cgroups: move the cgroup debug subsys into cgroup.c to access internal state
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blobccec722213a4b4361ebd280b4acf312e62a5dc7e
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/ctype.h>
27 #include <linux/errno.h>
28 #include <linux/fs.h>
29 #include <linux/kernel.h>
30 #include <linux/list.h>
31 #include <linux/mm.h>
32 #include <linux/mutex.h>
33 #include <linux/mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rcupdate.h>
37 #include <linux/sched.h>
38 #include <linux/backing-dev.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/magic.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/sort.h>
45 #include <linux/kmod.h>
46 #include <linux/delayacct.h>
47 #include <linux/cgroupstats.h>
48 #include <linux/hash.h>
49 #include <linux/namei.h>
50 #include <linux/smp_lock.h>
51 #include <linux/pid_namespace.h>
53 #include <asm/atomic.h>
55 static DEFINE_MUTEX(cgroup_mutex);
57 /* Generate an array of cgroup subsystem pointers */
58 #define SUBSYS(_x) &_x ## _subsys,
60 static struct cgroup_subsys *subsys[] = {
61 #include <linux/cgroup_subsys.h>
64 #define MAX_CGROUP_ROOT_NAMELEN 64
67 * A cgroupfs_root represents the root of a cgroup hierarchy,
68 * and may be associated with a superblock to form an active
69 * hierarchy
71 struct cgroupfs_root {
72 struct super_block *sb;
75 * The bitmask of subsystems intended to be attached to this
76 * hierarchy
78 unsigned long subsys_bits;
80 /* The bitmask of subsystems currently attached to this hierarchy */
81 unsigned long actual_subsys_bits;
83 /* A list running through the attached subsystems */
84 struct list_head subsys_list;
86 /* The root cgroup for this hierarchy */
87 struct cgroup top_cgroup;
89 /* Tracks how many cgroups are currently defined in hierarchy.*/
90 int number_of_cgroups;
92 /* A list running through the active hierarchies */
93 struct list_head root_list;
95 /* Hierarchy-specific flags */
96 unsigned long flags;
98 /* The path to use for release notifications. */
99 char release_agent_path[PATH_MAX];
101 /* The name for this hierarchy - may be empty */
102 char name[MAX_CGROUP_ROOT_NAMELEN];
106 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
107 * subsystems that are otherwise unattached - it never has more than a
108 * single cgroup, and all tasks are part of that cgroup.
110 static struct cgroupfs_root rootnode;
113 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
114 * cgroup_subsys->use_id != 0.
116 #define CSS_ID_MAX (65535)
117 struct css_id {
119 * The css to which this ID points. This pointer is set to valid value
120 * after cgroup is populated. If cgroup is removed, this will be NULL.
121 * This pointer is expected to be RCU-safe because destroy()
122 * is called after synchronize_rcu(). But for safe use, css_is_removed()
123 * css_tryget() should be used for avoiding race.
125 struct cgroup_subsys_state *css;
127 * ID of this css.
129 unsigned short id;
131 * Depth in hierarchy which this ID belongs to.
133 unsigned short depth;
135 * ID is freed by RCU. (and lookup routine is RCU safe.)
137 struct rcu_head rcu_head;
139 * Hierarchy of CSS ID belongs to.
141 unsigned short stack[0]; /* Array of Length (depth+1) */
145 /* The list of hierarchy roots */
147 static LIST_HEAD(roots);
148 static int root_count;
150 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
151 #define dummytop (&rootnode.top_cgroup)
153 /* This flag indicates whether tasks in the fork and exit paths should
154 * check for fork/exit handlers to call. This avoids us having to do
155 * extra work in the fork/exit path if none of the subsystems need to
156 * be called.
158 static int need_forkexit_callback __read_mostly;
160 /* convenient tests for these bits */
161 inline int cgroup_is_removed(const struct cgroup *cgrp)
163 return test_bit(CGRP_REMOVED, &cgrp->flags);
166 /* bits in struct cgroupfs_root flags field */
167 enum {
168 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
171 static int cgroup_is_releasable(const struct cgroup *cgrp)
173 const int bits =
174 (1 << CGRP_RELEASABLE) |
175 (1 << CGRP_NOTIFY_ON_RELEASE);
176 return (cgrp->flags & bits) == bits;
179 static int notify_on_release(const struct cgroup *cgrp)
181 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
185 * for_each_subsys() allows you to iterate on each subsystem attached to
186 * an active hierarchy
188 #define for_each_subsys(_root, _ss) \
189 list_for_each_entry(_ss, &_root->subsys_list, sibling)
191 /* for_each_active_root() allows you to iterate across the active hierarchies */
192 #define for_each_active_root(_root) \
193 list_for_each_entry(_root, &roots, root_list)
195 /* the list of cgroups eligible for automatic release. Protected by
196 * release_list_lock */
197 static LIST_HEAD(release_list);
198 static DEFINE_SPINLOCK(release_list_lock);
199 static void cgroup_release_agent(struct work_struct *work);
200 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
201 static void check_for_release(struct cgroup *cgrp);
203 /* Link structure for associating css_set objects with cgroups */
204 struct cg_cgroup_link {
206 * List running through cg_cgroup_links associated with a
207 * cgroup, anchored on cgroup->css_sets
209 struct list_head cgrp_link_list;
211 * List running through cg_cgroup_links pointing at a
212 * single css_set object, anchored on css_set->cg_links
214 struct list_head cg_link_list;
215 struct css_set *cg;
218 /* The default css_set - used by init and its children prior to any
219 * hierarchies being mounted. It contains a pointer to the root state
220 * for each subsystem. Also used to anchor the list of css_sets. Not
221 * reference-counted, to improve performance when child cgroups
222 * haven't been created.
225 static struct css_set init_css_set;
226 static struct cg_cgroup_link init_css_set_link;
228 static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
230 /* css_set_lock protects the list of css_set objects, and the
231 * chain of tasks off each css_set. Nests outside task->alloc_lock
232 * due to cgroup_iter_start() */
233 static DEFINE_RWLOCK(css_set_lock);
234 static int css_set_count;
236 /* hash table for cgroup groups. This improves the performance to
237 * find an existing css_set */
238 #define CSS_SET_HASH_BITS 7
239 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
240 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
242 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
244 int i;
245 int index;
246 unsigned long tmp = 0UL;
248 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
249 tmp += (unsigned long)css[i];
250 tmp = (tmp >> 16) ^ tmp;
252 index = hash_long(tmp, CSS_SET_HASH_BITS);
254 return &css_set_table[index];
257 /* We don't maintain the lists running through each css_set to its
258 * task until after the first call to cgroup_iter_start(). This
259 * reduces the fork()/exit() overhead for people who have cgroups
260 * compiled into their kernel but not actually in use */
261 static int use_task_css_set_links __read_mostly;
263 /* When we create or destroy a css_set, the operation simply
264 * takes/releases a reference count on all the cgroups referenced
265 * by subsystems in this css_set. This can end up multiple-counting
266 * some cgroups, but that's OK - the ref-count is just a
267 * busy/not-busy indicator; ensuring that we only count each cgroup
268 * once would require taking a global lock to ensure that no
269 * subsystems moved between hierarchies while we were doing so.
271 * Possible TODO: decide at boot time based on the number of
272 * registered subsystems and the number of CPUs or NUMA nodes whether
273 * it's better for performance to ref-count every subsystem, or to
274 * take a global lock and only add one ref count to each hierarchy.
278 * unlink a css_set from the list and free it
280 static void unlink_css_set(struct css_set *cg)
282 struct cg_cgroup_link *link;
283 struct cg_cgroup_link *saved_link;
285 hlist_del(&cg->hlist);
286 css_set_count--;
288 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
289 cg_link_list) {
290 list_del(&link->cg_link_list);
291 list_del(&link->cgrp_link_list);
292 kfree(link);
296 static void __put_css_set(struct css_set *cg, int taskexit)
298 int i;
300 * Ensure that the refcount doesn't hit zero while any readers
301 * can see it. Similar to atomic_dec_and_lock(), but for an
302 * rwlock
304 if (atomic_add_unless(&cg->refcount, -1, 1))
305 return;
306 write_lock(&css_set_lock);
307 if (!atomic_dec_and_test(&cg->refcount)) {
308 write_unlock(&css_set_lock);
309 return;
311 unlink_css_set(cg);
312 write_unlock(&css_set_lock);
314 rcu_read_lock();
315 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
316 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
317 if (atomic_dec_and_test(&cgrp->count) &&
318 notify_on_release(cgrp)) {
319 if (taskexit)
320 set_bit(CGRP_RELEASABLE, &cgrp->flags);
321 check_for_release(cgrp);
324 rcu_read_unlock();
325 kfree(cg);
329 * refcounted get/put for css_set objects
331 static inline void get_css_set(struct css_set *cg)
333 atomic_inc(&cg->refcount);
336 static inline void put_css_set(struct css_set *cg)
338 __put_css_set(cg, 0);
341 static inline void put_css_set_taskexit(struct css_set *cg)
343 __put_css_set(cg, 1);
347 * find_existing_css_set() is a helper for
348 * find_css_set(), and checks to see whether an existing
349 * css_set is suitable.
351 * oldcg: the cgroup group that we're using before the cgroup
352 * transition
354 * cgrp: the cgroup that we're moving into
356 * template: location in which to build the desired set of subsystem
357 * state objects for the new cgroup group
359 static struct css_set *find_existing_css_set(
360 struct css_set *oldcg,
361 struct cgroup *cgrp,
362 struct cgroup_subsys_state *template[])
364 int i;
365 struct cgroupfs_root *root = cgrp->root;
366 struct hlist_head *hhead;
367 struct hlist_node *node;
368 struct css_set *cg;
370 /* Built the set of subsystem state objects that we want to
371 * see in the new css_set */
372 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
373 if (root->subsys_bits & (1UL << i)) {
374 /* Subsystem is in this hierarchy. So we want
375 * the subsystem state from the new
376 * cgroup */
377 template[i] = cgrp->subsys[i];
378 } else {
379 /* Subsystem is not in this hierarchy, so we
380 * don't want to change the subsystem state */
381 template[i] = oldcg->subsys[i];
385 hhead = css_set_hash(template);
386 hlist_for_each_entry(cg, node, hhead, hlist) {
387 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
388 /* All subsystems matched */
389 return cg;
393 /* No existing cgroup group matched */
394 return NULL;
397 static void free_cg_links(struct list_head *tmp)
399 struct cg_cgroup_link *link;
400 struct cg_cgroup_link *saved_link;
402 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
403 list_del(&link->cgrp_link_list);
404 kfree(link);
409 * allocate_cg_links() allocates "count" cg_cgroup_link structures
410 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
411 * success or a negative error
413 static int allocate_cg_links(int count, struct list_head *tmp)
415 struct cg_cgroup_link *link;
416 int i;
417 INIT_LIST_HEAD(tmp);
418 for (i = 0; i < count; i++) {
419 link = kmalloc(sizeof(*link), GFP_KERNEL);
420 if (!link) {
421 free_cg_links(tmp);
422 return -ENOMEM;
424 list_add(&link->cgrp_link_list, tmp);
426 return 0;
430 * link_css_set - a helper function to link a css_set to a cgroup
431 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
432 * @cg: the css_set to be linked
433 * @cgrp: the destination cgroup
435 static void link_css_set(struct list_head *tmp_cg_links,
436 struct css_set *cg, struct cgroup *cgrp)
438 struct cg_cgroup_link *link;
440 BUG_ON(list_empty(tmp_cg_links));
441 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
442 cgrp_link_list);
443 link->cg = cg;
444 list_move(&link->cgrp_link_list, &cgrp->css_sets);
445 list_add(&link->cg_link_list, &cg->cg_links);
449 * find_css_set() takes an existing cgroup group and a
450 * cgroup object, and returns a css_set object that's
451 * equivalent to the old group, but with the given cgroup
452 * substituted into the appropriate hierarchy. Must be called with
453 * cgroup_mutex held
455 static struct css_set *find_css_set(
456 struct css_set *oldcg, struct cgroup *cgrp)
458 struct css_set *res;
459 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
460 int i;
462 struct list_head tmp_cg_links;
464 struct hlist_head *hhead;
466 /* First see if we already have a cgroup group that matches
467 * the desired set */
468 read_lock(&css_set_lock);
469 res = find_existing_css_set(oldcg, cgrp, template);
470 if (res)
471 get_css_set(res);
472 read_unlock(&css_set_lock);
474 if (res)
475 return res;
477 res = kmalloc(sizeof(*res), GFP_KERNEL);
478 if (!res)
479 return NULL;
481 /* Allocate all the cg_cgroup_link objects that we'll need */
482 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
483 kfree(res);
484 return NULL;
487 atomic_set(&res->refcount, 1);
488 INIT_LIST_HEAD(&res->cg_links);
489 INIT_LIST_HEAD(&res->tasks);
490 INIT_HLIST_NODE(&res->hlist);
492 /* Copy the set of subsystem state objects generated in
493 * find_existing_css_set() */
494 memcpy(res->subsys, template, sizeof(res->subsys));
496 write_lock(&css_set_lock);
497 /* Add reference counts and links from the new css_set. */
498 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
499 struct cgroup *cgrp = res->subsys[i]->cgroup;
500 struct cgroup_subsys *ss = subsys[i];
501 atomic_inc(&cgrp->count);
503 * We want to add a link once per cgroup, so we
504 * only do it for the first subsystem in each
505 * hierarchy
507 if (ss->root->subsys_list.next == &ss->sibling)
508 link_css_set(&tmp_cg_links, res, cgrp);
510 if (list_empty(&rootnode.subsys_list))
511 link_css_set(&tmp_cg_links, res, dummytop);
513 BUG_ON(!list_empty(&tmp_cg_links));
515 css_set_count++;
517 /* Add this cgroup group to the hash table */
518 hhead = css_set_hash(res->subsys);
519 hlist_add_head(&res->hlist, hhead);
521 write_unlock(&css_set_lock);
523 return res;
527 * There is one global cgroup mutex. We also require taking
528 * task_lock() when dereferencing a task's cgroup subsys pointers.
