2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex
;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cs_cpu_dbs_info
);
76 static unsigned int dbs_enable
; /* number of CPUs using this policy */
79 * dbs_mutex protects dbs_enable in governor start/stop.
81 static DEFINE_MUTEX(dbs_mutex
);
83 static struct dbs_tuners
{
84 unsigned int sampling_rate
;
85 unsigned int sampling_down_factor
;
86 unsigned int up_threshold
;
87 unsigned int down_threshold
;
88 unsigned int ignore_nice
;
89 unsigned int freq_step
;
91 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
92 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
93 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
98 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
101 cputime64_t idle_time
;
102 cputime64_t cur_wall_time
;
103 cputime64_t busy_time
;
105 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
106 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
107 kstat_cpu(cpu
).cpustat
.system
);
109 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
110 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
111 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
112 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
114 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
116 *wall
= (cputime64_t
)jiffies_to_usecs(cur_wall_time
);
118 return (cputime64_t
)jiffies_to_usecs(idle_time
);
121 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
123 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
125 if (idle_time
== -1ULL)
126 return get_cpu_idle_time_jiffy(cpu
, wall
);
131 /* keep track of frequency transitions */
133 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
136 struct cpufreq_freqs
*freq
= data
;
137 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cs_cpu_dbs_info
,
140 struct cpufreq_policy
*policy
;
142 if (!this_dbs_info
->enable
)
145 policy
= this_dbs_info
->cur_policy
;
148 * we only care if our internally tracked freq moves outside
149 * the 'valid' ranges of freqency available to us otherwise
150 * we do not change it
152 if (this_dbs_info
->requested_freq
> policy
->max
153 || this_dbs_info
->requested_freq
< policy
->min
)
154 this_dbs_info
->requested_freq
= freq
->new;
159 static struct notifier_block dbs_cpufreq_notifier_block
= {
160 .notifier_call
= dbs_cpufreq_notifier
163 /************************** sysfs interface ************************/
164 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
165 struct attribute
*attr
, char *buf
)
167 return sprintf(buf
, "%u\n", min_sampling_rate
);
170 define_one_global_ro(sampling_rate_min
);
172 /* cpufreq_conservative Governor Tunables */
173 #define show_one(file_name, object) \
174 static ssize_t show_##file_name \
175 (struct kobject *kobj, struct attribute *attr, char *buf) \
177 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
179 show_one(sampling_rate
, sampling_rate
);
180 show_one(sampling_down_factor
, sampling_down_factor
);
181 show_one(up_threshold
, up_threshold
);
182 show_one(down_threshold
, down_threshold
);
183 show_one(ignore_nice_load
, ignore_nice
);
184 show_one(freq_step
, freq_step
);
186 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
188 const char *buf
, size_t count
)
192 ret
= sscanf(buf
, "%u", &input
);
194 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
197 dbs_tuners_ins
.sampling_down_factor
= input
;
201 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
202 const char *buf
, size_t count
)
206 ret
= sscanf(buf
, "%u", &input
);
211 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
215 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
216 const char *buf
, size_t count
)
220 ret
= sscanf(buf
, "%u", &input
);
222 if (ret
!= 1 || input
> 100 ||
223 input
<= dbs_tuners_ins
.down_threshold
)
226 dbs_tuners_ins
.up_threshold
= input
;
230 static ssize_t
store_down_threshold(struct kobject
*a
, struct attribute
*b
,
231 const char *buf
, size_t count
)
235 ret
= sscanf(buf
, "%u", &input
);
237 /* cannot be lower than 11 otherwise freq will not fall */
238 if (ret
!= 1 || input
< 11 || input
> 100 ||
239 input
>= dbs_tuners_ins
.up_threshold
)
242 dbs_tuners_ins
.down_threshold
= input
;
246 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
247 const char *buf
