Merge git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blob769c386bd4288758635acde6ca77c401a49c61a8
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
94 #include <net/compat.h>
95 #include <net/wext.h>
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <linux/atalk.h>
106 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
107 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
108 unsigned long nr_segs, loff_t pos);
109 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
113 static int sock_close(struct inode *inode, struct file *file);
114 static unsigned int sock_poll(struct file *file,
115 struct poll_table_struct *wait);
116 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
117 #ifdef CONFIG_COMPAT
118 static long compat_sock_ioctl(struct file *file,
119 unsigned int cmd, unsigned long arg);
120 #endif
121 static int sock_fasync(int fd, struct file *filp, int on);
122 static ssize_t sock_sendpage(struct file *file, struct page *page,
123 int offset, size_t size, loff_t *ppos, int more);
124 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
125 struct pipe_inode_info *pipe, size_t len,
126 unsigned int flags);
129 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
130 * in the operation structures but are done directly via the socketcall() multiplexor.
133 static const struct file_operations socket_file_ops = {
134 .owner = THIS_MODULE,
135 .llseek = no_llseek,
136 .aio_read = sock_aio_read,
137 .aio_write = sock_aio_write,
138 .poll = sock_poll,
139 .unlocked_ioctl = sock_ioctl,
140 #ifdef CONFIG_COMPAT
141 .compat_ioctl = compat_sock_ioctl,
142 #endif
143 .mmap = sock_mmap,
144 .open = sock_no_open, /* special open code to disallow open via /proc */
145 .release = sock_close,
146 .fasync = sock_fasync,
147 .sendpage = sock_sendpage,
148 .splice_write = generic_splice_sendpage,
149 .splice_read = sock_splice_read,
153 * The protocol list. Each protocol is registered in here.
156 static DEFINE_SPINLOCK(net_family_lock);
157 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 * Statistics counters of the socket lists
163 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
171 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
172 16 for IP, 16 for IPX,
173 24 for IPv6,
174 about 80 for AX.25
175 must be at least one bigger than
176 the AF_UNIX size (see net/unix/af_unix.c
177 :unix_mkname()).
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
219 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
220 int __user *ulen)
222 int err;
223 int len;
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0 || len > sizeof(struct sockaddr_storage))
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
242 return __put_user(klen, ulen);
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 static struct inode *sock_alloc_inode(struct super_block *sb)
249 struct socket_alloc *ei;
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 init_waitqueue_head(&ei->socket.wait);
256 ei->socket.fasync_list = NULL;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 kmem_cache_free(sock_inode_cachep,
269 container_of(inode, struct socket_alloc, vfs_inode));
272 static void init_once(void *foo)
274 struct socket_alloc *ei = (struct socket_alloc *)foo;
276 inode_init_once(&ei->vfs_inode);
279 static int init_inodecache(void)
281 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
282 sizeof(struct socket_alloc),
284 (SLAB_HWCACHE_ALIGN |
285 SLAB_RECLAIM_ACCOUNT |
286 SLAB_MEM_SPREAD),
287 init_once);
288 if (sock_inode_cachep == NULL)
289 return -ENOMEM;
290 return 0;
293 static const struct super_operations sockfs_ops = {
294 .alloc_inode = sock_alloc_inode,
295 .destroy_inode =sock_destroy_inode,
296 .statfs = simple_statfs,
299 static int sockfs_get_sb(struct file_system_type *fs_type,
300 int flags, const char *dev_name, void *data,
301 struct vfsmount *mnt)
303 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
304 mnt);
307 static struct vfsmount *sock_mnt __read_mostly;
309 static struct file_system_type sock_fs_type = {
310 .name = "sockfs",
311 .get_sb = sockfs_get_sb,
312 .kill_sb = kill_anon_super,
316 * sockfs_dname() is called from d_path().
318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
321 dentry->d_inode->i_ino);
324 static const struct dentry_operations sockfs_dentry_operations = {
325 .d_dname = sockfs_dname,
329 * Obtains the first available file descriptor and sets it up for use.
331 * These functions create file structures and maps them to fd space
332 * of the current process. On success it returns file descriptor
333 * and file struct implicitly stored in sock->file.
334 * Note that another thread may close file descriptor before we return
335 * from this function. We use the fact that now we do not refer
336 * to socket after mapping. If one day we will need it, this
337 * function will increment ref. count on file by 1.
339 * In any case returned fd MAY BE not valid!
340 * This race condition is unavoidable
341 * with shared fd spaces, we cannot solve it inside kernel,
342 * but we take care of internal coherence yet.
345 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
347 struct qstr name = { .name = "" };
348 struct path path;
349 struct file *file;
350 int fd;
352 fd = get_unused_fd_flags(flags);
353 if (unlikely(fd < 0))
354 return fd;
356 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
357 if (unlikely(!path.dentry)) {
358 put_unused_fd(fd);
359 return -ENOMEM;
361 path.mnt = mntget(sock_mnt);
363 path.dentry->d_op = &sockfs_dentry_operations;
364 d_instantiate(path.dentry, SOCK_INODE(sock));
365 SOCK_INODE(sock)->i_fop = &socket_file_ops;
367 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
368 &socket_file_ops);
369 if (unlikely(!file)) {
370 /* drop dentry, keep inode */
371 atomic_inc(&path.dentry->d_inode->i_count);
372 path_put(&path);
373 put_unused_fd(fd);
374 return -ENFILE;
377 sock->file = file;
378 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
379 file->f_pos = 0;
380 file->private_data = sock;
382 *f = file;
383 return fd;
386 int sock_map_fd(struct socket *sock, int flags)
388 struct file *newfile;
389 int fd = sock_alloc_file(sock, &newfile, flags);
391 if (likely(fd >= 0))
392 fd_install(fd, newfile);
394 return fd;
397 static struct socket *sock_from_file(struct file *file, int *err)
399 if (file->f_op == &socket_file_ops)
400 return file->private_data; /* set in sock_map_fd */
402 *err = -ENOTSOCK;
403 return NULL;
407 * sockfd_lookup - Go from a file number to its socket slot
408 * @fd: file handle
409 * @err: pointer to an error code return
411 * The file handle passed in is locked and the socket it is bound
412 * too is returned. If an error occurs the err pointer is overwritten
413 * with a negative errno code and NULL is returned. The function checks
414 * for both invalid handles and passing a handle which is not a socket.
416 * On a success the socket object pointer is returned.
419 struct socket *sockfd_lookup(int fd, int *err)
421 struct file *file;
422 struct socket *sock;
424 file = fget(fd);
425 if (!file) {
426 *err = -EBADF;
427 return NULL;
430 sock = sock_from_file(file, err);
431 if (!sock)
432 fput(file);
433 return sock;
436 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
438 struct file *file;
439 struct socket *sock;
441 *err = -EBADF;
442 file = fget_light(fd, fput_needed);
443 if (file) {
444 sock = sock_from_file(file, err);
445 if (sock)
446 return sock;
447 fput_light(file, *fput_needed);
449 return NULL;
453 * sock_alloc - allocate a socket
455 * Allocate a new inode and socket object. The two are bound together
456 * and initialised. The socket is then returned. If we are out of inodes
457 * NULL is returned.
460 static struct socket *sock_alloc(void)
462 struct inode *inode;
463 struct socket *sock;
465 inode = new_inode(sock_mnt->mnt_sb);
466 if (!inode)
467 return NULL;
469 sock = SOCKET_I(inode);
471 kmemcheck_annotate_bitfield(sock, type);
472 inode->i_mode = S_IFSOCK | S_IRWXUGO;
473 inode->i_uid = current_fsuid();
474 inode->i_gid = current_fsgid();
476 percpu_add(sockets_in_use, 1);
477 return sock;
481 * In theory you can't get an open on this inode, but /proc provides
482 * a back door. Remember to keep it shut otherwise you'll let the
483 * creepy crawlies in.
486 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
488 return -ENXIO;
491 const struct file_operations bad_sock_fops = {
492 .owner = THIS_MODULE,
493 .open = sock_no_open,
497 * sock_release - close a socket
498 * @sock: socket to close
500 * The socket is released from the protocol stack if it has a release
501 * callback, and the inode is then released if the socket is bound to
502 * an inode not a file.
