libata: separate out ata_dev_reread_id()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blob6f266c8179ecfae9980c135a9d6ea6185d211601
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104 int ata_spindown_compat = 1;
105 module_param_named(spindown_compat, ata_spindown_compat, int, 0644);
106 MODULE_PARM_DESC(spindown_compat, "Enable backward compatible spindown "
107 "behavior. Will be removed. More info can be found in "
108 "Documentation/feature-removal-schedule.txt\n");
110 MODULE_AUTHOR("Jeff Garzik");
111 MODULE_DESCRIPTION("Library module for ATA devices");
112 MODULE_LICENSE("GPL");
113 MODULE_VERSION(DRV_VERSION);
117 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
118 * @tf: Taskfile to convert
119 * @fis: Buffer into which data will output
120 * @pmp: Port multiplier port
122 * Converts a standard ATA taskfile to a Serial ATA
123 * FIS structure (Register - Host to Device).
125 * LOCKING:
126 * Inherited from caller.
129 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
131 fis[0] = 0x27; /* Register - Host to Device FIS */
132 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
133 bit 7 indicates Command FIS */
134 fis[2] = tf->command;
135 fis[3] = tf->feature;
137 fis[4] = tf->lbal;
138 fis[5] = tf->lbam;
139 fis[6] = tf->lbah;
140 fis[7] = tf->device;
142 fis[8] = tf->hob_lbal;
143 fis[9] = tf->hob_lbam;
144 fis[10] = tf->hob_lbah;
145 fis[11] = tf->hob_feature;
147 fis[12] = tf->nsect;
148 fis[13] = tf->hob_nsect;
149 fis[14] = 0;
150 fis[15] = tf->ctl;
152 fis[16] = 0;
153 fis[17] = 0;
154 fis[18] = 0;
155 fis[19] = 0;
159 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
160 * @fis: Buffer from which data will be input
161 * @tf: Taskfile to output
163 * Converts a serial ATA FIS structure to a standard ATA taskfile.
165 * LOCKING:
166 * Inherited from caller.
169 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
171 tf->command = fis[2]; /* status */
172 tf->feature = fis[3]; /* error */
174 tf->lbal = fis[4];
175 tf->lbam = fis[5];
176 tf->lbah = fis[6];
177 tf->device = fis[7];
179 tf->hob_lbal = fis[8];
180 tf->hob_lbam = fis[9];
181 tf->hob_lbah = fis[10];
183 tf->nsect = fis[12];
184 tf->hob_nsect = fis[13];
187 static const u8 ata_rw_cmds[] = {
188 /* pio multi */
189 ATA_CMD_READ_MULTI,
190 ATA_CMD_WRITE_MULTI,
191 ATA_CMD_READ_MULTI_EXT,
192 ATA_CMD_WRITE_MULTI_EXT,
196 ATA_CMD_WRITE_MULTI_FUA_EXT,
197 /* pio */
198 ATA_CMD_PIO_READ,
199 ATA_CMD_PIO_WRITE,
200 ATA_CMD_PIO_READ_EXT,
201 ATA_CMD_PIO_WRITE_EXT,
206 /* dma */
207 ATA_CMD_READ,
208 ATA_CMD_WRITE,
209 ATA_CMD_READ_EXT,
210 ATA_CMD_WRITE_EXT,
214 ATA_CMD_WRITE_FUA_EXT
218 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
219 * @tf: command to examine and configure
220 * @dev: device tf belongs to
222 * Examine the device configuration and tf->flags to calculate
223 * the proper read/write commands and protocol to use.
225 * LOCKING:
226 * caller.
228 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
230 u8 cmd;
232 int index, fua, lba48, write;
234 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
235 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
236 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
238 if (dev->flags & ATA_DFLAG_PIO) {
239 tf->protocol = ATA_PROT_PIO;
240 index = dev->multi_count ? 0 : 8;
241 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
242 /* Unable to use DMA due to host limitation */
243 tf->protocol = ATA_PROT_PIO;
244 index = dev->multi_count ? 0 : 8;
245 } else {
246 tf->protocol = ATA_PROT_DMA;
247 index = 16;
250 cmd = ata_rw_cmds[index + fua + lba48 + write];
251 if (cmd) {
252 tf->command = cmd;
253 return 0;
255 return -1;
259 * ata_tf_read_block - Read block address from ATA taskfile
260 * @tf: ATA taskfile of interest
261 * @dev: ATA device @tf belongs to
263 * LOCKING:
264 * None.
266 * Read block address from @tf. This function can handle all
267 * three address formats - LBA, LBA48 and CHS. tf->protocol and
268 * flags select the address format to use.
270 * RETURNS:
271 * Block address read from @tf.
273 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
275 u64 block = 0;
277 if (tf->flags & ATA_TFLAG_LBA) {
278 if (tf->flags & ATA_TFLAG_LBA48) {
279 block |= (u64)tf->hob_lbah << 40;
280 block |= (u64)tf->hob_lbam << 32;
281 block |= tf->hob_lbal << 24;
282 } else
283 block |= (tf->device & 0xf) << 24;
285 block |= tf->lbah << 16;
286 block |= tf->lbam << 8;
287 block |= tf->lbal;
288 } else {
289 u32 cyl, head, sect;
291 cyl = tf->lbam | (tf->lbah << 8);
292 head = tf->device & 0xf;
293 sect = tf->lbal;
295 block = (cyl * dev->heads + head) * dev->sectors + sect;
298 return block;
302 * ata_build_rw_tf - Build ATA taskfile for given read/write request
303 * @tf: Target ATA taskfile
304 * @dev: ATA device @tf belongs to
305 * @block: Block address
306 * @n_block: Number of blocks
307 * @tf_flags: RW/FUA etc...
308 * @tag: tag
310 * LOCKING:
311 * None.
313 * Build ATA taskfile @tf for read/write request described by
314 * @block, @n_block, @tf_flags and @tag on @dev.
316 * RETURNS:
318 * 0 on success, -ERANGE if the request is too large for @dev,
319 * -EINVAL if the request is invalid.
321 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
322 u64 block, u32 n_block, unsigned int tf_flags,
323 unsigned int tag)
325 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
326 tf->flags |= tf_flags;
328 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
329 /* yay, NCQ */
330 if (!lba_48_ok(block, n_block))
331 return -ERANGE;
333 tf->protocol = ATA_PROT_NCQ;
334 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
336 if (tf->flags & ATA_TFLAG_WRITE)
337 tf->command = ATA_CMD_FPDMA_WRITE;
338 else
339 tf->command = ATA_CMD_FPDMA_READ;
341 tf->nsect = tag << 3;
342 tf->hob_feature = (n_block >> 8) & 0xff;
343 tf->feature = n_block & 0xff;
345 tf->hob_lbah = (block >> 40) & 0xff;
346 tf->hob_lbam = (block >> 32) & 0xff;
347 tf->hob_lbal = (block >> 24) & 0xff;
348 tf->lbah = (block >> 16) & 0xff;
349 tf->lbam = (block >> 8) & 0xff;
350 tf->lbal = block & 0xff;
352 tf->device = 1 << 6;
353 if (tf->flags & ATA_TFLAG_FUA)
354 tf->device |= 1 << 7;
355 } else if (dev->flags & ATA_DFLAG_LBA) {
356 tf->flags |= ATA_TFLAG_LBA;
358 if (lba_28_ok(block, n_block)) {
359 /* use LBA28 */
360 tf->device |= (block >> 24) & 0xf;
361 } else if (lba_48_ok(block, n_block)) {
362 if (!(dev->flags & ATA_DFLAG_LBA48))
363 return -ERANGE;
365 /* use LBA48 */
366 tf->flags |= ATA_TFLAG_LBA48;
368 tf->hob_nsect = (n_block >> 8) & 0xff;
370 tf->hob_lbah = (block >> 40) & 0xff;
371 tf->hob_lbam = (block >> 32) & 0xff;
372 tf->hob_lbal = (block >> 24) & 0xff;
373 } else
374 /* request too large even for LBA48 */
375 return -ERANGE;
377 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
378 return -EINVAL;
380 tf->nsect = n_block & 0xff;
382 tf->lbah = (block >> 16) & 0xff;
383 tf->lbam = (block >> 8) & 0xff;
384 tf->lbal = block & 0xff;
386 tf->device |= ATA_LBA;
387 } else {
388 /* CHS */
389 u32 sect, head, cyl, track;
391 /* The request -may- be too large for CHS addressing. */
392 if (!lba_28_ok(block, n_block))
393 return -ERANGE;
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
398 /* Convert LBA to CHS */
399 track = (u32)block / dev->sectors;
400 cyl = track / dev->heads;
401 head = track % dev->heads;
402 sect = (u32)block % dev->sectors + 1;
404 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
405 (u32)block, track, cyl, head, sect);
407 /* Check whether the converted CHS can fit.
408 Cylinder: 0-65535
409 Head: 0-15
410 Sector: 1-255*/
411 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
412 return -ERANGE;
414 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 tf->lbal = sect;
416 tf->lbam = cyl;
417 tf->lbah = cyl >> 8;
418 tf->device |= head;
421 return 0;
425 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
426 * @pio_mask: pio_mask
427 * @mwdma_mask: mwdma_mask
428 * @udma_mask: udma_mask
430 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
431 * unsigned int xfer_mask.
433 * LOCKING:
434 * None.
436 * RETURNS:
437 * Packed xfer_mask.
439 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
440 unsigned int mwdma_mask,
441 unsigned int udma_mask)
443 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
444 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
445 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
449 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
450 * @xfer_mask: xfer_mask to unpack
451 * @pio_mask: resulting pio_mask
452 * @mwdma_mask: resulting mwdma_mask
453 * @udma_mask: resulting udma_mask
455 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
456 * Any NULL distination masks will be ignored.
458 static void ata_unpack_xfermask(unsigned int xfer_mask,
459 unsigned int *pio_mask,
460 unsigned int *mwdma_mask,
461 unsigned int *udma_mask)
463 if (pio_mask)
464 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
465 if (mwdma_mask)
466 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
467 if (udma_mask)
468 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
471 static const struct ata_xfer_ent {
472 int shift, bits;
473 u8 base;
474 } ata_xfer_tbl[] = {
475 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
476 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
477 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
478 { -1, },
482 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
483 * @xfer_mask: xfer_mask of interest
485 * Return matching XFER_* value for @xfer_mask. Only the highest
486 * bit of @xfer_mask is considered.
488 * LOCKING:
489 * None.
491 * RETURNS:
492 * Matching XFER_* value, 0 if no match found.
494 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
496 int highbit = fls(xfer_mask) - 1;
497 const struct ata_xfer_ent *ent;
499 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
500 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
501 return ent->base + highbit - ent->shift;
502 return 0;
506 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
507 * @xfer_mode: XFER_* of interest
509 * Return matching xfer_mask for @xfer_mode.
511 * LOCKING:
512 * None.
514 * RETURNS:
515 * Matching xfer_mask, 0 if no match found.
517 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
519 const struct ata_xfer_ent *ent;
521 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
522 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
523 return 1 << (ent->shift + xfer_mode - ent->base);
524 return 0;
528 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
529 * @xfer_mode: XFER_* of interest
531 * Return matching xfer_shift for @xfer_mode.
533 * LOCKING:
534 * None.
536 * RETURNS:
537 * Matching xfer_shift, -1 if no match found.
539 static int ata_xfer_mode2shift(unsigned int xfer_mode)
541 const struct ata_xfer_ent *ent;
543 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
544 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
545 return ent->shift;
546 return -1;
550 * ata_mode_string - convert xfer_mask to string
551 * @xfer_mask: mask of bits supported; only highest bit counts.
553 * Determine string which represents the highest speed
554 * (highest bit in @modemask).
556 * LOCKING:
557 * None.
559 * RETURNS:
560 * Constant C string representing highest speed listed in
561 * @mode_mask, or the constant C string "<n/a>".
563 static const char *ata_mode_string(unsigned int xfer_mask)
565 static const char * const xfer_mode_str[] = {
566 "PIO0",
567 "PIO1",
568 "PIO2",
569 "PIO3",
570 "PIO4",
571 "PIO5",
572 "PIO6",
573 "MWDMA0",
574 "MWDMA1",
575 "MWDMA2",
576 "MWDMA3",
577 "MWDMA4",
578 "UDMA/16",
579 "UDMA/25",
580 "UDMA/33",
581 "UDMA/44",
582 "UDMA/66",
583 "UDMA/100",
584 "UDMA/133",
585 "UDMA7",
587 int highbit;
589 highbit = fls(xfer_mask) - 1;
590 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
591 return xfer_mode_str[highbit];
592 return "<n/a>";
595 static const char *sata_spd_string(unsigned int spd)
597 static const char * const spd_str[] = {
598 "1.5 Gbps",
599 "3.0 Gbps",
602 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
603 return "<unknown>";
604 return spd_str[spd - 1];
607 void ata_dev_disable(struct ata_device *dev)
609 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
610 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
611 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
612 ATA_DNXFER_QUIET);
613 dev->class++;
618 * ata_devchk - PATA device presence detection
619 * @ap: ATA channel to examine
620 * @device: Device to examine (starting at zero)
622 * This technique was originally described in
623 * Hale Landis's ATADRVR (www.ata-atapi.com), and
624 * later found its way into the ATA/ATAPI spec.
626 * Write a pattern to the ATA shadow registers,
627 * and if a device is present, it will respond by
628 * correctly storing and echoing back the
629 * ATA shadow register contents.
631 * LOCKING:
632 * caller.
635 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
637 struct ata_ioports *ioaddr = &ap->ioaddr;
638 u8 nsect, lbal;
640 ap->ops->dev_select(ap, device);
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
645 iowrite8(0xaa, ioaddr->nsect_addr);
646 iowrite8(0x55, ioaddr->lbal_addr);
648 iowrite8(0x55, ioaddr->nsect_addr);
649 iowrite8(0xaa, ioaddr->lbal_addr);
651 nsect = ioread8(ioaddr->nsect_addr);
652 lbal = ioread8(ioaddr->lbal_addr);
654 if ((nsect == 0x55) && (lbal == 0xaa))
655 return 1; /* we found a device */
657 return 0; /* nothing found */
661 * ata_dev_classify - determine device type based on ATA-spec signature
662 * @tf: ATA taskfile register set for device to be identified
664 * Determine from taskfile register contents whether a device is
665 * ATA or ATAPI, as per "Signature and persistence" section
666 * of ATA/PI spec (volume 1, sect 5.14).
668 * LOCKING:
669 * None.
671 * RETURNS:
672 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
673 * the event of failure.
676 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
678 /* Apple's open source Darwin code hints that some devices only
679 * put a proper signature into the LBA mid/high registers,
680 * So, we only check those. It's sufficient for uniqueness.
683 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
684 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
685 DPRINTK("found ATA device by sig\n");
686 return ATA_DEV_ATA;
689 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
690 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
691 DPRINTK("found ATAPI device by sig\n");
692 return ATA_DEV_ATAPI;
695 DPRINTK("unknown device\n");
696 return ATA_DEV_UNKNOWN;
700 * ata_dev_try_classify - Parse returned ATA device signature
701 * @ap: ATA channel to examine
702 * @device: Device to examine (starting at zero)
703 * @r_err: Value of error register on completion
705 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
706 * an ATA/ATAPI-defined set of values is placed in the ATA
707 * shadow registers, indicating the results of device detection
708 * and diagnostics.
710 * Select the ATA device, and read the values from the ATA shadow
711 * registers. Then parse according to the Error register value,
712 * and the spec-defined values examined by ata_dev_classify().
714 * LOCKING:
715 * caller.
717 * RETURNS:
718 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
721 unsigned int
722 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
724 struct ata_taskfile tf;
725 unsigned int class;
726 u8 err;
728 ap->ops->dev_select(ap, device);
730 memset(&tf, 0, sizeof(tf));
732 ap->ops->tf_read(ap, &tf);
733 err = tf.feature;
734 if (r_err)
735 *r_err = err;
737 /* see if device passed diags: if master then continue and warn later */
738 if (err == 0 && device == 0)
739 /* diagnostic fail : do nothing _YET_ */
740 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
741 else if (err == 1)
742 /* do nothing */ ;
743 else if ((device == 0) && (err == 0x81))
744 /* do nothing */ ;
745 else
746 return ATA_DEV_NONE;
748 /* determine if device is ATA or ATAPI */
749 class = ata_dev_classify(&tf);
751 if (class == ATA_DEV_UNKNOWN)
752 return ATA_DEV_NONE;
753 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
754 return ATA_DEV_NONE;
755 return class;
759 * ata_id_string - Convert IDENTIFY DEVICE page into string
760 * @id: IDENTIFY DEVICE results we will examine
761 * @s: string into which data is output
762 * @ofs: offset into identify device page
763 * @len: length of string to return. must be an even number.
765 * The strings in the IDENTIFY DEVICE page are broken up into
766 * 16-bit chunks. Run through the string, and output each
767 * 8-bit chunk linearly, regardless of platform.
769 * LOCKING:
770 * caller.
773 void ata_id_string(const u16 *id, unsigned char *s,
774 unsigned int ofs, unsigned int len)
776 unsigned int c;
778 while (len > 0) {
779 c = id[ofs] >> 8;
780 *s = c;
781 s++;
783 c = id[ofs] & 0xff;
784 *s = c;
785 s++;
787 ofs++;
788 len -= 2;
793 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
794 * @id: IDENTIFY DEVICE results we will examine
795 * @s: string into which data is output
796 * @ofs: offset into identify device page
797 * @len: length of string to return. must be an odd number.
799 * This function is identical to ata_id_string except that it
800 * trims trailing spaces and terminates the resulting string with
801 * null. @len must be actual maximum length (even number) + 1.
803 * LOCKING:
804 * caller.
806 void ata_id_c_string(const u16 *id, unsigned char *s,
807 unsigned int ofs, unsigned int len)
809 unsigned char *p;
811 WARN_ON(!(len & 1));
813 ata_id_string(id, s, ofs, len - 1);
815 p = s + strnlen(s, len - 1);
816 while (p > s && p[-1] == ' ')
817 p--;
818 *p = '\0';
821 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
823 u64 sectors = 0;
825 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
826 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
827 sectors |= (tf->hob_lbal & 0xff) << 24;
828 sectors |= (tf->lbah & 0xff) << 16;
829 sectors |= (tf->lbam & 0xff) << 8;
830 sectors |= (tf->lbal & 0xff);
832 return ++sectors;
835 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
837 u64 sectors = 0;
839 sectors |= (tf->device & 0x0f) << 24;
840 sectors |= (tf->lbah & 0xff) << 16;
841 sectors |= (tf->lbam & 0xff) << 8;
842 sectors |= (tf->lbal & 0xff);
844 return ++sectors;
848 * ata_read_native_max_address_ext - LBA48 native max query
849 * @dev: Device to query
851 * Perform an LBA48 size query upon the device in question. Return the
852 * actual LBA48 size or zero if the command fails.
855 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
857 unsigned int err;
858 struct ata_taskfile tf;
860 ata_tf_init(dev, &tf);
862 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
863 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
864 tf.protocol |= ATA_PROT_NODATA;
865 tf.device |= 0x40;
867 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
868 if (err)
869 return 0;
871 return ata_tf_to_lba48(&tf);
875 * ata_read_native_max_address - LBA28 native max query
876 * @dev: Device to query
878 * Performa an LBA28 size query upon the device in question. Return the
879 * actual LBA28 size or zero if the command fails.
882 static u64 ata_read_native_max_address(struct ata_device *dev)
884 unsigned int err;
885 struct ata_taskfile tf;
887 ata_tf_init(dev, &tf);
889 tf.command = ATA_CMD_READ_NATIVE_MAX;
890 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
891 tf.protocol |= ATA_PROT_NODATA;
892 tf.device |= 0x40;
894 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
895 if (err)
896 return 0;
898 return ata_tf_to_lba(&tf);
902 * ata_set_native_max_address_ext - LBA48 native max set
903 * @dev: Device to query
904 * @new_sectors: new max sectors value to set for the device
906 * Perform an LBA48 size set max upon the device in question. Return the
907 * actual LBA48 size or zero if the command fails.
910 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
912 unsigned int err;
913 struct ata_taskfile tf;
915 new_sectors--;
917 ata_tf_init(dev, &tf);
919 tf.command = ATA_CMD_SET_MAX_EXT;
920 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
921 tf.protocol |= ATA_PROT_NODATA;
922 tf.device |= 0x40;
924 tf.lbal = (new_sectors >> 0) & 0xff;
925 tf.lbam = (new_sectors >> 8) & 0xff;
926 tf.lbah = (new_sectors >> 16) & 0xff;
928 tf.hob_lbal = (new_sectors >> 24) & 0xff;
929 tf.hob_lbam = (new_sectors >> 32) & 0xff;
930 tf.hob_lbah = (new_sectors >> 40) & 0xff;
932 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
933 if (err)
934 return 0;
936 return ata_tf_to_lba48(&tf);
940 * ata_set_native_max_address - LBA28 native max set
941 * @dev: Device to query
942 * @new_sectors: new max sectors value to set for the device
944 * Perform an LBA28 size set max upon the device in question. Return the
945 * actual LBA28 size or zero if the command fails.
948 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
950 unsigned int err;
951 struct ata_taskfile tf;
953 new_sectors--;
955 ata_tf_init(dev, &tf);
957 tf.command = ATA_CMD_SET_MAX;
958 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
959 tf.protocol |= ATA_PROT_NODATA;
961 tf.lbal = (new_sectors >> 0) & 0xff;
962 tf.lbam = (new_sectors >> 8) & 0xff;
963 tf.lbah = (new_sectors >> 16) & 0xff;
964 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
966 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
967 if (err)
968 return 0;
970 return ata_tf_to_lba(&tf);
974 * ata_hpa_resize - Resize a device with an HPA set
975 * @dev: Device to resize
977 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
978 * it if required to the full size of the media. The caller must check
979 * the drive has the HPA feature set enabled.