529 * See "The task_lock() exception", at the end of this comment.
531 * A task must hold cgroup_mutex to modify cgroups.
533 * Any task can increment and decrement the count field without lock.
534 * So in general, code holding cgroup_mutex can't rely on the count
535 * field not changing. However, if the count goes to zero, then only
536 * cgroup_attach_task() can increment it again. Because a count of zero
537 * means that no tasks are currently attached, therefore there is no
538 * way a task attached to that cgroup can fork (the other way to
539 * increment the count). So code holding cgroup_mutex can safely
540 * assume that if the count is zero, it will stay zero. Similarly, if
541 * a task holds cgroup_mutex on a cgroup with zero count, it
542 * knows that the cgroup won't be removed, as cgroup_rmdir()
543 * needs that mutex.
545 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
546 * (usually) take cgroup_mutex. These are the two most performance
547 * critical pieces of code here. The exception occurs on cgroup_exit(),
548 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
549 * is taken, and if the cgroup count is zero, a usermode call made
550 * to the release agent with the name of the cgroup (path relative to
551 * the root of cgroup file system) as the argument.
553 * A cgroup can only be deleted if both its 'count' of using tasks
554 * is zero, and its list of 'children' cgroups is empty. Since all
555 * tasks in the system use _some_ cgroup, and since there is always at
556 * least one task in the system (init, pid == 1), therefore, top_cgroup
557 * always has either children cgroups and/or using tasks. So we don't
558 * need a special hack to ensure that top_cgroup cannot be deleted.
560 * The task_lock() exception
562 * The need for this exception arises from the action of
563 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
564 * another. It does so using cgroup_mutex, however there are
565 * several performance critical places that need to reference
566 * task->cgroup without the expense of grabbing a system global
567 * mutex. Therefore except as noted below, when dereferencing or, as
568 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
569 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
570 * the task_struct routinely used for such matters.
572 * P.S. One more locking exception. RCU is used to guard the
573 * update of a tasks cgroup pointer by cgroup_attach_task()
577 * cgroup_lock - lock out any changes to cgroup structures
580 void cgroup_lock(void)
582 mutex_lock(&cgroup_mutex);
586 * cgroup_unlock - release lock on cgroup changes
588 * Undo the lock taken in a previous cgroup_lock() call.
590 void cgroup_unlock(void)
592 mutex_unlock(&cgroup_mutex);
596 * A couple of forward declarations required, due to cyclic reference loop:
597 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
598 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
599 * -> cgroup_mkdir.
602 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
603 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
604 static int cgroup_populate_dir(struct cgroup *cgrp);
605 static const struct inode_operations cgroup_dir_inode_operations;
606 static struct file_operations proc_cgroupstats_operations;
608 static struct backing_dev_info cgroup_backing_dev_info = {
609 .name = "cgroup",
610 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
613 static int alloc_css_id(struct cgroup_subsys *ss,
614 struct cgroup *parent, struct cgroup *child);
616 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
618 struct inode *inode = new_inode(sb);
620 if (inode) {
621 inode->i_mode = mode;
622 inode->i_uid = current_fsuid();
623 inode->i_gid = current_fsgid();
624 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
625 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
627 return inode;
631 * Call subsys's pre_destroy handler.
632 * This is called before css refcnt check.
634 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
636 struct cgroup_subsys *ss;
637 int ret = 0;
639 for_each_subsys(cgrp->root, ss)
640 if (ss->pre_destroy) {
641 ret = ss->pre_destroy(ss, cgrp);
642 if (ret)
643 break;
645 return ret;
648 static void free_cgroup_rcu(struct rcu_head *obj)
650 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
652 kfree(cgrp);
655 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
657 /* is dentry a directory ? if so, kfree() associated cgroup */
658 if (S_ISDIR(inode->i_mode)) {
659 struct cgroup *cgrp = dentry->d_fsdata;
660 struct cgroup_subsys *ss;
661 BUG_ON(!(cgroup_is_removed(cgrp)));
662 /* It's possible for external users to be holding css
663 * reference counts on a cgroup; css_put() needs to
664 * be able to access the cgroup after decrementing
665 * the reference count in order to know if it needs to
666 * queue the cgroup to be handled by the release
667 * agent */
668 synchronize_rcu();
670 mutex_lock(&cgroup_mutex);
672 * Release the subsystem state objects.
674 for_each_subsys(cgrp->root, ss)
675 ss->destroy(ss, cgrp);
677 cgrp->root->number_of_cgroups--;
678 mutex_unlock(&cgroup_mutex);
681 * Drop the active superblock reference that we took when we
682 * created the cgroup
684 deactivate_super(cgrp->root->sb);
686 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
688 iput(inode);
691 static void remove_dir(struct dentry *d)
693 struct dentry *parent = dget(d->d_parent);
695 d_delete(d);
696 simple_rmdir(parent->d_inode, d);
697 dput(parent);
700 static void cgroup_clear_directory(struct dentry *dentry)
702 struct list_head *node;
704 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
705 spin_lock(&dcache_lock);
706 node = dentry->d_subdirs.next;
707 while (node != &dentry->d_subdirs) {
708 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
709 list_del_init(node);
710 if (d->d_inode) {
711 /* This should never be called on a cgroup
712 * directory with child cgroups */
713 BUG_ON(d->d_inode->i_mode & S_IFDIR);
714 d = dget_locked(d);
715 spin_unlock(&dcache_lock);
716 d_delete(d);
717 simple_unlink(dentry->d_inode, d);
718 dput(d);
719 spin_lock(&dcache_lock);
721 node = dentry->d_subdirs.next;
723 spin_unlock(&dcache_lock);
727 * NOTE : the dentry must have been dget()'ed
729 static void cgroup_d_remove_dir(struct dentry *dentry)
731 cgroup_clear_directory(dentry);
733 spin_lock(&dcache_lock);
734 list_del_init(&dentry->d_u.d_child);
735 spin_unlock(&dcache_lock);
736 remove_dir(dentry);
740 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
741 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
742 * reference to css->refcnt. In general, this refcnt is expected to goes down
743 * to zero, soon.
745 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
747 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
749 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
751 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
752 wake_up_all(&cgroup_rmdir_waitq);
755 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
757 css_get(css);
760 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
762 cgroup_wakeup_rmdir_waiter(css->cgroup);
763 css_put(css);
767 static int rebind_subsystems(struct cgroupfs_root *root,
768 unsigned long final_bits)
770 unsigned long added_bits, removed_bits;
771 struct cgroup *cgrp = &root->top_cgroup;
772 int i;
774 removed_bits = root->actual_subsys_bits & ~final_bits;
775 added_bits = final_bits & ~root->actual_subsys_bits;
776 /* Check that any added subsystems are currently free */
777 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
778 unsigned long bit = 1UL << i;
779 struct cgroup_subsys *ss = subsys[i];
780 if (!(bit & added_bits))
781 continue;
782 if (ss->root != &rootnode) {
783 /* Subsystem isn't free */
784 return -EBUSY;
788 /* Currently we don't handle adding/removing subsystems when
789 * any child cgroups exist. This is theoretically supportable
790 * but involves complex error handling, so it's being left until
791 * later */
792 if (root->number_of_cgroups > 1)
793 return -EBUSY;
795 /* Process each subsystem */
796 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
797 struct cgroup_subsys *ss = subsys[i];
798 unsigned long bit = 1UL << i;
799 if (bit & added_bits) {
800 /* We're binding this subsystem to this hierarchy */
801 BUG_ON(cgrp->subsys[i]);
802 BUG_ON(!dummytop->subsys[i]);
803 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
804 mutex_lock(&ss->hierarchy_mutex);
805 cgrp->subsys[i] = dummytop->subsys[i];
806 cgrp->subsys[i]->cgroup = cgrp;
807 list_move(&ss->sibling, &root->subsys_list);
808 ss->root = root;
809 if (ss->bind)
810 ss->bind(ss, cgrp);
811 mutex_unlock(&ss->hierarchy_mutex);
812 } else if (bit & removed_bits) {
813 /* We're removing this subsystem */
814 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
815 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
816 mutex_lock(&ss->hierarchy_mutex);
817 if (ss->bind)
818 ss->bind(ss, dummytop);
819 dummytop->subsys[i]->cgroup = dummytop;
820 cgrp->subsys[i] = NULL;
821 subsys[i]->root = &rootnode;
822 list_move(&ss->sibling, &rootnode.subsys_list);
823 mutex_unlock(&ss->hierarchy_mutex);
824 } else if (bit & final_bits) {
825 /* Subsystem state should already exist */
826 BUG_ON(!cgrp->subsys[i]);
827 } else {
828 /* Subsystem state shouldn't exist */
829 BUG_ON(cgrp->subsys[i]);
832 root->subsys_bits = root->actual_subsys_bits = final_bits;
833 synchronize_rcu();
835 return 0;
838 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
840 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
841 struct cgroup_subsys *ss;
843 mutex_lock(&cgroup_mutex);
844 for_each_subsys(root, ss)
845 seq_printf(seq, ",%s", ss->name);
846 if (test_bit(ROOT_NOPREFIX, &root->flags))
847 seq_puts(seq, ",noprefix");
848 if (strlen(root->release_agent_path))
849 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
850 if (strlen(root->name))
851 seq_printf(seq, ",name=%s", root->name);
852 mutex_unlock(&cgroup_mutex);
853 return 0;
856 struct cgroup_sb_opts {
857 unsigned long subsys_bits;
858 unsigned long flags;
859 char *release_agent;
860 char *name;
862 struct cgroupfs_root *new_root;
865 /* Convert a hierarchy specifier into a bitmask of subsystems and
866 * flags. */
867 static int parse_cgroupfs_options(char *data,
868 struct cgroup_sb_opts *opts)
870 char *token, *o = data ?: "all";
871 unsigned long mask = (unsigned long)-1;
873 #ifdef CONFIG_CPUSETS
874 mask = ~(1UL << cpuset_subsys_id);
875 #endif
877 memset(opts, 0, sizeof(*opts));
879 while ((token = strsep(&o, ",")) != NULL) {
880 if (!*token)
881 return -EINVAL;
882 if (!strcmp(token, "all")) {
883 /* Add all non-disabled subsystems */
884 int i;
885 opts->subsys_bits = 0;
886 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
887 struct cgroup_subsys *ss = subsys[i];
888 if (!ss->disabled)
889 opts->subsys_bits |= 1ul << i;
891 } else if (!strcmp(token, "noprefix")) {
892 set_bit(ROOT_NOPREFIX, &opts->flags);
893 } else if (!strncmp(token, "release_agent=", 14)) {
894 /* Specifying two release agents is forbidden */
895 if (opts->release_agent)
896 return -EINVAL;
897 opts->release_agent =
898 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
899 if (!opts->release_agent)
900 return -ENOMEM;
901 } else if (!strncmp(token, "name=", 5)) {
902 int i;
903 const char *name = token + 5;
904 /* Can't specify an empty name */
905 if (!strlen(name))
906 return -EINVAL;
907 /* Must match [\w.-]+ */
908 for (i = 0; i < strlen(name); i++) {
909 char c = name[i];
910 if (isalnum(c))
911 continue;
912 if ((c == '.') || (c == '-') || (c == '_'))
913 continue;
914 return -EINVAL;
916 /* Specifying two names is forbidden */
917 if (opts->name)
918 return -EINVAL;
919 opts->name = kstrndup(name,
920 MAX_CGROUP_ROOT_NAMELEN,
921 GFP_KERNEL);
922 if (!opts->name)
923 return -ENOMEM;
924 } else {
925 struct cgroup_subsys *ss;
926 int i;
927 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
928 ss = subsys[i];
929 if (!strcmp(token, ss->name)) {
930 if (!ss->disabled)
931 set_bit(i, &opts->subsys_bits);
932 break;
935 if (i == CGROUP_SUBSYS_COUNT)
936 return -ENOENT;
941 * Option noprefix was introduced just for backward compatibility
942 * with the old cpuset, so we allow noprefix only if mounting just
943 * the cpuset subsystem.
