &flags
);
1082 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1086 * hrtimer_get_next_event - get the time until next expiry event
1088 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1091 ktime_t
hrtimer_get_next_event(void)
1093 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1094 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1095 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1096 unsigned long flags
;
1099 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1101 if (!hrtimer_hres_active()) {
1102 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1103 struct hrtimer
*timer
;
1104 struct timerqueue_node
*next
;
1106 next
= timerqueue_getnext(&base
->active
);
1110 timer
= container_of(next
, struct hrtimer
, node
);
1111 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1112 delta
= ktime_sub(delta
, base
->get_time());
1113 if (delta
.tv64
< mindelta
.tv64
)
1114 mindelta
.tv64
= delta
.tv64
;
1118 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1120 if (mindelta
.tv64
< 0)
1126 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1127 enum hrtimer_mode mode
)
1129 struct hrtimer_cpu_base
*cpu_base
;
1132 memset(timer
, 0, sizeof(struct hrtimer
));
1134 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1136 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1137 clock_id
= CLOCK_MONOTONIC
;
1139 base
= hrtimer_clockid_to_base(clock_id
);
1140 timer
->base
= &cpu_base
->clock_base
[base
];
1141 timerqueue_init(&timer
->node
);
1143 #ifdef CONFIG_TIMER_STATS
1144 timer
->start_site
= NULL
;
1145 timer
->start_pid
= -1;
1146 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1151 * hrtimer_init - initialize a timer to the given clock
1152 * @timer: the timer to be initialized
1153 * @clock_id: the clock to be used
1154 * @mode: timer mode abs/rel
1156 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1157 enum hrtimer_mode mode
)
1159 debug_init(timer
, clock_id
, mode
);
1160 __hrtimer_init(timer
, clock_id
, mode
);
1162 EXPORT_SYMBOL_GPL(hrtimer_init
);
1165 * hrtimer_get_res - get the timer resolution for a clock
1166 * @which_clock: which clock to query
1167 * @tp: pointer to timespec variable to store the resolution
1169 * Store the resolution of the clock selected by @which_clock in the
1170 * variable pointed to by @tp.
1172 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1174 struct hrtimer_cpu_base
*cpu_base
;
1175 int base
= hrtimer_clockid_to_base(which_clock
);
1177 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1178 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1182 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1184 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1186 struct hrtimer_clock_base
*base
= timer
->base
;
1187 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1188 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1191 WARN_ON(!irqs_disabled());
1193 debug_deactivate(timer
);
1194 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1195 timer_stats_account_hrtimer(timer
);
1196 fn
= timer
->function
;
1199 * Because we run timers from hardirq context, there is no chance
1200 * they get migrated to another cpu, therefore its safe to unlock
1203 raw_spin_unlock(&cpu_base
->lock
);
1204 trace_hrtimer_expire_entry(timer
, now
);
1205 restart
= fn(timer
);
1206 trace_hrtimer_expire_exit(timer
);
1207 raw_spin_lock(&cpu_base
->lock
);
1210 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1211 * we do not reprogramm the event hardware. Happens either in
1212 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1214 if (restart
!= HRTIMER_NORESTART
) {
1215 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1216 enqueue_hrtimer(timer
, base
);
1219 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1221 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1224 #ifdef CONFIG_HIGH_RES_TIMERS
1227 * High resolution timer interrupt
1228 * Called with interrupts disabled
1230 void hrtimer_interrupt(struct clock_event_device
*dev
)
1232 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1233 struct hrtimer_clock_base
*base
;
1234 ktime_t expires_next
, now
, entry_time
, delta
;
1237 BUG_ON(!cpu_base
->hres_active
);
1238 cpu_base
->nr_events
++;
1239 dev
->next_event
.tv64
= KTIME_MAX
;
1241 entry_time
= now
= ktime_get();
1243 expires_next
.tv64
= KTIME_MAX
;
1245 raw_spin_lock(&cpu_base
->lock
);
1247 * We set expires_next to KTIME_MAX here with cpu_base->lock
1248 * held to prevent that a timer is enqueued in our queue via
1249 * the migration code. This does not affect enqueueing of
1250 * timers which run their callback and need to be requeued on
1253 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1255 base
= cpu_base
->clock_base
;
1257 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1259 struct timerqueue_node
*node
;
1261 basenow
= ktime_add(now
, base
->offset
);
1263 while ((node
= timerqueue_getnext(&base
->active
))) {
1264 struct hrtimer
*timer
;
1266 timer
= container_of(node
, struct hrtimer
, node
);
1269 * The immediate goal for using the softexpires is
1270 * minimizing wakeups, not running timers at the
1271 * earliest interrupt after their soft expiration.
