perf session: Keep file mmaped instead of malloc/memcpy
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firewire / ohci.c
blob84eb607d6c031b4275e834604d4c0c0729fa8502
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
52 #include "core.h"
53 #include "ohci.h"
55 #define DESCRIPTOR_OUTPUT_MORE 0
56 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST (3 << 12)
59 #define DESCRIPTOR_STATUS (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
61 #define DESCRIPTOR_PING (1 << 7)
62 #define DESCRIPTOR_YY (1 << 6)
63 #define DESCRIPTOR_NO_IRQ (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
67 #define DESCRIPTOR_WAIT (3 << 0)
69 struct descriptor {
70 __le16 req_count;
71 __le16 control;
72 __le32 data_address;
73 __le32 branch_address;
74 __le16 res_count;
75 __le16 transfer_status;
76 } __attribute__((aligned(16)));
78 #define CONTROL_SET(regs) (regs)
79 #define CONTROL_CLEAR(regs) ((regs) + 4)
80 #define COMMAND_PTR(regs) ((regs) + 12)
81 #define CONTEXT_MATCH(regs) ((regs) + 16)
83 struct ar_buffer {
84 struct descriptor descriptor;
85 struct ar_buffer *next;
86 __le32 data[0];
89 struct ar_context {
90 struct fw_ohci *ohci;
91 struct ar_buffer *current_buffer;
92 struct ar_buffer *last_buffer;
93 void *pointer;
94 u32 regs;
95 struct tasklet_struct tasklet;
98 struct context;
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101 struct descriptor *d,
102 struct descriptor *last);
105 * A buffer that contains a block of DMA-able coherent memory used for
106 * storing a portion of a DMA descriptor program.
108 struct descriptor_buffer {
109 struct list_head list;
110 dma_addr_t buffer_bus;
111 size_t buffer_size;
112 size_t used;
113 struct descriptor buffer[0];
116 struct context {
117 struct fw_ohci *ohci;
118 u32 regs;
119 int total_allocation;
122 * List of page-sized buffers for storing DMA descriptors.
123 * Head of list contains buffers in use and tail of list contains
124 * free buffers.
126 struct list_head buffer_list;
129 * Pointer to a buffer inside buffer_list that contains the tail
130 * end of the current DMA program.
132 struct descriptor_buffer *buffer_tail;
135 * The descriptor containing the branch address of the first
136 * descriptor that has not yet been filled by the device.
138 struct descriptor *last;
141 * The last descriptor in the DMA program. It contains the branch
142 * address that must be updated upon appending a new descriptor.
144 struct descriptor *prev;
146 descriptor_callback_t callback;
148 struct tasklet_struct tasklet;
151 #define IT_HEADER_SY(v) ((v) << 0)
152 #define IT_HEADER_TCODE(v) ((v) << 4)
153 #define IT_HEADER_CHANNEL(v) ((v) << 8)
154 #define IT_HEADER_TAG(v) ((v) << 14)
155 #define IT_HEADER_SPEED(v) ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
158 struct iso_context {
159 struct fw_iso_context base;
160 struct context context;
161 int excess_bytes;
162 void *header;
163 size_t header_length;
166 #define CONFIG_ROM_SIZE 1024
168 struct fw_ohci {
169 struct fw_card card;
171 __iomem char *registers;
172 int node_id;
173 int generation;
174 int request_generation; /* for timestamping incoming requests */
175 unsigned quirks;
176 unsigned int pri_req_max;
177 u32 bus_time;
178 bool is_root;
179 bool csr_state_setclear_abdicate;
182 * Spinlock for accessing fw_ohci data. Never call out of
183 * this driver with this lock held.
185 spinlock_t lock;
187 struct mutex phy_reg_mutex;
189 struct ar_context ar_request_ctx;
190 struct ar_context ar_response_ctx;
191 struct context at_request_ctx;
192 struct context at_response_ctx;
194 u32 it_context_mask; /* unoccupied IT contexts */
195 struct iso_context *it_context_list;
196 u64 ir_context_channels; /* unoccupied channels */
197 u32 ir_context_mask; /* unoccupied IR contexts */
198 struct iso_context *ir_context_list;
199 u64 mc_channels; /* channels in use by the multichannel IR context */
200 bool mc_allocated;
202 __be32 *config_rom;
203 dma_addr_t config_rom_bus;
204 __be32 *next_config_rom;
205 dma_addr_t next_config_rom_bus;
206 __be32 next_header;
208 __le32 *self_id_cpu;
209 dma_addr_t self_id_bus;
210 struct tasklet_struct bus_reset_tasklet;
212 u32 self_id_buffer[512];
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
217 return container_of(card, struct fw_ohci, card);
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
221 #define IR_CONTEXT_BUFFER_FILL 0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
227 #define CONTEXT_RUN 0x8000
228 #define CONTEXT_WAKE 0x1000
229 #define CONTEXT_DEAD 0x0800
230 #define CONTEXT_ACTIVE 0x0400
232 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
236 #define OHCI1394_REGISTER_SIZE 0x800
237 #define OHCI_LOOP_COUNT 500
238 #define OHCI1394_PCI_HCI_Control 0x40
239 #define SELF_ID_BUF_SIZE 0x800
240 #define OHCI_TCODE_PHY_PACKET 0x0e
241 #define OHCI_VERSION_1_1 0x010010
243 static char ohci_driver_name[] = KBUILD_MODNAME;
245 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
246 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
248 #define QUIRK_CYCLE_TIMER 1
249 #define QUIRK_RESET_PACKET 2
250 #define QUIRK_BE_HEADERS 4
251 #define QUIRK_NO_1394A 8
252 #define QUIRK_NO_MSI 16
254 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
255 static const struct {
256 unsigned short vendor, device, flags;
257 } ohci_quirks[] = {
258 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259 QUIRK_RESET_PACKET |
260 QUIRK_NO_1394A},
261 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
262 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
263 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
265 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
266 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
267 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
270 /* This overrides anything that was found in ohci_quirks[]. */
271 static int param_quirks;
272 module_param_named(quirks, param_quirks, int, 0644);
273 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
274 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
275 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
276 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
277 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
278 ", disable MSI = " __stringify(QUIRK_NO_MSI)
279 ")");
281 #define OHCI_PARAM_DEBUG_AT_AR 1
282 #define OHCI_PARAM_DEBUG_SELFIDS 2
283 #define OHCI_PARAM_DEBUG_IRQS 4
284 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
286 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
288 static int param_debug;
289 module_param_named(debug, param_debug, int, 0644);
290 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
291 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
292 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
293 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
294 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
295 ", or a combination, or all = -1)");
297 static void log_irqs(u32 evt)
299 if (likely(!(param_debug &
300 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
301 return;
303 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
304 !(evt & OHCI1394_busReset))
305 return;
307 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
308 evt & OHCI1394_selfIDComplete ? " selfID" : "",
309 evt & OHCI1394_RQPkt ? " AR_req" : "",
310 evt & OHCI1394_RSPkt ? " AR_resp" : "",
311 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
312 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
313 evt & OHCI1394_isochRx ? " IR" : "",
314 evt & OHCI1394_isochTx ? " IT" : "",
315 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
316 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
317 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
318 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
319 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
320 evt & OHCI1394_busReset ? " busReset" : "",
321 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
322 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
323 OHCI1394_respTxComplete | OHCI1394_isochRx |
324 OHCI1394_isochTx | OHCI1394_postedWriteErr |
325 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
326 OHCI1394_cycleInconsistent |
327 OHCI1394_regAccessFail | OHCI1394_busReset)
328 ? " ?" : "");
331 static const char *speed[] = {
332 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
334 static const char *power[] = {
335 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
336 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
338 static const char port[] = { '.', '-', 'p', 'c', };
340 static char _p(u32 *s, int shift)
342 return port[*s >> shift & 3];
345 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
347 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
348 return;
350 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
351 self_id_count, generation, node_id);
353 for (; self_id_count--; ++s)
354 if ((*s & 1 << 23) == 0)
355 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
356 "%s gc=%d %s %s%s%s\n",
357 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
358 speed[*s >> 14 & 3], *s >> 16 & 63,
359 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
360 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
361 else
362 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
363 *s, *s >> 24 & 63,
364 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
365 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
368 static const char *evts[] = {
369 [0x00] = "evt_no_status", [0x01] = "-reserved-",
370 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
371 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
372 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
373 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
374 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
375 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
376 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
377 [0x10] = "-reserved-", [0x11] = "ack_complete",
378 [0x12] = "ack_pending ", [0x13] = "-reserved-",
379 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
380 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
381 [0x18] = "-reserved-", [0x19] = "-reserved-",
382 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
383 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
384 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
385 [0x20] = "pending/cancelled",
387 static const char *tcodes[] = {
388 [0x0] = "QW req", [0x1] = "BW req",
389 [0x2] = "W resp", [0x3] = "-reserved-",
390 [0x4] = "QR req", [0x5] = "BR req",
391 [0x6] = "QR resp", [0x7] = "BR resp",
392 [0x8] = "cycle start", [0x9] = "Lk req",
393 [0xa] = "async stream packet", [0xb] = "Lk resp",
394 [0xc] = "-reserved-", [0xd] = "-reserved-",
395 [0xe] = "link internal", [0xf] = "-reserved-",
397 static const char *phys[] = {
398 [0x0] = "phy config packet", [0x1] = "link-on packet",
399 [0x2] = "self-id packet", [0x3] = "-reserved-",
402 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
404 int tcode = header[0] >> 4 & 0xf;
405 char specific[12];
407 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
408 return;
410 if (unlikely(evt >= ARRAY_SIZE(evts)))
411 evt = 0x1f;
413 if (evt == OHCI1394_evt_bus_reset) {
414 fw_notify("A%c evt_bus_reset, generation %d\n",
415 dir, (header[2] >> 16) & 0xff);
416 return;
419 if (header[0] == ~header[1]) {
420 fw_notify("A%c %s, %s, %08x\n",
421 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
422 return;
425 switch (tcode) {
426 case 0x0: case 0x6: case 0x8:
427 snprintf(specific, sizeof(specific), " = %08x",
428 be32_to_cpu((__force __be32)header[3]));
429 break;
430 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
431 snprintf(specific, sizeof(specific), " %x,%x",
432 header[3] >> 16, header[3] & 0xffff);
433 break;
434 default:
435 specific[0] = '\0';
438 switch (tcode) {
439 case 0xe: case 0xa:
440 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
441 break;
442 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
443 fw_notify("A%c spd %x tl %02x, "
444 "%04x -> %04x, %s, "
445 "%s, %04x%08x%s\n",
446 dir, speed, header[0] >> 10 & 0x3f,
447 header[1] >> 16, header[0] >> 16, evts[evt],
448 tcodes[tcode], header[1] & 0xffff, header[2], specific);
449 break;
450 default:
451 fw_notify("A%c spd %x tl %02x, "
452 "%04x -> %04x, %s, "
453 "%s%s\n",
454 dir, speed, header[0] >> 10 & 0x3f,
455 header[1] >> 16, header[0] >> 16, evts[evt],
456 tcodes[tcode], specific);
460 #else
462 #define param_debug 0
463 static inline void log_irqs(u32 evt) {}
464 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
465 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
467 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
469 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
471 writel(data, ohci->registers + offset);
474 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
476 return readl(ohci->registers + offset);
479 static inline void flush_writes(const struct fw_ohci *ohci)
481 /* Do a dummy read to flush writes. */
482 reg_read(ohci, OHCI1394_Version);
485 static int read_phy_reg(struct fw_ohci *ohci, int addr)
487 u32 val;
488 int i;
490 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
491 for (i = 0; i < 3 + 100; i++) {
492 val = reg_read(ohci, OHCI1394_PhyControl);
493 if (val & OHCI1394_PhyControl_ReadDone)
494 return OHCI1394_PhyControl_ReadData(val);
497 * Try a few times without waiting. Sleeping is necessary
498 * only when the link/PHY interface is busy.