982 static u64 ata_hpa_resize(struct ata_device *dev)
984 u64 sectors = dev->n_sectors;
985 u64 hpa_sectors;
987 if (ata_id_has_lba48(dev->id))
988 hpa_sectors = ata_read_native_max_address_ext(dev);
989 else
990 hpa_sectors = ata_read_native_max_address(dev);
992 /* if no hpa, both should be equal */
993 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
994 "hpa_sectors = %lld\n",
995 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
997 if (hpa_sectors > sectors) {
998 ata_dev_printk(dev, KERN_INFO,
999 "Host Protected Area detected:\n"
1000 "\tcurrent size: %lld sectors\n"
1001 "\tnative size: %lld sectors\n",
1002 (long long)sectors, (long long)hpa_sectors);
1004 if (ata_ignore_hpa) {
1005 if (ata_id_has_lba48(dev->id))
1006 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1007 else
1008 hpa_sectors = ata_set_native_max_address(dev,
1009 hpa_sectors);
1011 if (hpa_sectors) {
1012 ata_dev_printk(dev, KERN_INFO, "native size "
1013 "increased to %lld sectors\n",
1014 (long long)hpa_sectors);
1015 return hpa_sectors;
1019 return sectors;
1022 static u64 ata_id_n_sectors(const u16 *id)
1024 if (ata_id_has_lba(id)) {
1025 if (ata_id_has_lba48(id))
1026 return ata_id_u64(id, 100);
1027 else
1028 return ata_id_u32(id, 60);
1029 } else {
1030 if (ata_id_current_chs_valid(id))
1031 return ata_id_u32(id, 57);
1032 else
1033 return id[1] * id[3] * id[6];
1038 * ata_id_to_dma_mode - Identify DMA mode from id block
1039 * @dev: device to identify
1040 * @unknown: mode to assume if we cannot tell
1042 * Set up the timing values for the device based upon the identify
1043 * reported values for the DMA mode. This function is used by drivers
1044 * which rely upon firmware configured modes, but wish to report the
1045 * mode correctly when possible.
1047 * In addition we emit similarly formatted messages to the default
1048 * ata_dev_set_mode handler, in order to provide consistency of
1049 * presentation.
1052 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1054 unsigned int mask;
1055 u8 mode;
1057 /* Pack the DMA modes */
1058 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1059 if (dev->id[53] & 0x04)
1060 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1062 /* Select the mode in use */
1063 mode = ata_xfer_mask2mode(mask);
1065 if (mode != 0) {
1066 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1067 ata_mode_string(mask));
1068 } else {
1069 /* SWDMA perhaps ? */
1070 mode = unknown;
1071 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1074 /* Configure the device reporting */
1075 dev->xfer_mode = mode;
1076 dev->xfer_shift = ata_xfer_mode2shift(mode);
1080 * ata_noop_dev_select - Select device 0/1 on ATA bus
1081 * @ap: ATA channel to manipulate
1082 * @device: ATA device (numbered from zero) to select
1084 * This function performs no actual function.
1086 * May be used as the dev_select() entry in ata_port_operations.
1088 * LOCKING:
1089 * caller.
1091 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1097 * ata_std_dev_select - Select device 0/1 on ATA bus
1098 * @ap: ATA channel to manipulate
1099 * @device: ATA device (numbered from zero) to select
1101 * Use the method defined in the ATA specification to
1102 * make either device 0, or device 1, active on the
1103 * ATA channel. Works with both PIO and MMIO.
1105 * May be used as the dev_select() entry in ata_port_operations.
1107 * LOCKING:
1108 * caller.
1111 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1113 u8 tmp;
1115 if (device == 0)
1116 tmp = ATA_DEVICE_OBS;
1117 else
1118 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1120 iowrite8(tmp, ap->ioaddr.device_addr);
1121 ata_pause(ap); /* needed; also flushes, for mmio */
1125 * ata_dev_select - Select device 0/1 on ATA bus
1126 * @ap: ATA channel to manipulate
1127 * @device: ATA device (numbered from zero) to select
1128 * @wait: non-zero to wait for Status register BSY bit to clear
1129 * @can_sleep: non-zero if context allows sleeping
1131 * Use the method defined in the ATA specification to
1132 * make either device 0, or device 1, active on the
1133 * ATA channel.
1135 * This is a high-level version of ata_std_dev_select(),
1136 * which additionally provides the services of inserting
1137 * the proper pauses and status polling, where needed.
1139 * LOCKING:
1140 * caller.
1143 void ata_dev_select(struct ata_port *ap, unsigned int device,
1144 unsigned int wait, unsigned int can_sleep)
1146 if (ata_msg_probe(ap))
1147 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1148 "device %u, wait %u\n", device, wait);
1150 if (wait)
1151 ata_wait_idle(ap);
1153 ap->ops->dev_select(ap, device);
1155 if (wait) {
1156 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1157 msleep(150);
1158 ata_wait_idle(ap);
1163 * ata_dump_id - IDENTIFY DEVICE info debugging output
1164 * @id: IDENTIFY DEVICE page to dump
1166 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1167 * page.
1169 * LOCKING:
1170 * caller.
1173 static inline void ata_dump_id(const u16 *id)
1175 DPRINTK("49==0x%04x "
1176 "53==0x%04x "
1177 "63==0x%04x "
1178 "64==0x%04x "
1179 "75==0x%04x \n",
1180 id[49],
1181 id[53],
1182 id[63],
1183 id[64],
1184 id[75]);
1185 DPRINTK("80==0x%04x "
1186 "81==0x%04x "
1187 "82==0x%04x "
1188 "83==0x%04x "
1189 "84==0x%04x \n",
1190 id[80],
1191 id[81],
1192 id[82],
1193 id[83],
1194 id[84]);
1195 DPRINTK("88==0x%04x "
1196 "93==0x%04x\n",
1197 id[88],
1198 id[93]);
1202 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1203 * @id: IDENTIFY data to compute xfer mask from
1205 * Compute the xfermask for this device. This is not as trivial
1206 * as it seems if we must consider early devices correctly.
1208 * FIXME: pre IDE drive timing (do we care ?).
1210 * LOCKING:
1211 * None.
1213 * RETURNS:
1214 * Computed xfermask
1216 static unsigned int ata_id_xfermask(const u16 *id)
1218 unsigned int pio_mask, mwdma_mask, udma_mask;
1220 /* Usual case. Word 53 indicates word 64 is valid */
1221 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1222 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1223 pio_mask <<= 3;
1224 pio_mask |= 0x7;
1225 } else {
1226 /* If word 64 isn't valid then Word 51 high byte holds
1227 * the PIO timing number for the maximum. Turn it into
1228 * a mask.
1230 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1231 if (mode < 5) /* Valid PIO range */
1232 pio_mask = (2 << mode) - 1;
1233 else
1234 pio_mask = 1;
1236 /* But wait.. there's more. Design your standards by
1237 * committee and you too can get a free iordy field to
1238 * process. However its the speeds not the modes that
1239 * are supported... Note drivers using the timing API
1240 * will get this right anyway
1244 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1246 if (ata_id_is_cfa(id)) {
1248 * Process compact flash extended modes
1250 int pio = id[163] & 0x7;
1251 int dma = (id[163] >> 3) & 7;
1253 if (pio)
1254 pio_mask |= (1 << 5);
1255 if (pio > 1)
1256 pio_mask |= (1 << 6);
1257 if (dma)
1258 mwdma_mask |= (1 << 3);
1259 if (dma > 1)
1260 mwdma_mask |= (1 << 4);
1263 udma_mask = 0;
1264 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1265 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1267 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1271 * ata_port_queue_task - Queue port_task
1272 * @ap: The ata_port to queue port_task for
1273 * @fn: workqueue function to be scheduled
1274 * @data: data for @fn to use
1275 * @delay: delay time for workqueue function
1277 * Schedule @fn(@data) for execution after @delay jiffies using
1278 * port_task. There is one port_task per port and it's the
1279 * user(low level driver)'s responsibility to make sure that only
1280 * one task is active at any given time.
1282 * libata core layer takes care of synchronization between
1283 * port_task and EH. ata_port_queue_task() may be ignored for EH
1284 * synchronization.
1286 * LOCKING:
1287 * Inherited from caller.
1289 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1290 unsigned long delay)
1292 int rc;
1294 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1295 return;
1297 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1298 ap->port_task_data = data;
1300 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1302 /* rc == 0 means that another user is using port task */
1303 WARN_ON(rc == 0);
1307 * ata_port_flush_task - Flush port_task
1308 * @ap: The ata_port to flush port_task for
1310 * After this function completes, port_task is guranteed not to
1311 * be running or scheduled.
1313 * LOCKING:
1314 * Kernel thread context (may sleep)
1316 void ata_port_flush_task(struct ata_port *ap)
1318 unsigned long flags;
1320 DPRINTK("ENTER\n");
1322 spin_lock_irqsave(ap->lock, flags);
1323 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1324 spin_unlock_irqrestore(ap->lock, flags);
1326 DPRINTK("flush #1\n");
1327 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1330 * At this point, if a task is running, it's guaranteed to see
1331 * the FLUSH flag; thus, it will never queue pio tasks again.
1332 * Cancel and flush.
1334 if (!cancel_delayed_work(&ap->port_task)) {
1335 if (ata_msg_ctl(ap))
1336 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1337 __FUNCTION__);
1338 cancel_work_sync(&ap->port_task.work);
1341 spin_lock_irqsave(ap->lock, flags);
1342 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1343 spin_unlock_irqrestore(ap->lock, flags);
1345 if (ata_msg_ctl(ap))
1346 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1349 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1351 struct completion *waiting = qc->private_data;
1353 complete(waiting);
1357 * ata_exec_internal_sg - execute libata internal command
1358 * @dev: Device to which the command is sent
1359 * @tf: Taskfile registers for the command and the result
1360 * @cdb: CDB for packet command
1361 * @dma_dir: Data tranfer direction of the command
1362 * @sg: sg list for the data buffer of the command
1363 * @n_elem: Number of sg entries
1365 * Executes libata internal command with timeout. @tf contains
1366 * command on entry and result on return. Timeout and error
1367 * conditions are reported via return value. No recovery action
1368 * is taken after a command times out. It's caller's duty to
1369 * clean up after timeout.
1371 * LOCKING:
1372 * None. Should be called with kernel context, might sleep.
1374 * RETURNS:
1375 * Zero on success, AC_ERR_* mask on failure
1377 unsigned ata_exec_internal_sg(struct ata_device *dev,
1378 struct ata_taskfile *tf, const u8 *cdb,
1379 int dma_dir, struct scatterlist *sg,
1380 unsigned int n_elem)
1382 struct ata_port *ap = dev->ap;
1383 u8 command = tf->command;
1384 struct ata_queued_cmd *qc;
1385 unsigned int tag, preempted_tag;
1386 u32 preempted_sactive, preempted_qc_active;
1387 DECLARE_COMPLETION_ONSTACK(wait);
1388 unsigned long flags;
1389 unsigned int err_mask;
1390 int rc;
1392 spin_lock_irqsave(ap->lock, flags);
1394 /* no internal command while frozen */
1395 if (ap->pflags & ATA_PFLAG_FROZEN) {
1396 spin_unlock_irqrestore(ap->lock, flags);
1397 return AC_ERR_SYSTEM;
1400 /* initialize internal qc */
1402 /* XXX: Tag 0 is used for drivers with legacy EH as some
1403 * drivers choke if any other tag is given. This breaks
1404 * ata_tag_internal() test for those drivers. Don't use new
1405 * EH stuff without converting to it.
1407 if (ap->ops->error_handler)
1408 tag = ATA_TAG_INTERNAL;
1409 else
1410 tag = 0;
1412 if (test_and_set_bit(tag, &ap->qc_allocated))
1413 BUG();
1414 qc = __ata_qc_from_tag(ap, tag);
1416 qc->tag = tag;
1417 qc->scsicmd = NULL;
1418 qc->ap = ap;
1419 qc->dev = dev;
1420 ata_qc_reinit(qc);
1422 preempted_tag = ap->active_tag;
1423 preempted_sactive = ap->sactive;
1424 preempted_qc_active = ap->qc_active;
1425 ap->active_tag = ATA_TAG_POISON;
1426 ap->sactive = 0;
1427 ap->qc_active = 0;
1429 /* prepare & issue qc */
1430 qc->tf = *tf;
1431 if (cdb)
1432 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1433 qc->flags |= ATA_QCFLAG_RESULT_TF;
1434 qc->dma_dir = dma_dir;
1435 if (dma_dir != DMA_NONE) {
1436 unsigned int i, buflen = 0;
1438 for (i = 0; i < n_elem; i++)
1439 buflen += sg[i].length;
1441 ata_sg_init(qc, sg, n_elem);
1442 qc->nbytes = buflen;
1445 qc->private_data = &wait;
1446 qc->complete_fn = ata_qc_complete_internal;
1448 ata_qc_issue(qc);
1450 spin_unlock_irqrestore(ap->lock, flags);
1452 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1454 ata_port_flush_task(ap);
1456 if (!rc) {
1457 spin_lock_irqsave(ap->lock, flags);
1459 /* We're racing with irq here. If we lose, the
1460 * following test prevents us from completing the qc
1461 * twice. If we win, the port is frozen and will be
1462 * cleaned up by ->post_internal_cmd().
1464 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1465 qc->err_mask |= AC_ERR_TIMEOUT;
1467 if (ap->ops->error_handler)
1468 ata_port_freeze(ap);
1469 else
1470 ata_qc_complete(qc);
1472 if (ata_msg_warn(ap))
1473 ata_dev_printk(dev, KERN_WARNING,
1474 "qc timeout (cmd 0x%x)\n", command);
1477 spin_unlock_irqrestore(ap->lock, flags);
1480 /* do post_internal_cmd */
1481 if (ap->ops->post_internal_cmd)
1482 ap->ops->post_internal_cmd(qc);
1484 /* perform minimal error analysis */
1485 if (qc->flags & ATA_QCFLAG_FAILED) {
1486 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1487 qc->err_mask |= AC_ERR_DEV;
1489 if (!qc->err_mask)
1490 qc->err_mask |= AC_ERR_OTHER;
1492 if (qc->err_mask & ~AC_ERR_OTHER)
1493 qc->err_mask &= ~AC_ERR_OTHER;
1496 /* finish up */
1497 spin_lock_irqsave(ap->lock, flags);
1499 *tf = qc->result_tf;
1500 err_mask = qc->err_mask;
1502 ata_qc_free(qc);
1503 ap->active_tag = preempted_tag;
1504 ap->sactive = preempted_sactive;
1505 ap->qc_active = preempted_qc_active;
1507 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1508 * Until those drivers are fixed, we detect the condition
1509 * here, fail the command with AC_ERR_SYSTEM and reenable the
1510 * port.
1512 * Note that this doesn't change any behavior as internal
1513 * command failure results in disabling the device in the
1514 * higher layer for LLDDs without new reset/EH callbacks.
1516 * Kill the following code as soon as those drivers are fixed.
1518 if (ap->flags & ATA_FLAG_DISABLED) {
1519 err_mask |= AC_ERR_SYSTEM;
1520 ata_port_probe(ap);
1523 spin_unlock_irqrestore(ap->lock, flags);
1525 return err_mask;
1529 * ata_exec_internal - execute libata internal command
1530 * @dev: Device to which the command is sent
1531 * @tf: Taskfile registers for the command and the result
1532 * @cdb: CDB for packet command
1533 * @dma_dir: Data tranfer direction of the command
1534 * @buf: Data buffer of the command
1535 * @buflen: Length of data buffer
1537 * Wrapper around ata_exec_internal_sg() which takes simple
1538 * buffer instead of sg list.
1540 * LOCKING:
1541 * None. Should be called with kernel context, might sleep.
1543 * RETURNS:
1544 * Zero on success, AC_ERR_* mask on failure
1546 unsigned ata_exec_internal(struct ata_device *dev,
1547 struct ata_taskfile *tf, const u8 *cdb,
1548 int dma_dir, void *buf, unsigned int buflen)
1550 struct scatterlist *psg = NULL, sg;
1551 unsigned int n_elem = 0;
1553 if (dma_dir != DMA_NONE) {
1554 WARN_ON(!buf);
1555 sg_init_one(&sg, buf, buflen);
1556 psg = &sg;
1557 n_elem++;
1560 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1564 * ata_do_simple_cmd - execute simple internal command
1565 * @dev: Device to which the command is sent
1566 * @cmd: Opcode to execute
1568 * Execute a 'simple' command, that only consists of the opcode
1569 * 'cmd' itself, without filling any other registers
1571 * LOCKING:
1572 * Kernel thread context (may sleep).
1574 * RETURNS:
1575 * Zero on success, AC_ERR_* mask on failure
1577 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1579 struct ata_taskfile tf;
1581 ata_tf_init(dev, &tf);
1583 tf.command = cmd;
1584 tf.flags |= ATA_TFLAG_DEVICE;
1585 tf.protocol = ATA_PROT_NODATA;
1587 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1591 * ata_pio_need_iordy - check if iordy needed
1592 * @adev: ATA device
1594 * Check if the current speed of the device requires IORDY. Used
1595 * by various controllers for chip configuration.
1598 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1600 /* Controller doesn't support IORDY. Probably a pointless check
1601 as the caller should know this */
1602 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1603 return 0;
1604 /* PIO3 and higher it is mandatory */
1605 if (adev->pio_mode > XFER_PIO_2)
1606 return 1;
1607 /* We turn it on when possible */
1608 if (ata_id_has_iordy(adev->id))
1609 return 1;
1610 return 0;
1614 * ata_pio_mask_no_iordy - Return the non IORDY mask
1615 * @adev: ATA device
1617 * Compute the highest mode possible if we are not using iordy. Return
1618 * -1 if no iordy mode is available.
1621 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1623 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1624 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1625 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1626 /* Is the speed faster than the drive allows non IORDY ? */
1627 if (pio) {
1628 /* This is cycle times not frequency - watch the logic! */
1629 if (pio > 240) /* PIO2 is 240nS per cycle */
1630 return 3 << ATA_SHIFT_PIO;
1631 return 7 << ATA_SHIFT_PIO;
1634 return 3 << ATA_SHIFT_PIO;
1638 * ata_dev_read_id - Read ID data from the specified device
1639 * @dev: target device
1640 * @p_class: pointer to class of the target device (may be changed)
1641 * @flags: ATA_READID_* flags
1642 * @id: buffer to read IDENTIFY data into
1644 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1645 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1646 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1647 * for pre-ATA4 drives.
1649 * LOCKING:
1650 * Kernel thread context (may sleep)
1652 * RETURNS:
1653 * 0 on success, -errno otherwise.
1655 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1656 unsigned int flags, u16 *id)
1658 struct ata_port *ap = dev->ap;
1659 unsigned int class = *p_class;
1660 struct ata_taskfile tf;
1661 unsigned int err_mask = 0;
1662 const char *reason;
1663 int may_fallback = 1, tried_spinup = 0;
1664 int rc;
1666 if (ata_msg_ctl(ap))
1667 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1669 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1670 retry:
1671 ata_tf_init(dev, &tf);
1673 switch (class) {
1674 case ATA_DEV_ATA:
1675 tf.command = ATA_CMD_ID_ATA;
1676 break;
1677 case ATA_DEV_ATAPI:
1678 tf.command = ATA_CMD_ID_ATAPI;
1679 break;
1680 default:
1681 rc = -ENODEV;
1682 reason = "unsupported class";
1683 goto err_out;
1686 tf.protocol = ATA_PROT_PIO;
1688 /* Some devices choke if TF registers contain garbage. Make
1689 * sure those are properly initialized.
1691 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1693 /* Device presence detection is unreliable on some
1694 * controllers. Always poll IDENTIFY if available.
1696 tf.flags |= ATA_TFLAG_POLLING;
1698 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1699 id, sizeof(id[0]) * ATA_ID_WORDS);
1700 if (err_mask) {
1701 if (err_mask & AC_ERR_NODEV_HINT) {
1702 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1703 ap->print_id, dev->devno);
1704 return -ENOENT;
1707 /* Device or controller might have reported the wrong
1708 * device class. Give a shot at the other IDENTIFY if
1709 * the current one is aborted by the device.
1711 if (may_fallback &&
1712 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1713 may_fallback = 0;
1715 if (class == ATA_DEV_ATA)
1716 class = ATA_DEV_ATAPI;
1717 else
1718 class = ATA_DEV_ATA;
1719 goto retry;
1722 rc = -EIO;
1723 reason = "I/O error";
1724 goto err_out;
1727 /* Falling back doesn't make sense if ID data was read
1728 * successfully at least once.
1730 may_fallback = 0;
1732 swap_buf_le16(id, ATA_ID_WORDS);
1734 /* sanity check */
1735 rc = -EINVAL;
1736 reason = "device reports illegal type";
1738 if (class == ATA_DEV_ATA) {
1739 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1740 goto err_out;
1741 } else {
1742 if (ata_id_is_ata(id))
1743 goto err_out;
1746 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1747 tried_spinup = 1;
1749 * Drive powered-up in standby mode, and requires a specific
1750 * SET_FEATURES spin-up subcommand before it will accept
1751 * anything other than the original IDENTIFY command.
1753 ata_tf_init(dev, &tf);
1754 tf.command = ATA_CMD_SET_FEATURES;
1755 tf.feature = SETFEATURES_SPINUP;
1756 tf.protocol = ATA_PROT_NODATA;
1757 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1758 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1759 if (err_mask) {
1760 rc = -EIO;
1761 reason = "SPINUP failed";
1762 goto err_out;
1765 * If the drive initially returned incomplete IDENTIFY info,
1766 * we now must reissue the IDENTIFY command.
1768 if (id[2] == 0x37c8)
1769 goto retry;
1772 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1774 * The exact sequence expected by certain pre-ATA4 drives is:
1775 * SRST RESET
1776 * IDENTIFY
1777 * INITIALIZE DEVICE PARAMETERS
1778 * anything else..
1779 * Some drives were very specific about that exact sequence.
1781 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1782 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1783 if (err_mask) {
1784 rc = -EIO;
1785 reason = "INIT_DEV_PARAMS failed";
1786 goto err_out;
1789 /* current CHS translation info (id[53-58]) might be
1790 * changed. reread the identify device info.
1792 flags &= ~ATA_READID_POSTRESET;
1793 goto retry;
1797 *p_class = class;
1799 return 0;
1801 err_out:
1802 if (ata_msg_warn(ap))
1803 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1804 "(%s, err_mask=0x%x)\n", reason, err_mask);
1805 return rc;
1808 static inline u8 ata_dev_knobble(struct ata_device *dev)
1810 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1813 static void ata_dev_config_ncq(struct ata_device *dev,
1814 char *desc, size_t desc_sz)
1816 struct ata_port *ap = dev->ap;
1817 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1819 if (!ata_id_has_ncq(dev->id)) {
1820 desc[0] = '\0';
1821 return;
1823 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1824 snprintf(desc, desc_sz, "NCQ (not used)");
1825 return;
1827 if (ap->flags & ATA_FLAG_NCQ) {
1828 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1829 dev->flags |= ATA_DFLAG_NCQ;
1832 if (hdepth >= ddepth)
1833 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1834 else
1835 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1839 * ata_dev_configure - Configure the specified ATA/ATAPI device
1840 * @dev: Target device to configure
1842 * Configure @dev according to @dev->id. Generic and low-level
1843 * driver specific fixups are also applied.