505 void sock_release(struct socket *sock)
507 if (sock->ops) {
508 struct module *owner = sock->ops->owner;
510 sock->ops->release(sock);
511 sock->ops = NULL;
512 module_put(owner);
515 if (sock->fasync_list)
516 printk(KERN_ERR "sock_release: fasync list not empty!\n");
518 percpu_sub(sockets_in_use, 1);
519 if (!sock->file) {
520 iput(SOCK_INODE(sock));
521 return;
523 sock->file = NULL;
526 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
527 union skb_shared_tx *shtx)
529 shtx->flags = 0;
530 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
531 shtx->hardware = 1;
532 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
533 shtx->software = 1;
534 return 0;
536 EXPORT_SYMBOL(sock_tx_timestamp);
538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
539 struct msghdr *msg, size_t size)
541 struct sock_iocb *si = kiocb_to_siocb(iocb);
542 int err;
544 si->sock = sock;
545 si->scm = NULL;
546 si->msg = msg;
547 si->size = size;
549 err = security_socket_sendmsg(sock, msg, size);
550 if (err)
551 return err;
553 return sock->ops->sendmsg(iocb, sock, msg, size);
556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
558 struct kiocb iocb;
559 struct sock_iocb siocb;
560 int ret;
562 init_sync_kiocb(&iocb, NULL);
563 iocb.private = &siocb;
564 ret = __sock_sendmsg(&iocb, sock, msg, size);
565 if (-EIOCBQUEUED == ret)
566 ret = wait_on_sync_kiocb(&iocb);
567 return ret;
570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
571 struct kvec *vec, size_t num, size_t size)
573 mm_segment_t oldfs = get_fs();
574 int result;
576 set_fs(KERNEL_DS);
578 * the following is safe, since for compiler definitions of kvec and
579 * iovec are identical, yielding the same in-core layout and alignment
581 msg->msg_iov = (struct iovec *)vec;
582 msg->msg_iovlen = num;
583 result = sock_sendmsg(sock, msg, size);
584 set_fs(oldfs);
585 return result;
588 static int ktime2ts(ktime_t kt, struct timespec *ts)
590 if (kt.tv64) {
591 *ts = ktime_to_timespec(kt);
592 return 1;
593 } else {
594 return 0;
599 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
602 struct sk_buff *skb)
604 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
605 struct timespec ts[3];
606 int empty = 1;
607 struct skb_shared_hwtstamps *shhwtstamps =
608 skb_hwtstamps(skb);
610 /* Race occurred between timestamp enabling and packet
611 receiving. Fill in the current time for now. */
612 if (need_software_tstamp && skb->tstamp.tv64 == 0)
613 __net_timestamp(skb);
615 if (need_software_tstamp) {
616 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
617 struct timeval tv;
618 skb_get_timestamp(skb, &tv);
619 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
620 sizeof(tv), &tv);
621 } else {
622 struct timespec ts;
623 skb_get_timestampns(skb, &ts);
624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
625 sizeof(ts), &ts);
630 memset(ts, 0, sizeof(ts));
631 if (skb->tstamp.tv64 &&
632 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
633 skb_get_timestampns(skb, ts + 0);
634 empty = 0;
636 if (shhwtstamps) {
637 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
638 ktime2ts(shhwtstamps->syststamp, ts + 1))
639 empty = 0;
640 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
641 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
642 empty = 0;
644 if (!empty)
645 put_cmsg(msg, SOL_SOCKET,
646 SCM_TIMESTAMPING, sizeof(ts), &ts);
649 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
651 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
653 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
654 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
655 sizeof(__u32), &skb->dropcount);
658 void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
659 struct sk_buff *skb)
661 sock_recv_timestamp(msg, sk, skb);
662 sock_recv_drops(msg, sk, skb);
664 EXPORT_SYMBOL_GPL(sock_recv_ts_and_drops);
666 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
667 struct msghdr *msg, size_t size, int flags)
669 struct sock_iocb *si = kiocb_to_siocb(iocb);
671 si->sock = sock;
672 si->scm = NULL;
673 si->msg = msg;
674 si->size = size;
675 si->flags = flags;
677 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
680 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
681 struct msghdr *msg, size_t size, int flags)
683 int err = security_socket_recvmsg(sock, msg, size, flags);
685 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
688 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
689 size_t size, int flags)
691 struct kiocb iocb;
692 struct sock_iocb siocb;
693 int ret;
695 init_sync_kiocb(&iocb, NULL);
696 iocb.private = &siocb;
697 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
698 if (-EIOCBQUEUED == ret)
699 ret = wait_on_sync_kiocb(&iocb);
700 return ret;
703 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
704 size_t size, int flags)
706 struct kiocb iocb;
707 struct sock_iocb siocb;
708 int ret;
710 init_sync_kiocb(&iocb, NULL);
711 iocb.private = &siocb;
712 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
713 if (-EIOCBQUEUED == ret)
714 ret = wait_on_sync_kiocb(&iocb);
715 return ret;
718 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
719 struct kvec *vec, size_t num, size_t size, int flags)
721 mm_segment_t oldfs = get_fs();
722 int result;
724 set_fs(KERNEL_DS);
726 * the following is safe, since for compiler definitions of kvec and
727 * iovec are identical, yielding the same in-core layout and alignment
729 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
730 result = sock_recvmsg(sock, msg, size, flags);
731 set_fs(oldfs);
732 return result;
735 static void sock_aio_dtor(struct kiocb *iocb)
737 kfree(iocb->private);
740 static ssize_t sock_sendpage(struct file *file, struct page *page,
741 int offset, size_t size, loff_t *ppos, int more)
743 struct socket *sock;
744 int flags;
746 sock = file->private_data;
748 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
749 if (more)
750 flags |= MSG_MORE;
752 return kernel_sendpage(sock, page, offset, size, flags);
755 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
756 struct pipe_inode_info *pipe, size_t len,
757 unsigned int flags)
759 struct socket *sock = file->private_data;
761 if (unlikely(!sock->ops->splice_read))
762 return -EINVAL;
764 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
767 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
768 struct sock_iocb *siocb)
770 if (!is_sync_kiocb(iocb)) {
771 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
772 if (!siocb)
773 return NULL;
774 iocb->ki_dtor = sock_aio_dtor;
777 siocb->kiocb = iocb;
778 iocb->private = siocb;
779 return siocb;
782 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
783 struct file *file, const struct iovec *iov,
784 unsigned long nr_segs)
786 struct socket *sock = file->private_data;
787 size_t size = 0;
788 int i;
790 for (i = 0; i < nr_segs; i++)
791 size += iov[i].iov_len;
793 msg->msg_name = NULL;
794 msg->msg_namelen = 0;
795 msg->msg_control = NULL;
796 msg->msg_controllen = 0;
797 msg->msg_iov = (struct iovec *)iov;
798 msg->msg_iovlen = nr_segs;
799 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
801 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
804 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
805 unsigned long nr_segs, loff_t pos)
807 struct sock_iocb siocb, *x;
809 if (pos != 0)
810 return -ESPIPE;
812 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
813 return 0;
816 x = alloc_sock_iocb(iocb, &siocb);
817 if (!x)
818 return -ENOMEM;
819 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
822 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
823 struct file *file, const struct iovec *iov,
824 unsigned long nr_segs)
826 struct socket *sock = file->private_data;
827 size_t size = 0;
828 int i;
830 for (i = 0; i < nr_segs; i++)
831 size += iov[i].iov_len;
833 msg->msg_name = NULL;
834 msg->msg_namelen = 0;
835 msg->msg_control = NULL;
836 msg->msg_controllen = 0;
837 msg->msg_iov = (struct iovec *)iov;
838 msg->msg_iovlen = nr_segs;
839 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
840 if (sock->type == SOCK_SEQPACKET)
841 msg->msg_flags |= MSG_EOR;
843 return __sock_sendmsg(iocb, sock, msg, size);
846 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
847 unsigned long nr_segs, loff_t pos)
849 struct sock_iocb siocb, *x;
851 if (pos != 0)
852 return -ESPIPE;
854 x = alloc_sock_iocb(iocb, &siocb);
855 if (!x)
856 return -ENOMEM;
858 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
862 * Atomic setting of ioctl hooks to avoid race
863 * with module unload.
866 static DEFINE_MUTEX(br_ioctl_mutex);
867 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
869 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
871 mutex_lock(&br_ioctl_mutex);
872 br_ioctl_hook = hook;
873 mutex_unlock(&br_ioctl_mutex);
876 EXPORT_SYMBOL(brioctl_set);
878 static DEFINE_MUTEX(vlan_ioctl_mutex);
879 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
881 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
883 mutex_lock(&vlan_ioctl_mutex);
884 vlan_ioctl_hook = hook;
885 mutex_unlock(&vlan_ioctl_mutex);
888 EXPORT_SYMBOL(vlan_ioctl_set);
890 static DEFINE_MUTEX(dlci_ioctl_mutex);
891 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
893 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
895 mutex_lock(&dlci_ioctl_mutex);
896 dlci_ioctl_hook = hook;
897 mutex_unlock(&dlci_ioctl_mutex);
900 EXPORT_SYMBOL(dlci_ioctl_set);
902 static long sock_do_ioctl(struct net *net, struct socket *sock,
903 unsigned int cmd, unsigned long arg)
905 int err;
906 void __user *argp = (void __user *)arg;
908 err = sock->ops->ioctl(sock, cmd, arg);
911 * If this ioctl is unknown try to hand it down
912 * to the NIC driver.
914 if (err == -ENOIOCTLCMD)
915 err = dev_ioctl(net, cmd, argp);
917 return err;
921 * With an ioctl, arg may well be a user mode pointer, but we don't know
922 * what to do with it - that's up to the protocol still.