, size_t count
)
254 ret
= sscanf(buf
, "%u", &input
);
261 if (input
== dbs_tuners_ins
.ignore_nice
) /* nothing to do */
264 dbs_tuners_ins
.ignore_nice
= input
;
266 /* we need to re-evaluate prev_cpu_idle */
267 for_each_online_cpu(j
) {
268 struct cpu_dbs_info_s
*dbs_info
;
269 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
270 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
271 &dbs_info
->prev_cpu_wall
);
272 if (dbs_tuners_ins
.ignore_nice
)
273 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
278 static ssize_t
store_freq_step(struct kobject
*a
, struct attribute
*b
,
279 const char *buf
, size_t count
)
283 ret
= sscanf(buf
, "%u", &input
);
291 /* no need to test here if freq_step is zero as the user might actually
292 * want this, they would be crazy though :) */
293 dbs_tuners_ins
.freq_step
= input
;
297 define_one_global_rw(sampling_rate
);
298 define_one_global_rw(sampling_down_factor
);
299 define_one_global_rw(up_threshold
);
300 define_one_global_rw(down_threshold
);
301 define_one_global_rw(ignore_nice_load
);
302 define_one_global_rw(freq_step
);
304 static struct attribute
*dbs_attributes
[] = {
305 &sampling_rate_min
.attr
,
307 &sampling_down_factor
.attr
,
309 &down_threshold
.attr
,
310 &ignore_nice_load
.attr
,
315 static struct attribute_group dbs_attr_group
= {
316 .attrs
= dbs_attributes
,
317 .name
= "conservative",
320 /************************** sysfs end ************************/
322 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
324 unsigned int load
= 0;
325 unsigned int max_load
= 0;
326 unsigned int freq_target
;
328 struct cpufreq_policy
*policy
;
331 policy
= this_dbs_info
->cur_policy
;
334 * Every sampling_rate, we check, if current idle time is less
335 * than 20% (default), then we try to increase frequency
336 * Every sampling_rate*sampling_down_factor, we check, if current
337 * idle time is more than 80%, then we try to decrease frequency
339 * Any frequency increase takes it to the maximum frequency.
340 * Frequency reduction happens at minimum steps of
341 * 5% (default) of maximum frequency
344 /* Get Absolute Load */
345 for_each_cpu(j
, policy
->cpus
) {
346 struct cpu_dbs_info_s
*j_dbs_info
;
347 cputime64_t cur_wall_time
, cur_idle_time
;
348 unsigned int idle_time
, wall_time
;
350 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
352 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
354 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
355 j_dbs_info
->prev_cpu_wall
);
356 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
358 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
359 j_dbs_info
->prev_cpu_idle
);
360 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
362 if (dbs_tuners_ins
.ignore_nice
) {
363 cputime64_t cur_nice
;
364 unsigned long cur_nice_jiffies
;
366 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
367 j_dbs_info
->prev_cpu_nice
);
369 * Assumption: nice time between sampling periods will
370 * be less than 2^32 jiffies for 32 bit sys
372 cur_nice_jiffies
= (unsigned long)
373 cputime64_to_jiffies64(cur_nice
);
375 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
376 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
379 if (unlikely(!wall_time
|| wall_time
< idle_time
))
382 load
= 100 * (wall_time
- idle_time
) / wall_time
;
389 * break out if we 'cannot' reduce the speed as the user might
390 * want freq_step to be zero
392 if (dbs_tuners_ins
.freq_step
== 0)
395 /* Check for frequency increase */
396 if (max_load
> dbs_tuners_ins
.up_threshold
) {
397 this_dbs_info
->down_skip
= 0;
399 /* if we are already at full speed then break out early */
400 if (this_dbs_info
->requested_freq
== policy
->max
)
403 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
405 /* max freq cannot be less than 100. But who knows.... */
406 if (unlikely(freq_target
== 0))
409 this_dbs_info
->requested_freq
+= freq_target
;
410 if (this_dbs_info
->requested_freq
> policy
->max
)
411 this_dbs_info
->requested_freq
= policy
->max
;
413 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
419 * The optimal frequency is the frequency that is the lowest that
420 * can support the current CPU usage without triggering the up
421 * policy. To be safe, we focus 10 points under the threshold.