945 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
946 (opts->subsys_bits & mask))
947 return -EINVAL;
949 /* We can't have an empty hierarchy */
950 if (!opts->subsys_bits && !opts->name)
951 return -EINVAL;
953 return 0;
956 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
958 int ret = 0;
959 struct cgroupfs_root *root = sb->s_fs_info;
960 struct cgroup *cgrp = &root->top_cgroup;
961 struct cgroup_sb_opts opts;
963 lock_kernel();
964 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
965 mutex_lock(&cgroup_mutex);
967 /* See what subsystems are wanted */
968 ret = parse_cgroupfs_options(data, &opts);
969 if (ret)
970 goto out_unlock;
972 /* Don't allow flags to change at remount */
973 if (opts.flags != root->flags) {
974 ret = -EINVAL;
975 goto out_unlock;
978 /* Don't allow name to change at remount */
979 if (opts.name && strcmp(opts.name, root->name)) {
980 ret = -EINVAL;
981 goto out_unlock;
984 ret = rebind_subsystems(root, opts.subsys_bits);
985 if (ret)
986 goto out_unlock;
988 /* (re)populate subsystem files */
989 cgroup_populate_dir(cgrp);
991 if (opts.release_agent)
992 strcpy(root->release_agent_path, opts.release_agent);
993 out_unlock:
994 kfree(opts.release_agent);
995 kfree(opts.name);
996 mutex_unlock(&cgroup_mutex);
997 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
998 unlock_kernel();
999 return ret;
1002 static const struct super_operations cgroup_ops = {
1003 .statfs = simple_statfs,
1004 .drop_inode = generic_delete_inode,
1005 .show_options = cgroup_show_options,
1006 .remount_fs = cgroup_remount,
1009 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1011 INIT_LIST_HEAD(&cgrp->sibling);
1012 INIT_LIST_HEAD(&cgrp->children);
1013 INIT_LIST_HEAD(&cgrp->css_sets);
1014 INIT_LIST_HEAD(&cgrp->release_list);
1015 INIT_LIST_HEAD(&cgrp->pids_list);
1016 init_rwsem(&cgrp->pids_mutex);
1019 static void init_cgroup_root(struct cgroupfs_root *root)
1021 struct cgroup *cgrp = &root->top_cgroup;
1022 INIT_LIST_HEAD(&root->subsys_list);
1023 INIT_LIST_HEAD(&root->root_list);
1024 root->number_of_cgroups = 1;
1025 cgrp->root = root;
1026 cgrp->top_cgroup = cgrp;
1027 init_cgroup_housekeeping(cgrp);
1030 static int cgroup_test_super(struct super_block *sb, void *data)
1032 struct cgroup_sb_opts *opts = data;
1033 struct cgroupfs_root *root = sb->s_fs_info;
1035 /* If we asked for a name then it must match */
1036 if (opts->name && strcmp(opts->name, root->name))
1037 return 0;
1039 /* If we asked for subsystems then they must match */
1040 if (opts->subsys_bits && (opts->subsys_bits != root->subsys_bits))
1041 return 0;
1043 return 1;
1046 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1048 struct cgroupfs_root *root;
1050 /* Empty hierarchies aren't supported */
1051 if (!opts->subsys_bits)
1052 return NULL;
1054 root = kzalloc(sizeof(*root), GFP_KERNEL);
1055 if (!root)
1056 return ERR_PTR(-ENOMEM);
1058 init_cgroup_root(root);
1059 root->subsys_bits = opts->subsys_bits;
1060 root->flags = opts->flags;
1061 if (opts->release_agent)
1062 strcpy(root->release_agent_path, opts->release_agent);
1063 if (opts->name)
1064 strcpy(root->name, opts->name);
1065 return root;
1068 static int cgroup_set_super(struct super_block *sb, void *data)
1070 int ret;
1071 struct cgroup_sb_opts *opts = data;
1073 /* If we don't have a new root, we can't set up a new sb */
1074 if (!opts->new_root)
1075 return -EINVAL;
1077 BUG_ON(!opts->subsys_bits);
1079 ret = set_anon_super(sb, NULL);
1080 if (ret)
1081 return ret;
1083 sb->s_fs_info = opts->new_root;
1084 opts->new_root->sb = sb;
1086 sb->s_blocksize = PAGE_CACHE_SIZE;
1087 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1088 sb->s_magic = CGROUP_SUPER_MAGIC;
1089 sb->s_op = &cgroup_ops;
1091 return 0;
1094 static int cgroup_get_rootdir(struct super_block *sb)
1096 struct inode *inode =
1097 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1098 struct dentry *dentry;
1100 if (!inode)
1101 return -ENOMEM;
1103 inode->i_fop = &simple_dir_operations;
1104 inode->i_op = &cgroup_dir_inode_operations;
1105 /* directories start off with i_nlink == 2 (for "." entry) */
1106 inc_nlink(inode);
1107 dentry = d_alloc_root(inode);
1108 if (!dentry) {
1109 iput(inode);
1110 return -ENOMEM;
1112 sb->s_root = dentry;
1113 return 0;
1116 static int cgroup_get_sb(struct file_system_type *fs_type,
1117 int flags, const char *unused_dev_name,
1118 void *data, struct vfsmount *mnt)
1120 struct cgroup_sb_opts opts;
1121 struct cgroupfs_root *root;
1122 int ret = 0;
1123 struct super_block *sb;
1124 struct cgroupfs_root *new_root;
1126 /* First find the desired set of subsystems */
1127 ret = parse_cgroupfs_options(data, &opts);
1128 if (ret)
1129 goto out_err;
1132 * Allocate a new cgroup root. We may not need it if we're
1133 * reusing an existing hierarchy.
1135 new_root = cgroup_root_from_opts(&opts);
1136 if (IS_ERR(new_root)) {
1137 ret = PTR_ERR(new_root);
1138 goto out_err;
1140 opts.new_root = new_root;
1142 /* Locate an existing or new sb for this hierarchy */
1143 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1144 if (IS_ERR(sb)) {
1145 ret = PTR_ERR(sb);
1146 kfree(opts.new_root);
1147 goto out_err;
1150 root = sb->s_fs_info;
1151 BUG_ON(!root);
1152 if (root == opts.new_root) {
1153 /* We used the new root structure, so this is a new hierarchy */
1154 struct list_head tmp_cg_links;
1155 struct cgroup *root_cgrp = &root->top_cgroup;
1156 struct inode *inode;
1157 struct cgroupfs_root *existing_root;
1158 int i;
1160 BUG_ON(sb->s_root != NULL);
1162 ret = cgroup_get_rootdir(sb);
1163 if (ret)
1164 goto drop_new_super;
1165 inode = sb->s_root->d_inode;
1167 mutex_lock(&inode->i_mutex);
1168 mutex_lock(&cgroup_mutex);
1170 if (strlen(root->name)) {
1171 /* Check for name clashes with existing mounts */
1172 for_each_active_root(existing_root) {
1173 if (!strcmp(existing_root->name, root->name)) {
1174 ret = -EBUSY;
1175 mutex_unlock(&cgroup_mutex);
1176 mutex_unlock(&inode->i_mutex);
1177 goto drop_new_super;
1183 * We're accessing css_set_count without locking
1184 * css_set_lock here, but that's OK - it can only be
1185 * increased by someone holding cgroup_lock, and
1186 * that's us. The worst that can happen is that we
1187 * have some link structures left over
1189 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1190 if (ret) {
1191 mutex_unlock(&cgroup_mutex);
1192 mutex_unlock(&inode->i_mutex);
1193 goto drop_new_super;
1196 ret = rebind_subsystems(root, root->subsys_bits);
1197 if (ret == -EBUSY) {
1198 mutex_unlock(&cgroup_mutex);
1199 mutex_unlock(&inode->i_mutex);
1200 free_cg_links(&tmp_cg_links);
1201 goto drop_new_super;
1204 /* EBUSY should be the only error here */
1205 BUG_ON(ret);
1207 list_add(&root->root_list, &roots);
1208 root_count++;
1210 sb->s_root->d_fsdata = root_cgrp;
1211 root->top_cgroup.dentry = sb->s_root;
1213 /* Link the top cgroup in this hierarchy into all
1214 * the css_set objects */
1215 write_lock(&css_set_lock);
1216 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1217 struct hlist_head *hhead = &css_set_table[i];
1218 struct hlist_node *node;
1219 struct css_set *cg;
1221 hlist_for_each_entry(cg, node, hhead, hlist)
1222 link_css_set(&tmp_cg_links, cg, root_cgrp);
1224 write_unlock(&css_set_lock);
1226 free_cg_links(&tmp_cg_links);
1228 BUG_ON(!list_empty(&root_cgrp->sibling));
1229 BUG_ON(!list_empty(&root_cgrp->children));
1230 BUG_ON(root->number_of_cgroups != 1);
1232 cgroup_populate_dir(root_cgrp);
1233 mutex_unlock(&cgroup_mutex);
1234 mutex_unlock(&inode->i_mutex);
1235 } else {
1237 * We re-used an existing hierarchy - the new root (if
1238 * any) is not needed
1240 kfree(opts.new_root);
1243 simple_set_mnt(mnt, sb);
1244 kfree(opts.release_agent);
1245 kfree(opts.name);
1246 return 0;
1248 drop_new_super:
1249 deactivate_locked_super(sb);
1250 out_err:
1251 kfree(opts.release_agent);
1252 kfree(opts.name);
1254 return ret;
1257 static void cgroup_kill_sb(struct super_block *sb) {
1258 struct cgroupfs_root *root = sb->s_fs_info;
1259 struct cgroup *cgrp = &root->top_cgroup;
1260 int ret;
1261 struct cg_cgroup_link *link;
1262 struct cg_cgroup_link *saved_link;
1264 BUG_ON(!root);
1266 BUG_ON(root->number_of_cgroups != 1);
1267 BUG_ON(!list_empty(&cgrp->children));
1268 BUG_ON(!list_empty(&cgrp->sibling));
1270 mutex_lock(&cgroup_mutex);
1272 /* Rebind all subsystems back to the default hierarchy */
1273 ret = rebind_subsystems(root, 0);
1274 /* Shouldn't be able to fail ... */
1275 BUG_ON(ret);
1278 * Release all the links from css_sets to this hierarchy's
1279 * root cgroup
1281 write_lock(&css_set_lock);
1283 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1284 cgrp_link_list) {
1285 list_del(&link->cg_link_list);
1286 list_del(&link->cgrp_link_list);
1287 kfree(link);
1289 write_unlock(&css_set_lock);
1291 if (!list_empty(&root->root_list)) {
1292 list_del(&root->root_list);
1293 root_count--;
1296 mutex_unlock(&cgroup_mutex);
1298 kill_litter_super(sb);
1299 kfree(root);
1302 static struct file_system_type cgroup_fs_type = {
1303 .name = "cgroup",
1304 .get_sb = cgroup_get_sb,
1305 .kill_sb = cgroup_kill_sb,
1308 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1310 return dentry->d_fsdata;
1313 static inline struct cftype *__d_cft(struct dentry *dentry)
1315 return dentry->d_fsdata;
1319 * cgroup_path - generate the path of a cgroup
1320 * @cgrp: the cgroup in question
1321 * @buf: the buffer to write the path into
1322 * @buflen: the length of the buffer
1324 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1325 * reference. Writes path of cgroup into buf. Returns 0 on success,
1326 * -errno on error.
1328 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1330 char *start;
1331 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1333 if (!dentry || cgrp == dummytop) {
1335 * Inactive subsystems have no dentry for their root
1336 * cgroup
1338 strcpy(buf, "/");
1339 return 0;
1342 start = buf + buflen;
1344 *--start = '\0';
1345 for (;;) {
1346 int len = dentry->d_name.len;
1347 if ((start -= len) < buf)
1348 return -ENAMETOOLONG;
1349 memcpy(start, cgrp->dentry->d_name.name, len);
1350 cgrp = cgrp->parent;
1351 if (!cgrp)
1352 break;
1353 dentry = rcu_dereference(cgrp->dentry);
1354 if (!cgrp->parent)
1355 continue;
1356 if (--start < buf)
1357 return -ENAMETOOLONG;
1358 *start = '/';
1360 memmove(buf, start, buf + buflen - start);
1361 return 0;
1365 * Return the first subsystem attached to a cgroup's hierarchy, and
1366 * its subsystem id.
1369 static void get_first_subsys(const struct cgroup *cgrp,
1370 struct cgroup_subsys_state **css, int *subsys_id)
1372 const struct cgroupfs_root *root = cgrp->root;
1373 const struct cgroup_subsys *test_ss;
1374 BUG_ON(list_empty(&root->subsys_list));
1375 test_ss = list_entry(root->subsys_list.next,
1376 struct cgroup_subsys, sibling);
1377 if (css) {
1378 *css = cgrp->subsys[test_ss->subsys_id];
1379 BUG_ON(!*css);
1381 if (subsys_id)
1382 *subsys_id = test_ss->subsys_id;
1386 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1387 * @cgrp: the cgroup the task is attaching to
1388 * @tsk: the task to be attached
1390 * Call holding cgroup_mutex. May take task_lock of
1391 * the task 'tsk' during call.
1393 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1395 int retval = 0;
1396 struct cgroup_subsys *ss;
1397 struct cgroup *oldcgrp;
1398 struct css_set *cg;
1399 struct css_set *newcg;
1400 struct cgroupfs_root *root = cgrp->root;
1401 int subsys_id;
1403 get_first_subsys(cgrp, NULL, &subsys_id);
1405 /* Nothing to do if the task is already in that cgroup */
1406 oldcgrp = task_cgroup(tsk, subsys_id);
1407 if (cgrp == oldcgrp)
1408 return 0;
1410 for_each_subsys(root, ss) {
1411 if (ss->can_attach) {
1412 retval = ss->can_attach(ss, cgrp, tsk);
1413 if (retval)
1414 return retval;
1418 task_lock(tsk);
1419 cg = tsk->cgroups;
1420 get_css_set(cg);
1421 task_unlock(tsk);
1423 * Locate or allocate a new css_set for this task,
1424 * based on its final set of cgroups
1426 newcg = find_css_set(cg, cgrp);
1427 put_css_set(cg);
1428 if (!newcg)
1429 return -ENOMEM;
1431 task_lock(tsk);
1432 if (tsk->flags & PF_EXITING) {
1433 task_unlock(tsk);
1434 put_css_set(newcg);
1435 return -ESRCH;
1437 rcu_assign_pointer(tsk->cgroups, newcg);
1438 task_unlock(tsk);
1440 /* Update the css_set linked lists if we're using them */
1441 write_lock(&css_set_lock);
1442 if (!list_empty(&tsk->cg_list)) {
1443 list_del(&tsk->cg_list);
1444 list_add(&tsk->cg_list, &newcg->tasks);
1446 write_unlock(&css_set_lock);
1448 for_each_subsys(root, ss) {
1449 if (ss->attach)
1450 ss->attach(ss, cgrp, oldcgrp, tsk);
1452 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1453 synchronize_rcu();
1454 put_css_set(cg);
1457 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1458 * is no longer empty.
