2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
44 #include <asm/byteorder.h>
46 #include <asm/system.h>
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
55 #define DESCRIPTOR_OUTPUT_MORE 0
56 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST (3 << 12)
59 #define DESCRIPTOR_STATUS (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
61 #define DESCRIPTOR_PING (1 << 7)
62 #define DESCRIPTOR_YY (1 << 6)
63 #define DESCRIPTOR_NO_IRQ (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
67 #define DESCRIPTOR_WAIT (3 << 0)
73 __le32 branch_address
;
75 __le16 transfer_status
;
76 } __attribute__((aligned(16)));
78 #define CONTROL_SET(regs) (regs)
79 #define CONTROL_CLEAR(regs) ((regs) + 4)
80 #define COMMAND_PTR(regs) ((regs) + 12)
81 #define CONTEXT_MATCH(regs) ((regs) + 16)
84 struct descriptor descriptor
;
85 struct ar_buffer
*next
;
91 struct ar_buffer
*current_buffer
;
92 struct ar_buffer
*last_buffer
;
95 struct tasklet_struct tasklet
;
100 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
101 struct descriptor
*d
,
102 struct descriptor
*last
);
105 * A buffer that contains a block of DMA-able coherent memory used for
106 * storing a portion of a DMA descriptor program.
108 struct descriptor_buffer
{
109 struct list_head list
;
110 dma_addr_t buffer_bus
;
113 struct descriptor buffer
[0];
117 struct fw_ohci
*ohci
;
119 int total_allocation
;
122 * List of page-sized buffers for storing DMA descriptors.
123 * Head of list contains buffers in use and tail of list contains
126 struct list_head buffer_list
;
129 * Pointer to a buffer inside buffer_list that contains the tail
130 * end of the current DMA program.
132 struct descriptor_buffer
*buffer_tail
;
135 * The descriptor containing the branch address of the first
136 * descriptor that has not yet been filled by the device.
138 struct descriptor
*last
;
141 * The last descriptor in the DMA program. It contains the branch
142 * address that must be updated upon appending a new descriptor.
144 struct descriptor
*prev
;
146 descriptor_callback_t callback
;
148 struct tasklet_struct tasklet
;
151 #define IT_HEADER_SY(v) ((v) << 0)
152 #define IT_HEADER_TCODE(v) ((v) << 4)
153 #define IT_HEADER_CHANNEL(v) ((v) << 8)
154 #define IT_HEADER_TAG(v) ((v) << 14)
155 #define IT_HEADER_SPEED(v) ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
159 struct fw_iso_context base
;
160 struct context context
;
163 size_t header_length
;
166 #define CONFIG_ROM_SIZE 1024
171 __iomem
char *registers
;
174 int request_generation
; /* for timestamping incoming requests */
176 unsigned int pri_req_max
;
179 bool csr_state_setclear_abdicate
;
182 * Spinlock for accessing fw_ohci data. Never call out of
183 * this driver with this lock held.
187 struct mutex phy_reg_mutex
;
189 struct ar_context ar_request_ctx
;
190 struct ar_context ar_response_ctx
;
191 struct context at_request_ctx
;
192 struct context at_response_ctx
;
194 u32 it_context_mask
; /* unoccupied IT contexts */
195 struct iso_context
*it_context_list
;
196 u64 ir_context_channels
; /* unoccupied channels */
197 u32 ir_context_mask
; /* unoccupied IR contexts */
198 struct iso_context
*ir_context_list
;
199 u64 mc_channels
; /* channels in use by the multichannel IR context */
203 dma_addr_t config_rom_bus
;
204 __be32
*next_config_rom
;
205 dma_addr_t next_config_rom_bus
;
209 dma_addr_t self_id_bus
;
210 struct tasklet_struct bus_reset_tasklet
;
212 u32 self_id_buffer
[512];
215 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
217 return container_of(card
, struct fw_ohci
, card
);
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
221 #define IR_CONTEXT_BUFFER_FILL 0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
227 #define CONTEXT_RUN 0x8000
228 #define CONTEXT_WAKE 0x1000
229 #define CONTEXT_DEAD 0x0800
230 #define CONTEXT_ACTIVE 0x0400
232 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
236 #define OHCI1394_REGISTER_SIZE 0x800
237 #define OHCI_LOOP_COUNT 500
238 #define OHCI1394_PCI_HCI_Control 0x40
239 #define SELF_ID_BUF_SIZE 0x800
240 #define OHCI_TCODE_PHY_PACKET 0x0e
241 #define OHCI_VERSION_1_1 0x010010
243 static char ohci_driver_name
[] = KBUILD_MODNAME
;
245 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
246 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
248 #define QUIRK_CYCLE_TIMER 1
249 #define QUIRK_RESET_PACKET 2
250 #define QUIRK_BE_HEADERS 4
251 #define QUIRK_NO_1394A 8
252 #define QUIRK_NO_MSI 16
254 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
255 static const struct {
256 unsigned short vendor
, device
, flags
;
258 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, QUIRK_CYCLE_TIMER
|
261 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, QUIRK_RESET_PACKET
},
262 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, QUIRK_CYCLE_TIMER
},
263 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, QUIRK_NO_MSI
},
264 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, QUIRK_CYCLE_TIMER
},
265 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, QUIRK_CYCLE_TIMER
},
266 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, QUIRK_CYCLE_TIMER
},
267 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, QUIRK_BE_HEADERS
},
270 /* This overrides anything that was found in ohci_quirks[]. */
271 static int param_quirks
;
272 module_param_named(quirks
, param_quirks
, int, 0644);
273 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
274 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
275 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
276 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS
)
277 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
278 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
281 #define OHCI_PARAM_DEBUG_AT_AR 1
282 #define OHCI_PARAM_DEBUG_SELFIDS 2
283 #define OHCI_PARAM_DEBUG_IRQS 4
284 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
286 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
288 static int param_debug
;
289 module_param_named(debug
, param_debug
, int, 0644);
290 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
291 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
292 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
293 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
294 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
295 ", or a combination, or all = -1)");
297 static void log_irqs(u32 evt
)
299 if (likely(!(param_debug
&
300 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
303 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
304 !(evt
& OHCI1394_busReset
))
307 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
308 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
309 evt
& OHCI1394_RQPkt
? " AR_req" : "",
310 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
311 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
312 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
313 evt
& OHCI1394_isochRx
? " IR" : "",
314 evt
& OHCI1394_isochTx
? " IT" : "",
315 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
316 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
317 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
318 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
319 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
320 evt
& OHCI1394_busReset
? " busReset" : "",
321 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
322 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
323 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
324 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
325 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
326 OHCI1394_cycleInconsistent
|
327 OHCI1394_regAccessFail
| OHCI1394_busReset
)
331 static const char *speed
[] = {
332 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
334 static const char *power
[] = {
335 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
336 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
338 static const char port
[] = { '.', '-', 'p', 'c', };
340 static char _p(u32
*s
, int shift
)
342 return port
[*s
>> shift
& 3];
345 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
347 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
350 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
351 self_id_count
, generation
, node_id
);
353 for (; self_id_count
--; ++s
)
354 if ((*s
& 1 << 23) == 0)
355 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
356 "%s gc=%d %s %s%s%s\n",
357 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
358 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
359 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
360 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
362 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
364 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
365 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
368 static const char *evts
[] = {
369 [0x00] = "evt_no_status", [0x01] = "-reserved-",
370 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
371 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
372 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
373 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
374 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
375 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
376 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
377 [0x10] = "-reserved-", [0x11] = "ack_complete",
378 [0x12] = "ack_pending ", [0x13] = "-reserved-",
379 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
380 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
381 [0x18] = "-reserved-", [0x19] = "-reserved-",
382 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
383 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
384 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
385 [0x20] = "pending/cancelled",
387 static const char *tcodes
[] = {
388 [0x0] = "QW req", [0x1] = "BW req",
389 [0x2] = "W resp", [0x3] = "-reserved-",
390 [0x4] = "QR req", [0x5] = "BR req",
391 [0x6] = "QR resp", [0x7] = "BR resp",
392 [0x8] = "cycle start", [0x9] = "Lk req",
393 [0xa] = "async stream packet", [0xb] = "Lk resp",
394 [0xc] = "-reserved-", [0xd] = "-reserved-",
395 [0xe] = "link internal", [0xf] = "-reserved-",
397 static const char *phys
[] = {
398 [0x0] = "phy config packet", [0x1] = "link-on packet",
399 [0x2] = "self-id packet", [0x3] = "-reserved-",
402 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
404 int tcode
= header
[0] >> 4 & 0xf;
407 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
410 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
413 if (evt
== OHCI1394_evt_bus_reset
) {
414 fw_notify("A%c evt_bus_reset, generation %d\n",
415 dir
, (header
[2] >> 16) & 0xff);
419 if (header
[0] == ~header
[1]) {
420 fw_notify("A%c %s, %s, %08x\n",
421 dir
, evts
[evt
], phys
[header
[0] >> 30 & 0x3], header
[0]);
426 case 0x0: case 0x6: case 0x8:
427 snprintf(specific
, sizeof(specific
), " = %08x",
428 be32_to_cpu((__force __be32
)header
[3]));
430 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
431 snprintf(specific
, sizeof(specific
), " %x,%x",
432 header
[3] >> 16, header
[3] & 0xffff);
440 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
442 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
443 fw_notify("A%c spd %x tl %02x, "
446 dir
, speed
, header
[0] >> 10 & 0x3f,
447 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
448 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
451 fw_notify("A%c spd %x tl %02x, "
454 dir
, speed
, header
[0] >> 10 & 0x3f,
455 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
456 tcodes
[tcode
], specific
);
462 #define param_debug 0
463 static inline void log_irqs(u32 evt
) {}
464 static inline void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
) {}
465 static inline void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
) {}
467 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
469 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
471 writel(data
, ohci
->registers
+ offset
);
474 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
476 return readl(ohci
->registers
+ offset
);
479 static inline void flush_writes(const struct fw_ohci
*ohci
)
481 /* Do a dummy read to flush writes. */
482 reg_read(ohci
, OHCI1394_Version
);
485 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
490 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
491 for (i
= 0; i
< 3 + 100; i
++) {
492 val
= reg_read(ohci
, OHCI1394_PhyControl
);
493 if (val
& OHCI1394_PhyControl_ReadDone
)
494 return OHCI1394_PhyControl_ReadData(val
);
497 * Try a few times without waiting. Sleeping is necessary
498 * only when the link/PHY interface is busy.