423 if (max_load
< (dbs_tuners_ins
.down_threshold
- 10)) {
424 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
426 this_dbs_info
->requested_freq
-= freq_target
;
427 if (this_dbs_info
->requested_freq
< policy
->min
)
428 this_dbs_info
->requested_freq
= policy
->min
;
431 * if we cannot reduce the frequency anymore, break out early
433 if (policy
->cur
== policy
->min
)
436 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
442 static void do_dbs_timer(struct work_struct
*work
)
444 struct cpu_dbs_info_s
*dbs_info
=
445 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
446 unsigned int cpu
= dbs_info
->cpu
;
448 /* We want all CPUs to do sampling nearly on same jiffy */
449 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
451 delay
-= jiffies
% delay
;
453 mutex_lock(&dbs_info
->timer_mutex
);
455 dbs_check_cpu(dbs_info
);
457 schedule_delayed_work_on(cpu
, &dbs_info
->work
, delay
);
458 mutex_unlock(&dbs_info
->timer_mutex
);
461 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
463 /* We want all CPUs to do sampling nearly on same jiffy */
464 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
465 delay
-= jiffies
% delay
;
467 dbs_info
->enable
= 1;
468 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
469 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
, delay
);
472 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
474 dbs_info
->enable
= 0;
475 cancel_delayed_work_sync(&dbs_info
->work
);
478 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
481 unsigned int cpu
= policy
->cpu
;
482 struct cpu_dbs_info_s
*this_dbs_info
;
486 this_dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
489 case CPUFREQ_GOV_START
:
490 if ((!cpu_online(cpu
)) || (!policy
->cur
))
493 mutex_lock(&dbs_mutex
);
495 for_each_cpu(j
, policy
->cpus
) {
496 struct cpu_dbs_info_s
*j_dbs_info
;
497 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
498 j_dbs_info
->cur_policy
= policy
;
500 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
501 &j_dbs_info
->prev_cpu_wall
);
502 if (dbs_tuners_ins
.ignore_nice
) {
503 j_dbs_info
->prev_cpu_nice
=
504 kstat_cpu(j
).cpustat
.nice
;
507 this_dbs_info
->down_skip
= 0;
508 this_dbs_info
->requested_freq
= policy
->cur
;
510 mutex_init(&this_dbs_info
->timer_mutex
);
513 * Start the timerschedule work, when this governor
514 * is used for first time
516 if (dbs_enable
== 1) {
517 unsigned int latency
;
518 /* policy latency is in nS. Convert it to uS first */
519 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
523 rc
= sysfs_create_group(cpufreq_global_kobject
,
526 mutex_unlock(&dbs_mutex
);
531 * conservative does not implement micro like ondemand
532 * governor, thus we are bound to jiffes/HZ
535 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
536 /* Bring kernel and HW constraints together */
537 min_sampling_rate
= max(min_sampling_rate
,
538 MIN_LATENCY_MULTIPLIER
* latency
);
539 dbs_tuners_ins
.sampling_rate
=
540 max(min_sampling_rate
,
541 latency
* LATENCY_MULTIPLIER
);
543 cpufreq_register_notifier(
544 &dbs_cpufreq_notifier_block
,
545 CPUFREQ_TRANSITION_NOTIFIER
);
547 mutex_unlock(&dbs_mutex
);
549 dbs_timer_init(this_dbs_info
);
553 case CPUFREQ_GOV_STOP
:
554 dbs_timer_exit(this_dbs_info
);
556 mutex_lock(&dbs_mutex
);
558 mutex_destroy(&this_dbs_info
->timer_mutex
);
561 * Stop the timerschedule work, when this governor
562 * is used for first time
565 cpufreq_unregister_notifier(
566 &dbs_cpufreq_notifier_block
,
567 CPUFREQ_TRANSITION_NOTIFIER
);
569 mutex_unlock(&dbs_mutex
);
571 sysfs_remove_group(cpufreq_global_kobject
,
576 case CPUFREQ_GOV_LIMITS
:
577 mutex_lock(&this_dbs_info
->timer_mutex
);
578 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
579 __cpufreq_driver_target(
580 this_dbs_info
->cur_policy
,
581 policy
->max
, CPUFREQ_RELATION_H
);
582 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
583 __cpufreq_driver_target(
584 this_dbs_info
->cur_policy
,
585 policy
->min
, CPUFREQ_RELATION_L
);
586 mutex_unlock(&this_dbs_info
->timer_mutex
);
593 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
596 struct cpufreq_governor cpufreq_gov_conservative
= {
597 .name
= "conservative",
598 .governor
= cpufreq_governor_dbs
,
599 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
600 .owner
= THIS_MODULE
,
603 static int __init
cpufreq_gov_dbs_init(void)
605 return cpufreq_register_governor(&cpufreq_gov_conservative
);
608 static void __exit
cpufreq_gov_dbs_exit(void)
610 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
614 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616 "Low Latency Frequency Transition capable processors "
617 "optimised for use in a battery environment");
618 MODULE_LICENSE("GPL");
620 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621 fs_initcall(cpufreq_gov_dbs_init
);
623 module_init(cpufreq_gov_dbs_init
);
625 module_exit(cpufreq_gov_dbs_exit
);