925 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
927 struct socket *sock;
928 struct sock *sk;
929 void __user *argp = (void __user *)arg;
930 int pid, err;
931 struct net *net;
933 sock = file->private_data;
934 sk = sock->sk;
935 net = sock_net(sk);
936 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
937 err = dev_ioctl(net, cmd, argp);
938 } else
939 #ifdef CONFIG_WEXT_CORE
940 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
941 err = dev_ioctl(net, cmd, argp);
942 } else
943 #endif
944 switch (cmd) {
945 case FIOSETOWN:
946 case SIOCSPGRP:
947 err = -EFAULT;
948 if (get_user(pid, (int __user *)argp))
949 break;
950 err = f_setown(sock->file, pid, 1);
951 break;
952 case FIOGETOWN:
953 case SIOCGPGRP:
954 err = put_user(f_getown(sock->file),
955 (int __user *)argp);
956 break;
957 case SIOCGIFBR:
958 case SIOCSIFBR:
959 case SIOCBRADDBR:
960 case SIOCBRDELBR:
961 err = -ENOPKG;
962 if (!br_ioctl_hook)
963 request_module("bridge");
965 mutex_lock(&br_ioctl_mutex);
966 if (br_ioctl_hook)
967 err = br_ioctl_hook(net, cmd, argp);
968 mutex_unlock(&br_ioctl_mutex);
969 break;
970 case SIOCGIFVLAN:
971 case SIOCSIFVLAN:
972 err = -ENOPKG;
973 if (!vlan_ioctl_hook)
974 request_module("8021q");
976 mutex_lock(&vlan_ioctl_mutex);
977 if (vlan_ioctl_hook)
978 err = vlan_ioctl_hook(net, argp);
979 mutex_unlock(&vlan_ioctl_mutex);
980 break;
981 case SIOCADDDLCI:
982 case SIOCDELDLCI:
983 err = -ENOPKG;
984 if (!dlci_ioctl_hook)
985 request_module("dlci");
987 mutex_lock(&dlci_ioctl_mutex);
988 if (dlci_ioctl_hook)
989 err = dlci_ioctl_hook(cmd, argp);
990 mutex_unlock(&dlci_ioctl_mutex);
991 break;
992 default:
993 err = sock_do_ioctl(net, sock, cmd, arg);
994 break;
996 return err;
999 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1001 int err;
1002 struct socket *sock = NULL;
1004 err = security_socket_create(family, type, protocol, 1);
1005 if (err)
1006 goto out;
1008 sock = sock_alloc();
1009 if (!sock) {
1010 err = -ENOMEM;
1011 goto out;
1014 sock->type = type;
1015 err = security_socket_post_create(sock, family, type, protocol, 1);
1016 if (err)
1017 goto out_release;
1019 out:
1020 *res = sock;
1021 return err;
1022 out_release:
1023 sock_release(sock);
1024 sock = NULL;
1025 goto out;
1028 /* No kernel lock held - perfect */
1029 static unsigned int sock_poll(struct file *file, poll_table *wait)
1031 struct socket *sock;
1034 * We can't return errors to poll, so it's either yes or no.
1036 sock = file->private_data;
1037 return sock->ops->poll(file, sock, wait);
1040 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1042 struct socket *sock = file->private_data;
1044 return sock->ops->mmap(file, sock, vma);
1047 static int sock_close(struct inode *inode, struct file *filp)
1050 * It was possible the inode is NULL we were
1051 * closing an unfinished socket.
1054 if (!inode) {
1055 printk(KERN_DEBUG "sock_close: NULL inode\n");
1056 return 0;
1058 sock_release(SOCKET_I(inode));
1059 return 0;
1063 * Update the socket async list
1065 * Fasync_list locking strategy.
1067 * 1. fasync_list is modified only under process context socket lock
1068 * i.e. under semaphore.
1069 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1070 * or under socket lock.
1071 * 3. fasync_list can be used from softirq context, so that
1072 * modification under socket lock have to be enhanced with
1073 * write_lock_bh(&sk->sk_callback_lock).
1074 * --ANK (990710)
1077 static int sock_fasync(int fd, struct file *filp, int on)
1079 struct fasync_struct *fa, *fna = NULL, **prev;
1080 struct socket *sock;
1081 struct sock *sk;
1083 if (on) {
1084 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1085 if (fna == NULL)
1086 return -ENOMEM;
1089 sock = filp->private_data;
1091 sk = sock->sk;
1092 if (sk == NULL) {
1093 kfree(fna);
1094 return -EINVAL;
1097 lock_sock(sk);
1099 spin_lock(&filp->f_lock);
1100 if (on)
1101 filp->f_flags |= FASYNC;
1102 else
1103 filp->f_flags &= ~FASYNC;
1104 spin_unlock(&filp->f_lock);
1106 prev = &(sock->fasync_list);
1108 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1109 if (fa->fa_file == filp)
1110 break;
1112 if (on) {
1113 if (fa != NULL) {
1114 write_lock_bh(&sk->sk_callback_lock);
1115 fa->fa_fd = fd;
1116 write_unlock_bh(&sk->sk_callback_lock);
1118 kfree(fna);
1119 goto out;
1121 fna->fa_file = filp;
1122 fna->fa_fd = fd;
1123 fna->magic = FASYNC_MAGIC;
1124 fna->fa_next = sock->fasync_list;
1125 write_lock_bh(&sk->sk_callback_lock);
1126 sock->fasync_list = fna;
1127 sock_set_flag(sk, SOCK_FASYNC);
1128 write_unlock_bh(&sk->sk_callback_lock);
1129 } else {
1130 if (fa != NULL) {
1131 write_lock_bh(&sk->sk_callback_lock);
1132 *prev = fa->fa_next;
1133 if (!sock->fasync_list)
1134 sock_reset_flag(sk, SOCK_FASYNC);
1135 write_unlock_bh(&sk->sk_callback_lock);
1136 kfree(fa);
1140 out:
1141 release_sock(sock->sk);
1142 return 0;
1145 /* This function may be called only under socket lock or callback_lock */
1147 int sock_wake_async(struct socket *sock, int how, int band)
1149 if (!sock || !sock->fasync_list)
1150 return -1;
1151 switch (how) {
1152 case SOCK_WAKE_WAITD:
1153 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1154 break;
1155 goto call_kill;
1156 case SOCK_WAKE_SPACE:
1157 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1158 break;
1159 /* fall through */
1160 case SOCK_WAKE_IO:
1161 call_kill:
1162 __kill_fasync(sock->fasync_list, SIGIO, band);
1163 break;
1164 case SOCK_WAKE_URG:
1165 __kill_fasync(sock->fasync_list, SIGURG, band);
1167 return 0;
1170 static int __sock_create(struct net *net, int family, int type, int protocol,
1171 struct socket **res, int kern)
1173 int err;
1174 struct socket *sock;
1175 const struct net_proto_family *pf;
1178 * Check protocol is in range
1180 if (family < 0 || family >= NPROTO)
1181 return -EAFNOSUPPORT;
1182 if (type < 0 || type >= SOCK_MAX)
1183 return -EINVAL;
1185 /* Compatibility.
1187 This uglymoron is moved from INET layer to here to avoid
1188 deadlock in module load.
1190 if (family == PF_INET && type == SOCK_PACKET) {
1191 static int warned;
1192 if (!warned) {
1193 warned = 1;
1194 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1195 current->comm);
1197 family = PF_PACKET;
1200 err = security_socket_create(family, type, protocol, kern);
1201 if (err)
1202 return err;
1205 * Allocate the socket and allow the family to set things up. if
1206 * the protocol is 0, the family is instructed to select an appropriate
1207 * default.
1209 sock = sock_alloc();
1210 if (!sock) {
1211 if (net_ratelimit())
1212 printk(KERN_WARNING "socket: no more sockets\n");
1213 return -ENFILE; /* Not exactly a match, but its the
1214 closest posix thing */
1217 sock->type = type;
1219 #ifdef CONFIG_MODULES
1220 /* Attempt to load a protocol module if the find failed.
1222 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1223 * requested real, full-featured networking support upon configuration.
1224 * Otherwise module support will break!
1226 if (net_families[family] == NULL)
1227 request_module("net-pf-%d", family);
1228 #endif
1230 rcu_read_lock();
1231 pf = rcu_dereference(net_families[family]);
1232 err = -EAFNOSUPPORT;
1233 if (!pf)
1234 goto out_release;
1237 * We will call the ->create function, that possibly is in a loadable
1238 * module, so we have to bump that loadable module refcnt first.
1240 if (!try_module_get(pf->owner))
1241 goto out_release;
1243 /* Now protected by module ref count */
1244 rcu_read_unlock();
1246 err = pf->create(net, sock, protocol, kern);
1247 if (err < 0)
1248 goto out_module_put;
1251 * Now to bump the refcnt of the [loadable] module that owns this
1252 * socket at sock_release time we decrement its refcnt.
1254 if (!try_module_get(sock->ops->owner))
1255 goto out_module_busy;
1258 * Now that we're done with the ->create function, the [loadable]
1259 * module can have its refcnt decremented
1261 module_put(pf->owner);
1262 err = security_socket_post_create(sock, family, type, protocol, kern);
1263 if (err)
1264 goto out_sock_release;
1265 *res = sock;
1267 return 0;
1269 out_module_busy:
1270 err = -EAFNOSUPPORT;
1271 out_module_put:
1272 sock->ops = NULL;
1273 module_put(pf->owner);
1274 out_sock_release:
1275 sock_release(sock);
1276 return err;
1278 out_release:
1279 rcu_read_unlock();
1280 goto out_sock_release;
1283 int sock_create(int family, int type, int protocol, struct socket **res)
1285 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1288 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1290 return __sock_create(&init_net, family, type, protocol, res, 1);
1293 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1295 int retval;
1296 struct socket *sock;
1297 int flags;
1299 /* Check the SOCK_* constants for consistency. */
1300 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1301 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1302 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1303 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1305 flags = type & ~SOCK_TYPE_MASK;
1306 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1307 return -EINVAL;
1308 type &= SOCK_TYPE_MASK;
1310 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1311 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1313 retval = sock_create(family, type, protocol, &sock);
1314 if (retval < 0)
1315 goto out;
1317 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1318 if (retval < 0)
1319 goto out_release;
1321 out:
1322 /* It may be already another descriptor 8) Not kernel problem. */
1323 return retval;
1325 out_release:
1326 sock_release(sock);
1327 return retval;
1331 * Create a pair of connected sockets.