500 if (i >= 3)
501 msleep(1);
503 fw_error("failed to read phy reg\n");
505 return -EBUSY;
508 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
510 int i;
512 reg_write(ohci, OHCI1394_PhyControl,
513 OHCI1394_PhyControl_Write(addr, val));
514 for (i = 0; i < 3 + 100; i++) {
515 val = reg_read(ohci, OHCI1394_PhyControl);
516 if (!(val & OHCI1394_PhyControl_WritePending))
517 return 0;
519 if (i >= 3)
520 msleep(1);
522 fw_error("failed to write phy reg\n");
524 return -EBUSY;
527 static int update_phy_reg(struct fw_ohci *ohci, int addr,
528 int clear_bits, int set_bits)
530 int ret = read_phy_reg(ohci, addr);
531 if (ret < 0)
532 return ret;
535 * The interrupt status bits are cleared by writing a one bit.
536 * Avoid clearing them unless explicitly requested in set_bits.
538 if (addr == 5)
539 clear_bits |= PHY_INT_STATUS_BITS;
541 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
544 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
546 int ret;
548 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
549 if (ret < 0)
550 return ret;
552 return read_phy_reg(ohci, addr);
555 static int ohci_read_phy_reg(struct fw_card *card, int addr)
557 struct fw_ohci *ohci = fw_ohci(card);
558 int ret;
560 mutex_lock(&ohci->phy_reg_mutex);
561 ret = read_phy_reg(ohci, addr);
562 mutex_unlock(&ohci->phy_reg_mutex);
564 return ret;
567 static int ohci_update_phy_reg(struct fw_card *card, int addr,
568 int clear_bits, int set_bits)
570 struct fw_ohci *ohci = fw_ohci(card);
571 int ret;
573 mutex_lock(&ohci->phy_reg_mutex);
574 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
575 mutex_unlock(&ohci->phy_reg_mutex);
577 return ret;
580 static void ar_context_link_page(struct ar_context *ctx,
581 struct ar_buffer *ab, dma_addr_t ab_bus)
583 size_t offset;
585 ab->next = NULL;
586 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
587 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
588 DESCRIPTOR_STATUS |
589 DESCRIPTOR_BRANCH_ALWAYS);
590 offset = offsetof(struct ar_buffer, data);
591 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
592 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
593 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
594 ab->descriptor.branch_address = 0;
596 wmb(); /* finish init of new descriptors before branch_address update */
597 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
598 ctx->last_buffer->next = ab;
599 ctx->last_buffer = ab;
601 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
602 flush_writes(ctx->ohci);
605 static int ar_context_add_page(struct ar_context *ctx)
607 struct device *dev = ctx->ohci->card.device;
608 struct ar_buffer *ab;
609 dma_addr_t uninitialized_var(ab_bus);
611 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
612 if (ab == NULL)
613 return -ENOMEM;
615 ar_context_link_page(ctx, ab, ab_bus);
617 return 0;
620 static void ar_context_release(struct ar_context *ctx)
622 struct ar_buffer *ab, *ab_next;
623 size_t offset;
624 dma_addr_t ab_bus;
626 for (ab = ctx->current_buffer; ab; ab = ab_next) {
627 ab_next = ab->next;
628 offset = offsetof(struct ar_buffer, data);
629 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
630 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
631 ab, ab_bus);
635 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
636 #define cond_le32_to_cpu(v) \
637 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
638 #else
639 #define cond_le32_to_cpu(v) le32_to_cpu(v)
640 #endif
642 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
644 struct fw_ohci *ohci = ctx->ohci;
645 struct fw_packet p;
646 u32 status, length, tcode;
647 int evt;
649 p.header[0] = cond_le32_to_cpu(buffer[0]);
650 p.header[1] = cond_le32_to_cpu(buffer[1]);
651 p.header[2] = cond_le32_to_cpu(buffer[2]);
653 tcode = (p.header[0] >> 4) & 0x0f;
654 switch (tcode) {
655 case TCODE_WRITE_QUADLET_REQUEST:
656 case TCODE_READ_QUADLET_RESPONSE:
657 p.header[3] = (__force __u32) buffer[3];
658 p.header_length = 16;
659 p.payload_length = 0;
660 break;
662 case TCODE_READ_BLOCK_REQUEST :
663 p.header[3] = cond_le32_to_cpu(buffer[3]);
664 p.header_length = 16;
665 p.payload_length = 0;
666 break;
668 case TCODE_WRITE_BLOCK_REQUEST:
669 case TCODE_READ_BLOCK_RESPONSE:
670 case TCODE_LOCK_REQUEST:
671 case TCODE_LOCK_RESPONSE:
672 p.header[3] = cond_le32_to_cpu(buffer[3]);
673 p.header_length = 16;
674 p.payload_length = p.header[3] >> 16;
675 break;
677 case TCODE_WRITE_RESPONSE:
678 case TCODE_READ_QUADLET_REQUEST:
679 case OHCI_TCODE_PHY_PACKET:
680 p.header_length = 12;
681 p.payload_length = 0;
682 break;
684 default:
685 /* FIXME: Stop context, discard everything, and restart? */
686 p.header_length = 0;
687 p.payload_length = 0;
690 p.payload = (void *) buffer + p.header_length;
692 /* FIXME: What to do about evt_* errors? */
693 length = (p.header_length + p.payload_length + 3) / 4;
694 status = cond_le32_to_cpu(buffer[length]);
695 evt = (status >> 16) & 0x1f;
697 p.ack = evt - 16;
698 p.speed = (status >> 21) & 0x7;
699 p.timestamp = status & 0xffff;
700 p.generation = ohci->request_generation;
702 log_ar_at_event('R', p.speed, p.header, evt);
705 * Several controllers, notably from NEC and VIA, forget to
706 * write ack_complete status at PHY packet reception.
708 if (evt == OHCI1394_evt_no_status &&
709 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
710 p.ack = ACK_COMPLETE;
713 * The OHCI bus reset handler synthesizes a PHY packet with
714 * the new generation number when a bus reset happens (see
715 * section 8.4.2.3). This helps us determine when a request
716 * was received and make sure we send the response in the same
717 * generation. We only need this for requests; for responses
718 * we use the unique tlabel for finding the matching
719 * request.
721 * Alas some chips sometimes emit bus reset packets with a
722 * wrong generation. We set the correct generation for these
723 * at a slightly incorrect time (in bus_reset_tasklet).
725 if (evt == OHCI1394_evt_bus_reset) {
726 if (!(ohci->quirks & QUIRK_RESET_PACKET))
727 ohci->request_generation = (p.header[2] >> 16) & 0xff;
728 } else if (ctx == &ohci->ar_request_ctx) {
729 fw_core_handle_request(&ohci->card, &p);
730 } else {
731 fw_core_handle_response(&ohci->card, &p);
734 return buffer + length + 1;
737 static void ar_context_tasklet(unsigned long data)
739 struct ar_context *ctx = (struct ar_context *)data;
740 struct ar_buffer *ab;
741 struct descriptor *d;
742 void *buffer, *end;
743 __le16 res_count;
745 ab = ctx->current_buffer;
746 d = &ab->descriptor;
748 res_count = ACCESS_ONCE(d->res_count);
749 if (res_count == 0) {
750 size_t size, size2, rest, pktsize, size3, offset;
751 dma_addr_t start_bus;
752 void *start;
755 * This descriptor is finished and we may have a
756 * packet split across this and the next buffer. We
757 * reuse the page for reassembling the split packet.
760 offset = offsetof(struct ar_buffer, data);
761 start = ab;
762 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
763 buffer = ab->data;
765 ab = ab->next;
766 d = &ab->descriptor;
767 size = start + PAGE_SIZE - ctx->pointer;
768 /* valid buffer data in the next page */
769 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
770 /* what actually fits in this page */
771 size2 = min(rest, (size_t)PAGE_SIZE - offset - size);
772 memmove(buffer, ctx->pointer, size);
773 memcpy(buffer + size, ab->data, size2);
775 while (size > 0) {
776 void *next = handle_ar_packet(ctx, buffer);
777 pktsize = next - buffer;
778 if (pktsize >= size) {
780 * We have handled all the data that was
781 * originally in this page, so we can now
782 * continue in the next page.
784 buffer = next;
785 break;
787 /* move the next packet to the start of the buffer */
788 memmove(buffer, next, size + size2 - pktsize);
789 size -= pktsize;
790 /* fill up this page again */
791 size3 = min(rest - size2,
792 (size_t)PAGE_SIZE - offset - size - size2);
793 memcpy(buffer + size + size2,
794 (void *) ab->data + size2, size3);
795 size2 += size3;
798 if (rest > 0) {
799 /* handle the packets that are fully in the next page */
800 buffer = (void *) ab->data +
801 (buffer - (start + offset + size));
802 end = (void *) ab->data + rest;
804 while (buffer < end)
805 buffer = handle_ar_packet(ctx, buffer);
807 ctx->current_buffer = ab;
808 ctx->pointer = end;
810 ar_context_link_page(ctx, start, start_bus);
811 } else {
812 ctx->pointer = start + PAGE_SIZE;
814 } else {
815 buffer = ctx->pointer;
816 ctx->pointer = end =
817 (void *) ab + PAGE_SIZE - le16_to_cpu(res_count);
819 while (buffer < end)
820 buffer = handle_ar_packet(ctx, buffer);
824 static int ar_context_init(struct ar_context *ctx,
825 struct fw_ohci *ohci, u32 regs)
827 struct ar_buffer ab;
829 ctx->regs = regs;
830 ctx->ohci = ohci;
831 ctx->last_buffer = &ab;
832 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
834 ar_context_add_page(ctx);
835 ar_context_add_page(ctx);
836 ctx->current_buffer = ab.next;
837 ctx->pointer = ctx->current_buffer->data;
839 return 0;
842 static void ar_context_run(struct ar_context *ctx)
844 struct ar_buffer *ab = ctx->current_buffer;
845 dma_addr_t ab_bus;
846 size_t offset;
848 offset = offsetof(struct ar_buffer, data);
849 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
851 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
852 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
853 flush_writes(ctx->ohci);
856 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
858 int b, key;
860 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
861 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
863 /* figure out which descriptor the branch address goes in */
864 if (z == 2 && (b == 3 || key == 2))
865 return d;
866 else
867 return d + z - 1;
870 static void context_tasklet(unsigned long data)
872 struct context *ctx = (struct context *) data;
873 struct descriptor *d, *last;
874 u32 address;
875 int z;
876 struct descriptor_buffer *desc;
878 desc = list_entry(ctx->buffer_list.next,
879 struct descriptor_buffer, list);
880 last = ctx->last;
881 while (last->branch_address != 0) {
882 struct descriptor_buffer *old_desc = desc;
883 address = le32_to_cpu(last->branch_address);
884 z = address & 0xf;
885 address &= ~0xf;
887 /* If the branch address points to a buffer outside of the
888 * current buffer, advance to the next buffer. */
889 if (address < desc->buffer_bus ||
890 address >= desc->buffer_bus + desc->used)
891 desc = list_entry(desc->list.next,
892 struct descriptor_buffer, list);
893 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
894 last = find_branch_descriptor(d, z);
896 if (!ctx->callback(ctx, d, last))
897 break;
899 if (old_desc != desc) {
900 /* If we've advanced to the next buffer, move the
901 * previous buffer to the free list. */
902 unsigned long flags;
903 old_desc->used = 0;
904 spin_lock_irqsave(&ctx->ohci->lock, flags);
905 list_move_tail(&old_desc->list, &ctx->buffer_list);
906 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
908 ctx->last = last;
913 * Allocate a new buffer and add it to the list of free buffers for this
914 * context. Must be called with ohci->lock held.