1460 cgroup_wakeup_rmdir_waiter(cgrp);
1461 return 0;
1465 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1466 * held. May take task_lock of task
1468 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1470 struct task_struct *tsk;
1471 const struct cred *cred = current_cred(), *tcred;
1472 int ret;
1474 if (pid) {
1475 rcu_read_lock();
1476 tsk = find_task_by_vpid(pid);
1477 if (!tsk || tsk->flags & PF_EXITING) {
1478 rcu_read_unlock();
1479 return -ESRCH;
1482 tcred = __task_cred(tsk);
1483 if (cred->euid &&
1484 cred->euid != tcred->uid &&
1485 cred->euid != tcred->suid) {
1486 rcu_read_unlock();
1487 return -EACCES;
1489 get_task_struct(tsk);
1490 rcu_read_unlock();
1491 } else {
1492 tsk = current;
1493 get_task_struct(tsk);
1496 ret = cgroup_attach_task(cgrp, tsk);
1497 put_task_struct(tsk);
1498 return ret;
1501 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1503 int ret;
1504 if (!cgroup_lock_live_group(cgrp))
1505 return -ENODEV;
1506 ret = attach_task_by_pid(cgrp, pid);
1507 cgroup_unlock();
1508 return ret;
1511 /* The various types of files and directories in a cgroup file system */
1512 enum cgroup_filetype {
1513 FILE_ROOT,
1514 FILE_DIR,
1515 FILE_TASKLIST,
1516 FILE_NOTIFY_ON_RELEASE,
1517 FILE_RELEASE_AGENT,
1521 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1522 * @cgrp: the cgroup to be checked for liveness
1524 * On success, returns true; the lock should be later released with
1525 * cgroup_unlock(). On failure returns false with no lock held.
1527 bool cgroup_lock_live_group(struct cgroup *cgrp)
1529 mutex_lock(&cgroup_mutex);
1530 if (cgroup_is_removed(cgrp)) {
1531 mutex_unlock(&cgroup_mutex);
1532 return false;
1534 return true;
1537 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1538 const char *buffer)
1540 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1541 if (!cgroup_lock_live_group(cgrp))
1542 return -ENODEV;
1543 strcpy(cgrp->root->release_agent_path, buffer);
1544 cgroup_unlock();
1545 return 0;
1548 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1549 struct seq_file *seq)
1551 if (!cgroup_lock_live_group(cgrp))
1552 return -ENODEV;
1553 seq_puts(seq, cgrp->root->release_agent_path);
1554 seq_putc(seq, '\n');
1555 cgroup_unlock();
1556 return 0;
1559 /* A buffer size big enough for numbers or short strings */
1560 #define CGROUP_LOCAL_BUFFER_SIZE 64
1562 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1563 struct file *file,
1564 const char __user *userbuf,
1565 size_t nbytes, loff_t *unused_ppos)
1567 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1568 int retval = 0;
1569 char *end;
1571 if (!nbytes)
1572 return -EINVAL;
1573 if (nbytes >= sizeof(buffer))
1574 return -E2BIG;
1575 if (copy_from_user(buffer, userbuf, nbytes))
1576 return -EFAULT;
1578 buffer[nbytes] = 0; /* nul-terminate */
1579 strstrip(buffer);
1580 if (cft->write_u64) {
1581 u64 val = simple_strtoull(buffer, &end, 0);
1582 if (*end)
1583 return -EINVAL;
1584 retval = cft->write_u64(cgrp, cft, val);
1585 } else {
1586 s64 val = simple_strtoll(buffer, &end, 0);
1587 if (*end)
1588 return -EINVAL;
1589 retval = cft->write_s64(cgrp, cft, val);
1591 if (!retval)
1592 retval = nbytes;
1593 return retval;
1596 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1597 struct file *file,
1598 const char __user *userbuf,
1599 size_t nbytes, loff_t *unused_ppos)
1601 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1602 int retval = 0;
1603 size_t max_bytes = cft->max_write_len;
1604 char *buffer = local_buffer;
1606 if (!max_bytes)
1607 max_bytes = sizeof(local_buffer) - 1;
1608 if (nbytes >= max_bytes)
1609 return -E2BIG;
1610 /* Allocate a dynamic buffer if we need one */
1611 if (nbytes >= sizeof(local_buffer)) {
1612 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1613 if (buffer == NULL)
1614 return -ENOMEM;
1616 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1617 retval = -EFAULT;
1618 goto out;
1621 buffer[nbytes] = 0; /* nul-terminate */
1622 strstrip(buffer);
1623 retval = cft->write_string(cgrp, cft, buffer);
1624 if (!retval)
1625 retval = nbytes;
1626 out:
1627 if (buffer != local_buffer)
1628 kfree(buffer);
1629 return retval;
1632 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1633 size_t nbytes, loff_t *ppos)
1635 struct cftype *cft = __d_cft(file->f_dentry);
1636 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1638 if (cgroup_is_removed(cgrp))
1639 return -ENODEV;
1640 if (cft->write)
1641 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1642 if (cft->write_u64 || cft->write_s64)
1643 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1644 if (cft->write_string)
1645 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1646 if (cft->trigger) {
1647 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1648 return ret ? ret : nbytes;
1650 return -EINVAL;
1653 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1654 struct file *file,
1655 char __user *buf, size_t nbytes,
1656 loff_t *ppos)
1658 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1659 u64 val = cft->read_u64(cgrp, cft);
1660 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1662 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1665 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1666 struct file *file,
1667 char __user *buf, size_t nbytes,
1668 loff_t *ppos)
1670 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1671 s64 val = cft->read_s64(cgrp, cft);
1672 int len = sprintf(tmp, "%lld\n", (long long) val);
1674 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1677 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1678 size_t nbytes, loff_t *ppos)
1680 struct cftype *cft = __d_cft(file->f_dentry);
1681 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1683 if (cgroup_is_removed(cgrp))
1684 return -ENODEV;
1686 if (cft->read)
1687 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1688 if (cft->read_u64)
1689 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1690 if (cft->read_s64)
1691 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1692 return -EINVAL;
1696 * seqfile ops/methods for returning structured data. Currently just
1697 * supports string->u64 maps, but can be extended in future.
1700 struct cgroup_seqfile_state {
1701 struct cftype *cft;
1702 struct cgroup *cgroup;
1705 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1707 struct seq_file *sf = cb->state;
1708 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1711 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1713 struct cgroup_seqfile_state *state = m->private;
1714 struct cftype *cft = state->cft;
1715 if (cft->read_map) {
1716 struct cgroup_map_cb cb = {
1717 .fill = cgroup_map_add,
1718 .state = m,
1720 return cft->read_map(state->cgroup, cft, &cb);
1722 return cft->read_seq_string(state->cgroup, cft, m);
1725 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1727 struct seq_file *seq = file->private_data;
1728 kfree(seq->private);
1729 return single_release(inode, file);
1732 static struct file_operations cgroup_seqfile_operations = {
1733 .read = seq_read,
1734 .write = cgroup_file_write,
1735 .llseek = seq_lseek,
1736 .release = cgroup_seqfile_release,
1739 static int cgroup_file_open(struct inode *inode, struct file *file)
1741 int err;
1742 struct cftype *cft;
1744 err = generic_file_open(inode, file);
1745 if (err)
1746 return err;
1747 cft = __d_cft(file->f_dentry);
1749 if (cft->read_map || cft->read_seq_string) {
1750 struct cgroup_seqfile_state *state =
1751 kzalloc(sizeof(*state), GFP_USER);
1752 if (!state)
1753 return -ENOMEM;
1754 state->cft = cft;
1755 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1756 file->f_op = &cgroup_seqfile_operations;
1757 err = single_open(file, cgroup_seqfile_show, state);
1758 if (err < 0)
1759 kfree(state);
1760 } else if (cft->open)
1761 err = cft->open(inode, file);
1762 else
1763 err = 0;
1765 return err;
1768 static int cgroup_file_release(struct inode *inode, struct file *file)
1770 struct cftype *cft = __d_cft(file->f_dentry);
1771 if (cft->release)
1772 return cft->release(inode, file);
1773 return 0;
1777 * cgroup_rename - Only allow simple rename of directories in place.
1779 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1780 struct inode *new_dir, struct dentry *new_dentry)
1782 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1783 return -ENOTDIR;
1784 if (new_dentry->d_inode)
1785 return -EEXIST;
1786 if (old_dir != new_dir)
1787 return -EIO;
1788 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1791 static struct file_operations cgroup_file_operations = {
1792 .read = cgroup_file_read,
1793 .write = cgroup_file_write,
1794 .llseek = generic_file_llseek,
1795 .open = cgroup_file_open,
1796 .release = cgroup_file_release,
1799 static const struct inode_operations cgroup_dir_inode_operations = {
1800 .lookup = simple_lookup,
1801 .mkdir = cgroup_mkdir,
1802 .rmdir = cgroup_rmdir,
1803 .rename = cgroup_rename,
1806 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1807 struct super_block *sb)
1809 static const struct dentry_operations cgroup_dops = {
1810 .d_iput = cgroup_diput,
1813 struct inode *inode;
1815 if (!dentry)
1816 return -ENOENT;
1817 if (dentry->d_inode)
1818 return -EEXIST;
1820 inode = cgroup_new_inode(mode, sb);
1821 if (!inode)
1822 return -ENOMEM;
1824 if (S_ISDIR(mode)) {
1825 inode->i_op = &cgroup_dir_inode_operations;
1826 inode->i_fop = &simple_dir_operations;
1828 /* start off with i_nlink == 2 (for "." entry) */
1829 inc_nlink(inode);
1831 /* start with the directory inode held, so that we can
1832 * populate it without racing with another mkdir */
1833 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1834 } else if (S_ISREG(mode)) {
1835 inode->i_size = 0;
1836 inode->i_fop = &cgroup_file_operations;
1838 dentry->d_op = &cgroup_dops;
1839 d_instantiate(dentry, inode);
1840 dget(dentry); /* Extra count - pin the dentry in core */
1841 return 0;
1845 * cgroup_create_dir - create a directory for an object.
1846 * @cgrp: the cgroup we create the directory for. It must have a valid
1847 * ->parent field. And we are going to fill its ->dentry field.
1848 * @dentry: dentry of the new cgroup
1849 * @mode: mode to set on new directory.
1851 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1852 mode_t mode)
1854 struct dentry *parent;
1855 int error = 0;
1857 parent = cgrp->parent->dentry;
1858 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1859 if (!error) {
1860 dentry->d_fsdata = cgrp;
1861 inc_nlink(parent->d_inode);
1862 rcu_assign_pointer(cgrp->dentry, dentry);
1863 dget(dentry);
1865 dput(dentry);
1867 return error;
1871 * cgroup_file_mode - deduce file mode of a control file
1872 * @cft: the control file in question
1874 * returns cft->mode if ->mode is not 0
1875 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1876 * returns S_IRUGO if it has only a read handler
1877 * returns S_IWUSR if it has only a write hander
1879 static mode_t cgroup_file_mode(const struct cftype *cft)
1881 mode_t mode = 0;
1883 if (cft->mode)
1884 return cft->mode;
1886 if (cft->read || cft->read_u64 || cft->read_s64 ||
1887 cft->read_map || cft->read_seq_string)
1888 mode |= S_IRUGO;
1890 if (cft->write || cft->write_u64 || cft->write_s64 ||
1891 cft->write_string || cft->trigger)
1892 mode |= S_IWUSR;
1894 return mode;
1897 int cgroup_add_file(struct cgroup *cgrp,
1898 struct cgroup_subsys *subsys,
1899 const struct cftype *cft)
1901 struct dentry *dir = cgrp->dentry;
1902 struct dentry *dentry;
1903 int error;
1904 mode_t mode;
1906 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1907 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1908 strcpy(name, subsys->name);
1909 strcat(name, ".");
1911 strcat(name, cft->name);
1912 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1913 dentry = lookup_one_len(name, dir, strlen(name));
1914 if (!IS_ERR(dentry)) {
1915 mode = cgroup_file_mode(cft);
1916 error = cgroup_create_file(dentry, mode | S_IFREG,
1917 cgrp->root->sb);
1918 if (!error)
1919 dentry->d_fsdata = (void *)cft;
1920 dput(dentry);
1921 } else
1922 error = PTR_ERR(dentry);
1923 return error;
1926 int cgroup_add_files(struct cgroup *cgrp,
1927 struct cgroup_subsys *subsys,
1928 const struct cftype cft[],
1929 int count)
1931 int i, err;
1932 for (i = 0; i < count; i++) {
1933 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1934 if (err)
1935 return err;
1937 return 0;
1941 * cgroup_task_count - count the number of tasks in a cgroup.
1942 * @cgrp: the cgroup in question
1944 * Return the number of tasks in the cgroup.