1334 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1335 int __user *, usockvec)
1337 struct socket *sock1, *sock2;
1338 int fd1, fd2, err;
1339 struct file *newfile1, *newfile2;
1340 int flags;
1342 flags = type & ~SOCK_TYPE_MASK;
1343 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1344 return -EINVAL;
1345 type &= SOCK_TYPE_MASK;
1347 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1348 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1351 * Obtain the first socket and check if the underlying protocol
1352 * supports the socketpair call.
1355 err = sock_create(family, type, protocol, &sock1);
1356 if (err < 0)
1357 goto out;
1359 err = sock_create(family, type, protocol, &sock2);
1360 if (err < 0)
1361 goto out_release_1;
1363 err = sock1->ops->socketpair(sock1, sock2);
1364 if (err < 0)
1365 goto out_release_both;
1367 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1368 if (unlikely(fd1 < 0)) {
1369 err = fd1;
1370 goto out_release_both;
1373 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1374 if (unlikely(fd2 < 0)) {
1375 err = fd2;
1376 fput(newfile1);
1377 put_unused_fd(fd1);
1378 sock_release(sock2);
1379 goto out;
1382 audit_fd_pair(fd1, fd2);
1383 fd_install(fd1, newfile1);
1384 fd_install(fd2, newfile2);
1385 /* fd1 and fd2 may be already another descriptors.
1386 * Not kernel problem.
1389 err = put_user(fd1, &usockvec[0]);
1390 if (!err)
1391 err = put_user(fd2, &usockvec[1]);
1392 if (!err)
1393 return 0;
1395 sys_close(fd2);
1396 sys_close(fd1);
1397 return err;
1399 out_release_both:
1400 sock_release(sock2);
1401 out_release_1:
1402 sock_release(sock1);
1403 out:
1404 return err;
1408 * Bind a name to a socket. Nothing much to do here since it's
1409 * the protocol's responsibility to handle the local address.
1411 * We move the socket address to kernel space before we call
1412 * the protocol layer (having also checked the address is ok).
1415 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1417 struct socket *sock;
1418 struct sockaddr_storage address;
1419 int err, fput_needed;
1421 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1422 if (sock) {
1423 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1424 if (err >= 0) {
1425 err = security_socket_bind(sock,
1426 (struct sockaddr *)&address,
1427 addrlen);
1428 if (!err)
1429 err = sock->ops->bind(sock,
1430 (struct sockaddr *)
1431 &address, addrlen);
1433 fput_light(sock->file, fput_needed);
1435 return err;
1439 * Perform a listen. Basically, we allow the protocol to do anything
1440 * necessary for a listen, and if that works, we mark the socket as
1441 * ready for listening.
1444 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1446 struct socket *sock;
1447 int err, fput_needed;
1448 int somaxconn;
1450 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 if (sock) {
1452 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1453 if ((unsigned)backlog > somaxconn)
1454 backlog = somaxconn;
1456 err = security_socket_listen(sock, backlog);
1457 if (!err)
1458 err = sock->ops->listen(sock, backlog);
1460 fput_light(sock->file, fput_needed);
1462 return err;
1466 * For accept, we attempt to create a new socket, set up the link
1467 * with the client, wake up the client, then return the new
1468 * connected fd. We collect the address of the connector in kernel
1469 * space and move it to user at the very end. This is unclean because
1470 * we open the socket then return an error.
1472 * 1003.1g adds the ability to recvmsg() to query connection pending
1473 * status to recvmsg. We need to add that support in a way thats
1474 * clean when we restucture accept also.
1477 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1478 int __user *, upeer_addrlen, int, flags)
1480 struct socket *sock, *newsock;
1481 struct file *newfile;
1482 int err, len, newfd, fput_needed;
1483 struct sockaddr_storage address;
1485 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1486 return -EINVAL;
1488 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1489 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1491 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1492 if (!sock)
1493 goto out;
1495 err = -ENFILE;
1496 if (!(newsock = sock_alloc()))
1497 goto out_put;
1499 newsock->type = sock->type;
1500 newsock->ops = sock->ops;
1503 * We don't need try_module_get here, as the listening socket (sock)
1504 * has the protocol module (sock->ops->owner) held.
1506 __module_get(newsock->ops->owner);
1508 newfd = sock_alloc_file(newsock, &newfile, flags);
1509 if (unlikely(newfd < 0)) {
1510 err = newfd;
1511 sock_release(newsock);
1512 goto out_put;
1515 err = security_socket_accept(sock, newsock);
1516 if (err)
1517 goto out_fd;
1519 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1520 if (err < 0)
1521 goto out_fd;
1523 if (upeer_sockaddr) {
1524 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1525 &len, 2) < 0) {
1526 err = -ECONNABORTED;
1527 goto out_fd;
1529 err = move_addr_to_user((struct sockaddr *)&address,
1530 len, upeer_sockaddr, upeer_addrlen);
1531 if (err < 0)
1532 goto out_fd;
1535 /* File flags are not inherited via accept() unlike another OSes. */
1537 fd_install(newfd, newfile);
1538 err = newfd;
1540 out_put:
1541 fput_light(sock->file, fput_needed);
1542 out:
1543 return err;
1544 out_fd:
1545 fput(newfile);
1546 put_unused_fd(newfd);
1547 goto out_put;
1550 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1551 int __user *, upeer_addrlen)
1553 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1557 * Attempt to connect to a socket with the server address. The address
1558 * is in user space so we verify it is OK and move it to kernel space.
1560 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1561 * break bindings
1563 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1564 * other SEQPACKET protocols that take time to connect() as it doesn't
1565 * include the -EINPROGRESS status for such sockets.
1568 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1569 int, addrlen)
1571 struct socket *sock;
1572 struct sockaddr_storage address;
1573 int err, fput_needed;
1575 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1576 if (!sock)
1577 goto out;
1578 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1579 if (err < 0)
1580 goto out_put;
1582 err =
1583 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1584 if (err)
1585 goto out_put;
1587 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1588 sock->file->f_flags);
1589 out_put:
1590 fput_light(sock->file, fput_needed);
1591 out:
1592 return err;
1596 * Get the local address ('name') of a socket object. Move the obtained
1597 * name to user space.
1600 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1601 int __user *, usockaddr_len)
1603 struct socket *sock;
1604 struct sockaddr_storage address;
1605 int len, err, fput_needed;
1607 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608 if (!sock)
1609 goto out;
1611 err = security_socket_getsockname(sock);
1612 if (err)
1613 goto out_put;
1615 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1616 if (err)
1617 goto out_put;
1618 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1620 out_put:
1621 fput_light(sock->file, fput_needed);
1622 out:
1623 return err;
1627 * Get the remote address ('name') of a socket object. Move the obtained
1628 * name to user space.
1631 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1632 int __user *, usockaddr_len)
1634 struct socket *sock;
1635 struct sockaddr_storage address;
1636 int len, err, fput_needed;
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 if (sock != NULL) {
1640 err = security_socket_getpeername(sock);
1641 if (err) {
1642 fput_light(sock->file, fput_needed);
1643 return err;
1646 err =
1647 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1649 if (!err)
1650 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1651 usockaddr_len);
1652 fput_light(sock->file, fput_needed);
1654 return err;
1658 * Send a datagram to a given address. We move the address into kernel
1659 * space and check the user space data area is readable before invoking
1660 * the protocol.
1663 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1664 unsigned, flags, struct sockaddr __user *, addr,
1665 int, addr_len)
1667 struct socket *sock;
1668 struct sockaddr_storage address;
1669 int err;
1670 struct msghdr msg;
1671 struct iovec iov;
1672 int fput_needed;
1674 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1675 if (!sock)
1676 goto out;
1678 iov.iov_base = buff;
1679 iov.iov_len = len;
1680 msg.msg_name = NULL;
1681 msg.msg_iov = &iov;
1682 msg.msg_iovlen = 1;
1683 msg.msg_control = NULL;
1684 msg.msg_controllen = 0;
1685 msg.msg_namelen = 0;
1686 if (addr) {
1687 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1688 if (err < 0)
1689 goto out_put;
1690 msg.msg_name = (struct sockaddr *)&address;
1691 msg.msg_namelen = addr_len;
1693 if (sock->file->f_flags & O_NONBLOCK)
1694 flags |= MSG_DONTWAIT;
1695 msg.msg_flags = flags;
1696 err = sock_sendmsg(sock, &msg, len);
1698 out_put:
1699 fput_light(sock->file, fput_needed);
1700 out:
1701 return err;
1705 * Send a datagram down a socket.
