2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
129 #include <linux/filter.h>
131 #include <trace/events/sock.h>
138 * Each address family might have different locking rules, so we have
139 * one slock key per address family:
141 static struct lock_class_key af_family_keys
[AF_MAX
];
142 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
145 * Make lock validator output more readable. (we pre-construct these
146 * strings build-time, so that runtime initialization of socket
149 static const char *const af_family_key_strings
[AF_MAX
+1] = {
150 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
151 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
152 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
153 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
154 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
155 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
156 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
157 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
158 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
159 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
160 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
161 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
162 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
163 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
165 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
166 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
167 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
168 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
169 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
170 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
171 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
172 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
173 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
174 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
175 "slock-27" , "slock-28" , "slock-AF_CAN" ,
176 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
177 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
178 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
179 "slock-AF_NFC" , "slock-AF_MAX"
181 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
182 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
183 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
184 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
185 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
186 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
187 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
188 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
189 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
190 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
191 "clock-27" , "clock-28" , "clock-AF_CAN" ,
192 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
193 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
194 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
195 "clock-AF_NFC" , "clock-AF_MAX"
199 * sk_callback_lock locking rules are per-address-family,
200 * so split the lock classes by using a per-AF key:
202 static struct lock_class_key af_callback_keys
[AF_MAX
];
204 /* Take into consideration the size of the struct sk_buff overhead in the
205 * determination of these values, since that is non-constant across
206 * platforms. This makes socket queueing behavior and performance
207 * not depend upon such differences.
209 #define _SK_MEM_PACKETS 256
210 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
211 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
214 /* Run time adjustable parameters. */
215 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
216 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
217 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
218 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
220 /* Maximal space eaten by iovec or ancillary data plus some space */
221 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
222 EXPORT_SYMBOL(sysctl_optmem_max
);
224 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225 int net_cls_subsys_id
= -1;
226 EXPORT_SYMBOL_GPL(net_cls_subsys_id
);
229 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
233 if (optlen
< sizeof(tv
))
235 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
237 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
241 static int warned __read_mostly
;
244 if (warned
< 10 && net_ratelimit()) {
246 printk(KERN_INFO
"sock_set_timeout: `%s' (pid %d) "
247 "tries to set negative timeout\n",
248 current
->comm
, task_pid_nr(current
));
252 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
253 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
255 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
256 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
260 static void sock_warn_obsolete_bsdism(const char *name
)
263 static char warncomm
[TASK_COMM_LEN
];
264 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
265 strcpy(warncomm
, current
->comm
);
266 printk(KERN_WARNING
"process `%s' is using obsolete "
267 "%s SO_BSDCOMPAT\n", warncomm
, name
);
272 static void sock_disable_timestamp(struct sock
*sk
, int flag
)
274 if (sock_flag(sk
, flag
)) {
275 sock_reset_flag(sk
, flag
);
276 if (!sock_flag(sk
, SOCK_TIMESTAMP
) &&
277 !sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
)) {
278 net_disable_timestamp();
284 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
289 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
291 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
292 number of warnings when compiling with -W --ANK
294 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
295 (unsigned)sk
->sk_rcvbuf
) {
296 atomic_inc(&sk
->sk_drops
);
297 trace_sock_rcvqueue_full(sk
, skb
);
301 err
= sk_filter(sk
, skb
);
305 if (!sk_rmem_schedule(sk
, skb
->truesize
)) {
306 atomic_inc(&sk
->sk_drops
);
311 skb_set_owner_r(skb
, sk
);
313 /* Cache the SKB length before we tack it onto the receive
314 * queue. Once it is added it no longer belongs to us and
315 * may be freed by other threads of control pulling packets
320 /* we escape from rcu protected region, make sure we dont leak
325 spin_lock_irqsave(&list
->lock
, flags
);
326 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
327 __skb_queue_tail(list
, skb
);
328 spin_unlock_irqrestore(&list
->lock
, flags
);
330 if (!sock_flag(sk
, SOCK_DEAD
))
331 sk
->sk_data_ready(sk
, skb_len
);
334 EXPORT_SYMBOL(sock_queue_rcv_skb
);
336 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
338 int rc
= NET_RX_SUCCESS
;
340 if (sk_filter(sk
, skb
))
341 goto discard_and_relse
;
345 if (sk_rcvqueues_full(sk
, skb
)) {
346 atomic_inc(&sk
->sk_drops
);
347 goto discard_and_relse
;
350 bh_lock_sock_nested(sk
);
353 if (!sock_owned_by_user(sk
)) {
355 * trylock + unlock semantics:
357 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
359 rc
= sk_backlog_rcv(sk
, skb
);
361 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
362 } else if (sk_add_backlog(sk
, skb
)) {
364 atomic_inc(&sk
->sk_drops
);
365 goto discard_and_relse
;
376 EXPORT_SYMBOL(sk_receive_skb
);
378 void sk_reset_txq(struct sock
*sk
)
380 sk_tx_queue_clear(sk
);
382 EXPORT_SYMBOL(sk_reset_txq
);
384 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
386 struct dst_entry
*dst
= __sk_dst_get(sk
);
388 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
389 sk_tx_queue_clear(sk
);
390 rcu_assign_pointer(sk
->sk_dst_cache
, NULL
);
397 EXPORT_SYMBOL(__sk_dst_check
);
399 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
401 struct dst_entry
*dst
= sk_dst_get(sk
);
403 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
411 EXPORT_SYMBOL(sk_dst_check
);
413 static int sock_bindtodevice(struct sock
*sk
, char __user
*optval
, int optlen
)
415 int ret
= -ENOPROTOOPT
;
416 #ifdef CONFIG_NETDEVICES
417 struct net
*net
= sock_net(sk
);
418 char devname
[IFNAMSIZ
];
423 if (!capable(CAP_NET_RAW
))
430 /* Bind this socket to a particular device like "eth0",
431 * as specified in the passed interface name. If the
432 * name is "" or the option length is zero the socket
435 if (optlen
> IFNAMSIZ
- 1)
436 optlen
= IFNAMSIZ
- 1;
437 memset(devname
, 0, sizeof(devname
));
440 if (copy_from_user(devname
, optval
, optlen
))
444 if (devname
[0] != '\0') {
445 struct net_device
*dev
;
448 dev
= dev_get_by_name_rcu(net
, devname
);
450 index
= dev
->ifindex
;
458 sk
->sk_bound_dev_if
= index
;
470 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
473 sock_set_flag(sk
, bit
);
475 sock_reset_flag(sk
, bit
);
479 * This is meant for all protocols to use and covers goings on
480 * at the socket level. Everything here is generic.