916 static int context_add_buffer(struct context *ctx)
918 struct descriptor_buffer *desc;
919 dma_addr_t uninitialized_var(bus_addr);
920 int offset;
923 * 16MB of descriptors should be far more than enough for any DMA
924 * program. This will catch run-away userspace or DoS attacks.
926 if (ctx->total_allocation >= 16*1024*1024)
927 return -ENOMEM;
929 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
930 &bus_addr, GFP_ATOMIC);
931 if (!desc)
932 return -ENOMEM;
934 offset = (void *)&desc->buffer - (void *)desc;
935 desc->buffer_size = PAGE_SIZE - offset;
936 desc->buffer_bus = bus_addr + offset;
937 desc->used = 0;
939 list_add_tail(&desc->list, &ctx->buffer_list);
940 ctx->total_allocation += PAGE_SIZE;
942 return 0;
945 static int context_init(struct context *ctx, struct fw_ohci *ohci,
946 u32 regs, descriptor_callback_t callback)
948 ctx->ohci = ohci;
949 ctx->regs = regs;
950 ctx->total_allocation = 0;
952 INIT_LIST_HEAD(&ctx->buffer_list);
953 if (context_add_buffer(ctx) < 0)
954 return -ENOMEM;
956 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
957 struct descriptor_buffer, list);
959 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
960 ctx->callback = callback;
963 * We put a dummy descriptor in the buffer that has a NULL
964 * branch address and looks like it's been sent. That way we
965 * have a descriptor to append DMA programs to.
967 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
968 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
969 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
970 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
971 ctx->last = ctx->buffer_tail->buffer;
972 ctx->prev = ctx->buffer_tail->buffer;
974 return 0;
977 static void context_release(struct context *ctx)
979 struct fw_card *card = &ctx->ohci->card;
980 struct descriptor_buffer *desc, *tmp;
982 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
983 dma_free_coherent(card->device, PAGE_SIZE, desc,
984 desc->buffer_bus -
985 ((void *)&desc->buffer - (void *)desc));
988 /* Must be called with ohci->lock held */
989 static struct descriptor *context_get_descriptors(struct context *ctx,
990 int z, dma_addr_t *d_bus)
992 struct descriptor *d = NULL;
993 struct descriptor_buffer *desc = ctx->buffer_tail;
995 if (z * sizeof(*d) > desc->buffer_size)
996 return NULL;
998 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
999 /* No room for the descriptor in this buffer, so advance to the
1000 * next one. */
1002 if (desc->list.next == &ctx->buffer_list) {
1003 /* If there is no free buffer next in the list,
1004 * allocate one. */
1005 if (context_add_buffer(ctx) < 0)
1006 return NULL;
1008 desc = list_entry(desc->list.next,
1009 struct descriptor_buffer, list);
1010 ctx->buffer_tail = desc;
1013 d = desc->buffer + desc->used / sizeof(*d);
1014 memset(d, 0, z * sizeof(*d));
1015 *d_bus = desc->buffer_bus + desc->used;
1017 return d;
1020 static void context_run(struct context *ctx, u32 extra)
1022 struct fw_ohci *ohci = ctx->ohci;
1024 reg_write(ohci, COMMAND_PTR(ctx->regs),
1025 le32_to_cpu(ctx->last->branch_address));
1026 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1027 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1028 flush_writes(ohci);
1031 static void context_append(struct context *ctx,
1032 struct descriptor *d, int z, int extra)
1034 dma_addr_t d_bus;
1035 struct descriptor_buffer *desc = ctx->buffer_tail;
1037 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1039 desc->used += (z + extra) * sizeof(*d);
1041 wmb(); /* finish init of new descriptors before branch_address update */
1042 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1043 ctx->prev = find_branch_descriptor(d, z);
1045 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1046 flush_writes(ctx->ohci);
1049 static void context_stop(struct context *ctx)
1051 u32 reg;
1052 int i;
1054 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1055 flush_writes(ctx->ohci);
1057 for (i = 0; i < 10; i++) {
1058 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1059 if ((reg & CONTEXT_ACTIVE) == 0)
1060 return;
1062 mdelay(1);
1064 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1067 struct driver_data {
1068 struct fw_packet *packet;
1072 * This function apppends a packet to the DMA queue for transmission.
1073 * Must always be called with the ochi->lock held to ensure proper
1074 * generation handling and locking around packet queue manipulation.
1076 static int at_context_queue_packet(struct context *ctx,
1077 struct fw_packet *packet)
1079 struct fw_ohci *ohci = ctx->ohci;
1080 dma_addr_t d_bus, uninitialized_var(payload_bus);
1081 struct driver_data *driver_data;
1082 struct descriptor *d, *last;
1083 __le32 *header;
1084 int z, tcode;
1085 u32 reg;
1087 d = context_get_descriptors(ctx, 4, &d_bus);
1088 if (d == NULL) {
1089 packet->ack = RCODE_SEND_ERROR;
1090 return -1;
1093 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1094 d[0].res_count = cpu_to_le16(packet->timestamp);
1097 * The DMA format for asyncronous link packets is different
1098 * from the IEEE1394 layout, so shift the fields around
1099 * accordingly. If header_length is 8, it's a PHY packet, to
1100 * which we need to prepend an extra quadlet.
1103 header = (__le32 *) &d[1];
1104 switch (packet->header_length) {
1105 case 16:
1106 case 12:
1107 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1108 (packet->speed << 16));
1109 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1110 (packet->header[0] & 0xffff0000));
1111 header[2] = cpu_to_le32(packet->header[2]);
1113 tcode = (packet->header[0] >> 4) & 0x0f;
1114 if (TCODE_IS_BLOCK_PACKET(tcode))
1115 header[3] = cpu_to_le32(packet->header[3]);
1116 else
1117 header[3] = (__force __le32) packet->header[3];
1119 d[0].req_count = cpu_to_le16(packet->header_length);
1120 break;
1122 case 8:
1123 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1124 (packet->speed << 16));
1125 header[1] = cpu_to_le32(packet->header[0]);
1126 header[2] = cpu_to_le32(packet->header[1]);
1127 d[0].req_count = cpu_to_le16(12);
1129 if (is_ping_packet(packet->header))
1130 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1131 break;
1133 case 4:
1134 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1135 (packet->speed << 16));
1136 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1137 d[0].req_count = cpu_to_le16(8);
1138 break;
1140 default:
1141 /* BUG(); */
1142 packet->ack = RCODE_SEND_ERROR;
1143 return -1;
1146 driver_data = (struct driver_data *) &d[3];
1147 driver_data->packet = packet;
1148 packet->driver_data = driver_data;
1150 if (packet->payload_length > 0) {
1151 payload_bus =
1152 dma_map_single(ohci->card.device, packet->payload,
1153 packet->payload_length, DMA_TO_DEVICE);
1154 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1155 packet->ack = RCODE_SEND_ERROR;
1156 return -1;
1158 packet->payload_bus = payload_bus;
1159 packet->payload_mapped = true;
1161 d[2].req_count = cpu_to_le16(packet->payload_length);
1162 d[2].data_address = cpu_to_le32(payload_bus);
1163 last = &d[2];
1164 z = 3;
1165 } else {
1166 last = &d[0];
1167 z = 2;
1170 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1171 DESCRIPTOR_IRQ_ALWAYS |
1172 DESCRIPTOR_BRANCH_ALWAYS);
1175 * If the controller and packet generations don't match, we need to
1176 * bail out and try again. If IntEvent.busReset is set, the AT context
1177 * is halted, so appending to the context and trying to run it is
1178 * futile. Most controllers do the right thing and just flush the AT
1179 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1180 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1181 * up stalling out. So we just bail out in software and try again
1182 * later, and everyone is happy.
1183 * FIXME: Document how the locking works.
1185 if (ohci->generation != packet->generation ||
1186 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1187 if (packet->payload_mapped)
1188 dma_unmap_single(ohci->card.device, payload_bus,
1189 packet->payload_length, DMA_TO_DEVICE);
1190 packet->ack = RCODE_GENERATION;
1191 return -1;
1194 context_append(ctx, d, z, 4 - z);
1196 /* If the context isn't already running, start it up. */
1197 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1198 if ((reg & CONTEXT_RUN) == 0)
1199 context_run(ctx, 0);
1201 return 0;
1204 static int handle_at_packet(struct context *context,
1205 struct descriptor *d,
1206 struct descriptor *last)
1208 struct driver_data *driver_data;
1209 struct fw_packet *packet;
1210 struct fw_ohci *ohci = context->ohci;
1211 int evt;
1213 if (last->transfer_status == 0)
1214 /* This descriptor isn't done yet, stop iteration. */
1215 return 0;
1217 driver_data = (struct driver_data *) &d[3];
1218 packet = driver_data->packet;
1219 if (packet == NULL)
1220 /* This packet was cancelled, just continue. */
1221 return 1;
1223 if (packet->payload_mapped)
1224 dma_unmap_single(ohci->card.device, packet->payload_bus,
1225 packet->payload_length, DMA_TO_DEVICE);
1227 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1228 packet->timestamp = le16_to_cpu(last->res_count);
1230 log_ar_at_event('T', packet->speed, packet->header, evt);
1232 switch (evt) {
1233 case OHCI1394_evt_timeout:
1234 /* Async response transmit timed out. */
1235 packet->ack = RCODE_CANCELLED;
1236 break;
1238 case OHCI1394_evt_flushed:
1240 * The packet was flushed should give same error as
1241 * when we try to use a stale generation count.