1708 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1709 unsigned, flags)
1711 return sys_sendto(fd, buff, len, flags, NULL, 0);
1715 * Receive a frame from the socket and optionally record the address of the
1716 * sender. We verify the buffers are writable and if needed move the
1717 * sender address from kernel to user space.
1720 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1721 unsigned, flags, struct sockaddr __user *, addr,
1722 int __user *, addr_len)
1724 struct socket *sock;
1725 struct iovec iov;
1726 struct msghdr msg;
1727 struct sockaddr_storage address;
1728 int err, err2;
1729 int fput_needed;
1731 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 if (!sock)
1733 goto out;
1735 msg.msg_control = NULL;
1736 msg.msg_controllen = 0;
1737 msg.msg_iovlen = 1;
1738 msg.msg_iov = &iov;
1739 iov.iov_len = size;
1740 iov.iov_base = ubuf;
1741 msg.msg_name = (struct sockaddr *)&address;
1742 msg.msg_namelen = sizeof(address);
1743 if (sock->file->f_flags & O_NONBLOCK)
1744 flags |= MSG_DONTWAIT;
1745 err = sock_recvmsg(sock, &msg, size, flags);
1747 if (err >= 0 && addr != NULL) {
1748 err2 = move_addr_to_user((struct sockaddr *)&address,
1749 msg.msg_namelen, addr, addr_len);
1750 if (err2 < 0)
1751 err = err2;
1754 fput_light(sock->file, fput_needed);
1755 out:
1756 return err;
1760 * Receive a datagram from a socket.
1763 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1764 unsigned flags)
1766 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1770 * Set a socket option. Because we don't know the option lengths we have
1771 * to pass the user mode parameter for the protocols to sort out.
1774 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1775 char __user *, optval, int, optlen)
1777 int err, fput_needed;
1778 struct socket *sock;
1780 if (optlen < 0)
1781 return -EINVAL;
1783 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 if (sock != NULL) {
1785 err = security_socket_setsockopt(sock, level, optname);
1786 if (err)
1787 goto out_put;
1789 if (level == SOL_SOCKET)
1790 err =
1791 sock_setsockopt(sock, level, optname, optval,
1792 optlen);
1793 else
1794 err =
1795 sock->ops->setsockopt(sock, level, optname, optval,
1796 optlen);
1797 out_put:
1798 fput_light(sock->file, fput_needed);
1800 return err;
1804 * Get a socket option. Because we don't know the option lengths we have
1805 * to pass a user mode parameter for the protocols to sort out.
1808 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1809 char __user *, optval, int __user *, optlen)
1811 int err, fput_needed;
1812 struct socket *sock;
1814 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1815 if (sock != NULL) {
1816 err = security_socket_getsockopt(sock, level, optname);
1817 if (err)
1818 goto out_put;
1820 if (level == SOL_SOCKET)
1821 err =
1822 sock_getsockopt(sock, level, optname, optval,
1823 optlen);
1824 else
1825 err =
1826 sock->ops->getsockopt(sock, level, optname, optval,
1827 optlen);
1828 out_put:
1829 fput_light(sock->file, fput_needed);
1831 return err;
1835 * Shutdown a socket.
1838 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1840 int err, fput_needed;
1841 struct socket *sock;
1843 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 if (sock != NULL) {
1845 err = security_socket_shutdown(sock, how);
1846 if (!err)
1847 err = sock->ops->shutdown(sock, how);
1848 fput_light(sock->file, fput_needed);
1850 return err;
1853 /* A couple of helpful macros for getting the address of the 32/64 bit
1854 * fields which are the same type (int / unsigned) on our platforms.
1856 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1857 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1858 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1861 * BSD sendmsg interface
1864 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1866 struct compat_msghdr __user *msg_compat =
1867 (struct compat_msghdr __user *)msg;
1868 struct socket *sock;
1869 struct sockaddr_storage address;
1870 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1871 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1872 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1873 /* 20 is size of ipv6_pktinfo */
1874 unsigned char *ctl_buf = ctl;
1875 struct msghdr msg_sys;
1876 int err, ctl_len, iov_size, total_len;
1877 int fput_needed;
1879 err = -EFAULT;
1880 if (MSG_CMSG_COMPAT & flags) {
1881 if (get_compat_msghdr(&msg_sys, msg_compat))
1882 return -EFAULT;
1884 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1885 return -EFAULT;
1887 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1888 if (!sock)
1889 goto out;
1891 /* do not move before msg_sys is valid */
1892 err = -EMSGSIZE;
1893 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1894 goto out_put;
1896 /* Check whether to allocate the iovec area */
1897 err = -ENOMEM;
1898 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1899 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1900 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1901 if (!iov)
1902 goto out_put;
1905 /* This will also move the address data into kernel space */
1906 if (MSG_CMSG_COMPAT & flags) {
1907 err = verify_compat_iovec(&msg_sys, iov,
1908 (struct sockaddr *)&address,
1909 VERIFY_READ);
1910 } else
1911 err = verify_iovec(&msg_sys, iov,
1912 (struct sockaddr *)&address,
1913 VERIFY_READ);
1914 if (err < 0)
1915 goto out_freeiov;
1916 total_len = err;
1918 err = -ENOBUFS;
1920 if (msg_sys.msg_controllen > INT_MAX)
1921 goto out_freeiov;
1922 ctl_len = msg_sys.msg_controllen;
1923 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1924 err =
1925 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1926 sizeof(ctl));
1927 if (err)
1928 goto out_freeiov;
1929 ctl_buf = msg_sys.msg_control;
1930 ctl_len = msg_sys.msg_controllen;
1931 } else if (ctl_len) {
1932 if (ctl_len > sizeof(ctl)) {
1933 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1934 if (ctl_buf == NULL)
1935 goto out_freeiov;
1937 err = -EFAULT;
1939 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1940 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1941 * checking falls down on this.
1943 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1944 ctl_len))
1945 goto out_freectl;
1946 msg_sys.msg_control = ctl_buf;
1948 msg_sys.msg_flags = flags;
1950 if (sock->file->f_flags & O_NONBLOCK)
1951 msg_sys.msg_flags |= MSG_DONTWAIT;
1952 err = sock_sendmsg(sock, &msg_sys, total_len);
1954 out_freectl:
1955 if (ctl_buf != ctl)
1956 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957 out_freeiov:
1958 if (iov != iovstack)
1959 sock_kfree_s(sock->sk, iov, iov_size);
1960 out_put:
1961 fput_light(sock->file, fput_needed);
1962 out:
1963 return err;
1966 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1967 struct msghdr *msg_sys, unsigned flags, int nosec)
1969 struct compat_msghdr __user *msg_compat =
1970 (struct compat_msghdr __user *)msg;
1971 struct iovec iovstack[UIO_FASTIOV];
1972 struct iovec *iov = iovstack;
1973 unsigned long cmsg_ptr;
1974 int err, iov_size, total_len, len;
1976 /* kernel mode address */
1977 struct sockaddr_storage addr;
1979 /* user mode address pointers */
1980 struct sockaddr __user *uaddr;
1981 int __user *uaddr_len;
1983 if (MSG_CMSG_COMPAT & flags) {
1984 if (get_compat_msghdr(msg_sys, msg_compat))
1985 return -EFAULT;
1987 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1988 return -EFAULT;
1990 err = -EMSGSIZE;
1991 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1992 goto out;
1994 /* Check whether to allocate the iovec area */
1995 err = -ENOMEM;
1996 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1997 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1998 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1999 if (!iov)
2000 goto out;
2004 * Save the user-mode address (verify_iovec will change the
2005 * kernel msghdr to use the kernel address space)
2008 uaddr = (__force void __user *)msg_sys->msg_name;
2009 uaddr_len = COMPAT_NAMELEN(msg);
2010 if (MSG_CMSG_COMPAT & flags) {
2011 err = verify_compat_iovec(msg_sys, iov,
2012 (struct sockaddr *)&addr,
2013 VERIFY_WRITE);
2014 } else
2015 err = verify_iovec(msg_sys, iov,
2016 (struct sockaddr *)&addr,
2017 VERIFY_WRITE);
2018 if (err < 0)
2019 goto out_freeiov;
2020 total_len = err;
2022 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2023 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2025 if (sock->file->f_flags & O_NONBLOCK)
2026 flags |= MSG_DONTWAIT;
2027 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2028 total_len, flags);
2029 if (err < 0)
2030 goto out_freeiov;
2031 len = err;
2033 if (uaddr != NULL) {
2034 err = move_addr_to_user((struct sockaddr *)&addr,
2035 msg_sys->msg_namelen, uaddr,
2036 uaddr_len);
2037 if (err < 0)
2038 goto out_freeiov;
2040 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2041 COMPAT_FLAGS(msg));
2042 if (err)
2043 goto out_freeiov;
2044 if (MSG_CMSG_COMPAT & flags)
2045 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2046 &msg_compat->msg_controllen);
2047 else
2048 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2049 &msg->msg_controllen);
2050 if (err)
2051 goto out_freeiov;
2052 err = len;
2054 out_freeiov:
2055 if (iov != iovstack)
2056 sock_kfree_s(sock->sk, iov, iov_size);
2057 out:
2058 return err;
2062 * BSD recvmsg interface
2065 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2066 unsigned int, flags)
2068 int fput_needed, err;
2069 struct msghdr msg_sys;
2070 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2072 if (!sock)
2073 goto out;
2075 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2077 fput_light(sock->file, fput_needed);
2078 out:
2079 return err;
2083 * Linux recvmmsg interface
2086 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2087 unsigned int flags, struct timespec *timeout)
2089 int fput_needed, err, datagrams;
2090 struct socket *sock;
2091 struct mmsghdr __user *entry;
2092 struct compat_mmsghdr __user *compat_entry;
2093 struct msghdr msg_sys;
2094 struct timespec end_time;
2096 if (timeout &&
2097 poll_select_set_timeout(&end_time, timeout->tv_sec,
2098 timeout->tv_nsec))
2099 return -EINVAL;
2101 datagrams = 0;
2103 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104 if (!sock)
2105 return err;
2107 err = sock_error(sock->sk);
2108 if (err)
2109 goto out_put;
2111 entry = mmsg;
2112 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2114 while (datagrams < vlen) {
2116 * No need to ask LSM for more than the first datagram.