1845 * LOCKING:
1846 * Kernel thread context (may sleep)
1848 * RETURNS:
1849 * 0 on success, -errno otherwise
1851 int ata_dev_configure(struct ata_device *dev)
1853 struct ata_port *ap = dev->ap;
1854 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1855 const u16 *id = dev->id;
1856 unsigned int xfer_mask;
1857 char revbuf[7]; /* XYZ-99\0 */
1858 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1859 char modelbuf[ATA_ID_PROD_LEN+1];
1860 int rc;
1862 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1863 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1864 __FUNCTION__);
1865 return 0;
1868 if (ata_msg_probe(ap))
1869 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1871 /* set _SDD */
1872 rc = ata_acpi_push_id(dev);
1873 if (rc) {
1874 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1875 rc);
1878 /* retrieve and execute the ATA task file of _GTF */
1879 ata_acpi_exec_tfs(ap);
1881 /* print device capabilities */
1882 if (ata_msg_probe(ap))
1883 ata_dev_printk(dev, KERN_DEBUG,
1884 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1885 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1886 __FUNCTION__,
1887 id[49], id[82], id[83], id[84],
1888 id[85], id[86], id[87], id[88]);
1890 /* initialize to-be-configured parameters */
1891 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1892 dev->max_sectors = 0;
1893 dev->cdb_len = 0;
1894 dev->n_sectors = 0;
1895 dev->cylinders = 0;
1896 dev->heads = 0;
1897 dev->sectors = 0;
1900 * common ATA, ATAPI feature tests
1903 /* find max transfer mode; for printk only */
1904 xfer_mask = ata_id_xfermask(id);
1906 if (ata_msg_probe(ap))
1907 ata_dump_id(id);
1909 /* ATA-specific feature tests */
1910 if (dev->class == ATA_DEV_ATA) {
1911 if (ata_id_is_cfa(id)) {
1912 if (id[162] & 1) /* CPRM may make this media unusable */
1913 ata_dev_printk(dev, KERN_WARNING,
1914 "supports DRM functions and may "
1915 "not be fully accessable.\n");
1916 snprintf(revbuf, 7, "CFA");
1918 else
1919 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921 dev->n_sectors = ata_id_n_sectors(id);
1922 dev->n_sectors_boot = dev->n_sectors;
1924 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1925 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1926 sizeof(fwrevbuf));
1928 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1929 sizeof(modelbuf));
1931 if (dev->id[59] & 0x100)
1932 dev->multi_count = dev->id[59] & 0xff;
1934 if (ata_id_has_lba(id)) {
1935 const char *lba_desc;
1936 char ncq_desc[20];
1938 lba_desc = "LBA";
1939 dev->flags |= ATA_DFLAG_LBA;
1940 if (ata_id_has_lba48(id)) {
1941 dev->flags |= ATA_DFLAG_LBA48;
1942 lba_desc = "LBA48";
1944 if (dev->n_sectors >= (1UL << 28) &&
1945 ata_id_has_flush_ext(id))
1946 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1949 if (ata_id_hpa_enabled(dev->id))
1950 dev->n_sectors = ata_hpa_resize(dev);
1952 /* config NCQ */
1953 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1955 /* print device info to dmesg */
1956 if (ata_msg_drv(ap) && print_info) {
1957 ata_dev_printk(dev, KERN_INFO,
1958 "%s: %s, %s, max %s\n",
1959 revbuf, modelbuf, fwrevbuf,
1960 ata_mode_string(xfer_mask));
1961 ata_dev_printk(dev, KERN_INFO,
1962 "%Lu sectors, multi %u: %s %s\n",
1963 (unsigned long long)dev->n_sectors,
1964 dev->multi_count, lba_desc, ncq_desc);
1966 } else {
1967 /* CHS */
1969 /* Default translation */
1970 dev->cylinders = id[1];
1971 dev->heads = id[3];
1972 dev->sectors = id[6];
1974 if (ata_id_current_chs_valid(id)) {
1975 /* Current CHS translation is valid. */
1976 dev->cylinders = id[54];
1977 dev->heads = id[55];
1978 dev->sectors = id[56];
1981 /* print device info to dmesg */
1982 if (ata_msg_drv(ap) && print_info) {
1983 ata_dev_printk(dev, KERN_INFO,
1984 "%s: %s, %s, max %s\n",
1985 revbuf, modelbuf, fwrevbuf,
1986 ata_mode_string(xfer_mask));
1987 ata_dev_printk(dev, KERN_INFO,
1988 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1989 (unsigned long long)dev->n_sectors,
1990 dev->multi_count, dev->cylinders,
1991 dev->heads, dev->sectors);
1995 dev->cdb_len = 16;
1998 /* ATAPI-specific feature tests */
1999 else if (dev->class == ATA_DEV_ATAPI) {
2000 char *cdb_intr_string = "";
2002 rc = atapi_cdb_len(id);
2003 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2004 if (ata_msg_warn(ap))
2005 ata_dev_printk(dev, KERN_WARNING,
2006 "unsupported CDB len\n");
2007 rc = -EINVAL;
2008 goto err_out_nosup;
2010 dev->cdb_len = (unsigned int) rc;
2012 if (ata_id_cdb_intr(dev->id)) {
2013 dev->flags |= ATA_DFLAG_CDB_INTR;
2014 cdb_intr_string = ", CDB intr";
2017 /* print device info to dmesg */
2018 if (ata_msg_drv(ap) && print_info)
2019 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
2020 ata_mode_string(xfer_mask),
2021 cdb_intr_string);
2024 /* determine max_sectors */
2025 dev->max_sectors = ATA_MAX_SECTORS;
2026 if (dev->flags & ATA_DFLAG_LBA48)
2027 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2029 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2030 /* Let the user know. We don't want to disallow opens for
2031 rescue purposes, or in case the vendor is just a blithering
2032 idiot */
2033 if (print_info) {
2034 ata_dev_printk(dev, KERN_WARNING,
2035 "Drive reports diagnostics failure. This may indicate a drive\n");
2036 ata_dev_printk(dev, KERN_WARNING,
2037 "fault or invalid emulation. Contact drive vendor for information.\n");
2041 /* limit bridge transfers to udma5, 200 sectors */
2042 if (ata_dev_knobble(dev)) {
2043 if (ata_msg_drv(ap) && print_info)
2044 ata_dev_printk(dev, KERN_INFO,
2045 "applying bridge limits\n");
2046 dev->udma_mask &= ATA_UDMA5;
2047 dev->max_sectors = ATA_MAX_SECTORS;
2050 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2051 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2052 dev->max_sectors);
2054 /* limit ATAPI DMA to R/W commands only */
2055 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2056 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2058 if (ap->ops->dev_config)
2059 ap->ops->dev_config(dev);
2061 if (ata_msg_probe(ap))
2062 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2063 __FUNCTION__, ata_chk_status(ap));
2064 return 0;
2066 err_out_nosup:
2067 if (ata_msg_probe(ap))
2068 ata_dev_printk(dev, KERN_DEBUG,
2069 "%s: EXIT, err\n", __FUNCTION__);
2070 return rc;
2074 * ata_cable_40wire - return 40 wire cable type
2075 * @ap: port
2077 * Helper method for drivers which want to hardwire 40 wire cable
2078 * detection.
2081 int ata_cable_40wire(struct ata_port *ap)
2083 return ATA_CBL_PATA40;
2087 * ata_cable_80wire - return 80 wire cable type
2088 * @ap: port
2090 * Helper method for drivers which want to hardwire 80 wire cable
2091 * detection.
2094 int ata_cable_80wire(struct ata_port *ap)
2096 return ATA_CBL_PATA80;
2100 * ata_cable_unknown - return unknown PATA cable.
2101 * @ap: port
2103 * Helper method for drivers which have no PATA cable detection.
2106 int ata_cable_unknown(struct ata_port *ap)
2108 return ATA_CBL_PATA_UNK;
2112 * ata_cable_sata - return SATA cable type
2113 * @ap: port
2115 * Helper method for drivers which have SATA cables
2118 int ata_cable_sata(struct ata_port *ap)
2120 return ATA_CBL_SATA;
2124 * ata_bus_probe - Reset and probe ATA bus
2125 * @ap: Bus to probe
2127 * Master ATA bus probing function. Initiates a hardware-dependent
2128 * bus reset, then attempts to identify any devices found on
2129 * the bus.
2131 * LOCKING:
2132 * PCI/etc. bus probe sem.
2134 * RETURNS:
2135 * Zero on success, negative errno otherwise.
2138 int ata_bus_probe(struct ata_port *ap)
2140 unsigned int classes[ATA_MAX_DEVICES];
2141 int tries[ATA_MAX_DEVICES];
2142 int i, rc;
2143 struct ata_device *dev;
2145 ata_port_probe(ap);
2147 for (i = 0; i < ATA_MAX_DEVICES; i++)
2148 tries[i] = ATA_PROBE_MAX_TRIES;
2150 retry:
2151 /* reset and determine device classes */
2152 ap->ops->phy_reset(ap);
2154 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2155 dev = &ap->device[i];
2157 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2158 dev->class != ATA_DEV_UNKNOWN)
2159 classes[dev->devno] = dev->class;
2160 else
2161 classes[dev->devno] = ATA_DEV_NONE;
2163 dev->class = ATA_DEV_UNKNOWN;
2166 ata_port_probe(ap);
2168 /* after the reset the device state is PIO 0 and the controller
2169 state is undefined. Record the mode */
2171 for (i = 0; i < ATA_MAX_DEVICES; i++)
2172 ap->device[i].pio_mode = XFER_PIO_0;
2174 /* read IDENTIFY page and configure devices. We have to do the identify
2175 specific sequence bass-ackwards so that PDIAG- is released by
2176 the slave device */
2178 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2179 dev = &ap->device[i];
2181 if (tries[i])
2182 dev->class = classes[i];
2184 if (!ata_dev_enabled(dev))
2185 continue;
2187 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2188 dev->id);
2189 if (rc)
2190 goto fail;
2193 /* Now ask for the cable type as PDIAG- should have been released */
2194 if (ap->ops->cable_detect)
2195 ap->cbl = ap->ops->cable_detect(ap);
2197 /* After the identify sequence we can now set up the devices. We do
2198 this in the normal order so that the user doesn't get confused */
2200 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2201 dev = &ap->device[i];
2202 if (!ata_dev_enabled(dev))
2203 continue;
2205 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2206 rc = ata_dev_configure(dev);
2207 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2208 if (rc)
2209 goto fail;
2212 /* configure transfer mode */
2213 rc = ata_set_mode(ap, &dev);
2214 if (rc)
2215 goto fail;
2217 for (i = 0; i < ATA_MAX_DEVICES; i++)
2218 if (ata_dev_enabled(&ap->device[i]))
2219 return 0;
2221 /* no device present, disable port */
2222 ata_port_disable(ap);
2223 ap->ops->port_disable(ap);
2224 return -ENODEV;
2226 fail:
2227 tries[dev->devno]--;
2229 switch (rc) {
2230 case -EINVAL:
2231 /* eeek, something went very wrong, give up */
2232 tries[dev->devno] = 0;
2233 break;
2235 case -ENODEV:
2236 /* give it just one more chance */
2237 tries[dev->devno] = min(tries[dev->devno], 1);
2238 case -EIO:
2239 if (tries[dev->devno] == 1) {
2240 /* This is the last chance, better to slow
2241 * down than lose it.
2243 sata_down_spd_limit(ap);
2244 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2248 if (!tries[dev->devno])
2249 ata_dev_disable(dev);
2251 goto retry;
2255 * ata_port_probe - Mark port as enabled
2256 * @ap: Port for which we indicate enablement
2258 * Modify @ap data structure such that the system
2259 * thinks that the entire port is enabled.
2261 * LOCKING: host lock, or some other form of
2262 * serialization.
2265 void ata_port_probe(struct ata_port *ap)
2267 ap->flags &= ~ATA_FLAG_DISABLED;
2271 * sata_print_link_status - Print SATA link status
2272 * @ap: SATA port to printk link status about
2274 * This function prints link speed and status of a SATA link.
2276 * LOCKING:
2277 * None.
2279 void sata_print_link_status(struct ata_port *ap)
2281 u32 sstatus, scontrol, tmp;
2283 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2284 return;
2285 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2287 if (ata_port_online(ap)) {
2288 tmp = (sstatus >> 4) & 0xf;
2289 ata_port_printk(ap, KERN_INFO,
2290 "SATA link up %s (SStatus %X SControl %X)\n",
2291 sata_spd_string(tmp), sstatus, scontrol);
2292 } else {
2293 ata_port_printk(ap, KERN_INFO,
2294 "SATA link down (SStatus %X SControl %X)\n",
2295 sstatus, scontrol);
2300 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2301 * @ap: SATA port associated with target SATA PHY.
2303 * This function issues commands to standard SATA Sxxx
2304 * PHY registers, to wake up the phy (and device), and
2305 * clear any reset condition.
2307 * LOCKING:
2308 * PCI/etc. bus probe sem.
2311 void __sata_phy_reset(struct ata_port *ap)
2313 u32 sstatus;
2314 unsigned long timeout = jiffies + (HZ * 5);
2316 if (ap->flags & ATA_FLAG_SATA_RESET) {
2317 /* issue phy wake/reset */
2318 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2319 /* Couldn't find anything in SATA I/II specs, but
2320 * AHCI-1.1 10.4.2 says at least 1 ms. */
2321 mdelay(1);
2323 /* phy wake/clear reset */
2324 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2326 /* wait for phy to become ready, if necessary */
2327 do {
2328 msleep(200);
2329 sata_scr_read(ap, SCR_STATUS, &sstatus);
2330 if ((sstatus & 0xf) != 1)
2331 break;
2332 } while (time_before(jiffies, timeout));
2334 /* print link status */
2335 sata_print_link_status(ap);
2337 /* TODO: phy layer with polling, timeouts, etc. */
2338 if (!ata_port_offline(ap))
2339 ata_port_probe(ap);
2340 else
2341 ata_port_disable(ap);
2343 if (ap->flags & ATA_FLAG_DISABLED)
2344 return;
2346 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2347 ata_port_disable(ap);
2348 return;
2351 ap->cbl = ATA_CBL_SATA;
2355 * sata_phy_reset - Reset SATA bus.
2356 * @ap: SATA port associated with target SATA PHY.
2358 * This function resets the SATA bus, and then probes
2359 * the bus for devices.
2361 * LOCKING:
2362 * PCI/etc. bus probe sem.
2365 void sata_phy_reset(struct ata_port *ap)
2367 __sata_phy_reset(ap);
2368 if (ap->flags & ATA_FLAG_DISABLED)
2369 return;
2370 ata_bus_reset(ap);
2374 * ata_dev_pair - return other device on cable
2375 * @adev: device
2377 * Obtain the other device on the same cable, or if none is
2378 * present NULL is returned
2381 struct ata_device *ata_dev_pair(struct ata_device *adev)
2383 struct ata_port *ap = adev->ap;
2384 struct ata_device *pair = &ap->device[1 - adev->devno];
2385 if (!ata_dev_enabled(pair))
2386 return NULL;
2387 return pair;
2391 * ata_port_disable - Disable port.
2392 * @ap: Port to be disabled.
2394 * Modify @ap data structure such that the system
2395 * thinks that the entire port is disabled, and should
2396 * never attempt to probe or communicate with devices
2397 * on this port.
2399 * LOCKING: host lock, or some other form of
2400 * serialization.
2403 void ata_port_disable(struct ata_port *ap)
2405 ap->device[0].class = ATA_DEV_NONE;
2406 ap->device[1].class = ATA_DEV_NONE;
2407 ap->flags |= ATA_FLAG_DISABLED;
2411 * sata_down_spd_limit - adjust SATA spd limit downward
2412 * @ap: Port to adjust SATA spd limit for
2414 * Adjust SATA spd limit of @ap downward. Note that this
2415 * function only adjusts the limit. The change must be applied
2416 * using sata_set_spd().
2418 * LOCKING:
2419 * Inherited from caller.
2421 * RETURNS:
2422 * 0 on success, negative errno on failure
2424 int sata_down_spd_limit(struct ata_port *ap)
2426 u32 sstatus, spd, mask;
2427 int rc, highbit;
2429 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2430 if (rc)
2431 return rc;
2433 mask = ap->sata_spd_limit;
2434 if (mask <= 1)
2435 return -EINVAL;
2436 highbit = fls(mask) - 1;
2437 mask &= ~(1 << highbit);
2439 spd = (sstatus >> 4) & 0xf;
2440 if (spd <= 1)
2441 return -EINVAL;
2442 spd--;
2443 mask &= (1 << spd) - 1;
2444 if (!mask)
2445 return -EINVAL;
2447 ap->sata_spd_limit = mask;
2449 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2450 sata_spd_string(fls(mask)));
2452 return 0;
2455 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2457 u32 spd, limit;
2459 if (ap->sata_spd_limit == UINT_MAX)
2460 limit = 0;
2461 else
2462 limit = fls(ap->sata_spd_limit);
2464 spd = (*scontrol >> 4) & 0xf;
2465 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2467 return spd != limit;
2471 * sata_set_spd_needed - is SATA spd configuration needed
2472 * @ap: Port in question
2474 * Test whether the spd limit in SControl matches
2475 * @ap->sata_spd_limit. This function is used to determine
2476 * whether hardreset is necessary to apply SATA spd
2477 * configuration.
2479 * LOCKING:
2480 * Inherited from caller.
2482 * RETURNS:
2483 * 1 if SATA spd configuration is needed, 0 otherwise.
2485 int sata_set_spd_needed(struct ata_port *ap)
2487 u32 scontrol;
2489 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2490 return 0;
2492 return __sata_set_spd_needed(ap, &scontrol);
2496 * sata_set_spd - set SATA spd according to spd limit
2497 * @ap: Port to set SATA spd for
2499 * Set SATA spd of @ap according to sata_spd_limit.
2501 * LOCKING:
2502 * Inherited from caller.
2504 * RETURNS:
2505 * 0 if spd doesn't need to be changed, 1 if spd has been
2506 * changed. Negative errno if SCR registers are inaccessible.
2508 int sata_set_spd(struct ata_port *ap)
2510 u32 scontrol;
2511 int rc;
2513 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2514 return rc;
2516 if (!__sata_set_spd_needed(ap, &scontrol))
2517 return 0;
2519 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2520 return rc;
2522 return 1;
2526 * This mode timing computation functionality is ported over from
2527 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2530 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2531 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2532 * for UDMA6, which is currently supported only by Maxtor drives.
2534 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2537 static const struct ata_timing ata_timing[] = {
2539 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2540 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2541 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2542 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2544 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2545 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2546 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2547 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2548 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2550 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2552 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2553 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2554 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2556 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2557 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2558 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2560 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2561 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2562 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2563 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2565 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2566 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2567 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2569 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2571 { 0xFF }
2574 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2575 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2577 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2579 q->setup = EZ(t->setup * 1000, T);
2580 q->act8b = EZ(t->act8b * 1000, T);
2581 q->rec8b = EZ(t->rec8b * 1000, T);
2582 q->cyc8b = EZ(t->cyc8b * 1000, T);
2583 q->active = EZ(t->active * 1000, T);
2584 q->recover = EZ(t->recover * 1000, T);
2585 q->cycle = EZ(t->cycle * 1000, T);
2586 q->udma = EZ(t->udma * 1000, UT);
2589 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2590 struct ata_timing *m, unsigned int what)
2592 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2593 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2594 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2595 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2596 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2597 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2598 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2599 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2602 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2604 const struct ata_timing *t;
2606 for (t = ata_timing; t->mode != speed; t++)
2607 if (t->mode == 0xFF)
2608 return NULL;
2609 return t;
2612 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2613 struct ata_timing *t, int T, int UT)
2615 const struct ata_timing *s;
2616 struct ata_timing p;
2619 * Find the mode.
2622 if (!(s = ata_timing_find_mode(speed)))
2623 return -EINVAL;
2625 memcpy(t, s, sizeof(*s));
2628 * If the drive is an EIDE drive, it can tell us it needs extended
2629 * PIO/MW_DMA cycle timing.
2632 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2633 memset(&p, 0, sizeof(p));
2634 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2635 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2636 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2637 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2638 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2640 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2644 * Convert the timing to bus clock counts.
2647 ata_timing_quantize(t, t, T, UT);
2650 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2651 * S.M.A.R.T * and some other commands. We have to ensure that the
2652 * DMA cycle timing is slower/equal than the fastest PIO timing.
2655 if (speed > XFER_PIO_6) {
2656 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2657 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2661 * Lengthen active & recovery time so that cycle time is correct.
2664 if (t->act8b + t->rec8b < t->cyc8b) {
2665 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2666 t->rec8b = t->cyc8b - t->act8b;
2669 if (t->active + t->recover < t->cycle) {
2670 t->active += (t->cycle - (t->active + t->recover)) / 2;
2671 t->recover = t->cycle - t->active;
2674 /* In a few cases quantisation may produce enough errors to
2675 leave t->cycle too low for the sum of active and recovery
2676 if so we must correct this */
2677 if (t->active + t->recover > t->cycle)
2678 t->cycle = t->active + t->recover;
2680 return 0;
2684 * ata_down_xfermask_limit - adjust dev xfer masks downward
2685 * @dev: Device to adjust xfer masks
2686 * @sel: ATA_DNXFER_* selector
2688 * Adjust xfer masks of @dev downward. Note that this function
2689 * does not apply the change. Invoking ata_set_mode() afterwards
2690 * will apply the limit.
2692 * LOCKING:
2693 * Inherited from caller.