1946 int cgroup_task_count(const struct cgroup *cgrp)
1948 int count = 0;
1949 struct cg_cgroup_link *link;
1951 read_lock(&css_set_lock);
1952 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1953 count += atomic_read(&link->cg->refcount);
1955 read_unlock(&css_set_lock);
1956 return count;
1960 * Advance a list_head iterator. The iterator should be positioned at
1961 * the start of a css_set
1963 static void cgroup_advance_iter(struct cgroup *cgrp,
1964 struct cgroup_iter *it)
1966 struct list_head *l = it->cg_link;
1967 struct cg_cgroup_link *link;
1968 struct css_set *cg;
1970 /* Advance to the next non-empty css_set */
1971 do {
1972 l = l->next;
1973 if (l == &cgrp->css_sets) {
1974 it->cg_link = NULL;
1975 return;
1977 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1978 cg = link->cg;
1979 } while (list_empty(&cg->tasks));
1980 it->cg_link = l;
1981 it->task = cg->tasks.next;
1985 * To reduce the fork() overhead for systems that are not actually
1986 * using their cgroups capability, we don't maintain the lists running
1987 * through each css_set to its tasks until we see the list actually
1988 * used - in other words after the first call to cgroup_iter_start().
1990 * The tasklist_lock is not held here, as do_each_thread() and
1991 * while_each_thread() are protected by RCU.
1993 static void cgroup_enable_task_cg_lists(void)
1995 struct task_struct *p, *g;
1996 write_lock(&css_set_lock);
1997 use_task_css_set_links = 1;
1998 do_each_thread(g, p) {
1999 task_lock(p);
2001 * We should check if the process is exiting, otherwise
2002 * it will race with cgroup_exit() in that the list
2003 * entry won't be deleted though the process has exited.
2005 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2006 list_add(&p->cg_list, &p->cgroups->tasks);
2007 task_unlock(p);
2008 } while_each_thread(g, p);
2009 write_unlock(&css_set_lock);
2012 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2015 * The first time anyone tries to iterate across a cgroup,
2016 * we need to enable the list linking each css_set to its
2017 * tasks, and fix up all existing tasks.
2019 if (!use_task_css_set_links)
2020 cgroup_enable_task_cg_lists();
2022 read_lock(&css_set_lock);
2023 it->cg_link = &cgrp->css_sets;
2024 cgroup_advance_iter(cgrp, it);
2027 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2028 struct cgroup_iter *it)
2030 struct task_struct *res;
2031 struct list_head *l = it->task;
2032 struct cg_cgroup_link *link;
2034 /* If the iterator cg is NULL, we have no tasks */
2035 if (!it->cg_link)
2036 return NULL;
2037 res = list_entry(l, struct task_struct, cg_list);
2038 /* Advance iterator to find next entry */
2039 l = l->next;
2040 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2041 if (l == &link->cg->tasks) {
2042 /* We reached the end of this task list - move on to
2043 * the next cg_cgroup_link */
2044 cgroup_advance_iter(cgrp, it);
2045 } else {
2046 it->task = l;
2048 return res;
2051 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2053 read_unlock(&css_set_lock);
2056 static inline int started_after_time(struct task_struct *t1,
2057 struct timespec *time,
2058 struct task_struct *t2)
2060 int start_diff = timespec_compare(&t1->start_time, time);
2061 if (start_diff > 0) {
2062 return 1;
2063 } else if (start_diff < 0) {
2064 return 0;
2065 } else {
2067 * Arbitrarily, if two processes started at the same
2068 * time, we'll say that the lower pointer value
2069 * started first. Note that t2 may have exited by now
2070 * so this may not be a valid pointer any longer, but
2071 * that's fine - it still serves to distinguish
2072 * between two tasks started (effectively) simultaneously.
2074 return t1 > t2;
2079 * This function is a callback from heap_insert() and is used to order
2080 * the heap.
2081 * In this case we order the heap in descending task start time.
2083 static inline int started_after(void *p1, void *p2)
2085 struct task_struct *t1 = p1;
2086 struct task_struct *t2 = p2;
2087 return started_after_time(t1, &t2->start_time, t2);
2091 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2092 * @scan: struct cgroup_scanner containing arguments for the scan
2094 * Arguments include pointers to callback functions test_task() and
2095 * process_task().
2096 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2097 * and if it returns true, call process_task() for it also.
2098 * The test_task pointer may be NULL, meaning always true (select all tasks).
2099 * Effectively duplicates cgroup_iter_{start,next,end}()
2100 * but does not lock css_set_lock for the call to process_task().
2101 * The struct cgroup_scanner may be embedded in any structure of the caller's
2102 * creation.
2103 * It is guaranteed that process_task() will act on every task that
2104 * is a member of the cgroup for the duration of this call. This
2105 * function may or may not call process_task() for tasks that exit
2106 * or move to a different cgroup during the call, or are forked or
2107 * move into the cgroup during the call.
2109 * Note that test_task() may be called with locks held, and may in some
2110 * situations be called multiple times for the same task, so it should
2111 * be cheap.
2112 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2113 * pre-allocated and will be used for heap operations (and its "gt" member will
2114 * be overwritten), else a temporary heap will be used (allocation of which
2115 * may cause this function to fail).
2117 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2119 int retval, i;
2120 struct cgroup_iter it;
2121 struct task_struct *p, *dropped;
2122 /* Never dereference latest_task, since it's not refcounted */
2123 struct task_struct *latest_task = NULL;
2124 struct ptr_heap tmp_heap;
2125 struct ptr_heap *heap;
2126 struct timespec latest_time = { 0, 0 };
2128 if (scan->heap) {
2129 /* The caller supplied our heap and pre-allocated its memory */
2130 heap = scan->heap;
2131 heap->gt = &started_after;
2132 } else {
2133 /* We need to allocate our own heap memory */
2134 heap = &tmp_heap;
2135 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2136 if (retval)
2137 /* cannot allocate the heap */
2138 return retval;
2141 again:
2143 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2144 * to determine which are of interest, and using the scanner's
2145 * "process_task" callback to process any of them that need an update.
2146 * Since we don't want to hold any locks during the task updates,
2147 * gather tasks to be processed in a heap structure.
2148 * The heap is sorted by descending task start time.
2149 * If the statically-sized heap fills up, we overflow tasks that
2150 * started later, and in future iterations only consider tasks that
2151 * started after the latest task in the previous pass. This
2152 * guarantees forward progress and that we don't miss any tasks.
2154 heap->size = 0;
2155 cgroup_iter_start(scan->cg, &it);
2156 while ((p = cgroup_iter_next(scan->cg, &it))) {
2158 * Only affect tasks that qualify per the caller's callback,
2159 * if he provided one
2161 if (scan->test_task && !scan->test_task(p, scan))
2162 continue;
2164 * Only process tasks that started after the last task
2165 * we processed
2167 if (!started_after_time(p, &latest_time, latest_task))
2168 continue;
2169 dropped = heap_insert(heap, p);
2170 if (dropped == NULL) {
2172 * The new task was inserted; the heap wasn't
2173 * previously full
2175 get_task_struct(p);
2176 } else if (dropped != p) {
2178 * The new task was inserted, and pushed out a
2179 * different task
2181 get_task_struct(p);
2182 put_task_struct(dropped);
2185 * Else the new task was newer than anything already in
2186 * the heap and wasn't inserted
2189 cgroup_iter_end(scan->cg, &it);
2191 if (heap->size) {
2192 for (i = 0; i < heap->size; i++) {
2193 struct task_struct *q = heap->ptrs[i];
2194 if (i == 0) {
2195 latest_time = q->start_time;
2196 latest_task = q;
2198 /* Process the task per the caller's callback */
2199 scan->process_task(q, scan);
2200 put_task_struct(q);
2203 * If we had to process any tasks at all, scan again
2204 * in case some of them were in the middle of forking
2205 * children that didn't get processed.
2206 * Not the most efficient way to do it, but it avoids
2207 * having to take callback_mutex in the fork path
2209 goto again;
2211 if (heap == &tmp_heap)
2212 heap_free(&tmp_heap);
2213 return 0;
2217 * Stuff for reading the 'tasks' file.
2219 * Reading this file can return large amounts of data if a cgroup has
2220 * *lots* of attached tasks. So it may need several calls to read(),
2221 * but we cannot guarantee that the information we produce is correct
2222 * unless we produce it entirely atomically.
2227 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2228 * 'cgrp'. Return actual number of pids loaded. No need to
2229 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2230 * read section, so the css_set can't go away, and is
2231 * immutable after creation.
2233 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2235 int n = 0, pid;
2236 struct cgroup_iter it;
2237 struct task_struct *tsk;
2238 cgroup_iter_start(cgrp, &it);
2239 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2240 if (unlikely(n == npids))
2241 break;
2242 pid = task_pid_vnr(tsk);
2243 if (pid > 0)
2244 pidarray[n++] = pid;
2246 cgroup_iter_end(cgrp, &it);
2247 return n;
2251 * cgroupstats_build - build and fill cgroupstats
2252 * @stats: cgroupstats to fill information into
2253 * @dentry: A dentry entry belonging to the cgroup for which stats have
2254 * been requested.
2256 * Build and fill cgroupstats so that taskstats can export it to user
2257 * space.
2259 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2261 int ret = -EINVAL;
2262 struct cgroup *cgrp;
2263 struct cgroup_iter it;
2264 struct task_struct *tsk;
2267 * Validate dentry by checking the superblock operations,
2268 * and make sure it's a directory.
2270 if (dentry->d_sb->s_op != &cgroup_ops ||
2271 !S_ISDIR(dentry->d_inode->i_mode))
2272 goto err;
2274 ret = 0;
2275 cgrp = dentry->d_fsdata;
2277 cgroup_iter_start(cgrp, &it);
2278 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2279 switch (tsk->state) {
2280 case TASK_RUNNING:
2281 stats->nr_running++;
2282 break;
2283 case TASK_INTERRUPTIBLE:
2284 stats->nr_sleeping++;
2285 break;
2286 case TASK_UNINTERRUPTIBLE:
2287 stats->nr_uninterruptible++;
2288 break;
2289 case TASK_STOPPED:
2290 stats->nr_stopped++;
2291 break;
2292 default:
2293 if (delayacct_is_task_waiting_on_io(tsk))
2294 stats->nr_io_wait++;
2295 break;
2298 cgroup_iter_end(cgrp, &it);
2300 err:
2301 return ret;
2305 * Cache pids for all threads in the same pid namespace that are
2306 * opening the same "tasks" file.
2308 struct cgroup_pids {
2309 /* The node in cgrp->pids_list */
2310 struct list_head list;
2311 /* The cgroup those pids belong to */
2312 struct cgroup *cgrp;
2313 /* The namepsace those pids belong to */
2314 struct pid_namespace *ns;
2315 /* Array of process ids in the cgroup */
2316 pid_t *tasks_pids;
2317 /* How many files are using the this tasks_pids array */
2318 int use_count;
2319 /* Length of the current tasks_pids array */
2320 int length;
2323 static int cmppid(const void *a, const void *b)
2325 return *(pid_t *)a - *(pid_t *)b;
2329 * seq_file methods for the "tasks" file. The seq_file position is the
2330 * next pid to display; the seq_file iterator is a pointer to the pid
2331 * in the cgroup->tasks_pids array.
2334 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2337 * Initially we receive a position value that corresponds to
2338 * one more than the last pid shown (or 0 on the first call or
2339 * after a seek to the start). Use a binary-search to find the
2340 * next pid to display, if any
2342 struct cgroup_pids *cp = s->private;
2343 struct cgroup *cgrp = cp->cgrp;
2344 int index = 0, pid = *pos;
2345 int *iter;
2347 down_read(&cgrp->pids_mutex);
2348 if (pid) {
2349 int end = cp->length;
2351 while (index < end) {
2352 int mid = (index + end) / 2;
2353 if (cp->tasks_pids[mid] == pid) {
2354 index = mid;
2355 break;
2356 } else if (cp->tasks_pids[mid] <= pid)
2357 index = mid + 1;
2358 else
2359 end = mid;
2362 /* If we're off the end of the array, we're done */
2363 if (index >= cp->length)
2364 return NULL;
2365 /* Update the abstract position to be the actual pid that we found */
2366 iter = cp->tasks_pids + index;
2367 *pos = *iter;
2368 return iter;
2371 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2373 struct cgroup_pids *cp = s->private;
2374 struct cgroup *cgrp = cp->cgrp;
2375 up_read(&cgrp->pids_mutex);
2378 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2380 struct cgroup_pids *cp = s->private;
2381 int *p = v;
2382 int *end = cp->tasks_pids + cp->length;
2385 * Advance to the next pid in the array. If this goes off the
2386 * end, we're done
2388 p++;
2389 if (p >= end) {
2390 return NULL;
2391 } else {
2392 *pos = *p;
2393 return p;
2397 static int cgroup_tasks_show(struct seq_file *s, void *v)
2399 return seq_printf(s, "%d\n", *(int *)v);
2402 static const struct seq_operations cgroup_tasks_seq_operations = {
2403 .start = cgroup_tasks_start,
2404 .stop = cgroup_tasks_stop,
2405 .next = cgroup_tasks_next,
2406 .show = cgroup_tasks_show,
2409 static void release_cgroup_pid_array(struct cgroup_pids *cp)
2411 struct cgroup *cgrp = cp->cgrp;
2413 down_write(&cgrp->pids_mutex);
2414 BUG_ON(!cp->use_count);
2415 if (!--cp->use_count) {
2416 list_del(&cp->list);
2417 put_pid_ns(cp->ns);
2418 kfree(cp->tasks_pids);
2419 kfree(cp);
2421 up_write(&cgrp->pids_mutex);
2424 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2426 struct seq_file *seq;
2427 struct cgroup_pids *cp;
2429 if (!(file->f_mode & FMODE_READ))
2430 return 0;
2432 seq = file->private_data;
2433 cp = seq->private;
2435 release_cgroup_pid_array(cp);
2436 return seq_release(inode, file);
2439 static struct file_operations cgroup_tasks_operations = {
2440 .read = seq_read,
2441 .llseek = seq_lseek,
2442 .write = cgroup_file_write,
2443 .release = cgroup_tasks_release,
2447 * Handle an open on 'tasks' file. Prepare an array containing the
2448 * process id's of tasks currently attached to the cgroup being opened.