2118 if (MSG_CMSG_COMPAT & flags) {
2119 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2120 &msg_sys, flags, datagrams);
2121 if (err < 0)
2122 break;
2123 err = __put_user(err, &compat_entry->msg_len);
2124 ++compat_entry;
2125 } else {
2126 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2127 &msg_sys, flags, datagrams);
2128 if (err < 0)
2129 break;
2130 err = put_user(err, &entry->msg_len);
2131 ++entry;
2134 if (err)
2135 break;
2136 ++datagrams;
2138 if (timeout) {
2139 ktime_get_ts(timeout);
2140 *timeout = timespec_sub(end_time, *timeout);
2141 if (timeout->tv_sec < 0) {
2142 timeout->tv_sec = timeout->tv_nsec = 0;
2143 break;
2146 /* Timeout, return less than vlen datagrams */
2147 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2148 break;
2151 /* Out of band data, return right away */
2152 if (msg_sys.msg_flags & MSG_OOB)
2153 break;
2156 out_put:
2157 fput_light(sock->file, fput_needed);
2159 if (err == 0)
2160 return datagrams;
2162 if (datagrams != 0) {
2164 * We may return less entries than requested (vlen) if the
2165 * sock is non block and there aren't enough datagrams...
2167 if (err != -EAGAIN) {
2169 * ... or if recvmsg returns an error after we
2170 * received some datagrams, where we record the
2171 * error to return on the next call or if the
2172 * app asks about it using getsockopt(SO_ERROR).
2174 sock->sk->sk_err = -err;
2177 return datagrams;
2180 return err;
2183 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2184 unsigned int, vlen, unsigned int, flags,
2185 struct timespec __user *, timeout)
2187 int datagrams;
2188 struct timespec timeout_sys;
2190 if (!timeout)
2191 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2193 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2194 return -EFAULT;
2196 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2198 if (datagrams > 0 &&
2199 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2200 datagrams = -EFAULT;
2202 return datagrams;
2205 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2206 /* Argument list sizes for sys_socketcall */
2207 #define AL(x) ((x) * sizeof(unsigned long))
2208 static const unsigned char nargs[20] = {
2209 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2210 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2211 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2212 AL(4),AL(5)
2215 #undef AL
2218 * System call vectors.
2220 * Argument checking cleaned up. Saved 20% in size.
2221 * This function doesn't need to set the kernel lock because
2222 * it is set by the callees.
2225 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2227 unsigned long a[6];
2228 unsigned long a0, a1;
2229 int err;
2230 unsigned int len;
2232 if (call < 1 || call > SYS_RECVMMSG)
2233 return -EINVAL;
2235 len = nargs[call];
2236 if (len > sizeof(a))
2237 return -EINVAL;
2239 /* copy_from_user should be SMP safe. */
2240 if (copy_from_user(a, args, len))
2241 return -EFAULT;
2243 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2245 a0 = a[0];
2246 a1 = a[1];
2248 switch (call) {
2249 case SYS_SOCKET:
2250 err = sys_socket(a0, a1, a[2]);
2251 break;
2252 case SYS_BIND:
2253 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2254 break;
2255 case SYS_CONNECT:
2256 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2257 break;
2258 case SYS_LISTEN:
2259 err = sys_listen(a0, a1);
2260 break;
2261 case SYS_ACCEPT:
2262 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2263 (int __user *)a[2], 0);
2264 break;
2265 case SYS_GETSOCKNAME:
2266 err =
2267 sys_getsockname(a0, (struct sockaddr __user *)a1,
2268 (int __user *)a[2]);
2269 break;
2270 case SYS_GETPEERNAME:
2271 err =
2272 sys_getpeername(a0, (struct sockaddr __user *)a1,
2273 (int __user *)a[2]);
2274 break;
2275 case SYS_SOCKETPAIR:
2276 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2277 break;
2278 case SYS_SEND:
2279 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2280 break;
2281 case SYS_SENDTO:
2282 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2283 (struct sockaddr __user *)a[4], a[5]);
2284 break;
2285 case SYS_RECV:
2286 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2287 break;
2288 case SYS_RECVFROM:
2289 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2290 (struct sockaddr __user *)a[4],
2291 (int __user *)a[5]);
2292 break;
2293 case SYS_SHUTDOWN:
2294 err = sys_shutdown(a0, a1);
2295 break;
2296 case SYS_SETSOCKOPT:
2297 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2298 break;
2299 case SYS_GETSOCKOPT:
2300 err =
2301 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2302 (int __user *)a[4]);
2303 break;
2304 case SYS_SENDMSG:
2305 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2306 break;
2307 case SYS_RECVMSG:
2308 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2309 break;
2310 case SYS_RECVMMSG:
2311 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2312 (struct timespec __user *)a[4]);
2313 break;
2314 case SYS_ACCEPT4:
2315 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2316 (int __user *)a[2], a[3]);
2317 break;
2318 default:
2319 err = -EINVAL;
2320 break;
2322 return err;
2325 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2328 * sock_register - add a socket protocol handler
2329 * @ops: description of protocol
2331 * This function is called by a protocol handler that wants to
2332 * advertise its address family, and have it linked into the
2333 * socket interface. The value ops->family coresponds to the
2334 * socket system call protocol family.
2336 int sock_register(const struct net_proto_family *ops)
2338 int err;
2340 if (ops->family >= NPROTO) {
2341 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2342 NPROTO);
2343 return -ENOBUFS;
2346 spin_lock(&net_family_lock);
2347 if (net_families[ops->family])
2348 err = -EEXIST;
2349 else {
2350 net_families[ops->family] = ops;
2351 err = 0;
2353 spin_unlock(&net_family_lock);
2355 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2356 return err;
2360 * sock_unregister - remove a protocol handler
2361 * @family: protocol family to remove
2363 * This function is called by a protocol handler that wants to
2364 * remove its address family, and have it unlinked from the
2365 * new socket creation.
2367 * If protocol handler is a module, then it can use module reference
2368 * counts to protect against new references. If protocol handler is not
2369 * a module then it needs to provide its own protection in
2370 * the ops->create routine.
2372 void sock_unregister(int family)
2374 BUG_ON(family < 0 || family >= NPROTO);
2376 spin_lock(&net_family_lock);
2377 net_families[family] = NULL;
2378 spin_unlock(&net_family_lock);
2380 synchronize_rcu();
2382 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2385 static int __init sock_init(void)
2388 * Initialize sock SLAB cache.
2391 sk_init();
2394 * Initialize skbuff SLAB cache
2396 skb_init();
2399 * Initialize the protocols module.
2402 init_inodecache();
2403 register_filesystem(&sock_fs_type);
2404 sock_mnt = kern_mount(&sock_fs_type);
2406 /* The real protocol initialization is performed in later initcalls.
2409 #ifdef CONFIG_NETFILTER
2410 netfilter_init();
2411 #endif
2413 return 0;
2416 core_initcall(sock_init); /* early initcall */
2418 #ifdef CONFIG_PROC_FS
2419 void socket_seq_show(struct seq_file *seq)
2421 int cpu;
2422 int counter = 0;
2424 for_each_possible_cpu(cpu)
2425 counter += per_cpu(sockets_in_use, cpu);
2427 /* It can be negative, by the way. 8) */
2428 if (counter < 0)
2429 counter = 0;
2431 seq_printf(seq, "sockets: used %d\n", counter);
2433 #endif /* CONFIG_PROC_FS */
2435 #ifdef CONFIG_COMPAT
2436 static int do_siocgstamp(struct net *net, struct socket *sock,
2437 unsigned int cmd, struct compat_timeval __user *up)
2439 mm_segment_t old_fs = get_fs();
2440 struct timeval ktv;
2441 int err;
2443 set_fs(KERNEL_DS);
2444 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2445 set_fs(old_fs);
2446 if (!err) {
2447 err = put_user(ktv.tv_sec, &up->tv_sec);
2448 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2450 return err;
2453 static int do_siocgstampns(struct net *net, struct socket *sock,
2454 unsigned int cmd, struct compat_timespec __user *up)
2456 mm_segment_t old_fs = get_fs();
2457 struct timespec kts;
2458 int err;
2460 set_fs(KERNEL_DS);
2461 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2462 set_fs(old_fs);
2463 if (!err) {
2464 err = put_user(kts.tv_sec, &up->tv_sec);
2465 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2467 return err;
2470 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2472 struct ifreq __user *uifr;
2473 int err;
2475 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2476 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2477 return -EFAULT;
2479 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2480 if (err)
2481 return err;
2483 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2484 return -EFAULT;
2486 return 0;
2489 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2491 struct compat_ifconf ifc32;
2492 struct ifconf ifc;
2493 struct ifconf __user *uifc;
2494 struct compat_ifreq __user *ifr32;
2495 struct ifreq __user *ifr;
2496 unsigned int i, j;
2497 int err;
2499 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2500 return -EFAULT;
2502 if (ifc32.ifcbuf == 0) {
2503 ifc32.ifc_len = 0;
2504 ifc.ifc_len = 0;
2505 ifc.ifc_req = NULL;
2506 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2507 } else {
2508 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2509 sizeof (struct ifreq);
2510 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2511 ifc.ifc_len = len;
2512 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2513 ifr32 = compat_ptr(ifc32.ifcbuf);
2514 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2515 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2516 return -EFAULT;
2517 ifr++;
2518 ifr32++;
2521 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2522 return -EFAULT;
2524 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2525 if (err)
2526 return err;
2528 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2529 return -EFAULT;
2531 ifr = ifc.ifc_req;
2532 ifr32 = compat_ptr(ifc32.ifcbuf);
2533 for (i = 0, j = 0;
2534 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2535 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2536 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2537 return -EFAULT;
2538 ifr32++;
2539 ifr++;
2542 if (ifc32.ifcbuf == 0) {
2543 /* Translate from 64-bit structure multiple to
2544 * a 32-bit one.