2695 * RETURNS:
2696 * 0 on success, negative errno on failure
2698 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2700 char buf[32];
2701 unsigned int orig_mask, xfer_mask;
2702 unsigned int pio_mask, mwdma_mask, udma_mask;
2703 int quiet, highbit;
2705 quiet = !!(sel & ATA_DNXFER_QUIET);
2706 sel &= ~ATA_DNXFER_QUIET;
2708 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2709 dev->mwdma_mask,
2710 dev->udma_mask);
2711 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2713 switch (sel) {
2714 case ATA_DNXFER_PIO:
2715 highbit = fls(pio_mask) - 1;
2716 pio_mask &= ~(1 << highbit);
2717 break;
2719 case ATA_DNXFER_DMA:
2720 if (udma_mask) {
2721 highbit = fls(udma_mask) - 1;
2722 udma_mask &= ~(1 << highbit);
2723 if (!udma_mask)
2724 return -ENOENT;
2725 } else if (mwdma_mask) {
2726 highbit = fls(mwdma_mask) - 1;
2727 mwdma_mask &= ~(1 << highbit);
2728 if (!mwdma_mask)
2729 return -ENOENT;
2731 break;
2733 case ATA_DNXFER_40C:
2734 udma_mask &= ATA_UDMA_MASK_40C;
2735 break;
2737 case ATA_DNXFER_FORCE_PIO0:
2738 pio_mask &= 1;
2739 case ATA_DNXFER_FORCE_PIO:
2740 mwdma_mask = 0;
2741 udma_mask = 0;
2742 break;
2744 default:
2745 BUG();
2748 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2750 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2751 return -ENOENT;
2753 if (!quiet) {
2754 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2755 snprintf(buf, sizeof(buf), "%s:%s",
2756 ata_mode_string(xfer_mask),
2757 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2758 else
2759 snprintf(buf, sizeof(buf), "%s",
2760 ata_mode_string(xfer_mask));
2762 ata_dev_printk(dev, KERN_WARNING,
2763 "limiting speed to %s\n", buf);
2766 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2767 &dev->udma_mask);
2769 return 0;
2772 static int ata_dev_set_mode(struct ata_device *dev)
2774 struct ata_eh_context *ehc = &dev->ap->eh_context;
2775 unsigned int err_mask;
2776 int rc;
2778 dev->flags &= ~ATA_DFLAG_PIO;
2779 if (dev->xfer_shift == ATA_SHIFT_PIO)
2780 dev->flags |= ATA_DFLAG_PIO;
2782 err_mask = ata_dev_set_xfermode(dev);
2783 /* Old CFA may refuse this command, which is just fine */
2784 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2785 err_mask &= ~AC_ERR_DEV;
2787 if (err_mask) {
2788 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2789 "(err_mask=0x%x)\n", err_mask);
2790 return -EIO;
2793 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2794 rc = ata_dev_revalidate(dev, 0);
2795 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2796 if (rc)
2797 return rc;
2799 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2800 dev->xfer_shift, (int)dev->xfer_mode);
2802 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2803 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2804 return 0;
2808 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2809 * @ap: port on which timings will be programmed
2810 * @r_failed_dev: out paramter for failed device
2812 * Standard implementation of the function used to tune and set
2813 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2814 * ata_dev_set_mode() fails, pointer to the failing device is
2815 * returned in @r_failed_dev.
2817 * LOCKING:
2818 * PCI/etc. bus probe sem.
2820 * RETURNS:
2821 * 0 on success, negative errno otherwise
2824 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2826 struct ata_device *dev;
2827 int i, rc = 0, used_dma = 0, found = 0;
2830 /* step 1: calculate xfer_mask */
2831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2832 unsigned int pio_mask, dma_mask;
2834 dev = &ap->device[i];
2836 if (!ata_dev_enabled(dev))
2837 continue;
2839 ata_dev_xfermask(dev);
2841 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2842 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2843 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2844 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2846 found = 1;
2847 if (dev->dma_mode)
2848 used_dma = 1;
2850 if (!found)
2851 goto out;
2853 /* step 2: always set host PIO timings */
2854 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2855 dev = &ap->device[i];
2856 if (!ata_dev_enabled(dev))
2857 continue;
2859 if (!dev->pio_mode) {
2860 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2861 rc = -EINVAL;
2862 goto out;
2865 dev->xfer_mode = dev->pio_mode;
2866 dev->xfer_shift = ATA_SHIFT_PIO;
2867 if (ap->ops->set_piomode)
2868 ap->ops->set_piomode(ap, dev);
2871 /* step 3: set host DMA timings */
2872 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2873 dev = &ap->device[i];
2875 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2876 continue;
2878 dev->xfer_mode = dev->dma_mode;
2879 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2880 if (ap->ops->set_dmamode)
2881 ap->ops->set_dmamode(ap, dev);
2884 /* step 4: update devices' xfer mode */
2885 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2886 dev = &ap->device[i];
2888 /* don't update suspended devices' xfer mode */
2889 if (!ata_dev_enabled(dev))
2890 continue;
2892 rc = ata_dev_set_mode(dev);
2893 if (rc)
2894 goto out;
2897 /* Record simplex status. If we selected DMA then the other
2898 * host channels are not permitted to do so.
2900 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2901 ap->host->simplex_claimed = ap;
2903 /* step5: chip specific finalisation */
2904 if (ap->ops->post_set_mode)
2905 ap->ops->post_set_mode(ap);
2906 out:
2907 if (rc)
2908 *r_failed_dev = dev;
2909 return rc;
2913 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2914 * @ap: port on which timings will be programmed
2915 * @r_failed_dev: out paramter for failed device
2917 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2918 * ata_set_mode() fails, pointer to the failing device is
2919 * returned in @r_failed_dev.
2921 * LOCKING:
2922 * PCI/etc. bus probe sem.
2924 * RETURNS:
2925 * 0 on success, negative errno otherwise
2927 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2929 /* has private set_mode? */
2930 if (ap->ops->set_mode)
2931 return ap->ops->set_mode(ap, r_failed_dev);
2932 return ata_do_set_mode(ap, r_failed_dev);
2936 * ata_tf_to_host - issue ATA taskfile to host controller
2937 * @ap: port to which command is being issued
2938 * @tf: ATA taskfile register set
2940 * Issues ATA taskfile register set to ATA host controller,
2941 * with proper synchronization with interrupt handler and
2942 * other threads.
2944 * LOCKING:
2945 * spin_lock_irqsave(host lock)
2948 static inline void ata_tf_to_host(struct ata_port *ap,
2949 const struct ata_taskfile *tf)
2951 ap->ops->tf_load(ap, tf);
2952 ap->ops->exec_command(ap, tf);
2956 * ata_busy_sleep - sleep until BSY clears, or timeout
2957 * @ap: port containing status register to be polled
2958 * @tmout_pat: impatience timeout
2959 * @tmout: overall timeout
2961 * Sleep until ATA Status register bit BSY clears,
2962 * or a timeout occurs.
2964 * LOCKING:
2965 * Kernel thread context (may sleep).
2967 * RETURNS:
2968 * 0 on success, -errno otherwise.
2970 int ata_busy_sleep(struct ata_port *ap,
2971 unsigned long tmout_pat, unsigned long tmout)
2973 unsigned long timer_start, timeout;
2974 u8 status;
2976 status = ata_busy_wait(ap, ATA_BUSY, 300);
2977 timer_start = jiffies;
2978 timeout = timer_start + tmout_pat;
2979 while (status != 0xff && (status & ATA_BUSY) &&
2980 time_before(jiffies, timeout)) {
2981 msleep(50);
2982 status = ata_busy_wait(ap, ATA_BUSY, 3);
2985 if (status != 0xff && (status & ATA_BUSY))
2986 ata_port_printk(ap, KERN_WARNING,
2987 "port is slow to respond, please be patient "
2988 "(Status 0x%x)\n", status);
2990 timeout = timer_start + tmout;
2991 while (status != 0xff && (status & ATA_BUSY) &&
2992 time_before(jiffies, timeout)) {
2993 msleep(50);
2994 status = ata_chk_status(ap);
2997 if (status == 0xff)
2998 return -ENODEV;
3000 if (status & ATA_BUSY) {
3001 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3002 "(%lu secs, Status 0x%x)\n",
3003 tmout / HZ, status);
3004 return -EBUSY;
3007 return 0;
3011 * ata_wait_ready - sleep until BSY clears, or timeout
3012 * @ap: port containing status register to be polled
3013 * @deadline: deadline jiffies for the operation
3015 * Sleep until ATA Status register bit BSY clears, or timeout
3016 * occurs.
3018 * LOCKING:
3019 * Kernel thread context (may sleep).
3021 * RETURNS:
3022 * 0 on success, -errno otherwise.
3024 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3026 unsigned long start = jiffies;
3027 int warned = 0;
3029 while (1) {
3030 u8 status = ata_chk_status(ap);
3031 unsigned long now = jiffies;
3033 if (!(status & ATA_BUSY))
3034 return 0;
3035 if (status == 0xff)
3036 return -ENODEV;
3037 if (time_after(now, deadline))
3038 return -EBUSY;
3040 if (!warned && time_after(now, start + 5 * HZ) &&
3041 (deadline - now > 3 * HZ)) {
3042 ata_port_printk(ap, KERN_WARNING,
3043 "port is slow to respond, please be patient "
3044 "(Status 0x%x)\n", status);
3045 warned = 1;
3048 msleep(50);
3052 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3053 unsigned long deadline)
3055 struct ata_ioports *ioaddr = &ap->ioaddr;
3056 unsigned int dev0 = devmask & (1 << 0);
3057 unsigned int dev1 = devmask & (1 << 1);
3058 int rc, ret = 0;
3060 /* if device 0 was found in ata_devchk, wait for its
3061 * BSY bit to clear
3063 if (dev0) {
3064 rc = ata_wait_ready(ap, deadline);
3065 if (rc) {
3066 if (rc != -ENODEV)
3067 return rc;
3068 ret = rc;
3072 /* if device 1 was found in ata_devchk, wait for
3073 * register access, then wait for BSY to clear
3075 while (dev1) {
3076 u8 nsect, lbal;
3078 ap->ops->dev_select(ap, 1);
3079 nsect = ioread8(ioaddr->nsect_addr);
3080 lbal = ioread8(ioaddr->lbal_addr);
3081 if ((nsect == 1) && (lbal == 1))
3082 break;
3083 if (time_after(jiffies, deadline))
3084 return -EBUSY;
3085 msleep(50); /* give drive a breather */
3087 if (dev1) {
3088 rc = ata_wait_ready(ap, deadline);
3089 if (rc) {
3090 if (rc != -ENODEV)
3091 return rc;
3092 ret = rc;
3096 /* is all this really necessary? */
3097 ap->ops->dev_select(ap, 0);
3098 if (dev1)
3099 ap->ops->dev_select(ap, 1);
3100 if (dev0)
3101 ap->ops->dev_select(ap, 0);
3103 return ret;
3106 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3107 unsigned long deadline)
3109 struct ata_ioports *ioaddr = &ap->ioaddr;
3111 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3113 /* software reset. causes dev0 to be selected */
3114 iowrite8(ap->ctl, ioaddr->ctl_addr);
3115 udelay(20); /* FIXME: flush */
3116 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3117 udelay(20); /* FIXME: flush */
3118 iowrite8(ap->ctl, ioaddr->ctl_addr);
3120 /* spec mandates ">= 2ms" before checking status.
3121 * We wait 150ms, because that was the magic delay used for
3122 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3123 * between when the ATA command register is written, and then
3124 * status is checked. Because waiting for "a while" before
3125 * checking status is fine, post SRST, we perform this magic
3126 * delay here as well.
3128 * Old drivers/ide uses the 2mS rule and then waits for ready
3130 msleep(150);
3132 /* Before we perform post reset processing we want to see if
3133 * the bus shows 0xFF because the odd clown forgets the D7
3134 * pulldown resistor.
3136 if (ata_check_status(ap) == 0xFF)
3137 return -ENODEV;
3139 return ata_bus_post_reset(ap, devmask, deadline);
3143 * ata_bus_reset - reset host port and associated ATA channel
3144 * @ap: port to reset
3146 * This is typically the first time we actually start issuing
3147 * commands to the ATA channel. We wait for BSY to clear, then
3148 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3149 * result. Determine what devices, if any, are on the channel
3150 * by looking at the device 0/1 error register. Look at the signature
3151 * stored in each device's taskfile registers, to determine if
3152 * the device is ATA or ATAPI.
3154 * LOCKING:
3155 * PCI/etc. bus probe sem.
3156 * Obtains host lock.
3158 * SIDE EFFECTS:
3159 * Sets ATA_FLAG_DISABLED if bus reset fails.
3162 void ata_bus_reset(struct ata_port *ap)
3164 struct ata_ioports *ioaddr = &ap->ioaddr;
3165 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3166 u8 err;
3167 unsigned int dev0, dev1 = 0, devmask = 0;
3168 int rc;
3170 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3172 /* determine if device 0/1 are present */
3173 if (ap->flags & ATA_FLAG_SATA_RESET)
3174 dev0 = 1;
3175 else {
3176 dev0 = ata_devchk(ap, 0);
3177 if (slave_possible)
3178 dev1 = ata_devchk(ap, 1);
3181 if (dev0)
3182 devmask |= (1 << 0);
3183 if (dev1)
3184 devmask |= (1 << 1);
3186 /* select device 0 again */
3187 ap->ops->dev_select(ap, 0);
3189 /* issue bus reset */
3190 if (ap->flags & ATA_FLAG_SRST) {
3191 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3192 if (rc && rc != -ENODEV)
3193 goto err_out;
3197 * determine by signature whether we have ATA or ATAPI devices
3199 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3200 if ((slave_possible) && (err != 0x81))
3201 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3203 /* re-enable interrupts */
3204 ap->ops->irq_on(ap);
3206 /* is double-select really necessary? */
3207 if (ap->device[1].class != ATA_DEV_NONE)
3208 ap->ops->dev_select(ap, 1);
3209 if (ap->device[0].class != ATA_DEV_NONE)
3210 ap->ops->dev_select(ap, 0);
3212 /* if no devices were detected, disable this port */
3213 if ((ap->device[0].class == ATA_DEV_NONE) &&
3214 (ap->device[1].class == ATA_DEV_NONE))
3215 goto err_out;
3217 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3218 /* set up device control for ATA_FLAG_SATA_RESET */
3219 iowrite8(ap->ctl, ioaddr->ctl_addr);
3222 DPRINTK("EXIT\n");
3223 return;
3225 err_out:
3226 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3227 ap->ops->port_disable(ap);
3229 DPRINTK("EXIT\n");
3233 * sata_phy_debounce - debounce SATA phy status
3234 * @ap: ATA port to debounce SATA phy status for
3235 * @params: timing parameters { interval, duratinon, timeout } in msec
3236 * @deadline: deadline jiffies for the operation
3238 * Make sure SStatus of @ap reaches stable state, determined by
3239 * holding the same value where DET is not 1 for @duration polled
3240 * every @interval, before @timeout. Timeout constraints the
3241 * beginning of the stable state. Because DET gets stuck at 1 on
3242 * some controllers after hot unplugging, this functions waits
3243 * until timeout then returns 0 if DET is stable at 1.
3245 * @timeout is further limited by @deadline. The sooner of the
3246 * two is used.
3248 * LOCKING:
3249 * Kernel thread context (may sleep)
3251 * RETURNS:
3252 * 0 on success, -errno on failure.
3254 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3255 unsigned long deadline)
3257 unsigned long interval_msec = params[0];
3258 unsigned long duration = msecs_to_jiffies(params[1]);
3259 unsigned long last_jiffies, t;
3260 u32 last, cur;
3261 int rc;
3263 t = jiffies + msecs_to_jiffies(params[2]);
3264 if (time_before(t, deadline))
3265 deadline = t;
3267 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3268 return rc;
3269 cur &= 0xf;
3271 last = cur;
3272 last_jiffies = jiffies;
3274 while (1) {
3275 msleep(interval_msec);
3276 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3277 return rc;
3278 cur &= 0xf;
3280 /* DET stable? */
3281 if (cur == last) {
3282 if (cur == 1 && time_before(jiffies, deadline))
3283 continue;
3284 if (time_after(jiffies, last_jiffies + duration))
3285 return 0;
3286 continue;
3289 /* unstable, start over */
3290 last = cur;
3291 last_jiffies = jiffies;
3293 /* check deadline */
3294 if (time_after(jiffies, deadline))
3295 return -EBUSY;
3300 * sata_phy_resume - resume SATA phy
3301 * @ap: ATA port to resume SATA phy for
3302 * @params: timing parameters { interval, duratinon, timeout } in msec
3303 * @deadline: deadline jiffies for the operation
3305 * Resume SATA phy of @ap and debounce it.
3307 * LOCKING:
3308 * Kernel thread context (may sleep)
3310 * RETURNS:
3311 * 0 on success, -errno on failure.
3313 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3314 unsigned long deadline)
3316 u32 scontrol;
3317 int rc;
3319 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3320 return rc;
3322 scontrol = (scontrol & 0x0f0) | 0x300;
3324 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3325 return rc;
3327 /* Some PHYs react badly if SStatus is pounded immediately
3328 * after resuming. Delay 200ms before debouncing.
3330 msleep(200);
3332 return sata_phy_debounce(ap, params, deadline);
3336 * ata_std_prereset - prepare for reset
3337 * @ap: ATA port to be reset
3338 * @deadline: deadline jiffies for the operation
3340 * @ap is about to be reset. Initialize it. Failure from
3341 * prereset makes libata abort whole reset sequence and give up
3342 * that port, so prereset should be best-effort. It does its
3343 * best to prepare for reset sequence but if things go wrong, it
3344 * should just whine, not fail.
3346 * LOCKING:
3347 * Kernel thread context (may sleep)
3349 * RETURNS:
3350 * 0 on success, -errno otherwise.
3352 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3354 struct ata_eh_context *ehc = &ap->eh_context;
3355 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3356 int rc;
3358 /* handle link resume */
3359 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3360 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3361 ehc->i.action |= ATA_EH_HARDRESET;
3363 /* if we're about to do hardreset, nothing more to do */
3364 if (ehc->i.action & ATA_EH_HARDRESET)
3365 return 0;
3367 /* if SATA, resume phy */
3368 if (ap->cbl == ATA_CBL_SATA) {
3369 rc = sata_phy_resume(ap, timing, deadline);
3370 /* whine about phy resume failure but proceed */
3371 if (rc && rc != -EOPNOTSUPP)
3372 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3373 "link for reset (errno=%d)\n", rc);
3376 /* Wait for !BSY if the controller can wait for the first D2H
3377 * Reg FIS and we don't know that no device is attached.
3379 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3380 rc = ata_wait_ready(ap, deadline);
3381 if (rc) {
3382 ata_port_printk(ap, KERN_WARNING, "device not ready "
3383 "(errno=%d), forcing hardreset\n", rc);
3384 ehc->i.action |= ATA_EH_HARDRESET;
3388 return 0;
3392 * ata_std_softreset - reset host port via ATA SRST
3393 * @ap: port to reset
3394 * @classes: resulting classes of attached devices
3395 * @deadline: deadline jiffies for the operation
3397 * Reset host port using ATA SRST.
3399 * LOCKING:
3400 * Kernel thread context (may sleep)
3402 * RETURNS:
3403 * 0 on success, -errno otherwise.
3405 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3406 unsigned long deadline)
3408 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3409 unsigned int devmask = 0;
3410 int rc;
3411 u8 err;
3413 DPRINTK("ENTER\n");
3415 if (ata_port_offline(ap)) {
3416 classes[0] = ATA_DEV_NONE;
3417 goto out;
3420 /* determine if device 0/1 are present */
3421 if (ata_devchk(ap, 0))
3422 devmask |= (1 << 0);
3423 if (slave_possible && ata_devchk(ap, 1))
3424 devmask |= (1 << 1);
3426 /* select device 0 again */
3427 ap->ops->dev_select(ap, 0);
3429 /* issue bus reset */
3430 DPRINTK("about to softreset, devmask=%x\n", devmask);
3431 rc = ata_bus_softreset(ap, devmask, deadline);
3432 /* if link is occupied, -ENODEV too is an error */
3433 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3434 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3435 return rc;
3438 /* determine by signature whether we have ATA or ATAPI devices */
3439 classes[0] = ata_dev_try_classify(ap, 0, &err);
3440 if (slave_possible && err != 0x81)
3441 classes[1] = ata_dev_try_classify(ap, 1, &err);
3443 out:
3444 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3445 return 0;
3449 * sata_port_hardreset - reset port via SATA phy reset
3450 * @ap: port to reset
3451 * @timing: timing parameters { interval, duratinon, timeout } in msec
3452 * @deadline: deadline jiffies for the operation
3454 * SATA phy-reset host port using DET bits of SControl register.
3456 * LOCKING:
3457 * Kernel thread context (may sleep)
3459 * RETURNS:
3460 * 0 on success, -errno otherwise.
3462 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3463 unsigned long deadline)
3465 u32 scontrol;
3466 int rc;
3468 DPRINTK("ENTER\n");
3470 if (sata_set_spd_needed(ap)) {
3471 /* SATA spec says nothing about how to reconfigure
3472 * spd. To be on the safe side, turn off phy during
3473 * reconfiguration. This works for at least ICH7 AHCI
3474 * and Sil3124.
3476 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3477 goto out;
3479 scontrol = (scontrol & 0x0f0) | 0x304;
3481 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3482 goto out;
3484 sata_set_spd(ap);
3487 /* issue phy wake/reset */
3488 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3489 goto out;
3491 scontrol = (scontrol & 0x0f0) | 0x301;
3493 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3494 goto out;
3496 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3497 * 10.4.2 says at least 1 ms.
3499 msleep(1);
3501 /* bring phy back */
3502 rc = sata_phy_resume(ap, timing, deadline);
3503 out:
3504 DPRINTK("EXIT, rc=%d\n", rc);
3505 return rc;
3509 * sata_std_hardreset - reset host port via SATA phy reset
3510 * @ap: port to reset
3511 * @class: resulting class of attached device
3512 * @deadline: deadline jiffies for the operation
3514 * SATA phy-reset host port using DET bits of SControl register,
3515 * wait for !BSY and classify the attached device.
3517 * LOCKING:
3518 * Kernel thread context (may sleep)
3520 * RETURNS:
3521 * 0 on success, -errno otherwise.