2451 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2453 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2454 struct pid_namespace *ns = current->nsproxy->pid_ns;
2455 struct cgroup_pids *cp;
2456 pid_t *pidarray;
2457 int npids;
2458 int retval;
2460 /* Nothing to do for write-only files */
2461 if (!(file->f_mode & FMODE_READ))
2462 return 0;
2465 * If cgroup gets more users after we read count, we won't have
2466 * enough space - tough. This race is indistinguishable to the
2467 * caller from the case that the additional cgroup users didn't
2468 * show up until sometime later on.
2470 npids = cgroup_task_count(cgrp);
2471 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2472 if (!pidarray)
2473 return -ENOMEM;
2474 npids = pid_array_load(pidarray, npids, cgrp);
2475 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2478 * Store the array in the cgroup, freeing the old
2479 * array if necessary
2481 down_write(&cgrp->pids_mutex);
2483 list_for_each_entry(cp, &cgrp->pids_list, list) {
2484 if (ns == cp->ns)
2485 goto found;
2488 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
2489 if (!cp) {
2490 up_write(&cgrp->pids_mutex);
2491 kfree(pidarray);
2492 return -ENOMEM;
2494 cp->cgrp = cgrp;
2495 cp->ns = ns;
2496 get_pid_ns(ns);
2497 list_add(&cp->list, &cgrp->pids_list);
2498 found:
2499 kfree(cp->tasks_pids);
2500 cp->tasks_pids = pidarray;
2501 cp->length = npids;
2502 cp->use_count++;
2503 up_write(&cgrp->pids_mutex);
2505 file->f_op = &cgroup_tasks_operations;
2507 retval = seq_open(file, &cgroup_tasks_seq_operations);
2508 if (retval) {
2509 release_cgroup_pid_array(cp);
2510 return retval;
2512 ((struct seq_file *)file->private_data)->private = cp;
2513 return 0;
2516 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2517 struct cftype *cft)
2519 return notify_on_release(cgrp);
2522 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2523 struct cftype *cft,
2524 u64 val)
2526 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2527 if (val)
2528 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2529 else
2530 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2531 return 0;
2535 * for the common functions, 'private' gives the type of file
2537 static struct cftype files[] = {
2539 .name = "tasks",
2540 .open = cgroup_tasks_open,
2541 .write_u64 = cgroup_tasks_write,
2542 .release = cgroup_tasks_release,
2543 .private = FILE_TASKLIST,
2544 .mode = S_IRUGO | S_IWUSR,
2548 .name = "notify_on_release",
2549 .read_u64 = cgroup_read_notify_on_release,
2550 .write_u64 = cgroup_write_notify_on_release,
2551 .private = FILE_NOTIFY_ON_RELEASE,
2555 static struct cftype cft_release_agent = {
2556 .name = "release_agent",
2557 .read_seq_string = cgroup_release_agent_show,
2558 .write_string = cgroup_release_agent_write,
2559 .max_write_len = PATH_MAX,
2560 .private = FILE_RELEASE_AGENT,
2563 static int cgroup_populate_dir(struct cgroup *cgrp)
2565 int err;
2566 struct cgroup_subsys *ss;
2568 /* First clear out any existing files */
2569 cgroup_clear_directory(cgrp->dentry);
2571 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2572 if (err < 0)
2573 return err;
2575 if (cgrp == cgrp->top_cgroup) {
2576 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2577 return err;
2580 for_each_subsys(cgrp->root, ss) {
2581 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2582 return err;
2584 /* This cgroup is ready now */
2585 for_each_subsys(cgrp->root, ss) {
2586 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2588 * Update id->css pointer and make this css visible from
2589 * CSS ID functions. This pointer will be dereferened
2590 * from RCU-read-side without locks.
2592 if (css->id)
2593 rcu_assign_pointer(css->id->css, css);
2596 return 0;
2599 static void init_cgroup_css(struct cgroup_subsys_state *css,
2600 struct cgroup_subsys *ss,
2601 struct cgroup *cgrp)
2603 css->cgroup = cgrp;
2604 atomic_set(&css->refcnt, 1);
2605 css->flags = 0;
2606 css->id = NULL;
2607 if (cgrp == dummytop)
2608 set_bit(CSS_ROOT, &css->flags);
2609 BUG_ON(cgrp->subsys[ss->subsys_id]);
2610 cgrp->subsys[ss->subsys_id] = css;
2613 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2615 /* We need to take each hierarchy_mutex in a consistent order */
2616 int i;
2618 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2619 struct cgroup_subsys *ss = subsys[i];
2620 if (ss->root == root)
2621 mutex_lock(&ss->hierarchy_mutex);
2625 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2627 int i;
2629 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2630 struct cgroup_subsys *ss = subsys[i];
2631 if (ss->root == root)
2632 mutex_unlock(&ss->hierarchy_mutex);
2637 * cgroup_create - create a cgroup
2638 * @parent: cgroup that will be parent of the new cgroup
2639 * @dentry: dentry of the new cgroup
2640 * @mode: mode to set on new inode
2642 * Must be called with the mutex on the parent inode held
2644 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2645 mode_t mode)
2647 struct cgroup *cgrp;
2648 struct cgroupfs_root *root = parent->root;
2649 int err = 0;
2650 struct cgroup_subsys *ss;
2651 struct super_block *sb = root->sb;
2653 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2654 if (!cgrp)
2655 return -ENOMEM;
2657 /* Grab a reference on the superblock so the hierarchy doesn't
2658 * get deleted on unmount if there are child cgroups. This
2659 * can be done outside cgroup_mutex, since the sb can't
2660 * disappear while someone has an open control file on the
2661 * fs */
2662 atomic_inc(&sb->s_active);
2664 mutex_lock(&cgroup_mutex);
2666 init_cgroup_housekeeping(cgrp);
2668 cgrp->parent = parent;
2669 cgrp->root = parent->root;
2670 cgrp->top_cgroup = parent->top_cgroup;
2672 if (notify_on_release(parent))
2673 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2675 for_each_subsys(root, ss) {
2676 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2677 if (IS_ERR(css)) {
2678 err = PTR_ERR(css);
2679 goto err_destroy;
2681 init_cgroup_css(css, ss, cgrp);
2682 if (ss->use_id)
2683 if (alloc_css_id(ss, parent, cgrp))
2684 goto err_destroy;
2685 /* At error, ->destroy() callback has to free assigned ID. */
2688 cgroup_lock_hierarchy(root);
2689 list_add(&cgrp->sibling, &cgrp->parent->children);
2690 cgroup_unlock_hierarchy(root);
2691 root->number_of_cgroups++;
2693 err = cgroup_create_dir(cgrp, dentry, mode);
2694 if (err < 0)
2695 goto err_remove;
2697 /* The cgroup directory was pre-locked for us */
2698 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2700 err = cgroup_populate_dir(cgrp);
2701 /* If err < 0, we have a half-filled directory - oh well ;) */
2703 mutex_unlock(&cgroup_mutex);
2704 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2706 return 0;
2708 err_remove:
2710 cgroup_lock_hierarchy(root);
2711 list_del(&cgrp->sibling);
2712 cgroup_unlock_hierarchy(root);
2713 root->number_of_cgroups--;
2715 err_destroy:
2717 for_each_subsys(root, ss) {
2718 if (cgrp->subsys[ss->subsys_id])
2719 ss->destroy(ss, cgrp);
2722 mutex_unlock(&cgroup_mutex);
2724 /* Release the reference count that we took on the superblock */
2725 deactivate_super(sb);
2727 kfree(cgrp);
2728 return err;
2731 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2733 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2735 /* the vfs holds inode->i_mutex already */
2736 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2739 static int cgroup_has_css_refs(struct cgroup *cgrp)
2741 /* Check the reference count on each subsystem. Since we
2742 * already established that there are no tasks in the
2743 * cgroup, if the css refcount is also 1, then there should
2744 * be no outstanding references, so the subsystem is safe to
2745 * destroy. We scan across all subsystems rather than using
2746 * the per-hierarchy linked list of mounted subsystems since
2747 * we can be called via check_for_release() with no
2748 * synchronization other than RCU, and the subsystem linked
2749 * list isn't RCU-safe */
2750 int i;
2751 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2752 struct cgroup_subsys *ss = subsys[i];
2753 struct cgroup_subsys_state *css;
2754 /* Skip subsystems not in this hierarchy */
2755 if (ss->root != cgrp->root)
2756 continue;
2757 css = cgrp->subsys[ss->subsys_id];
2758 /* When called from check_for_release() it's possible
2759 * that by this point the cgroup has been removed
2760 * and the css deleted. But a false-positive doesn't
2761 * matter, since it can only happen if the cgroup
2762 * has been deleted and hence no longer needs the
2763 * release agent to be called anyway. */
2764 if (css && (atomic_read(&css->refcnt) > 1))
2765 return 1;
2767 return 0;
2771 * Atomically mark all (or else none) of the cgroup's CSS objects as
2772 * CSS_REMOVED. Return true on success, or false if the cgroup has
2773 * busy subsystems. Call with cgroup_mutex held
2776 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2778 struct cgroup_subsys *ss;
2779 unsigned long flags;
2780 bool failed = false;
2781 local_irq_save(flags);
2782 for_each_subsys(cgrp->root, ss) {
2783 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2784 int refcnt;
2785 while (1) {
2786 /* We can only remove a CSS with a refcnt==1 */
2787 refcnt = atomic_read(&css->refcnt);
2788 if (refcnt > 1) {
2789 failed = true;
2790 goto done;
2792 BUG_ON(!refcnt);
2794 * Drop the refcnt to 0 while we check other
2795 * subsystems. This will cause any racing
2796 * css_tryget() to spin until we set the
2797 * CSS_REMOVED bits or abort
2799 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2800 break;
2801 cpu_relax();
2804 done:
2805 for_each_subsys(cgrp->root, ss) {
2806 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2807 if (failed) {
2809 * Restore old refcnt if we previously managed
2810 * to clear it from 1 to 0
2812 if (!atomic_read(&css->refcnt))
2813 atomic_set(&css->refcnt, 1);
2814 } else {
2815 /* Commit the fact that the CSS is removed */
2816 set_bit(CSS_REMOVED, &css->flags);
2819 local_irq_restore(flags);
2820 return !failed;
2823 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2825 struct cgroup *cgrp = dentry->d_fsdata;
2826 struct dentry *d;
2827 struct cgroup *parent;
2828 DEFINE_WAIT(wait);
2829 int ret;
2831 /* the vfs holds both inode->i_mutex already */
2832 again:
2833 mutex_lock(&cgroup_mutex);
2834 if (atomic_read(&cgrp->count) != 0) {
2835 mutex_unlock(&cgroup_mutex);
2836 return -EBUSY;
2838 if (!list_empty(&cgrp->children)) {
2839 mutex_unlock(&cgroup_mutex);
2840 return -EBUSY;
2842 mutex_unlock(&cgroup_mutex);
2845 * In general, subsystem has no css->refcnt after pre_destroy(). But
2846 * in racy cases, subsystem may have to get css->refcnt after
2847 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
2848 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
2849 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
2850 * and subsystem's reference count handling. Please see css_get/put
2851 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
2853 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2856 * Call pre_destroy handlers of subsys. Notify subsystems
2857 * that rmdir() request comes.
2859 ret = cgroup_call_pre_destroy(cgrp);
2860 if (ret) {
2861 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2862 return ret;
2865 mutex_lock(&cgroup_mutex);
2866 parent = cgrp->parent;
2867 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2868 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2869 mutex_unlock(&cgroup_mutex);
2870 return -EBUSY;
2872 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
2873 if (!cgroup_clear_css_refs(cgrp)) {
2874 mutex_unlock(&cgroup_mutex);
2876 * Because someone may call cgroup_wakeup_rmdir_waiter() before
2877 * prepare_to_wait(), we need to check this flag.