2546 i = ifc.ifc_len;
2547 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2548 ifc32.ifc_len = i;
2549 } else {
2550 ifc32.ifc_len = i;
2552 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2553 return -EFAULT;
2555 return 0;
2558 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2560 struct ifreq __user *ifr;
2561 u32 data;
2562 void __user *datap;
2564 ifr = compat_alloc_user_space(sizeof(*ifr));
2566 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2567 return -EFAULT;
2569 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2570 return -EFAULT;
2572 datap = compat_ptr(data);
2573 if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2574 return -EFAULT;
2576 return dev_ioctl(net, SIOCETHTOOL, ifr);
2579 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2581 void __user *uptr;
2582 compat_uptr_t uptr32;
2583 struct ifreq __user *uifr;
2585 uifr = compat_alloc_user_space(sizeof (*uifr));
2586 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2587 return -EFAULT;
2589 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2590 return -EFAULT;
2592 uptr = compat_ptr(uptr32);
2594 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2595 return -EFAULT;
2597 return dev_ioctl(net, SIOCWANDEV, uifr);
2600 static int bond_ioctl(struct net *net, unsigned int cmd,
2601 struct compat_ifreq __user *ifr32)
2603 struct ifreq kifr;
2604 struct ifreq __user *uifr;
2605 mm_segment_t old_fs;
2606 int err;
2607 u32 data;
2608 void __user *datap;
2610 switch (cmd) {
2611 case SIOCBONDENSLAVE:
2612 case SIOCBONDRELEASE:
2613 case SIOCBONDSETHWADDR:
2614 case SIOCBONDCHANGEACTIVE:
2615 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2616 return -EFAULT;
2618 old_fs = get_fs();
2619 set_fs (KERNEL_DS);
2620 err = dev_ioctl(net, cmd, &kifr);
2621 set_fs (old_fs);
2623 return err;
2624 case SIOCBONDSLAVEINFOQUERY:
2625 case SIOCBONDINFOQUERY:
2626 uifr = compat_alloc_user_space(sizeof(*uifr));
2627 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2628 return -EFAULT;
2630 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2631 return -EFAULT;
2633 datap = compat_ptr(data);
2634 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2635 return -EFAULT;
2637 return dev_ioctl(net, cmd, uifr);
2638 default:
2639 return -EINVAL;
2643 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2644 struct compat_ifreq __user *u_ifreq32)
2646 struct ifreq __user *u_ifreq64;
2647 char tmp_buf[IFNAMSIZ];
2648 void __user *data64;
2649 u32 data32;
2651 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2652 IFNAMSIZ))
2653 return -EFAULT;
2654 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2655 return -EFAULT;
2656 data64 = compat_ptr(data32);
2658 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2660 /* Don't check these user accesses, just let that get trapped
2661 * in the ioctl handler instead.
2663 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2664 IFNAMSIZ))
2665 return -EFAULT;
2666 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2667 return -EFAULT;
2669 return dev_ioctl(net, cmd, u_ifreq64);
2672 static int dev_ifsioc(struct net *net, struct socket *sock,
2673 unsigned int cmd, struct compat_ifreq __user *uifr32)
2675 struct ifreq __user *uifr;
2676 int err;
2678 uifr = compat_alloc_user_space(sizeof(*uifr));
2679 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2680 return -EFAULT;
2682 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2684 if (!err) {
2685 switch (cmd) {
2686 case SIOCGIFFLAGS:
2687 case SIOCGIFMETRIC:
2688 case SIOCGIFMTU:
2689 case SIOCGIFMEM:
2690 case SIOCGIFHWADDR:
2691 case SIOCGIFINDEX:
2692 case SIOCGIFADDR:
2693 case SIOCGIFBRDADDR:
2694 case SIOCGIFDSTADDR:
2695 case SIOCGIFNETMASK:
2696 case SIOCGIFPFLAGS:
2697 case SIOCGIFTXQLEN:
2698 case SIOCGMIIPHY:
2699 case SIOCGMIIREG:
2700 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2701 err = -EFAULT;
2702 break;
2705 return err;
2708 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2709 struct compat_ifreq __user *uifr32)
2711 struct ifreq ifr;
2712 struct compat_ifmap __user *uifmap32;
2713 mm_segment_t old_fs;
2714 int err;
2716 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2717 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2718 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2719 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2720 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2721 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2722 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2723 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2724 if (err)
2725 return -EFAULT;
2727 old_fs = get_fs();
2728 set_fs (KERNEL_DS);
2729 err = dev_ioctl(net, cmd, (void __user *)&ifr);
2730 set_fs (old_fs);
2732 if (cmd == SIOCGIFMAP && !err) {
2733 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2734 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2735 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2736 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2737 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2738 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2739 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2740 if (err)
2741 err = -EFAULT;
2743 return err;
2746 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2748 void __user *uptr;
2749 compat_uptr_t uptr32;
2750 struct ifreq __user *uifr;
2752 uifr = compat_alloc_user_space(sizeof (*uifr));
2753 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2754 return -EFAULT;
2756 if (get_user(uptr32, &uifr32->ifr_data))
2757 return -EFAULT;
2759 uptr = compat_ptr(uptr32);
2761 if (put_user(uptr, &uifr->ifr_data))
2762 return -EFAULT;
2764 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2767 struct rtentry32 {
2768 u32 rt_pad1;
2769 struct sockaddr rt_dst; /* target address */
2770 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2771 struct sockaddr rt_genmask; /* target network mask (IP) */
2772 unsigned short rt_flags;
2773 short rt_pad2;
2774 u32 rt_pad3;
2775 unsigned char rt_tos;
2776 unsigned char rt_class;
2777 short rt_pad4;
2778 short rt_metric; /* +1 for binary compatibility! */
2779 /* char * */ u32 rt_dev; /* forcing the device at add */
2780 u32 rt_mtu; /* per route MTU/Window */
2781 u32 rt_window; /* Window clamping */
2782 unsigned short rt_irtt; /* Initial RTT */
2785 struct in6_rtmsg32 {
2786 struct in6_addr rtmsg_dst;
2787 struct in6_addr rtmsg_src;
2788 struct in6_addr rtmsg_gateway;
2789 u32 rtmsg_type;
2790 u16 rtmsg_dst_len;
2791 u16 rtmsg_src_len;
2792 u32 rtmsg_metric;
2793 u32 rtmsg_info;
2794 u32 rtmsg_flags;
2795 s32 rtmsg_ifindex;
2798 static int routing_ioctl(struct net *net, struct socket *sock,
2799 unsigned int cmd, void __user *argp)
2801 int ret;
2802 void *r = NULL;
2803 struct in6_rtmsg r6;
2804 struct rtentry r4;
2805 char devname[16];
2806 u32 rtdev;
2807 mm_segment_t old_fs = get_fs();
2809 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2810 struct in6_rtmsg32 __user *ur6 = argp;
2811 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2812 3 * sizeof(struct in6_addr));
2813 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2814 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2815 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2816 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2817 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2818 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2819 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2821 r = (void *) &r6;
2822 } else { /* ipv4 */
2823 struct rtentry32 __user *ur4 = argp;
2824 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2825 3 * sizeof(struct sockaddr));