3523 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3524 unsigned long deadline)
3526 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3527 int rc;
3529 DPRINTK("ENTER\n");
3531 /* do hardreset */
3532 rc = sata_port_hardreset(ap, timing, deadline);
3533 if (rc) {
3534 ata_port_printk(ap, KERN_ERR,
3535 "COMRESET failed (errno=%d)\n", rc);
3536 return rc;
3539 /* TODO: phy layer with polling, timeouts, etc. */
3540 if (ata_port_offline(ap)) {
3541 *class = ATA_DEV_NONE;
3542 DPRINTK("EXIT, link offline\n");
3543 return 0;
3546 /* wait a while before checking status, see SRST for more info */
3547 msleep(150);
3549 rc = ata_wait_ready(ap, deadline);
3550 /* link occupied, -ENODEV too is an error */
3551 if (rc) {
3552 ata_port_printk(ap, KERN_ERR,
3553 "COMRESET failed (errno=%d)\n", rc);
3554 return rc;
3557 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3559 *class = ata_dev_try_classify(ap, 0, NULL);
3561 DPRINTK("EXIT, class=%u\n", *class);
3562 return 0;
3566 * ata_std_postreset - standard postreset callback
3567 * @ap: the target ata_port
3568 * @classes: classes of attached devices
3570 * This function is invoked after a successful reset. Note that
3571 * the device might have been reset more than once using
3572 * different reset methods before postreset is invoked.
3574 * LOCKING:
3575 * Kernel thread context (may sleep)
3577 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3579 u32 serror;
3581 DPRINTK("ENTER\n");
3583 /* print link status */
3584 sata_print_link_status(ap);
3586 /* clear SError */
3587 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3588 sata_scr_write(ap, SCR_ERROR, serror);
3590 /* re-enable interrupts */
3591 if (!ap->ops->error_handler)
3592 ap->ops->irq_on(ap);
3594 /* is double-select really necessary? */
3595 if (classes[0] != ATA_DEV_NONE)
3596 ap->ops->dev_select(ap, 1);
3597 if (classes[1] != ATA_DEV_NONE)
3598 ap->ops->dev_select(ap, 0);
3600 /* bail out if no device is present */
3601 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3602 DPRINTK("EXIT, no device\n");
3603 return;
3606 /* set up device control */
3607 if (ap->ioaddr.ctl_addr)
3608 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3610 DPRINTK("EXIT\n");
3614 * ata_dev_same_device - Determine whether new ID matches configured device
3615 * @dev: device to compare against
3616 * @new_class: class of the new device
3617 * @new_id: IDENTIFY page of the new device
3619 * Compare @new_class and @new_id against @dev and determine
3620 * whether @dev is the device indicated by @new_class and
3621 * @new_id.
3623 * LOCKING:
3624 * None.
3626 * RETURNS:
3627 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3629 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3630 const u16 *new_id)
3632 const u16 *old_id = dev->id;
3633 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3634 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3635 u64 new_n_sectors;
3637 if (dev->class != new_class) {
3638 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3639 dev->class, new_class);
3640 return 0;
3643 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3644 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3645 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3646 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3647 new_n_sectors = ata_id_n_sectors(new_id);
3649 if (strcmp(model[0], model[1])) {
3650 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3651 "'%s' != '%s'\n", model[0], model[1]);
3652 return 0;
3655 if (strcmp(serial[0], serial[1])) {
3656 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3657 "'%s' != '%s'\n", serial[0], serial[1]);
3658 return 0;
3661 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3662 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3663 "%llu != %llu\n",
3664 (unsigned long long)dev->n_sectors,
3665 (unsigned long long)new_n_sectors);
3666 /* Are we the boot time size - if so we appear to be the
3667 same disk at this point and our HPA got reapplied */
3668 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3669 && ata_id_hpa_enabled(new_id))
3670 return 1;
3671 return 0;
3674 return 1;
3678 * ata_dev_reread_id - Re-read IDENTIFY data
3679 * @adev: target ATA device
3680 * @readid_flags: read ID flags
3682 * Re-read IDENTIFY page and make sure @dev is still attached to
3683 * the port.
3685 * LOCKING:
3686 * Kernel thread context (may sleep)
3688 * RETURNS:
3689 * 0 on success, negative errno otherwise
3691 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3693 unsigned int class = dev->class;
3694 u16 *id = (void *)dev->ap->sector_buf;
3695 int rc;
3697 /* read ID data */
3698 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3699 if (rc)
3700 return rc;
3702 /* is the device still there? */
3703 if (!ata_dev_same_device(dev, class, id))
3704 return -ENODEV;
3706 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3707 return 0;
3711 * ata_dev_revalidate - Revalidate ATA device
3712 * @dev: device to revalidate
3713 * @readid_flags: read ID flags
3715 * Re-read IDENTIFY page, make sure @dev is still attached to the
3716 * port and reconfigure it according to the new IDENTIFY page.
3718 * LOCKING:
3719 * Kernel thread context (may sleep)
3721 * RETURNS:
3722 * 0 on success, negative errno otherwise
3724 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3726 int rc;
3728 if (!ata_dev_enabled(dev))
3729 return -ENODEV;
3731 /* re-read ID */
3732 rc = ata_dev_reread_id(dev, readid_flags);
3733 if (rc)
3734 goto fail;
3736 /* configure device according to the new ID */
3737 rc = ata_dev_configure(dev);
3738 if (rc == 0)
3739 return 0;
3741 fail:
3742 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3743 return rc;
3746 struct ata_blacklist_entry {
3747 const char *model_num;
3748 const char *model_rev;
3749 unsigned long horkage;
3752 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3753 /* Devices with DMA related problems under Linux */
3754 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3755 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3756 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3757 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3758 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3759 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3760 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3761 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3762 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3763 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3764 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3765 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3766 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3767 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3768 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3769 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3770 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3771 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3772 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3773 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3774 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3775 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3776 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3777 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3778 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3779 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3780 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3781 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3782 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3784 /* Weird ATAPI devices */
3785 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3786 ATA_HORKAGE_DMA_RW_ONLY },
3788 /* Devices we expect to fail diagnostics */
3790 /* Devices where NCQ should be avoided */
3791 /* NCQ is slow */
3792 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3793 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3794 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3795 /* NCQ is broken */
3796 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3797 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3798 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3799 /* Blacklist entries taken from Silicon Image 3124/3132
3800 Windows driver .inf file - also several Linux problem reports */
3801 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3802 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3803 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3805 /* Devices with NCQ limits */
3807 /* End Marker */
3811 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3813 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3814 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3815 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3817 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3818 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3820 while (ad->model_num) {
3821 if (!strcmp(ad->model_num, model_num)) {
3822 if (ad->model_rev == NULL)
3823 return ad->horkage;
3824 if (!strcmp(ad->model_rev, model_rev))
3825 return ad->horkage;
3827 ad++;
3829 return 0;
3832 static int ata_dma_blacklisted(const struct ata_device *dev)
3834 /* We don't support polling DMA.
3835 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3836 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3838 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3839 (dev->flags & ATA_DFLAG_CDB_INTR))
3840 return 1;
3841 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3845 * ata_dev_xfermask - Compute supported xfermask of the given device
3846 * @dev: Device to compute xfermask for
3848 * Compute supported xfermask of @dev and store it in
3849 * dev->*_mask. This function is responsible for applying all
3850 * known limits including host controller limits, device
3851 * blacklist, etc...
3853 * LOCKING:
3854 * None.
3856 static void ata_dev_xfermask(struct ata_device *dev)
3858 struct ata_port *ap = dev->ap;
3859 struct ata_host *host = ap->host;
3860 unsigned long xfer_mask;
3862 /* controller modes available */
3863 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3864 ap->mwdma_mask, ap->udma_mask);
3866 /* drive modes available */
3867 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3868 dev->mwdma_mask, dev->udma_mask);
3869 xfer_mask &= ata_id_xfermask(dev->id);
3872 * CFA Advanced TrueIDE timings are not allowed on a shared
3873 * cable
3875 if (ata_dev_pair(dev)) {
3876 /* No PIO5 or PIO6 */
3877 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3878 /* No MWDMA3 or MWDMA 4 */
3879 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3882 if (ata_dma_blacklisted(dev)) {
3883 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3884 ata_dev_printk(dev, KERN_WARNING,
3885 "device is on DMA blacklist, disabling DMA\n");
3888 if ((host->flags & ATA_HOST_SIMPLEX) &&
3889 host->simplex_claimed && host->simplex_claimed != ap) {
3890 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3891 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3892 "other device, disabling DMA\n");
3895 if (ap->flags & ATA_FLAG_NO_IORDY)
3896 xfer_mask &= ata_pio_mask_no_iordy(dev);
3898 if (ap->ops->mode_filter)
3899 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3901 /* Apply cable rule here. Don't apply it early because when
3902 * we handle hot plug the cable type can itself change.
3903 * Check this last so that we know if the transfer rate was
3904 * solely limited by the cable.
3905 * Unknown or 80 wire cables reported host side are checked
3906 * drive side as well. Cases where we know a 40wire cable
3907 * is used safely for 80 are not checked here.
3909 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3910 /* UDMA/44 or higher would be available */
3911 if((ap->cbl == ATA_CBL_PATA40) ||
3912 (ata_drive_40wire(dev->id) &&
3913 (ap->cbl == ATA_CBL_PATA_UNK ||
3914 ap->cbl == ATA_CBL_PATA80))) {
3915 ata_dev_printk(dev, KERN_WARNING,
3916 "limited to UDMA/33 due to 40-wire cable\n");
3917 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3920 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3921 &dev->mwdma_mask, &dev->udma_mask);
3925 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3926 * @dev: Device to which command will be sent
3928 * Issue SET FEATURES - XFER MODE command to device @dev
3929 * on port @ap.
3931 * LOCKING:
3932 * PCI/etc. bus probe sem.
3934 * RETURNS:
3935 * 0 on success, AC_ERR_* mask otherwise.
3938 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3940 struct ata_taskfile tf;
3941 unsigned int err_mask;
3943 /* set up set-features taskfile */
3944 DPRINTK("set features - xfer mode\n");
3946 ata_tf_init(dev, &tf);
3947 tf.command = ATA_CMD_SET_FEATURES;
3948 tf.feature = SETFEATURES_XFER;
3949 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3950 tf.protocol = ATA_PROT_NODATA;
3951 tf.nsect = dev->xfer_mode;
3953 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3955 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3956 return err_mask;
3960 * ata_dev_init_params - Issue INIT DEV PARAMS command
3961 * @dev: Device to which command will be sent
3962 * @heads: Number of heads (taskfile parameter)
3963 * @sectors: Number of sectors (taskfile parameter)
3965 * LOCKING:
3966 * Kernel thread context (may sleep)
3968 * RETURNS:
3969 * 0 on success, AC_ERR_* mask otherwise.
3971 static unsigned int ata_dev_init_params(struct ata_device *dev,
3972 u16 heads, u16 sectors)
3974 struct ata_taskfile tf;
3975 unsigned int err_mask;
3977 /* Number of sectors per track 1-255. Number of heads 1-16 */
3978 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3979 return AC_ERR_INVALID;
3981 /* set up init dev params taskfile */
3982 DPRINTK("init dev params \n");
3984 ata_tf_init(dev, &tf);
3985 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3986 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3987 tf.protocol = ATA_PROT_NODATA;
3988 tf.nsect = sectors;
3989 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3991 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3993 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3994 return err_mask;
3998 * ata_sg_clean - Unmap DMA memory associated with command
3999 * @qc: Command containing DMA memory to be released
4001 * Unmap all mapped DMA memory associated with this command.
4003 * LOCKING:
4004 * spin_lock_irqsave(host lock)
4006 void ata_sg_clean(struct ata_queued_cmd *qc)
4008 struct ata_port *ap = qc->ap;
4009 struct scatterlist *sg = qc->__sg;
4010 int dir = qc->dma_dir;
4011 void *pad_buf = NULL;
4013 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4014 WARN_ON(sg == NULL);
4016 if (qc->flags & ATA_QCFLAG_SINGLE)
4017 WARN_ON(qc->n_elem > 1);
4019 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4021 /* if we padded the buffer out to 32-bit bound, and data
4022 * xfer direction is from-device, we must copy from the
4023 * pad buffer back into the supplied buffer
4025 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4026 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4028 if (qc->flags & ATA_QCFLAG_SG) {
4029 if (qc->n_elem)
4030 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4031 /* restore last sg */
4032 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4033 if (pad_buf) {
4034 struct scatterlist *psg = &qc->pad_sgent;
4035 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4036 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4037 kunmap_atomic(addr, KM_IRQ0);
4039 } else {
4040 if (qc->n_elem)
4041 dma_unmap_single(ap->dev,
4042 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4043 dir);
4044 /* restore sg */
4045 sg->length += qc->pad_len;
4046 if (pad_buf)
4047 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4048 pad_buf, qc->pad_len);
4051 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4052 qc->__sg = NULL;
4056 * ata_fill_sg - Fill PCI IDE PRD table
4057 * @qc: Metadata associated with taskfile to be transferred
4059 * Fill PCI IDE PRD (scatter-gather) table with segments
4060 * associated with the current disk command.
4062 * LOCKING:
4063 * spin_lock_irqsave(host lock)
4066 static void ata_fill_sg(struct ata_queued_cmd *qc)
4068 struct ata_port *ap = qc->ap;
4069 struct scatterlist *sg;
4070 unsigned int idx;
4072 WARN_ON(qc->__sg == NULL);
4073 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4075 idx = 0;
4076 ata_for_each_sg(sg, qc) {
4077 u32 addr, offset;
4078 u32 sg_len, len;
4080 /* determine if physical DMA addr spans 64K boundary.
4081 * Note h/w doesn't support 64-bit, so we unconditionally
4082 * truncate dma_addr_t to u32.
4084 addr = (u32) sg_dma_address(sg);
4085 sg_len = sg_dma_len(sg);
4087 while (sg_len) {
4088 offset = addr & 0xffff;
4089 len = sg_len;
4090 if ((offset + sg_len) > 0x10000)
4091 len = 0x10000 - offset;
4093 ap->prd[idx].addr = cpu_to_le32(addr);
4094 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4095 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4097 idx++;
4098 sg_len -= len;
4099 addr += len;
4103 if (idx)
4104 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4107 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4108 * @qc: Metadata associated with taskfile to check
4110 * Allow low-level driver to filter ATA PACKET commands, returning
4111 * a status indicating whether or not it is OK to use DMA for the
4112 * supplied PACKET command.
4114 * LOCKING:
4115 * spin_lock_irqsave(host lock)
4117 * RETURNS: 0 when ATAPI DMA can be used
4118 * nonzero otherwise
4120 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4122 struct ata_port *ap = qc->ap;
4123 int rc = 0; /* Assume ATAPI DMA is OK by default */
4125 /* some drives can only do ATAPI DMA on read/write */
4126 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4127 struct scsi_cmnd *cmd = qc->scsicmd;
4128 u8 *scsicmd = cmd->cmnd;
4130 switch (scsicmd[0]) {
4131 case READ_10:
4132 case WRITE_10:
4133 case READ_12:
4134 case WRITE_12:
4135 case READ_6:
4136 case WRITE_6:
4137 /* atapi dma maybe ok */
4138 break;
4139 default:
4140 /* turn off atapi dma */
4141 return 1;
4145 if (ap->ops->check_atapi_dma)
4146 rc = ap->ops->check_atapi_dma(qc);
4148 return rc;
4151 * ata_qc_prep - Prepare taskfile for submission
4152 * @qc: Metadata associated with taskfile to be prepared
4154 * Prepare ATA taskfile for submission.
4156 * LOCKING:
4157 * spin_lock_irqsave(host lock)
4159 void ata_qc_prep(struct ata_queued_cmd *qc)
4161 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4162 return;
4164 ata_fill_sg(qc);
4167 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4170 * ata_sg_init_one - Associate command with memory buffer
4171 * @qc: Command to be associated
4172 * @buf: Memory buffer
4173 * @buflen: Length of memory buffer, in bytes.
4175 * Initialize the data-related elements of queued_cmd @qc
4176 * to point to a single memory buffer, @buf of byte length @buflen.
4178 * LOCKING:
4179 * spin_lock_irqsave(host lock)
4182 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4184 qc->flags |= ATA_QCFLAG_SINGLE;
4186 qc->__sg = &qc->sgent;
4187 qc->n_elem = 1;
4188 qc->orig_n_elem = 1;
4189 qc->buf_virt = buf;
4190 qc->nbytes = buflen;
4192 sg_init_one(&qc->sgent, buf, buflen);
4196 * ata_sg_init - Associate command with scatter-gather table.
4197 * @qc: Command to be associated
4198 * @sg: Scatter-gather table.
4199 * @n_elem: Number of elements in s/g table.
4201 * Initialize the data-related elements of queued_cmd @qc
4202 * to point to a scatter-gather table @sg, containing @n_elem
4203 * elements.
4205 * LOCKING:
4206 * spin_lock_irqsave(host lock)
4209 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4210 unsigned int n_elem)
4212 qc->flags |= ATA_QCFLAG_SG;
4213 qc->__sg = sg;
4214 qc->n_elem = n_elem;
4215 qc->orig_n_elem = n_elem;
4219 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4220 * @qc: Command with memory buffer to be mapped.
4222 * DMA-map the memory buffer associated with queued_cmd @qc.
4224 * LOCKING:
4225 * spin_lock_irqsave(host lock)
4227 * RETURNS:
4228 * Zero on success, negative on error.
4231 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4233 struct ata_port *ap = qc->ap;
4234 int dir = qc->dma_dir;
4235 struct scatterlist *sg = qc->__sg;
4236 dma_addr_t dma_address;
4237 int trim_sg = 0;
4239 /* we must lengthen transfers to end on a 32-bit boundary */
4240 qc->pad_len = sg->length & 3;
4241 if (qc->pad_len) {
4242 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4243 struct scatterlist *psg = &qc->pad_sgent;
4245 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4247 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4249 if (qc->tf.flags & ATA_TFLAG_WRITE)
4250 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4251 qc->pad_len);
4253 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4254 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4255 /* trim sg */
4256 sg->length -= qc->pad_len;
4257 if (sg->length == 0)
4258 trim_sg = 1;
4260 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4261 sg->length, qc->pad_len);
4264 if (trim_sg) {
4265 qc->n_elem--;
4266 goto skip_map;
4269 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4270 sg->length, dir);
4271 if (dma_mapping_error(dma_address)) {
4272 /* restore sg */
4273 sg->length += qc->pad_len;
4274 return -1;
4277 sg_dma_address(sg) = dma_address;
4278 sg_dma_len(sg) = sg->length;
4280 skip_map:
4281 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4282 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4284 return 0;
4288 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4289 * @qc: Command with scatter-gather table to be mapped.
4291 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4293 * LOCKING:
4294 * spin_lock_irqsave(host lock)
4296 * RETURNS:
4297 * Zero on success, negative on error.
4301 static int ata_sg_setup(struct ata_queued_cmd *qc)
4303 struct ata_port *ap = qc->ap;
4304 struct scatterlist *sg = qc->__sg;
4305 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4306 int n_elem, pre_n_elem, dir, trim_sg = 0;
4308 VPRINTK("ENTER, ata%u\n", ap->print_id);
4309 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4311 /* we must lengthen transfers to end on a 32-bit boundary */
4312 qc->pad_len = lsg->length & 3;
4313 if (qc->pad_len) {
4314 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4315 struct scatterlist *psg = &qc->pad_sgent;
4316 unsigned int offset;
4318 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4320 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4323 * psg->page/offset are used to copy to-be-written
4324 * data in this function or read data in ata_sg_clean.
4326 offset = lsg->offset + lsg->length - qc->pad_len;
4327 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4328 psg->offset = offset_in_page(offset);
4330 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4331 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4332 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4333 kunmap_atomic(addr, KM_IRQ0);
4336 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4337 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4338 /* trim last sg */
4339 lsg->length -= qc->pad_len;
4340 if (lsg->length == 0)
4341 trim_sg = 1;
4343 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4344 qc->n_elem - 1, lsg->length, qc->pad_len);
4347 pre_n_elem = qc->n_elem;
4348 if (trim_sg && pre_n_elem)
4349 pre_n_elem--;
4351 if (!pre_n_elem) {
4352 n_elem = 0;
4353 goto skip_map;
4356 dir = qc->dma_dir;
4357 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4358 if (n_elem < 1) {
4359 /* restore last sg */
4360 lsg->length += qc->pad_len;
4361 return -1;
4364 DPRINTK("%d sg elements mapped\n", n_elem);
4366 skip_map:
4367 qc->n_elem = n_elem;
4369 return 0;
4373 * swap_buf_le16 - swap halves of 16-bit words in place
4374 * @buf: Buffer to swap
4375 * @buf_words: Number of 16-bit words in buffer.
4377 * Swap halves of 16-bit words if needed to convert from
4378 * little-endian byte order to native cpu byte order, or
4379 * vice-versa.
4381 * LOCKING:
4382 * Inherited from caller.
4384 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4386 #ifdef __BIG_ENDIAN
4387 unsigned int i;
4389 for (i = 0; i < buf_words; i++)
4390 buf[i] = le16_to_cpu(buf[i]);
4391 #endif /* __BIG_ENDIAN */
4395 * ata_data_xfer - Transfer data by PIO
4396 * @adev: device to target
4397 * @buf: data buffer
4398 * @buflen: buffer length
4399 * @write_data: read/write
4401 * Transfer data from/to the device data register by PIO.
4403 * LOCKING:
4404 * Inherited from caller.
4406 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4407 unsigned int buflen, int write_data)
4409 struct ata_port *ap = adev->ap;
4410 unsigned int words = buflen >> 1;
4412 /* Transfer multiple of 2 bytes */
4413 if (write_data)
4414 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4415 else
4416 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4418 /* Transfer trailing 1 byte, if any. */
4419 if (unlikely(buflen & 0x01)) {
4420 u16 align_buf[1] = { 0 };
4421 unsigned char *trailing_buf = buf + buflen - 1;
4423 if (write_data) {
4424 memcpy(align_buf, trailing_buf, 1);
4425 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4426 } else {
4427 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4428 memcpy(trailing_buf, align_buf, 1);
4434 * ata_data_xfer_noirq - Transfer data by PIO
4435 * @adev: device to target
4436 * @buf: data buffer
4437 * @buflen: buffer length
4438 * @write_data: read/write
4440 * Transfer data from/to the device data register by PIO. Do the
4441 * transfer with interrupts disabled.
4443 * LOCKING:
4444 * Inherited from caller.