2879 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
2880 schedule();
2881 finish_wait(&cgroup_rmdir_waitq, &wait);
2882 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2883 if (signal_pending(current))
2884 return -EINTR;
2885 goto again;
2887 /* NO css_tryget() can success after here. */
2888 finish_wait(&cgroup_rmdir_waitq, &wait);
2889 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2891 spin_lock(&release_list_lock);
2892 set_bit(CGRP_REMOVED, &cgrp->flags);
2893 if (!list_empty(&cgrp->release_list))
2894 list_del(&cgrp->release_list);
2895 spin_unlock(&release_list_lock);
2897 cgroup_lock_hierarchy(cgrp->root);
2898 /* delete this cgroup from parent->children */
2899 list_del(&cgrp->sibling);
2900 cgroup_unlock_hierarchy(cgrp->root);
2902 spin_lock(&cgrp->dentry->d_lock);
2903 d = dget(cgrp->dentry);
2904 spin_unlock(&d->d_lock);
2906 cgroup_d_remove_dir(d);
2907 dput(d);
2909 set_bit(CGRP_RELEASABLE, &parent->flags);
2910 check_for_release(parent);
2912 mutex_unlock(&cgroup_mutex);
2913 return 0;
2916 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2918 struct cgroup_subsys_state *css;
2920 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2922 /* Create the top cgroup state for this subsystem */
2923 list_add(&ss->sibling, &rootnode.subsys_list);
2924 ss->root = &rootnode;
2925 css = ss->create(ss, dummytop);
2926 /* We don't handle early failures gracefully */
2927 BUG_ON(IS_ERR(css));
2928 init_cgroup_css(css, ss, dummytop);
2930 /* Update the init_css_set to contain a subsys
2931 * pointer to this state - since the subsystem is
2932 * newly registered, all tasks and hence the
2933 * init_css_set is in the subsystem's top cgroup. */
2934 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2936 need_forkexit_callback |= ss->fork || ss->exit;
2938 /* At system boot, before all subsystems have been
2939 * registered, no tasks have been forked, so we don't
2940 * need to invoke fork callbacks here. */
2941 BUG_ON(!list_empty(&init_task.tasks));
2943 mutex_init(&ss->hierarchy_mutex);
2944 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2945 ss->active = 1;
2949 * cgroup_init_early - cgroup initialization at system boot
2951 * Initialize cgroups at system boot, and initialize any
2952 * subsystems that request early init.
2954 int __init cgroup_init_early(void)
2956 int i;
2957 atomic_set(&init_css_set.refcount, 1);
2958 INIT_LIST_HEAD(&init_css_set.cg_links);
2959 INIT_LIST_HEAD(&init_css_set.tasks);
2960 INIT_HLIST_NODE(&init_css_set.hlist);
2961 css_set_count = 1;
2962 init_cgroup_root(&rootnode);
2963 root_count = 1;
2964 init_task.cgroups = &init_css_set;
2966 init_css_set_link.cg = &init_css_set;
2967 list_add(&init_css_set_link.cgrp_link_list,
2968 &rootnode.top_cgroup.css_sets);
2969 list_add(&init_css_set_link.cg_link_list,
2970 &init_css_set.cg_links);
2972 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2973 INIT_HLIST_HEAD(&css_set_table[i]);
2975 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2976 struct cgroup_subsys *ss = subsys[i];
2978 BUG_ON(!ss->name);
2979 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2980 BUG_ON(!ss->create);
2981 BUG_ON(!ss->destroy);
2982 if (ss->subsys_id != i) {
2983 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2984 ss->name, ss->subsys_id);
2985 BUG();
2988 if (ss->early_init)
2989 cgroup_init_subsys(ss);
2991 return 0;
2995 * cgroup_init - cgroup initialization
2997 * Register cgroup filesystem and /proc file, and initialize
2998 * any subsystems that didn't request early init.
3000 int __init cgroup_init(void)
3002 int err;
3003 int i;
3004 struct hlist_head *hhead;
3006 err = bdi_init(&cgroup_backing_dev_info);
3007 if (err)
3008 return err;
3010 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3011 struct cgroup_subsys *ss = subsys[i];
3012 if (!ss->early_init)
3013 cgroup_init_subsys(ss);
3014 if (ss->use_id)
3015 cgroup_subsys_init_idr(ss);
3018 /* Add init_css_set to the hash table */
3019 hhead = css_set_hash(init_css_set.subsys);
3020 hlist_add_head(&init_css_set.hlist, hhead);
3022 err = register_filesystem(&cgroup_fs_type);
3023 if (err < 0)
3024 goto out;
3026 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3028 out:
3029 if (err)
3030 bdi_destroy(&cgroup_backing_dev_info);
3032 return err;
3036 * proc_cgroup_show()
3037 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3038 * - Used for /proc/<pid>/cgroup.
3039 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3040 * doesn't really matter if tsk->cgroup changes after we read it,
3041 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3042 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3043 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3044 * cgroup to top_cgroup.
3047 /* TODO: Use a proper seq_file iterator */
3048 static int proc_cgroup_show(struct seq_file *m, void *v)
3050 struct pid *pid;
3051 struct task_struct *tsk;
3052 char *buf;
3053 int retval;
3054 struct cgroupfs_root *root;
3056 retval = -ENOMEM;
3057 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3058 if (!buf)
3059 goto out;
3061 retval = -ESRCH;
3062 pid = m->private;
3063 tsk = get_pid_task(pid, PIDTYPE_PID);
3064 if (!tsk)
3065 goto out_free;
3067 retval = 0;
3069 mutex_lock(&cgroup_mutex);
3071 for_each_active_root(root) {
3072 struct cgroup_subsys *ss;
3073 struct cgroup *cgrp;
3074 int subsys_id;
3075 int count = 0;
3077 seq_printf(m, "%lu:", root->subsys_bits);
3078 for_each_subsys(root, ss)
3079 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3080 if (strlen(root->name))
3081 seq_printf(m, "%sname=%s", count ? "," : "",
3082 root->name);
3083 seq_putc(m, ':');
3084 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
3085 cgrp = task_cgroup(tsk, subsys_id);
3086 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3087 if (retval < 0)
3088 goto out_unlock;
3089 seq_puts(m, buf);
3090 seq_putc(m, '\n');
3093 out_unlock:
3094 mutex_unlock(&cgroup_mutex);
3095 put_task_struct(tsk);
3096 out_free:
3097 kfree(buf);
3098 out:
3099 return retval;
3102 static int cgroup_open(struct inode *inode, struct file *file)
3104 struct pid *pid = PROC_I(inode)->pid;
3105 return single_open(file, proc_cgroup_show, pid);
3108 struct file_operations proc_cgroup_operations = {
3109 .open = cgroup_open,
3110 .read = seq_read,
3111 .llseek = seq_lseek,
3112 .release = single_release,
3115 /* Display information about each subsystem and each hierarchy */
3116 static int proc_cgroupstats_show(struct seq_file *m, void *v)
3118 int i;
3120 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3121 mutex_lock(&cgroup_mutex);
3122 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3123 struct cgroup_subsys *ss = subsys[i];
3124 seq_printf(m, "%s\t%lu\t%d\t%d\n",
3125 ss->name, ss->root->subsys_bits,
3126 ss->root->number_of_cgroups, !ss->disabled);
3128 mutex_unlock(&cgroup_mutex);
3129 return 0;
3132 static int cgroupstats_open(struct inode *inode, struct file *file)
3134 return single_open(file, proc_cgroupstats_show, NULL);
3137 static struct file_operations proc_cgroupstats_operations = {
3138 .open = cgroupstats_open,
3139 .read = seq_read,
3140 .llseek = seq_lseek,
3141 .release = single_release,
3145 * cgroup_fork - attach newly forked task to its parents cgroup.
3146 * @child: pointer to task_struct of forking parent process.
3148 * Description: A task inherits its parent's cgroup at fork().
3150 * A pointer to the shared css_set was automatically copied in
3151 * fork.c by dup_task_struct(). However, we ignore that copy, since
3152 * it was not made under the protection of RCU or cgroup_mutex, so
3153 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
3154 * have already changed current->cgroups, allowing the previously
3155 * referenced cgroup group to be removed and freed.
3157 * At the point that cgroup_fork() is called, 'current' is the parent
3158 * task, and the passed argument 'child' points to the child task.
3160 void cgroup_fork(struct task_struct *child)
3162 task_lock(current);
3163 child->cgroups = current->cgroups;
3164 get_css_set(child->cgroups);
3165 task_unlock(current);
3166 INIT_LIST_HEAD(&child->cg_list);
3170 * cgroup_fork_callbacks - run fork callbacks
3171 * @child: the new task
3173 * Called on a new task very soon before adding it to the
3174 * tasklist. No need to take any locks since no-one can
3175 * be operating on this task.
3177 void cgroup_fork_callbacks(struct task_struct *child)
3179 if (need_forkexit_callback) {
3180 int i;
3181 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3182 struct cgroup_subsys *ss = subsys[i];
3183 if (ss->fork)
3184 ss->fork(ss, child);
3190 * cgroup_post_fork - called on a new task after adding it to the task list
3191 * @child: the task in question
3193 * Adds the task to the list running through its css_set if necessary.
3194 * Has to be after the task is visible on the task list in case we race
3195 * with the first call to cgroup_iter_start() - to guarantee that the
3196 * new task ends up on its list.
3198 void cgroup_post_fork(struct task_struct *child)
3200 if (use_task_css_set_links) {
3201 write_lock(&css_set_lock);
3202 task_lock(child);
3203 if (list_empty(&child->cg_list))
3204 list_add(&child->cg_list, &child->cgroups->tasks);
3205 task_unlock(child);
3206 write_unlock(&css_set_lock);
3210 * cgroup_exit - detach cgroup from exiting task
3211 * @tsk: pointer to task_struct of exiting process
3212 * @run_callback: run exit callbacks?
3214 * Description: Detach cgroup from @tsk and release it.
3216 * Note that cgroups marked notify_on_release force every task in
3217 * them to take the global cgroup_mutex mutex when exiting.
3218 * This could impact scaling on very large systems. Be reluctant to
3219 * use notify_on_release cgroups where very high task exit scaling
3220 * is required on large systems.
3222 * the_top_cgroup_hack:
3224 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3226 * We call cgroup_exit() while the task is still competent to
3227 * handle notify_on_release(), then leave the task attached to the
3228 * root cgroup in each hierarchy for the remainder of its exit.
3230 * To do this properly, we would increment the reference count on
3231 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3232 * code we would add a second cgroup function call, to drop that
3233 * reference. This would just create an unnecessary hot spot on
3234 * the top_cgroup reference count, to no avail.
3236 * Normally, holding a reference to a cgroup without bumping its
3237 * count is unsafe. The cgroup could go away, or someone could
3238 * attach us to a different cgroup, decrementing the count on
3239 * the first cgroup that we never incremented. But in this case,
3240 * top_cgroup isn't going away, and either task has PF_EXITING set,
3241 * which wards off any cgroup_attach_task() attempts, or task is a failed
3242 * fork, never visible to cgroup_attach_task.
3244 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3246 int i;
3247 struct css_set *cg;
3249 if (run_callbacks && need_forkexit_callback) {
3250 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3251 struct cgroup_subsys *ss = subsys[i];
3252 if (ss->exit)
3253 ss->exit(ss, tsk);
3258 * Unlink from the css_set task list if necessary.
3259 * Optimistically check cg_list before taking
3260 * css_set_lock
3262 if (!list_empty(&tsk->cg_list)) {
3263 write_lock(&css_set_lock);
3264 if (!list_empty(&tsk->cg_list))
3265 list_del(&tsk->cg_list);
3266 write_unlock(&css_set_lock);
3269 /* Reassign the task to the init_css_set. */
3270 task_lock(tsk);
3271 cg = tsk->cgroups;
3272 tsk->cgroups = &init_css_set;
3273 task_unlock(tsk);
3274 if (cg)
3275 put_css_set_taskexit(cg);
3279 * cgroup_clone - clone the cgroup the given subsystem is attached to
3280 * @tsk: the task to be moved
3281 * @subsys: the given subsystem
3282 * @nodename: the name for the new cgroup
3284 * Duplicate the current cgroup in the hierarchy that the given
3285 * subsystem is attached to, and move this task into the new
3286 * child.
3288 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3289 char *nodename)
3291 struct dentry *dentry;
3292 int ret = 0;
3293 struct cgroup *parent, *child;
3294 struct inode *inode;
3295 struct css_set *cg;
3296 struct cgroupfs_root *root;
3297 struct cgroup_subsys *ss;
3299 /* We shouldn't be called by an unregistered subsystem */
3300 BUG_ON(!subsys->active);
3302 /* First figure out what hierarchy and cgroup we're dealing
3303 * with, and pin them so we can drop cgroup_mutex */
3304 mutex_lock(&cgroup_mutex);
3305 again:
3306 root = subsys->root;
3307 if (root == &rootnode) {
3308 mutex_unlock(&cgroup_mutex);
3309 return 0;
3312 /* Pin the hierarchy */
3313 if (!atomic_inc_not_zero(&root->sb->s_active)) {
3314 /* We race with the final deactivate_super() */
3315 mutex_unlock(&cgroup_mutex);
3316 return 0;
3319 /* Keep the cgroup alive */
3320 task_lock(tsk);
3321 parent = task_cgroup(tsk, subsys->subsys_id);
3322 cg = tsk->cgroups;
3323 get_css_set(cg);
3324 task_unlock(tsk);
3326 mutex_unlock(&cgroup_mutex);
3328 /* Now do the VFS work to create a cgroup */
3329 inode = parent->dentry->d_inode;
3331 /* Hold the parent directory mutex across this operation to
3332 * stop anyone else deleting the new cgroup */
3333 mutex_lock(&inode->i_mutex);
3334 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3335 if (IS_ERR(dentry)) {
3336 printk(KERN_INFO
3337 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3338 PTR_ERR(dentry));
3339 ret = PTR_ERR(dentry);
3340 goto out_release;
3343 /* Create the cgroup directory, which also creates the cgroup */
3344 ret = vfs_mkdir(inode, dentry, 0755);
3345 child = __d_cgrp(dentry);
3346 dput(dentry);
3347 if (ret) {
3348 printk(KERN_INFO
3349 "Failed to create cgroup %s: %d\n", nodename,
3350 ret);
3351 goto out_release;
3354 /* The cgroup now exists. Retake cgroup_mutex and check
3355 * that we're still in the same state that we thought we
3356 * were. */
3357 mutex_lock(&cgroup_mutex);
3358 if ((root != subsys->root) ||
3359 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3360 /* Aargh, we raced ... */
3361 mutex_unlock(&inode->i_mutex);
3362 put_css_set(cg);
3364 deactivate_super(root->sb);
3365 /* The cgroup is still accessible in the VFS, but
3366 * we're not going to try to rmdir() it at this
3367 * point. */
3368 printk(KERN_INFO
3369 "Race in cgroup_clone() - leaking cgroup %s\n",
3370 nodename);
3371 goto again;
3374 /* do any required auto-setup */
3375 for_each_subsys(root, ss) {
3376 if (ss->post_clone)
3377 ss->post_clone(ss, child);
3380 /* All seems fine. Finish by moving the task into the new cgroup */
3381 ret = cgroup_attach_task(child, tsk);
3382 mutex_unlock(&cgroup_mutex);
3384 out_release:
3385 mutex_unlock(&inode->i_mutex);
3387 mutex_lock(&cgroup_mutex);
3388 put_css_set(cg);
3389 mutex_unlock(&cgroup_mutex);
3390 deactivate_super(root->sb);
3391 return ret;
3395 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3396 * @cgrp: the cgroup in question
3397 * @task: the task in question
3399 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3400 * hierarchy.