2826 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2827 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2828 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2829 ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2830 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2831 ret |= __get_user (rtdev, &(ur4->rt_dev));
2832 if (rtdev) {
2833 ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2834 r4.rt_dev = devname; devname[15] = 0;
2835 } else
2836 r4.rt_dev = NULL;
2838 r = (void *) &r4;
2841 if (ret) {
2842 ret = -EFAULT;
2843 goto out;
2846 set_fs (KERNEL_DS);
2847 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2848 set_fs (old_fs);
2850 out:
2851 return ret;
2854 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2855 * for some operations; this forces use of the newer bridge-utils that
2856 * use compatiable ioctls
2858 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2860 compat_ulong_t tmp;
2862 if (get_user(tmp, argp))
2863 return -EFAULT;
2864 if (tmp == BRCTL_GET_VERSION)
2865 return BRCTL_VERSION + 1;
2866 return -EINVAL;
2869 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2870 unsigned int cmd, unsigned long arg)
2872 void __user *argp = compat_ptr(arg);
2873 struct sock *sk = sock->sk;
2874 struct net *net = sock_net(sk);
2876 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2877 return siocdevprivate_ioctl(net, cmd, argp);
2879 switch (cmd) {
2880 case SIOCSIFBR:
2881 case SIOCGIFBR:
2882 return old_bridge_ioctl(argp);
2883 case SIOCGIFNAME:
2884 return dev_ifname32(net, argp);
2885 case SIOCGIFCONF:
2886 return dev_ifconf(net, argp);
2887 case SIOCETHTOOL:
2888 return ethtool_ioctl(net, argp);
2889 case SIOCWANDEV:
2890 return compat_siocwandev(net, argp);
2891 case SIOCGIFMAP:
2892 case SIOCSIFMAP:
2893 return compat_sioc_ifmap(net, cmd, argp);
2894 case SIOCBONDENSLAVE:
2895 case SIOCBONDRELEASE:
2896 case SIOCBONDSETHWADDR:
2897 case SIOCBONDSLAVEINFOQUERY:
2898 case SIOCBONDINFOQUERY:
2899 case SIOCBONDCHANGEACTIVE:
2900 return bond_ioctl(net, cmd, argp);
2901 case SIOCADDRT:
2902 case SIOCDELRT:
2903 return routing_ioctl(net, sock, cmd, argp);
2904 case SIOCGSTAMP:
2905 return do_siocgstamp(net, sock, cmd, argp);
2906 case SIOCGSTAMPNS:
2907 return do_siocgstampns(net, sock, cmd, argp);
2908 case SIOCSHWTSTAMP:
2909 return compat_siocshwtstamp(net, argp);
2911 case FIOSETOWN:
2912 case SIOCSPGRP:
2913 case FIOGETOWN:
2914 case SIOCGPGRP:
2915 case SIOCBRADDBR:
2916 case SIOCBRDELBR:
2917 case SIOCGIFVLAN:
2918 case SIOCSIFVLAN:
2919 case SIOCADDDLCI:
2920 case SIOCDELDLCI:
2921 return sock_ioctl(file, cmd, arg);
2923 case SIOCGIFFLAGS:
2924 case SIOCSIFFLAGS:
2925 case SIOCGIFMETRIC:
2926 case SIOCSIFMETRIC:
2927 case SIOCGIFMTU:
2928 case SIOCSIFMTU:
2929 case SIOCGIFMEM:
2930 case SIOCSIFMEM:
2931 case SIOCGIFHWADDR:
2932 case SIOCSIFHWADDR:
2933 case SIOCADDMULTI:
2934 case SIOCDELMULTI:
2935 case SIOCGIFINDEX:
2936 case SIOCGIFADDR:
2937 case SIOCSIFADDR:
2938 case SIOCSIFHWBROADCAST:
2939 case SIOCDIFADDR:
2940 case SIOCGIFBRDADDR:
2941 case SIOCSIFBRDADDR:
2942 case SIOCGIFDSTADDR:
2943 case SIOCSIFDSTADDR:
2944 case SIOCGIFNETMASK:
2945 case SIOCSIFNETMASK:
2946 case SIOCSIFPFLAGS:
2947 case SIOCGIFPFLAGS:
2948 case SIOCGIFTXQLEN:
2949 case SIOCSIFTXQLEN:
2950 case SIOCBRADDIF:
2951 case SIOCBRDELIF:
2952 case SIOCSIFNAME:
2953 case SIOCGMIIPHY:
2954 case SIOCGMIIREG:
2955 case SIOCSMIIREG:
2956 return dev_ifsioc(net, sock, cmd, argp);
2958 case SIOCSARP:
2959 case SIOCGARP:
2960 case SIOCDARP:
2961 case SIOCATMARK:
2962 return sock_do_ioctl(net, sock, cmd, arg);
2965 /* Prevent warning from compat_sys_ioctl, these always
2966 * result in -EINVAL in the native case anyway. */
2967 switch (cmd) {
2968 case SIOCRTMSG:
2969 case SIOCGIFCOUNT:
2970 case SIOCSRARP:
2971 case SIOCGRARP:
2972 case SIOCDRARP:
2973 case SIOCSIFLINK:
2974 case SIOCGIFSLAVE:
2975 case SIOCSIFSLAVE:
2976 return -EINVAL;
2979 return -ENOIOCTLCMD;
2982 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2983 unsigned long arg)
2985 struct socket *sock = file->private_data;
2986 int ret = -ENOIOCTLCMD;
2987 struct sock *sk;
2988 struct net *net;
2990 sk = sock->sk;
2991 net = sock_net(sk);
2993 if (sock->ops->compat_ioctl)
2994 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2996 if (ret == -ENOIOCTLCMD &&
2997 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2998 ret = compat_wext_handle_ioctl(net, cmd, arg);
3000 if (ret == -ENOIOCTLCMD)
3001 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3003 return ret;
3005 #endif
3007 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3009 return sock->ops->bind(sock, addr, addrlen);
3012 int kernel_listen(struct socket *sock, int backlog)
3014 return sock->ops->listen(sock, backlog);
3017 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3019 struct sock *sk = sock->sk;
3020 int err;
3022 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3023 newsock);
3024 if (err < 0)
3025 goto done;
3027 err = sock->ops->accept(sock, *newsock, flags);
3028 if (err < 0) {
3029 sock_release(*newsock);
3030 *newsock = NULL;
3031 goto done;
3034 (*newsock)->ops = sock->ops;
3035 __module_get((*newsock)->ops->owner);
3037 done:
3038 return err;
3041 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3042 int flags)
3044 return sock->ops->connect(sock, addr, addrlen, flags);
3047 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3048 int *addrlen)
3050 return sock->ops->getname(sock, addr, addrlen, 0);
3053 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3054 int *addrlen)
3056 return sock->ops->getname(sock, addr, addrlen, 1);
3059 int kernel_getsockopt(struct socket *sock, int level, int optname,
3060 char *optval, int *optlen)
3062 mm_segment_t oldfs = get_fs();
3063 int err;
3065 set_fs(KERNEL_DS);
3066 if (level == SOL_SOCKET)
3067 err = sock_getsockopt(sock, level, optname, optval, optlen);
3068 else
3069 err = sock->ops->getsockopt(sock, level, optname, optval,
3070 optlen);
3071 set_fs(oldfs);
3072 return err;
3075 int kernel_setsockopt(struct socket *sock, int level, int optname,
3076 char *optval, unsigned int optlen)
3078 mm_segment_t oldfs = get_fs();
3079 int err;
3081 set_fs(KERNEL_DS);
3082 if (level == SOL_SOCKET)
3083 err = sock_setsockopt(sock, level, optname, optval, optlen);
3084 else
3085 err = sock->ops->setsockopt(sock, level, optname, optval,
3086 optlen);
3087 set_fs(oldfs);
3088 return err;
3091 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3092 size_t size, int flags)
3094 if (sock->ops->sendpage)
3095 return sock->ops->sendpage(sock, page, offset, size, flags);
3097 return sock_no_sendpage(sock, page, offset, size, flags);
3100 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3102 mm_segment_t oldfs = get_fs();
3103 int err;
3105 set_fs(KERNEL_DS);
3106 err = sock->ops->ioctl(sock, cmd, arg);
3107 set_fs(oldfs);
3109 return err;
3112 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3114 return sock->ops->shutdown(sock, how);
3117 EXPORT_SYMBOL(sock_create);
3118 EXPORT_SYMBOL(sock_create_kern);
3119 EXPORT_SYMBOL(sock_create_lite);
3120 EXPORT_SYMBOL(sock_map_fd);
3121 EXPORT_SYMBOL(sock_recvmsg);
3122 EXPORT_SYMBOL(sock_register);
3123 EXPORT_SYMBOL(sock_release);
3124 EXPORT_SYMBOL(sock_sendmsg);
3125 EXPORT_SYMBOL(sock_unregister);
3126 EXPORT_SYMBOL(sock_wake_async);
3127 EXPORT_SYMBOL(sockfd_lookup);
3128 EXPORT_SYMBOL(kernel_sendmsg);
3129 EXPORT_SYMBOL(kernel_recvmsg);
3130 EXPORT_SYMBOL(kernel_bind);
3131 EXPORT_SYMBOL(kernel_listen);
3132 EXPORT_SYMBOL(kernel_accept);
3133 EXPORT_SYMBOL(kernel_connect);
3134 EXPORT_SYMBOL(kernel_getsockname);
3135 EXPORT_SYMBOL(kernel_getpeername);
3136 EXPORT_SYMBOL(kernel_getsockopt);
3137 EXPORT_SYMBOL(kernel_setsockopt);
3138 EXPORT_SYMBOL(kernel_sendpage);
3139 EXPORT_SYMBOL(kernel_sock_ioctl);
3140 EXPORT_SYMBOL(kernel_sock_shutdown);