1243 packet->ack = RCODE_GENERATION;
1244 break;
1246 case OHCI1394_evt_missing_ack:
1248 * Using a valid (current) generation count, but the
1249 * node is not on the bus or not sending acks.
1251 packet->ack = RCODE_NO_ACK;
1252 break;
1254 case ACK_COMPLETE + 0x10:
1255 case ACK_PENDING + 0x10:
1256 case ACK_BUSY_X + 0x10:
1257 case ACK_BUSY_A + 0x10:
1258 case ACK_BUSY_B + 0x10:
1259 case ACK_DATA_ERROR + 0x10:
1260 case ACK_TYPE_ERROR + 0x10:
1261 packet->ack = evt - 0x10;
1262 break;
1264 default:
1265 packet->ack = RCODE_SEND_ERROR;
1266 break;
1269 packet->callback(packet, &ohci->card, packet->ack);
1271 return 1;
1274 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1275 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1276 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1277 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1278 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1280 static void handle_local_rom(struct fw_ohci *ohci,
1281 struct fw_packet *packet, u32 csr)
1283 struct fw_packet response;
1284 int tcode, length, i;
1286 tcode = HEADER_GET_TCODE(packet->header[0]);
1287 if (TCODE_IS_BLOCK_PACKET(tcode))
1288 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1289 else
1290 length = 4;
1292 i = csr - CSR_CONFIG_ROM;
1293 if (i + length > CONFIG_ROM_SIZE) {
1294 fw_fill_response(&response, packet->header,
1295 RCODE_ADDRESS_ERROR, NULL, 0);
1296 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1297 fw_fill_response(&response, packet->header,
1298 RCODE_TYPE_ERROR, NULL, 0);
1299 } else {
1300 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1301 (void *) ohci->config_rom + i, length);
1304 fw_core_handle_response(&ohci->card, &response);
1307 static void handle_local_lock(struct fw_ohci *ohci,
1308 struct fw_packet *packet, u32 csr)
1310 struct fw_packet response;
1311 int tcode, length, ext_tcode, sel, try;
1312 __be32 *payload, lock_old;
1313 u32 lock_arg, lock_data;
1315 tcode = HEADER_GET_TCODE(packet->header[0]);
1316 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1317 payload = packet->payload;
1318 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1320 if (tcode == TCODE_LOCK_REQUEST &&
1321 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1322 lock_arg = be32_to_cpu(payload[0]);
1323 lock_data = be32_to_cpu(payload[1]);
1324 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1325 lock_arg = 0;
1326 lock_data = 0;
1327 } else {
1328 fw_fill_response(&response, packet->header,
1329 RCODE_TYPE_ERROR, NULL, 0);
1330 goto out;
1333 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1334 reg_write(ohci, OHCI1394_CSRData, lock_data);
1335 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1336 reg_write(ohci, OHCI1394_CSRControl, sel);
1338 for (try = 0; try < 20; try++)
1339 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1340 lock_old = cpu_to_be32(reg_read(ohci,
1341 OHCI1394_CSRData));
1342 fw_fill_response(&response, packet->header,
1343 RCODE_COMPLETE,
1344 &lock_old, sizeof(lock_old));
1345 goto out;
1348 fw_error("swap not done (CSR lock timeout)\n");
1349 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1351 out:
1352 fw_core_handle_response(&ohci->card, &response);
1355 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1357 u64 offset, csr;
1359 if (ctx == &ctx->ohci->at_request_ctx) {
1360 packet->ack = ACK_PENDING;
1361 packet->callback(packet, &ctx->ohci->card, packet->ack);
1364 offset =
1365 ((unsigned long long)
1366 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1367 packet->header[2];
1368 csr = offset - CSR_REGISTER_BASE;
1370 /* Handle config rom reads. */
1371 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1372 handle_local_rom(ctx->ohci, packet, csr);
1373 else switch (csr) {
1374 case CSR_BUS_MANAGER_ID:
1375 case CSR_BANDWIDTH_AVAILABLE:
1376 case CSR_CHANNELS_AVAILABLE_HI:
1377 case CSR_CHANNELS_AVAILABLE_LO:
1378 handle_local_lock(ctx->ohci, packet, csr);
1379 break;
1380 default:
1381 if (ctx == &ctx->ohci->at_request_ctx)
1382 fw_core_handle_request(&ctx->ohci->card, packet);
1383 else
1384 fw_core_handle_response(&ctx->ohci->card, packet);
1385 break;
1388 if (ctx == &ctx->ohci->at_response_ctx) {
1389 packet->ack = ACK_COMPLETE;
1390 packet->callback(packet, &ctx->ohci->card, packet->ack);
1394 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1396 unsigned long flags;
1397 int ret;
1399 spin_lock_irqsave(&ctx->ohci->lock, flags);
1401 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1402 ctx->ohci->generation == packet->generation) {
1403 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1404 handle_local_request(ctx, packet);
1405 return;
1408 ret = at_context_queue_packet(ctx, packet);
1409 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1411 if (ret < 0)
1412 packet->callback(packet, &ctx->ohci->card, packet->ack);
1416 static u32 cycle_timer_ticks(u32 cycle_timer)
1418 u32 ticks;
1420 ticks = cycle_timer & 0xfff;
1421 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1422 ticks += (3072 * 8000) * (cycle_timer >> 25);
1424 return ticks;
1428 * Some controllers exhibit one or more of the following bugs when updating the
1429 * iso cycle timer register:
1430 * - When the lowest six bits are wrapping around to zero, a read that happens
1431 * at the same time will return garbage in the lowest ten bits.
1432 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1433 * not incremented for about 60 ns.
1434 * - Occasionally, the entire register reads zero.
1436 * To catch these, we read the register three times and ensure that the
1437 * difference between each two consecutive reads is approximately the same, i.e.
1438 * less than twice the other. Furthermore, any negative difference indicates an
1439 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1440 * execute, so we have enough precision to compute the ratio of the differences.)
1442 static u32 get_cycle_time(struct fw_ohci *ohci)
1444 u32 c0, c1, c2;
1445 u32 t0, t1, t2;
1446 s32 diff01, diff12;
1447 int i;
1449 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1451 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1452 i = 0;
1453 c1 = c2;
1454 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1455 do {
1456 c0 = c1;
1457 c1 = c2;
1458 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1459 t0 = cycle_timer_ticks(c0);
1460 t1 = cycle_timer_ticks(c1);
1461 t2 = cycle_timer_ticks(c2);
1462 diff01 = t1 - t0;
1463 diff12 = t2 - t1;
1464 } while ((diff01 <= 0 || diff12 <= 0 ||
1465 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1466 && i++ < 20);
1469 return c2;
1473 * This function has to be called at least every 64 seconds. The bus_time
1474 * field stores not only the upper 25 bits of the BUS_TIME register but also
1475 * the most significant bit of the cycle timer in bit 6 so that we can detect
1476 * changes in this bit.
1478 static u32 update_bus_time(struct fw_ohci *ohci)
1480 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1482 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1483 ohci->bus_time += 0x40;
1485 return ohci->bus_time | cycle_time_seconds;
1488 static void bus_reset_tasklet(unsigned long data)
1490 struct fw_ohci *ohci = (struct fw_ohci *)data;
1491 int self_id_count, i, j, reg;
1492 int generation, new_generation;
1493 unsigned long flags;
1494 void *free_rom = NULL;
1495 dma_addr_t free_rom_bus = 0;
1496 bool is_new_root;
1498 reg = reg_read(ohci, OHCI1394_NodeID);
1499 if (!(reg & OHCI1394_NodeID_idValid)) {
1500 fw_notify("node ID not valid, new bus reset in progress\n");
1501 return;
1503 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1504 fw_notify("malconfigured bus\n");
1505 return;
1507 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1508 OHCI1394_NodeID_nodeNumber);
1510 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1511 if (!(ohci->is_root && is_new_root))
1512 reg_write(ohci, OHCI1394_LinkControlSet,
1513 OHCI1394_LinkControl_cycleMaster);
1514 ohci->is_root = is_new_root;
1516 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1517 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1518 fw_notify("inconsistent self IDs\n");
1519 return;
1522 * The count in the SelfIDCount register is the number of
1523 * bytes in the self ID receive buffer. Since we also receive
1524 * the inverted quadlets and a header quadlet, we shift one
1525 * bit extra to get the actual number of self IDs.
1527 self_id_count = (reg >> 3) & 0xff;
1528 if (self_id_count == 0 || self_id_count > 252) {
1529 fw_notify("inconsistent self IDs\n");
1530 return;
1532 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1533 rmb();
1535 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1536 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1537 fw_notify("inconsistent self IDs\n");
1538 return;
1540 ohci->self_id_buffer[j] =
1541 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1543 rmb();
1546 * Check the consistency of the self IDs we just read. The
1547 * problem we face is that a new bus reset can start while we
1548 * read out the self IDs from the DMA buffer. If this happens,
1549 * the DMA buffer will be overwritten with new self IDs and we
1550 * will read out inconsistent data. The OHCI specification
1551 * (section 11.2) recommends a technique similar to
1552 * linux/seqlock.h, where we remember the generation of the
1553 * self IDs in the buffer before reading them out and compare
1554 * it to the current generation after reading them out. If
1555 * the two generations match we know we have a consistent set
1556 * of self IDs.
1559 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1560 if (new_generation != generation) {
1561 fw_notify("recursive bus reset detected, "
1562 "discarding self ids\n");
1563 return;
1566 /* FIXME: Document how the locking works. */
1567 spin_lock_irqsave(&ohci->lock, flags);
1569 ohci->generation = generation;
1570 context_stop(&ohci->at_request_ctx);
1571 context_stop(&ohci->at_response_ctx);
1572 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1574 if (ohci->quirks & QUIRK_RESET_PACKET)
1575 ohci->request_generation = generation;
1578 * This next bit is unrelated to the AT context stuff but we
1579 * have to do it under the spinlock also. If a new config rom
1580 * was set up before this reset, the old one is now no longer
1581 * in use and we can free it. Update the config rom pointers
1582 * to point to the current config rom and clear the
1583 * next_config_rom pointer so a new update can take place.
1586 if (ohci->next_config_rom != NULL) {
1587 if (ohci->next_config_rom != ohci->config_rom) {
1588 free_rom = ohci->config_rom;
1589 free_rom_bus = ohci->config_rom_bus;
1591 ohci->config_rom = ohci->next_config_rom;
1592 ohci->config_rom_bus = ohci->next_config_rom_bus;
1593 ohci->next_config_rom = NULL;
1596 * Restore config_rom image and manually update
1597 * config_rom registers. Writing the header quadlet
1598 * will indicate that the config rom is ready, so we
1599 * do that last.