3402 * If we are sending in dummytop, then presumably we are creating
3403 * the top cgroup in the subsystem.
3405 * Called only by the ns (nsproxy) cgroup.
3407 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3409 int ret;
3410 struct cgroup *target;
3411 int subsys_id;
3413 if (cgrp == dummytop)
3414 return 1;
3416 get_first_subsys(cgrp, NULL, &subsys_id);
3417 target = task_cgroup(task, subsys_id);
3418 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3419 cgrp = cgrp->parent;
3420 ret = (cgrp == target);
3421 return ret;
3424 static void check_for_release(struct cgroup *cgrp)
3426 /* All of these checks rely on RCU to keep the cgroup
3427 * structure alive */
3428 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3429 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3430 /* Control Group is currently removeable. If it's not
3431 * already queued for a userspace notification, queue
3432 * it now */
3433 int need_schedule_work = 0;
3434 spin_lock(&release_list_lock);
3435 if (!cgroup_is_removed(cgrp) &&
3436 list_empty(&cgrp->release_list)) {
3437 list_add(&cgrp->release_list, &release_list);
3438 need_schedule_work = 1;
3440 spin_unlock(&release_list_lock);
3441 if (need_schedule_work)
3442 schedule_work(&release_agent_work);
3446 void __css_put(struct cgroup_subsys_state *css)
3448 struct cgroup *cgrp = css->cgroup;
3449 rcu_read_lock();
3450 if (atomic_dec_return(&css->refcnt) == 1) {
3451 if (notify_on_release(cgrp)) {
3452 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3453 check_for_release(cgrp);
3455 cgroup_wakeup_rmdir_waiter(cgrp);
3457 rcu_read_unlock();
3461 * Notify userspace when a cgroup is released, by running the
3462 * configured release agent with the name of the cgroup (path
3463 * relative to the root of cgroup file system) as the argument.
3465 * Most likely, this user command will try to rmdir this cgroup.
3467 * This races with the possibility that some other task will be
3468 * attached to this cgroup before it is removed, or that some other
3469 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3470 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3471 * unused, and this cgroup will be reprieved from its death sentence,
3472 * to continue to serve a useful existence. Next time it's released,
3473 * we will get notified again, if it still has 'notify_on_release' set.
3475 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3476 * means only wait until the task is successfully execve()'d. The
3477 * separate release agent task is forked by call_usermodehelper(),
3478 * then control in this thread returns here, without waiting for the
3479 * release agent task. We don't bother to wait because the caller of
3480 * this routine has no use for the exit status of the release agent
3481 * task, so no sense holding our caller up for that.
3483 static void cgroup_release_agent(struct work_struct *work)
3485 BUG_ON(work != &release_agent_work);
3486 mutex_lock(&cgroup_mutex);
3487 spin_lock(&release_list_lock);
3488 while (!list_empty(&release_list)) {
3489 char *argv[3], *envp[3];
3490 int i;
3491 char *pathbuf = NULL, *agentbuf = NULL;
3492 struct cgroup *cgrp = list_entry(release_list.next,
3493 struct cgroup,
3494 release_list);
3495 list_del_init(&cgrp->release_list);
3496 spin_unlock(&release_list_lock);
3497 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3498 if (!pathbuf)
3499 goto continue_free;
3500 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3501 goto continue_free;
3502 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3503 if (!agentbuf)
3504 goto continue_free;
3506 i = 0;
3507 argv[i++] = agentbuf;
3508 argv[i++] = pathbuf;
3509 argv[i] = NULL;
3511 i = 0;
3512 /* minimal command environment */
3513 envp[i++] = "HOME=/";
3514 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3515 envp[i] = NULL;
3517 /* Drop the lock while we invoke the usermode helper,
3518 * since the exec could involve hitting disk and hence
3519 * be a slow process */
3520 mutex_unlock(&cgroup_mutex);
3521 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3522 mutex_lock(&cgroup_mutex);
3523 continue_free:
3524 kfree(pathbuf);
3525 kfree(agentbuf);
3526 spin_lock(&release_list_lock);
3528 spin_unlock(&release_list_lock);
3529 mutex_unlock(&cgroup_mutex);
3532 static int __init cgroup_disable(char *str)
3534 int i;
3535 char *token;
3537 while ((token = strsep(&str, ",")) != NULL) {
3538 if (!*token)
3539 continue;
3541 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3542 struct cgroup_subsys *ss = subsys[i];
3544 if (!strcmp(token, ss->name)) {
3545 ss->disabled = 1;
3546 printk(KERN_INFO "Disabling %s control group"
3547 " subsystem\n", ss->name);
3548 break;
3552 return 1;
3554 __setup("cgroup_disable=", cgroup_disable);
3557 * Functons for CSS ID.
3561 *To get ID other than 0, this should be called when !cgroup_is_removed().
3563 unsigned short css_id(struct cgroup_subsys_state *css)
3565 struct css_id *cssid = rcu_dereference(css->id);
3567 if (cssid)
3568 return cssid->id;
3569 return 0;
3572 unsigned short css_depth(struct cgroup_subsys_state *css)
3574 struct css_id *cssid = rcu_dereference(css->id);
3576 if (cssid)
3577 return cssid->depth;
3578 return 0;
3581 bool css_is_ancestor(struct cgroup_subsys_state *child,
3582 const struct cgroup_subsys_state *root)
3584 struct css_id *child_id = rcu_dereference(child->id);
3585 struct css_id *root_id = rcu_dereference(root->id);
3587 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3588 return false;
3589 return child_id->stack[root_id->depth] == root_id->id;
3592 static void __free_css_id_cb(struct rcu_head *head)
3594 struct css_id *id;
3596 id = container_of(head, struct css_id, rcu_head);
3597 kfree(id);
3600 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3602 struct css_id *id = css->id;
3603 /* When this is called before css_id initialization, id can be NULL */
3604 if (!id)
3605 return;
3607 BUG_ON(!ss->use_id);
3609 rcu_assign_pointer(id->css, NULL);
3610 rcu_assign_pointer(css->id, NULL);
3611 spin_lock(&ss->id_lock);
3612 idr_remove(&ss->idr, id->id);
3613 spin_unlock(&ss->id_lock);
3614 call_rcu(&id->rcu_head, __free_css_id_cb);
3618 * This is called by init or create(). Then, calls to this function are
3619 * always serialized (By cgroup_mutex() at create()).
3622 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3624 struct css_id *newid;
3625 int myid, error, size;
3627 BUG_ON(!ss->use_id);
3629 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3630 newid = kzalloc(size, GFP_KERNEL);
3631 if (!newid)
3632 return ERR_PTR(-ENOMEM);
3633 /* get id */
3634 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3635 error = -ENOMEM;
3636 goto err_out;
3638 spin_lock(&ss->id_lock);
3639 /* Don't use 0. allocates an ID of 1-65535 */
3640 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3641 spin_unlock(&ss->id_lock);
3643 /* Returns error when there are no free spaces for new ID.*/
3644 if (error) {
3645 error = -ENOSPC;
3646 goto err_out;
3648 if (myid > CSS_ID_MAX)
3649 goto remove_idr;
3651 newid->id = myid;
3652 newid->depth = depth;
3653 return newid;
3654 remove_idr:
3655 error = -ENOSPC;
3656 spin_lock(&ss->id_lock);
3657 idr_remove(&ss->idr, myid);
3658 spin_unlock(&ss->id_lock);
3659 err_out:
3660 kfree(newid);
3661 return ERR_PTR(error);
3665 static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3667 struct css_id *newid;
3668 struct cgroup_subsys_state *rootcss;
3670 spin_lock_init(&ss->id_lock);
3671 idr_init(&ss->idr);
3673 rootcss = init_css_set.subsys[ss->subsys_id];
3674 newid = get_new_cssid(ss, 0);
3675 if (IS_ERR(newid))
3676 return PTR_ERR(newid);
3678 newid->stack[0] = newid->id;
3679 newid->css = rootcss;
3680 rootcss->id = newid;
3681 return 0;
3684 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3685 struct cgroup *child)
3687 int subsys_id, i, depth = 0;
3688 struct cgroup_subsys_state *parent_css, *child_css;
3689 struct css_id *child_id, *parent_id = NULL;
3691 subsys_id = ss->subsys_id;
3692 parent_css = parent->subsys[subsys_id];
3693 child_css = child->subsys[subsys_id];
3694 depth = css_depth(parent_css) + 1;
3695 parent_id = parent_css->id;
3697 child_id = get_new_cssid(ss, depth);
3698 if (IS_ERR(child_id))
3699 return PTR_ERR(child_id);
3701 for (i = 0; i < depth; i++)
3702 child_id->stack[i] = parent_id->stack[i];
3703 child_id->stack[depth] = child_id->id;
3705 * child_id->css pointer will be set after this cgroup is available
3706 * see cgroup_populate_dir()
3708 rcu_assign_pointer(child_css->id, child_id);
3710 return 0;
3714 * css_lookup - lookup css by id
3715 * @ss: cgroup subsys to be looked into.
3716 * @id: the id
3718 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3719 * NULL if not. Should be called under rcu_read_lock()
3721 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3723 struct css_id *cssid = NULL;
3725 BUG_ON(!ss->use_id);
3726 cssid = idr_find(&ss->idr, id);
3728 if (unlikely(!cssid))
3729 return NULL;
3731 return rcu_dereference(cssid->css);
3735 * css_get_next - lookup next cgroup under specified hierarchy.
3736 * @ss: pointer to subsystem
3737 * @id: current position of iteration.
3738 * @root: pointer to css. search tree under this.
3739 * @foundid: position of found object.
3741 * Search next css under the specified hierarchy of rootid. Calling under
3742 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3744 struct cgroup_subsys_state *
3745 css_get_next(struct cgroup_subsys *ss, int id,
3746 struct cgroup_subsys_state *root, int *foundid)
3748 struct cgroup_subsys_state *ret = NULL;
3749 struct css_id *tmp;
3750 int tmpid;
3751 int rootid = css_id(root);
3752 int depth = css_depth(root);
3754 if (!rootid)
3755 return NULL;
3757 BUG_ON(!ss->use_id);
3758 /* fill start point for scan */
3759 tmpid = id;
3760 while (1) {
3762 * scan next entry from bitmap(tree), tmpid is updated after
3763 * idr_get_next().
3765 spin_lock(&ss->id_lock);
3766 tmp = idr_get_next(&ss->idr, &tmpid);
3767 spin_unlock(&ss->id_lock);
3769 if (!tmp)
3770 break;
3771 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3772 ret = rcu_dereference(tmp->css);
3773 if (ret) {
3774 *foundid = tmpid;
3775 break;
3778 /* continue to scan from next id */
3779 tmpid = tmpid + 1;
3781 return ret;
3784 #ifdef CONFIG_CGROUP_DEBUG
3785 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
3786 struct cgroup *cont)
3788 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
3790 if (!css)
3791 return ERR_PTR(-ENOMEM);
3793 return css;
3796 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
3798 kfree(cont->subsys[debug_subsys_id]);
3801 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
3803 return atomic_read(&cont->count);
3806 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
3808 return cgroup_task_count(cont);
3811 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
3813 return (u64)(unsigned long)current->cgroups;
3816 static u64 current_css_set_refcount_read(struct cgroup *cont,
3817 struct cftype *cft)
3819 u64 count;
3821 rcu_read_lock();
3822 count = atomic_read(&current->cgroups->refcount);
3823 rcu_read_unlock();
3824 return count;
3827 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
3829 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
3832 static struct cftype debug_files[] = {
3834 .name = "cgroup_refcount",
3835 .read_u64 = cgroup_refcount_read,
3838 .name = "taskcount",
3839 .read_u64 = debug_taskcount_read,
3843 .name = "current_css_set",
3844 .read_u64 = current_css_set_read,
3848 .name = "current_css_set_refcount",
3849 .read_u64 = current_css_set_refcount_read,
3853 .name = "releasable",
3854 .read_u64 = releasable_read,
3858 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
3860 return cgroup_add_files(cont, ss, debug_files,
3861 ARRAY_SIZE(debug_files));
3864 struct cgroup_subsys debug_subsys = {
3865 .name = "debug",
3866 .create = debug_create,
3867 .destroy = debug_destroy,
3868 .populate = debug_populate,
3869 .subsys_id = debug_subsys_id,
3871 #endif /* CONFIG_CGROUP_DEBUG */