1272 * This allows us to avoid using a Priority Search
1273 * Tree, which can answer a stabbing querry for
1274 * overlapping intervals and instead use the simple
1275 * BST we already have.
1276 * We don't add extra wakeups by delaying timers that
1277 * are right-of a not yet expired timer, because that
1278 * timer will have to trigger a wakeup anyway.
1281 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1284 expires
= ktime_sub(hrtimer_get_expires(timer
),
1286 if (expires
.tv64
< expires_next
.tv64
)
1287 expires_next
= expires
;
1291 __run_hrtimer(timer
, &basenow
);
1297 * Store the new expiry value so the migration code can verify
1300 cpu_base
->expires_next
= expires_next
;
1301 raw_spin_unlock(&cpu_base
->lock
);
1303 /* Reprogramming necessary ? */
1304 if (expires_next
.tv64
== KTIME_MAX
||
1305 !tick_program_event(expires_next
, 0)) {
1306 cpu_base
->hang_detected
= 0;
1311 * The next timer was already expired due to:
1313 * - long lasting callbacks
1314 * - being scheduled away when running in a VM
1316 * We need to prevent that we loop forever in the hrtimer
1317 * interrupt routine. We give it 3 attempts to avoid
1318 * overreacting on some spurious event.
1321 cpu_base
->nr_retries
++;
1325 * Give the system a chance to do something else than looping
1326 * here. We stored the entry time, so we know exactly how long
1327 * we spent here. We schedule the next event this amount of
1330 cpu_base
->nr_hangs
++;
1331 cpu_base
->hang_detected
= 1;
1332 delta
= ktime_sub(now
, entry_time
);
1333 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1334 cpu_base
->max_hang_time
= delta
;
1336 * Limit it to a sensible value as we enforce a longer
1337 * delay. Give the CPU at least 100ms to catch up.
1339 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1340 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1342 expires_next
= ktime_add(now
, delta
);
1343 tick_program_event(expires_next
, 1);
1344 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1345 ktime_to_ns(delta
));
1349 * local version of hrtimer_peek_ahead_timers() called with interrupts
1352 static void __hrtimer_peek_ahead_timers(void)
1354 struct tick_device
*td
;
1356 if (!hrtimer_hres_active())
1359 td
= &__get_cpu_var(tick_cpu_device
);
1360 if (td
&& td
->evtdev
)
1361 hrtimer_interrupt(td
->evtdev
);
1365 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1367 * hrtimer_peek_ahead_timers will peek at the timer queue of
1368 * the current cpu and check if there are any timers for which
1369 * the soft expires time has passed. If any such timers exist,
1370 * they are run immediately and then removed from the timer queue.
1373 void hrtimer_peek_ahead_timers(void)
1375 unsigned long flags
;
1377 local_irq_save(flags
);
1378 __hrtimer_peek_ahead_timers();
1379 local_irq_restore(flags
);
1382 static void run_hrtimer_softirq(struct softirq_action
*h
)
1384 hrtimer_peek_ahead_timers();
1387 #else /* CONFIG_HIGH_RES_TIMERS */
1389 static inline void __hrtimer_peek_ahead_timers(void) { }
1391 #endif /* !CONFIG_HIGH_RES_TIMERS */
1394 * Called from timer softirq every jiffy, expire hrtimers:
1396 * For HRT its the fall back code to run the softirq in the timer
1397 * softirq context in case the hrtimer initialization failed or has
1398 * not been done yet.
1400 void hrtimer_run_pending(void)
1402 if (hrtimer_hres_active())
1406 * This _is_ ugly: We have to check in the softirq context,
1407 * whether we can switch to highres and / or nohz mode. The
1408 * clocksource switch happens in the timer interrupt with
1409 * xtime_lock held. Notification from there only sets the
1410 * check bit in the tick_oneshot code, otherwise we might
1411 * deadlock vs. xtime_lock.