1601 reg_write(ohci, OHCI1394_BusOptions,
1602 be32_to_cpu(ohci->config_rom[2]));
1603 ohci->config_rom[0] = ohci->next_header;
1604 reg_write(ohci, OHCI1394_ConfigROMhdr,
1605 be32_to_cpu(ohci->next_header));
1608 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1609 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1610 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1611 #endif
1613 spin_unlock_irqrestore(&ohci->lock, flags);
1615 if (free_rom)
1616 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1617 free_rom, free_rom_bus);
1619 log_selfids(ohci->node_id, generation,
1620 self_id_count, ohci->self_id_buffer);
1622 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1623 self_id_count, ohci->self_id_buffer,
1624 ohci->csr_state_setclear_abdicate);
1625 ohci->csr_state_setclear_abdicate = false;
1628 static irqreturn_t irq_handler(int irq, void *data)
1630 struct fw_ohci *ohci = data;
1631 u32 event, iso_event;
1632 int i;
1634 event = reg_read(ohci, OHCI1394_IntEventClear);
1636 if (!event || !~event)
1637 return IRQ_NONE;
1639 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1640 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1641 log_irqs(event);
1643 if (event & OHCI1394_selfIDComplete)
1644 tasklet_schedule(&ohci->bus_reset_tasklet);
1646 if (event & OHCI1394_RQPkt)
1647 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1649 if (event & OHCI1394_RSPkt)
1650 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1652 if (event & OHCI1394_reqTxComplete)
1653 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1655 if (event & OHCI1394_respTxComplete)
1656 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1658 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1659 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1661 while (iso_event) {
1662 i = ffs(iso_event) - 1;
1663 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1664 iso_event &= ~(1 << i);
1667 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1668 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1670 while (iso_event) {
1671 i = ffs(iso_event) - 1;
1672 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1673 iso_event &= ~(1 << i);
1676 if (unlikely(event & OHCI1394_regAccessFail))
1677 fw_error("Register access failure - "
1678 "please notify linux1394-devel@lists.sf.net\n");
1680 if (unlikely(event & OHCI1394_postedWriteErr))
1681 fw_error("PCI posted write error\n");
1683 if (unlikely(event & OHCI1394_cycleTooLong)) {
1684 if (printk_ratelimit())
1685 fw_notify("isochronous cycle too long\n");
1686 reg_write(ohci, OHCI1394_LinkControlSet,
1687 OHCI1394_LinkControl_cycleMaster);
1690 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1692 * We need to clear this event bit in order to make
1693 * cycleMatch isochronous I/O work. In theory we should
1694 * stop active cycleMatch iso contexts now and restart
1695 * them at least two cycles later. (FIXME?)
1697 if (printk_ratelimit())
1698 fw_notify("isochronous cycle inconsistent\n");
1701 if (event & OHCI1394_cycle64Seconds) {
1702 spin_lock(&ohci->lock);
1703 update_bus_time(ohci);
1704 spin_unlock(&ohci->lock);
1707 return IRQ_HANDLED;
1710 static int software_reset(struct fw_ohci *ohci)
1712 int i;
1714 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1716 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1717 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1718 OHCI1394_HCControl_softReset) == 0)
1719 return 0;
1720 msleep(1);
1723 return -EBUSY;
1726 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1728 size_t size = length * 4;
1730 memcpy(dest, src, size);
1731 if (size < CONFIG_ROM_SIZE)
1732 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1735 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1737 bool enable_1394a;
1738 int ret, clear, set, offset;
1740 /* Check if the driver should configure link and PHY. */
1741 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1742 OHCI1394_HCControl_programPhyEnable))
1743 return 0;
1745 /* Paranoia: check whether the PHY supports 1394a, too. */
1746 enable_1394a = false;
1747 ret = read_phy_reg(ohci, 2);
1748 if (ret < 0)
1749 return ret;
1750 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1751 ret = read_paged_phy_reg(ohci, 1, 8);
1752 if (ret < 0)
1753 return ret;
1754 if (ret >= 1)
1755 enable_1394a = true;
1758 if (ohci->quirks & QUIRK_NO_1394A)
1759 enable_1394a = false;
1761 /* Configure PHY and link consistently. */
1762 if (enable_1394a) {
1763 clear = 0;
1764 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1765 } else {
1766 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1767 set = 0;
1769 ret = update_phy_reg(ohci, 5, clear, set);
1770 if (ret < 0)
1771 return ret;
1773 if (enable_1394a)
1774 offset = OHCI1394_HCControlSet;
1775 else
1776 offset = OHCI1394_HCControlClear;
1777 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1779 /* Clean up: configuration has been taken care of. */
1780 reg_write(ohci, OHCI1394_HCControlClear,
1781 OHCI1394_HCControl_programPhyEnable);
1783 return 0;
1786 static int ohci_enable(struct fw_card *card,
1787 const __be32 *config_rom, size_t length)
1789 struct fw_ohci *ohci = fw_ohci(card);
1790 struct pci_dev *dev = to_pci_dev(card->device);
1791 u32 lps, seconds, version, irqs;
1792 int i, ret;
1794 if (software_reset(ohci)) {
1795 fw_error("Failed to reset ohci card.\n");
1796 return -EBUSY;
1800 * Now enable LPS, which we need in order to start accessing
1801 * most of the registers. In fact, on some cards (ALI M5251),
1802 * accessing registers in the SClk domain without LPS enabled
1803 * will lock up the machine. Wait 50msec to make sure we have
1804 * full link enabled. However, with some cards (well, at least
1805 * a JMicron PCIe card), we have to try again sometimes.
1807 reg_write(ohci, OHCI1394_HCControlSet,
1808 OHCI1394_HCControl_LPS |
1809 OHCI1394_HCControl_postedWriteEnable);
1810 flush_writes(ohci);
1812 for (lps = 0, i = 0; !lps && i < 3; i++) {
1813 msleep(50);
1814 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1815 OHCI1394_HCControl_LPS;
1818 if (!lps) {
1819 fw_error("Failed to set Link Power Status\n");
1820 return -EIO;
1823 reg_write(ohci, OHCI1394_HCControlClear,
1824 OHCI1394_HCControl_noByteSwapData);
1826 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1827 reg_write(ohci, OHCI1394_LinkControlSet,
1828 OHCI1394_LinkControl_rcvSelfID |
1829 OHCI1394_LinkControl_rcvPhyPkt |
1830 OHCI1394_LinkControl_cycleTimerEnable |
1831 OHCI1394_LinkControl_cycleMaster);
1833 reg_write(ohci, OHCI1394_ATRetries,
1834 OHCI1394_MAX_AT_REQ_RETRIES |
1835 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1836 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1837 (200 << 16));
1839 seconds = lower_32_bits(get_seconds());
1840 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1841 ohci->bus_time = seconds & ~0x3f;
1843 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1844 if (version >= OHCI_VERSION_1_1) {
1845 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1846 0xfffffffe);
1847 card->broadcast_channel_auto_allocated = true;
1850 /* Get implemented bits of the priority arbitration request counter. */
1851 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1852 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1853 reg_write(ohci, OHCI1394_FairnessControl, 0);
1854 card->priority_budget_implemented = ohci->pri_req_max != 0;
1856 ar_context_run(&ohci->ar_request_ctx);
1857 ar_context_run(&ohci->ar_response_ctx);
1859 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1860 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1861 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1863 ret = configure_1394a_enhancements(ohci);
1864 if (ret < 0)
1865 return ret;
1867 /* Activate link_on bit and contender bit in our self ID packets.*/
1868 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1869 if (ret < 0)
1870 return ret;
1873 * When the link is not yet enabled, the atomic config rom
1874 * update mechanism described below in ohci_set_config_rom()
1875 * is not active. We have to update ConfigRomHeader and
1876 * BusOptions manually, and the write to ConfigROMmap takes
1877 * effect immediately. We tie this to the enabling of the
1878 * link, so we have a valid config rom before enabling - the
1879 * OHCI requires that ConfigROMhdr and BusOptions have valid
1880 * values before enabling.
1882 * However, when the ConfigROMmap is written, some controllers
1883 * always read back quadlets 0 and 2 from the config rom to
1884 * the ConfigRomHeader and BusOptions registers on bus reset.
1885 * They shouldn't do that in this initial case where the link
1886 * isn't enabled. This means we have to use the same
1887 * workaround here, setting the bus header to 0 and then write
1888 * the right values in the bus reset tasklet.
1891 if (config_rom) {
1892 ohci->next_config_rom =
1893 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1894 &ohci->next_config_rom_bus,
1895 GFP_KERNEL);
1896 if (ohci->next_config_rom == NULL)
1897 return -ENOMEM;
1899 copy_config_rom(ohci->next_config_rom, config_rom, length);
1900 } else {
1902 * In the suspend case, config_rom is NULL, which
1903 * means that we just reuse the old config rom.
1905 ohci->next_config_rom = ohci->config_rom;
1906 ohci->next_config_rom_bus = ohci->config_rom_bus;
1909 ohci->next_header = ohci->next_config_rom[0];
1910 ohci->next_config_rom[0] = 0;
1911 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1912 reg_write(ohci, OHCI1394_BusOptions,
1913 be32_to_cpu(ohci->next_config_rom[2]));
1914 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1916 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1918 if (!(ohci->quirks & QUIRK_NO_MSI))
1919 pci_enable_msi(dev);
1920 if (request_irq(dev->irq, irq_handler,
1921 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1922 ohci_driver_name, ohci)) {
1923 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1924 pci_disable_msi(dev);
1925 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1926 ohci->config_rom, ohci->config_rom_bus);
1927 return -EIO;
1930 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1931 OHCI1394_RQPkt | OHCI1394_RSPkt |
1932 OHCI1394_isochTx | OHCI1394_isochRx |
1933 OHCI1394_postedWriteErr |
1934 OHCI1394_selfIDComplete |
1935 OHCI1394_regAccessFail |
1936 OHCI1394_cycle64Seconds |
1937 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1938 OHCI1394_masterIntEnable;
1939 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1940 irqs |= OHCI1394_busReset;
1941 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1943 reg_write(ohci, OHCI1394_HCControlSet,
1944 OHCI1394_HCControl_linkEnable |
1945 OHCI1394_HCControl_BIBimageValid);
1946 flush_writes(ohci);
1948 /* We are ready to go, reset bus to finish initialization. */
1949 fw_schedule_bus_reset(&ohci->card, false, true);
1951 return 0;
1954 static int ohci_set_config_rom(struct fw_card *card,
1955 const __be32 *config_rom, size_t length)
1957 struct fw_ohci *ohci;
1958 unsigned long flags;
1959 int ret = -EBUSY;
1960 __be32 *next_config_rom;
1961 dma_addr_t uninitialized_var(next_config_rom_bus);
1963 ohci = fw_ohci(card);
1966 * When the OHCI controller is enabled, the config rom update
1967 * mechanism is a bit tricky, but easy enough to use. See
1968 * section 5.5.6 in the OHCI specification.
1970 * The OHCI controller caches the new config rom address in a
1971 * shadow register (ConfigROMmapNext) and needs a bus reset
1972 * for the changes to take place. When the bus reset is
1973 * detected, the controller loads the new values for the
1974 * ConfigRomHeader and BusOptions registers from the specified
1975 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1976 * shadow register. All automatically and atomically.