503 fw_error("failed to read phy reg\n");
508 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
512 reg_write(ohci
, OHCI1394_PhyControl
,
513 OHCI1394_PhyControl_Write(addr
, val
));
514 for (i
= 0; i
< 3 + 100; i
++) {
515 val
= reg_read(ohci
, OHCI1394_PhyControl
);
516 if (!(val
& OHCI1394_PhyControl_WritePending
))
522 fw_error("failed to write phy reg\n");
527 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
528 int clear_bits
, int set_bits
)
530 int ret
= read_phy_reg(ohci
, addr
);
535 * The interrupt status bits are cleared by writing a one bit.
536 * Avoid clearing them unless explicitly requested in set_bits.
539 clear_bits
|= PHY_INT_STATUS_BITS
;
541 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
544 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
548 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
552 return read_phy_reg(ohci
, addr
);
555 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
557 struct fw_ohci
*ohci
= fw_ohci(card
);
560 mutex_lock(&ohci
->phy_reg_mutex
);
561 ret
= read_phy_reg(ohci
, addr
);
562 mutex_unlock(&ohci
->phy_reg_mutex
);
567 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
568 int clear_bits
, int set_bits
)
570 struct fw_ohci
*ohci
= fw_ohci(card
);
573 mutex_lock(&ohci
->phy_reg_mutex
);
574 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
575 mutex_unlock(&ohci
->phy_reg_mutex
);
580 static void ar_context_link_page(struct ar_context
*ctx
,
581 struct ar_buffer
*ab
, dma_addr_t ab_bus
)
586 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
587 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
589 DESCRIPTOR_BRANCH_ALWAYS
);
590 offset
= offsetof(struct ar_buffer
, data
);
591 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
592 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
593 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
594 ab
->descriptor
.branch_address
= 0;
596 wmb(); /* finish init of new descriptors before branch_address update */
597 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
598 ctx
->last_buffer
->next
= ab
;
599 ctx
->last_buffer
= ab
;
601 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
602 flush_writes(ctx
->ohci
);
605 static int ar_context_add_page(struct ar_context
*ctx
)
607 struct device
*dev
= ctx
->ohci
->card
.device
;
608 struct ar_buffer
*ab
;
609 dma_addr_t
uninitialized_var(ab_bus
);
611 ab
= dma_alloc_coherent(dev
, PAGE_SIZE
, &ab_bus
, GFP_ATOMIC
);
615 ar_context_link_page(ctx
, ab
, ab_bus
);
620 static void ar_context_release(struct ar_context
*ctx
)
622 struct ar_buffer
*ab
, *ab_next
;
626 for (ab
= ctx
->current_buffer
; ab
; ab
= ab_next
) {
628 offset
= offsetof(struct ar_buffer
, data
);
629 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
630 dma_free_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
635 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
636 #define cond_le32_to_cpu(v) \
637 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
639 #define cond_le32_to_cpu(v) le32_to_cpu(v)
642 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
644 struct fw_ohci
*ohci
= ctx
->ohci
;
646 u32 status
, length
, tcode
;
649 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
650 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
651 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
653 tcode
= (p
.header
[0] >> 4) & 0x0f;
655 case TCODE_WRITE_QUADLET_REQUEST
:
656 case TCODE_READ_QUADLET_RESPONSE
:
657 p
.header
[3] = (__force __u32
) buffer
[3];
658 p
.header_length
= 16;
659 p
.payload_length
= 0;
662 case TCODE_READ_BLOCK_REQUEST
:
663 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
664 p
.header_length
= 16;
665 p
.payload_length
= 0;
668 case TCODE_WRITE_BLOCK_REQUEST
:
669 case TCODE_READ_BLOCK_RESPONSE
:
670 case TCODE_LOCK_REQUEST
:
671 case TCODE_LOCK_RESPONSE
:
672 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
673 p
.header_length
= 16;
674 p
.payload_length
= p
.header
[3] >> 16;
677 case TCODE_WRITE_RESPONSE
:
678 case TCODE_READ_QUADLET_REQUEST
:
679 case OHCI_TCODE_PHY_PACKET
:
680 p
.header_length
= 12;
681 p
.payload_length
= 0;
685 /* FIXME: Stop context, discard everything, and restart? */
687 p
.payload_length
= 0;
690 p
.payload
= (void *) buffer
+ p
.header_length
;
692 /* FIXME: What to do about evt_* errors? */
693 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
694 status
= cond_le32_to_cpu(buffer
[length
]);
695 evt
= (status
>> 16) & 0x1f;
698 p
.speed
= (status
>> 21) & 0x7;
699 p
.timestamp
= status
& 0xffff;
700 p
.generation
= ohci
->request_generation
;
702 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
705 * Several controllers, notably from NEC and VIA, forget to
706 * write ack_complete status at PHY packet reception.
708 if (evt
== OHCI1394_evt_no_status
&&
709 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
710 p
.ack
= ACK_COMPLETE
;
713 * The OHCI bus reset handler synthesizes a PHY packet with
714 * the new generation number when a bus reset happens (see
715 * section 8.4.2.3). This helps us determine when a request
716 * was received and make sure we send the response in the same
717 * generation. We only need this for requests; for responses
718 * we use the unique tlabel for finding the matching
721 * Alas some chips sometimes emit bus reset packets with a
722 * wrong generation. We set the correct generation for these
723 * at a slightly incorrect time (in bus_reset_tasklet).
725 if (evt
== OHCI1394_evt_bus_reset
) {
726 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
727 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
728 } else if (ctx
== &ohci
->ar_request_ctx
) {
729 fw_core_handle_request(&ohci
->card
, &p
);
731 fw_core_handle_response(&ohci
->card
, &p
);
734 return buffer
+ length
+ 1;
737 static void ar_context_tasklet(unsigned long data
)
739 struct ar_context
*ctx
= (struct ar_context
*)data
;
740 struct ar_buffer
*ab
;
741 struct descriptor
*d
;
745 ab
= ctx
->current_buffer
;
748 res_count
= ACCESS_ONCE(d
->res_count
);
749 if (res_count
== 0) {
750 size_t size
, size2
, rest
, pktsize
, size3
, offset
;
751 dma_addr_t start_bus
;
755 * This descriptor is finished and we may have a
756 * packet split across this and the next buffer. We
757 * reuse the page for reassembling the split packet.
760 offset
= offsetof(struct ar_buffer
, data
);
762 start_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
767 size
= start
+ PAGE_SIZE
- ctx
->pointer
;
768 /* valid buffer data in the next page */
769 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
770 /* what actually fits in this page */
771 size2
= min(rest
, (size_t)PAGE_SIZE
- offset
- size
);
772 memmove(buffer
, ctx
->pointer
, size
);
773 memcpy(buffer
+ size
, ab
->data
, size2
);
776 void *next
= handle_ar_packet(ctx
, buffer
);
777 pktsize
= next
- buffer
;
778 if (pktsize
>= size
) {
780 * We have handled all the data that was
781 * originally in this page, so we can now
782 * continue in the next page.