4446 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4447 unsigned int buflen, int write_data)
4449 unsigned long flags;
4450 local_irq_save(flags);
4451 ata_data_xfer(adev, buf, buflen, write_data);
4452 local_irq_restore(flags);
4457 * ata_pio_sector - Transfer a sector of data.
4458 * @qc: Command on going
4460 * Transfer qc->sect_size bytes of data from/to the ATA device.
4462 * LOCKING:
4463 * Inherited from caller.
4466 static void ata_pio_sector(struct ata_queued_cmd *qc)
4468 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4469 struct scatterlist *sg = qc->__sg;
4470 struct ata_port *ap = qc->ap;
4471 struct page *page;
4472 unsigned int offset;
4473 unsigned char *buf;
4475 if (qc->curbytes == qc->nbytes - qc->sect_size)
4476 ap->hsm_task_state = HSM_ST_LAST;
4478 page = sg[qc->cursg].page;
4479 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4481 /* get the current page and offset */
4482 page = nth_page(page, (offset >> PAGE_SHIFT));
4483 offset %= PAGE_SIZE;
4485 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4487 if (PageHighMem(page)) {
4488 unsigned long flags;
4490 /* FIXME: use a bounce buffer */
4491 local_irq_save(flags);
4492 buf = kmap_atomic(page, KM_IRQ0);
4494 /* do the actual data transfer */
4495 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4497 kunmap_atomic(buf, KM_IRQ0);
4498 local_irq_restore(flags);
4499 } else {
4500 buf = page_address(page);
4501 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4504 qc->curbytes += qc->sect_size;
4505 qc->cursg_ofs += qc->sect_size;
4507 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4508 qc->cursg++;
4509 qc->cursg_ofs = 0;
4514 * ata_pio_sectors - Transfer one or many sectors.
4515 * @qc: Command on going
4517 * Transfer one or many sectors of data from/to the
4518 * ATA device for the DRQ request.
4520 * LOCKING:
4521 * Inherited from caller.
4524 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4526 if (is_multi_taskfile(&qc->tf)) {
4527 /* READ/WRITE MULTIPLE */
4528 unsigned int nsect;
4530 WARN_ON(qc->dev->multi_count == 0);
4532 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4533 qc->dev->multi_count);
4534 while (nsect--)
4535 ata_pio_sector(qc);
4536 } else
4537 ata_pio_sector(qc);
4541 * atapi_send_cdb - Write CDB bytes to hardware
4542 * @ap: Port to which ATAPI device is attached.
4543 * @qc: Taskfile currently active
4545 * When device has indicated its readiness to accept
4546 * a CDB, this function is called. Send the CDB.
4548 * LOCKING:
4549 * caller.
4552 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4554 /* send SCSI cdb */
4555 DPRINTK("send cdb\n");
4556 WARN_ON(qc->dev->cdb_len < 12);
4558 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4559 ata_altstatus(ap); /* flush */
4561 switch (qc->tf.protocol) {
4562 case ATA_PROT_ATAPI:
4563 ap->hsm_task_state = HSM_ST;
4564 break;
4565 case ATA_PROT_ATAPI_NODATA:
4566 ap->hsm_task_state = HSM_ST_LAST;
4567 break;
4568 case ATA_PROT_ATAPI_DMA:
4569 ap->hsm_task_state = HSM_ST_LAST;
4570 /* initiate bmdma */
4571 ap->ops->bmdma_start(qc);
4572 break;
4577 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4578 * @qc: Command on going
4579 * @bytes: number of bytes
4581 * Transfer Transfer data from/to the ATAPI device.
4583 * LOCKING:
4584 * Inherited from caller.
4588 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4590 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4591 struct scatterlist *sg = qc->__sg;
4592 struct ata_port *ap = qc->ap;
4593 struct page *page;
4594 unsigned char *buf;
4595 unsigned int offset, count;
4597 if (qc->curbytes + bytes >= qc->nbytes)
4598 ap->hsm_task_state = HSM_ST_LAST;
4600 next_sg:
4601 if (unlikely(qc->cursg >= qc->n_elem)) {
4603 * The end of qc->sg is reached and the device expects
4604 * more data to transfer. In order not to overrun qc->sg
4605 * and fulfill length specified in the byte count register,
4606 * - for read case, discard trailing data from the device
4607 * - for write case, padding zero data to the device
4609 u16 pad_buf[1] = { 0 };
4610 unsigned int words = bytes >> 1;
4611 unsigned int i;
4613 if (words) /* warning if bytes > 1 */
4614 ata_dev_printk(qc->dev, KERN_WARNING,
4615 "%u bytes trailing data\n", bytes);
4617 for (i = 0; i < words; i++)
4618 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4620 ap->hsm_task_state = HSM_ST_LAST;
4621 return;
4624 sg = &qc->__sg[qc->cursg];
4626 page = sg->page;
4627 offset = sg->offset + qc->cursg_ofs;
4629 /* get the current page and offset */
4630 page = nth_page(page, (offset >> PAGE_SHIFT));
4631 offset %= PAGE_SIZE;
4633 /* don't overrun current sg */
4634 count = min(sg->length - qc->cursg_ofs, bytes);
4636 /* don't cross page boundaries */
4637 count = min(count, (unsigned int)PAGE_SIZE - offset);
4639 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4641 if (PageHighMem(page)) {
4642 unsigned long flags;
4644 /* FIXME: use bounce buffer */
4645 local_irq_save(flags);
4646 buf = kmap_atomic(page, KM_IRQ0);
4648 /* do the actual data transfer */
4649 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4651 kunmap_atomic(buf, KM_IRQ0);
4652 local_irq_restore(flags);
4653 } else {
4654 buf = page_address(page);
4655 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4658 bytes -= count;
4659 qc->curbytes += count;
4660 qc->cursg_ofs += count;
4662 if (qc->cursg_ofs == sg->length) {
4663 qc->cursg++;
4664 qc->cursg_ofs = 0;
4667 if (bytes)
4668 goto next_sg;
4672 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4673 * @qc: Command on going
4675 * Transfer Transfer data from/to the ATAPI device.
4677 * LOCKING:
4678 * Inherited from caller.
4681 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4683 struct ata_port *ap = qc->ap;
4684 struct ata_device *dev = qc->dev;
4685 unsigned int ireason, bc_lo, bc_hi, bytes;
4686 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4688 /* Abuse qc->result_tf for temp storage of intermediate TF
4689 * here to save some kernel stack usage.
4690 * For normal completion, qc->result_tf is not relevant. For
4691 * error, qc->result_tf is later overwritten by ata_qc_complete().
4692 * So, the correctness of qc->result_tf is not affected.
4694 ap->ops->tf_read(ap, &qc->result_tf);
4695 ireason = qc->result_tf.nsect;
4696 bc_lo = qc->result_tf.lbam;
4697 bc_hi = qc->result_tf.lbah;
4698 bytes = (bc_hi << 8) | bc_lo;
4700 /* shall be cleared to zero, indicating xfer of data */
4701 if (ireason & (1 << 0))
4702 goto err_out;
4704 /* make sure transfer direction matches expected */
4705 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4706 if (do_write != i_write)
4707 goto err_out;
4709 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4711 __atapi_pio_bytes(qc, bytes);
4713 return;
4715 err_out:
4716 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4717 qc->err_mask |= AC_ERR_HSM;
4718 ap->hsm_task_state = HSM_ST_ERR;
4722 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4723 * @ap: the target ata_port
4724 * @qc: qc on going
4726 * RETURNS:
4727 * 1 if ok in workqueue, 0 otherwise.
4730 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4732 if (qc->tf.flags & ATA_TFLAG_POLLING)
4733 return 1;
4735 if (ap->hsm_task_state == HSM_ST_FIRST) {
4736 if (qc->tf.protocol == ATA_PROT_PIO &&
4737 (qc->tf.flags & ATA_TFLAG_WRITE))
4738 return 1;
4740 if (is_atapi_taskfile(&qc->tf) &&
4741 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4742 return 1;
4745 return 0;
4749 * ata_hsm_qc_complete - finish a qc running on standard HSM
4750 * @qc: Command to complete
4751 * @in_wq: 1 if called from workqueue, 0 otherwise
4753 * Finish @qc which is running on standard HSM.
4755 * LOCKING:
4756 * If @in_wq is zero, spin_lock_irqsave(host lock).
4757 * Otherwise, none on entry and grabs host lock.
4759 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4761 struct ata_port *ap = qc->ap;
4762 unsigned long flags;
4764 if (ap->ops->error_handler) {
4765 if (in_wq) {
4766 spin_lock_irqsave(ap->lock, flags);
4768 /* EH might have kicked in while host lock is
4769 * released.
4771 qc = ata_qc_from_tag(ap, qc->tag);
4772 if (qc) {
4773 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4774 ap->ops->irq_on(ap);
4775 ata_qc_complete(qc);
4776 } else
4777 ata_port_freeze(ap);
4780 spin_unlock_irqrestore(ap->lock, flags);
4781 } else {
4782 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4783 ata_qc_complete(qc);
4784 else
4785 ata_port_freeze(ap);
4787 } else {
4788 if (in_wq) {
4789 spin_lock_irqsave(ap->lock, flags);
4790 ap->ops->irq_on(ap);
4791 ata_qc_complete(qc);
4792 spin_unlock_irqrestore(ap->lock, flags);
4793 } else
4794 ata_qc_complete(qc);
4797 ata_altstatus(ap); /* flush */
4801 * ata_hsm_move - move the HSM to the next state.
4802 * @ap: the target ata_port
4803 * @qc: qc on going
4804 * @status: current device status
4805 * @in_wq: 1 if called from workqueue, 0 otherwise
4807 * RETURNS:
4808 * 1 when poll next status needed, 0 otherwise.
4810 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4811 u8 status, int in_wq)
4813 unsigned long flags = 0;
4814 int poll_next;
4816 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4818 /* Make sure ata_qc_issue_prot() does not throw things
4819 * like DMA polling into the workqueue. Notice that
4820 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4822 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4824 fsm_start:
4825 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4826 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4828 switch (ap->hsm_task_state) {
4829 case HSM_ST_FIRST:
4830 /* Send first data block or PACKET CDB */
4832 /* If polling, we will stay in the work queue after
4833 * sending the data. Otherwise, interrupt handler
4834 * takes over after sending the data.
4836 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4838 /* check device status */
4839 if (unlikely((status & ATA_DRQ) == 0)) {
4840 /* handle BSY=0, DRQ=0 as error */
4841 if (likely(status & (ATA_ERR | ATA_DF)))
4842 /* device stops HSM for abort/error */
4843 qc->err_mask |= AC_ERR_DEV;
4844 else
4845 /* HSM violation. Let EH handle this */
4846 qc->err_mask |= AC_ERR_HSM;
4848 ap->hsm_task_state = HSM_ST_ERR;
4849 goto fsm_start;
4852 /* Device should not ask for data transfer (DRQ=1)
4853 * when it finds something wrong.
4854 * We ignore DRQ here and stop the HSM by
4855 * changing hsm_task_state to HSM_ST_ERR and
4856 * let the EH abort the command or reset the device.
4858 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4859 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4860 "error, dev_stat 0x%X\n", status);
4861 qc->err_mask |= AC_ERR_HSM;
4862 ap->hsm_task_state = HSM_ST_ERR;
4863 goto fsm_start;
4866 /* Send the CDB (atapi) or the first data block (ata pio out).
4867 * During the state transition, interrupt handler shouldn't
4868 * be invoked before the data transfer is complete and
4869 * hsm_task_state is changed. Hence, the following locking.
4871 if (in_wq)
4872 spin_lock_irqsave(ap->lock, flags);
4874 if (qc->tf.protocol == ATA_PROT_PIO) {
4875 /* PIO data out protocol.
4876 * send first data block.
4879 /* ata_pio_sectors() might change the state
4880 * to HSM_ST_LAST. so, the state is changed here
4881 * before ata_pio_sectors().
4883 ap->hsm_task_state = HSM_ST;
4884 ata_pio_sectors(qc);
4885 ata_altstatus(ap); /* flush */
4886 } else
4887 /* send CDB */
4888 atapi_send_cdb(ap, qc);
4890 if (in_wq)
4891 spin_unlock_irqrestore(ap->lock, flags);
4893 /* if polling, ata_pio_task() handles the rest.
4894 * otherwise, interrupt handler takes over from here.
4896 break;
4898 case HSM_ST:
4899 /* complete command or read/write the data register */
4900 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4901 /* ATAPI PIO protocol */
4902 if ((status & ATA_DRQ) == 0) {
4903 /* No more data to transfer or device error.
4904 * Device error will be tagged in HSM_ST_LAST.
4906 ap->hsm_task_state = HSM_ST_LAST;
4907 goto fsm_start;
4910 /* Device should not ask for data transfer (DRQ=1)
4911 * when it finds something wrong.
4912 * We ignore DRQ here and stop the HSM by
4913 * changing hsm_task_state to HSM_ST_ERR and
4914 * let the EH abort the command or reset the device.
4916 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4917 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4918 "device error, dev_stat 0x%X\n",
4919 status);
4920 qc->err_mask |= AC_ERR_HSM;
4921 ap->hsm_task_state = HSM_ST_ERR;
4922 goto fsm_start;
4925 atapi_pio_bytes(qc);
4927 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4928 /* bad ireason reported by device */
4929 goto fsm_start;
4931 } else {
4932 /* ATA PIO protocol */
4933 if (unlikely((status & ATA_DRQ) == 0)) {
4934 /* handle BSY=0, DRQ=0 as error */
4935 if (likely(status & (ATA_ERR | ATA_DF)))
4936 /* device stops HSM for abort/error */
4937 qc->err_mask |= AC_ERR_DEV;
4938 else
4939 /* HSM violation. Let EH handle this.
4940 * Phantom devices also trigger this
4941 * condition. Mark hint.
4943 qc->err_mask |= AC_ERR_HSM |
4944 AC_ERR_NODEV_HINT;
4946 ap->hsm_task_state = HSM_ST_ERR;
4947 goto fsm_start;
4950 /* For PIO reads, some devices may ask for
4951 * data transfer (DRQ=1) alone with ERR=1.
4952 * We respect DRQ here and transfer one
4953 * block of junk data before changing the
4954 * hsm_task_state to HSM_ST_ERR.
4956 * For PIO writes, ERR=1 DRQ=1 doesn't make
4957 * sense since the data block has been
4958 * transferred to the device.
4960 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4961 /* data might be corrputed */
4962 qc->err_mask |= AC_ERR_DEV;
4964 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4965 ata_pio_sectors(qc);
4966 ata_altstatus(ap);
4967 status = ata_wait_idle(ap);
4970 if (status & (ATA_BUSY | ATA_DRQ))
4971 qc->err_mask |= AC_ERR_HSM;
4973 /* ata_pio_sectors() might change the
4974 * state to HSM_ST_LAST. so, the state
4975 * is changed after ata_pio_sectors().
4977 ap->hsm_task_state = HSM_ST_ERR;
4978 goto fsm_start;
4981 ata_pio_sectors(qc);
4983 if (ap->hsm_task_state == HSM_ST_LAST &&
4984 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4985 /* all data read */
4986 ata_altstatus(ap);
4987 status = ata_wait_idle(ap);
4988 goto fsm_start;
4992 ata_altstatus(ap); /* flush */
4993 poll_next = 1;
4994 break;
4996 case HSM_ST_LAST:
4997 if (unlikely(!ata_ok(status))) {
4998 qc->err_mask |= __ac_err_mask(status);
4999 ap->hsm_task_state = HSM_ST_ERR;
5000 goto fsm_start;
5003 /* no more data to transfer */
5004 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5005 ap->print_id, qc->dev->devno, status);
5007 WARN_ON(qc->err_mask);
5009 ap->hsm_task_state = HSM_ST_IDLE;
5011 /* complete taskfile transaction */
5012 ata_hsm_qc_complete(qc, in_wq);
5014 poll_next = 0;
5015 break;
5017 case HSM_ST_ERR:
5018 /* make sure qc->err_mask is available to
5019 * know what's wrong and recover
5021 WARN_ON(qc->err_mask == 0);
5023 ap->hsm_task_state = HSM_ST_IDLE;
5025 /* complete taskfile transaction */
5026 ata_hsm_qc_complete(qc, in_wq);
5028 poll_next = 0;
5029 break;
5030 default:
5031 poll_next = 0;
5032 BUG();
5035 return poll_next;
5038 static void ata_pio_task(struct work_struct *work)
5040 struct ata_port *ap =
5041 container_of(work, struct ata_port, port_task.work);
5042 struct ata_queued_cmd *qc = ap->port_task_data;
5043 u8 status;
5044 int poll_next;
5046 fsm_start:
5047 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5050 * This is purely heuristic. This is a fast path.
5051 * Sometimes when we enter, BSY will be cleared in
5052 * a chk-status or two. If not, the drive is probably seeking
5053 * or something. Snooze for a couple msecs, then
5054 * chk-status again. If still busy, queue delayed work.
5056 status = ata_busy_wait(ap, ATA_BUSY, 5);
5057 if (status & ATA_BUSY) {
5058 msleep(2);
5059 status = ata_busy_wait(ap, ATA_BUSY, 10);
5060 if (status & ATA_BUSY) {
5061 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5062 return;
5066 /* move the HSM */
5067 poll_next = ata_hsm_move(ap, qc, status, 1);
5069 /* another command or interrupt handler
5070 * may be running at this point.
5072 if (poll_next)
5073 goto fsm_start;
5077 * ata_qc_new - Request an available ATA command, for queueing
5078 * @ap: Port associated with device @dev
5079 * @dev: Device from whom we request an available command structure
5081 * LOCKING:
5082 * None.
5085 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5087 struct ata_queued_cmd *qc = NULL;
5088 unsigned int i;
5090 /* no command while frozen */
5091 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5092 return NULL;
5094 /* the last tag is reserved for internal command. */
5095 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5096 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5097 qc = __ata_qc_from_tag(ap, i);
5098 break;
5101 if (qc)
5102 qc->tag = i;
5104 return qc;
5108 * ata_qc_new_init - Request an available ATA command, and initialize it
5109 * @dev: Device from whom we request an available command structure
5111 * LOCKING:
5112 * None.
5115 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5117 struct ata_port *ap = dev->ap;
5118 struct ata_queued_cmd *qc;
5120 qc = ata_qc_new(ap);
5121 if (qc) {
5122 qc->scsicmd = NULL;
5123 qc->ap = ap;
5124 qc->dev = dev;
5126 ata_qc_reinit(qc);
5129 return qc;
5133 * ata_qc_free - free unused ata_queued_cmd
5134 * @qc: Command to complete
5136 * Designed to free unused ata_queued_cmd object
5137 * in case something prevents using it.
5139 * LOCKING:
5140 * spin_lock_irqsave(host lock)
5142 void ata_qc_free(struct ata_queued_cmd *qc)
5144 struct ata_port *ap = qc->ap;
5145 unsigned int tag;
5147 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5149 qc->flags = 0;
5150 tag = qc->tag;
5151 if (likely(ata_tag_valid(tag))) {
5152 qc->tag = ATA_TAG_POISON;
5153 clear_bit(tag, &ap->qc_allocated);
5157 void __ata_qc_complete(struct ata_queued_cmd *qc)
5159 struct ata_port *ap = qc->ap;
5161 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5162 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5164 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5165 ata_sg_clean(qc);
5167 /* command should be marked inactive atomically with qc completion */
5168 if (qc->tf.protocol == ATA_PROT_NCQ)
5169 ap->sactive &= ~(1 << qc->tag);
5170 else
5171 ap->active_tag = ATA_TAG_POISON;
5173 /* atapi: mark qc as inactive to prevent the interrupt handler
5174 * from completing the command twice later, before the error handler
5175 * is called. (when rc != 0 and atapi request sense is needed)
5177 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5178 ap->qc_active &= ~(1 << qc->tag);
5180 /* call completion callback */
5181 qc->complete_fn(qc);
5184 static void fill_result_tf(struct ata_queued_cmd *qc)
5186 struct ata_port *ap = qc->ap;
5188 qc->result_tf.flags = qc->tf.flags;
5189 ap->ops->tf_read(ap, &qc->result_tf);
5193 * ata_qc_complete - Complete an active ATA command
5194 * @qc: Command to complete
5195 * @err_mask: ATA Status register contents
5197 * Indicate to the mid and upper layers that an ATA
5198 * command has completed, with either an ok or not-ok status.
5200 * LOCKING:
5201 * spin_lock_irqsave(host lock)
5203 void ata_qc_complete(struct ata_queued_cmd *qc)
5205 struct ata_port *ap = qc->ap;
5207 /* XXX: New EH and old EH use different mechanisms to
5208 * synchronize EH with regular execution path.
5210 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5211 * Normal execution path is responsible for not accessing a
5212 * failed qc. libata core enforces the rule by returning NULL
5213 * from ata_qc_from_tag() for failed qcs.
5215 * Old EH depends on ata_qc_complete() nullifying completion
5216 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5217 * not synchronize with interrupt handler. Only PIO task is
5218 * taken care of.
5220 if (ap->ops->error_handler) {
5221 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5223 if (unlikely(qc->err_mask))
5224 qc->flags |= ATA_QCFLAG_FAILED;
5226 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5227 if (!ata_tag_internal(qc->tag)) {
5228 /* always fill result TF for failed qc */
5229 fill_result_tf(qc);
5230 ata_qc_schedule_eh(qc);
5231 return;
5235 /* read result TF if requested */
5236 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5237 fill_result_tf(qc);
5239 __ata_qc_complete(qc);
5240 } else {
5241 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5242 return;
5244 /* read result TF if failed or requested */
5245 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5246 fill_result_tf(qc);
5248 __ata_qc_complete(qc);
5253 * ata_qc_complete_multiple - Complete multiple qcs successfully
5254 * @ap: port in question
5255 * @qc_active: new qc_active mask
5256 * @finish_qc: LLDD callback invoked before completing a qc
5258 * Complete in-flight commands. This functions is meant to be
5259 * called from low-level driver's interrupt routine to complete
5260 * requests normally. ap->qc_active and @qc_active is compared
5261 * and commands are completed accordingly.
5263 * LOCKING:
5264 * spin_lock_irqsave(host lock)
5266 * RETURNS:
5267 * Number of completed commands on success, -errno otherwise.
5269 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5270 void (*finish_qc)(struct ata_queued_cmd *))
5272 int nr_done = 0;
5273 u32 done_mask;
5274 int i;
5276 done_mask = ap->qc_active ^ qc_active;
5278 if (unlikely(done_mask & qc_active)) {
5279 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5280 "(%08x->%08x)\n", ap->qc_active, qc_active);
5281 return -EINVAL;
5284 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5285 struct ata_queued_cmd *qc;
5287 if (!(done_mask & (1 << i)))
5288 continue;
5290 if ((qc = ata_qc_from_tag(ap, i))) {
5291 if (finish_qc)
5292 finish_qc(qc);
5293 ata_qc_complete(qc);
5294 nr_done++;
5298 return nr_done;
5301 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5303 struct ata_port *ap = qc->ap;
5305 switch (qc->tf.protocol) {
5306 case ATA_PROT_NCQ:
5307 case ATA_PROT_DMA:
5308 case ATA_PROT_ATAPI_DMA:
5309 return 1;
5311 case ATA_PROT_ATAPI:
5312 case ATA_PROT_PIO:
5313 if (ap->flags & ATA_FLAG_PIO_DMA)
5314 return 1;
5316 /* fall through */
5318 default:
5319 return 0;
5322 /* never reached */
5326 * ata_qc_issue - issue taskfile to device
5327 * @qc: command to issue to device
5329 * Prepare an ATA command to submission to device.
5330 * This includes mapping the data into a DMA-able
5331 * area, filling in the S/G table, and finally
5332 * writing the taskfile to hardware, starting the command.
5334 * LOCKING:
5335 * spin_lock_irqsave(host lock)
5337 void ata_qc_issue(struct ata_queued_cmd *qc)
5339 struct ata_port *ap = qc->ap;
5341 /* Make sure only one non-NCQ command is outstanding. The
5342 * check is skipped for old EH because it reuses active qc to
5343 * request ATAPI sense.
5345 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5347 if (qc->tf.protocol == ATA_PROT_NCQ) {
5348 WARN_ON(ap->sactive & (1 << qc->tag));
5349 ap->sactive |= 1 << qc->tag;
5350 } else {
5351 WARN_ON(ap->sactive);
5352 ap->active_tag = qc->tag;
5355 qc->flags |= ATA_QCFLAG_ACTIVE;
5356 ap->qc_active |= 1 << qc->tag;
5358 if (ata_should_dma_map(qc)) {
5359 if (qc->flags & ATA_QCFLAG_SG) {
5360 if (ata_sg_setup(qc))
5361 goto sg_err;
5362 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5363 if (ata_sg_setup_one(qc))
5364 goto sg_err;
5366 } else {
5367 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5370 ap->ops->qc_prep(qc);
5372 qc->err_mask |= ap->ops->qc_issue(qc);
5373 if (unlikely(qc->err_mask))
5374 goto err;
5375 return;
5377 sg_err:
5378 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5379 qc->err_mask |= AC_ERR_SYSTEM;
5380 err:
5381 ata_qc_complete(qc);
5385 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5386 * @qc: command to issue to device
5388 * Using various libata functions and hooks, this function
5389 * starts an ATA command. ATA commands are grouped into
5390 * classes called "protocols", and issuing each type of protocol
5391 * is slightly different.
5393 * May be used as the qc_issue() entry in ata_port_operations.
5395 * LOCKING:
5396 * spin_lock_irqsave(host lock)
5398 * RETURNS:
5399 * Zero on success, AC_ERR_* mask on failure
5402 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5404 struct ata_port *ap = qc->ap;
5406 /* Use polling pio if the LLD doesn't handle
5407 * interrupt driven pio and atapi CDB interrupt.
5409 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5410 switch (qc->tf.protocol) {
5411 case ATA_PROT_PIO:
5412 case ATA_PROT_NODATA:
5413 case ATA_PROT_ATAPI:
5414 case ATA_PROT_ATAPI_NODATA:
5415 qc->tf.flags |= ATA_TFLAG_POLLING;
5416 break;
5417 case ATA_PROT_ATAPI_DMA:
5418 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5419 /* see ata_dma_blacklisted() */
5420 BUG();
5421 break;
5422 default:
5423 break;
5427 /* Some controllers show flaky interrupt behavior after
5428 * setting xfer mode. Use polling instead.
5430 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5431 qc->tf.feature == SETFEATURES_XFER) &&
5432 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5433 qc->tf.flags |= ATA_TFLAG_POLLING;
5435 /* select the device */
5436 ata_dev_select(ap, qc->dev->devno, 1, 0);
5438 /* start the command */
5439 switch (qc->tf.protocol) {
5440 case ATA_PROT_NODATA:
5441 if (qc->tf.flags & ATA_TFLAG_POLLING)
5442 ata_qc_set_polling(qc);
5444 ata_tf_to_host(ap, &qc->tf);
5445 ap->hsm_task_state = HSM_ST_LAST;
5447 if (qc->tf.flags & ATA_TFLAG_POLLING)
5448 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5450 break;
5452 case ATA_PROT_DMA:
5453 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5455 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5456 ap->ops->bmdma_setup(qc); /* set up bmdma */
5457 ap->ops->bmdma_start(qc); /* initiate bmdma */
5458 ap->hsm_task_state = HSM_ST_LAST;
5459 break;
5461 case ATA_PROT_PIO:
5462 if (qc->tf.flags & ATA_TFLAG_POLLING)
5463 ata_qc_set_polling(qc);
5465 ata_tf_to_host(ap, &qc->tf);
5467 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5468 /* PIO data out protocol */
5469 ap->hsm_task_state = HSM_ST_FIRST;
5470 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5472 /* always send first data block using
5473 * the ata_pio_task() codepath.
5475 } else {
5476 /* PIO data in protocol */
5477 ap->hsm_task_state = HSM_ST;
5479 if (qc->tf.flags & ATA_TFLAG_POLLING)
5480 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5482 /* if polling, ata_pio_task() handles the rest.
5483 * otherwise, interrupt handler takes over from here.
5487 break;
5489 case ATA_PROT_ATAPI:
5490 case ATA_PROT_ATAPI_NODATA:
5491 if (qc->tf.flags & ATA_TFLAG_POLLING)
5492 ata_qc_set_polling(qc);
5494 ata_tf_to_host(ap, &qc->tf);
5496 ap->hsm_task_state = HSM_ST_FIRST;
5498 /* send cdb by polling if no cdb interrupt */
5499 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5500 (qc->tf.flags & ATA_TFLAG_POLLING))
5501 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5502 break;
5504 case ATA_PROT_ATAPI_DMA:
5505 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5507 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5508 ap->ops->bmdma_setup(qc); /* set up bmdma */
5509 ap->hsm_task_state = HSM_ST_FIRST;
5511 /* send cdb by polling if no cdb interrupt */
5512 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5513 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5514 break;
5516 default:
5517 WARN_ON(1);
5518 return AC_ERR_SYSTEM;
5521 return 0;
5525 * ata_host_intr - Handle host interrupt for given (port, task)
5526 * @ap: Port on which interrupt arrived (possibly...)
5527 * @qc: Taskfile currently active in engine
5529 * Handle host interrupt for given queued command. Currently,
5530 * only DMA interrupts are handled. All other commands are
5531 * handled via polling with interrupts disabled (nIEN bit).
5533 * LOCKING:
5534 * spin_lock_irqsave(host lock)
5536 * RETURNS:
5537 * One if interrupt was handled, zero if not (shared irq).
5540 inline unsigned int ata_host_intr (struct ata_port *ap,
5541 struct ata_queued_cmd *qc)
5543 struct ata_eh_info *ehi = &ap->eh_info;
5544 u8 status, host_stat = 0;
5546 VPRINTK("ata%u: protocol %d task_state %d\n",
5547 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5549 /* Check whether we are expecting interrupt in this state */
5550 switch (ap->hsm_task_state) {
5551 case HSM_ST_FIRST:
5552 /* Some pre-ATAPI-4 devices assert INTRQ
5553 * at this state when ready to receive CDB.
5556 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5557 * The flag was turned on only for atapi devices.
5558 * No need to check is_atapi_taskfile(&qc->tf) again.
5560 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5561 goto idle_irq;
5562 break;
5563 case HSM_ST_LAST:
5564 if (qc->tf.protocol == ATA_PROT_DMA ||
5565 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5566 /* check status of DMA engine */
5567 host_stat = ap->ops->bmdma_status(ap);
5568 VPRINTK("ata%u: host_stat 0x%X\n",
5569 ap->print_id, host_stat);
5571 /* if it's not our irq... */
5572 if (!(host_stat & ATA_DMA_INTR))
5573 goto idle_irq;
5575 /* before we do anything else, clear DMA-Start bit */
5576 ap->ops->bmdma_stop(qc);
5578 if (unlikely(host_stat & ATA_DMA_ERR)) {
5579 /* error when transfering data to/from memory */
5580 qc->err_mask |= AC_ERR_HOST_BUS;
5581 ap->hsm_task_state = HSM_ST_ERR;
5584 break;
5585 case HSM_ST:
5586 break;
5587 default:
5588 goto idle_irq;
5591 /* check altstatus */
5592 status = ata_altstatus(ap);
5593 if (status & ATA_BUSY)
5594 goto idle_irq;
5596 /* check main status, clearing INTRQ */
5597 status = ata_chk_status(ap);
5598 if (unlikely(status & ATA_BUSY))
5599 goto idle_irq;
5601 /* ack bmdma irq events */
5602 ap->ops->irq_clear(ap);
5604 ata_hsm_move(ap, qc, status, 0);
5606 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5607 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5608 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5610 return 1; /* irq handled */
5612 idle_irq:
5613 ap->stats.idle_irq++;
5615 #ifdef ATA_IRQ_TRAP
5616 if ((ap->stats.idle_irq % 1000) == 0) {
5617 ap->ops->irq_ack(ap, 0); /* debug trap */
5618 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5619 return 1;
5621 #endif
5622 return 0; /* irq not handled */
5626 * ata_interrupt - Default ATA host interrupt handler
5627 * @irq: irq line (unused)
5628 * @dev_instance: pointer to our ata_host information structure
5630 * Default interrupt handler for PCI IDE devices. Calls
5631 * ata_host_intr() for each port that is not disabled.
5633 * LOCKING:
5634 * Obtains host lock during operation.
5636 * RETURNS:
5637 * IRQ_NONE or IRQ_HANDLED.
5640 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5642 struct ata_host *host = dev_instance;
5643 unsigned int i;
5644 unsigned int handled = 0;
5645 unsigned long flags;
5647 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5648 spin_lock_irqsave(&host->lock, flags);
5650 for (i = 0; i < host->n_ports; i++) {
5651 struct ata_port *ap;
5653 ap = host->ports[i];
5654 if (ap &&
5655 !(ap->flags & ATA_FLAG_DISABLED)) {
5656 struct ata_queued_cmd *qc;
5658 qc = ata_qc_from_tag(ap, ap->active_tag);
5659 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5660 (qc->flags & ATA_QCFLAG_ACTIVE))
5661 handled |= ata_host_intr(ap, qc);
5665 spin_unlock_irqrestore(&host->lock, flags);
5667 return IRQ_RETVAL(handled);
5671 * sata_scr_valid - test whether SCRs are accessible
5672 * @ap: ATA port to test SCR accessibility for
5674 * Test whether SCRs are accessible for @ap.
5676 * LOCKING:
5677 * None.
5679 * RETURNS:
5680 * 1 if SCRs are accessible, 0 otherwise.
5682 int sata_scr_valid(struct ata_port *ap)
5684 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5688 * sata_scr_read - read SCR register of the specified port
5689 * @ap: ATA port to read SCR for
5690 * @reg: SCR to read
5691 * @val: Place to store read value
5693 * Read SCR register @reg of @ap into *@val. This function is
5694 * guaranteed to succeed if the cable type of the port is SATA
5695 * and the port implements ->scr_read.
5697 * LOCKING:
5698 * None.
5700 * RETURNS:
5701 * 0 on success, negative errno on failure.
5703 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5705 if (sata_scr_valid(ap)) {
5706 *val = ap->ops->scr_read(ap, reg);
5707 return 0;
5709 return -EOPNOTSUPP;
5713 * sata_scr_write - write SCR register of the specified port
5714 * @ap: ATA port to write SCR for
5715 * @reg: SCR to write
5716 * @val: value to write
5718 * Write @val to SCR register @reg of @ap. This function is
5719 * guaranteed to succeed if the cable type of the port is SATA
5720 * and the port implements ->scr_read.
5722 * LOCKING:
5723 * None.
5725 * RETURNS:
5726 * 0 on success, negative errno on failure.
5728 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5730 if (sata_scr_valid(ap)) {
5731 ap->ops->scr_write(ap, reg, val);
5732 return 0;
5734 return -EOPNOTSUPP;
5738 * sata_scr_write_flush - write SCR register of the specified port and flush
5739 * @ap: ATA port to write SCR for
5740 * @reg: SCR to write
5741 * @val: value to write
5743 * This function is identical to sata_scr_write() except that this
5744 * function performs flush after writing to the register.
5746 * LOCKING:
5747 * None.
5749 * RETURNS:
5750 * 0 on success, negative errno on failure.
5752 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5754 if (sata_scr_valid(ap)) {
5755 ap->ops->scr_write(ap, reg, val);
5756 ap->ops->scr_read(ap, reg);
5757 return 0;
5759 return -EOPNOTSUPP;
5763 * ata_port_online - test whether the given port is online
5764 * @ap: ATA port to test
5766 * Test whether @ap is online. Note that this function returns 0
5767 * if online status of @ap cannot be obtained, so
5768 * ata_port_online(ap) != !ata_port_offline(ap).
5770 * LOCKING:
5771 * None.
5773 * RETURNS:
5774 * 1 if the port online status is available and online.
5776 int ata_port_online(struct ata_port *ap)
5778 u32 sstatus;
5780 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5781 return 1;
5782 return 0;
5786 * ata_port_offline - test whether the given port is offline
5787 * @ap: ATA port to test
5789 * Test whether @ap is offline. Note that this function returns
5790 * 0 if offline status of @ap cannot be obtained, so
5791 * ata_port_online(ap) != !ata_port_offline(ap).
5793 * LOCKING:
5794 * None.
5796 * RETURNS:
5797 * 1 if the port offline status is available and offline.
5799 int ata_port_offline(struct ata_port *ap)
5801 u32 sstatus;
5803 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5804 return 1;
5805 return 0;
5808 int ata_flush_cache(struct ata_device *dev)
5810 unsigned int err_mask;
5811 u8 cmd;
5813 if (!ata_try_flush_cache(dev))
5814 return 0;
5816 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5817 cmd = ATA_CMD_FLUSH_EXT;
5818 else
5819 cmd = ATA_CMD_FLUSH;
5821 err_mask = ata_do_simple_cmd(dev, cmd);
5822 if (err_mask) {
5823 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5824 return -EIO;
5827 return 0;
5830 #ifdef CONFIG_PM
5831 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5832 unsigned int action, unsigned int ehi_flags,
5833 int wait)
5835 unsigned long flags;
5836 int i, rc;
5838 for (i = 0; i < host->n_ports; i++) {
5839 struct ata_port *ap = host->ports[i];
5841 /* Previous resume operation might still be in
5842 * progress. Wait for PM_PENDING to clear.
5844 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5845 ata_port_wait_eh(ap);
5846 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5849 /* request PM ops to EH */
5850 spin_lock_irqsave(ap->lock, flags);
5852 ap->pm_mesg = mesg;
5853 if (wait) {
5854 rc = 0;
5855 ap->pm_result = &rc;
5858 ap->pflags |= ATA_PFLAG_PM_PENDING;
5859 ap->eh_info.action |= action;
5860 ap->eh_info.flags |= ehi_flags;
5862 ata_port_schedule_eh(ap);
5864 spin_unlock_irqrestore(ap->lock, flags);
5866 /* wait and check result */
5867 if (wait) {
5868 ata_port_wait_eh(ap);
5869 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5870 if (rc)
5871 return rc;
5875 return 0;
5879 * ata_host_suspend - suspend host
5880 * @host: host to suspend
5881 * @mesg: PM message
5883 * Suspend @host. Actual operation is performed by EH. This
5884 * function requests EH to perform PM operations and waits for EH
5885 * to finish.
5887 * LOCKING:
5888 * Kernel thread context (may sleep).
5890 * RETURNS:
5891 * 0 on success, -errno on failure.
5893 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5895 int rc;
5897 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5898 if (rc == 0)
5899 host->dev->power.power_state = mesg;
5900 return rc;
5904 * ata_host_resume - resume host
5905 * @host: host to resume
5907 * Resume @host. Actual operation is performed by EH. This
5908 * function requests EH to perform PM operations and returns.
5909 * Note that all resume operations are performed parallely.
5911 * LOCKING:
5912 * Kernel thread context (may sleep).
5914 void ata_host_resume(struct ata_host *host)
5916 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5917 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5918 host->dev->power.power_state = PMSG_ON;
5920 #endif
5923 * ata_port_start - Set port up for dma.
5924 * @ap: Port to initialize
5926 * Called just after data structures for each port are
5927 * initialized. Allocates space for PRD table.
5929 * May be used as the port_start() entry in ata_port_operations.
5931 * LOCKING:
5932 * Inherited from caller.
5934 int ata_port_start(struct ata_port *ap)
5936 struct device *dev = ap->dev;
5937 int rc;
5939 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5940 GFP_KERNEL);
5941 if (!ap->prd)
5942 return -ENOMEM;
5944 rc = ata_pad_alloc(ap, dev);
5945 if (rc)
5946 return rc;
5948 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5949 (unsigned long long)ap->prd_dma);
5950 return 0;
5954 * ata_dev_init - Initialize an ata_device structure
5955 * @dev: Device structure to initialize
5957 * Initialize @dev in preparation for probing.
5959 * LOCKING:
5960 * Inherited from caller.
5962 void ata_dev_init(struct ata_device *dev)
5964 struct ata_port *ap = dev->ap;
5965 unsigned long flags;
5967 /* SATA spd limit is bound to the first device */
5968 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5970 /* High bits of dev->flags are used to record warm plug
5971 * requests which occur asynchronously. Synchronize using
5972 * host lock.
5974 spin_lock_irqsave(ap->lock, flags);
5975 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5976 spin_unlock_irqrestore(ap->lock, flags);
5978 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5979 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5980 dev->pio_mask = UINT_MAX;
5981 dev->mwdma_mask = UINT_MAX;
5982 dev->udma_mask = UINT_MAX;
5986 * ata_port_alloc - allocate and initialize basic ATA port resources
5987 * @host: ATA host this allocated port belongs to
5989 * Allocate and initialize basic ATA port resources.
5991 * RETURNS:
5992 * Allocate ATA port on success, NULL on failure.
5994 * LOCKING:
5995 * Inherited from calling layer (may sleep).
5997 struct ata_port *ata_port_alloc(struct ata_host *host)
5999 struct ata_port *ap;
6000 unsigned int i;
6002 DPRINTK("ENTER\n");
6004 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6005 if (!ap)
6006 return NULL;
6008 ap->pflags |= ATA_PFLAG_INITIALIZING;
6009 ap->lock = &host->lock;
6010 ap->flags = ATA_FLAG_DISABLED;
6011 ap->print_id = -1;
6012 ap->ctl = ATA_DEVCTL_OBS;
6013 ap->host = host;
6014 ap->dev = host->dev;
6016 ap->hw_sata_spd_limit = UINT_MAX;
6017 ap->active_tag = ATA_TAG_POISON;
6018 ap->last_ctl = 0xFF;
6020 #if defined(ATA_VERBOSE_DEBUG)
6021 /* turn on all debugging levels */
6022 ap->msg_enable = 0x00FF;
6023 #elif defined(ATA_DEBUG)
6024 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6025 #else
6026 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6027 #endif
6029 INIT_DELAYED_WORK(&ap->port_task, NULL);
6030 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6031 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6032 INIT_LIST_HEAD(&ap->eh_done_q);
6033 init_waitqueue_head(&ap->eh_wait_q);
6035 ap->cbl = ATA_CBL_NONE;
6037 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6038 struct ata_device *dev = &ap->device[i];
6039 dev->ap = ap;
6040 dev->devno = i;
6041 ata_dev_init(dev);
6044 #ifdef ATA_IRQ_TRAP
6045 ap->stats.unhandled_irq = 1;
6046 ap->stats.idle_irq = 1;
6047 #endif
6048 return ap;
6051 static void ata_host_release(struct device *gendev, void *res)
6053 struct ata_host *host = dev_get_drvdata(gendev);
6054 int i;
6056 for (i = 0; i < host->n_ports; i++) {
6057 struct ata_port *ap = host->ports[i];
6059 if (!ap)
6060 continue;
6062 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6063 ap->ops->port_stop(ap);
6066 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6067 host->ops->host_stop(host);
6069 for (i = 0; i < host->n_ports; i++) {
6070 struct ata_port *ap = host->ports[i];
6072 if (!ap)
6073 continue;
6075 if (ap->scsi_host)
6076 scsi_host_put(ap->scsi_host);
6078 kfree(ap);
6079 host->ports[i] = NULL;
6082 dev_set_drvdata(gendev, NULL);
6086 * ata_host_alloc - allocate and init basic ATA host resources
6087 * @dev: generic device this host is associated with
6088 * @max_ports: maximum number of ATA ports associated with this host
6090 * Allocate and initialize basic ATA host resources. LLD calls
6091 * this function to allocate a host, initializes it fully and
6092 * attaches it using ata_host_register().
6094 * @max_ports ports are allocated and host->n_ports is
6095 * initialized to @max_ports. The caller is allowed to decrease
6096 * host->n_ports before calling ata_host_register(). The unused
6097 * ports will be automatically freed on registration.
6099 * RETURNS:
6100 * Allocate ATA host on success, NULL on failure.
6102 * LOCKING:
6103 * Inherited from calling layer (may sleep).
6105 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6107 struct ata_host *host;
6108 size_t sz;
6109 int i;
6111 DPRINTK("ENTER\n");
6113 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6114 return NULL;
6116 /* alloc a container for our list of ATA ports (buses) */
6117 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6118 /* alloc a container for our list of ATA ports (buses) */
6119 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6120 if (!host)
6121 goto err_out;
6123 devres_add(dev, host);
6124 dev_set_drvdata(dev, host);
6126 spin_lock_init(&host->lock);
6127 host->dev = dev;
6128 host->n_ports = max_ports;
6130 /* allocate ports bound to this host */
6131 for (i = 0; i < max_ports; i++) {
6132 struct ata_port *ap;
6134 ap = ata_port_alloc(host);
6135 if (!ap)
6136 goto err_out;
6138 ap->port_no = i;
6139 host->ports[i] = ap;
6142 devres_remove_group(dev, NULL);
6143 return host;
6145 err_out:
6146 devres_release_group(dev, NULL);
6147 return NULL;
6151 * ata_host_alloc_pinfo - alloc host and init with port_info array
6152 * @dev: generic device this host is associated with
6153 * @ppi: array of ATA port_info to initialize host with
6154 * @n_ports: number of ATA ports attached to this host
6156 * Allocate ATA host and initialize with info from @ppi. If NULL
6157 * terminated, @ppi may contain fewer entries than @n_ports. The
6158 * last entry will be used for the remaining ports.