1978 * Now, there's a twist to this story. The automatic load of
1979 * ConfigRomHeader and BusOptions doesn't honor the
1980 * noByteSwapData bit, so with a be32 config rom, the
1981 * controller will load be32 values in to these registers
1982 * during the atomic update, even on litte endian
1983 * architectures. The workaround we use is to put a 0 in the
1984 * header quadlet; 0 is endian agnostic and means that the
1985 * config rom isn't ready yet. In the bus reset tasklet we
1986 * then set up the real values for the two registers.
1988 * We use ohci->lock to avoid racing with the code that sets
1989 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1992 next_config_rom =
1993 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1994 &next_config_rom_bus, GFP_KERNEL);
1995 if (next_config_rom == NULL)
1996 return -ENOMEM;
1998 spin_lock_irqsave(&ohci->lock, flags);
2000 if (ohci->next_config_rom == NULL) {
2001 ohci->next_config_rom = next_config_rom;
2002 ohci->next_config_rom_bus = next_config_rom_bus;
2004 copy_config_rom(ohci->next_config_rom, config_rom, length);
2006 ohci->next_header = config_rom[0];
2007 ohci->next_config_rom[0] = 0;
2009 reg_write(ohci, OHCI1394_ConfigROMmap,
2010 ohci->next_config_rom_bus);
2011 ret = 0;
2014 spin_unlock_irqrestore(&ohci->lock, flags);
2017 * Now initiate a bus reset to have the changes take
2018 * effect. We clean up the old config rom memory and DMA
2019 * mappings in the bus reset tasklet, since the OHCI
2020 * controller could need to access it before the bus reset
2021 * takes effect.
2023 if (ret == 0)
2024 fw_schedule_bus_reset(&ohci->card, true, true);
2025 else
2026 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2027 next_config_rom, next_config_rom_bus);
2029 return ret;
2032 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2034 struct fw_ohci *ohci = fw_ohci(card);
2036 at_context_transmit(&ohci->at_request_ctx, packet);
2039 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2041 struct fw_ohci *ohci = fw_ohci(card);
2043 at_context_transmit(&ohci->at_response_ctx, packet);
2046 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2048 struct fw_ohci *ohci = fw_ohci(card);
2049 struct context *ctx = &ohci->at_request_ctx;
2050 struct driver_data *driver_data = packet->driver_data;
2051 int ret = -ENOENT;
2053 tasklet_disable(&ctx->tasklet);
2055 if (packet->ack != 0)
2056 goto out;
2058 if (packet->payload_mapped)
2059 dma_unmap_single(ohci->card.device, packet->payload_bus,
2060 packet->payload_length, DMA_TO_DEVICE);
2062 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2063 driver_data->packet = NULL;
2064 packet->ack = RCODE_CANCELLED;
2065 packet->callback(packet, &ohci->card, packet->ack);
2066 ret = 0;
2067 out:
2068 tasklet_enable(&ctx->tasklet);
2070 return ret;
2073 static int ohci_enable_phys_dma(struct fw_card *card,
2074 int node_id, int generation)
2076 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2077 return 0;
2078 #else
2079 struct fw_ohci *ohci = fw_ohci(card);
2080 unsigned long flags;
2081 int n, ret = 0;
2084 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2085 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2088 spin_lock_irqsave(&ohci->lock, flags);
2090 if (ohci->generation != generation) {
2091 ret = -ESTALE;
2092 goto out;
2096 * Note, if the node ID contains a non-local bus ID, physical DMA is
2097 * enabled for _all_ nodes on remote buses.
2100 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2101 if (n < 32)
2102 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2103 else
2104 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2106 flush_writes(ohci);
2107 out:
2108 spin_unlock_irqrestore(&ohci->lock, flags);
2110 return ret;
2111 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2114 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2116 struct fw_ohci *ohci = fw_ohci(card);
2117 unsigned long flags;
2118 u32 value;
2120 switch (csr_offset) {
2121 case CSR_STATE_CLEAR:
2122 case CSR_STATE_SET:
2123 if (ohci->is_root &&
2124 (reg_read(ohci, OHCI1394_LinkControlSet) &
2125 OHCI1394_LinkControl_cycleMaster))
2126 value = CSR_STATE_BIT_CMSTR;
2127 else
2128 value = 0;
2129 if (ohci->csr_state_setclear_abdicate)
2130 value |= CSR_STATE_BIT_ABDICATE;
2132 return value;
2134 case CSR_NODE_IDS:
2135 return reg_read(ohci, OHCI1394_NodeID) << 16;
2137 case CSR_CYCLE_TIME:
2138 return get_cycle_time(ohci);
2140 case CSR_BUS_TIME:
2142 * We might be called just after the cycle timer has wrapped
2143 * around but just before the cycle64Seconds handler, so we
2144 * better check here, too, if the bus time needs to be updated.
2146 spin_lock_irqsave(&ohci->lock, flags);
2147 value = update_bus_time(ohci);
2148 spin_unlock_irqrestore(&ohci->lock, flags);
2149 return value;
2151 case CSR_BUSY_TIMEOUT:
2152 value = reg_read(ohci, OHCI1394_ATRetries);
2153 return (value >> 4) & 0x0ffff00f;
2155 case CSR_PRIORITY_BUDGET:
2156 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2157 (ohci->pri_req_max << 8);
2159 default:
2160 WARN_ON(1);
2161 return 0;
2165 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2167 struct fw_ohci *ohci = fw_ohci(card);
2168 unsigned long flags;
2170 switch (csr_offset) {
2171 case CSR_STATE_CLEAR:
2172 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2173 reg_write(ohci, OHCI1394_LinkControlClear,
2174 OHCI1394_LinkControl_cycleMaster);
2175 flush_writes(ohci);
2177 if (value & CSR_STATE_BIT_ABDICATE)
2178 ohci->csr_state_setclear_abdicate = false;
2179 break;
2181 case CSR_STATE_SET:
2182 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2183 reg_write(ohci, OHCI1394_LinkControlSet,
2184 OHCI1394_LinkControl_cycleMaster);
2185 flush_writes(ohci);
2187 if (value & CSR_STATE_BIT_ABDICATE)
2188 ohci->csr_state_setclear_abdicate = true;
2189 break;
2191 case CSR_NODE_IDS:
2192 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2193 flush_writes(ohci);
2194 break;
2196 case CSR_CYCLE_TIME:
2197 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2198 reg_write(ohci, OHCI1394_IntEventSet,
2199 OHCI1394_cycleInconsistent);
2200 flush_writes(ohci);
2201 break;
2203 case CSR_BUS_TIME:
2204 spin_lock_irqsave(&ohci->lock, flags);
2205 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2206 spin_unlock_irqrestore(&ohci->lock, flags);
2207 break;
2209 case CSR_BUSY_TIMEOUT:
2210 value = (value & 0xf) | ((value & 0xf) << 4) |
2211 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2212 reg_write(ohci, OHCI1394_ATRetries, value);
2213 flush_writes(ohci);
2214 break;
2216 case CSR_PRIORITY_BUDGET:
2217 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2218 flush_writes(ohci);
2219 break;
2221 default:
2222 WARN_ON(1);
2223 break;
2227 static void copy_iso_headers(struct iso_context *ctx, void *p)
2229 int i = ctx->header_length;
2231 if (i + ctx->base.header_size > PAGE_SIZE)
2232 return;
2235 * The iso header is byteswapped to little endian by
2236 * the controller, but the remaining header quadlets
2237 * are big endian. We want to present all the headers
2238 * as big endian, so we have to swap the first quadlet.
2240 if (ctx->base.header_size > 0)
2241 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2242 if (ctx->base.header_size > 4)
2243 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2244 if (ctx->base.header_size > 8)
2245 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2246 ctx->header_length += ctx->base.header_size;
2249 static int handle_ir_packet_per_buffer(struct context *context,
2250 struct descriptor *d,
2251 struct descriptor *last)
2253 struct iso_context *ctx =
2254 container_of(context, struct iso_context, context);
2255 struct descriptor *pd;
2256 __le32 *ir_header;
2257 void *p;
2259 for (pd = d; pd <= last; pd++)
2260 if (pd->transfer_status)
2261 break;
2262 if (pd > last)
2263 /* Descriptor(s) not done yet, stop iteration */
2264 return 0;
2266 p = last + 1;
2267 copy_iso_headers(ctx, p);
2269 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2270 ir_header = (__le32 *) p;
2271 ctx->base.callback.sc(&ctx->base,
2272 le32_to_cpu(ir_header[0]) & 0xffff,
2273 ctx->header_length, ctx->header,
2274 ctx->base.callback_data);
2275 ctx->header_length = 0;
2278 return 1;
2281 /* d == last because each descriptor block is only a single descriptor. */
2282 static int handle_ir_buffer_fill(struct context *context,
2283 struct descriptor *d,
2284 struct descriptor *last)
2286 struct iso_context *ctx =
2287 container_of(context, struct iso_context, context);
2289 if (!last->transfer_status)
2290 /* Descriptor(s) not done yet, stop iteration */
2291 return 0;
2293 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2294 ctx->base.callback.mc(&ctx->base,
2295 le32_to_cpu(last->data_address) +
2296 le16_to_cpu(last->req_count) -
2297 le16_to_cpu(last->res_count),
2298 ctx->base.callback_data);
2300 return 1;
2303 static int handle_it_packet(struct context *context,
2304 struct descriptor *d,
2305 struct descriptor *last)
2307 struct iso_context *ctx =
2308 container_of(context, struct iso_context, context);
2309 int i;
2310 struct descriptor *pd;
2312 for (pd = d; pd <= last; pd++)
2313 if (pd->transfer_status)
2314 break;
2315 if (pd > last)
2316 /* Descriptor(s) not done yet, stop iteration */
2317 return 0;
2319 i = ctx->header_length;
2320 if (i + 4 < PAGE_SIZE) {
2321 /* Present this value as big-endian to match the receive code */
2322 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2323 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2324 le16_to_cpu(pd->res_count));
2325 ctx->header_length += 4;
2327 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2328 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2329 ctx->header_length, ctx->header,
2330 ctx->base.callback_data);
2331 ctx->header_length = 0;
2333 return 1;
2336 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2338 u32 hi = channels >> 32, lo = channels;