787 /* move the next packet to the start of the buffer */
788 memmove(buffer
, next
, size
+ size2
- pktsize
);
790 /* fill up this page again */
791 size3
= min(rest
- size2
,
792 (size_t)PAGE_SIZE
- offset
- size
- size2
);
793 memcpy(buffer
+ size
+ size2
,
794 (void *) ab
->data
+ size2
, size3
);
799 /* handle the packets that are fully in the next page */
800 buffer
= (void *) ab
->data
+
801 (buffer
- (start
+ offset
+ size
));
802 end
= (void *) ab
->data
+ rest
;
805 buffer
= handle_ar_packet(ctx
, buffer
);
807 ctx
->current_buffer
= ab
;
810 ar_context_link_page(ctx
, start
, start_bus
);
812 ctx
->pointer
= start
+ PAGE_SIZE
;
815 buffer
= ctx
->pointer
;
817 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(res_count
);
820 buffer
= handle_ar_packet(ctx
, buffer
);
824 static int ar_context_init(struct ar_context
*ctx
,
825 struct fw_ohci
*ohci
, u32 regs
)
831 ctx
->last_buffer
= &ab
;
832 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
834 ar_context_add_page(ctx
);
835 ar_context_add_page(ctx
);
836 ctx
->current_buffer
= ab
.next
;
837 ctx
->pointer
= ctx
->current_buffer
->data
;
842 static void ar_context_run(struct ar_context
*ctx
)
844 struct ar_buffer
*ab
= ctx
->current_buffer
;
848 offset
= offsetof(struct ar_buffer
, data
);
849 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
851 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
852 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
853 flush_writes(ctx
->ohci
);
856 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
860 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
861 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
863 /* figure out which descriptor the branch address goes in */
864 if (z
== 2 && (b
== 3 || key
== 2))
870 static void context_tasklet(unsigned long data
)
872 struct context
*ctx
= (struct context
*) data
;
873 struct descriptor
*d
, *last
;
876 struct descriptor_buffer
*desc
;
878 desc
= list_entry(ctx
->buffer_list
.next
,
879 struct descriptor_buffer
, list
);
881 while (last
->branch_address
!= 0) {
882 struct descriptor_buffer
*old_desc
= desc
;
883 address
= le32_to_cpu(last
->branch_address
);
887 /* If the branch address points to a buffer outside of the
888 * current buffer, advance to the next buffer. */
889 if (address
< desc
->buffer_bus
||
890 address
>= desc
->buffer_bus
+ desc
->used
)
891 desc
= list_entry(desc
->list
.next
,
892 struct descriptor_buffer
, list
);
893 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
894 last
= find_branch_descriptor(d
, z
);
896 if (!ctx
->callback(ctx
, d
, last
))
899 if (old_desc
!= desc
) {
900 /* If we've advanced to the next buffer, move the
901 * previous buffer to the free list. */
904 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
905 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
906 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
913 * Allocate a new buffer and add it to the list of free buffers for this
914 * context. Must be called with ohci->lock held.
916 static int context_add_buffer(struct context
*ctx
)
918 struct descriptor_buffer
*desc
;
919 dma_addr_t
uninitialized_var(bus_addr
);
923 * 16MB of descriptors should be far more than enough for any DMA
924 * program. This will catch run-away userspace or DoS attacks.
926 if (ctx
->total_allocation
>= 16*1024*1024)
929 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
930 &bus_addr
, GFP_ATOMIC
);
934 offset
= (void *)&desc
->buffer
- (void *)desc
;
935 desc
->buffer_size
= PAGE_SIZE
- offset
;
936 desc
->buffer_bus
= bus_addr
+ offset
;
939 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
940 ctx
->total_allocation
+= PAGE_SIZE
;
945 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
946 u32 regs
, descriptor_callback_t callback
)
950 ctx
->total_allocation
= 0;
952 INIT_LIST_HEAD(&ctx
->buffer_list
);
953 if (context_add_buffer(ctx
) < 0)
956 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
957 struct descriptor_buffer
, list
);
959 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
960 ctx
->callback
= callback
;
963 * We put a dummy descriptor in the buffer that has a NULL
964 * branch address and looks like it's been sent. That way we
965 * have a descriptor to append DMA programs to.
967 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
968 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
969 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
970 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
971 ctx
->last
= ctx
->buffer_tail
->buffer
;
972 ctx
->prev
= ctx
->buffer_tail
->buffer
;
977 static void context_release(struct context
*ctx
)
979 struct fw_card
*card
= &ctx
->ohci
->card
;
980 struct descriptor_buffer
*desc
, *tmp
;
982 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
983 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
985 ((void *)&desc
->buffer
- (void *)desc
));
988 /* Must be called with ohci->lock held */
989 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
990 int z
, dma_addr_t
*d_bus
)
992 struct descriptor
*d
= NULL
;
993 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
995 if (z
* sizeof(*d
) > desc
->buffer_size
)
998 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
999 /* No room for the descriptor in this buffer, so advance to the
1002 if (desc
->list
.next
== &ctx
->buffer_list
) {
1003 /* If there is no free buffer next in the list,
1005 if (context_add_buffer(ctx
) < 0)
1008 desc
= list_entry(desc
->list
.next
,
1009 struct descriptor_buffer
, list
);
1010 ctx
->buffer_tail
= desc
;
1013 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1014 memset(d
, 0, z
* sizeof(*d
));
1015 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1020 static void context_run(struct context
*ctx
, u32 extra
)
1022 struct fw_ohci
*ohci
= ctx
->ohci
;
1024 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1025 le32_to_cpu(ctx
->last
->branch_address
));
1026 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1027 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1031 static void context_append(struct context
*ctx
,
1032 struct descriptor
*d
, int z
, int extra
)
1035 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1037 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1039 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1041 wmb(); /* finish init of new descriptors before branch_address update */
1042 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1043 ctx
->prev
= find_branch_descriptor(d
, z
);
1045 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1046 flush_writes(ctx
->ohci
);
1049 static void context_stop(struct context
*ctx
)
1054 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1055 flush_writes(ctx
->ohci
);
1057 for (i
= 0; i
< 10; i
++) {
1058 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1059 if ((reg
& CONTEXT_ACTIVE
) == 0)
1064 fw_error("Error: DMA context still active (0x%08x)\n", reg
);
1067 struct driver_data
{
1068 struct fw_packet
*packet
;
1072 * This function apppends a packet to the DMA queue for transmission.
1073 * Must always be called with the ochi->lock held to ensure proper
1074 * generation handling and locking around packet queue manipulation.
1076 static int at_context_queue_packet(struct context
*ctx
,
1077 struct fw_packet
*packet
)
1079 struct fw_ohci
*ohci
= ctx
->ohci
;
1080 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1081 struct driver_data
*driver_data
;
1082 struct descriptor
*d
, *last
;
1087 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1089 packet
->ack
= RCODE_SEND_ERROR
;
1093 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1094 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1097 * The DMA format for asyncronous link packets is different
1098 * from the IEEE1394 layout, so shift the fields around
1099 * accordingly. If header_length is 8, it's a PHY packet, to
1100 * which we need to prepend an extra quadlet.
1103 header
= (__le32
*) &d
[1];
1104 switch (packet
->header_length
) {
1107 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1108 (packet
->speed
<< 16));
1109 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1110 (packet
->header
[0] & 0xffff0000));
1111 header
[2] = cpu_to_le32(packet
->header
[2]);
1113 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1114 if (TCODE_IS_BLOCK_PACKET(tcode
))
1115 header
[3] = cpu_to_le32(packet
->header
[3]);
1117 header
[3] = (__force __le32
) packet
->header
[3];
1119 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1123 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1124 (packet
->speed
<< 16));
1125 header
[1] = cpu_to_le32(packet
->header
[0]);
1126 header
[2] = cpu_to_le32(packet
->header
[1]);
1127 d
[0].req_count
= cpu_to_le16(12);
1129 if (is_ping_packet(packet
->header
))
1130 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1134 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1135 (packet
->speed
<< 16));
1136 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1137 d
[0].req_count
= cpu_to_le16(8);
1142 packet
->ack
= RCODE_SEND_ERROR
;
1146 driver_data
= (struct driver_data
*) &d
[3];
1147 driver_data
->packet
= packet
;
1148 packet
->driver_data
= driver_data
;
1150 if (packet
->payload_length
> 0) {
1152 dma_map_single(ohci
->card
.device
, packet
->payload
,
1153 packet
->payload_length
, DMA_TO_DEVICE
);
1154 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1155 packet
->ack
= RCODE_SEND_ERROR
;
1158 packet
->payload_bus
= payload_bus
;
1159 packet
->payload_mapped
= true;
1161 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1162 d
[2].data_address
= cpu_to_le32(payload_bus
);
1170 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1171 DESCRIPTOR_IRQ_ALWAYS
|
1172 DESCRIPTOR_BRANCH_ALWAYS
);
1175 * If the controller and packet generations don't match, we need to
1176 * bail out and try again. If IntEvent.busReset is set, the AT context
1177 * is halted, so appending to the context and trying to run it is
1178 * futile. Most controllers do the right thing and just flush the AT
1179 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1180 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1181 * up stalling out. So we just bail out in software and try again
1182 * later, and everyone is happy.
1183 * FIXME: Document how the locking works.
1185 if (ohci
->generation
!= packet
->generation
||
1186 reg_read(ohci
, OHCI1394_IntEventSet
) & OHCI1394_busReset
) {
1187 if (packet
->payload_mapped
)
1188 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1189 packet
->payload_length
, DMA_TO_DEVICE
);
1190 packet
->ack
= RCODE_GENERATION
;
1194 context_append(ctx
, d
, z
, 4 - z
);
1196 /* If the context isn't already running, start it up. */
1197 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
1198 if ((reg
& CONTEXT_RUN
) == 0)
1199 context_run(ctx
, 0);
1204 static int handle_at_packet(struct context
*context
,
1205 struct descriptor
*d
,
1206 struct descriptor
*last
)
1208 struct driver_data
*driver_data
;
1209 struct fw_packet
*packet
;
1210 struct fw_ohci
*ohci
= context
->ohci
;
1213 if (last
->transfer_status
== 0)
1214 /* This descriptor isn't done yet, stop iteration. */
1217 driver_data
= (struct driver_data
*) &d
[3];
1218 packet
= driver_data
->packet
;
1220 /* This packet was cancelled, just continue. */
1223 if (packet
->payload_mapped
)
1224 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1225 packet
->payload_length
, DMA_TO_DEVICE
);
1227 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1228 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1230 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1233 case OHCI1394_evt_timeout
:
1234 /* Async response transmit timed out. */
1235 packet
->ack
= RCODE_CANCELLED
;
1238 case OHCI1394_evt_flushed
:
1240 * The packet was flushed should give same error as
1241 * when we try to use a stale generation count.