483 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
484 char __user
*optval
, unsigned int optlen
)
486 struct sock
*sk
= sock
->sk
;
493 * Options without arguments
496 if (optname
== SO_BINDTODEVICE
)
497 return sock_bindtodevice(sk
, optval
, optlen
);
499 if (optlen
< sizeof(int))
502 if (get_user(val
, (int __user
*)optval
))
505 valbool
= val
? 1 : 0;
511 if (val
&& !capable(CAP_NET_ADMIN
))
514 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
517 sk
->sk_reuse
= valbool
;
526 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
529 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
532 /* Don't error on this BSD doesn't and if you think
533 about it this is right. Otherwise apps have to
534 play 'guess the biggest size' games. RCVBUF/SNDBUF
535 are treated in BSD as hints */
537 if (val
> sysctl_wmem_max
)
538 val
= sysctl_wmem_max
;
540 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
541 if ((val
* 2) < SOCK_MIN_SNDBUF
)
542 sk
->sk_sndbuf
= SOCK_MIN_SNDBUF
;
544 sk
->sk_sndbuf
= val
* 2;
547 * Wake up sending tasks if we
550 sk
->sk_write_space(sk
);
554 if (!capable(CAP_NET_ADMIN
)) {
561 /* Don't error on this BSD doesn't and if you think
562 about it this is right. Otherwise apps have to
563 play 'guess the biggest size' games. RCVBUF/SNDBUF
564 are treated in BSD as hints */
566 if (val
> sysctl_rmem_max
)
567 val
= sysctl_rmem_max
;
569 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
571 * We double it on the way in to account for
572 * "struct sk_buff" etc. overhead. Applications
573 * assume that the SO_RCVBUF setting they make will
574 * allow that much actual data to be received on that
577 * Applications are unaware that "struct sk_buff" and
578 * other overheads allocate from the receive buffer
579 * during socket buffer allocation.
581 * And after considering the possible alternatives,
582 * returning the value we actually used in getsockopt
583 * is the most desirable behavior.
585 if ((val
* 2) < SOCK_MIN_RCVBUF
)
586 sk
->sk_rcvbuf
= SOCK_MIN_RCVBUF
;
588 sk
->sk_rcvbuf
= val
* 2;
592 if (!capable(CAP_NET_ADMIN
)) {
600 if (sk
->sk_protocol
== IPPROTO_TCP
)
601 tcp_set_keepalive(sk
, valbool
);
603 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
607 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
611 sk
->sk_no_check
= valbool
;
615 if ((val
>= 0 && val
<= 6) || capable(CAP_NET_ADMIN
))
616 sk
->sk_priority
= val
;
622 if (optlen
< sizeof(ling
)) {
623 ret
= -EINVAL
; /* 1003.1g */
626 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
631 sock_reset_flag(sk
, SOCK_LINGER
);
633 #if (BITS_PER_LONG == 32)
634 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
635 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
638 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
639 sock_set_flag(sk
, SOCK_LINGER
);
644 sock_warn_obsolete_bsdism("setsockopt");
649 set_bit(SOCK_PASSCRED
, &sock
->flags
);
651 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
657 if (optname
== SO_TIMESTAMP
)
658 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
660 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
661 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
662 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
664 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
665 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
669 case SO_TIMESTAMPING
:
670 if (val
& ~SOF_TIMESTAMPING_MASK
) {
674 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
675 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
676 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
677 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
678 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
679 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
680 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
681 sock_enable_timestamp(sk
,
682 SOCK_TIMESTAMPING_RX_SOFTWARE
);
684 sock_disable_timestamp(sk
,
685 SOCK_TIMESTAMPING_RX_SOFTWARE
);
686 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
687 val
& SOF_TIMESTAMPING_SOFTWARE
);
688 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
689 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
690 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
691 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
697 sk
->sk_rcvlowat
= val
? : 1;
701 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
705 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
708 case SO_ATTACH_FILTER
:
710 if (optlen
== sizeof(struct sock_fprog
)) {
711 struct sock_fprog fprog
;
714 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
717 ret
= sk_attach_filter(&fprog
, sk
);
721 case SO_DETACH_FILTER
:
722 ret
= sk_detach_filter(sk
);
727 set_bit(SOCK_PASSSEC
, &sock
->flags
);
729 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
732 if (!capable(CAP_NET_ADMIN
))
738 /* We implement the SO_SNDLOWAT etc to
739 not be settable (1003.1g 5.3) */
742 sock_set_flag(sk
, SOCK_RXQ_OVFL
);
744 sock_reset_flag(sk
, SOCK_RXQ_OVFL
);
753 EXPORT_SYMBOL(sock_setsockopt
);
756 void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
759 ucred
->pid
= pid_vnr(pid
);
760 ucred
->uid
= ucred
->gid
= -1;
762 struct user_namespace
*current_ns
= current_user_ns();
764 ucred
->uid
= user_ns_map_uid(current_ns
, cred
, cred
->euid
);
765 ucred
->gid
= user_ns_map_gid(current_ns
, cred
, cred
->egid
);
768 EXPORT_SYMBOL_GPL(cred_to_ucred
);
770 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
771 char __user
*optval
, int __user
*optlen
)
773 struct sock
*sk
= sock
->sk
;
781 int lv
= sizeof(int);
784 if (get_user(len
, optlen
))
789 memset(&v
, 0, sizeof(v
));
793 v
.val
= sock_flag(sk
, SOCK_DBG
);
797 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
801 v
.val
= !!sock_flag(sk
, SOCK_BROADCAST
);
805 v
.val
= sk
->sk_sndbuf
;
809 v
.val
= sk
->sk_rcvbuf
;
813 v
.val
= sk
->sk_reuse
;
817 v
.val
= !!sock_flag(sk
, SOCK_KEEPOPEN
);
825 v
.val
= sk
->sk_protocol
;
829 v
.val
= sk
->sk_family
;
833 v
.val
= -sock_error(sk
);
835 v
.val
= xchg(&sk
->sk_err_soft
, 0);
839 v
.val
= !!sock_flag(sk
, SOCK_URGINLINE
);
843 v
.val
= sk
->sk_no_check
;
847 v
.val
= sk
->sk_priority
;
852 v
.ling
.l_onoff
= !!sock_flag(sk
, SOCK_LINGER
);
853 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
857 sock_warn_obsolete_bsdism("getsockopt");
861 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
862 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
866 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
869 case SO_TIMESTAMPING
:
871 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
872 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
873 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
874 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
875 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
876 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
877 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
878 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
879 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
880 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
881 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
882 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
883 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
884 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
888 lv
= sizeof(struct timeval
);
889 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
893 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
894 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
899 lv
= sizeof(struct timeval
);
900 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
904 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
905 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
910 v
.val
= sk
->sk_rcvlowat
;
918 v
.val
= test_bit(SOCK_PASSCRED
, &sock
->flags
) ? 1 : 0;
923 struct ucred peercred
;
924 if (len
> sizeof(peercred
))
925 len
= sizeof(peercred
);
926 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
927 if (copy_to_user(optval
, &peercred
, len
))
936 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
940 if (copy_to_user(optval
, address
, len
))
945 /* Dubious BSD thing... Probably nobody even uses it, but
946 * the UNIX standard wants it for whatever reason... -DaveM
949 v
.val
= sk
->sk_state
== TCP_LISTEN
;
953 v
.val
= test_bit(SOCK_PASSSEC
, &sock
->flags
) ? 1 : 0;
957 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
964 v
.val
= !!sock_flag(sk
, SOCK_RXQ_OVFL
);
973 if (copy_to_user(optval
, &v
, len
))
976 if (put_user(len
, optlen
))
982 * Initialize an sk_lock.
984 * (We also register the sk_lock with the lock validator.)
986 static inline void sock_lock_init(struct sock
*sk
)
988 sock_lock_init_class_and_name(sk
,
989 af_family_slock_key_strings
[sk
->sk_family
],
990 af_family_slock_keys
+ sk
->sk_family
,
991 af_family_key_strings
[sk
->sk_family
],
992 af_family_keys
+ sk
->sk_family
);
996 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
997 * even temporarly, because of RCU lookups. sk_node should also be left as is.
998 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1000 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1002 #ifdef CONFIG_SECURITY_NETWORK
1003 void *sptr
= nsk
->sk_security
;
1005 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1007 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1008 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1010 #ifdef CONFIG_SECURITY_NETWORK
1011 nsk
->sk_security
= sptr
;
1012 security_sk_clone(osk
, nsk
);
1017 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1018 * un-modified. Special care is taken when initializing object to zero.
1020 static inline void sk_prot_clear_nulls(struct sock
*sk
, int size
)
1022 if (offsetof(struct sock
, sk_node
.next
) != 0)
1023 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
1024 memset(&sk
->sk_node
.pprev
, 0,
1025 size
- offsetof(struct sock
, sk_node
.pprev
));
1028 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1030 unsigned long nulls1
, nulls2
;
1032 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1033 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1034 if (nulls1
> nulls2
)
1035 swap(nulls1
, nulls2
);
1038 memset((char *)sk
, 0, nulls1
);
1039 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1040 nulls2
- nulls1
- sizeof(void *));
1041 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1042 size
- nulls2
- sizeof(void *));
1044 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1046 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1050 struct kmem_cache
*slab
;
1054 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1057 if (priority
& __GFP_ZERO
) {
1059 prot
->clear_sk(sk
, prot
->obj_size
);
1061 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1064 sk
= kmalloc(prot
->obj_size
, priority
);
1067 kmemcheck_annotate_bitfield(sk
, flags
);
1069 if (security_sk_alloc(sk
, family
, priority
))
1072 if (!try_module_get(prot
->owner
))
1074 sk_tx_queue_clear(sk
);
1080 security_sk_free(sk
);
1083 kmem_cache_free(slab
, sk
);
1089 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1091 struct kmem_cache
*slab
;
1092 struct module
*owner
;
1094 owner
= prot
->owner
;
1097 security_sk_free(sk
);
1099 kmem_cache_free(slab
, sk
);
1105 #ifdef CONFIG_CGROUPS
1106 void sock_update_classid(struct sock
*sk
)
1110 rcu_read_lock(); /* doing current task, which cannot vanish. */
1111 classid
= task_cls_classid(current
);
1113 if (classid
&& classid
!= sk
->sk_classid
)
1114 sk
->sk_classid
= classid
;
1116 EXPORT_SYMBOL(sock_update_classid
);
1120 * sk_alloc - All socket objects are allocated here
1121 * @net: the applicable net namespace
1122 * @family: protocol family
1123 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1124 * @prot: struct proto associated with this new sock instance
1126 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1131 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1133 sk
->sk_family
= family
;
1135 * See comment in struct sock definition to understand
1136 * why we need sk_prot_creator -acme
1138 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1140 sock_net_set(sk
, get_net(net
));
1141 atomic_set(&sk
->sk_wmem_alloc
, 1);
1143 sock_update_classid(sk
);
1148 EXPORT_SYMBOL(sk_alloc
);
1150 static void __sk_free(struct sock
*sk
)
1152 struct sk_filter
*filter
;
1154 if (sk
->sk_destruct
)
1155 sk
->sk_destruct(sk
);
1157 filter
= rcu_dereference_check(sk
->sk_filter
,
1158 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1160 sk_filter_uncharge(sk
, filter
);
1161 rcu_assign_pointer(sk
->sk_filter
, NULL
);
1164 sock_disable_timestamp(sk
, SOCK_TIMESTAMP
);
1165 sock_disable_timestamp(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
);
1167 if (atomic_read(&sk
->sk_omem_alloc
))
1168 printk(KERN_DEBUG
"%s: optmem leakage (%d bytes) detected.\n",
1169 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1171 if (sk
->sk_peer_cred
)
1172 put_cred(sk
->sk_peer_cred
);
1173 put_pid(sk
->sk_peer_pid
);
1174 put_net(sock_net(sk
));
1175 sk_prot_free(sk
->sk_prot_creator
, sk
);
1178 void sk_free(struct sock
*sk
)
1181 * We subtract one from sk_wmem_alloc and can know if
1182 * some packets are still in some tx queue.
1183 * If not null, sock_wfree() will call __sk_free(sk) later
1185 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1188 EXPORT_SYMBOL(sk_free
);
1191 * Last sock_put should drop reference to sk->sk_net. It has already
1192 * been dropped in sk_change_net. Taking reference to stopping namespace
1194 * Take reference to a socket to remove it from hash _alive_ and after that
1195 * destroy it in the context of init_net.
1197 void sk_release_kernel(struct sock
*sk
)
1199 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1203 sock_release(sk
->sk_socket
);
1204 release_net(sock_net(sk
));
1205 sock_net_set(sk
, get_net(&init_net
));
1208 EXPORT_SYMBOL(sk_release_kernel
);
1210 struct sock
*sk_clone(const struct sock
*sk
, const gfp_t priority
)
1214 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1215 if (newsk
!= NULL
) {
1216 struct sk_filter
*filter
;
1218 sock_copy(newsk
, sk
);
1221 get_net(sock_net(newsk
));
1222 sk_node_init(&newsk
->sk_node
);
1223 sock_lock_init(newsk
);
1224 bh_lock_sock(newsk
);
1225 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1226 newsk
->sk_backlog
.len
= 0;
1228 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1230 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1232 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1233 atomic_set(&newsk
->sk_omem_alloc
, 0);
1234 skb_queue_head_init(&newsk
->sk_receive_queue
);
1235 skb_queue_head_init(&newsk
->sk_write_queue
);
1236 #ifdef CONFIG_NET_DMA
1237 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1240 spin_lock_init(&newsk
->sk_dst_lock
);
1241 rwlock_init(&newsk
->sk_callback_lock
);
1242 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1243 af_callback_keys
+ newsk
->sk_family
,
1244 af_family_clock_key_strings
[newsk
->sk_family
]);
1246 newsk
->sk_dst_cache
= NULL
;
1247 newsk
->sk_wmem_queued
= 0;
1248 newsk
->sk_forward_alloc
= 0;
1249 newsk
->sk_send_head
= NULL
;
1250 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1252 sock_reset_flag(newsk
, SOCK_DONE
);
1253 skb_queue_head_init(&newsk
->sk_error_queue
);
1255 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1257 sk_filter_charge(newsk
, filter
);
1259 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1260 /* It is still raw copy of parent, so invalidate
1261 * destructor and make plain sk_free() */
1262 newsk
->sk_destruct
= NULL
;
1269 newsk
->sk_priority
= 0;
1271 * Before updating sk_refcnt, we must commit prior changes to memory
1272 * (Documentation/RCU/rculist_nulls.txt for details)
1275 atomic_set(&newsk
->sk_refcnt
, 2);
1278 * Increment the counter in the same struct proto as the master
1279 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1280 * is the same as sk->sk_prot->socks, as this field was copied
1283 * This _changes_ the previous behaviour, where
1284 * tcp_create_openreq_child always was incrementing the
1285 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1286 * to be taken into account in all callers. -acme
1288 sk_refcnt_debug_inc(newsk
);
1289 sk_set_socket(newsk
, NULL
);
1290 newsk
->sk_wq
= NULL
;
1292 if (newsk
->sk_prot
->sockets_allocated
)
1293 percpu_counter_inc(newsk
->sk_prot
->sockets_allocated
);
1295 if (sock_flag(newsk
, SOCK_TIMESTAMP
) ||
1296 sock_flag(newsk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
1297 net_enable_timestamp();
1302 EXPORT_SYMBOL_GPL(sk_clone
);
1304 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1306 __sk_dst_set(sk
, dst
);
1307 sk
->sk_route_caps
= dst
->dev
->features
;
1308 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1309 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1310 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1311 if (sk_can_gso(sk
)) {
1312 if (dst
->header_len
) {
1313 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1315 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1316 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1320 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1322 void __init
sk_init(void)
1324 if (totalram_pages
<= 4096) {
1325 sysctl_wmem_max
= 32767;
1326 sysctl_rmem_max
= 32767;
1327 sysctl_wmem_default
= 32767;
1328 sysctl_rmem_default
= 32767;
1329 } else if (totalram_pages
>= 131072) {
1330 sysctl_wmem_max
= 131071;
1331 sysctl_rmem_max
= 131071;
1336 * Simple resource managers for sockets.
1341 * Write buffer destructor automatically called from kfree_skb.
1343 void sock_wfree(struct sk_buff
*skb
)
1345 struct sock
*sk
= skb
->sk
;
1346 unsigned int len
= skb
->truesize
;
1348 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1350 * Keep a reference on sk_wmem_alloc, this will be released
1351 * after sk_write_space() call
1353 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1354 sk
->sk_write_space(sk
);
1358 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1359 * could not do because of in-flight packets
1361 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1364 EXPORT_SYMBOL(sock_wfree
);
1367 * Read buffer destructor automatically called from kfree_skb.
1369 void sock_rfree(struct sk_buff
*skb
)
1371 struct sock
*sk
= skb
->sk
;
1372 unsigned int len
= skb
->truesize
;
1374 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1375 sk_mem_uncharge(sk
, len
);
1377 EXPORT_SYMBOL(sock_rfree
);
1380 int sock_i_uid(struct sock
*sk
)
1384 read_lock_bh(&sk
->sk_callback_lock
);
1385 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: 0;
1386 read_unlock_bh(&sk
->sk_callback_lock
);
1389 EXPORT_SYMBOL(sock_i_uid
);
1391 unsigned long sock_i_ino(struct sock
*sk
)
1395 read_lock_bh(&sk
->sk_callback_lock
);
1396 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1397 read_unlock_bh(&sk
->sk_callback_lock
);
1400 EXPORT_SYMBOL(sock_i_ino
);
1403 * Allocate a skb from the socket's send buffer.
1405 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1408 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1409 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1411 skb_set_owner_w(skb
, sk
);
1417 EXPORT_SYMBOL(sock_wmalloc
);
1420 * Allocate a skb from the socket's receive buffer.
1422 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1425 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1426 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1428 skb_set_owner_r(skb
, sk
);
1436 * Allocate a memory block from the socket's option memory buffer.
1438 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1440 if ((unsigned)size
<= sysctl_optmem_max
&&
1441 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1443 /* First do the add, to avoid the race if kmalloc
1446 atomic_add(size
, &sk
->sk_omem_alloc
);
1447 mem
= kmalloc(size
, priority
);
1450 atomic_sub(size
, &sk
->sk_omem_alloc
);
1454 EXPORT_SYMBOL(sock_kmalloc
);
1457 * Free an option memory block.
1459 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1462 atomic_sub(size
, &sk
->sk_omem_alloc
);
1464 EXPORT_SYMBOL(sock_kfree_s
);
1466 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1467 I think, these locks should be removed for datagram sockets.
1469 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1473 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1477 if (signal_pending(current
))
1479 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1480 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1481 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1483 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1487 timeo
= schedule_timeout(timeo
);
1489 finish_wait(sk_sleep(sk
), &wait
);
1495 * Generic send/receive buffer handlers
1498 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1499 unsigned long data_len
, int noblock
,
1502 struct sk_buff
*skb
;
1507 gfp_mask
= sk
->sk_allocation
;
1508 if (gfp_mask
& __GFP_WAIT
)
1509 gfp_mask
|= __GFP_REPEAT
;
1511 timeo
= sock_sndtimeo(sk
, noblock
);
1513 err
= sock_error(sk
);
1518 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1521 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1522 skb
= alloc_skb(header_len
, gfp_mask
);
1527 /* No pages, we're done... */
1531 npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1532 skb
->truesize
+= data_len
;
1533 skb_shinfo(skb
)->nr_frags
= npages
;
1534 for (i
= 0; i
< npages
; i
++) {
1538 page
= alloc_pages(sk
->sk_allocation
, 0);
1541 skb_shinfo(skb
)->nr_frags
= i
;
1546 frag
= &skb_shinfo(skb
)->frags
[i
];
1548 frag
->page_offset
= 0;
1549 frag
->size
= (data_len
>= PAGE_SIZE
?
1552 data_len
-= PAGE_SIZE
;
1555 /* Full success... */
1561 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1562 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1566 if (signal_pending(current
))
1568 timeo
= sock_wait_for_wmem(sk
, timeo
);
1571 skb_set_owner_w(skb
, sk
);
1575 err
= sock_intr_errno(timeo
);
1580 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1582 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1583 int noblock
, int *errcode
)
1585 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1587 EXPORT_SYMBOL(sock_alloc_send_skb
);
1589 static void __lock_sock(struct sock
*sk
)
1590 __releases(&sk
->sk_lock
.slock
)
1591 __acquires(&sk
->sk_lock
.slock
)
1596 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1597 TASK_UNINTERRUPTIBLE
);
1598 spin_unlock_bh(&sk
->sk_lock
.slock
);
1600 spin_lock_bh(&sk
->sk_lock
.slock
);
1601 if (!sock_owned_by_user(sk
))
1604 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1607 static void __release_sock(struct sock
*sk
)
1608 __releases(&sk
->sk_lock
.slock
)
1609 __acquires(&sk
->sk_lock
.slock
)
1611 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1614 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1618 struct sk_buff
*next
= skb
->next
;
1620 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1622 sk_backlog_rcv(sk
, skb
);
1625 * We are in process context here with softirqs
1626 * disabled, use cond_resched_softirq() to preempt.
1627 * This is safe to do because we've taken the backlog
1630 cond_resched_softirq();
1633 } while (skb
!= NULL
);
1636 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1639 * Doing the zeroing here guarantee we can not loop forever
1640 * while a wild producer attempts to flood us.
1642 sk
->sk_backlog
.len
= 0;
1646 * sk_wait_data - wait for data to arrive at sk_receive_queue
1647 * @sk: sock to wait on
1648 * @timeo: for how long
1650 * Now socket state including sk->sk_err is changed only under lock,
1651 * hence we may omit checks after joining wait queue.
1652 * We check receive queue before schedule() only as optimization;
1653 * it is very likely that release_sock() added new data.
1655 int sk_wait_data(struct sock
*sk
, long *timeo
)
1660 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1661 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1662 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1663 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1664 finish_wait(sk_sleep(sk
), &wait
);
1667 EXPORT_SYMBOL(sk_wait_data
);
1670 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1672 * @size: memory size to allocate
1673 * @kind: allocation type
1675 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1676 * rmem allocation. This function assumes that protocols which have
1677 * memory_pressure use sk_wmem_queued as write buffer accounting.
1679 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1681 struct proto
*prot
= sk
->sk_prot
;
1682 int amt
= sk_mem_pages(size
);
1685 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1686 allocated
= atomic_long_add_return(amt
, prot
->memory_allocated
);
1689 if (allocated
<= prot
->sysctl_mem
[0]) {
1690 if (prot
->memory_pressure
&& *prot
->memory_pressure
)
1691 *prot
->memory_pressure
= 0;
1695 /* Under pressure. */
1696 if (allocated
> prot
->sysctl_mem
[1])
1697 if (prot
->enter_memory_pressure
)
1698 prot
->enter_memory_pressure(sk
);
1700 /* Over hard limit. */
1701 if (allocated
> prot
->sysctl_mem
[2])
1702 goto suppress_allocation
;
1704 /* guarantee minimum buffer size under pressure */
1705 if (kind
== SK_MEM_RECV
) {
1706 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1708 } else { /* SK_MEM_SEND */
1709 if (sk
->sk_type
== SOCK_STREAM
) {
1710 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1712 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1713 prot
->sysctl_wmem
[0])
1717 if (prot
->memory_pressure
) {
1720 if (!*prot
->memory_pressure
)
1722 alloc
= percpu_counter_read_positive(prot
->sockets_allocated
);
1723 if (prot
->sysctl_mem
[2] > alloc
*
1724 sk_mem_pages(sk
->sk_wmem_queued
+
1725 atomic_read(&sk
->sk_rmem_alloc
) +
1726 sk
->sk_forward_alloc
))
1730 suppress_allocation
:
1732 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
1733 sk_stream_moderate_sndbuf(sk
);
1735 /* Fail only if socket is _under_ its sndbuf.
1736 * In this case we cannot block, so that we have to fail.
1738 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
1742 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
1744 /* Alas. Undo changes. */
1745 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
1746 atomic_long_sub(amt
, prot
->memory_allocated
);
1749 EXPORT_SYMBOL(__sk_mem_schedule
);
1752 * __sk_reclaim - reclaim memory_allocated
1755 void __sk_mem_reclaim(struct sock
*sk
)
1757 struct proto
*prot
= sk
->sk_prot
;
1759 atomic_long_sub(sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
,
1760 prot
->memory_allocated
);
1761 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
1763 if (prot
->memory_pressure
&& *prot
->memory_pressure
&&
1764 (atomic_long_read(prot
->memory_allocated
) < prot
->sysctl_mem
[0]))
1765 *prot
->memory_pressure
= 0;
1767 EXPORT_SYMBOL(__sk_mem_reclaim
);
1771 * Set of default routines for initialising struct proto_ops when
1772 * the protocol does not support a particular function. In certain
1773 * cases where it makes no sense for a protocol to have a "do nothing"
1774 * function, some default processing is provided.
1777 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
1781 EXPORT_SYMBOL(sock_no_bind
);
1783 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
1788 EXPORT_SYMBOL(sock_no_connect
);
1790 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
1794 EXPORT_SYMBOL(sock_no_socketpair
);
1796 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1800 EXPORT_SYMBOL(sock_no_accept
);
1802 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
1807 EXPORT_SYMBOL(sock_no_getname
);
1809 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
1813 EXPORT_SYMBOL(sock_no_poll
);
1815 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
1819 EXPORT_SYMBOL(sock_no_ioctl
);
1821 int sock_no_listen(struct socket
*sock
, int backlog
)
1825 EXPORT_SYMBOL(sock_no_listen
);
1827 int sock_no_shutdown(struct socket
*sock
, int how
)
1831 EXPORT_SYMBOL(sock_no_shutdown
);
1833 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
1834 char __user
*optval
, unsigned int optlen
)
1838 EXPORT_SYMBOL(sock_no_setsockopt
);
1840 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
1841 char __user
*optval
, int __user
*optlen
)
1845 EXPORT_SYMBOL(sock_no_getsockopt
);
1847 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1852 EXPORT_SYMBOL(sock_no_sendmsg
);
1854 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1855 size_t len
, int flags
)
1859 EXPORT_SYMBOL(sock_no_recvmsg
);
1861 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
1863 /* Mirror missing mmap method error code */
1866 EXPORT_SYMBOL(sock_no_mmap
);
1868 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
1871 struct msghdr msg
= {.msg_flags
= flags
};
1873 char *kaddr
= kmap(page
);
1874 iov
.iov_base
= kaddr
+ offset
;
1876 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
1880 EXPORT_SYMBOL(sock_no_sendpage
);
1883 * Default Socket Callbacks
1886 static void sock_def_wakeup(struct sock
*sk
)
1888 struct socket_wq
*wq
;
1891 wq
= rcu_dereference(sk
->sk_wq
);
1892 if (wq_has_sleeper(wq
))
1893 wake_up_interruptible_all(&wq
->wait
);
1897 static void sock_def_error_report(struct sock
*sk
)
1899 struct socket_wq
*wq
;
1902 wq
= rcu_dereference(sk
->sk_wq
);
1903 if (wq_has_sleeper(wq
))
1904 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
1905 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
1909 static void sock_def_readable(struct sock
*sk
, int len
)
1911 struct socket_wq
*wq
;
1914 wq
= rcu_dereference(sk
->sk_wq
);
1915 if (wq_has_sleeper(wq
))
1916 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
1917 POLLRDNORM
| POLLRDBAND
);
1918 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
1922 static void sock_def_write_space(struct sock
*sk
)
1924 struct socket_wq
*wq
;
1928 /* Do not wake up a writer until he can make "significant"
1931 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
1932 wq
= rcu_dereference(sk
->sk_wq
);
1933 if (wq_has_sleeper(wq
))
1934 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
1935 POLLWRNORM
| POLLWRBAND
);
1937 /* Should agree with poll, otherwise some programs break */
1938 if (sock_writeable(sk
))
1939 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
1945 static void sock_def_destruct(struct sock
*sk
)
1947 kfree(sk
->sk_protinfo
);
1950 void sk_send_sigurg(struct sock
*sk
)
1952 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
1953 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
1954 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
1956 EXPORT_SYMBOL(sk_send_sigurg
);
1958 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
1959 unsigned long expires
)
1961 if (!mod_timer(timer
, expires
))
1964 EXPORT_SYMBOL(sk_reset_timer
);
1966 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
1968 if (timer_pending(timer
) && del_timer(timer
))
1971 EXPORT_SYMBOL(sk_stop_timer
);
1973 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
1975 skb_queue_head_init(&sk
->sk_receive_queue
);
1976 skb_queue_head_init(&sk
->sk_write_queue
);
1977 skb_queue_head_init(&sk
->sk_error_queue
);
1978 #ifdef CONFIG_NET_DMA
1979 skb_queue_head_init(&sk
->sk_async_wait_queue
);
1982 sk
->sk_send_head
= NULL
;
1984 init_timer(&sk
->sk_timer
);
1986 sk
->sk_allocation
= GFP_KERNEL
;
1987 sk
->sk_rcvbuf
= sysctl_rmem_default
;
1988 sk
->sk_sndbuf
= sysctl_wmem_default
;
1989 sk
->sk_state
= TCP_CLOSE
;
1990 sk_set_socket(sk
, sock
);
1992 sock_set_flag(sk
, SOCK_ZAPPED
);
1995 sk
->sk_type
= sock
->type
;
1996 sk
->sk_wq
= sock
->wq
;
2001 spin_lock_init(&sk
->sk_dst_lock
);
2002 rwlock_init(&sk
->sk_callback_lock
);
2003 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2004 af_callback_keys
+ sk
->sk_family
,
2005 af_family_clock_key_strings
[sk
->sk_family
]);
2007 sk
->sk_state_change
= sock_def_wakeup
;
2008 sk
->sk_data_ready
= sock_def_readable
;
2009 sk
->sk_write_space
= sock_def_write_space
;
2010 sk
->sk_error_report
= sock_def_error_report
;
2011 sk
->sk_destruct
= sock_def_destruct
;
2013 sk
->sk_sndmsg_page
= NULL
;
2014 sk
->sk_sndmsg_off
= 0;
2016 sk
->sk_peer_pid
= NULL
;
2017 sk
->sk_peer_cred
= NULL
;
2018 sk
->sk_write_pending
= 0;
2019 sk
->sk_rcvlowat
= 1;
2020 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2021 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2023 sk
->sk_stamp
= ktime_set(-1L, 0);
2026 * Before updating sk_refcnt, we must commit prior changes to memory
2027 * (Documentation/RCU/rculist_nulls.txt for details)
2030 atomic_set(&sk
->sk_refcnt
, 1);
2031 atomic_set(&sk
->sk_drops
, 0);
2033 EXPORT_SYMBOL(sock_init_data
);
2035 void lock_sock_nested(struct sock
*sk
, int subclass
)
2038 spin_lock_bh(&sk
->sk_lock
.slock
);
2039 if (sk
->sk_lock
.owned
)
2041 sk
->sk_lock
.owned
= 1;
2042 spin_unlock(&sk
->sk_lock
.slock
);
2044 * The sk_lock has mutex_lock() semantics here:
2046 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2049 EXPORT_SYMBOL(lock_sock_nested
);
2051 void release_sock(struct sock
*sk
)
2054 * The sk_lock has mutex_unlock() semantics:
2056 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2058 spin_lock_bh(&sk
->sk_lock
.slock
);
2059 if (sk
->sk_backlog
.tail
)
2061 sk
->sk_lock
.owned
= 0;
2062 if (waitqueue_active(&sk
->sk_lock
.wq
))
2063 wake_up(&sk
->sk_lock
.wq
);
2064 spin_unlock_bh(&sk
->sk_lock
.slock
);
2066 EXPORT_SYMBOL(release_sock
);
2069 * lock_sock_fast - fast version of lock_sock
2072 * This version should be used for very small section, where process wont block
2073 * return false if fast path is taken
2074 * sk_lock.slock locked, owned = 0, BH disabled
2075 * return true if slow path is taken
2076 * sk_lock.slock unlocked, owned = 1, BH enabled
2078 bool lock_sock_fast(struct sock
*sk
)
2081 spin_lock_bh(&sk
->sk_lock
.slock
);
2083 if (!sk
->sk_lock
.owned
)
2085 * Note : We must disable BH
2090 sk
->sk_lock
.owned
= 1;
2091 spin_unlock(&sk
->sk_lock
.slock
);
2093 * The sk_lock has mutex_lock() semantics here:
2095 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2099 EXPORT_SYMBOL(lock_sock_fast
);
2101 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2104 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2105 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2106 tv
= ktime_to_timeval(sk
->sk_stamp
);
2107 if (tv
.tv_sec
== -1)
2109 if (tv
.tv_sec
== 0) {
2110 sk
->sk_stamp
= ktime_get_real();
2111 tv
= ktime_to_timeval(sk
->sk_stamp
);
2113 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2115 EXPORT_SYMBOL(sock_get_timestamp
);
2117 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2120 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2121 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2122 ts
= ktime_to_timespec(sk
->sk_stamp
);
2123 if (ts
.tv_sec
== -1)
2125 if (ts
.tv_sec
== 0) {
2126 sk
->sk_stamp
= ktime_get_real();
2127 ts
= ktime_to_timespec(sk
->sk_stamp
);
2129 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2131 EXPORT_SYMBOL(sock_get_timestampns
);
2133 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2135 if (!sock_flag(sk
, flag
)) {
2136 sock_set_flag(sk
, flag
);
2138 * we just set one of the two flags which require net
2139 * time stamping, but time stamping might have been on
2140 * already because of the other one
2143 flag
== SOCK_TIMESTAMP
?
2144 SOCK_TIMESTAMPING_RX_SOFTWARE
:
2146 net_enable_timestamp();
2151 * Get a socket option on an socket.
2153 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2154 * asynchronous errors should be reported by getsockopt. We assume
2155 * this means if you specify SO_ERROR (otherwise whats the point of it).
2157 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2158 char __user
*optval
, int __user
*optlen
)
2160 struct sock
*sk
= sock
->sk
;
2162 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2164 EXPORT_SYMBOL(sock_common_getsockopt
);
2166 #ifdef CONFIG_COMPAT
2167 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2168 char __user
*optval
, int __user
*optlen
)
2170 struct sock
*sk
= sock
->sk
;
2172 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2173 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2175 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2177 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2180 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2181 struct msghdr
*msg
, size_t size
, int flags
)
2183 struct sock
*sk
= sock
->sk
;
2187 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2188 flags
& ~MSG_DONTWAIT
, &addr_len
);
2190 msg
->msg_namelen
= addr_len
;
2193 EXPORT_SYMBOL(sock_common_recvmsg
);
2196 * Set socket options on an inet socket.
2198 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2199 char __user
*optval
, unsigned int optlen
)
2201 struct sock
*sk
= sock
->sk
;
2203 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2205 EXPORT_SYMBOL(sock_common_setsockopt
);
2207 #ifdef CONFIG_COMPAT
2208 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2209 char __user
*optval
, unsigned int optlen
)
2211 struct sock
*sk
= sock
->sk
;
2213 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2214 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2216 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2218 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2221 void sk_common_release(struct sock
*sk
)
2223 if (sk
->sk_prot
->destroy
)
2224 sk
->sk_prot
->destroy(sk
);
2227 * Observation: when sock_common_release is called, processes have
2228 * no access to socket. But net still has.
2229 * Step one, detach it from networking:
2231 * A. Remove from hash tables.
2234 sk
->sk_prot
->unhash(sk
);
2237 * In this point socket cannot receive new packets, but it is possible
2238 * that some packets are in flight because some CPU runs receiver and
2239 * did hash table lookup before we unhashed socket. They will achieve
2240 * receive queue and will be purged by socket destructor.
2242 * Also we still have packets pending on receive queue and probably,
2243 * our own packets waiting in device queues. sock_destroy will drain
2244 * receive queue, but transmitted packets will delay socket destruction
2245 * until the last reference will be released.
2250 xfrm_sk_free_policy(sk
);
2252 sk_refcnt_debug_release(sk
);
2255 EXPORT_SYMBOL(sk_common_release
);
2257 static DEFINE_RWLOCK(proto_list_lock
);
2258 static LIST_HEAD(proto_list
);
2260 #ifdef CONFIG_PROC_FS
2261 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2263 int val
[PROTO_INUSE_NR
];
2266 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2268 #ifdef CONFIG_NET_NS
2269 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2271 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2273 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2275 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2277 int cpu
, idx
= prot
->inuse_idx
;
2280 for_each_possible_cpu(cpu
)
2281 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2283 return res
>= 0 ? res
: 0;
2285 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2287 static int __net_init
sock_inuse_init_net(struct net
*net
)
2289 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2290 return net
->core
.inuse
? 0 : -ENOMEM
;
2293 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2295 free_percpu(net
->core
.inuse
);
2298 static struct pernet_operations net_inuse_ops
= {
2299 .init
= sock_inuse_init_net
,
2300 .exit
= sock_inuse_exit_net
,
2303 static __init
int net_inuse_init(void)
2305 if (register_pernet_subsys(&net_inuse_ops
))
2306 panic("Cannot initialize net inuse counters");
2311 core_initcall(net_inuse_init
);
2313 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2315 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2317 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2319 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2321 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2323 int cpu
, idx
= prot
->inuse_idx
;
2326 for_each_possible_cpu(cpu
)
2327 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2329 return res
>= 0 ? res
: 0;
2331 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2334 static void assign_proto_idx(struct proto
*prot
)
2336 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2338 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2339 printk(KERN_ERR
"PROTO_INUSE_NR exhausted\n");
2343 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2346 static void release_proto_idx(struct proto
*prot
)
2348 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2349 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2352 static inline void assign_proto_idx(struct proto
*prot
)
2356 static inline void release_proto_idx(struct proto
*prot
)
2361 int proto_register(struct proto
*prot
, int alloc_slab
)
2364 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2365 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2368 if (prot
->slab
== NULL
) {
2369 printk(KERN_CRIT
"%s: Can't create sock SLAB cache!\n",
2374 if (prot
->rsk_prot
!= NULL
) {
2375 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2376 if (prot
->rsk_prot
->slab_name
== NULL
)
2377 goto out_free_sock_slab
;
2379 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2380 prot
->rsk_prot
->obj_size
, 0,
2381 SLAB_HWCACHE_ALIGN
, NULL
);
2383 if (prot
->rsk_prot
->slab
== NULL
) {
2384 printk(KERN_CRIT
"%s: Can't create request sock SLAB cache!\n",
2386 goto out_free_request_sock_slab_name
;
2390 if (prot
->twsk_prot
!= NULL
) {
2391 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2393 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2394 goto out_free_request_sock_slab
;
2396 prot
->twsk_prot
->twsk_slab
=
2397 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2398 prot
->twsk_prot
->twsk_obj_size
,
2400 SLAB_HWCACHE_ALIGN
|
2403 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2404 goto out_free_timewait_sock_slab_name
;
2408 write_lock(&proto_list_lock
);
2409 list_add(&prot
->node
, &proto_list
);
2410 assign_proto_idx(prot
);
2411 write_unlock(&proto_list_lock
);
2414 out_free_timewait_sock_slab_name
:
2415 kfree(prot
->twsk_prot
->twsk_slab_name
);
2416 out_free_request_sock_slab
:
2417 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2418 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2419 prot
->rsk_prot
->slab
= NULL
;
2421 out_free_request_sock_slab_name
:
2423 kfree(prot
->rsk_prot
->slab_name
);
2425 kmem_cache_destroy(prot
->slab
);
2430 EXPORT_SYMBOL(proto_register
);
2432 void proto_unregister(struct proto
*prot
)
2434 write_lock(&proto_list_lock
);
2435 release_proto_idx(prot
);
2436 list_del(&prot
->node
);
2437 write_unlock(&proto_list_lock
);
2439 if (prot
->slab
!= NULL
) {
2440 kmem_cache_destroy(prot
->slab
);
2444 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2445 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2446 kfree(prot
->rsk_prot
->slab_name
);
2447 prot
->rsk_prot
->slab
= NULL
;
2450 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2451 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2452 kfree(prot
->twsk_prot
->twsk_slab_name
);
2453 prot
->twsk_prot
->twsk_slab
= NULL
;
2456 EXPORT_SYMBOL(proto_unregister
);
2458 #ifdef CONFIG_PROC_FS
2459 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2460 __acquires(proto_list_lock
)
2462 read_lock(&proto_list_lock
);
2463 return seq_list_start_head(&proto_list
, *pos
);
2466 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2468 return seq_list_next(v
, &proto_list
, pos
);
2471 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2472 __releases(proto_list_lock
)
2474 read_unlock(&proto_list_lock
);
2477 static char proto_method_implemented(const void *method
)
2479 return method
== NULL
? 'n' : 'y';
2482 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2484 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2485 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2488 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2489 proto
->memory_allocated
!= NULL
? atomic_long_read(proto
->memory_allocated
) : -1L,
2490 proto
->memory_pressure
!= NULL
? *proto
->memory_pressure
? "yes" : "no" : "NI",
2492 proto
->slab
== NULL
? "no" : "yes",
2493 module_name(proto
->owner
),
2494 proto_method_implemented(proto
->close
),
2495 proto_method_implemented(proto
->connect
),
2496 proto_method_implemented(proto
->disconnect
),
2497 proto_method_implemented(proto
->accept
),
2498 proto_method_implemented(proto
->ioctl
),
2499 proto_method_implemented(proto
->init
),
2500 proto_method_implemented(proto
->destroy
),
2501 proto_method_implemented(proto
->shutdown
),
2502 proto_method_implemented(proto
->setsockopt
),
2503 proto_method_implemented(proto
->getsockopt
),
2504 proto_method_implemented(proto
->sendmsg
),
2505 proto_method_implemented(proto
->recvmsg
),
2506 proto_method_implemented(proto
->sendpage
),
2507 proto_method_implemented(proto
->bind
),
2508 proto_method_implemented(proto
->backlog_rcv
),
2509 proto_method_implemented(proto
->hash
),
2510 proto_method_implemented(proto
->unhash
),
2511 proto_method_implemented(proto
->get_port
),
2512 proto_method_implemented(proto
->enter_memory_pressure
));
2515 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2517 if (v
== &proto_list
)
2518 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2527 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2529 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2533 static const struct seq_operations proto_seq_ops
= {
2534 .start
= proto_seq_start
,
2535 .next
= proto_seq_next
,
2536 .stop
= proto_seq_stop
,
2537 .show
= proto_seq_show
,
2540 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2542 return seq_open_net(inode
, file
, &proto_seq_ops
,
2543 sizeof(struct seq_net_private
));
2546 static const struct file_operations proto_seq_fops
= {
2547 .owner
= THIS_MODULE
,
2548 .open
= proto_seq_open
,
2550 .llseek
= seq_lseek
,
2551 .release
= seq_release_net
,
2554 static __net_init
int proto_init_net(struct net
*net
)
2556 if (!proc_net_fops_create(net
, "protocols", S_IRUGO
, &proto_seq_fops
))
2562 static __net_exit
void proto_exit_net(struct net
*net
)
2564 proc_net_remove(net
, "protocols");
2568 static __net_initdata
struct pernet_operations proto_net_ops
= {
2569 .init
= proto_init_net
,
2570 .exit
= proto_exit_net
,
2573 static int __init
proto_init(void)
2575 return register_pernet_subsys(&proto_net_ops
);
2578 subsys_initcall(proto_init
);
2580 #endif /* PROC_FS */