1413 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1414 hrtimer_switch_to_hres();
1418 * Called from hardirq context every jiffy
1420 void hrtimer_run_queues(void)
1422 struct timerqueue_node
*node
;
1423 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1424 struct hrtimer_clock_base
*base
;
1425 int index
, gettime
= 1;
1427 if (hrtimer_hres_active())
1430 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1431 base
= &cpu_base
->clock_base
[index
];
1432 if (!timerqueue_getnext(&base
->active
))
1436 hrtimer_get_softirq_time(cpu_base
);
1440 raw_spin_lock(&cpu_base
->lock
);
1442 while ((node
= timerqueue_getnext(&base
->active
))) {
1443 struct hrtimer
*timer
;
1445 timer
= container_of(node
, struct hrtimer
, node
);
1446 if (base
->softirq_time
.tv64
<=
1447 hrtimer_get_expires_tv64(timer
))
1450 __run_hrtimer(timer
, &base
->softirq_time
);
1452 raw_spin_unlock(&cpu_base
->lock
);
1457 * Sleep related functions:
1459 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1461 struct hrtimer_sleeper
*t
=
1462 container_of(timer
, struct hrtimer_sleeper
, timer
);
1463 struct task_struct
*task
= t
->task
;
1467 wake_up_process(task
);
1469 return HRTIMER_NORESTART
;
1472 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1474 sl
->timer
.function
= hrtimer_wakeup
;
1477 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1479 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1481 hrtimer_init_sleeper(t
, current
);
1484 set_current_state(TASK_INTERRUPTIBLE
);
1485 hrtimer_start_expires(&t
->timer
, mode
);
1486 if (!hrtimer_active(&t
->timer
))
1489 if (likely(t
->task
))
1492 hrtimer_cancel(&t
->timer
);
1493 mode
= HRTIMER_MODE_ABS
;
1495 } while (t
->task
&& !signal_pending(current
));
1497 __set_current_state(TASK_RUNNING
);
1499 return t
->task
== NULL
;
1502 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1504 struct timespec rmt
;
1507 rem
= hrtimer_expires_remaining(timer
);
1510 rmt
= ktime_to_timespec(rem
);
1512 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1518 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1520 struct hrtimer_sleeper t
;
1521 struct timespec __user
*rmtp
;
1524 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1526 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1528 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1531 rmtp
= restart
->nanosleep
.rmtp
;
1533 ret
= update_rmtp(&t
.timer
, rmtp
);
1538 /* The other values in restart are already filled in */
1539 ret
= -ERESTART_RESTARTBLOCK
;
1541 destroy_hrtimer_on_stack(&t
.timer
);
1545 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1546 const enum hrtimer_mode mode
, const clockid_t clockid
)
1548 struct restart_block
*restart
;
1549 struct hrtimer_sleeper t
;
1551 unsigned long slack
;
1553 slack
= current
->timer_slack_ns
;
1554 if (rt_task(current
))
1557 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1558 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1559 if (do_nanosleep(&t
, mode
))
1562 /* Absolute timers do not update the rmtp value and restart: */
1563 if (mode
== HRTIMER_MODE_ABS
) {
1564 ret
= -ERESTARTNOHAND
;
1569 ret
= update_rmtp(&t
.timer
, rmtp
);
1574 restart
= ¤t_thread_info()->restart_block
;
1575 restart
->fn
= hrtimer_nanosleep_restart
;
1576 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1577 restart
->nanosleep
.rmtp
= rmtp
;
1578 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1580 ret
= -ERESTART_RESTARTBLOCK
;
1582 destroy_hrtimer_on_stack(&t
.timer
);
1586 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1587 struct timespec __user
*, rmtp
)
1591 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1594 if (!timespec_valid(&tu
))
1597 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1601 * Functions related to boot-time initialization:
1603 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1605 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1608 raw_spin_lock_init(&cpu_base
->lock
);
1610 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1611 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1612 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1615 hrtimer_init_hres(cpu_base
);
1618 #ifdef CONFIG_HOTPLUG_CPU
1620 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1621 struct hrtimer_clock_base
*new_base
)
1623 struct hrtimer
*timer
;
1624 struct timerqueue_node
*node
;
1626 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1627 timer
= container_of(node
, struct hrtimer
, node
);
1628 BUG_ON(hrtimer_callback_running(timer
));
1629 debug_deactivate(timer
);
1632 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1633 * timer could be seen as !active and just vanish away
1634 * under us on another CPU
1636 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1637 timer
->base
= new_base
;
1639 * Enqueue the timers on the new cpu. This does not
1640 * reprogram the event device in case the timer
1641 * expires before the earliest on this CPU, but we run
1642 * hrtimer_interrupt after we migrated everything to
1643 * sort out already expired timers and reprogram the
1646 enqueue_hrtimer(timer
, new_base
);
1648 /* Clear the migration state bit */
1649 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1653 static void migrate_hrtimers(int scpu
)
1655 struct hrtimer_cpu_base
*old_base
, *new_base
;
1658 BUG_ON(cpu_online(scpu
));
1659 tick_cancel_sched_timer(scpu
);
1661 local_irq_disable();
1662 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1663 new_base
= &__get_cpu_var(hrtimer_bases
);
1665 * The caller is globally serialized and nobody else
1666 * takes two locks at once, deadlock is not possible.
1668 raw_spin_lock(&new_base
->lock
);
1669 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1671 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1672 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1673 &new_base
->clock_base
[i
]);
1676 raw_spin_unlock(&old_base
->lock
);
1677 raw_spin_unlock(&new_base
->lock
);
1679 /* Check, if we got expired work to do */
1680 __hrtimer_peek_ahead_timers();
1684 #endif /* CONFIG_HOTPLUG_CPU */
1686 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1687 unsigned long action
, void *hcpu
)
1689 int scpu
= (long)hcpu
;
1693 case CPU_UP_PREPARE
:
1694 case CPU_UP_PREPARE_FROZEN
:
1695 init_hrtimers_cpu(scpu
);
1698 #ifdef CONFIG_HOTPLUG_CPU
1700 case CPU_DYING_FROZEN
:
1701 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1704 case CPU_DEAD_FROZEN
:
1706 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1707 migrate_hrtimers(scpu
);
1719 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1720 .notifier_call
= hrtimer_cpu_notify
,
1723 void __init
hrtimers_init(void)
1725 hrtimer_clock_to_base_table
[CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
;
1726 hrtimer_clock_to_base_table
[CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
;
1727 hrtimer_clock_to_base_table
[CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
;
1729 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1730 (void *)(long)smp_processor_id());
1731 register_cpu_notifier(&hrtimers_nb
);
1732 #ifdef CONFIG_HIGH_RES_TIMERS
1733 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1738 * schedule_hrtimeout_range_clock - sleep until timeout
1739 * @expires: timeout value (ktime_t)
1740 * @delta: slack in expires timeout (ktime_t)
1741 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1742 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1745 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1746 const enum hrtimer_mode mode
, int clock
)
1748 struct hrtimer_sleeper t
;
1751 * Optimize when a zero timeout value is given. It does not
1752 * matter whether this is an absolute or a relative time.
1754 if (expires
&& !expires
->tv64
) {
1755 __set_current_state(TASK_RUNNING
);
1760 * A NULL parameter means "infinite"
1764 __set_current_state(TASK_RUNNING
);
1768 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1769 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1771 hrtimer_init_sleeper(&t
, current
);
1773 hrtimer_start_expires(&t
.timer
, mode
);
1774 if (!hrtimer_active(&t
.timer
))
1780 hrtimer_cancel(&t
.timer
);
1781 destroy_hrtimer_on_stack(&t
.timer
);
1783 __set_current_state(TASK_RUNNING
);
1785 return !t
.task
? 0 : -EINTR
;
1789 * schedule_hrtimeout_range - sleep until timeout
1790 * @expires: timeout value (ktime_t)
1791 * @delta: slack in expires timeout (ktime_t)
1792 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1794 * Make the current task sleep until the given expiry time has
1795 * elapsed. The routine will return immediately unless
1796 * the current task state has been set (see set_current_state()).
1798 * The @delta argument gives the kernel the freedom to schedule the
1799 * actual wakeup to a time that is both power and performance friendly.
1800 * The kernel give the normal best effort behavior for "@expires+@delta",
1801 * but may decide to fire the timer earlier, but no earlier than @expires.
1803 * You can set the task state as follows -
1805 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1806 * pass before the routine returns.
1808 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1809 * delivered to the current task.
1811 * The current task state is guaranteed to be TASK_RUNNING when this
1814 * Returns 0 when the timer has expired otherwise -EINTR
1816 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1817 const enum hrtimer_mode mode
)
1819 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1822 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1825 * schedule_hrtimeout - sleep until timeout
1826 * @expires: timeout value (ktime_t)
1827 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1829 * Make the current task sleep until the given expiry time has
1830 * elapsed. The routine will return immediately unless
1831 * the current task state has been set (see set_current_state()).
1833 * You can set the task state as follows -
1835 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1836 * pass before the routine returns.
1838 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1839 * delivered to the current task.
1841 * The current task state is guaranteed to be TASK_RUNNING when this
1844 * Returns 0 when the timer has expired otherwise -EINTR
1846 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1847 const enum hrtimer_mode mode
)
1849 return schedule_hrtimeout_range(expires
, 0, mode
);
1851 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);