1243 packet
->ack
= RCODE_GENERATION
;
1246 case OHCI1394_evt_missing_ack
:
1248 * Using a valid (current) generation count, but the
1249 * node is not on the bus or not sending acks.
1251 packet
->ack
= RCODE_NO_ACK
;
1254 case ACK_COMPLETE
+ 0x10:
1255 case ACK_PENDING
+ 0x10:
1256 case ACK_BUSY_X
+ 0x10:
1257 case ACK_BUSY_A
+ 0x10:
1258 case ACK_BUSY_B
+ 0x10:
1259 case ACK_DATA_ERROR
+ 0x10:
1260 case ACK_TYPE_ERROR
+ 0x10:
1261 packet
->ack
= evt
- 0x10;
1265 packet
->ack
= RCODE_SEND_ERROR
;
1269 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1274 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1275 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1276 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1277 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1278 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1280 static void handle_local_rom(struct fw_ohci
*ohci
,
1281 struct fw_packet
*packet
, u32 csr
)
1283 struct fw_packet response
;
1284 int tcode
, length
, i
;
1286 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1287 if (TCODE_IS_BLOCK_PACKET(tcode
))
1288 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1292 i
= csr
- CSR_CONFIG_ROM
;
1293 if (i
+ length
> CONFIG_ROM_SIZE
) {
1294 fw_fill_response(&response
, packet
->header
,
1295 RCODE_ADDRESS_ERROR
, NULL
, 0);
1296 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1297 fw_fill_response(&response
, packet
->header
,
1298 RCODE_TYPE_ERROR
, NULL
, 0);
1300 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1301 (void *) ohci
->config_rom
+ i
, length
);
1304 fw_core_handle_response(&ohci
->card
, &response
);
1307 static void handle_local_lock(struct fw_ohci
*ohci
,
1308 struct fw_packet
*packet
, u32 csr
)
1310 struct fw_packet response
;
1311 int tcode
, length
, ext_tcode
, sel
, try;
1312 __be32
*payload
, lock_old
;
1313 u32 lock_arg
, lock_data
;
1315 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1316 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1317 payload
= packet
->payload
;
1318 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1320 if (tcode
== TCODE_LOCK_REQUEST
&&
1321 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1322 lock_arg
= be32_to_cpu(payload
[0]);
1323 lock_data
= be32_to_cpu(payload
[1]);
1324 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1328 fw_fill_response(&response
, packet
->header
,
1329 RCODE_TYPE_ERROR
, NULL
, 0);
1333 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1334 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1335 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1336 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1338 for (try = 0; try < 20; try++)
1339 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1340 lock_old
= cpu_to_be32(reg_read(ohci
,
1342 fw_fill_response(&response
, packet
->header
,
1344 &lock_old
, sizeof(lock_old
));
1348 fw_error("swap not done (CSR lock timeout)\n");
1349 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1352 fw_core_handle_response(&ohci
->card
, &response
);
1355 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1359 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1360 packet
->ack
= ACK_PENDING
;
1361 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1365 ((unsigned long long)
1366 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1368 csr
= offset
- CSR_REGISTER_BASE
;
1370 /* Handle config rom reads. */
1371 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1372 handle_local_rom(ctx
->ohci
, packet
, csr
);
1374 case CSR_BUS_MANAGER_ID
:
1375 case CSR_BANDWIDTH_AVAILABLE
:
1376 case CSR_CHANNELS_AVAILABLE_HI
:
1377 case CSR_CHANNELS_AVAILABLE_LO
:
1378 handle_local_lock(ctx
->ohci
, packet
, csr
);
1381 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1382 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1384 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1388 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1389 packet
->ack
= ACK_COMPLETE
;
1390 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1394 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1396 unsigned long flags
;
1399 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1401 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1402 ctx
->ohci
->generation
== packet
->generation
) {
1403 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1404 handle_local_request(ctx
, packet
);
1408 ret
= at_context_queue_packet(ctx
, packet
);
1409 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1412 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1416 static u32
cycle_timer_ticks(u32 cycle_timer
)
1420 ticks
= cycle_timer
& 0xfff;
1421 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1422 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1428 * Some controllers exhibit one or more of the following bugs when updating the
1429 * iso cycle timer register:
1430 * - When the lowest six bits are wrapping around to zero, a read that happens
1431 * at the same time will return garbage in the lowest ten bits.
1432 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1433 * not incremented for about 60 ns.
1434 * - Occasionally, the entire register reads zero.
1436 * To catch these, we read the register three times and ensure that the
1437 * difference between each two consecutive reads is approximately the same, i.e.
1438 * less than twice the other. Furthermore, any negative difference indicates an
1439 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1440 * execute, so we have enough precision to compute the ratio of the differences.)
1442 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1449 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1451 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1454 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1458 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1459 t0
= cycle_timer_ticks(c0
);
1460 t1
= cycle_timer_ticks(c1
);
1461 t2
= cycle_timer_ticks(c2
);
1464 } while ((diff01
<= 0 || diff12
<= 0 ||
1465 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1473 * This function has to be called at least every 64 seconds. The bus_time
1474 * field stores not only the upper 25 bits of the BUS_TIME register but also
1475 * the most significant bit of the cycle timer in bit 6 so that we can detect
1476 * changes in this bit.
1478 static u32
update_bus_time(struct fw_ohci
*ohci
)
1480 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1482 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1483 ohci
->bus_time
+= 0x40;
1485 return ohci
->bus_time
| cycle_time_seconds
;
1488 static void bus_reset_tasklet(unsigned long data
)
1490 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1491 int self_id_count
, i
, j
, reg
;
1492 int generation
, new_generation
;
1493 unsigned long flags
;
1494 void *free_rom
= NULL
;
1495 dma_addr_t free_rom_bus
= 0;
1498 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1499 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1500 fw_notify("node ID not valid, new bus reset in progress\n");
1503 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1504 fw_notify("malconfigured bus\n");
1507 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1508 OHCI1394_NodeID_nodeNumber
);
1510 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1511 if (!(ohci
->is_root
&& is_new_root
))
1512 reg_write(ohci
, OHCI1394_LinkControlSet
,
1513 OHCI1394_LinkControl_cycleMaster
);
1514 ohci
->is_root
= is_new_root
;
1516 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1517 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1518 fw_notify("inconsistent self IDs\n");
1522 * The count in the SelfIDCount register is the number of
1523 * bytes in the self ID receive buffer. Since we also receive
1524 * the inverted quadlets and a header quadlet, we shift one
1525 * bit extra to get the actual number of self IDs.
1527 self_id_count
= (reg
>> 3) & 0xff;
1528 if (self_id_count
== 0 || self_id_count
> 252) {
1529 fw_notify("inconsistent self IDs\n");
1532 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1535 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1536 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1537 fw_notify("inconsistent self IDs\n");
1540 ohci
->self_id_buffer
[j
] =
1541 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1546 * Check the consistency of the self IDs we just read. The
1547 * problem we face is that a new bus reset can start while we
1548 * read out the self IDs from the DMA buffer. If this happens,
1549 * the DMA buffer will be overwritten with new self IDs and we
1550 * will read out inconsistent data. The OHCI specification
1551 * (section 11.2) recommends a technique similar to
1552 * linux/seqlock.h, where we remember the generation of the
1553 * self IDs in the buffer before reading them out and compare
1554 * it to the current generation after reading them out. If
1555 * the two generations match we know we have a consistent set
1559 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1560 if (new_generation
!= generation
) {
1561 fw_notify("recursive bus reset detected, "
1562 "discarding self ids\n");
1566 /* FIXME: Document how the locking works. */
1567 spin_lock_irqsave(&ohci
->lock
, flags
);
1569 ohci
->generation
= generation
;
1570 context_stop(&ohci
->at_request_ctx
);
1571 context_stop(&ohci
->at_response_ctx
);
1572 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1574 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
1575 ohci
->request_generation
= generation
;
1578 * This next bit is unrelated to the AT context stuff but we
1579 * have to do it under the spinlock also. If a new config rom
1580 * was set up before this reset, the old one is now no longer
1581 * in use and we can free it. Update the config rom pointers
1582 * to point to the current config rom and clear the
1583 * next_config_rom pointer so a new update can take place.