6160 * RETURNS:
6161 * Allocate ATA host on success, NULL on failure.
6163 * LOCKING:
6164 * Inherited from calling layer (may sleep).
6166 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6167 const struct ata_port_info * const * ppi,
6168 int n_ports)
6170 const struct ata_port_info *pi;
6171 struct ata_host *host;
6172 int i, j;
6174 host = ata_host_alloc(dev, n_ports);
6175 if (!host)
6176 return NULL;
6178 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6179 struct ata_port *ap = host->ports[i];
6181 if (ppi[j])
6182 pi = ppi[j++];
6184 ap->pio_mask = pi->pio_mask;
6185 ap->mwdma_mask = pi->mwdma_mask;
6186 ap->udma_mask = pi->udma_mask;
6187 ap->flags |= pi->flags;
6188 ap->ops = pi->port_ops;
6190 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6191 host->ops = pi->port_ops;
6192 if (!host->private_data && pi->private_data)
6193 host->private_data = pi->private_data;
6196 return host;
6200 * ata_host_start - start and freeze ports of an ATA host
6201 * @host: ATA host to start ports for
6203 * Start and then freeze ports of @host. Started status is
6204 * recorded in host->flags, so this function can be called
6205 * multiple times. Ports are guaranteed to get started only
6206 * once. If host->ops isn't initialized yet, its set to the
6207 * first non-dummy port ops.
6209 * LOCKING:
6210 * Inherited from calling layer (may sleep).
6212 * RETURNS:
6213 * 0 if all ports are started successfully, -errno otherwise.
6215 int ata_host_start(struct ata_host *host)
6217 int i, rc;
6219 if (host->flags & ATA_HOST_STARTED)
6220 return 0;
6222 for (i = 0; i < host->n_ports; i++) {
6223 struct ata_port *ap = host->ports[i];
6225 if (!host->ops && !ata_port_is_dummy(ap))
6226 host->ops = ap->ops;
6228 if (ap->ops->port_start) {
6229 rc = ap->ops->port_start(ap);
6230 if (rc) {
6231 ata_port_printk(ap, KERN_ERR, "failed to "
6232 "start port (errno=%d)\n", rc);
6233 goto err_out;
6237 ata_eh_freeze_port(ap);
6240 host->flags |= ATA_HOST_STARTED;
6241 return 0;
6243 err_out:
6244 while (--i >= 0) {
6245 struct ata_port *ap = host->ports[i];
6247 if (ap->ops->port_stop)
6248 ap->ops->port_stop(ap);
6250 return rc;
6254 * ata_sas_host_init - Initialize a host struct
6255 * @host: host to initialize
6256 * @dev: device host is attached to
6257 * @flags: host flags
6258 * @ops: port_ops
6260 * LOCKING:
6261 * PCI/etc. bus probe sem.
6264 /* KILLME - the only user left is ipr */
6265 void ata_host_init(struct ata_host *host, struct device *dev,
6266 unsigned long flags, const struct ata_port_operations *ops)
6268 spin_lock_init(&host->lock);
6269 host->dev = dev;
6270 host->flags = flags;
6271 host->ops = ops;
6275 * ata_host_register - register initialized ATA host
6276 * @host: ATA host to register
6277 * @sht: template for SCSI host
6279 * Register initialized ATA host. @host is allocated using
6280 * ata_host_alloc() and fully initialized by LLD. This function
6281 * starts ports, registers @host with ATA and SCSI layers and
6282 * probe registered devices.
6284 * LOCKING:
6285 * Inherited from calling layer (may sleep).
6287 * RETURNS:
6288 * 0 on success, -errno otherwise.
6290 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6292 int i, rc;
6294 /* host must have been started */
6295 if (!(host->flags & ATA_HOST_STARTED)) {
6296 dev_printk(KERN_ERR, host->dev,
6297 "BUG: trying to register unstarted host\n");
6298 WARN_ON(1);
6299 return -EINVAL;
6302 /* Blow away unused ports. This happens when LLD can't
6303 * determine the exact number of ports to allocate at
6304 * allocation time.
6306 for (i = host->n_ports; host->ports[i]; i++)
6307 kfree(host->ports[i]);
6309 /* give ports names and add SCSI hosts */
6310 for (i = 0; i < host->n_ports; i++)
6311 host->ports[i]->print_id = ata_print_id++;
6313 rc = ata_scsi_add_hosts(host, sht);
6314 if (rc)
6315 return rc;
6317 /* set cable, sata_spd_limit and report */
6318 for (i = 0; i < host->n_ports; i++) {
6319 struct ata_port *ap = host->ports[i];
6320 int irq_line;
6321 u32 scontrol;
6322 unsigned long xfer_mask;
6324 /* set SATA cable type if still unset */
6325 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6326 ap->cbl = ATA_CBL_SATA;
6328 /* init sata_spd_limit to the current value */
6329 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6330 int spd = (scontrol >> 4) & 0xf;
6331 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6333 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6335 /* report the secondary IRQ for second channel legacy */
6336 irq_line = host->irq;
6337 if (i == 1 && host->irq2)
6338 irq_line = host->irq2;
6340 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6341 ap->udma_mask);
6343 /* print per-port info to dmesg */
6344 if (!ata_port_is_dummy(ap))
6345 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6346 "ctl 0x%p bmdma 0x%p irq %d\n",
6347 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6348 ata_mode_string(xfer_mask),
6349 ap->ioaddr.cmd_addr,
6350 ap->ioaddr.ctl_addr,
6351 ap->ioaddr.bmdma_addr,
6352 irq_line);
6353 else
6354 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6357 /* perform each probe synchronously */
6358 DPRINTK("probe begin\n");
6359 for (i = 0; i < host->n_ports; i++) {
6360 struct ata_port *ap = host->ports[i];
6361 int rc;
6363 /* probe */
6364 if (ap->ops->error_handler) {
6365 struct ata_eh_info *ehi = &ap->eh_info;
6366 unsigned long flags;
6368 ata_port_probe(ap);
6370 /* kick EH for boot probing */
6371 spin_lock_irqsave(ap->lock, flags);
6373 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6374 ehi->action |= ATA_EH_SOFTRESET;
6375 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6377 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6378 ap->pflags |= ATA_PFLAG_LOADING;
6379 ata_port_schedule_eh(ap);
6381 spin_unlock_irqrestore(ap->lock, flags);
6383 /* wait for EH to finish */
6384 ata_port_wait_eh(ap);
6385 } else {
6386 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6387 rc = ata_bus_probe(ap);
6388 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6390 if (rc) {
6391 /* FIXME: do something useful here?
6392 * Current libata behavior will
6393 * tear down everything when
6394 * the module is removed
6395 * or the h/w is unplugged.
6401 /* probes are done, now scan each port's disk(s) */
6402 DPRINTK("host probe begin\n");
6403 for (i = 0; i < host->n_ports; i++) {
6404 struct ata_port *ap = host->ports[i];
6406 ata_scsi_scan_host(ap);
6409 return 0;
6413 * ata_host_activate - start host, request IRQ and register it
6414 * @host: target ATA host
6415 * @irq: IRQ to request
6416 * @irq_handler: irq_handler used when requesting IRQ
6417 * @irq_flags: irq_flags used when requesting IRQ
6418 * @sht: scsi_host_template to use when registering the host
6420 * After allocating an ATA host and initializing it, most libata
6421 * LLDs perform three steps to activate the host - start host,
6422 * request IRQ and register it. This helper takes necessasry
6423 * arguments and performs the three steps in one go.
6425 * LOCKING:
6426 * Inherited from calling layer (may sleep).
6428 * RETURNS:
6429 * 0 on success, -errno otherwise.
6431 int ata_host_activate(struct ata_host *host, int irq,
6432 irq_handler_t irq_handler, unsigned long irq_flags,
6433 struct scsi_host_template *sht)
6435 int rc;
6437 rc = ata_host_start(host);
6438 if (rc)
6439 return rc;
6441 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6442 dev_driver_string(host->dev), host);
6443 if (rc)
6444 return rc;
6446 rc = ata_host_register(host, sht);
6447 /* if failed, just free the IRQ and leave ports alone */
6448 if (rc)
6449 devm_free_irq(host->dev, irq, host);
6451 return rc;
6455 * ata_port_detach - Detach ATA port in prepration of device removal
6456 * @ap: ATA port to be detached
6458 * Detach all ATA devices and the associated SCSI devices of @ap;
6459 * then, remove the associated SCSI host. @ap is guaranteed to
6460 * be quiescent on return from this function.
6462 * LOCKING:
6463 * Kernel thread context (may sleep).
6465 void ata_port_detach(struct ata_port *ap)
6467 unsigned long flags;
6468 int i;
6470 if (!ap->ops->error_handler)
6471 goto skip_eh;
6473 /* tell EH we're leaving & flush EH */
6474 spin_lock_irqsave(ap->lock, flags);
6475 ap->pflags |= ATA_PFLAG_UNLOADING;
6476 spin_unlock_irqrestore(ap->lock, flags);
6478 ata_port_wait_eh(ap);
6480 /* EH is now guaranteed to see UNLOADING, so no new device
6481 * will be attached. Disable all existing devices.
6483 spin_lock_irqsave(ap->lock, flags);
6485 for (i = 0; i < ATA_MAX_DEVICES; i++)
6486 ata_dev_disable(&ap->device[i]);
6488 spin_unlock_irqrestore(ap->lock, flags);
6490 /* Final freeze & EH. All in-flight commands are aborted. EH
6491 * will be skipped and retrials will be terminated with bad
6492 * target.
6494 spin_lock_irqsave(ap->lock, flags);
6495 ata_port_freeze(ap); /* won't be thawed */
6496 spin_unlock_irqrestore(ap->lock, flags);
6498 ata_port_wait_eh(ap);
6500 /* Flush hotplug task. The sequence is similar to
6501 * ata_port_flush_task().
6503 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6504 cancel_delayed_work(&ap->hotplug_task);
6505 cancel_work_sync(&ap->hotplug_task.work);
6507 skip_eh:
6508 /* remove the associated SCSI host */
6509 scsi_remove_host(ap->scsi_host);
6513 * ata_host_detach - Detach all ports of an ATA host
6514 * @host: Host to detach
6516 * Detach all ports of @host.
6518 * LOCKING:
6519 * Kernel thread context (may sleep).
6521 void ata_host_detach(struct ata_host *host)
6523 int i;
6525 for (i = 0; i < host->n_ports; i++)
6526 ata_port_detach(host->ports[i]);
6530 * ata_std_ports - initialize ioaddr with standard port offsets.
6531 * @ioaddr: IO address structure to be initialized
6533 * Utility function which initializes data_addr, error_addr,
6534 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6535 * device_addr, status_addr, and command_addr to standard offsets
6536 * relative to cmd_addr.
6538 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6541 void ata_std_ports(struct ata_ioports *ioaddr)
6543 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6544 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6545 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6546 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6547 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6548 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6549 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6550 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6551 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6552 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6556 #ifdef CONFIG_PCI
6559 * ata_pci_remove_one - PCI layer callback for device removal
6560 * @pdev: PCI device that was removed
6562 * PCI layer indicates to libata via this hook that hot-unplug or
6563 * module unload event has occurred. Detach all ports. Resource
6564 * release is handled via devres.
6566 * LOCKING:
6567 * Inherited from PCI layer (may sleep).
6569 void ata_pci_remove_one(struct pci_dev *pdev)
6571 struct device *dev = pci_dev_to_dev(pdev);
6572 struct ata_host *host = dev_get_drvdata(dev);
6574 ata_host_detach(host);
6577 /* move to PCI subsystem */
6578 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6580 unsigned long tmp = 0;
6582 switch (bits->width) {
6583 case 1: {
6584 u8 tmp8 = 0;
6585 pci_read_config_byte(pdev, bits->reg, &tmp8);
6586 tmp = tmp8;
6587 break;
6589 case 2: {
6590 u16 tmp16 = 0;
6591 pci_read_config_word(pdev, bits->reg, &tmp16);
6592 tmp = tmp16;
6593 break;
6595 case 4: {
6596 u32 tmp32 = 0;
6597 pci_read_config_dword(pdev, bits->reg, &tmp32);
6598 tmp = tmp32;
6599 break;
6602 default:
6603 return -EINVAL;
6606 tmp &= bits->mask;
6608 return (tmp == bits->val) ? 1 : 0;
6611 #ifdef CONFIG_PM
6612 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6614 pci_save_state(pdev);
6615 pci_disable_device(pdev);
6617 if (mesg.event == PM_EVENT_SUSPEND)
6618 pci_set_power_state(pdev, PCI_D3hot);
6621 int ata_pci_device_do_resume(struct pci_dev *pdev)
6623 int rc;
6625 pci_set_power_state(pdev, PCI_D0);
6626 pci_restore_state(pdev);
6628 rc = pcim_enable_device(pdev);
6629 if (rc) {
6630 dev_printk(KERN_ERR, &pdev->dev,
6631 "failed to enable device after resume (%d)\n", rc);
6632 return rc;
6635 pci_set_master(pdev);
6636 return 0;
6639 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6641 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6642 int rc = 0;
6644 rc = ata_host_suspend(host, mesg);
6645 if (rc)
6646 return rc;
6648 ata_pci_device_do_suspend(pdev, mesg);
6650 return 0;
6653 int ata_pci_device_resume(struct pci_dev *pdev)
6655 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6656 int rc;
6658 rc = ata_pci_device_do_resume(pdev);
6659 if (rc == 0)
6660 ata_host_resume(host);
6661 return rc;
6663 #endif /* CONFIG_PM */
6665 #endif /* CONFIG_PCI */
6668 static int __init ata_init(void)
6670 ata_probe_timeout *= HZ;
6671 ata_wq = create_workqueue("ata");
6672 if (!ata_wq)
6673 return -ENOMEM;
6675 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6676 if (!ata_aux_wq) {
6677 destroy_workqueue(ata_wq);
6678 return -ENOMEM;
6681 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6682 return 0;
6685 static void __exit ata_exit(void)
6687 destroy_workqueue(ata_wq);
6688 destroy_workqueue(ata_aux_wq);
6691 subsys_initcall(ata_init);
6692 module_exit(ata_exit);
6694 static unsigned long ratelimit_time;
6695 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6697 int ata_ratelimit(void)
6699 int rc;
6700 unsigned long flags;
6702 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6704 if (time_after(jiffies, ratelimit_time)) {
6705 rc = 1;
6706 ratelimit_time = jiffies + (HZ/5);
6707 } else
6708 rc = 0;
6710 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6712 return rc;
6716 * ata_wait_register - wait until register value changes
6717 * @reg: IO-mapped register
6718 * @mask: Mask to apply to read register value
6719 * @val: Wait condition
6720 * @interval_msec: polling interval in milliseconds
6721 * @timeout_msec: timeout in milliseconds
6723 * Waiting for some bits of register to change is a common
6724 * operation for ATA controllers. This function reads 32bit LE
6725 * IO-mapped register @reg and tests for the following condition.
6727 * (*@reg & mask) != val
6729 * If the condition is met, it returns; otherwise, the process is
6730 * repeated after @interval_msec until timeout.
6732 * LOCKING:
6733 * Kernel thread context (may sleep)
6735 * RETURNS:
6736 * The final register value.
6738 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6739 unsigned long interval_msec,
6740 unsigned long timeout_msec)
6742 unsigned long timeout;
6743 u32 tmp;
6745 tmp = ioread32(reg);
6747 /* Calculate timeout _after_ the first read to make sure
6748 * preceding writes reach the controller before starting to
6749 * eat away the timeout.
6751 timeout = jiffies + (timeout_msec * HZ) / 1000;
6753 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6754 msleep(interval_msec);
6755 tmp = ioread32(reg);
6758 return tmp;
6762 * Dummy port_ops
6764 static void ata_dummy_noret(struct ata_port *ap) { }
6765 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6766 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6768 static u8 ata_dummy_check_status(struct ata_port *ap)
6770 return ATA_DRDY;
6773 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6775 return AC_ERR_SYSTEM;
6778 const struct ata_port_operations ata_dummy_port_ops = {
6779 .port_disable = ata_port_disable,
6780 .check_status = ata_dummy_check_status,
6781 .check_altstatus = ata_dummy_check_status,
6782 .dev_select = ata_noop_dev_select,
6783 .qc_prep = ata_noop_qc_prep,
6784 .qc_issue = ata_dummy_qc_issue,
6785 .freeze = ata_dummy_noret,
6786 .thaw = ata_dummy_noret,
6787 .error_handler = ata_dummy_noret,
6788 .post_internal_cmd = ata_dummy_qc_noret,
6789 .irq_clear = ata_dummy_noret,
6790 .port_start = ata_dummy_ret0,
6791 .port_stop = ata_dummy_noret,
6794 const struct ata_port_info ata_dummy_port_info = {
6795 .port_ops = &ata_dummy_port_ops,
6799 * libata is essentially a library of internal helper functions for
6800 * low-level ATA host controller drivers. As such, the API/ABI is
6801 * likely to change as new drivers are added and updated.
6802 * Do not depend on ABI/API stability.
6805 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6806 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6807 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6808 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6809 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6810 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6811 EXPORT_SYMBOL_GPL(ata_std_ports);
6812 EXPORT_SYMBOL_GPL(ata_host_init);
6813 EXPORT_SYMBOL_GPL(ata_host_alloc);
6814 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6815 EXPORT_SYMBOL_GPL(ata_host_start);
6816 EXPORT_SYMBOL_GPL(ata_host_register);
6817 EXPORT_SYMBOL_GPL(ata_host_activate);
6818 EXPORT_SYMBOL_GPL(ata_host_detach);
6819 EXPORT_SYMBOL_GPL(ata_sg_init);
6820 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6821 EXPORT_SYMBOL_GPL(ata_hsm_move);
6822 EXPORT_SYMBOL_GPL(ata_qc_complete);
6823 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6824 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6825 EXPORT_SYMBOL_GPL(ata_tf_load);
6826 EXPORT_SYMBOL_GPL(ata_tf_read);
6827 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6828 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6829 EXPORT_SYMBOL_GPL(sata_print_link_status);
6830 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6831 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6832 EXPORT_SYMBOL_GPL(ata_check_status);
6833 EXPORT_SYMBOL_GPL(ata_altstatus);
6834 EXPORT_SYMBOL_GPL(ata_exec_command);
6835 EXPORT_SYMBOL_GPL(ata_port_start);
6836 EXPORT_SYMBOL_GPL(ata_interrupt);
6837 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6838 EXPORT_SYMBOL_GPL(ata_data_xfer);
6839 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6840 EXPORT_SYMBOL_GPL(ata_qc_prep);
6841 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6842 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6843 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6844 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6845 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6846 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6847 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6848 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6849 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6850 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6851 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6852 EXPORT_SYMBOL_GPL(ata_port_probe);
6853 EXPORT_SYMBOL_GPL(ata_dev_disable);
6854 EXPORT_SYMBOL_GPL(sata_set_spd);
6855 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6856 EXPORT_SYMBOL_GPL(sata_phy_resume);
6857 EXPORT_SYMBOL_GPL(sata_phy_reset);
6858 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6859 EXPORT_SYMBOL_GPL(ata_bus_reset);
6860 EXPORT_SYMBOL_GPL(ata_std_prereset);
6861 EXPORT_SYMBOL_GPL(ata_std_softreset);
6862 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6863 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6864 EXPORT_SYMBOL_GPL(ata_std_postreset);
6865 EXPORT_SYMBOL_GPL(ata_dev_classify);
6866 EXPORT_SYMBOL_GPL(ata_dev_pair);
6867 EXPORT_SYMBOL_GPL(ata_port_disable);
6868 EXPORT_SYMBOL_GPL(ata_ratelimit);
6869 EXPORT_SYMBOL_GPL(ata_wait_register);
6870 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6871 EXPORT_SYMBOL_GPL(ata_wait_ready);
6872 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6873 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6874 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6875 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6876 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6877 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6878 EXPORT_SYMBOL_GPL(ata_host_intr);
6879 EXPORT_SYMBOL_GPL(sata_scr_valid);
6880 EXPORT_SYMBOL_GPL(sata_scr_read);
6881 EXPORT_SYMBOL_GPL(sata_scr_write);
6882 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6883 EXPORT_SYMBOL_GPL(ata_port_online);
6884 EXPORT_SYMBOL_GPL(ata_port_offline);
6885 #ifdef CONFIG_PM
6886 EXPORT_SYMBOL_GPL(ata_host_suspend);
6887 EXPORT_SYMBOL_GPL(ata_host_resume);
6888 #endif /* CONFIG_PM */
6889 EXPORT_SYMBOL_GPL(ata_id_string);
6890 EXPORT_SYMBOL_GPL(ata_id_c_string);
6891 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6892 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6893 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6895 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6896 EXPORT_SYMBOL_GPL(ata_timing_compute);
6897 EXPORT_SYMBOL_GPL(ata_timing_merge);
6899 #ifdef CONFIG_PCI
6900 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6901 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6902 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6903 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6904 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6905 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6906 #ifdef CONFIG_PM
6907 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6908 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6909 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6910 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6911 #endif /* CONFIG_PM */
6912 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6913 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6914 #endif /* CONFIG_PCI */
6916 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6917 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6918 EXPORT_SYMBOL_GPL(ata_port_abort);
6919 EXPORT_SYMBOL_GPL(ata_port_freeze);
6920 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6921 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6922 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6923 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6924 EXPORT_SYMBOL_GPL(ata_do_eh);
6925 EXPORT_SYMBOL_GPL(ata_irq_on);
6926 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6927 EXPORT_SYMBOL_GPL(ata_irq_ack);
6928 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6929 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6931 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6932 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6933 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6934 EXPORT_SYMBOL_GPL(ata_cable_sata);