2340 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2341 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2342 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2343 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2344 mmiowb();
2345 ohci->mc_channels = channels;
2348 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2349 int type, int channel, size_t header_size)
2351 struct fw_ohci *ohci = fw_ohci(card);
2352 struct iso_context *uninitialized_var(ctx);
2353 descriptor_callback_t uninitialized_var(callback);
2354 u64 *uninitialized_var(channels);
2355 u32 *uninitialized_var(mask), uninitialized_var(regs);
2356 unsigned long flags;
2357 int index, ret = -EBUSY;
2359 spin_lock_irqsave(&ohci->lock, flags);
2361 switch (type) {
2362 case FW_ISO_CONTEXT_TRANSMIT:
2363 mask = &ohci->it_context_mask;
2364 callback = handle_it_packet;
2365 index = ffs(*mask) - 1;
2366 if (index >= 0) {
2367 *mask &= ~(1 << index);
2368 regs = OHCI1394_IsoXmitContextBase(index);
2369 ctx = &ohci->it_context_list[index];
2371 break;
2373 case FW_ISO_CONTEXT_RECEIVE:
2374 channels = &ohci->ir_context_channels;
2375 mask = &ohci->ir_context_mask;
2376 callback = handle_ir_packet_per_buffer;
2377 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2378 if (index >= 0) {
2379 *channels &= ~(1ULL << channel);
2380 *mask &= ~(1 << index);
2381 regs = OHCI1394_IsoRcvContextBase(index);
2382 ctx = &ohci->ir_context_list[index];
2384 break;
2386 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2387 mask = &ohci->ir_context_mask;
2388 callback = handle_ir_buffer_fill;
2389 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2390 if (index >= 0) {
2391 ohci->mc_allocated = true;
2392 *mask &= ~(1 << index);
2393 regs = OHCI1394_IsoRcvContextBase(index);
2394 ctx = &ohci->ir_context_list[index];
2396 break;
2398 default:
2399 index = -1;
2400 ret = -ENOSYS;
2403 spin_unlock_irqrestore(&ohci->lock, flags);
2405 if (index < 0)
2406 return ERR_PTR(ret);
2408 memset(ctx, 0, sizeof(*ctx));
2409 ctx->header_length = 0;
2410 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2411 if (ctx->header == NULL) {
2412 ret = -ENOMEM;
2413 goto out;
2415 ret = context_init(&ctx->context, ohci, regs, callback);
2416 if (ret < 0)
2417 goto out_with_header;
2419 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2420 set_multichannel_mask(ohci, 0);
2422 return &ctx->base;
2424 out_with_header:
2425 free_page((unsigned long)ctx->header);
2426 out:
2427 spin_lock_irqsave(&ohci->lock, flags);
2429 switch (type) {
2430 case FW_ISO_CONTEXT_RECEIVE:
2431 *channels |= 1ULL << channel;
2432 break;
2434 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2435 ohci->mc_allocated = false;
2436 break;
2438 *mask |= 1 << index;
2440 spin_unlock_irqrestore(&ohci->lock, flags);
2442 return ERR_PTR(ret);
2445 static int ohci_start_iso(struct fw_iso_context *base,
2446 s32 cycle, u32 sync, u32 tags)
2448 struct iso_context *ctx = container_of(base, struct iso_context, base);
2449 struct fw_ohci *ohci = ctx->context.ohci;
2450 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2451 int index;
2453 switch (ctx->base.type) {
2454 case FW_ISO_CONTEXT_TRANSMIT:
2455 index = ctx - ohci->it_context_list;
2456 match = 0;
2457 if (cycle >= 0)
2458 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2459 (cycle & 0x7fff) << 16;
2461 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2462 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2463 context_run(&ctx->context, match);
2464 break;
2466 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2467 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2468 /* fall through */
2469 case FW_ISO_CONTEXT_RECEIVE:
2470 index = ctx - ohci->ir_context_list;
2471 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2472 if (cycle >= 0) {
2473 match |= (cycle & 0x07fff) << 12;
2474 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2477 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2478 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2479 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2480 context_run(&ctx->context, control);
2481 break;
2484 return 0;
2487 static int ohci_stop_iso(struct fw_iso_context *base)
2489 struct fw_ohci *ohci = fw_ohci(base->card);
2490 struct iso_context *ctx = container_of(base, struct iso_context, base);
2491 int index;
2493 switch (ctx->base.type) {
2494 case FW_ISO_CONTEXT_TRANSMIT:
2495 index = ctx - ohci->it_context_list;
2496 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2497 break;
2499 case FW_ISO_CONTEXT_RECEIVE:
2500 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2501 index = ctx - ohci->ir_context_list;
2502 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2503 break;
2505 flush_writes(ohci);
2506 context_stop(&ctx->context);
2508 return 0;
2511 static void ohci_free_iso_context(struct fw_iso_context *base)
2513 struct fw_ohci *ohci = fw_ohci(base->card);
2514 struct iso_context *ctx = container_of(base, struct iso_context, base);
2515 unsigned long flags;
2516 int index;
2518 ohci_stop_iso(base);
2519 context_release(&ctx->context);
2520 free_page((unsigned long)ctx->header);
2522 spin_lock_irqsave(&ohci->lock, flags);
2524 switch (base->type) {
2525 case FW_ISO_CONTEXT_TRANSMIT:
2526 index = ctx - ohci->it_context_list;
2527 ohci->it_context_mask |= 1 << index;
2528 break;
2530 case FW_ISO_CONTEXT_RECEIVE:
2531 index = ctx - ohci->ir_context_list;
2532 ohci->ir_context_mask |= 1 << index;
2533 ohci->ir_context_channels |= 1ULL << base->channel;
2534 break;
2536 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2537 index = ctx - ohci->ir_context_list;
2538 ohci->ir_context_mask |= 1 << index;
2539 ohci->ir_context_channels |= ohci->mc_channels;
2540 ohci->mc_channels = 0;
2541 ohci->mc_allocated = false;
2542 break;
2545 spin_unlock_irqrestore(&ohci->lock, flags);
2548 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2550 struct fw_ohci *ohci = fw_ohci(base->card);
2551 unsigned long flags;
2552 int ret;
2554 switch (base->type) {
2555 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2557 spin_lock_irqsave(&ohci->lock, flags);
2559 /* Don't allow multichannel to grab other contexts' channels. */
2560 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2561 *channels = ohci->ir_context_channels;
2562 ret = -EBUSY;
2563 } else {
2564 set_multichannel_mask(ohci, *channels);
2565 ret = 0;
2568 spin_unlock_irqrestore(&ohci->lock, flags);
2570 break;
2571 default:
2572 ret = -EINVAL;
2575 return ret;
2578 static int queue_iso_transmit(struct iso_context *ctx,
2579 struct fw_iso_packet *packet,
2580 struct fw_iso_buffer *buffer,
2581 unsigned long payload)
2583 struct descriptor *d, *last, *pd;
2584 struct fw_iso_packet *p;
2585 __le32 *header;
2586 dma_addr_t d_bus, page_bus;
2587 u32 z, header_z, payload_z, irq;
2588 u32 payload_index, payload_end_index, next_page_index;
2589 int page, end_page, i, length, offset;
2591 p = packet;
2592 payload_index = payload;
2594 if (p->skip)
2595 z = 1;
2596 else
2597 z = 2;
2598 if (p->header_length > 0)
2599 z++;
2601 /* Determine the first page the payload isn't contained in. */
2602 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2603 if (p->payload_length > 0)
2604 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2605 else
2606 payload_z = 0;
2608 z += payload_z;
2610 /* Get header size in number of descriptors. */
2611 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2613 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2614 if (d == NULL)
2615 return -ENOMEM;
2617 if (!p->skip) {
2618 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2619 d[0].req_count = cpu_to_le16(8);
2621 * Link the skip address to this descriptor itself. This causes
2622 * a context to skip a cycle whenever lost cycles or FIFO
2623 * overruns occur, without dropping the data. The application
2624 * should then decide whether this is an error condition or not.
2625 * FIXME: Make the context's cycle-lost behaviour configurable?
2627 d[0].branch_address = cpu_to_le32(d_bus | z);
2629 header = (__le32 *) &d[1];
2630 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2631 IT_HEADER_TAG(p->tag) |
2632 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2633 IT_HEADER_CHANNEL(ctx->base.channel) |
2634 IT_HEADER_SPEED(ctx->base.speed));
2635 header[1] =
2636 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2637 p->payload_length));
2640 if (p->header_length > 0) {
2641 d[2].req_count = cpu_to_le16(p->header_length);
2642 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2643 memcpy(&d[z], p->header, p->header_length);
2646 pd = d + z - payload_z;
2647 payload_end_index = payload_index + p->payload_length;
2648 for (i = 0; i < payload_z; i++) {
2649 page = payload_index >> PAGE_SHIFT;
2650 offset = payload_index & ~PAGE_MASK;
2651 next_page_index = (page + 1) << PAGE_SHIFT;
2652 length =
2653 min(next_page_index, payload_end_index) - payload_index;
2654 pd[i].req_count = cpu_to_le16(length);
2656 page_bus = page_private(buffer->pages[page]);
2657 pd[i].data_address = cpu_to_le32(page_bus + offset);
2659 payload_index += length;
2662 if (p->interrupt)
2663 irq = DESCRIPTOR_IRQ_ALWAYS;
2664 else
2665 irq = DESCRIPTOR_NO_IRQ;
2667 last = z == 2 ? d : d + z - 1;
2668 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2669 DESCRIPTOR_STATUS |
2670 DESCRIPTOR_BRANCH_ALWAYS |
2671 irq);
2673 context_append(&ctx->context, d, z, header_z);
2675 return 0;
2678 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2679 struct fw_iso_packet *packet,
2680 struct fw_iso_buffer *buffer,
2681 unsigned long payload)
2683 struct descriptor *d, *pd;
2684 dma_addr_t d_bus, page_bus;
2685 u32 z, header_z, rest;
2686 int i, j, length;
2687 int page, offset, packet_count, header_size, payload_per_buffer;
2690 * The OHCI controller puts the isochronous header and trailer in the
2691 * buffer, so we need at least 8 bytes.
2693 packet_count = packet->header_length / ctx->base.header_size;
2694 header_size = max(ctx->base.header_size, (size_t)8);
2696 /* Get header size in number of descriptors. */
2697 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2698 page = payload >> PAGE_SHIFT;
2699 offset = payload & ~PAGE_MASK;
2700 payload_per_buffer = packet->payload_length / packet_count;
2702 for (i = 0; i < packet_count; i++) {
2703 /* d points to the header descriptor */
2704 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2705 d = context_get_descriptors(&ctx->context,
2706 z + header_z, &d_bus);
2707 if (d == NULL)
2708 return -ENOMEM;
2710 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2711 DESCRIPTOR_INPUT_MORE);
2712 if (packet->skip && i == 0)
2713 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2714 d->req_count = cpu_to_le16(header_size);
2715 d->res_count = d->req_count;
2716 d->transfer_status = 0;
2717 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2719 rest = payload_per_buffer;
2720 pd = d;
2721 for (j = 1; j < z; j++) {
2722 pd++;
2723 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2724 DESCRIPTOR_INPUT_MORE);
2726 if (offset + rest < PAGE_SIZE)
2727 length = rest;
2728 else
2729 length = PAGE_SIZE - offset;
2730 pd->req_count = cpu_to_le16(length);
2731 pd->res_count = pd->req_count;
2732 pd->transfer_status = 0;
2734 page_bus = page_private(buffer->pages[page]);
2735 pd->data_address = cpu_to_le32(page_bus + offset);
2737 offset = (offset + length) & ~PAGE_MASK;
2738 rest -= length;
2739 if (offset == 0)
2740 page++;
2742 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2743 DESCRIPTOR_INPUT_LAST |
2744 DESCRIPTOR_BRANCH_ALWAYS);
2745 if (packet->interrupt && i == packet_count - 1)
2746 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2748 context_append(&ctx->context, d, z, header_z);
2751 return 0;
2754 static int queue_iso_buffer_fill(struct iso_context *ctx,
2755 struct fw_iso_packet *packet,
2756 struct fw_iso_buffer *buffer,
2757 unsigned long payload)
2759 struct descriptor *d;
2760 dma_addr_t d_bus, page_bus;
2761 int page, offset, rest, z, i, length;
2763 page = payload >> PAGE_SHIFT;
2764 offset = payload & ~PAGE_MASK;
2765 rest = packet->payload_length;
2767 /* We need one descriptor for each page in the buffer. */
2768 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2770 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2771 return -EFAULT;
2773 for (i = 0; i < z; i++) {
2774 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2775 if (d == NULL)
2776 return -ENOMEM;
2778 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2779 DESCRIPTOR_BRANCH_ALWAYS);
2780 if (packet->skip && i == 0)
2781 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2782 if (packet->interrupt && i == z - 1)
2783 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2785 if (offset + rest < PAGE_SIZE)
2786 length = rest;
2787 else
2788 length = PAGE_SIZE - offset;
2789 d->req_count = cpu_to_le16(length);
2790 d->res_count = d->req_count;
2791 d->transfer_status = 0;
2793 page_bus = page_private(buffer->pages[page]);
2794 d->data_address = cpu_to_le32(page_bus + offset);
2796 rest -= length;
2797 offset = 0;
2798 page++;
2800 context_append(&ctx->context, d, 1, 0);
2803 return 0;
2806 static int ohci_queue_iso(struct fw_iso_context *base,
2807 struct fw_iso_packet *packet,
2808 struct fw_iso_buffer *buffer,
2809 unsigned long payload)
2811 struct iso_context *ctx = container_of(base, struct iso_context, base);
2812 unsigned long flags;
2813 int ret = -ENOSYS;
2815 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2816 switch (base->type) {
2817 case FW_ISO_CONTEXT_TRANSMIT:
2818 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2819 break;
2820 case FW_ISO_CONTEXT_RECEIVE:
2821 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2822 break;
2823 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2824 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2825 break;
2827 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2829 return ret;
2832 static const struct fw_card_driver ohci_driver = {
2833 .enable = ohci_enable,
2834 .read_phy_reg = ohci_read_phy_reg,
2835 .update_phy_reg = ohci_update_phy_reg,
2836 .set_config_rom = ohci_set_config_rom,
2837 .send_request = ohci_send_request,
2838 .send_response = ohci_send_response,
2839 .cancel_packet = ohci_cancel_packet,
2840 .enable_phys_dma = ohci_enable_phys_dma,
2841 .read_csr = ohci_read_csr,
2842 .write_csr = ohci_write_csr,
2844 .allocate_iso_context = ohci_allocate_iso_context,
2845 .free_iso_context = ohci_free_iso_context,
2846 .set_iso_channels = ohci_set_iso_channels,
2847 .queue_iso = ohci_queue_iso,
2848 .start_iso = ohci_start_iso,
2849 .stop_iso = ohci_stop_iso,
2852 #ifdef CONFIG_PPC_PMAC
2853 static void pmac_ohci_on(struct pci_dev *dev)
2855 if (machine_is(powermac)) {
2856 struct device_node *ofn = pci_device_to_OF_node(dev);
2858 if (ofn) {
2859 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2860 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2865 static void pmac_ohci_off(struct pci_dev *dev)
2867 if (machine_is(powermac)) {
2868 struct device_node *ofn = pci_device_to_OF_node(dev);
2870 if (ofn) {
2871 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2872 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2876 #else
2877 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2878 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2879 #endif /* CONFIG_PPC_PMAC */
2881 static int __devinit pci_probe(struct pci_dev *dev,
2882 const struct pci_device_id *ent)
2884 struct fw_ohci *ohci;
2885 u32 bus_options, max_receive, link_speed, version;
2886 u64 guid;
2887 int i, err, n_ir, n_it;
2888 size_t size;
2890 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2891 if (ohci == NULL) {
2892 err = -ENOMEM;
2893 goto fail;
2896 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2898 pmac_ohci_on(dev);
2900 err = pci_enable_device(dev);
2901 if (err) {
2902 fw_error("Failed to enable OHCI hardware\n");
2903 goto fail_free;
2906 pci_set_master(dev);
2907 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2908 pci_set_drvdata(dev, ohci);
2910 spin_lock_init(&ohci->lock);
2911 mutex_init(&ohci->phy_reg_mutex);
2913 tasklet_init(&ohci->bus_reset_tasklet,
2914 bus_reset_tasklet, (unsigned long)ohci);
2916 err = pci_request_region(dev, 0, ohci_driver_name);
2917 if (err) {
2918 fw_error("MMIO resource unavailable\n");
2919 goto fail_disable;
2922 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2923 if (ohci->registers == NULL) {
2924 fw_error("Failed to remap registers\n");
2925 err = -ENXIO;
2926 goto fail_iomem;
2929 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2930 if (ohci_quirks[i].vendor == dev->vendor &&
2931 (ohci_quirks[i].device == dev->device ||
2932 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2933 ohci->quirks = ohci_quirks[i].flags;
2934 break;
2936 if (param_quirks)
2937 ohci->quirks = param_quirks;
2939 ar_context_init(&ohci->ar_request_ctx, ohci,
2940 OHCI1394_AsReqRcvContextControlSet);
2942 ar_context_init(&ohci->ar_response_ctx, ohci,
2943 OHCI1394_AsRspRcvContextControlSet);
2945 context_init(&ohci->at_request_ctx, ohci,
2946 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2948 context_init(&ohci->at_response_ctx, ohci,
2949 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2951 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2952 ohci->ir_context_channels = ~0ULL;
2953 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2954 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2955 n_ir = hweight32(ohci->ir_context_mask);
2956 size = sizeof(struct iso_context) * n_ir;
2957 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2959 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2960 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2961 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2962 n_it = hweight32(ohci->it_context_mask);
2963 size = sizeof(struct iso_context) * n_it;
2964 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2966 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2967 err = -ENOMEM;
2968 goto fail_contexts;
2971 /* self-id dma buffer allocation */
2972 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2973 SELF_ID_BUF_SIZE,
2974 &ohci->self_id_bus,
2975 GFP_KERNEL);
2976 if (ohci->self_id_cpu == NULL) {
2977 err = -ENOMEM;
2978 goto fail_contexts;
2981 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2982 max_receive = (bus_options >> 12) & 0xf;
2983 link_speed = bus_options & 0x7;
2984 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2985 reg_read(ohci, OHCI1394_GUIDLo);
2987 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2988 if (err)
2989 goto fail_self_id;
2991 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2992 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2993 "%d IR + %d IT contexts, quirks 0x%x\n",
2994 dev_name(&dev->dev), version >> 16, version & 0xff,
2995 n_ir, n_it, ohci->quirks);
2997 return 0;
2999 fail_self_id:
3000 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3001 ohci->self_id_cpu, ohci->self_id_bus);
3002 fail_contexts:
3003 kfree(ohci->ir_context_list);
3004 kfree(ohci->it_context_list);
3005 context_release(&ohci->at_response_ctx);
3006 context_release(&ohci->at_request_ctx);
3007 ar_context_release(&ohci->ar_response_ctx);
3008 ar_context_release(&ohci->ar_request_ctx);
3009 pci_iounmap(dev, ohci->registers);
3010 fail_iomem:
3011 pci_release_region(dev, 0);
3012 fail_disable:
3013 pci_disable_device(dev);
3014 fail_free:
3015 kfree(&ohci->card);
3016 pmac_ohci_off(dev);
3017 fail:
3018 if (err == -ENOMEM)
3019 fw_error("Out of memory\n");
3021 return err;
3024 static void pci_remove(struct pci_dev *dev)
3026 struct fw_ohci *ohci;
3028 ohci = pci_get_drvdata(dev);
3029 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3030 flush_writes(ohci);
3031 fw_core_remove_card(&ohci->card);
3034 * FIXME: Fail all pending packets here, now that the upper
3035 * layers can't queue any more.
3038 software_reset(ohci);
3039 free_irq(dev->irq, ohci);
3041 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3042 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3043 ohci->next_config_rom, ohci->next_config_rom_bus);
3044 if (ohci->config_rom)
3045 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3046 ohci->config_rom, ohci->config_rom_bus);
3047 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3048 ohci->self_id_cpu, ohci->self_id_bus);
3049 ar_context_release(&ohci->ar_request_ctx);
3050 ar_context_release(&ohci->ar_response_ctx);
3051 context_release(&ohci->at_request_ctx);
3052 context_release(&ohci->at_response_ctx);
3053 kfree(ohci->it_context_list);
3054 kfree(ohci->ir_context_list);
3055 pci_disable_msi(dev);
3056 pci_iounmap(dev, ohci->registers);
3057 pci_release_region(dev, 0);
3058 pci_disable_device(dev);
3059 kfree(&ohci->card);
3060 pmac_ohci_off(dev);
3062 fw_notify("Removed fw-ohci device.\n");
3065 #ifdef CONFIG_PM
3066 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3068 struct fw_ohci *ohci = pci_get_drvdata(dev);
3069 int err;
3071 software_reset(ohci);
3072 free_irq(dev->irq, ohci);
3073 pci_disable_msi(dev);
3074 err = pci_save_state(dev);
3075 if (err) {
3076 fw_error("pci_save_state failed\n");
3077 return err;
3079 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3080 if (err)
3081 fw_error("pci_set_power_state failed with %d\n", err);
3082 pmac_ohci_off(dev);
3084 return 0;
3087 static int pci_resume(struct pci_dev *dev)
3089 struct fw_ohci *ohci = pci_get_drvdata(dev);
3090 int err;
3092 pmac_ohci_on(dev);
3093 pci_set_power_state(dev, PCI_D0);
3094 pci_restore_state(dev);
3095 err = pci_enable_device(dev);
3096 if (err) {
3097 fw_error("pci_enable_device failed\n");
3098 return err;
3101 return ohci_enable(&ohci->card, NULL, 0);
3103 #endif
3105 static const struct pci_device_id pci_table[] = {
3106 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3110 MODULE_DEVICE_TABLE(pci, pci_table);
3112 static struct pci_driver fw_ohci_pci_driver = {
3113 .name = ohci_driver_name,
3114 .id_table = pci_table,
3115 .probe = pci_probe,
3116 .remove = pci_remove,
3117 #ifdef CONFIG_PM
3118 .resume = pci_resume,
3119 .suspend = pci_suspend,
3120 #endif
3123 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3124 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3125 MODULE_LICENSE("GPL");
3127 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3128 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3129 MODULE_ALIAS("ohci1394");
3130 #endif
3132 static int __init fw_ohci_init(void)
3134 return pci_register_driver(&fw_ohci_pci_driver);
3137 static void __exit fw_ohci_cleanup(void)
3139 pci_unregister_driver(&fw_ohci_pci_driver);
3142 module_init(fw_ohci_init);
3143 module_exit(fw_ohci_cleanup);