1586 if (ohci
->next_config_rom
!= NULL
) {
1587 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1588 free_rom
= ohci
->config_rom
;
1589 free_rom_bus
= ohci
->config_rom_bus
;
1591 ohci
->config_rom
= ohci
->next_config_rom
;
1592 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1593 ohci
->next_config_rom
= NULL
;
1596 * Restore config_rom image and manually update
1597 * config_rom registers. Writing the header quadlet
1598 * will indicate that the config rom is ready, so we
1601 reg_write(ohci
, OHCI1394_BusOptions
,
1602 be32_to_cpu(ohci
->config_rom
[2]));
1603 ohci
->config_rom
[0] = ohci
->next_header
;
1604 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
1605 be32_to_cpu(ohci
->next_header
));
1608 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1609 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1610 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1613 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1616 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1617 free_rom
, free_rom_bus
);
1619 log_selfids(ohci
->node_id
, generation
,
1620 self_id_count
, ohci
->self_id_buffer
);
1622 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1623 self_id_count
, ohci
->self_id_buffer
,
1624 ohci
->csr_state_setclear_abdicate
);
1625 ohci
->csr_state_setclear_abdicate
= false;
1628 static irqreturn_t
irq_handler(int irq
, void *data
)
1630 struct fw_ohci
*ohci
= data
;
1631 u32 event
, iso_event
;
1634 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1636 if (!event
|| !~event
)
1639 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1640 reg_write(ohci
, OHCI1394_IntEventClear
, event
& ~OHCI1394_busReset
);
1643 if (event
& OHCI1394_selfIDComplete
)
1644 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1646 if (event
& OHCI1394_RQPkt
)
1647 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1649 if (event
& OHCI1394_RSPkt
)
1650 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1652 if (event
& OHCI1394_reqTxComplete
)
1653 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1655 if (event
& OHCI1394_respTxComplete
)
1656 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1658 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1659 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1662 i
= ffs(iso_event
) - 1;
1663 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1664 iso_event
&= ~(1 << i
);
1667 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1668 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1671 i
= ffs(iso_event
) - 1;
1672 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1673 iso_event
&= ~(1 << i
);
1676 if (unlikely(event
& OHCI1394_regAccessFail
))
1677 fw_error("Register access failure - "
1678 "please notify linux1394-devel@lists.sf.net\n");
1680 if (unlikely(event
& OHCI1394_postedWriteErr
))
1681 fw_error("PCI posted write error\n");
1683 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1684 if (printk_ratelimit())
1685 fw_notify("isochronous cycle too long\n");
1686 reg_write(ohci
, OHCI1394_LinkControlSet
,
1687 OHCI1394_LinkControl_cycleMaster
);
1690 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
1692 * We need to clear this event bit in order to make
1693 * cycleMatch isochronous I/O work. In theory we should
1694 * stop active cycleMatch iso contexts now and restart
1695 * them at least two cycles later. (FIXME?)
1697 if (printk_ratelimit())
1698 fw_notify("isochronous cycle inconsistent\n");
1701 if (event
& OHCI1394_cycle64Seconds
) {
1702 spin_lock(&ohci
->lock
);
1703 update_bus_time(ohci
);
1704 spin_unlock(&ohci
->lock
);
1710 static int software_reset(struct fw_ohci
*ohci
)
1714 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1716 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1717 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1718 OHCI1394_HCControl_softReset
) == 0)
1726 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
1728 size_t size
= length
* 4;
1730 memcpy(dest
, src
, size
);
1731 if (size
< CONFIG_ROM_SIZE
)
1732 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
1735 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
1738 int ret
, clear
, set
, offset
;
1740 /* Check if the driver should configure link and PHY. */
1741 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
1742 OHCI1394_HCControl_programPhyEnable
))
1745 /* Paranoia: check whether the PHY supports 1394a, too. */
1746 enable_1394a
= false;
1747 ret
= read_phy_reg(ohci
, 2);
1750 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
1751 ret
= read_paged_phy_reg(ohci
, 1, 8);
1755 enable_1394a
= true;
1758 if (ohci
->quirks
& QUIRK_NO_1394A
)
1759 enable_1394a
= false;
1761 /* Configure PHY and link consistently. */
1764 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
1766 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
1769 ret
= update_phy_reg(ohci
, 5, clear
, set
);
1774 offset
= OHCI1394_HCControlSet
;
1776 offset
= OHCI1394_HCControlClear
;
1777 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
1779 /* Clean up: configuration has been taken care of. */
1780 reg_write(ohci
, OHCI1394_HCControlClear
,
1781 OHCI1394_HCControl_programPhyEnable
);
1786 static int ohci_enable(struct fw_card
*card
,
1787 const __be32
*config_rom
, size_t length
)
1789 struct fw_ohci
*ohci
= fw_ohci(card
);
1790 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1791 u32 lps
, seconds
, version
, irqs
;
1794 if (software_reset(ohci
)) {
1795 fw_error("Failed to reset ohci card.\n");
1800 * Now enable LPS, which we need in order to start accessing
1801 * most of the registers. In fact, on some cards (ALI M5251),
1802 * accessing registers in the SClk domain without LPS enabled
1803 * will lock up the machine. Wait 50msec to make sure we have
1804 * full link enabled. However, with some cards (well, at least
1805 * a JMicron PCIe card), we have to try again sometimes.
1807 reg_write(ohci
, OHCI1394_HCControlSet
,
1808 OHCI1394_HCControl_LPS
|
1809 OHCI1394_HCControl_postedWriteEnable
);
1812 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
1814 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
1815 OHCI1394_HCControl_LPS
;
1819 fw_error("Failed to set Link Power Status\n");
1823 reg_write(ohci
, OHCI1394_HCControlClear
,
1824 OHCI1394_HCControl_noByteSwapData
);
1826 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1827 reg_write(ohci
, OHCI1394_LinkControlSet
,
1828 OHCI1394_LinkControl_rcvSelfID
|
1829 OHCI1394_LinkControl_rcvPhyPkt
|
1830 OHCI1394_LinkControl_cycleTimerEnable
|
1831 OHCI1394_LinkControl_cycleMaster
);
1833 reg_write(ohci
, OHCI1394_ATRetries
,
1834 OHCI1394_MAX_AT_REQ_RETRIES
|
1835 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1836 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
1839 seconds
= lower_32_bits(get_seconds());
1840 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, seconds
<< 25);
1841 ohci
->bus_time
= seconds
& ~0x3f;
1843 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
1844 if (version
>= OHCI_VERSION_1_1
) {
1845 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
1847 card
->broadcast_channel_auto_allocated
= true;
1850 /* Get implemented bits of the priority arbitration request counter. */
1851 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
1852 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
1853 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
1854 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
1856 ar_context_run(&ohci
->ar_request_ctx
);
1857 ar_context_run(&ohci
->ar_response_ctx
);
1859 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1860 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1861 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1863 ret
= configure_1394a_enhancements(ohci
);
1867 /* Activate link_on bit and contender bit in our self ID packets.*/
1868 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
1873 * When the link is not yet enabled, the atomic config rom
1874 * update mechanism described below in ohci_set_config_rom()
1875 * is not active. We have to update ConfigRomHeader and
1876 * BusOptions manually, and the write to ConfigROMmap takes
1877 * effect immediately. We tie this to the enabling of the
1878 * link, so we have a valid config rom before enabling - the
1879 * OHCI requires that ConfigROMhdr and BusOptions have valid
1880 * values before enabling.
1882 * However, when the ConfigROMmap is written, some controllers
1883 * always read back quadlets 0 and 2 from the config rom to
1884 * the ConfigRomHeader and BusOptions registers on bus reset.
1885 * They shouldn't do that in this initial case where the link
1886 * isn't enabled. This means we have to use the same
1887 * workaround here, setting the bus header to 0 and then write
1888 * the right values in the bus reset tasklet.
1892 ohci
->next_config_rom
=
1893 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1894 &ohci
->next_config_rom_bus
,
1896 if (ohci
->next_config_rom
== NULL
)
1899 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
1902 * In the suspend case, config_rom is NULL, which
1903 * means that we just reuse the old config rom.
1905 ohci
->next_config_rom
= ohci
->config_rom
;
1906 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1909 ohci
->next_header
= ohci
->next_config_rom
[0];
1910 ohci
->next_config_rom
[0] = 0;
1911 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1912 reg_write(ohci
, OHCI1394_BusOptions
,
1913 be32_to_cpu(ohci
->next_config_rom
[2]));
1914 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1916 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1918 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
1919 pci_enable_msi(dev
);
1920 if (request_irq(dev
->irq
, irq_handler
,
1921 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
1922 ohci_driver_name
, ohci
)) {
1923 fw_error("Failed to allocate interrupt %d.\n", dev
->irq
);
1924 pci_disable_msi(dev
);
1925 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1926 ohci
->config_rom
, ohci
->config_rom_bus
);
1930 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1931 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1932 OHCI1394_isochTx
| OHCI1394_isochRx
|
1933 OHCI1394_postedWriteErr
|
1934 OHCI1394_selfIDComplete
|
1935 OHCI1394_regAccessFail
|
1936 OHCI1394_cycle64Seconds
|
1937 OHCI1394_cycleInconsistent
| OHCI1394_cycleTooLong
|
1938 OHCI1394_masterIntEnable
;
1939 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
1940 irqs
|= OHCI1394_busReset
;
1941 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
1943 reg_write(ohci
, OHCI1394_HCControlSet
,
1944 OHCI1394_HCControl_linkEnable
|
1945 OHCI1394_HCControl_BIBimageValid
);
1948 /* We are ready to go, reset bus to finish initialization. */
1949 fw_schedule_bus_reset(&ohci
->card
, false, true);
1954 static int ohci_set_config_rom(struct fw_card
*card
,
1955 const __be32
*config_rom
, size_t length
)
1957 struct fw_ohci
*ohci
;
1958 unsigned long flags
;
1960 __be32
*next_config_rom
;
1961 dma_addr_t
uninitialized_var(next_config_rom_bus
);
1963 ohci
= fw_ohci(card
);
1966 * When the OHCI controller is enabled, the config rom update
1967 * mechanism is a bit tricky, but easy enough to use. See
1968 * section 5.5.6 in the OHCI specification.
1970 * The OHCI controller caches the new config rom address in a
1971 * shadow register (ConfigROMmapNext) and needs a bus reset
1972 * for the changes to take place. When the bus reset is
1973 * detected, the controller loads the new values for the
1974 * ConfigRomHeader and BusOptions registers from the specified
1975 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1976 * shadow register. All automatically and atomically.
1978 * Now, there's a twist to this story. The automatic load of
1979 * ConfigRomHeader and BusOptions doesn't honor the
1980 * noByteSwapData bit, so with a be32 config rom, the
1981 * controller will load be32 values in to these registers
1982 * during the atomic update, even on litte endian
1983 * architectures. The workaround we use is to put a 0 in the
1984 * header quadlet; 0 is endian agnostic and means that the
1985 * config rom isn't ready yet. In the bus reset tasklet we
1986 * then set up the real values for the two registers.
1988 * We use ohci->lock to avoid racing with the code that sets
1989 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1993 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1994 &next_config_rom_bus
, GFP_KERNEL
);
1995 if (next_config_rom
== NULL
)
1998 spin_lock_irqsave(&ohci
->lock
, flags
);
2000 if (ohci
->next_config_rom
== NULL
) {
2001 ohci
->next_config_rom
= next_config_rom
;
2002 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2004 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2006 ohci
->next_header
= config_rom
[0];
2007 ohci
->next_config_rom
[0] = 0;
2009 reg_write(ohci
, OHCI1394_ConfigROMmap
,
2010 ohci
->next_config_rom_bus
);
2014 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2017 * Now initiate a bus reset to have the changes take
2018 * effect. We clean up the old config rom memory and DMA
2019 * mappings in the bus reset tasklet, since the OHCI
2020 * controller could need to access it before the bus reset
2024 fw_schedule_bus_reset(&ohci
->card
, true, true);
2026 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2027 next_config_rom
, next_config_rom_bus
);
2032 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2034 struct fw_ohci
*ohci
= fw_ohci(card
);
2036 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2039 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2041 struct fw_ohci
*ohci
= fw_ohci(card
);
2043 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2046 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2048 struct fw_ohci
*ohci
= fw_ohci(card
);
2049 struct context
*ctx
= &ohci
->at_request_ctx
;
2050 struct driver_data
*driver_data
= packet
->driver_data
;
2053 tasklet_disable(&ctx
->tasklet
);
2055 if (packet
->ack
!= 0)
2058 if (packet
->payload_mapped
)
2059 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2060 packet
->payload_length
, DMA_TO_DEVICE
);
2062 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
2063 driver_data
->packet
= NULL
;
2064 packet
->ack
= RCODE_CANCELLED
;
2065 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2068 tasklet_enable(&ctx
->tasklet
);
2073 static int ohci_enable_phys_dma(struct fw_card
*card
,
2074 int node_id
, int generation
)
2076 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2079 struct fw_ohci
*ohci
= fw_ohci(card
);
2080 unsigned long flags
;
2084 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2085 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2088 spin_lock_irqsave(&ohci
->lock
, flags
);
2090 if (ohci
->generation
!= generation
) {
2096 * Note, if the node ID contains a non-local bus ID, physical DMA is
2097 * enabled for _all_ nodes on remote buses.
2100 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2102 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2104 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2108 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2111 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2114 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2116 struct fw_ohci
*ohci
= fw_ohci(card
);
2117 unsigned long flags
;
2120 switch (csr_offset
) {
2121 case CSR_STATE_CLEAR
:
2123 if (ohci
->is_root
&&
2124 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2125 OHCI1394_LinkControl_cycleMaster
))
2126 value
= CSR_STATE_BIT_CMSTR
;
2129 if (ohci
->csr_state_setclear_abdicate
)
2130 value
|= CSR_STATE_BIT_ABDICATE
;
2135 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2137 case CSR_CYCLE_TIME
:
2138 return get_cycle_time(ohci
);
2142 * We might be called just after the cycle timer has wrapped
2143 * around but just before the cycle64Seconds handler, so we
2144 * better check here, too, if the bus time needs to be updated.
2146 spin_lock_irqsave(&ohci
->lock
, flags
);
2147 value
= update_bus_time(ohci
);
2148 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2151 case CSR_BUSY_TIMEOUT
:
2152 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2153 return (value
>> 4) & 0x0ffff00f;
2155 case CSR_PRIORITY_BUDGET
:
2156 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2157 (ohci
->pri_req_max
<< 8);
2165 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2167 struct fw_ohci
*ohci
= fw_ohci(card
);
2168 unsigned long flags
;
2170 switch (csr_offset
) {
2171 case CSR_STATE_CLEAR
:
2172 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2173 reg_write(ohci
, OHCI1394_LinkControlClear
,
2174 OHCI1394_LinkControl_cycleMaster
);
2177 if (value
& CSR_STATE_BIT_ABDICATE
)
2178 ohci
->csr_state_setclear_abdicate
= false;
2182 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2183 reg_write(ohci
, OHCI1394_LinkControlSet
,
2184 OHCI1394_LinkControl_cycleMaster
);
2187 if (value
& CSR_STATE_BIT_ABDICATE
)
2188 ohci
->csr_state_setclear_abdicate
= true;
2192 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2196 case CSR_CYCLE_TIME
:
2197 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2198 reg_write(ohci
, OHCI1394_IntEventSet
,
2199 OHCI1394_cycleInconsistent
);
2204 spin_lock_irqsave(&ohci
->lock
, flags
);
2205 ohci
->bus_time
= (ohci
->bus_time
& 0x7f) | (value
& ~0x7f);
2206 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2209 case CSR_BUSY_TIMEOUT
:
2210 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2211 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2212 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2216 case CSR_PRIORITY_BUDGET
:
2217 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2227 static void copy_iso_headers(struct iso_context
*ctx
, void *p
)
2229 int i
= ctx
->header_length
;
2231 if (i
+ ctx
->base
.header_size
> PAGE_SIZE
)
2235 * The iso header is byteswapped to little endian by
2236 * the controller, but the remaining header quadlets
2237 * are big endian. We want to present all the headers
2238 * as big endian, so we have to swap the first quadlet.
2240 if (ctx
->base
.header_size
> 0)
2241 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
2242 if (ctx
->base
.header_size
> 4)
2243 *(u32
*) (ctx
->header
+ i
+ 4) = __swab32(*(u32
*) p
);
2244 if (ctx
->base
.header_size
> 8)
2245 memcpy(ctx
->header
+ i
+ 8, p
+ 8, ctx
->base
.header_size
- 8);
2246 ctx
->header_length
+= ctx
->base
.header_size
;
2249 static int handle_ir_packet_per_buffer(struct context
*context
,
2250 struct descriptor
*d
,
2251 struct descriptor
*last
)
2253 struct iso_context
*ctx
=
2254 container_of(context
, struct iso_context
, context
);
2255 struct descriptor
*pd
;
2259 for (pd
= d
; pd
<= last
; pd
++)
2260 if (pd
->transfer_status
)
2263 /* Descriptor(s) not done yet, stop iteration */
2267 copy_iso_headers(ctx
, p
);
2269 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2270 ir_header
= (__le32
*) p
;
2271 ctx
->base
.callback
.sc(&ctx
->base
,
2272 le32_to_cpu(ir_header
[0]) & 0xffff,
2273 ctx
->header_length
, ctx
->header
,
2274 ctx
->base
.callback_data
);
2275 ctx
->header_length
= 0;
2281 /* d == last because each descriptor block is only a single descriptor. */
2282 static int handle_ir_buffer_fill(struct context
*context
,
2283 struct descriptor
*d
,
2284 struct descriptor
*last
)
2286 struct iso_context
*ctx
=
2287 container_of(context
, struct iso_context
, context
);
2289 if (!last
->transfer_status
)
2290 /* Descriptor(s) not done yet, stop iteration */
2293 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
2294 ctx
->base
.callback
.mc(&ctx
->base
,
2295 le32_to_cpu(last
->data_address
) +
2296 le16_to_cpu(last
->req_count
) -
2297 le16_to_cpu(last
->res_count
),
2298 ctx
->base
.callback_data
);
2303 static int handle_it_packet(struct context
*context
,
2304 struct descriptor
*d
,
2305 struct descriptor
*last
)
2307 struct iso_context
*ctx
=
2308 container_of(context
, struct iso_context
, context
);
2310 struct descriptor
*pd
;
2312 for (pd
= d
; pd
<= last
; pd
++)
2313 if (pd
->transfer_status
)
2316 /* Descriptor(s) not done yet, stop iteration */
2319 i
= ctx
->header_length
;
2320 if (i
+ 4 < PAGE_SIZE
) {
2321 /* Present this value as big-endian to match the receive code */
2322 *(__be32
*)(ctx
->header
+ i
) = cpu_to_be32(
2323 ((u32
)le16_to_cpu(pd
->transfer_status
) << 16) |
2324 le16_to_cpu(pd
->res_count
));
2325 ctx
->header_length
+= 4;
2327 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
2328 ctx
->base
.callback
.sc(&ctx
->base
, le16_to_cpu(last
->res_count
),
2329 ctx
->header_length
, ctx
->header
,
2330 ctx
->base
.callback_data
);
2331 ctx
->header_length
= 0;
2336 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2338 u32 hi
= channels
>> 32, lo
= channels
;
2340 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2341 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2342 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2343 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2345 ohci
->mc_channels
= channels
;
2348 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2349 int type
, int channel
, size_t header_size
)
2351 struct fw_ohci
*ohci
= fw_ohci(card
);
2352 struct iso_context
*uninitialized_var(ctx
);
2353 descriptor_callback_t
uninitialized_var(callback
);
2354 u64
*uninitialized_var(channels
);
2355 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2356 unsigned long flags
;
2357 int index
, ret
= -EBUSY
;
2359 spin_lock_irqsave(&ohci
->lock
, flags
);
2362 case FW_ISO_CONTEXT_TRANSMIT
:
2363 mask
= &ohci
->it_context_mask
;
2364 callback
= handle_it_packet
;
2365 index
= ffs(*mask
) - 1;
2367 *mask
&= ~(1 << index
);
2368 regs
= OHCI1394_IsoXmitContextBase(index
);
2369 ctx
= &ohci
->it_context_list
[index
];
2373 case FW_ISO_CONTEXT_RECEIVE
:
2374 channels
= &ohci
->ir_context_channels
;
2375 mask
= &ohci
->ir_context_mask
;
2376 callback
= handle_ir_packet_per_buffer
;
2377 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2379 *channels
&= ~(1ULL << channel
);
2380 *mask
&= ~(1 << index
);
2381 regs
= OHCI1394_IsoRcvContextBase(index
);
2382 ctx
= &ohci
->ir_context_list
[index
];
2386 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2387 mask
= &ohci
->ir_context_mask
;
2388 callback
= handle_ir_buffer_fill
;
2389 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2391 ohci
->mc_allocated
= true;
2392 *mask
&= ~(1 << index
);
2393 regs
= OHCI1394_IsoRcvContextBase(index
);
2394 ctx
= &ohci
->ir_context_list
[index
];
2403 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2406 return ERR_PTR(ret
);
2408 memset(ctx
, 0, sizeof(*ctx
));
2409 ctx
->header_length
= 0;
2410 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2411 if (ctx
->header
== NULL
) {
2415 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2417 goto out_with_header
;
2419 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
)
2420 set_multichannel_mask(ohci
, 0);
2425 free_page((unsigned long)ctx
->header
);
2427 spin_lock_irqsave(&ohci
->lock
, flags
);
2430 case FW_ISO_CONTEXT_RECEIVE
:
2431 *channels
|= 1ULL << channel
;
2434 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2435 ohci
->mc_allocated
= false;
2438 *mask
|= 1 << index
;
2440 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2442 return ERR_PTR(ret
);
2445 static int ohci_start_iso(struct fw_iso_context
*base
,
2446 s32 cycle
, u32 sync
, u32 tags
)
2448 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2449 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2450 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
2453 switch (ctx
->base
.type
) {
2454 case FW_ISO_CONTEXT_TRANSMIT
:
2455 index
= ctx
- ohci
->it_context_list
;
2458 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
2459 (cycle
& 0x7fff) << 16;
2461 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
2462 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
2463 context_run(&ctx
->context
, match
);
2466 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2467 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
2469 case FW_ISO_CONTEXT_RECEIVE
:
2470 index
= ctx
- ohci
->ir_context_list
;
2471 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
2473 match
|= (cycle
& 0x07fff) << 12;
2474 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
2477 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
2478 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
2479 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
2480 context_run(&ctx
->context
, control
);
2487 static int ohci_stop_iso(struct fw_iso_context
*base
)
2489 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2490 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2493 switch (ctx
->base
.type
) {
2494 case FW_ISO_CONTEXT_TRANSMIT
:
2495 index
= ctx
- ohci
->it_context_list
;
2496 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
2499 case FW_ISO_CONTEXT_RECEIVE
:
2500 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2501 index
= ctx
- ohci
->ir_context_list
;
2502 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
2506 context_stop(&ctx
->context
);
2511 static void ohci_free_iso_context(struct fw_iso_context
*base
)
2513 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2514 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2515 unsigned long flags
;
2518 ohci_stop_iso(base
);
2519 context_release(&ctx
->context
);
2520 free_page((unsigned long)ctx
->header
);
2522 spin_lock_irqsave(&ohci
->lock
, flags
);
2524 switch (base
->type
) {
2525 case FW_ISO_CONTEXT_TRANSMIT
:
2526 index
= ctx
- ohci
->it_context_list
;
2527 ohci
->it_context_mask
|= 1 << index
;
2530 case FW_ISO_CONTEXT_RECEIVE
:
2531 index
= ctx
- ohci
->ir_context_list
;
2532 ohci
->ir_context_mask
|= 1 << index
;
2533 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
2536 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2537 index
= ctx
- ohci
->ir_context_list
;
2538 ohci
->ir_context_mask
|= 1 << index
;
2539 ohci
->ir_context_channels
|= ohci
->mc_channels
;
2540 ohci
->mc_channels
= 0;
2541 ohci
->mc_allocated
= false;
2545 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2548 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
2550 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
2551 unsigned long flags
;
2554 switch (base
->type
) {
2555 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2557 spin_lock_irqsave(&ohci
->lock
, flags
);
2559 /* Don't allow multichannel to grab other contexts' channels. */
2560 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
2561 *channels
= ohci
->ir_context_channels
;
2564 set_multichannel_mask(ohci
, *channels
);
2568 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2578 static int queue_iso_transmit(struct iso_context
*ctx
,
2579 struct fw_iso_packet
*packet
,
2580 struct fw_iso_buffer
*buffer
,
2581 unsigned long payload
)
2583 struct descriptor
*d
, *last
, *pd
;
2584 struct fw_iso_packet
*p
;
2586 dma_addr_t d_bus
, page_bus
;
2587 u32 z
, header_z
, payload_z
, irq
;
2588 u32 payload_index
, payload_end_index
, next_page_index
;
2589 int page
, end_page
, i
, length
, offset
;
2592 payload_index
= payload
;
2598 if (p
->header_length
> 0)
2601 /* Determine the first page the payload isn't contained in. */
2602 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2603 if (p
->payload_length
> 0)
2604 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2610 /* Get header size in number of descriptors. */
2611 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2613 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2618 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2619 d
[0].req_count
= cpu_to_le16(8);
2621 * Link the skip address to this descriptor itself. This causes
2622 * a context to skip a cycle whenever lost cycles or FIFO
2623 * overruns occur, without dropping the data. The application
2624 * should then decide whether this is an error condition or not.
2625 * FIXME: Make the context's cycle-lost behaviour configurable?
2627 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
2629 header
= (__le32
*) &d
[1];
2630 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2631 IT_HEADER_TAG(p
->tag
) |
2632 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2633 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2634 IT_HEADER_SPEED(ctx
->base
.speed
));
2636 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2637 p
->payload_length
));
2640 if (p
->header_length
> 0) {
2641 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2642 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2643 memcpy(&d
[z
], p
->header
, p
->header_length
);
2646 pd
= d
+ z
- payload_z
;
2647 payload_end_index
= payload_index
+ p
->payload_length
;
2648 for (i
= 0; i
< payload_z
; i
++) {
2649 page
= payload_index
>> PAGE_SHIFT
;
2650 offset
= payload_index
& ~PAGE_MASK
;
2651 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2653 min(next_page_index
, payload_end_index
) - payload_index
;
2654 pd
[i
].req_count
= cpu_to_le16(length
);
2656 page_bus
= page_private(buffer
->pages
[page
]);
2657 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2659 payload_index
+= length
;
2663 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2665 irq
= DESCRIPTOR_NO_IRQ
;
2667 last
= z
== 2 ? d
: d
+ z
- 1;
2668 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2670 DESCRIPTOR_BRANCH_ALWAYS
|
2673 context_append(&ctx
->context
, d
, z
, header_z
);
2678 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
2679 struct fw_iso_packet
*packet
,
2680 struct fw_iso_buffer
*buffer
,
2681 unsigned long payload
)
2683 struct descriptor
*d
, *pd
;
2684 dma_addr_t d_bus
, page_bus
;
2685 u32 z
, header_z
, rest
;
2687 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
2690 * The OHCI controller puts the isochronous header and trailer in the
2691 * buffer, so we need at least 8 bytes.
2693 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
2694 header_size
= max(ctx
->base
.header_size
, (size_t)8);
2696 /* Get header size in number of descriptors. */
2697 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2698 page
= payload
>> PAGE_SHIFT
;
2699 offset
= payload
& ~PAGE_MASK
;
2700 payload_per_buffer
= packet
->payload_length
/ packet_count
;
2702 for (i
= 0; i
< packet_count
; i
++) {
2703 /* d points to the header descriptor */
2704 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
2705 d
= context_get_descriptors(&ctx
->context
,
2706 z
+ header_z
, &d_bus
);
2710 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2711 DESCRIPTOR_INPUT_MORE
);
2712 if (packet
->skip
&& i
== 0)
2713 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2714 d
->req_count
= cpu_to_le16(header_size
);
2715 d
->res_count
= d
->req_count
;
2716 d
->transfer_status
= 0;
2717 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
2719 rest
= payload_per_buffer
;
2721 for (j
= 1; j
< z
; j
++) {
2723 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2724 DESCRIPTOR_INPUT_MORE
);
2726 if (offset
+ rest
< PAGE_SIZE
)
2729 length
= PAGE_SIZE
- offset
;
2730 pd
->req_count
= cpu_to_le16(length
);
2731 pd
->res_count
= pd
->req_count
;
2732 pd
->transfer_status
= 0;
2734 page_bus
= page_private(buffer
->pages
[page
]);
2735 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
2737 offset
= (offset
+ length
) & ~PAGE_MASK
;
2742 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2743 DESCRIPTOR_INPUT_LAST
|
2744 DESCRIPTOR_BRANCH_ALWAYS
);
2745 if (packet
->interrupt
&& i
== packet_count
- 1)
2746 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2748 context_append(&ctx
->context
, d
, z
, header_z
);
2754 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
2755 struct fw_iso_packet
*packet
,
2756 struct fw_iso_buffer
*buffer
,
2757 unsigned long payload
)
2759 struct descriptor
*d
;
2760 dma_addr_t d_bus
, page_bus
;
2761 int page
, offset
, rest
, z
, i
, length
;
2763 page
= payload
>> PAGE_SHIFT
;
2764 offset
= payload
& ~PAGE_MASK
;
2765 rest
= packet
->payload_length
;
2767 /* We need one descriptor for each page in the buffer. */
2768 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
2770 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
2773 for (i
= 0; i
< z
; i
++) {
2774 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
2778 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
2779 DESCRIPTOR_BRANCH_ALWAYS
);
2780 if (packet
->skip
&& i
== 0)
2781 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2782 if (packet
->interrupt
&& i
== z
- 1)
2783 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2785 if (offset
+ rest
< PAGE_SIZE
)
2788 length
= PAGE_SIZE
- offset
;
2789 d
->req_count
= cpu_to_le16(length
);
2790 d
->res_count
= d
->req_count
;
2791 d
->transfer_status
= 0;
2793 page_bus
= page_private(buffer
->pages
[page
]);
2794 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
2800 context_append(&ctx
->context
, d
, 1, 0);
2806 static int ohci_queue_iso(struct fw_iso_context
*base
,
2807 struct fw_iso_packet
*packet
,
2808 struct fw_iso_buffer
*buffer
,
2809 unsigned long payload
)
2811 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2812 unsigned long flags
;
2815 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2816 switch (base
->type
) {
2817 case FW_ISO_CONTEXT_TRANSMIT
:
2818 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
2820 case FW_ISO_CONTEXT_RECEIVE
:
2821 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
2823 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2824 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
2827 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2832 static const struct fw_card_driver ohci_driver
= {
2833 .enable
= ohci_enable
,
2834 .read_phy_reg
= ohci_read_phy_reg
,
2835 .update_phy_reg
= ohci_update_phy_reg
,
2836 .set_config_rom
= ohci_set_config_rom
,
2837 .send_request
= ohci_send_request
,
2838 .send_response
= ohci_send_response
,
2839 .cancel_packet
= ohci_cancel_packet
,
2840 .enable_phys_dma
= ohci_enable_phys_dma
,
2841 .read_csr
= ohci_read_csr
,
2842 .write_csr
= ohci_write_csr
,
2844 .allocate_iso_context
= ohci_allocate_iso_context
,
2845 .free_iso_context
= ohci_free_iso_context
,
2846 .set_iso_channels
= ohci_set_iso_channels
,
2847 .queue_iso
= ohci_queue_iso
,
2848 .start_iso
= ohci_start_iso
,
2849 .stop_iso
= ohci_stop_iso
,
2852 #ifdef CONFIG_PPC_PMAC
2853 static void pmac_ohci_on(struct pci_dev
*dev
)
2855 if (machine_is(powermac
)) {
2856 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2859 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
2860 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2865 static void pmac_ohci_off(struct pci_dev
*dev
)
2867 if (machine_is(powermac
)) {
2868 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2871 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2872 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
2877 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
2878 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
2879 #endif /* CONFIG_PPC_PMAC */
2881 static int __devinit
pci_probe(struct pci_dev
*dev
,
2882 const struct pci_device_id
*ent
)
2884 struct fw_ohci
*ohci
;
2885 u32 bus_options
, max_receive
, link_speed
, version
;
2887 int i
, err
, n_ir
, n_it
;
2890 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2896 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2900 err
= pci_enable_device(dev
);
2902 fw_error("Failed to enable OHCI hardware\n");
2906 pci_set_master(dev
);
2907 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2908 pci_set_drvdata(dev
, ohci
);
2910 spin_lock_init(&ohci
->lock
);
2911 mutex_init(&ohci
->phy_reg_mutex
);
2913 tasklet_init(&ohci
->bus_reset_tasklet
,
2914 bus_reset_tasklet
, (unsigned long)ohci
);
2916 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2918 fw_error("MMIO resource unavailable\n");
2922 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2923 if (ohci
->registers
== NULL
) {
2924 fw_error("Failed to remap registers\n");
2929 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
2930 if (ohci_quirks
[i
].vendor
== dev
->vendor
&&
2931 (ohci_quirks
[i
].device
== dev
->device
||
2932 ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
)) {
2933 ohci
->quirks
= ohci_quirks
[i
].flags
;
2937 ohci
->quirks
= param_quirks
;
2939 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2940 OHCI1394_AsReqRcvContextControlSet
);
2942 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2943 OHCI1394_AsRspRcvContextControlSet
);
2945 context_init(&ohci
->at_request_ctx
, ohci
,
2946 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2948 context_init(&ohci
->at_response_ctx
, ohci
,
2949 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2951 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2952 ohci
->ir_context_channels
= ~0ULL;
2953 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2954 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2955 n_ir
= hweight32(ohci
->ir_context_mask
);
2956 size
= sizeof(struct iso_context
) * n_ir
;
2957 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2959 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2960 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2961 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2962 n_it
= hweight32(ohci
->it_context_mask
);
2963 size
= sizeof(struct iso_context
) * n_it
;
2964 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2966 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2971 /* self-id dma buffer allocation */
2972 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2976 if (ohci
->self_id_cpu
== NULL
) {
2981 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2982 max_receive
= (bus_options
>> 12) & 0xf;
2983 link_speed
= bus_options
& 0x7;
2984 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2985 reg_read(ohci
, OHCI1394_GUIDLo
);
2987 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2991 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2992 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2993 "%d IR + %d IT contexts, quirks 0x%x\n",
2994 dev_name(&dev
->dev
), version
>> 16, version
& 0xff,
2995 n_ir
, n_it
, ohci
->quirks
);
3000 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
3001 ohci
->self_id_cpu
, ohci
->self_id_bus
);
3003 kfree(ohci
->ir_context_list
);
3004 kfree(ohci
->it_context_list
);
3005 context_release(&ohci
->at_response_ctx
);
3006 context_release(&ohci
->at_request_ctx
);
3007 ar_context_release(&ohci
->ar_response_ctx
);
3008 ar_context_release(&ohci
->ar_request_ctx
);
3009 pci_iounmap(dev
, ohci
->registers
);
3011 pci_release_region(dev
, 0);
3013 pci_disable_device(dev
);
3019 fw_error("Out of memory\n");
3024 static void pci_remove(struct pci_dev
*dev
)
3026 struct fw_ohci
*ohci
;
3028 ohci
= pci_get_drvdata(dev
);
3029 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3031 fw_core_remove_card(&ohci
->card
);
3034 * FIXME: Fail all pending packets here, now that the upper
3035 * layers can't queue any more.
3038 software_reset(ohci
);
3039 free_irq(dev
->irq
, ohci
);
3041 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3042 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3043 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3044 if (ohci
->config_rom
)
3045 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3046 ohci
->config_rom
, ohci
->config_rom_bus
);
3047 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
3048 ohci
->self_id_cpu
, ohci
->self_id_bus
);
3049 ar_context_release(&ohci
->ar_request_ctx
);
3050 ar_context_release(&ohci
->ar_response_ctx
);
3051 context_release(&ohci
->at_request_ctx
);
3052 context_release(&ohci
->at_response_ctx
);
3053 kfree(ohci
->it_context_list
);
3054 kfree(ohci
->ir_context_list
);
3055 pci_disable_msi(dev
);
3056 pci_iounmap(dev
, ohci
->registers
);
3057 pci_release_region(dev
, 0);
3058 pci_disable_device(dev
);
3062 fw_notify("Removed fw-ohci device.\n");
3066 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3068 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3071 software_reset(ohci
);
3072 free_irq(dev
->irq
, ohci
);
3073 pci_disable_msi(dev
);
3074 err
= pci_save_state(dev
);
3076 fw_error("pci_save_state failed\n");
3079 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3081 fw_error("pci_set_power_state failed with %d\n", err
);
3087 static int pci_resume(struct pci_dev
*dev
)
3089 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3093 pci_set_power_state(dev
, PCI_D0
);
3094 pci_restore_state(dev
);
3095 err
= pci_enable_device(dev
);
3097 fw_error("pci_enable_device failed\n");
3101 return ohci_enable(&ohci
->card
, NULL
, 0);
3105 static const struct pci_device_id pci_table
[] = {
3106 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3110 MODULE_DEVICE_TABLE(pci
, pci_table
);
3112 static struct pci_driver fw_ohci_pci_driver
= {
3113 .name
= ohci_driver_name
,
3114 .id_table
= pci_table
,
3116 .remove
= pci_remove
,
3118 .resume
= pci_resume
,
3119 .suspend
= pci_suspend
,
3123 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3124 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3125 MODULE_LICENSE("GPL");
3127 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3128 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3129 MODULE_ALIAS("ohci1394");
3132 static int __init
fw_ohci_init(void)
3134 return pci_register_driver(&fw_ohci_pci_driver
);
3137 static void __exit
fw_ohci_cleanup(void)
3139 pci_unregister_driver(&fw_ohci_pci_driver
);
3142 module_init(fw_ohci_init
);
3143 module_exit(fw_ohci_cleanup
);