2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
51 CHUNK_ALLOC_NO_FORCE
= 0,
52 CHUNK_ALLOC_FORCE
= 1,
53 CHUNK_ALLOC_LIMITED
= 2,
57 * Control how reservations are dealt with.
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
68 RESERVE_ALLOC_NO_ACCOUNT
= 2,
71 static int update_block_group(struct btrfs_trans_handle
*trans
,
72 struct btrfs_root
*root
,
73 u64 bytenr
, u64 num_bytes
, int alloc
);
74 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
75 struct btrfs_root
*root
,
76 u64 bytenr
, u64 num_bytes
, u64 parent
,
77 u64 root_objectid
, u64 owner_objectid
,
78 u64 owner_offset
, int refs_to_drop
,
79 struct btrfs_delayed_extent_op
*extra_op
);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
81 struct extent_buffer
*leaf
,
82 struct btrfs_extent_item
*ei
);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
84 struct btrfs_root
*root
,
85 u64 parent
, u64 root_objectid
,
86 u64 flags
, u64 owner
, u64 offset
,
87 struct btrfs_key
*ins
, int ref_mod
);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
89 struct btrfs_root
*root
,
90 u64 parent
, u64 root_objectid
,
91 u64 flags
, struct btrfs_disk_key
*key
,
92 int level
, struct btrfs_key
*ins
);
93 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
94 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
95 u64 flags
, int force
);
96 static int find_next_key(struct btrfs_path
*path
, int level
,
97 struct btrfs_key
*key
);
98 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
99 int dump_block_groups
);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
101 u64 num_bytes
, int reserve
);
104 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
107 return cache
->cached
== BTRFS_CACHE_FINISHED
;
110 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
112 return (cache
->flags
& bits
) == bits
;
115 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
117 atomic_inc(&cache
->count
);
120 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
122 if (atomic_dec_and_test(&cache
->count
)) {
123 WARN_ON(cache
->pinned
> 0);
124 WARN_ON(cache
->reserved
> 0);
125 kfree(cache
->free_space_ctl
);
131 * this adds the block group to the fs_info rb tree for the block group
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
135 struct btrfs_block_group_cache
*block_group
)
138 struct rb_node
*parent
= NULL
;
139 struct btrfs_block_group_cache
*cache
;
141 spin_lock(&info
->block_group_cache_lock
);
142 p
= &info
->block_group_cache_tree
.rb_node
;
146 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
148 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
150 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
153 spin_unlock(&info
->block_group_cache_lock
);
158 rb_link_node(&block_group
->cache_node
, parent
, p
);
159 rb_insert_color(&block_group
->cache_node
,
160 &info
->block_group_cache_tree
);
161 spin_unlock(&info
->block_group_cache_lock
);
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
170 static struct btrfs_block_group_cache
*
171 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
174 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
178 spin_lock(&info
->block_group_cache_lock
);
179 n
= info
->block_group_cache_tree
.rb_node
;
182 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
184 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
185 start
= cache
->key
.objectid
;
187 if (bytenr
< start
) {
188 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
191 } else if (bytenr
> start
) {
192 if (contains
&& bytenr
<= end
) {
203 btrfs_get_block_group(ret
);
204 spin_unlock(&info
->block_group_cache_lock
);
209 static int add_excluded_extent(struct btrfs_root
*root
,
210 u64 start
, u64 num_bytes
)
212 u64 end
= start
+ num_bytes
- 1;
213 set_extent_bits(&root
->fs_info
->freed_extents
[0],
214 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
215 set_extent_bits(&root
->fs_info
->freed_extents
[1],
216 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
220 static void free_excluded_extents(struct btrfs_root
*root
,
221 struct btrfs_block_group_cache
*cache
)
225 start
= cache
->key
.objectid
;
226 end
= start
+ cache
->key
.offset
- 1;
228 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
229 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
230 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
231 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
234 static int exclude_super_stripes(struct btrfs_root
*root
,
235 struct btrfs_block_group_cache
*cache
)
242 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
243 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
244 cache
->bytes_super
+= stripe_len
;
245 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
250 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
251 bytenr
= btrfs_sb_offset(i
);
252 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
253 cache
->key
.objectid
, bytenr
,
254 0, &logical
, &nr
, &stripe_len
);
258 cache
->bytes_super
+= stripe_len
;
259 ret
= add_excluded_extent(root
, logical
[nr
],
269 static struct btrfs_caching_control
*
270 get_caching_control(struct btrfs_block_group_cache
*cache
)
272 struct btrfs_caching_control
*ctl
;
274 spin_lock(&cache
->lock
);
275 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
276 spin_unlock(&cache
->lock
);
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache
->caching_ctl
) {
282 spin_unlock(&cache
->lock
);
286 ctl
= cache
->caching_ctl
;
287 atomic_inc(&ctl
->count
);
288 spin_unlock(&cache
->lock
);
292 static void put_caching_control(struct btrfs_caching_control
*ctl
)
294 if (atomic_dec_and_test(&ctl
->count
))
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
303 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
304 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
306 u64 extent_start
, extent_end
, size
, total_added
= 0;
309 while (start
< end
) {
310 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
311 &extent_start
, &extent_end
,
312 EXTENT_DIRTY
| EXTENT_UPTODATE
);
316 if (extent_start
<= start
) {
317 start
= extent_end
+ 1;
318 } else if (extent_start
> start
&& extent_start
< end
) {
319 size
= extent_start
- start
;
321 ret
= btrfs_add_free_space(block_group
, start
,
324 start
= extent_end
+ 1;
333 ret
= btrfs_add_free_space(block_group
, start
, size
);
340 static noinline
void caching_thread(struct btrfs_work
*work
)
342 struct btrfs_block_group_cache
*block_group
;
343 struct btrfs_fs_info
*fs_info
;
344 struct btrfs_caching_control
*caching_ctl
;
345 struct btrfs_root
*extent_root
;
346 struct btrfs_path
*path
;
347 struct extent_buffer
*leaf
;
348 struct btrfs_key key
;
354 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
355 block_group
= caching_ctl
->block_group
;
356 fs_info
= block_group
->fs_info
;
357 extent_root
= fs_info
->extent_root
;
359 path
= btrfs_alloc_path();
363 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
371 path
->skip_locking
= 1;
372 path
->search_commit_root
= 1;
377 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
379 mutex_lock(&caching_ctl
->mutex
);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info
->extent_commit_sem
);
383 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
387 leaf
= path
->nodes
[0];
388 nritems
= btrfs_header_nritems(leaf
);
391 if (btrfs_fs_closing(fs_info
) > 1) {
396 if (path
->slots
[0] < nritems
) {
397 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
399 ret
= find_next_key(path
, 0, &key
);
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root
, path
)) {
405 caching_ctl
->progress
= last
;
406 btrfs_release_path(path
);
407 up_read(&fs_info
->extent_commit_sem
);
408 mutex_unlock(&caching_ctl
->mutex
);
412 leaf
= path
->nodes
[0];
413 nritems
= btrfs_header_nritems(leaf
);
417 if (key
.objectid
< block_group
->key
.objectid
) {
422 if (key
.objectid
>= block_group
->key
.objectid
+
423 block_group
->key
.offset
)
426 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
427 total_found
+= add_new_free_space(block_group
,
430 last
= key
.objectid
+ key
.offset
;
432 if (total_found
> (1024 * 1024 * 2)) {
434 wake_up(&caching_ctl
->wait
);
441 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
442 block_group
->key
.objectid
+
443 block_group
->key
.offset
);
444 caching_ctl
->progress
= (u64
)-1;
446 spin_lock(&block_group
->lock
);
447 block_group
->caching_ctl
= NULL
;
448 block_group
->cached
= BTRFS_CACHE_FINISHED
;
449 spin_unlock(&block_group
->lock
);
452 btrfs_free_path(path
);
453 up_read(&fs_info
->extent_commit_sem
);
455 free_excluded_extents(extent_root
, block_group
);
457 mutex_unlock(&caching_ctl
->mutex
);
459 wake_up(&caching_ctl
->wait
);
461 put_caching_control(caching_ctl
);
462 btrfs_put_block_group(block_group
);
465 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
466 struct btrfs_trans_handle
*trans
,
467 struct btrfs_root
*root
,
471 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
472 struct btrfs_caching_control
*caching_ctl
;
475 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
476 BUG_ON(!caching_ctl
);
478 INIT_LIST_HEAD(&caching_ctl
->list
);
479 mutex_init(&caching_ctl
->mutex
);
480 init_waitqueue_head(&caching_ctl
->wait
);
481 caching_ctl
->block_group
= cache
;
482 caching_ctl
->progress
= cache
->key
.objectid
;
483 atomic_set(&caching_ctl
->count
, 1);
484 caching_ctl
->work
.func
= caching_thread
;
486 spin_lock(&cache
->lock
);
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
499 while (cache
->cached
== BTRFS_CACHE_FAST
) {
500 struct btrfs_caching_control
*ctl
;
502 ctl
= cache
->caching_ctl
;
503 atomic_inc(&ctl
->count
);
504 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
505 spin_unlock(&cache
->lock
);
509 finish_wait(&ctl
->wait
, &wait
);
510 put_caching_control(ctl
);
511 spin_lock(&cache
->lock
);
514 if (cache
->cached
!= BTRFS_CACHE_NO
) {
515 spin_unlock(&cache
->lock
);
519 WARN_ON(cache
->caching_ctl
);
520 cache
->caching_ctl
= caching_ctl
;
521 cache
->cached
= BTRFS_CACHE_FAST
;
522 spin_unlock(&cache
->lock
);
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
530 if (trans
&& (!trans
->transaction
->in_commit
) &&
531 (root
&& root
!= root
->fs_info
->tree_root
) &&
532 btrfs_test_opt(root
, SPACE_CACHE
)) {
533 ret
= load_free_space_cache(fs_info
, cache
);
535 spin_lock(&cache
->lock
);
537 cache
->caching_ctl
= NULL
;
538 cache
->cached
= BTRFS_CACHE_FINISHED
;
539 cache
->last_byte_to_unpin
= (u64
)-1;
541 if (load_cache_only
) {
542 cache
->caching_ctl
= NULL
;
543 cache
->cached
= BTRFS_CACHE_NO
;
545 cache
->cached
= BTRFS_CACHE_STARTED
;
548 spin_unlock(&cache
->lock
);
549 wake_up(&caching_ctl
->wait
);
551 put_caching_control(caching_ctl
);
552 free_excluded_extents(fs_info
->extent_root
, cache
);
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache
->lock
);
561 if (load_cache_only
) {
562 cache
->caching_ctl
= NULL
;
563 cache
->cached
= BTRFS_CACHE_NO
;
565 cache
->cached
= BTRFS_CACHE_STARTED
;
567 spin_unlock(&cache
->lock
);
568 wake_up(&caching_ctl
->wait
);
571 if (load_cache_only
) {
572 put_caching_control(caching_ctl
);
576 down_write(&fs_info
->extent_commit_sem
);
577 atomic_inc(&caching_ctl
->count
);
578 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
579 up_write(&fs_info
->extent_commit_sem
);
581 btrfs_get_block_group(cache
);
583 btrfs_queue_worker(&fs_info
->caching_workers
, &caching_ctl
->work
);
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache
*
592 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
594 struct btrfs_block_group_cache
*cache
;
596 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
605 struct btrfs_fs_info
*info
,
608 struct btrfs_block_group_cache
*cache
;
610 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
615 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
618 struct list_head
*head
= &info
->space_info
;
619 struct btrfs_space_info
*found
;
621 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
622 BTRFS_BLOCK_GROUP_METADATA
;
625 list_for_each_entry_rcu(found
, head
, list
) {
626 if (found
->flags
& flags
) {
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
639 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
641 struct list_head
*head
= &info
->space_info
;
642 struct btrfs_space_info
*found
;
645 list_for_each_entry_rcu(found
, head
, list
)
650 static u64
div_factor(u64 num
, int factor
)
659 static u64
div_factor_fine(u64 num
, int factor
)
668 u64
btrfs_find_block_group(struct btrfs_root
*root
,
669 u64 search_start
, u64 search_hint
, int owner
)
671 struct btrfs_block_group_cache
*cache
;
673 u64 last
= max(search_hint
, search_start
);
680 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
684 spin_lock(&cache
->lock
);
685 last
= cache
->key
.objectid
+ cache
->key
.offset
;
686 used
= btrfs_block_group_used(&cache
->item
);
688 if ((full_search
|| !cache
->ro
) &&
689 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
690 if (used
+ cache
->pinned
+ cache
->reserved
<
691 div_factor(cache
->key
.offset
, factor
)) {
692 group_start
= cache
->key
.objectid
;
693 spin_unlock(&cache
->lock
);
694 btrfs_put_block_group(cache
);
698 spin_unlock(&cache
->lock
);
699 btrfs_put_block_group(cache
);
707 if (!full_search
&& factor
< 10) {
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
721 struct btrfs_key key
;
722 struct btrfs_path
*path
;
724 path
= btrfs_alloc_path();
728 key
.objectid
= start
;
730 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
731 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
733 btrfs_free_path(path
);
738 * helper function to lookup reference count and flags of extent.
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
747 struct btrfs_root
*root
, u64 bytenr
,
748 u64 num_bytes
, u64
*refs
, u64
*flags
)
750 struct btrfs_delayed_ref_head
*head
;
751 struct btrfs_delayed_ref_root
*delayed_refs
;
752 struct btrfs_path
*path
;
753 struct btrfs_extent_item
*ei
;
754 struct extent_buffer
*leaf
;
755 struct btrfs_key key
;
761 path
= btrfs_alloc_path();
765 key
.objectid
= bytenr
;
766 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
767 key
.offset
= num_bytes
;
769 path
->skip_locking
= 1;
770 path
->search_commit_root
= 1;
773 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
779 leaf
= path
->nodes
[0];
780 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
781 if (item_size
>= sizeof(*ei
)) {
782 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
783 struct btrfs_extent_item
);
784 num_refs
= btrfs_extent_refs(leaf
, ei
);
785 extent_flags
= btrfs_extent_flags(leaf
, ei
);
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0
*ei0
;
789 BUG_ON(item_size
!= sizeof(*ei0
));
790 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
791 struct btrfs_extent_item_v0
);
792 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
793 /* FIXME: this isn't correct for data */
794 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
799 BUG_ON(num_refs
== 0);
809 delayed_refs
= &trans
->transaction
->delayed_refs
;
810 spin_lock(&delayed_refs
->lock
);
811 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
813 if (!mutex_trylock(&head
->mutex
)) {
814 atomic_inc(&head
->node
.refs
);
815 spin_unlock(&delayed_refs
->lock
);
817 btrfs_release_path(path
);
820 * Mutex was contended, block until it's released and try
823 mutex_lock(&head
->mutex
);
824 mutex_unlock(&head
->mutex
);
825 btrfs_put_delayed_ref(&head
->node
);
828 if (head
->extent_op
&& head
->extent_op
->update_flags
)
829 extent_flags
|= head
->extent_op
->flags_to_set
;
831 BUG_ON(num_refs
== 0);
833 num_refs
+= head
->node
.ref_mod
;
834 mutex_unlock(&head
->mutex
);
836 spin_unlock(&delayed_refs
->lock
);
838 WARN_ON(num_refs
== 0);
842 *flags
= extent_flags
;
844 btrfs_free_path(path
);
849 * Back reference rules. Back refs have three main goals:
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
880 * When a tree block is COW'd through a tree, there are four cases:
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
900 * Back Reference Key composing:
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
907 * File extents can be referenced by:
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
913 * The extent ref structure for the implicit back refs has fields for:
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
920 * The key offset for the implicit back refs is hash of the first
923 * The extent ref structure for the full back refs has field for:
925 * - number of pointers in the tree leaf
927 * The key offset for the implicit back refs is the first byte of
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
933 * (root_key.objectid, inode objectid, offset in file, 1)
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 * Btree extents can be referenced by:
942 * - Different subvolumes
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
956 struct btrfs_root
*root
,
957 struct btrfs_path
*path
,
958 u64 owner
, u32 extra_size
)
960 struct btrfs_extent_item
*item
;
961 struct btrfs_extent_item_v0
*ei0
;
962 struct btrfs_extent_ref_v0
*ref0
;
963 struct btrfs_tree_block_info
*bi
;
964 struct extent_buffer
*leaf
;
965 struct btrfs_key key
;
966 struct btrfs_key found_key
;
967 u32 new_size
= sizeof(*item
);
971 leaf
= path
->nodes
[0];
972 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
974 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
975 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
976 struct btrfs_extent_item_v0
);
977 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
979 if (owner
== (u64
)-1) {
981 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
982 ret
= btrfs_next_leaf(root
, path
);
986 leaf
= path
->nodes
[0];
988 btrfs_item_key_to_cpu(leaf
, &found_key
,
990 BUG_ON(key
.objectid
!= found_key
.objectid
);
991 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
995 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
996 struct btrfs_extent_ref_v0
);
997 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1001 btrfs_release_path(path
);
1003 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1004 new_size
+= sizeof(*bi
);
1006 new_size
-= sizeof(*ei0
);
1007 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1008 new_size
+ extra_size
, 1);
1013 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
1015 leaf
= path
->nodes
[0];
1016 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1017 btrfs_set_extent_refs(leaf
, item
, refs
);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf
, item
, 0);
1020 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1021 btrfs_set_extent_flags(leaf
, item
,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1024 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1027 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1029 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1031 btrfs_mark_buffer_dirty(leaf
);
1036 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1038 u32 high_crc
= ~(u32
)0;
1039 u32 low_crc
= ~(u32
)0;
1042 lenum
= cpu_to_le64(root_objectid
);
1043 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
1044 lenum
= cpu_to_le64(owner
);
1045 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1046 lenum
= cpu_to_le64(offset
);
1047 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1049 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1052 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1053 struct btrfs_extent_data_ref
*ref
)
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1056 btrfs_extent_data_ref_objectid(leaf
, ref
),
1057 btrfs_extent_data_ref_offset(leaf
, ref
));
1060 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1061 struct btrfs_extent_data_ref
*ref
,
1062 u64 root_objectid
, u64 owner
, u64 offset
)
1064 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1065 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1066 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1071 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1072 struct btrfs_root
*root
,
1073 struct btrfs_path
*path
,
1074 u64 bytenr
, u64 parent
,
1076 u64 owner
, u64 offset
)
1078 struct btrfs_key key
;
1079 struct btrfs_extent_data_ref
*ref
;
1080 struct extent_buffer
*leaf
;
1086 key
.objectid
= bytenr
;
1088 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1089 key
.offset
= parent
;
1091 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1092 key
.offset
= hash_extent_data_ref(root_objectid
,
1097 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1108 btrfs_release_path(path
);
1109 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1120 leaf
= path
->nodes
[0];
1121 nritems
= btrfs_header_nritems(leaf
);
1123 if (path
->slots
[0] >= nritems
) {
1124 ret
= btrfs_next_leaf(root
, path
);
1130 leaf
= path
->nodes
[0];
1131 nritems
= btrfs_header_nritems(leaf
);
1135 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1136 if (key
.objectid
!= bytenr
||
1137 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1140 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1141 struct btrfs_extent_data_ref
);
1143 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1146 btrfs_release_path(path
);
1158 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1159 struct btrfs_root
*root
,
1160 struct btrfs_path
*path
,
1161 u64 bytenr
, u64 parent
,
1162 u64 root_objectid
, u64 owner
,
1163 u64 offset
, int refs_to_add
)
1165 struct btrfs_key key
;
1166 struct extent_buffer
*leaf
;
1171 key
.objectid
= bytenr
;
1173 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1174 key
.offset
= parent
;
1175 size
= sizeof(struct btrfs_shared_data_ref
);
1177 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1178 key
.offset
= hash_extent_data_ref(root_objectid
,
1180 size
= sizeof(struct btrfs_extent_data_ref
);
1183 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1184 if (ret
&& ret
!= -EEXIST
)
1187 leaf
= path
->nodes
[0];
1189 struct btrfs_shared_data_ref
*ref
;
1190 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1191 struct btrfs_shared_data_ref
);
1193 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1195 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1196 num_refs
+= refs_to_add
;
1197 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1200 struct btrfs_extent_data_ref
*ref
;
1201 while (ret
== -EEXIST
) {
1202 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1203 struct btrfs_extent_data_ref
);
1204 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1207 btrfs_release_path(path
);
1209 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1211 if (ret
&& ret
!= -EEXIST
)
1214 leaf
= path
->nodes
[0];
1216 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1217 struct btrfs_extent_data_ref
);
1219 btrfs_set_extent_data_ref_root(leaf
, ref
,
1221 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1222 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1223 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1225 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1226 num_refs
+= refs_to_add
;
1227 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1230 btrfs_mark_buffer_dirty(leaf
);
1233 btrfs_release_path(path
);
1237 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1238 struct btrfs_root
*root
,
1239 struct btrfs_path
*path
,
1242 struct btrfs_key key
;
1243 struct btrfs_extent_data_ref
*ref1
= NULL
;
1244 struct btrfs_shared_data_ref
*ref2
= NULL
;
1245 struct extent_buffer
*leaf
;
1249 leaf
= path
->nodes
[0];
1250 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1252 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1253 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1254 struct btrfs_extent_data_ref
);
1255 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1256 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1257 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1258 struct btrfs_shared_data_ref
);
1259 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1262 struct btrfs_extent_ref_v0
*ref0
;
1263 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1264 struct btrfs_extent_ref_v0
);
1265 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1271 BUG_ON(num_refs
< refs_to_drop
);
1272 num_refs
-= refs_to_drop
;
1274 if (num_refs
== 0) {
1275 ret
= btrfs_del_item(trans
, root
, path
);
1277 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1278 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1279 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1280 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 struct btrfs_extent_ref_v0
*ref0
;
1284 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1285 struct btrfs_extent_ref_v0
);
1286 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1289 btrfs_mark_buffer_dirty(leaf
);
1294 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1295 struct btrfs_path
*path
,
1296 struct btrfs_extent_inline_ref
*iref
)
1298 struct btrfs_key key
;
1299 struct extent_buffer
*leaf
;
1300 struct btrfs_extent_data_ref
*ref1
;
1301 struct btrfs_shared_data_ref
*ref2
;
1304 leaf
= path
->nodes
[0];
1305 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1307 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1308 BTRFS_EXTENT_DATA_REF_KEY
) {
1309 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1310 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1312 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1313 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1315 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1316 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1317 struct btrfs_extent_data_ref
);
1318 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1319 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1320 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1321 struct btrfs_shared_data_ref
);
1322 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1325 struct btrfs_extent_ref_v0
*ref0
;
1326 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1327 struct btrfs_extent_ref_v0
);
1328 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1336 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1337 struct btrfs_root
*root
,
1338 struct btrfs_path
*path
,
1339 u64 bytenr
, u64 parent
,
1342 struct btrfs_key key
;
1345 key
.objectid
= bytenr
;
1347 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1348 key
.offset
= parent
;
1350 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1351 key
.offset
= root_objectid
;
1354 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret
== -ENOENT
&& parent
) {
1359 btrfs_release_path(path
);
1360 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1361 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1369 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1370 struct btrfs_root
*root
,
1371 struct btrfs_path
*path
,
1372 u64 bytenr
, u64 parent
,
1375 struct btrfs_key key
;
1378 key
.objectid
= bytenr
;
1380 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1381 key
.offset
= parent
;
1383 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1384 key
.offset
= root_objectid
;
1387 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1388 btrfs_release_path(path
);
1392 static inline int extent_ref_type(u64 parent
, u64 owner
)
1395 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1397 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1399 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1402 type
= BTRFS_SHARED_DATA_REF_KEY
;
1404 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1409 static int find_next_key(struct btrfs_path
*path
, int level
,
1410 struct btrfs_key
*key
)
1413 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1414 if (!path
->nodes
[level
])
1416 if (path
->slots
[level
] + 1 >=
1417 btrfs_header_nritems(path
->nodes
[level
]))
1420 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1421 path
->slots
[level
] + 1);
1423 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1424 path
->slots
[level
] + 1);
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1445 struct btrfs_root
*root
,
1446 struct btrfs_path
*path
,
1447 struct btrfs_extent_inline_ref
**ref_ret
,
1448 u64 bytenr
, u64 num_bytes
,
1449 u64 parent
, u64 root_objectid
,
1450 u64 owner
, u64 offset
, int insert
)
1452 struct btrfs_key key
;
1453 struct extent_buffer
*leaf
;
1454 struct btrfs_extent_item
*ei
;
1455 struct btrfs_extent_inline_ref
*iref
;
1466 key
.objectid
= bytenr
;
1467 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1468 key
.offset
= num_bytes
;
1470 want
= extent_ref_type(parent
, owner
);
1472 extra_size
= btrfs_extent_inline_ref_size(want
);
1473 path
->keep_locks
= 1;
1476 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1483 leaf
= path
->nodes
[0];
1484 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size
< sizeof(*ei
)) {
1491 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1497 leaf
= path
->nodes
[0];
1498 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1501 BUG_ON(item_size
< sizeof(*ei
));
1503 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1504 flags
= btrfs_extent_flags(leaf
, ei
);
1506 ptr
= (unsigned long)(ei
+ 1);
1507 end
= (unsigned long)ei
+ item_size
;
1509 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1510 ptr
+= sizeof(struct btrfs_tree_block_info
);
1513 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1522 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1523 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1527 ptr
+= btrfs_extent_inline_ref_size(type
);
1531 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1532 struct btrfs_extent_data_ref
*dref
;
1533 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1534 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1539 if (hash_extent_data_ref_item(leaf
, dref
) <
1540 hash_extent_data_ref(root_objectid
, owner
, offset
))
1544 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1546 if (parent
== ref_offset
) {
1550 if (ref_offset
< parent
)
1553 if (root_objectid
== ref_offset
) {
1557 if (ref_offset
< root_objectid
)
1561 ptr
+= btrfs_extent_inline_ref_size(type
);
1563 if (err
== -ENOENT
&& insert
) {
1564 if (item_size
+ extra_size
>=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1575 if (find_next_key(path
, 0, &key
) == 0 &&
1576 key
.objectid
== bytenr
&&
1577 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1582 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1585 path
->keep_locks
= 0;
1586 btrfs_unlock_up_safe(path
, 1);
1592 * helper to add new inline back ref
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1596 struct btrfs_root
*root
,
1597 struct btrfs_path
*path
,
1598 struct btrfs_extent_inline_ref
*iref
,
1599 u64 parent
, u64 root_objectid
,
1600 u64 owner
, u64 offset
, int refs_to_add
,
1601 struct btrfs_delayed_extent_op
*extent_op
)
1603 struct extent_buffer
*leaf
;
1604 struct btrfs_extent_item
*ei
;
1607 unsigned long item_offset
;
1613 leaf
= path
->nodes
[0];
1614 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1615 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1617 type
= extent_ref_type(parent
, owner
);
1618 size
= btrfs_extent_inline_ref_size(type
);
1620 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1622 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1623 refs
= btrfs_extent_refs(leaf
, ei
);
1624 refs
+= refs_to_add
;
1625 btrfs_set_extent_refs(leaf
, ei
, refs
);
1627 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1629 ptr
= (unsigned long)ei
+ item_offset
;
1630 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1631 if (ptr
< end
- size
)
1632 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1635 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1636 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1637 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1638 struct btrfs_extent_data_ref
*dref
;
1639 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1640 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1641 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1642 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1643 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1644 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1645 struct btrfs_shared_data_ref
*sref
;
1646 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1647 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1648 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1649 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1650 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1652 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1654 btrfs_mark_buffer_dirty(leaf
);
1658 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1659 struct btrfs_root
*root
,
1660 struct btrfs_path
*path
,
1661 struct btrfs_extent_inline_ref
**ref_ret
,
1662 u64 bytenr
, u64 num_bytes
, u64 parent
,
1663 u64 root_objectid
, u64 owner
, u64 offset
)
1667 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1668 bytenr
, num_bytes
, parent
,
1669 root_objectid
, owner
, offset
, 0);
1673 btrfs_release_path(path
);
1676 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1677 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1680 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1681 root_objectid
, owner
, offset
);
1687 * helper to update/remove inline back ref
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1691 struct btrfs_root
*root
,
1692 struct btrfs_path
*path
,
1693 struct btrfs_extent_inline_ref
*iref
,
1695 struct btrfs_delayed_extent_op
*extent_op
)
1697 struct extent_buffer
*leaf
;
1698 struct btrfs_extent_item
*ei
;
1699 struct btrfs_extent_data_ref
*dref
= NULL
;
1700 struct btrfs_shared_data_ref
*sref
= NULL
;
1709 leaf
= path
->nodes
[0];
1710 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1711 refs
= btrfs_extent_refs(leaf
, ei
);
1712 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1713 refs
+= refs_to_mod
;
1714 btrfs_set_extent_refs(leaf
, ei
, refs
);
1716 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1718 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1720 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1721 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1722 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1723 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1724 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1725 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1728 BUG_ON(refs_to_mod
!= -1);
1731 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1732 refs
+= refs_to_mod
;
1735 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1736 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1738 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1740 size
= btrfs_extent_inline_ref_size(type
);
1741 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1742 ptr
= (unsigned long)iref
;
1743 end
= (unsigned long)ei
+ item_size
;
1744 if (ptr
+ size
< end
)
1745 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1748 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1750 btrfs_mark_buffer_dirty(leaf
);
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1756 struct btrfs_root
*root
,
1757 struct btrfs_path
*path
,
1758 u64 bytenr
, u64 num_bytes
, u64 parent
,
1759 u64 root_objectid
, u64 owner
,
1760 u64 offset
, int refs_to_add
,
1761 struct btrfs_delayed_extent_op
*extent_op
)
1763 struct btrfs_extent_inline_ref
*iref
;
1766 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1767 bytenr
, num_bytes
, parent
,
1768 root_objectid
, owner
, offset
, 1);
1770 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1771 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1772 refs_to_add
, extent_op
);
1773 } else if (ret
== -ENOENT
) {
1774 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1775 parent
, root_objectid
,
1776 owner
, offset
, refs_to_add
,
1782 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1783 struct btrfs_root
*root
,
1784 struct btrfs_path
*path
,
1785 u64 bytenr
, u64 parent
, u64 root_objectid
,
1786 u64 owner
, u64 offset
, int refs_to_add
)
1789 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1790 BUG_ON(refs_to_add
!= 1);
1791 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1792 parent
, root_objectid
);
1794 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1795 parent
, root_objectid
,
1796 owner
, offset
, refs_to_add
);
1801 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1802 struct btrfs_root
*root
,
1803 struct btrfs_path
*path
,
1804 struct btrfs_extent_inline_ref
*iref
,
1805 int refs_to_drop
, int is_data
)
1809 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1811 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1812 -refs_to_drop
, NULL
);
1813 } else if (is_data
) {
1814 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1816 ret
= btrfs_del_item(trans
, root
, path
);
1821 static int btrfs_issue_discard(struct block_device
*bdev
,
1824 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1827 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1828 u64 num_bytes
, u64
*actual_bytes
)
1831 u64 discarded_bytes
= 0;
1832 struct btrfs_bio
*bbio
= NULL
;
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1837 bytenr
, &num_bytes
, &bbio
, 0);
1839 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1843 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1844 if (!stripe
->dev
->can_discard
)
1847 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1851 discarded_bytes
+= stripe
->length
;
1852 else if (ret
!= -EOPNOTSUPP
)
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1866 *actual_bytes
= discarded_bytes
;
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1873 struct btrfs_root
*root
,
1874 u64 bytenr
, u64 num_bytes
, u64 parent
,
1875 u64 root_objectid
, u64 owner
, u64 offset
)
1878 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1879 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1881 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1882 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1883 parent
, root_objectid
, (int)owner
,
1884 BTRFS_ADD_DELAYED_REF
, NULL
);
1886 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1887 parent
, root_objectid
, owner
, offset
,
1888 BTRFS_ADD_DELAYED_REF
, NULL
);
1893 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1894 struct btrfs_root
*root
,
1895 u64 bytenr
, u64 num_bytes
,
1896 u64 parent
, u64 root_objectid
,
1897 u64 owner
, u64 offset
, int refs_to_add
,
1898 struct btrfs_delayed_extent_op
*extent_op
)
1900 struct btrfs_path
*path
;
1901 struct extent_buffer
*leaf
;
1902 struct btrfs_extent_item
*item
;
1907 path
= btrfs_alloc_path();
1912 path
->leave_spinning
= 1;
1913 /* this will setup the path even if it fails to insert the back ref */
1914 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1915 path
, bytenr
, num_bytes
, parent
,
1916 root_objectid
, owner
, offset
,
1917 refs_to_add
, extent_op
);
1921 if (ret
!= -EAGAIN
) {
1926 leaf
= path
->nodes
[0];
1927 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1928 refs
= btrfs_extent_refs(leaf
, item
);
1929 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1931 __run_delayed_extent_op(extent_op
, leaf
, item
);
1933 btrfs_mark_buffer_dirty(leaf
);
1934 btrfs_release_path(path
);
1937 path
->leave_spinning
= 1;
1939 /* now insert the actual backref */
1940 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1941 path
, bytenr
, parent
, root_objectid
,
1942 owner
, offset
, refs_to_add
);
1945 btrfs_free_path(path
);
1949 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1950 struct btrfs_root
*root
,
1951 struct btrfs_delayed_ref_node
*node
,
1952 struct btrfs_delayed_extent_op
*extent_op
,
1953 int insert_reserved
)
1956 struct btrfs_delayed_data_ref
*ref
;
1957 struct btrfs_key ins
;
1962 ins
.objectid
= node
->bytenr
;
1963 ins
.offset
= node
->num_bytes
;
1964 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1966 ref
= btrfs_delayed_node_to_data_ref(node
);
1967 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1968 parent
= ref
->parent
;
1970 ref_root
= ref
->root
;
1972 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1974 BUG_ON(extent_op
->update_key
);
1975 flags
|= extent_op
->flags_to_set
;
1977 ret
= alloc_reserved_file_extent(trans
, root
,
1978 parent
, ref_root
, flags
,
1979 ref
->objectid
, ref
->offset
,
1980 &ins
, node
->ref_mod
);
1981 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1982 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1983 node
->num_bytes
, parent
,
1984 ref_root
, ref
->objectid
,
1985 ref
->offset
, node
->ref_mod
,
1987 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1988 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1989 node
->num_bytes
, parent
,
1990 ref_root
, ref
->objectid
,
1991 ref
->offset
, node
->ref_mod
,
1999 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2000 struct extent_buffer
*leaf
,
2001 struct btrfs_extent_item
*ei
)
2003 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2004 if (extent_op
->update_flags
) {
2005 flags
|= extent_op
->flags_to_set
;
2006 btrfs_set_extent_flags(leaf
, ei
, flags
);
2009 if (extent_op
->update_key
) {
2010 struct btrfs_tree_block_info
*bi
;
2011 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2012 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2013 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2017 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2018 struct btrfs_root
*root
,
2019 struct btrfs_delayed_ref_node
*node
,
2020 struct btrfs_delayed_extent_op
*extent_op
)
2022 struct btrfs_key key
;
2023 struct btrfs_path
*path
;
2024 struct btrfs_extent_item
*ei
;
2025 struct extent_buffer
*leaf
;
2030 path
= btrfs_alloc_path();
2034 key
.objectid
= node
->bytenr
;
2035 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2036 key
.offset
= node
->num_bytes
;
2039 path
->leave_spinning
= 1;
2040 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2051 leaf
= path
->nodes
[0];
2052 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2054 if (item_size
< sizeof(*ei
)) {
2055 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2061 leaf
= path
->nodes
[0];
2062 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2065 BUG_ON(item_size
< sizeof(*ei
));
2066 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2067 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2069 btrfs_mark_buffer_dirty(leaf
);
2071 btrfs_free_path(path
);
2075 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2076 struct btrfs_root
*root
,
2077 struct btrfs_delayed_ref_node
*node
,
2078 struct btrfs_delayed_extent_op
*extent_op
,
2079 int insert_reserved
)
2082 struct btrfs_delayed_tree_ref
*ref
;
2083 struct btrfs_key ins
;
2087 ins
.objectid
= node
->bytenr
;
2088 ins
.offset
= node
->num_bytes
;
2089 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2091 ref
= btrfs_delayed_node_to_tree_ref(node
);
2092 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2093 parent
= ref
->parent
;
2095 ref_root
= ref
->root
;
2097 BUG_ON(node
->ref_mod
!= 1);
2098 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2099 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2100 !extent_op
->update_key
);
2101 ret
= alloc_reserved_tree_block(trans
, root
,
2103 extent_op
->flags_to_set
,
2106 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2107 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2108 node
->num_bytes
, parent
, ref_root
,
2109 ref
->level
, 0, 1, extent_op
);
2110 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2111 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2112 node
->num_bytes
, parent
, ref_root
,
2113 ref
->level
, 0, 1, extent_op
);
2120 /* helper function to actually process a single delayed ref entry */
2121 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2122 struct btrfs_root
*root
,
2123 struct btrfs_delayed_ref_node
*node
,
2124 struct btrfs_delayed_extent_op
*extent_op
,
2125 int insert_reserved
)
2128 if (btrfs_delayed_ref_is_head(node
)) {
2129 struct btrfs_delayed_ref_head
*head
;
2131 * we've hit the end of the chain and we were supposed
2132 * to insert this extent into the tree. But, it got
2133 * deleted before we ever needed to insert it, so all
2134 * we have to do is clean up the accounting
2137 head
= btrfs_delayed_node_to_head(node
);
2138 if (insert_reserved
) {
2139 btrfs_pin_extent(root
, node
->bytenr
,
2140 node
->num_bytes
, 1);
2141 if (head
->is_data
) {
2142 ret
= btrfs_del_csums(trans
, root
,
2148 mutex_unlock(&head
->mutex
);
2152 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2153 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2154 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2156 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2157 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2158 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2165 static noinline
struct btrfs_delayed_ref_node
*
2166 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2168 struct rb_node
*node
;
2169 struct btrfs_delayed_ref_node
*ref
;
2170 int action
= BTRFS_ADD_DELAYED_REF
;
2173 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2174 * this prevents ref count from going down to zero when
2175 * there still are pending delayed ref.
2177 node
= rb_prev(&head
->node
.rb_node
);
2181 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2183 if (ref
->bytenr
!= head
->node
.bytenr
)
2185 if (ref
->action
== action
)
2187 node
= rb_prev(node
);
2189 if (action
== BTRFS_ADD_DELAYED_REF
) {
2190 action
= BTRFS_DROP_DELAYED_REF
;
2196 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2197 struct btrfs_root
*root
,
2198 struct list_head
*cluster
)
2200 struct btrfs_delayed_ref_root
*delayed_refs
;
2201 struct btrfs_delayed_ref_node
*ref
;
2202 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2203 struct btrfs_delayed_extent_op
*extent_op
;
2206 int must_insert_reserved
= 0;
2208 delayed_refs
= &trans
->transaction
->delayed_refs
;
2211 /* pick a new head ref from the cluster list */
2212 if (list_empty(cluster
))
2215 locked_ref
= list_entry(cluster
->next
,
2216 struct btrfs_delayed_ref_head
, cluster
);
2218 /* grab the lock that says we are going to process
2219 * all the refs for this head */
2220 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2223 * we may have dropped the spin lock to get the head
2224 * mutex lock, and that might have given someone else
2225 * time to free the head. If that's true, it has been
2226 * removed from our list and we can move on.
2228 if (ret
== -EAGAIN
) {
2236 * record the must insert reserved flag before we
2237 * drop the spin lock.
2239 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2240 locked_ref
->must_insert_reserved
= 0;
2242 extent_op
= locked_ref
->extent_op
;
2243 locked_ref
->extent_op
= NULL
;
2246 * locked_ref is the head node, so we have to go one
2247 * node back for any delayed ref updates
2249 ref
= select_delayed_ref(locked_ref
);
2251 /* All delayed refs have been processed, Go ahead
2252 * and send the head node to run_one_delayed_ref,
2253 * so that any accounting fixes can happen
2255 ref
= &locked_ref
->node
;
2257 if (extent_op
&& must_insert_reserved
) {
2263 spin_unlock(&delayed_refs
->lock
);
2265 ret
= run_delayed_extent_op(trans
, root
,
2271 spin_lock(&delayed_refs
->lock
);
2275 list_del_init(&locked_ref
->cluster
);
2280 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2281 delayed_refs
->num_entries
--;
2283 spin_unlock(&delayed_refs
->lock
);
2285 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2286 must_insert_reserved
);
2289 btrfs_put_delayed_ref(ref
);
2294 spin_lock(&delayed_refs
->lock
);
2300 * this starts processing the delayed reference count updates and
2301 * extent insertions we have queued up so far. count can be
2302 * 0, which means to process everything in the tree at the start
2303 * of the run (but not newly added entries), or it can be some target
2304 * number you'd like to process.
2306 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2307 struct btrfs_root
*root
, unsigned long count
)
2309 struct rb_node
*node
;
2310 struct btrfs_delayed_ref_root
*delayed_refs
;
2311 struct btrfs_delayed_ref_node
*ref
;
2312 struct list_head cluster
;
2314 int run_all
= count
== (unsigned long)-1;
2317 if (root
== root
->fs_info
->extent_root
)
2318 root
= root
->fs_info
->tree_root
;
2320 delayed_refs
= &trans
->transaction
->delayed_refs
;
2321 INIT_LIST_HEAD(&cluster
);
2323 spin_lock(&delayed_refs
->lock
);
2325 count
= delayed_refs
->num_entries
* 2;
2329 if (!(run_all
|| run_most
) &&
2330 delayed_refs
->num_heads_ready
< 64)
2334 * go find something we can process in the rbtree. We start at
2335 * the beginning of the tree, and then build a cluster
2336 * of refs to process starting at the first one we are able to
2339 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2340 delayed_refs
->run_delayed_start
);
2344 ret
= run_clustered_refs(trans
, root
, &cluster
);
2347 count
-= min_t(unsigned long, ret
, count
);
2354 node
= rb_first(&delayed_refs
->root
);
2357 count
= (unsigned long)-1;
2360 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2362 if (btrfs_delayed_ref_is_head(ref
)) {
2363 struct btrfs_delayed_ref_head
*head
;
2365 head
= btrfs_delayed_node_to_head(ref
);
2366 atomic_inc(&ref
->refs
);
2368 spin_unlock(&delayed_refs
->lock
);
2370 * Mutex was contended, block until it's
2371 * released and try again
2373 mutex_lock(&head
->mutex
);
2374 mutex_unlock(&head
->mutex
);
2376 btrfs_put_delayed_ref(ref
);
2380 node
= rb_next(node
);
2382 spin_unlock(&delayed_refs
->lock
);
2383 schedule_timeout(1);
2387 spin_unlock(&delayed_refs
->lock
);
2391 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2392 struct btrfs_root
*root
,
2393 u64 bytenr
, u64 num_bytes
, u64 flags
,
2396 struct btrfs_delayed_extent_op
*extent_op
;
2399 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2403 extent_op
->flags_to_set
= flags
;
2404 extent_op
->update_flags
= 1;
2405 extent_op
->update_key
= 0;
2406 extent_op
->is_data
= is_data
? 1 : 0;
2408 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2414 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2415 struct btrfs_root
*root
,
2416 struct btrfs_path
*path
,
2417 u64 objectid
, u64 offset
, u64 bytenr
)
2419 struct btrfs_delayed_ref_head
*head
;
2420 struct btrfs_delayed_ref_node
*ref
;
2421 struct btrfs_delayed_data_ref
*data_ref
;
2422 struct btrfs_delayed_ref_root
*delayed_refs
;
2423 struct rb_node
*node
;
2427 delayed_refs
= &trans
->transaction
->delayed_refs
;
2428 spin_lock(&delayed_refs
->lock
);
2429 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2433 if (!mutex_trylock(&head
->mutex
)) {
2434 atomic_inc(&head
->node
.refs
);
2435 spin_unlock(&delayed_refs
->lock
);
2437 btrfs_release_path(path
);
2440 * Mutex was contended, block until it's released and let
2443 mutex_lock(&head
->mutex
);
2444 mutex_unlock(&head
->mutex
);
2445 btrfs_put_delayed_ref(&head
->node
);
2449 node
= rb_prev(&head
->node
.rb_node
);
2453 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2455 if (ref
->bytenr
!= bytenr
)
2459 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2462 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2464 node
= rb_prev(node
);
2466 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2467 if (ref
->bytenr
== bytenr
)
2471 if (data_ref
->root
!= root
->root_key
.objectid
||
2472 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2477 mutex_unlock(&head
->mutex
);
2479 spin_unlock(&delayed_refs
->lock
);
2483 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2484 struct btrfs_root
*root
,
2485 struct btrfs_path
*path
,
2486 u64 objectid
, u64 offset
, u64 bytenr
)
2488 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2489 struct extent_buffer
*leaf
;
2490 struct btrfs_extent_data_ref
*ref
;
2491 struct btrfs_extent_inline_ref
*iref
;
2492 struct btrfs_extent_item
*ei
;
2493 struct btrfs_key key
;
2497 key
.objectid
= bytenr
;
2498 key
.offset
= (u64
)-1;
2499 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2501 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2507 if (path
->slots
[0] == 0)
2511 leaf
= path
->nodes
[0];
2512 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2514 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2518 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2519 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2520 if (item_size
< sizeof(*ei
)) {
2521 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2525 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2527 if (item_size
!= sizeof(*ei
) +
2528 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2531 if (btrfs_extent_generation(leaf
, ei
) <=
2532 btrfs_root_last_snapshot(&root
->root_item
))
2535 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2536 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2537 BTRFS_EXTENT_DATA_REF_KEY
)
2540 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2541 if (btrfs_extent_refs(leaf
, ei
) !=
2542 btrfs_extent_data_ref_count(leaf
, ref
) ||
2543 btrfs_extent_data_ref_root(leaf
, ref
) !=
2544 root
->root_key
.objectid
||
2545 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2546 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2554 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2555 struct btrfs_root
*root
,
2556 u64 objectid
, u64 offset
, u64 bytenr
)
2558 struct btrfs_path
*path
;
2562 path
= btrfs_alloc_path();
2567 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2569 if (ret
&& ret
!= -ENOENT
)
2572 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2574 } while (ret2
== -EAGAIN
);
2576 if (ret2
&& ret2
!= -ENOENT
) {
2581 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2584 btrfs_free_path(path
);
2585 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2590 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2591 struct btrfs_root
*root
,
2592 struct extent_buffer
*buf
,
2593 int full_backref
, int inc
)
2600 struct btrfs_key key
;
2601 struct btrfs_file_extent_item
*fi
;
2605 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2606 u64
, u64
, u64
, u64
, u64
, u64
);
2608 ref_root
= btrfs_header_owner(buf
);
2609 nritems
= btrfs_header_nritems(buf
);
2610 level
= btrfs_header_level(buf
);
2612 if (!root
->ref_cows
&& level
== 0)
2616 process_func
= btrfs_inc_extent_ref
;
2618 process_func
= btrfs_free_extent
;
2621 parent
= buf
->start
;
2625 for (i
= 0; i
< nritems
; i
++) {
2627 btrfs_item_key_to_cpu(buf
, &key
, i
);
2628 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2630 fi
= btrfs_item_ptr(buf
, i
,
2631 struct btrfs_file_extent_item
);
2632 if (btrfs_file_extent_type(buf
, fi
) ==
2633 BTRFS_FILE_EXTENT_INLINE
)
2635 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2639 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2640 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2641 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2642 parent
, ref_root
, key
.objectid
,
2647 bytenr
= btrfs_node_blockptr(buf
, i
);
2648 num_bytes
= btrfs_level_size(root
, level
- 1);
2649 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2650 parent
, ref_root
, level
- 1, 0);
2661 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2662 struct extent_buffer
*buf
, int full_backref
)
2664 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2667 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2668 struct extent_buffer
*buf
, int full_backref
)
2670 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2673 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2674 struct btrfs_root
*root
,
2675 struct btrfs_path
*path
,
2676 struct btrfs_block_group_cache
*cache
)
2679 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2681 struct extent_buffer
*leaf
;
2683 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2688 leaf
= path
->nodes
[0];
2689 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2690 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2691 btrfs_mark_buffer_dirty(leaf
);
2692 btrfs_release_path(path
);
2700 static struct btrfs_block_group_cache
*
2701 next_block_group(struct btrfs_root
*root
,
2702 struct btrfs_block_group_cache
*cache
)
2704 struct rb_node
*node
;
2705 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2706 node
= rb_next(&cache
->cache_node
);
2707 btrfs_put_block_group(cache
);
2709 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2711 btrfs_get_block_group(cache
);
2714 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2718 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2719 struct btrfs_trans_handle
*trans
,
2720 struct btrfs_path
*path
)
2722 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2723 struct inode
*inode
= NULL
;
2725 int dcs
= BTRFS_DC_ERROR
;
2731 * If this block group is smaller than 100 megs don't bother caching the
2734 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2735 spin_lock(&block_group
->lock
);
2736 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2737 spin_unlock(&block_group
->lock
);
2742 inode
= lookup_free_space_inode(root
, block_group
, path
);
2743 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2744 ret
= PTR_ERR(inode
);
2745 btrfs_release_path(path
);
2749 if (IS_ERR(inode
)) {
2753 if (block_group
->ro
)
2756 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2762 /* We've already setup this transaction, go ahead and exit */
2763 if (block_group
->cache_generation
== trans
->transid
&&
2764 i_size_read(inode
)) {
2765 dcs
= BTRFS_DC_SETUP
;
2770 * We want to set the generation to 0, that way if anything goes wrong
2771 * from here on out we know not to trust this cache when we load up next
2774 BTRFS_I(inode
)->generation
= 0;
2775 ret
= btrfs_update_inode(trans
, root
, inode
);
2778 if (i_size_read(inode
) > 0) {
2779 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2785 spin_lock(&block_group
->lock
);
2786 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2787 /* We're not cached, don't bother trying to write stuff out */
2788 dcs
= BTRFS_DC_WRITTEN
;
2789 spin_unlock(&block_group
->lock
);
2792 spin_unlock(&block_group
->lock
);
2794 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2799 * Just to make absolutely sure we have enough space, we're going to
2800 * preallocate 12 pages worth of space for each block group. In
2801 * practice we ought to use at most 8, but we need extra space so we can
2802 * add our header and have a terminator between the extents and the
2806 num_pages
*= PAGE_CACHE_SIZE
;
2808 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2812 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2813 num_pages
, num_pages
,
2816 dcs
= BTRFS_DC_SETUP
;
2817 btrfs_free_reserved_data_space(inode
, num_pages
);
2822 btrfs_release_path(path
);
2824 spin_lock(&block_group
->lock
);
2825 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
2826 block_group
->cache_generation
= trans
->transid
;
2827 block_group
->disk_cache_state
= dcs
;
2828 spin_unlock(&block_group
->lock
);
2833 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2834 struct btrfs_root
*root
)
2836 struct btrfs_block_group_cache
*cache
;
2838 struct btrfs_path
*path
;
2841 path
= btrfs_alloc_path();
2847 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2849 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2851 cache
= next_block_group(root
, cache
);
2859 err
= cache_save_setup(cache
, trans
, path
);
2860 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2861 btrfs_put_block_group(cache
);
2866 err
= btrfs_run_delayed_refs(trans
, root
,
2871 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2873 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2874 btrfs_put_block_group(cache
);
2880 cache
= next_block_group(root
, cache
);
2889 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2890 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2892 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2894 err
= write_one_cache_group(trans
, root
, path
, cache
);
2896 btrfs_put_block_group(cache
);
2901 * I don't think this is needed since we're just marking our
2902 * preallocated extent as written, but just in case it can't
2906 err
= btrfs_run_delayed_refs(trans
, root
,
2911 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2914 * Really this shouldn't happen, but it could if we
2915 * couldn't write the entire preallocated extent and
2916 * splitting the extent resulted in a new block.
2919 btrfs_put_block_group(cache
);
2922 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2924 cache
= next_block_group(root
, cache
);
2933 btrfs_write_out_cache(root
, trans
, cache
, path
);
2936 * If we didn't have an error then the cache state is still
2937 * NEED_WRITE, so we can set it to WRITTEN.
2939 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2940 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2941 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2942 btrfs_put_block_group(cache
);
2945 btrfs_free_path(path
);
2949 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2951 struct btrfs_block_group_cache
*block_group
;
2954 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2955 if (!block_group
|| block_group
->ro
)
2958 btrfs_put_block_group(block_group
);
2962 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2963 u64 total_bytes
, u64 bytes_used
,
2964 struct btrfs_space_info
**space_info
)
2966 struct btrfs_space_info
*found
;
2970 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
2971 BTRFS_BLOCK_GROUP_RAID10
))
2976 found
= __find_space_info(info
, flags
);
2978 spin_lock(&found
->lock
);
2979 found
->total_bytes
+= total_bytes
;
2980 found
->disk_total
+= total_bytes
* factor
;
2981 found
->bytes_used
+= bytes_used
;
2982 found
->disk_used
+= bytes_used
* factor
;
2984 spin_unlock(&found
->lock
);
2985 *space_info
= found
;
2988 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2992 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
2993 INIT_LIST_HEAD(&found
->block_groups
[i
]);
2994 init_rwsem(&found
->groups_sem
);
2995 spin_lock_init(&found
->lock
);
2996 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
2997 BTRFS_BLOCK_GROUP_SYSTEM
|
2998 BTRFS_BLOCK_GROUP_METADATA
);
2999 found
->total_bytes
= total_bytes
;
3000 found
->disk_total
= total_bytes
* factor
;
3001 found
->bytes_used
= bytes_used
;
3002 found
->disk_used
= bytes_used
* factor
;
3003 found
->bytes_pinned
= 0;
3004 found
->bytes_reserved
= 0;
3005 found
->bytes_readonly
= 0;
3006 found
->bytes_may_use
= 0;
3008 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3009 found
->chunk_alloc
= 0;
3011 init_waitqueue_head(&found
->wait
);
3012 *space_info
= found
;
3013 list_add_rcu(&found
->list
, &info
->space_info
);
3017 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3019 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
3020 BTRFS_BLOCK_GROUP_RAID1
|
3021 BTRFS_BLOCK_GROUP_RAID10
|
3022 BTRFS_BLOCK_GROUP_DUP
);
3024 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3025 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3026 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3027 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3028 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3029 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3033 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3036 * we add in the count of missing devices because we want
3037 * to make sure that any RAID levels on a degraded FS
3038 * continue to be honored.
3040 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3041 root
->fs_info
->fs_devices
->missing_devices
;
3043 if (num_devices
== 1)
3044 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3045 if (num_devices
< 4)
3046 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3048 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3049 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3050 BTRFS_BLOCK_GROUP_RAID10
))) {
3051 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3054 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3055 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3056 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3059 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3060 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3061 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3062 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
3063 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3067 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3069 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3070 flags
|= root
->fs_info
->avail_data_alloc_bits
&
3071 root
->fs_info
->data_alloc_profile
;
3072 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3073 flags
|= root
->fs_info
->avail_system_alloc_bits
&
3074 root
->fs_info
->system_alloc_profile
;
3075 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3076 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
3077 root
->fs_info
->metadata_alloc_profile
;
3078 return btrfs_reduce_alloc_profile(root
, flags
);
3081 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3086 flags
= BTRFS_BLOCK_GROUP_DATA
;
3087 else if (root
== root
->fs_info
->chunk_root
)
3088 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3090 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3092 return get_alloc_profile(root
, flags
);
3095 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3097 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3098 BTRFS_BLOCK_GROUP_DATA
);
3102 * This will check the space that the inode allocates from to make sure we have
3103 * enough space for bytes.
3105 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3107 struct btrfs_space_info
*data_sinfo
;
3108 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3110 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3112 /* make sure bytes are sectorsize aligned */
3113 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3115 if (root
== root
->fs_info
->tree_root
||
3116 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3121 data_sinfo
= BTRFS_I(inode
)->space_info
;
3126 /* make sure we have enough space to handle the data first */
3127 spin_lock(&data_sinfo
->lock
);
3128 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3129 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3130 data_sinfo
->bytes_may_use
;
3132 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3133 struct btrfs_trans_handle
*trans
;
3136 * if we don't have enough free bytes in this space then we need
3137 * to alloc a new chunk.
3139 if (!data_sinfo
->full
&& alloc_chunk
) {
3142 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3143 spin_unlock(&data_sinfo
->lock
);
3145 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3146 trans
= btrfs_join_transaction(root
);
3148 return PTR_ERR(trans
);
3150 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3151 bytes
+ 2 * 1024 * 1024,
3153 CHUNK_ALLOC_NO_FORCE
);
3154 btrfs_end_transaction(trans
, root
);
3163 btrfs_set_inode_space_info(root
, inode
);
3164 data_sinfo
= BTRFS_I(inode
)->space_info
;
3170 * If we have less pinned bytes than we want to allocate then
3171 * don't bother committing the transaction, it won't help us.
3173 if (data_sinfo
->bytes_pinned
< bytes
)
3175 spin_unlock(&data_sinfo
->lock
);
3177 /* commit the current transaction and try again */
3180 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3182 trans
= btrfs_join_transaction(root
);
3184 return PTR_ERR(trans
);
3185 ret
= btrfs_commit_transaction(trans
, root
);
3193 data_sinfo
->bytes_may_use
+= bytes
;
3194 spin_unlock(&data_sinfo
->lock
);
3200 * Called if we need to clear a data reservation for this inode.
3202 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3204 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3205 struct btrfs_space_info
*data_sinfo
;
3207 /* make sure bytes are sectorsize aligned */
3208 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3210 data_sinfo
= BTRFS_I(inode
)->space_info
;
3211 spin_lock(&data_sinfo
->lock
);
3212 data_sinfo
->bytes_may_use
-= bytes
;
3213 spin_unlock(&data_sinfo
->lock
);
3216 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3218 struct list_head
*head
= &info
->space_info
;
3219 struct btrfs_space_info
*found
;
3222 list_for_each_entry_rcu(found
, head
, list
) {
3223 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3224 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3229 static int should_alloc_chunk(struct btrfs_root
*root
,
3230 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
,
3233 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3234 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3235 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3238 if (force
== CHUNK_ALLOC_FORCE
)
3242 * We need to take into account the global rsv because for all intents
3243 * and purposes it's used space. Don't worry about locking the
3244 * global_rsv, it doesn't change except when the transaction commits.
3246 num_allocated
+= global_rsv
->size
;
3249 * in limited mode, we want to have some free space up to
3250 * about 1% of the FS size.
3252 if (force
== CHUNK_ALLOC_LIMITED
) {
3253 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3254 thresh
= max_t(u64
, 64 * 1024 * 1024,
3255 div_factor_fine(thresh
, 1));
3257 if (num_bytes
- num_allocated
< thresh
)
3262 * we have two similar checks here, one based on percentage
3263 * and once based on a hard number of 256MB. The idea
3264 * is that if we have a good amount of free
3265 * room, don't allocate a chunk. A good mount is
3266 * less than 80% utilized of the chunks we have allocated,
3267 * or more than 256MB free
3269 if (num_allocated
+ alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3272 if (num_allocated
+ alloc_bytes
< div_factor(num_bytes
, 8))
3275 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3277 /* 256MB or 5% of the FS */
3278 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 5));
3280 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 3))
3285 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3286 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3287 u64 flags
, int force
)
3289 struct btrfs_space_info
*space_info
;
3290 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3291 int wait_for_alloc
= 0;
3294 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3296 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3298 ret
= update_space_info(extent_root
->fs_info
, flags
,
3302 BUG_ON(!space_info
);
3305 spin_lock(&space_info
->lock
);
3306 if (space_info
->force_alloc
)
3307 force
= space_info
->force_alloc
;
3308 if (space_info
->full
) {
3309 spin_unlock(&space_info
->lock
);
3313 if (!should_alloc_chunk(extent_root
, space_info
, alloc_bytes
, force
)) {
3314 spin_unlock(&space_info
->lock
);
3316 } else if (space_info
->chunk_alloc
) {
3319 space_info
->chunk_alloc
= 1;
3322 spin_unlock(&space_info
->lock
);
3324 mutex_lock(&fs_info
->chunk_mutex
);
3327 * The chunk_mutex is held throughout the entirety of a chunk
3328 * allocation, so once we've acquired the chunk_mutex we know that the
3329 * other guy is done and we need to recheck and see if we should
3332 if (wait_for_alloc
) {
3333 mutex_unlock(&fs_info
->chunk_mutex
);
3339 * If we have mixed data/metadata chunks we want to make sure we keep
3340 * allocating mixed chunks instead of individual chunks.
3342 if (btrfs_mixed_space_info(space_info
))
3343 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3346 * if we're doing a data chunk, go ahead and make sure that
3347 * we keep a reasonable number of metadata chunks allocated in the
3350 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3351 fs_info
->data_chunk_allocations
++;
3352 if (!(fs_info
->data_chunk_allocations
%
3353 fs_info
->metadata_ratio
))
3354 force_metadata_allocation(fs_info
);
3357 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3358 if (ret
< 0 && ret
!= -ENOSPC
)
3361 spin_lock(&space_info
->lock
);
3363 space_info
->full
= 1;
3367 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3368 space_info
->chunk_alloc
= 0;
3369 spin_unlock(&space_info
->lock
);
3371 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3376 * shrink metadata reservation for delalloc
3378 static int shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
,
3381 struct btrfs_block_rsv
*block_rsv
;
3382 struct btrfs_space_info
*space_info
;
3383 struct btrfs_trans_handle
*trans
;
3388 unsigned long nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3390 unsigned long progress
;
3392 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3393 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3394 space_info
= block_rsv
->space_info
;
3397 reserved
= space_info
->bytes_may_use
;
3398 progress
= space_info
->reservation_progress
;
3404 if (root
->fs_info
->delalloc_bytes
== 0) {
3407 btrfs_wait_ordered_extents(root
, 0, 0);
3411 max_reclaim
= min(reserved
, to_reclaim
);
3412 nr_pages
= max_t(unsigned long, nr_pages
,
3413 max_reclaim
>> PAGE_CACHE_SHIFT
);
3414 while (loops
< 1024) {
3415 /* have the flusher threads jump in and do some IO */
3417 nr_pages
= min_t(unsigned long, nr_pages
,
3418 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3419 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
,
3420 WB_REASON_FS_FREE_SPACE
);
3422 spin_lock(&space_info
->lock
);
3423 if (reserved
> space_info
->bytes_may_use
)
3424 reclaimed
+= reserved
- space_info
->bytes_may_use
;
3425 reserved
= space_info
->bytes_may_use
;
3426 spin_unlock(&space_info
->lock
);
3430 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3433 if (trans
&& trans
->transaction
->blocked
)
3436 if (wait_ordered
&& !trans
) {
3437 btrfs_wait_ordered_extents(root
, 0, 0);
3439 time_left
= schedule_timeout_interruptible(1);
3441 /* We were interrupted, exit */
3446 /* we've kicked the IO a few times, if anything has been freed,
3447 * exit. There is no sense in looping here for a long time
3448 * when we really need to commit the transaction, or there are
3449 * just too many writers without enough free space
3454 if (progress
!= space_info
->reservation_progress
)
3460 return reclaimed
>= to_reclaim
;
3464 * maybe_commit_transaction - possibly commit the transaction if its ok to
3465 * @root - the root we're allocating for
3466 * @bytes - the number of bytes we want to reserve
3467 * @force - force the commit
3469 * This will check to make sure that committing the transaction will actually
3470 * get us somewhere and then commit the transaction if it does. Otherwise it
3471 * will return -ENOSPC.
3473 static int may_commit_transaction(struct btrfs_root
*root
,
3474 struct btrfs_space_info
*space_info
,
3475 u64 bytes
, int force
)
3477 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
3478 struct btrfs_trans_handle
*trans
;
3480 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3487 /* See if there is enough pinned space to make this reservation */
3488 spin_lock(&space_info
->lock
);
3489 if (space_info
->bytes_pinned
>= bytes
) {
3490 spin_unlock(&space_info
->lock
);
3493 spin_unlock(&space_info
->lock
);
3496 * See if there is some space in the delayed insertion reservation for
3499 if (space_info
!= delayed_rsv
->space_info
)
3502 spin_lock(&delayed_rsv
->lock
);
3503 if (delayed_rsv
->size
< bytes
) {
3504 spin_unlock(&delayed_rsv
->lock
);
3507 spin_unlock(&delayed_rsv
->lock
);
3510 trans
= btrfs_join_transaction(root
);
3514 return btrfs_commit_transaction(trans
, root
);
3518 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3519 * @root - the root we're allocating for
3520 * @block_rsv - the block_rsv we're allocating for
3521 * @orig_bytes - the number of bytes we want
3522 * @flush - wether or not we can flush to make our reservation
3524 * This will reserve orgi_bytes number of bytes from the space info associated
3525 * with the block_rsv. If there is not enough space it will make an attempt to
3526 * flush out space to make room. It will do this by flushing delalloc if
3527 * possible or committing the transaction. If flush is 0 then no attempts to
3528 * regain reservations will be made and this will fail if there is not enough
3531 static int reserve_metadata_bytes(struct btrfs_root
*root
,
3532 struct btrfs_block_rsv
*block_rsv
,
3533 u64 orig_bytes
, int flush
)
3535 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3537 u64 num_bytes
= orig_bytes
;
3540 bool committed
= false;
3541 bool flushing
= false;
3542 bool wait_ordered
= false;
3546 spin_lock(&space_info
->lock
);
3548 * We only want to wait if somebody other than us is flushing and we are
3549 * actually alloed to flush.
3551 while (flush
&& !flushing
&& space_info
->flush
) {
3552 spin_unlock(&space_info
->lock
);
3554 * If we have a trans handle we can't wait because the flusher
3555 * may have to commit the transaction, which would mean we would
3556 * deadlock since we are waiting for the flusher to finish, but
3557 * hold the current transaction open.
3559 if (current
->journal_info
)
3561 ret
= wait_event_interruptible(space_info
->wait
,
3562 !space_info
->flush
);
3563 /* Must have been interrupted, return */
3567 spin_lock(&space_info
->lock
);
3571 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3572 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3573 space_info
->bytes_may_use
;
3576 * The idea here is that we've not already over-reserved the block group
3577 * then we can go ahead and save our reservation first and then start
3578 * flushing if we need to. Otherwise if we've already overcommitted
3579 * lets start flushing stuff first and then come back and try to make
3582 if (used
<= space_info
->total_bytes
) {
3583 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
3584 space_info
->bytes_may_use
+= orig_bytes
;
3588 * Ok set num_bytes to orig_bytes since we aren't
3589 * overocmmitted, this way we only try and reclaim what
3592 num_bytes
= orig_bytes
;
3596 * Ok we're over committed, set num_bytes to the overcommitted
3597 * amount plus the amount of bytes that we need for this
3600 wait_ordered
= true;
3601 num_bytes
= used
- space_info
->total_bytes
+
3602 (orig_bytes
* (retries
+ 1));
3606 u64 profile
= btrfs_get_alloc_profile(root
, 0);
3610 * If we have a lot of space that's pinned, don't bother doing
3611 * the overcommit dance yet and just commit the transaction.
3613 avail
= (space_info
->total_bytes
- space_info
->bytes_used
) * 8;
3615 if (space_info
->bytes_pinned
>= avail
&& flush
&& !committed
) {
3616 space_info
->flush
= 1;
3618 spin_unlock(&space_info
->lock
);
3619 ret
= may_commit_transaction(root
, space_info
,
3627 spin_lock(&root
->fs_info
->free_chunk_lock
);
3628 avail
= root
->fs_info
->free_chunk_space
;
3631 * If we have dup, raid1 or raid10 then only half of the free
3632 * space is actually useable.
3634 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
3635 BTRFS_BLOCK_GROUP_RAID1
|
3636 BTRFS_BLOCK_GROUP_RAID10
))
3640 * If we aren't flushing don't let us overcommit too much, say
3641 * 1/8th of the space. If we can flush, let it overcommit up to
3648 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3650 if (used
+ num_bytes
< space_info
->total_bytes
+ avail
) {
3651 space_info
->bytes_may_use
+= orig_bytes
;
3654 wait_ordered
= true;
3659 * Couldn't make our reservation, save our place so while we're trying
3660 * to reclaim space we can actually use it instead of somebody else
3661 * stealing it from us.
3665 space_info
->flush
= 1;
3668 spin_unlock(&space_info
->lock
);
3674 * We do synchronous shrinking since we don't actually unreserve
3675 * metadata until after the IO is completed.
3677 ret
= shrink_delalloc(root
, num_bytes
, wait_ordered
);
3684 * So if we were overcommitted it's possible that somebody else flushed
3685 * out enough space and we simply didn't have enough space to reclaim,
3686 * so go back around and try again.
3689 wait_ordered
= true;
3698 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
3706 spin_lock(&space_info
->lock
);
3707 space_info
->flush
= 0;
3708 wake_up_all(&space_info
->wait
);
3709 spin_unlock(&space_info
->lock
);
3714 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3715 struct btrfs_root
*root
)
3717 struct btrfs_block_rsv
*block_rsv
= NULL
;
3719 if (root
->ref_cows
|| root
== root
->fs_info
->csum_root
)
3720 block_rsv
= trans
->block_rsv
;
3723 block_rsv
= root
->block_rsv
;
3726 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3731 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3735 spin_lock(&block_rsv
->lock
);
3736 if (block_rsv
->reserved
>= num_bytes
) {
3737 block_rsv
->reserved
-= num_bytes
;
3738 if (block_rsv
->reserved
< block_rsv
->size
)
3739 block_rsv
->full
= 0;
3742 spin_unlock(&block_rsv
->lock
);
3746 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3747 u64 num_bytes
, int update_size
)
3749 spin_lock(&block_rsv
->lock
);
3750 block_rsv
->reserved
+= num_bytes
;
3752 block_rsv
->size
+= num_bytes
;
3753 else if (block_rsv
->reserved
>= block_rsv
->size
)
3754 block_rsv
->full
= 1;
3755 spin_unlock(&block_rsv
->lock
);
3758 static void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3759 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3761 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3763 spin_lock(&block_rsv
->lock
);
3764 if (num_bytes
== (u64
)-1)
3765 num_bytes
= block_rsv
->size
;
3766 block_rsv
->size
-= num_bytes
;
3767 if (block_rsv
->reserved
>= block_rsv
->size
) {
3768 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3769 block_rsv
->reserved
= block_rsv
->size
;
3770 block_rsv
->full
= 1;
3774 spin_unlock(&block_rsv
->lock
);
3776 if (num_bytes
> 0) {
3778 spin_lock(&dest
->lock
);
3782 bytes_to_add
= dest
->size
- dest
->reserved
;
3783 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3784 dest
->reserved
+= bytes_to_add
;
3785 if (dest
->reserved
>= dest
->size
)
3787 num_bytes
-= bytes_to_add
;
3789 spin_unlock(&dest
->lock
);
3792 spin_lock(&space_info
->lock
);
3793 space_info
->bytes_may_use
-= num_bytes
;
3794 space_info
->reservation_progress
++;
3795 spin_unlock(&space_info
->lock
);
3800 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3801 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3805 ret
= block_rsv_use_bytes(src
, num_bytes
);
3809 block_rsv_add_bytes(dst
, num_bytes
, 1);
3813 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3815 memset(rsv
, 0, sizeof(*rsv
));
3816 spin_lock_init(&rsv
->lock
);
3819 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3821 struct btrfs_block_rsv
*block_rsv
;
3822 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3824 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3828 btrfs_init_block_rsv(block_rsv
);
3829 block_rsv
->space_info
= __find_space_info(fs_info
,
3830 BTRFS_BLOCK_GROUP_METADATA
);
3834 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3835 struct btrfs_block_rsv
*rsv
)
3837 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3841 static inline int __block_rsv_add(struct btrfs_root
*root
,
3842 struct btrfs_block_rsv
*block_rsv
,
3843 u64 num_bytes
, int flush
)
3850 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
3852 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3859 int btrfs_block_rsv_add(struct btrfs_root
*root
,
3860 struct btrfs_block_rsv
*block_rsv
,
3863 return __block_rsv_add(root
, block_rsv
, num_bytes
, 1);
3866 int btrfs_block_rsv_add_noflush(struct btrfs_root
*root
,
3867 struct btrfs_block_rsv
*block_rsv
,
3870 return __block_rsv_add(root
, block_rsv
, num_bytes
, 0);
3873 int btrfs_block_rsv_check(struct btrfs_root
*root
,
3874 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
3882 spin_lock(&block_rsv
->lock
);
3883 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3884 if (block_rsv
->reserved
>= num_bytes
)
3886 spin_unlock(&block_rsv
->lock
);
3891 static inline int __btrfs_block_rsv_refill(struct btrfs_root
*root
,
3892 struct btrfs_block_rsv
*block_rsv
,
3893 u64 min_reserved
, int flush
)
3901 spin_lock(&block_rsv
->lock
);
3902 num_bytes
= min_reserved
;
3903 if (block_rsv
->reserved
>= num_bytes
)
3906 num_bytes
-= block_rsv
->reserved
;
3907 spin_unlock(&block_rsv
->lock
);
3912 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
3914 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3921 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
3922 struct btrfs_block_rsv
*block_rsv
,
3925 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 1);
3928 int btrfs_block_rsv_refill_noflush(struct btrfs_root
*root
,
3929 struct btrfs_block_rsv
*block_rsv
,
3932 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 0);
3935 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3936 struct btrfs_block_rsv
*dst_rsv
,
3939 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3942 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3943 struct btrfs_block_rsv
*block_rsv
,
3946 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3947 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3948 block_rsv
->space_info
!= global_rsv
->space_info
)
3950 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3954 * helper to calculate size of global block reservation.
3955 * the desired value is sum of space used by extent tree,
3956 * checksum tree and root tree
3958 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3960 struct btrfs_space_info
*sinfo
;
3964 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
3966 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3967 spin_lock(&sinfo
->lock
);
3968 data_used
= sinfo
->bytes_used
;
3969 spin_unlock(&sinfo
->lock
);
3971 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3972 spin_lock(&sinfo
->lock
);
3973 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
3975 meta_used
= sinfo
->bytes_used
;
3976 spin_unlock(&sinfo
->lock
);
3978 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3980 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3982 if (num_bytes
* 3 > meta_used
)
3983 num_bytes
= div64_u64(meta_used
, 3);
3985 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3988 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3990 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3991 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3994 num_bytes
= calc_global_metadata_size(fs_info
);
3996 spin_lock(&block_rsv
->lock
);
3997 spin_lock(&sinfo
->lock
);
3999 block_rsv
->size
= num_bytes
;
4001 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4002 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4003 sinfo
->bytes_may_use
;
4005 if (sinfo
->total_bytes
> num_bytes
) {
4006 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4007 block_rsv
->reserved
+= num_bytes
;
4008 sinfo
->bytes_may_use
+= num_bytes
;
4011 if (block_rsv
->reserved
>= block_rsv
->size
) {
4012 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4013 sinfo
->bytes_may_use
-= num_bytes
;
4014 sinfo
->reservation_progress
++;
4015 block_rsv
->reserved
= block_rsv
->size
;
4016 block_rsv
->full
= 1;
4019 spin_unlock(&sinfo
->lock
);
4020 spin_unlock(&block_rsv
->lock
);
4023 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4025 struct btrfs_space_info
*space_info
;
4027 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4028 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4030 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4031 fs_info
->global_block_rsv
.space_info
= space_info
;
4032 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4033 fs_info
->trans_block_rsv
.space_info
= space_info
;
4034 fs_info
->empty_block_rsv
.space_info
= space_info
;
4035 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4037 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4038 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4039 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4040 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4041 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4043 update_global_block_rsv(fs_info
);
4046 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4048 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
4049 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4050 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4051 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4052 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4053 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4054 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4055 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4056 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4059 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4060 struct btrfs_root
*root
)
4062 if (!trans
->bytes_reserved
)
4065 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4066 trans
->bytes_reserved
= 0;
4069 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4070 struct inode
*inode
)
4072 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4073 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4074 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4077 * We need to hold space in order to delete our orphan item once we've
4078 * added it, so this takes the reservation so we can release it later
4079 * when we are truly done with the orphan item.
4081 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4082 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4085 void btrfs_orphan_release_metadata(struct inode
*inode
)
4087 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4088 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4089 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4092 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
4093 struct btrfs_pending_snapshot
*pending
)
4095 struct btrfs_root
*root
= pending
->root
;
4096 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4097 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
4099 * two for root back/forward refs, two for directory entries
4100 * and one for root of the snapshot.
4102 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
4103 dst_rsv
->space_info
= src_rsv
->space_info
;
4104 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4108 * drop_outstanding_extent - drop an outstanding extent
4109 * @inode: the inode we're dropping the extent for
4111 * This is called when we are freeing up an outstanding extent, either called
4112 * after an error or after an extent is written. This will return the number of
4113 * reserved extents that need to be freed. This must be called with
4114 * BTRFS_I(inode)->lock held.
4116 static unsigned drop_outstanding_extent(struct inode
*inode
)
4118 unsigned drop_inode_space
= 0;
4119 unsigned dropped_extents
= 0;
4121 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
4122 BTRFS_I(inode
)->outstanding_extents
--;
4124 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
4125 BTRFS_I(inode
)->delalloc_meta_reserved
) {
4126 drop_inode_space
= 1;
4127 BTRFS_I(inode
)->delalloc_meta_reserved
= 0;
4131 * If we have more or the same amount of outsanding extents than we have
4132 * reserved then we need to leave the reserved extents count alone.
4134 if (BTRFS_I(inode
)->outstanding_extents
>=
4135 BTRFS_I(inode
)->reserved_extents
)
4136 return drop_inode_space
;
4138 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
4139 BTRFS_I(inode
)->outstanding_extents
;
4140 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
4141 return dropped_extents
+ drop_inode_space
;
4145 * calc_csum_metadata_size - return the amount of metada space that must be
4146 * reserved/free'd for the given bytes.
4147 * @inode: the inode we're manipulating
4148 * @num_bytes: the number of bytes in question
4149 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4151 * This adjusts the number of csum_bytes in the inode and then returns the
4152 * correct amount of metadata that must either be reserved or freed. We
4153 * calculate how many checksums we can fit into one leaf and then divide the
4154 * number of bytes that will need to be checksumed by this value to figure out
4155 * how many checksums will be required. If we are adding bytes then the number
4156 * may go up and we will return the number of additional bytes that must be
4157 * reserved. If it is going down we will return the number of bytes that must
4160 * This must be called with BTRFS_I(inode)->lock held.
4162 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
4165 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4167 int num_csums_per_leaf
;
4171 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
4172 BTRFS_I(inode
)->csum_bytes
== 0)
4175 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4177 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
4179 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
4180 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
4181 num_csums_per_leaf
= (int)div64_u64(csum_size
,
4182 sizeof(struct btrfs_csum_item
) +
4183 sizeof(struct btrfs_disk_key
));
4184 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4185 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
4186 num_csums
= num_csums
/ num_csums_per_leaf
;
4188 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
4189 old_csums
= old_csums
/ num_csums_per_leaf
;
4191 /* No change, no need to reserve more */
4192 if (old_csums
== num_csums
)
4196 return btrfs_calc_trans_metadata_size(root
,
4197 num_csums
- old_csums
);
4199 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
4202 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
4204 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4205 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4208 unsigned nr_extents
= 0;
4209 int extra_reserve
= 0;
4213 /* Need to be holding the i_mutex here if we aren't free space cache */
4214 if (btrfs_is_free_space_inode(root
, inode
))
4217 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
4219 if (flush
&& btrfs_transaction_in_commit(root
->fs_info
))
4220 schedule_timeout(1);
4222 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4224 spin_lock(&BTRFS_I(inode
)->lock
);
4225 BTRFS_I(inode
)->outstanding_extents
++;
4227 if (BTRFS_I(inode
)->outstanding_extents
>
4228 BTRFS_I(inode
)->reserved_extents
)
4229 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
4230 BTRFS_I(inode
)->reserved_extents
;
4233 * Add an item to reserve for updating the inode when we complete the
4236 if (!BTRFS_I(inode
)->delalloc_meta_reserved
) {
4241 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4242 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
4243 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
4244 spin_unlock(&BTRFS_I(inode
)->lock
);
4246 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
4251 spin_lock(&BTRFS_I(inode
)->lock
);
4252 dropped
= drop_outstanding_extent(inode
);
4254 * If the inodes csum_bytes is the same as the original
4255 * csum_bytes then we know we haven't raced with any free()ers
4256 * so we can just reduce our inodes csum bytes and carry on.
4257 * