[XFS] implement generic xfs_btree_lookup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_alloc_btree.c
blobb81fbf1216ed5d75a59ed2f789f13423d50b821e
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_error.h"
43 * Prototypes for internal functions.
46 STATIC void xfs_alloc_log_block(xfs_trans_t *, xfs_buf_t *, int);
47 STATIC void xfs_alloc_log_keys(xfs_btree_cur_t *, xfs_buf_t *, int, int);
48 STATIC void xfs_alloc_log_ptrs(xfs_btree_cur_t *, xfs_buf_t *, int, int);
49 STATIC void xfs_alloc_log_recs(xfs_btree_cur_t *, xfs_buf_t *, int, int);
50 STATIC int xfs_alloc_lshift(xfs_btree_cur_t *, int, int *);
51 STATIC int xfs_alloc_newroot(xfs_btree_cur_t *, int *);
52 STATIC int xfs_alloc_rshift(xfs_btree_cur_t *, int, int *);
53 STATIC int xfs_alloc_split(xfs_btree_cur_t *, int, xfs_agblock_t *,
54 xfs_alloc_key_t *, xfs_btree_cur_t **, int *);
55 STATIC int xfs_alloc_updkey(xfs_btree_cur_t *, xfs_alloc_key_t *, int);
58 * Internal functions.
62 * Single level of the xfs_alloc_delete record deletion routine.
63 * Delete record pointed to by cur/level.
64 * Remove the record from its block then rebalance the tree.
65 * Return 0 for error, 1 for done, 2 to go on to the next level.
67 STATIC int /* error */
68 xfs_alloc_delrec(
69 xfs_btree_cur_t *cur, /* btree cursor */
70 int level, /* level removing record from */
71 int *stat) /* fail/done/go-on */
73 xfs_agf_t *agf; /* allocation group freelist header */
74 xfs_alloc_block_t *block; /* btree block record/key lives in */
75 xfs_agblock_t bno; /* btree block number */
76 xfs_buf_t *bp; /* buffer for block */
77 int error; /* error return value */
78 int i; /* loop index */
79 xfs_alloc_key_t key; /* kp points here if block is level 0 */
80 xfs_agblock_t lbno; /* left block's block number */
81 xfs_buf_t *lbp; /* left block's buffer pointer */
82 xfs_alloc_block_t *left; /* left btree block */
83 xfs_alloc_key_t *lkp=NULL; /* left block key pointer */
84 xfs_alloc_ptr_t *lpp=NULL; /* left block address pointer */
85 int lrecs=0; /* number of records in left block */
86 xfs_alloc_rec_t *lrp; /* left block record pointer */
87 xfs_mount_t *mp; /* mount structure */
88 int ptr; /* index in btree block for this rec */
89 xfs_agblock_t rbno; /* right block's block number */
90 xfs_buf_t *rbp; /* right block's buffer pointer */
91 xfs_alloc_block_t *right; /* right btree block */
92 xfs_alloc_key_t *rkp; /* right block key pointer */
93 xfs_alloc_ptr_t *rpp; /* right block address pointer */
94 int rrecs=0; /* number of records in right block */
95 int numrecs;
96 xfs_alloc_rec_t *rrp; /* right block record pointer */
97 xfs_btree_cur_t *tcur; /* temporary btree cursor */
100 * Get the index of the entry being deleted, check for nothing there.
102 ptr = cur->bc_ptrs[level];
103 if (ptr == 0) {
104 *stat = 0;
105 return 0;
108 * Get the buffer & block containing the record or key/ptr.
110 bp = cur->bc_bufs[level];
111 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
112 #ifdef DEBUG
113 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
114 return error;
115 #endif
117 * Fail if we're off the end of the block.
119 numrecs = be16_to_cpu(block->bb_numrecs);
120 if (ptr > numrecs) {
121 *stat = 0;
122 return 0;
124 XFS_STATS_INC(xs_abt_delrec);
126 * It's a nonleaf. Excise the key and ptr being deleted, by
127 * sliding the entries past them down one.
128 * Log the changed areas of the block.
130 if (level > 0) {
131 lkp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
132 lpp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
133 #ifdef DEBUG
134 for (i = ptr; i < numrecs; i++) {
135 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level)))
136 return error;
138 #endif
139 if (ptr < numrecs) {
140 memmove(&lkp[ptr - 1], &lkp[ptr],
141 (numrecs - ptr) * sizeof(*lkp));
142 memmove(&lpp[ptr - 1], &lpp[ptr],
143 (numrecs - ptr) * sizeof(*lpp));
144 xfs_alloc_log_ptrs(cur, bp, ptr, numrecs - 1);
145 xfs_alloc_log_keys(cur, bp, ptr, numrecs - 1);
149 * It's a leaf. Excise the record being deleted, by sliding the
150 * entries past it down one. Log the changed areas of the block.
152 else {
153 lrp = XFS_ALLOC_REC_ADDR(block, 1, cur);
154 if (ptr < numrecs) {
155 memmove(&lrp[ptr - 1], &lrp[ptr],
156 (numrecs - ptr) * sizeof(*lrp));
157 xfs_alloc_log_recs(cur, bp, ptr, numrecs - 1);
160 * If it's the first record in the block, we'll need a key
161 * structure to pass up to the next level (updkey).
163 if (ptr == 1) {
164 key.ar_startblock = lrp->ar_startblock;
165 key.ar_blockcount = lrp->ar_blockcount;
166 lkp = &key;
170 * Decrement and log the number of entries in the block.
172 numrecs--;
173 block->bb_numrecs = cpu_to_be16(numrecs);
174 xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS);
176 * See if the longest free extent in the allocation group was
177 * changed by this operation. True if it's the by-size btree, and
178 * this is the leaf level, and there is no right sibling block,
179 * and this was the last record.
181 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
182 mp = cur->bc_mp;
184 if (level == 0 &&
185 cur->bc_btnum == XFS_BTNUM_CNT &&
186 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
187 ptr > numrecs) {
188 ASSERT(ptr == numrecs + 1);
190 * There are still records in the block. Grab the size
191 * from the last one.
193 if (numrecs) {
194 rrp = XFS_ALLOC_REC_ADDR(block, numrecs, cur);
195 agf->agf_longest = rrp->ar_blockcount;
198 * No free extents left.
200 else
201 agf->agf_longest = 0;
202 mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest =
203 be32_to_cpu(agf->agf_longest);
204 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
205 XFS_AGF_LONGEST);
208 * Is this the root level? If so, we're almost done.
210 if (level == cur->bc_nlevels - 1) {
212 * If this is the root level,
213 * and there's only one entry left,
214 * and it's NOT the leaf level,
215 * then we can get rid of this level.
217 if (numrecs == 1 && level > 0) {
219 * lpp is still set to the first pointer in the block.
220 * Make it the new root of the btree.
222 bno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]);
223 agf->agf_roots[cur->bc_btnum] = *lpp;
224 be32_add_cpu(&agf->agf_levels[cur->bc_btnum], -1);
225 mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_levels[cur->bc_btnum]--;
227 * Put this buffer/block on the ag's freelist.
229 error = xfs_alloc_put_freelist(cur->bc_tp,
230 cur->bc_private.a.agbp, NULL, bno, 1);
231 if (error)
232 return error;
234 * Since blocks move to the free list without the
235 * coordination used in xfs_bmap_finish, we can't allow
236 * block to be available for reallocation and
237 * non-transaction writing (user data) until we know
238 * that the transaction that moved it to the free list
239 * is permanently on disk. We track the blocks by
240 * declaring these blocks as "busy"; the busy list is
241 * maintained on a per-ag basis and each transaction
242 * records which entries should be removed when the
243 * iclog commits to disk. If a busy block is
244 * allocated, the iclog is pushed up to the LSN
245 * that freed the block.
247 xfs_alloc_mark_busy(cur->bc_tp,
248 be32_to_cpu(agf->agf_seqno), bno, 1);
250 xfs_trans_agbtree_delta(cur->bc_tp, -1);
251 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
252 XFS_AGF_ROOTS | XFS_AGF_LEVELS);
254 * Update the cursor so there's one fewer level.
256 xfs_btree_setbuf(cur, level, NULL);
257 cur->bc_nlevels--;
258 } else if (level > 0 &&
259 (error = xfs_btree_decrement(cur, level, &i)))
260 return error;
261 *stat = 1;
262 return 0;
265 * If we deleted the leftmost entry in the block, update the
266 * key values above us in the tree.
268 if (ptr == 1 && (error = xfs_alloc_updkey(cur, lkp, level + 1)))
269 return error;
271 * If the number of records remaining in the block is at least
272 * the minimum, we're done.
274 if (numrecs >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
275 if (level > 0 && (error = xfs_btree_decrement(cur, level, &i)))
276 return error;
277 *stat = 1;
278 return 0;
281 * Otherwise, we have to move some records around to keep the
282 * tree balanced. Look at the left and right sibling blocks to
283 * see if we can re-balance by moving only one record.
285 rbno = be32_to_cpu(block->bb_rightsib);
286 lbno = be32_to_cpu(block->bb_leftsib);
287 bno = NULLAGBLOCK;
288 ASSERT(rbno != NULLAGBLOCK || lbno != NULLAGBLOCK);
290 * Duplicate the cursor so our btree manipulations here won't
291 * disrupt the next level up.
293 if ((error = xfs_btree_dup_cursor(cur, &tcur)))
294 return error;
296 * If there's a right sibling, see if it's ok to shift an entry
297 * out of it.
299 if (rbno != NULLAGBLOCK) {
301 * Move the temp cursor to the last entry in the next block.
302 * Actually any entry but the first would suffice.
304 i = xfs_btree_lastrec(tcur, level);
305 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
306 if ((error = xfs_btree_increment(tcur, level, &i)))
307 goto error0;
308 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
309 i = xfs_btree_lastrec(tcur, level);
310 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
312 * Grab a pointer to the block.
314 rbp = tcur->bc_bufs[level];
315 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
316 #ifdef DEBUG
317 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
318 goto error0;
319 #endif
321 * Grab the current block number, for future use.
323 bno = be32_to_cpu(right->bb_leftsib);
325 * If right block is full enough so that removing one entry
326 * won't make it too empty, and left-shifting an entry out
327 * of right to us works, we're done.
329 if (be16_to_cpu(right->bb_numrecs) - 1 >=
330 XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
331 if ((error = xfs_alloc_lshift(tcur, level, &i)))
332 goto error0;
333 if (i) {
334 ASSERT(be16_to_cpu(block->bb_numrecs) >=
335 XFS_ALLOC_BLOCK_MINRECS(level, cur));
336 xfs_btree_del_cursor(tcur,
337 XFS_BTREE_NOERROR);
338 if (level > 0 &&
339 (error = xfs_btree_decrement(cur, level,
340 &i)))
341 return error;
342 *stat = 1;
343 return 0;
347 * Otherwise, grab the number of records in right for
348 * future reference, and fix up the temp cursor to point
349 * to our block again (last record).
351 rrecs = be16_to_cpu(right->bb_numrecs);
352 if (lbno != NULLAGBLOCK) {
353 i = xfs_btree_firstrec(tcur, level);
354 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
355 if ((error = xfs_btree_decrement(tcur, level, &i)))
356 goto error0;
357 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
361 * If there's a left sibling, see if it's ok to shift an entry
362 * out of it.
364 if (lbno != NULLAGBLOCK) {
366 * Move the temp cursor to the first entry in the
367 * previous block.
369 i = xfs_btree_firstrec(tcur, level);
370 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
371 if ((error = xfs_btree_decrement(tcur, level, &i)))
372 goto error0;
373 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
374 xfs_btree_firstrec(tcur, level);
376 * Grab a pointer to the block.
378 lbp = tcur->bc_bufs[level];
379 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
380 #ifdef DEBUG
381 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
382 goto error0;
383 #endif
385 * Grab the current block number, for future use.
387 bno = be32_to_cpu(left->bb_rightsib);
389 * If left block is full enough so that removing one entry
390 * won't make it too empty, and right-shifting an entry out
391 * of left to us works, we're done.
393 if (be16_to_cpu(left->bb_numrecs) - 1 >=
394 XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
395 if ((error = xfs_alloc_rshift(tcur, level, &i)))
396 goto error0;
397 if (i) {
398 ASSERT(be16_to_cpu(block->bb_numrecs) >=
399 XFS_ALLOC_BLOCK_MINRECS(level, cur));
400 xfs_btree_del_cursor(tcur,
401 XFS_BTREE_NOERROR);
402 if (level == 0)
403 cur->bc_ptrs[0]++;
404 *stat = 1;
405 return 0;
409 * Otherwise, grab the number of records in right for
410 * future reference.
412 lrecs = be16_to_cpu(left->bb_numrecs);
415 * Delete the temp cursor, we're done with it.
417 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
419 * If here, we need to do a join to keep the tree balanced.
421 ASSERT(bno != NULLAGBLOCK);
423 * See if we can join with the left neighbor block.
425 if (lbno != NULLAGBLOCK &&
426 lrecs + numrecs <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
428 * Set "right" to be the starting block,
429 * "left" to be the left neighbor.
431 rbno = bno;
432 right = block;
433 rrecs = be16_to_cpu(right->bb_numrecs);
434 rbp = bp;
435 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
436 cur->bc_private.a.agno, lbno, 0, &lbp,
437 XFS_ALLOC_BTREE_REF)))
438 return error;
439 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
440 lrecs = be16_to_cpu(left->bb_numrecs);
441 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
442 return error;
445 * If that won't work, see if we can join with the right neighbor block.
447 else if (rbno != NULLAGBLOCK &&
448 rrecs + numrecs <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
450 * Set "left" to be the starting block,
451 * "right" to be the right neighbor.
453 lbno = bno;
454 left = block;
455 lrecs = be16_to_cpu(left->bb_numrecs);
456 lbp = bp;
457 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
458 cur->bc_private.a.agno, rbno, 0, &rbp,
459 XFS_ALLOC_BTREE_REF)))
460 return error;
461 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
462 rrecs = be16_to_cpu(right->bb_numrecs);
463 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
464 return error;
467 * Otherwise, we can't fix the imbalance.
468 * Just return. This is probably a logic error, but it's not fatal.
470 else {
471 if (level > 0 && (error = xfs_btree_decrement(cur, level, &i)))
472 return error;
473 *stat = 1;
474 return 0;
477 * We're now going to join "left" and "right" by moving all the stuff
478 * in "right" to "left" and deleting "right".
480 if (level > 0) {
482 * It's a non-leaf. Move keys and pointers.
484 lkp = XFS_ALLOC_KEY_ADDR(left, lrecs + 1, cur);
485 lpp = XFS_ALLOC_PTR_ADDR(left, lrecs + 1, cur);
486 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
487 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
488 #ifdef DEBUG
489 for (i = 0; i < rrecs; i++) {
490 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level)))
491 return error;
493 #endif
494 memcpy(lkp, rkp, rrecs * sizeof(*lkp));
495 memcpy(lpp, rpp, rrecs * sizeof(*lpp));
496 xfs_alloc_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
497 xfs_alloc_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
498 } else {
500 * It's a leaf. Move records.
502 lrp = XFS_ALLOC_REC_ADDR(left, lrecs + 1, cur);
503 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
504 memcpy(lrp, rrp, rrecs * sizeof(*lrp));
505 xfs_alloc_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
508 * If we joined with the left neighbor, set the buffer in the
509 * cursor to the left block, and fix up the index.
511 if (bp != lbp) {
512 xfs_btree_setbuf(cur, level, lbp);
513 cur->bc_ptrs[level] += lrecs;
516 * If we joined with the right neighbor and there's a level above
517 * us, increment the cursor at that level.
519 else if (level + 1 < cur->bc_nlevels &&
520 (error = xfs_btree_increment(cur, level + 1, &i)))
521 return error;
523 * Fix up the number of records in the surviving block.
525 lrecs += rrecs;
526 left->bb_numrecs = cpu_to_be16(lrecs);
528 * Fix up the right block pointer in the surviving block, and log it.
530 left->bb_rightsib = right->bb_rightsib;
531 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
533 * If there is a right sibling now, make it point to the
534 * remaining block.
536 if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) {
537 xfs_alloc_block_t *rrblock;
538 xfs_buf_t *rrbp;
540 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
541 cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), 0,
542 &rrbp, XFS_ALLOC_BTREE_REF)))
543 return error;
544 rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp);
545 if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp)))
546 return error;
547 rrblock->bb_leftsib = cpu_to_be32(lbno);
548 xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB);
551 * Free the deleting block by putting it on the freelist.
553 error = xfs_alloc_put_freelist(cur->bc_tp,
554 cur->bc_private.a.agbp, NULL, rbno, 1);
555 if (error)
556 return error;
558 * Since blocks move to the free list without the coordination
559 * used in xfs_bmap_finish, we can't allow block to be available
560 * for reallocation and non-transaction writing (user data)
561 * until we know that the transaction that moved it to the free
562 * list is permanently on disk. We track the blocks by declaring
563 * these blocks as "busy"; the busy list is maintained on a
564 * per-ag basis and each transaction records which entries
565 * should be removed when the iclog commits to disk. If a
566 * busy block is allocated, the iclog is pushed up to the
567 * LSN that freed the block.
569 xfs_alloc_mark_busy(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1);
570 xfs_trans_agbtree_delta(cur->bc_tp, -1);
573 * Adjust the current level's cursor so that we're left referring
574 * to the right node, after we're done.
575 * If this leaves the ptr value 0 our caller will fix it up.
577 if (level > 0)
578 cur->bc_ptrs[level]--;
580 * Return value means the next level up has something to do.
582 *stat = 2;
583 return 0;
585 error0:
586 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
587 return error;
591 * Insert one record/level. Return information to the caller
592 * allowing the next level up to proceed if necessary.
594 STATIC int /* error */
595 xfs_alloc_insrec(
596 xfs_btree_cur_t *cur, /* btree cursor */
597 int level, /* level to insert record at */
598 xfs_agblock_t *bnop, /* i/o: block number inserted */
599 xfs_alloc_rec_t *recp, /* i/o: record data inserted */
600 xfs_btree_cur_t **curp, /* output: new cursor replacing cur */
601 int *stat) /* output: success/failure */
603 xfs_agf_t *agf; /* allocation group freelist header */
604 xfs_alloc_block_t *block; /* btree block record/key lives in */
605 xfs_buf_t *bp; /* buffer for block */
606 int error; /* error return value */
607 int i; /* loop index */
608 xfs_alloc_key_t key; /* key value being inserted */
609 xfs_alloc_key_t *kp; /* pointer to btree keys */
610 xfs_agblock_t nbno; /* block number of allocated block */
611 xfs_btree_cur_t *ncur; /* new cursor to be used at next lvl */
612 xfs_alloc_key_t nkey; /* new key value, from split */
613 xfs_alloc_rec_t nrec; /* new record value, for caller */
614 int numrecs;
615 int optr; /* old ptr value */
616 xfs_alloc_ptr_t *pp; /* pointer to btree addresses */
617 int ptr; /* index in btree block for this rec */
618 xfs_alloc_rec_t *rp; /* pointer to btree records */
620 ASSERT(be32_to_cpu(recp->ar_blockcount) > 0);
623 * GCC doesn't understand the (arguably complex) control flow in
624 * this function and complains about uninitialized structure fields
625 * without this.
627 memset(&nrec, 0, sizeof(nrec));
630 * If we made it to the root level, allocate a new root block
631 * and we're done.
633 if (level >= cur->bc_nlevels) {
634 XFS_STATS_INC(xs_abt_insrec);
635 if ((error = xfs_alloc_newroot(cur, &i)))
636 return error;
637 *bnop = NULLAGBLOCK;
638 *stat = i;
639 return 0;
642 * Make a key out of the record data to be inserted, and save it.
644 key.ar_startblock = recp->ar_startblock;
645 key.ar_blockcount = recp->ar_blockcount;
646 optr = ptr = cur->bc_ptrs[level];
648 * If we're off the left edge, return failure.
650 if (ptr == 0) {
651 *stat = 0;
652 return 0;
654 XFS_STATS_INC(xs_abt_insrec);
656 * Get pointers to the btree buffer and block.
658 bp = cur->bc_bufs[level];
659 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
660 numrecs = be16_to_cpu(block->bb_numrecs);
661 #ifdef DEBUG
662 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
663 return error;
665 * Check that the new entry is being inserted in the right place.
667 if (ptr <= numrecs) {
668 if (level == 0) {
669 rp = XFS_ALLOC_REC_ADDR(block, ptr, cur);
670 xfs_btree_check_rec(cur->bc_btnum, recp, rp);
671 } else {
672 kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur);
673 xfs_btree_check_key(cur->bc_btnum, &key, kp);
676 #endif
677 nbno = NULLAGBLOCK;
678 ncur = NULL;
680 * If the block is full, we can't insert the new entry until we
681 * make the block un-full.
683 if (numrecs == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
685 * First, try shifting an entry to the right neighbor.
687 if ((error = xfs_alloc_rshift(cur, level, &i)))
688 return error;
689 if (i) {
690 /* nothing */
693 * Next, try shifting an entry to the left neighbor.
695 else {
696 if ((error = xfs_alloc_lshift(cur, level, &i)))
697 return error;
698 if (i)
699 optr = ptr = cur->bc_ptrs[level];
700 else {
702 * Next, try splitting the current block in
703 * half. If this works we have to re-set our
704 * variables because we could be in a
705 * different block now.
707 if ((error = xfs_alloc_split(cur, level, &nbno,
708 &nkey, &ncur, &i)))
709 return error;
710 if (i) {
711 bp = cur->bc_bufs[level];
712 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
713 #ifdef DEBUG
714 if ((error =
715 xfs_btree_check_sblock(cur,
716 block, level, bp)))
717 return error;
718 #endif
719 ptr = cur->bc_ptrs[level];
720 nrec.ar_startblock = nkey.ar_startblock;
721 nrec.ar_blockcount = nkey.ar_blockcount;
724 * Otherwise the insert fails.
726 else {
727 *stat = 0;
728 return 0;
734 * At this point we know there's room for our new entry in the block
735 * we're pointing at.
737 numrecs = be16_to_cpu(block->bb_numrecs);
738 if (level > 0) {
740 * It's a non-leaf entry. Make a hole for the new data
741 * in the key and ptr regions of the block.
743 kp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
744 pp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
745 #ifdef DEBUG
746 for (i = numrecs; i >= ptr; i--) {
747 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(pp[i - 1]), level)))
748 return error;
750 #endif
751 memmove(&kp[ptr], &kp[ptr - 1],
752 (numrecs - ptr + 1) * sizeof(*kp));
753 memmove(&pp[ptr], &pp[ptr - 1],
754 (numrecs - ptr + 1) * sizeof(*pp));
755 #ifdef DEBUG
756 if ((error = xfs_btree_check_sptr(cur, *bnop, level)))
757 return error;
758 #endif
760 * Now stuff the new data in, bump numrecs and log the new data.
762 kp[ptr - 1] = key;
763 pp[ptr - 1] = cpu_to_be32(*bnop);
764 numrecs++;
765 block->bb_numrecs = cpu_to_be16(numrecs);
766 xfs_alloc_log_keys(cur, bp, ptr, numrecs);
767 xfs_alloc_log_ptrs(cur, bp, ptr, numrecs);
768 #ifdef DEBUG
769 if (ptr < numrecs)
770 xfs_btree_check_key(cur->bc_btnum, kp + ptr - 1,
771 kp + ptr);
772 #endif
773 } else {
775 * It's a leaf entry. Make a hole for the new record.
777 rp = XFS_ALLOC_REC_ADDR(block, 1, cur);
778 memmove(&rp[ptr], &rp[ptr - 1],
779 (numrecs - ptr + 1) * sizeof(*rp));
781 * Now stuff the new record in, bump numrecs
782 * and log the new data.
784 rp[ptr - 1] = *recp;
785 numrecs++;
786 block->bb_numrecs = cpu_to_be16(numrecs);
787 xfs_alloc_log_recs(cur, bp, ptr, numrecs);
788 #ifdef DEBUG
789 if (ptr < numrecs)
790 xfs_btree_check_rec(cur->bc_btnum, rp + ptr - 1,
791 rp + ptr);
792 #endif
795 * Log the new number of records in the btree header.
797 xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS);
799 * If we inserted at the start of a block, update the parents' keys.
801 if (optr == 1 && (error = xfs_alloc_updkey(cur, &key, level + 1)))
802 return error;
804 * Look to see if the longest extent in the allocation group
805 * needs to be updated.
808 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
809 if (level == 0 &&
810 cur->bc_btnum == XFS_BTNUM_CNT &&
811 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
812 be32_to_cpu(recp->ar_blockcount) > be32_to_cpu(agf->agf_longest)) {
814 * If this is a leaf in the by-size btree and there
815 * is no right sibling block and this block is bigger
816 * than the previous longest block, update it.
818 agf->agf_longest = recp->ar_blockcount;
819 cur->bc_mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest
820 = be32_to_cpu(recp->ar_blockcount);
821 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
822 XFS_AGF_LONGEST);
825 * Return the new block number, if any.
826 * If there is one, give back a record value and a cursor too.
828 *bnop = nbno;
829 if (nbno != NULLAGBLOCK) {
830 *recp = nrec;
831 *curp = ncur;
833 *stat = 1;
834 return 0;
838 * Log header fields from a btree block.
840 STATIC void
841 xfs_alloc_log_block(
842 xfs_trans_t *tp, /* transaction pointer */
843 xfs_buf_t *bp, /* buffer containing btree block */
844 int fields) /* mask of fields: XFS_BB_... */
846 int first; /* first byte offset logged */
847 int last; /* last byte offset logged */
848 static const short offsets[] = { /* table of offsets */
849 offsetof(xfs_alloc_block_t, bb_magic),
850 offsetof(xfs_alloc_block_t, bb_level),
851 offsetof(xfs_alloc_block_t, bb_numrecs),
852 offsetof(xfs_alloc_block_t, bb_leftsib),
853 offsetof(xfs_alloc_block_t, bb_rightsib),
854 sizeof(xfs_alloc_block_t)
857 xfs_btree_offsets(fields, offsets, XFS_BB_NUM_BITS, &first, &last);
858 xfs_trans_log_buf(tp, bp, first, last);
862 * Log keys from a btree block (nonleaf).
864 STATIC void
865 xfs_alloc_log_keys(
866 xfs_btree_cur_t *cur, /* btree cursor */
867 xfs_buf_t *bp, /* buffer containing btree block */
868 int kfirst, /* index of first key to log */
869 int klast) /* index of last key to log */
871 xfs_alloc_block_t *block; /* btree block to log from */
872 int first; /* first byte offset logged */
873 xfs_alloc_key_t *kp; /* key pointer in btree block */
874 int last; /* last byte offset logged */
876 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
877 kp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
878 first = (int)((xfs_caddr_t)&kp[kfirst - 1] - (xfs_caddr_t)block);
879 last = (int)(((xfs_caddr_t)&kp[klast] - 1) - (xfs_caddr_t)block);
880 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
884 * Log block pointer fields from a btree block (nonleaf).
886 STATIC void
887 xfs_alloc_log_ptrs(
888 xfs_btree_cur_t *cur, /* btree cursor */
889 xfs_buf_t *bp, /* buffer containing btree block */
890 int pfirst, /* index of first pointer to log */
891 int plast) /* index of last pointer to log */
893 xfs_alloc_block_t *block; /* btree block to log from */
894 int first; /* first byte offset logged */
895 int last; /* last byte offset logged */
896 xfs_alloc_ptr_t *pp; /* block-pointer pointer in btree blk */
898 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
899 pp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
900 first = (int)((xfs_caddr_t)&pp[pfirst - 1] - (xfs_caddr_t)block);
901 last = (int)(((xfs_caddr_t)&pp[plast] - 1) - (xfs_caddr_t)block);
902 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
906 * Log records from a btree block (leaf).
908 STATIC void
909 xfs_alloc_log_recs(
910 xfs_btree_cur_t *cur, /* btree cursor */
911 xfs_buf_t *bp, /* buffer containing btree block */
912 int rfirst, /* index of first record to log */
913 int rlast) /* index of last record to log */
915 xfs_alloc_block_t *block; /* btree block to log from */
916 int first; /* first byte offset logged */
917 int last; /* last byte offset logged */
918 xfs_alloc_rec_t *rp; /* record pointer for btree block */
921 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
922 rp = XFS_ALLOC_REC_ADDR(block, 1, cur);
923 #ifdef DEBUG
925 xfs_agf_t *agf;
926 xfs_alloc_rec_t *p;
928 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
929 for (p = &rp[rfirst - 1]; p <= &rp[rlast - 1]; p++)
930 ASSERT(be32_to_cpu(p->ar_startblock) +
931 be32_to_cpu(p->ar_blockcount) <=
932 be32_to_cpu(agf->agf_length));
934 #endif
935 first = (int)((xfs_caddr_t)&rp[rfirst - 1] - (xfs_caddr_t)block);
936 last = (int)(((xfs_caddr_t)&rp[rlast] - 1) - (xfs_caddr_t)block);
937 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
941 * Move 1 record left from cur/level if possible.
942 * Update cur to reflect the new path.
944 STATIC int /* error */
945 xfs_alloc_lshift(
946 xfs_btree_cur_t *cur, /* btree cursor */
947 int level, /* level to shift record on */
948 int *stat) /* success/failure */
950 int error; /* error return value */
951 #ifdef DEBUG
952 int i; /* loop index */
953 #endif
954 xfs_alloc_key_t key; /* key value for leaf level upward */
955 xfs_buf_t *lbp; /* buffer for left neighbor block */
956 xfs_alloc_block_t *left; /* left neighbor btree block */
957 int nrec; /* new number of left block entries */
958 xfs_buf_t *rbp; /* buffer for right (current) block */
959 xfs_alloc_block_t *right; /* right (current) btree block */
960 xfs_alloc_key_t *rkp=NULL; /* key pointer for right block */
961 xfs_alloc_ptr_t *rpp=NULL; /* address pointer for right block */
962 xfs_alloc_rec_t *rrp=NULL; /* record pointer for right block */
965 * Set up variables for this block as "right".
967 rbp = cur->bc_bufs[level];
968 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
969 #ifdef DEBUG
970 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
971 return error;
972 #endif
974 * If we've got no left sibling then we can't shift an entry left.
976 if (be32_to_cpu(right->bb_leftsib) == NULLAGBLOCK) {
977 *stat = 0;
978 return 0;
981 * If the cursor entry is the one that would be moved, don't
982 * do it... it's too complicated.
984 if (cur->bc_ptrs[level] <= 1) {
985 *stat = 0;
986 return 0;
989 * Set up the left neighbor as "left".
991 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
992 cur->bc_private.a.agno, be32_to_cpu(right->bb_leftsib),
993 0, &lbp, XFS_ALLOC_BTREE_REF)))
994 return error;
995 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
996 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
997 return error;
999 * If it's full, it can't take another entry.
1001 if (be16_to_cpu(left->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
1002 *stat = 0;
1003 return 0;
1005 nrec = be16_to_cpu(left->bb_numrecs) + 1;
1007 * If non-leaf, copy a key and a ptr to the left block.
1009 if (level > 0) {
1010 xfs_alloc_key_t *lkp; /* key pointer for left block */
1011 xfs_alloc_ptr_t *lpp; /* address pointer for left block */
1013 lkp = XFS_ALLOC_KEY_ADDR(left, nrec, cur);
1014 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1015 *lkp = *rkp;
1016 xfs_alloc_log_keys(cur, lbp, nrec, nrec);
1017 lpp = XFS_ALLOC_PTR_ADDR(left, nrec, cur);
1018 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1019 #ifdef DEBUG
1020 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*rpp), level)))
1021 return error;
1022 #endif
1023 *lpp = *rpp;
1024 xfs_alloc_log_ptrs(cur, lbp, nrec, nrec);
1025 xfs_btree_check_key(cur->bc_btnum, lkp - 1, lkp);
1028 * If leaf, copy a record to the left block.
1030 else {
1031 xfs_alloc_rec_t *lrp; /* record pointer for left block */
1033 lrp = XFS_ALLOC_REC_ADDR(left, nrec, cur);
1034 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1035 *lrp = *rrp;
1036 xfs_alloc_log_recs(cur, lbp, nrec, nrec);
1037 xfs_btree_check_rec(cur->bc_btnum, lrp - 1, lrp);
1040 * Bump and log left's numrecs, decrement and log right's numrecs.
1042 be16_add_cpu(&left->bb_numrecs, 1);
1043 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS);
1044 be16_add_cpu(&right->bb_numrecs, -1);
1045 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS);
1047 * Slide the contents of right down one entry.
1049 if (level > 0) {
1050 #ifdef DEBUG
1051 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
1052 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i + 1]),
1053 level)))
1054 return error;
1056 #endif
1057 memmove(rkp, rkp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1058 memmove(rpp, rpp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1059 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1060 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1061 } else {
1062 memmove(rrp, rrp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1063 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1064 key.ar_startblock = rrp->ar_startblock;
1065 key.ar_blockcount = rrp->ar_blockcount;
1066 rkp = &key;
1069 * Update the parent key values of right.
1071 if ((error = xfs_alloc_updkey(cur, rkp, level + 1)))
1072 return error;
1074 * Slide the cursor value left one.
1076 cur->bc_ptrs[level]--;
1077 *stat = 1;
1078 return 0;
1082 * Allocate a new root block, fill it in.
1084 STATIC int /* error */
1085 xfs_alloc_newroot(
1086 xfs_btree_cur_t *cur, /* btree cursor */
1087 int *stat) /* success/failure */
1089 int error; /* error return value */
1090 xfs_agblock_t lbno; /* left block number */
1091 xfs_buf_t *lbp; /* left btree buffer */
1092 xfs_alloc_block_t *left; /* left btree block */
1093 xfs_mount_t *mp; /* mount structure */
1094 xfs_agblock_t nbno; /* new block number */
1095 xfs_buf_t *nbp; /* new (root) buffer */
1096 xfs_alloc_block_t *new; /* new (root) btree block */
1097 int nptr; /* new value for key index, 1 or 2 */
1098 xfs_agblock_t rbno; /* right block number */
1099 xfs_buf_t *rbp; /* right btree buffer */
1100 xfs_alloc_block_t *right; /* right btree block */
1102 mp = cur->bc_mp;
1104 ASSERT(cur->bc_nlevels < XFS_AG_MAXLEVELS(mp));
1106 * Get a buffer from the freelist blocks, for the new root.
1108 error = xfs_alloc_get_freelist(cur->bc_tp,
1109 cur->bc_private.a.agbp, &nbno, 1);
1110 if (error)
1111 return error;
1113 * None available, we fail.
1115 if (nbno == NULLAGBLOCK) {
1116 *stat = 0;
1117 return 0;
1119 xfs_trans_agbtree_delta(cur->bc_tp, 1);
1120 nbp = xfs_btree_get_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, nbno,
1122 new = XFS_BUF_TO_ALLOC_BLOCK(nbp);
1124 * Set the root data in the a.g. freespace structure.
1127 xfs_agf_t *agf; /* a.g. freespace header */
1128 xfs_agnumber_t seqno;
1130 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
1131 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(nbno);
1132 be32_add_cpu(&agf->agf_levels[cur->bc_btnum], 1);
1133 seqno = be32_to_cpu(agf->agf_seqno);
1134 mp->m_perag[seqno].pagf_levels[cur->bc_btnum]++;
1135 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
1136 XFS_AGF_ROOTS | XFS_AGF_LEVELS);
1139 * At the previous root level there are now two blocks: the old
1140 * root, and the new block generated when it was split.
1141 * We don't know which one the cursor is pointing at, so we
1142 * set up variables "left" and "right" for each case.
1144 lbp = cur->bc_bufs[cur->bc_nlevels - 1];
1145 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1146 #ifdef DEBUG
1147 if ((error = xfs_btree_check_sblock(cur, left, cur->bc_nlevels - 1, lbp)))
1148 return error;
1149 #endif
1150 if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) {
1152 * Our block is left, pick up the right block.
1154 lbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(lbp));
1155 rbno = be32_to_cpu(left->bb_rightsib);
1156 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
1157 cur->bc_private.a.agno, rbno, 0, &rbp,
1158 XFS_ALLOC_BTREE_REF)))
1159 return error;
1160 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1161 if ((error = xfs_btree_check_sblock(cur, right,
1162 cur->bc_nlevels - 1, rbp)))
1163 return error;
1164 nptr = 1;
1165 } else {
1167 * Our block is right, pick up the left block.
1169 rbp = lbp;
1170 right = left;
1171 rbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(rbp));
1172 lbno = be32_to_cpu(right->bb_leftsib);
1173 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
1174 cur->bc_private.a.agno, lbno, 0, &lbp,
1175 XFS_ALLOC_BTREE_REF)))
1176 return error;
1177 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1178 if ((error = xfs_btree_check_sblock(cur, left,
1179 cur->bc_nlevels - 1, lbp)))
1180 return error;
1181 nptr = 2;
1184 * Fill in the new block's btree header and log it.
1186 new->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]);
1187 new->bb_level = cpu_to_be16(cur->bc_nlevels);
1188 new->bb_numrecs = cpu_to_be16(2);
1189 new->bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190 new->bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191 xfs_alloc_log_block(cur->bc_tp, nbp, XFS_BB_ALL_BITS);
1192 ASSERT(lbno != NULLAGBLOCK && rbno != NULLAGBLOCK);
1194 * Fill in the key data in the new root.
1197 xfs_alloc_key_t *kp; /* btree key pointer */
1199 kp = XFS_ALLOC_KEY_ADDR(new, 1, cur);
1200 if (be16_to_cpu(left->bb_level) > 0) {
1201 kp[0] = *XFS_ALLOC_KEY_ADDR(left, 1, cur);
1202 kp[1] = *XFS_ALLOC_KEY_ADDR(right, 1, cur);
1203 } else {
1204 xfs_alloc_rec_t *rp; /* btree record pointer */
1206 rp = XFS_ALLOC_REC_ADDR(left, 1, cur);
1207 kp[0].ar_startblock = rp->ar_startblock;
1208 kp[0].ar_blockcount = rp->ar_blockcount;
1209 rp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1210 kp[1].ar_startblock = rp->ar_startblock;
1211 kp[1].ar_blockcount = rp->ar_blockcount;
1214 xfs_alloc_log_keys(cur, nbp, 1, 2);
1216 * Fill in the pointer data in the new root.
1219 xfs_alloc_ptr_t *pp; /* btree address pointer */
1221 pp = XFS_ALLOC_PTR_ADDR(new, 1, cur);
1222 pp[0] = cpu_to_be32(lbno);
1223 pp[1] = cpu_to_be32(rbno);
1225 xfs_alloc_log_ptrs(cur, nbp, 1, 2);
1227 * Fix up the cursor.
1229 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
1230 cur->bc_ptrs[cur->bc_nlevels] = nptr;
1231 cur->bc_nlevels++;
1232 *stat = 1;
1233 return 0;
1237 * Move 1 record right from cur/level if possible.
1238 * Update cur to reflect the new path.
1240 STATIC int /* error */
1241 xfs_alloc_rshift(
1242 xfs_btree_cur_t *cur, /* btree cursor */
1243 int level, /* level to shift record on */
1244 int *stat) /* success/failure */
1246 int error; /* error return value */
1247 int i; /* loop index */
1248 xfs_alloc_key_t key; /* key value for leaf level upward */
1249 xfs_buf_t *lbp; /* buffer for left (current) block */
1250 xfs_alloc_block_t *left; /* left (current) btree block */
1251 xfs_buf_t *rbp; /* buffer for right neighbor block */
1252 xfs_alloc_block_t *right; /* right neighbor btree block */
1253 xfs_alloc_key_t *rkp; /* key pointer for right block */
1254 xfs_btree_cur_t *tcur; /* temporary cursor */
1257 * Set up variables for this block as "left".
1259 lbp = cur->bc_bufs[level];
1260 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1261 #ifdef DEBUG
1262 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1263 return error;
1264 #endif
1266 * If we've got no right sibling then we can't shift an entry right.
1268 if (be32_to_cpu(left->bb_rightsib) == NULLAGBLOCK) {
1269 *stat = 0;
1270 return 0;
1273 * If the cursor entry is the one that would be moved, don't
1274 * do it... it's too complicated.
1276 if (cur->bc_ptrs[level] >= be16_to_cpu(left->bb_numrecs)) {
1277 *stat = 0;
1278 return 0;
1281 * Set up the right neighbor as "right".
1283 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1284 cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib),
1285 0, &rbp, XFS_ALLOC_BTREE_REF)))
1286 return error;
1287 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1288 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
1289 return error;
1291 * If it's full, it can't take another entry.
1293 if (be16_to_cpu(right->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
1294 *stat = 0;
1295 return 0;
1298 * Make a hole at the start of the right neighbor block, then
1299 * copy the last left block entry to the hole.
1301 if (level > 0) {
1302 xfs_alloc_key_t *lkp; /* key pointer for left block */
1303 xfs_alloc_ptr_t *lpp; /* address pointer for left block */
1304 xfs_alloc_ptr_t *rpp; /* address pointer for right block */
1306 lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1307 lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1308 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1309 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1310 #ifdef DEBUG
1311 for (i = be16_to_cpu(right->bb_numrecs) - 1; i >= 0; i--) {
1312 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level)))
1313 return error;
1315 #endif
1316 memmove(rkp + 1, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1317 memmove(rpp + 1, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1318 #ifdef DEBUG
1319 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*lpp), level)))
1320 return error;
1321 #endif
1322 *rkp = *lkp;
1323 *rpp = *lpp;
1324 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1325 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1326 xfs_btree_check_key(cur->bc_btnum, rkp, rkp + 1);
1327 } else {
1328 xfs_alloc_rec_t *lrp; /* record pointer for left block */
1329 xfs_alloc_rec_t *rrp; /* record pointer for right block */
1331 lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1332 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1333 memmove(rrp + 1, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1334 *rrp = *lrp;
1335 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1336 key.ar_startblock = rrp->ar_startblock;
1337 key.ar_blockcount = rrp->ar_blockcount;
1338 rkp = &key;
1339 xfs_btree_check_rec(cur->bc_btnum, rrp, rrp + 1);
1342 * Decrement and log left's numrecs, bump and log right's numrecs.
1344 be16_add_cpu(&left->bb_numrecs, -1);
1345 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS);
1346 be16_add_cpu(&right->bb_numrecs, 1);
1347 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS);
1349 * Using a temporary cursor, update the parent key values of the
1350 * block on the right.
1352 if ((error = xfs_btree_dup_cursor(cur, &tcur)))
1353 return error;
1354 i = xfs_btree_lastrec(tcur, level);
1355 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1356 if ((error = xfs_btree_increment(tcur, level, &i)) ||
1357 (error = xfs_alloc_updkey(tcur, rkp, level + 1)))
1358 goto error0;
1359 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1360 *stat = 1;
1361 return 0;
1362 error0:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364 return error;
1368 * Split cur/level block in half.
1369 * Return new block number and its first record (to be inserted into parent).
1371 STATIC int /* error */
1372 xfs_alloc_split(
1373 xfs_btree_cur_t *cur, /* btree cursor */
1374 int level, /* level to split */
1375 xfs_agblock_t *bnop, /* output: block number allocated */
1376 xfs_alloc_key_t *keyp, /* output: first key of new block */
1377 xfs_btree_cur_t **curp, /* output: new cursor */
1378 int *stat) /* success/failure */
1380 int error; /* error return value */
1381 int i; /* loop index/record number */
1382 xfs_agblock_t lbno; /* left (current) block number */
1383 xfs_buf_t *lbp; /* buffer for left block */
1384 xfs_alloc_block_t *left; /* left (current) btree block */
1385 xfs_agblock_t rbno; /* right (new) block number */
1386 xfs_buf_t *rbp; /* buffer for right block */
1387 xfs_alloc_block_t *right; /* right (new) btree block */
1390 * Allocate the new block from the freelist.
1391 * If we can't do it, we're toast. Give up.
1393 error = xfs_alloc_get_freelist(cur->bc_tp,
1394 cur->bc_private.a.agbp, &rbno, 1);
1395 if (error)
1396 return error;
1397 if (rbno == NULLAGBLOCK) {
1398 *stat = 0;
1399 return 0;
1401 xfs_trans_agbtree_delta(cur->bc_tp, 1);
1402 rbp = xfs_btree_get_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno,
1403 rbno, 0);
1405 * Set up the new block as "right".
1407 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1409 * "Left" is the current (according to the cursor) block.
1411 lbp = cur->bc_bufs[level];
1412 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1413 #ifdef DEBUG
1414 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1415 return error;
1416 #endif
1418 * Fill in the btree header for the new block.
1420 right->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]);
1421 right->bb_level = left->bb_level;
1422 right->bb_numrecs = cpu_to_be16(be16_to_cpu(left->bb_numrecs) / 2);
1424 * Make sure that if there's an odd number of entries now, that
1425 * each new block will have the same number of entries.
1427 if ((be16_to_cpu(left->bb_numrecs) & 1) &&
1428 cur->bc_ptrs[level] <= be16_to_cpu(right->bb_numrecs) + 1)
1429 be16_add_cpu(&right->bb_numrecs, 1);
1430 i = be16_to_cpu(left->bb_numrecs) - be16_to_cpu(right->bb_numrecs) + 1;
1432 * For non-leaf blocks, copy keys and addresses over to the new block.
1434 if (level > 0) {
1435 xfs_alloc_key_t *lkp; /* left btree key pointer */
1436 xfs_alloc_ptr_t *lpp; /* left btree address pointer */
1437 xfs_alloc_key_t *rkp; /* right btree key pointer */
1438 xfs_alloc_ptr_t *rpp; /* right btree address pointer */
1440 lkp = XFS_ALLOC_KEY_ADDR(left, i, cur);
1441 lpp = XFS_ALLOC_PTR_ADDR(left, i, cur);
1442 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1443 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1444 #ifdef DEBUG
1445 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
1446 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level)))
1447 return error;
1449 #endif
1450 memcpy(rkp, lkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1451 memcpy(rpp, lpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1452 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1453 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1454 *keyp = *rkp;
1457 * For leaf blocks, copy records over to the new block.
1459 else {
1460 xfs_alloc_rec_t *lrp; /* left btree record pointer */
1461 xfs_alloc_rec_t *rrp; /* right btree record pointer */
1463 lrp = XFS_ALLOC_REC_ADDR(left, i, cur);
1464 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1465 memcpy(rrp, lrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1466 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1467 keyp->ar_startblock = rrp->ar_startblock;
1468 keyp->ar_blockcount = rrp->ar_blockcount;
1471 * Find the left block number by looking in the buffer.
1472 * Adjust numrecs, sibling pointers.
1474 lbno = XFS_DADDR_TO_AGBNO(cur->bc_mp, XFS_BUF_ADDR(lbp));
1475 be16_add_cpu(&left->bb_numrecs, -(be16_to_cpu(right->bb_numrecs)));
1476 right->bb_rightsib = left->bb_rightsib;
1477 left->bb_rightsib = cpu_to_be32(rbno);
1478 right->bb_leftsib = cpu_to_be32(lbno);
1479 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_ALL_BITS);
1480 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
1482 * If there's a block to the new block's right, make that block
1483 * point back to right instead of to left.
1485 if (be32_to_cpu(right->bb_rightsib) != NULLAGBLOCK) {
1486 xfs_alloc_block_t *rrblock; /* rr btree block */
1487 xfs_buf_t *rrbp; /* buffer for rrblock */
1489 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1490 cur->bc_private.a.agno, be32_to_cpu(right->bb_rightsib), 0,
1491 &rrbp, XFS_ALLOC_BTREE_REF)))
1492 return error;
1493 rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp);
1494 if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp)))
1495 return error;
1496 rrblock->bb_leftsib = cpu_to_be32(rbno);
1497 xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB);
1500 * If the cursor is really in the right block, move it there.
1501 * If it's just pointing past the last entry in left, then we'll
1502 * insert there, so don't change anything in that case.
1504 if (cur->bc_ptrs[level] > be16_to_cpu(left->bb_numrecs) + 1) {
1505 xfs_btree_setbuf(cur, level, rbp);
1506 cur->bc_ptrs[level] -= be16_to_cpu(left->bb_numrecs);
1509 * If there are more levels, we'll need another cursor which refers to
1510 * the right block, no matter where this cursor was.
1512 if (level + 1 < cur->bc_nlevels) {
1513 if ((error = xfs_btree_dup_cursor(cur, curp)))
1514 return error;
1515 (*curp)->bc_ptrs[level + 1]++;
1517 *bnop = rbno;
1518 *stat = 1;
1519 return 0;
1523 * Update keys at all levels from here to the root along the cursor's path.
1525 STATIC int /* error */
1526 xfs_alloc_updkey(
1527 xfs_btree_cur_t *cur, /* btree cursor */
1528 xfs_alloc_key_t *keyp, /* new key value to update to */
1529 int level) /* starting level for update */
1531 int ptr; /* index of key in block */
1534 * Go up the tree from this level toward the root.
1535 * At each level, update the key value to the value input.
1536 * Stop when we reach a level where the cursor isn't pointing
1537 * at the first entry in the block.
1539 for (ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
1540 xfs_alloc_block_t *block; /* btree block */
1541 xfs_buf_t *bp; /* buffer for block */
1542 #ifdef DEBUG
1543 int error; /* error return value */
1544 #endif
1545 xfs_alloc_key_t *kp; /* ptr to btree block keys */
1547 bp = cur->bc_bufs[level];
1548 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1549 #ifdef DEBUG
1550 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
1551 return error;
1552 #endif
1553 ptr = cur->bc_ptrs[level];
1554 kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur);
1555 *kp = *keyp;
1556 xfs_alloc_log_keys(cur, bp, ptr, ptr);
1558 return 0;
1562 * Externally visible routines.
1566 * Delete the record pointed to by cur.
1567 * The cursor refers to the place where the record was (could be inserted)
1568 * when the operation returns.
1570 int /* error */
1571 xfs_alloc_delete(
1572 xfs_btree_cur_t *cur, /* btree cursor */
1573 int *stat) /* success/failure */
1575 int error; /* error return value */
1576 int i; /* result code */
1577 int level; /* btree level */
1580 * Go up the tree, starting at leaf level.
1581 * If 2 is returned then a join was done; go to the next level.
1582 * Otherwise we are done.
1584 for (level = 0, i = 2; i == 2; level++) {
1585 if ((error = xfs_alloc_delrec(cur, level, &i)))
1586 return error;
1588 if (i == 0) {
1589 for (level = 1; level < cur->bc_nlevels; level++) {
1590 if (cur->bc_ptrs[level] == 0) {
1591 if ((error = xfs_btree_decrement(cur, level, &i)))
1592 return error;
1593 break;
1597 *stat = i;
1598 return 0;
1602 * Get the data from the pointed-to record.
1604 int /* error */
1605 xfs_alloc_get_rec(
1606 xfs_btree_cur_t *cur, /* btree cursor */
1607 xfs_agblock_t *bno, /* output: starting block of extent */
1608 xfs_extlen_t *len, /* output: length of extent */
1609 int *stat) /* output: success/failure */
1611 xfs_alloc_block_t *block; /* btree block */
1612 #ifdef DEBUG
1613 int error; /* error return value */
1614 #endif
1615 int ptr; /* record number */
1617 ptr = cur->bc_ptrs[0];
1618 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]);
1619 #ifdef DEBUG
1620 if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0])))
1621 return error;
1622 #endif
1624 * Off the right end or left end, return failure.
1626 if (ptr > be16_to_cpu(block->bb_numrecs) || ptr <= 0) {
1627 *stat = 0;
1628 return 0;
1631 * Point to the record and extract its data.
1634 xfs_alloc_rec_t *rec; /* record data */
1636 rec = XFS_ALLOC_REC_ADDR(block, ptr, cur);
1637 *bno = be32_to_cpu(rec->ar_startblock);
1638 *len = be32_to_cpu(rec->ar_blockcount);
1640 *stat = 1;
1641 return 0;
1645 * Insert the current record at the point referenced by cur.
1646 * The cursor may be inconsistent on return if splits have been done.
1648 int /* error */
1649 xfs_alloc_insert(
1650 xfs_btree_cur_t *cur, /* btree cursor */
1651 int *stat) /* success/failure */
1653 int error; /* error return value */
1654 int i; /* result value, 0 for failure */
1655 int level; /* current level number in btree */
1656 xfs_agblock_t nbno; /* new block number (split result) */
1657 xfs_btree_cur_t *ncur; /* new cursor (split result) */
1658 xfs_alloc_rec_t nrec; /* record being inserted this level */
1659 xfs_btree_cur_t *pcur; /* previous level's cursor */
1661 level = 0;
1662 nbno = NULLAGBLOCK;
1663 nrec.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
1664 nrec.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
1665 ncur = NULL;
1666 pcur = cur;
1668 * Loop going up the tree, starting at the leaf level.
1669 * Stop when we don't get a split block, that must mean that
1670 * the insert is finished with this level.
1672 do {
1674 * Insert nrec/nbno into this level of the tree.
1675 * Note if we fail, nbno will be null.
1677 if ((error = xfs_alloc_insrec(pcur, level++, &nbno, &nrec, &ncur,
1678 &i))) {
1679 if (pcur != cur)
1680 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
1681 return error;
1684 * See if the cursor we just used is trash.
1685 * Can't trash the caller's cursor, but otherwise we should
1686 * if ncur is a new cursor or we're about to be done.
1688 if (pcur != cur && (ncur || nbno == NULLAGBLOCK)) {
1689 cur->bc_nlevels = pcur->bc_nlevels;
1690 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
1693 * If we got a new cursor, switch to it.
1695 if (ncur) {
1696 pcur = ncur;
1697 ncur = NULL;
1699 } while (nbno != NULLAGBLOCK);
1700 *stat = i;
1701 return 0;
1705 * Update the record referred to by cur, to the value given by [bno, len].
1706 * This either works (return 0) or gets an EFSCORRUPTED error.
1708 int /* error */
1709 xfs_alloc_update(
1710 xfs_btree_cur_t *cur, /* btree cursor */
1711 xfs_agblock_t bno, /* starting block of extent */
1712 xfs_extlen_t len) /* length of extent */
1714 xfs_alloc_block_t *block; /* btree block to update */
1715 int error; /* error return value */
1716 int ptr; /* current record number (updating) */
1718 ASSERT(len > 0);
1720 * Pick up the a.g. freelist struct and the current block.
1722 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]);
1723 #ifdef DEBUG
1724 if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0])))
1725 return error;
1726 #endif
1728 * Get the address of the rec to be updated.
1730 ptr = cur->bc_ptrs[0];
1732 xfs_alloc_rec_t *rp; /* pointer to updated record */
1734 rp = XFS_ALLOC_REC_ADDR(block, ptr, cur);
1736 * Fill in the new contents and log them.
1738 rp->ar_startblock = cpu_to_be32(bno);
1739 rp->ar_blockcount = cpu_to_be32(len);
1740 xfs_alloc_log_recs(cur, cur->bc_bufs[0], ptr, ptr);
1743 * If it's the by-size btree and it's the last leaf block and
1744 * it's the last record... then update the size of the longest
1745 * extent in the a.g., which we cache in the a.g. freelist header.
1747 if (cur->bc_btnum == XFS_BTNUM_CNT &&
1748 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
1749 ptr == be16_to_cpu(block->bb_numrecs)) {
1750 xfs_agf_t *agf; /* a.g. freespace header */
1751 xfs_agnumber_t seqno;
1753 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
1754 seqno = be32_to_cpu(agf->agf_seqno);
1755 cur->bc_mp->m_perag[seqno].pagf_longest = len;
1756 agf->agf_longest = cpu_to_be32(len);
1757 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
1758 XFS_AGF_LONGEST);
1761 * Updating first record in leaf. Pass new key value up to our parent.
1763 if (ptr == 1) {
1764 xfs_alloc_key_t key; /* key containing [bno, len] */
1766 key.ar_startblock = cpu_to_be32(bno);
1767 key.ar_blockcount = cpu_to_be32(len);
1768 if ((error = xfs_alloc_updkey(cur, &key, 1)))
1769 return error;
1771 return 0;
1774 STATIC struct xfs_btree_cur *
1775 xfs_allocbt_dup_cursor(
1776 struct xfs_btree_cur *cur)
1778 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
1779 cur->bc_private.a.agbp, cur->bc_private.a.agno,
1780 cur->bc_btnum);
1783 STATIC int
1784 xfs_allocbt_get_maxrecs(
1785 struct xfs_btree_cur *cur,
1786 int level)
1788 return cur->bc_mp->m_alloc_mxr[level != 0];
1791 STATIC void
1792 xfs_allocbt_init_key_from_rec(
1793 union xfs_btree_key *key,
1794 union xfs_btree_rec *rec)
1796 ASSERT(rec->alloc.ar_startblock != 0);
1798 key->alloc.ar_startblock = rec->alloc.ar_startblock;
1799 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
1802 STATIC void
1803 xfs_allocbt_init_ptr_from_cur(
1804 struct xfs_btree_cur *cur,
1805 union xfs_btree_ptr *ptr)
1807 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
1809 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
1810 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
1812 ptr->s = agf->agf_roots[cur->bc_btnum];
1815 STATIC __int64_t
1816 xfs_allocbt_key_diff(
1817 struct xfs_btree_cur *cur,
1818 union xfs_btree_key *key)
1820 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
1821 xfs_alloc_key_t *kp = &key->alloc;
1822 __int64_t diff;
1824 if (cur->bc_btnum == XFS_BTNUM_BNO) {
1825 return (__int64_t)be32_to_cpu(kp->ar_startblock) -
1826 rec->ar_startblock;
1829 diff = (__int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
1830 if (diff)
1831 return diff;
1833 return (__int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
1836 #ifdef XFS_BTREE_TRACE
1837 ktrace_t *xfs_allocbt_trace_buf;
1839 STATIC void
1840 xfs_allocbt_trace_enter(
1841 struct xfs_btree_cur *cur,
1842 const char *func,
1843 char *s,
1844 int type,
1845 int line,
1846 __psunsigned_t a0,
1847 __psunsigned_t a1,
1848 __psunsigned_t a2,
1849 __psunsigned_t a3,
1850 __psunsigned_t a4,
1851 __psunsigned_t a5,
1852 __psunsigned_t a6,
1853 __psunsigned_t a7,
1854 __psunsigned_t a8,
1855 __psunsigned_t a9,
1856 __psunsigned_t a10)
1858 ktrace_enter(xfs_allocbt_trace_buf, (void *)(__psint_t)type,
1859 (void *)func, (void *)s, NULL, (void *)cur,
1860 (void *)a0, (void *)a1, (void *)a2, (void *)a3,
1861 (void *)a4, (void *)a5, (void *)a6, (void *)a7,
1862 (void *)a8, (void *)a9, (void *)a10);
1865 STATIC void
1866 xfs_allocbt_trace_cursor(
1867 struct xfs_btree_cur *cur,
1868 __uint32_t *s0,
1869 __uint64_t *l0,
1870 __uint64_t *l1)
1872 *s0 = cur->bc_private.a.agno;
1873 *l0 = cur->bc_rec.a.ar_startblock;
1874 *l1 = cur->bc_rec.a.ar_blockcount;
1877 STATIC void
1878 xfs_allocbt_trace_key(
1879 struct xfs_btree_cur *cur,
1880 union xfs_btree_key *key,
1881 __uint64_t *l0,
1882 __uint64_t *l1)
1884 *l0 = be32_to_cpu(key->alloc.ar_startblock);
1885 *l1 = be32_to_cpu(key->alloc.ar_blockcount);
1888 STATIC void
1889 xfs_allocbt_trace_record(
1890 struct xfs_btree_cur *cur,
1891 union xfs_btree_rec *rec,
1892 __uint64_t *l0,
1893 __uint64_t *l1,
1894 __uint64_t *l2)
1896 *l0 = be32_to_cpu(rec->alloc.ar_startblock);
1897 *l1 = be32_to_cpu(rec->alloc.ar_blockcount);
1898 *l2 = 0;
1900 #endif /* XFS_BTREE_TRACE */
1902 static const struct xfs_btree_ops xfs_allocbt_ops = {
1903 .rec_len = sizeof(xfs_alloc_rec_t),
1904 .key_len = sizeof(xfs_alloc_key_t),
1906 .dup_cursor = xfs_allocbt_dup_cursor,
1907 .get_maxrecs = xfs_allocbt_get_maxrecs,
1908 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
1909 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
1910 .key_diff = xfs_allocbt_key_diff,
1912 #ifdef XFS_BTREE_TRACE
1913 .trace_enter = xfs_allocbt_trace_enter,
1914 .trace_cursor = xfs_allocbt_trace_cursor,
1915 .trace_key = xfs_allocbt_trace_key,
1916 .trace_record = xfs_allocbt_trace_record,
1917 #endif
1921 * Allocate a new allocation btree cursor.
1923 struct xfs_btree_cur * /* new alloc btree cursor */
1924 xfs_allocbt_init_cursor(
1925 struct xfs_mount *mp, /* file system mount point */
1926 struct xfs_trans *tp, /* transaction pointer */
1927 struct xfs_buf *agbp, /* buffer for agf structure */
1928 xfs_agnumber_t agno, /* allocation group number */
1929 xfs_btnum_t btnum) /* btree identifier */
1931 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
1932 struct xfs_btree_cur *cur;
1934 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
1936 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
1938 cur->bc_tp = tp;
1939 cur->bc_mp = mp;
1940 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[btnum]);
1941 cur->bc_btnum = btnum;
1942 cur->bc_blocklog = mp->m_sb.sb_blocklog;
1944 cur->bc_ops = &xfs_allocbt_ops;
1946 cur->bc_private.a.agbp = agbp;
1947 cur->bc_private.a.agno = agno;
1949 return cur;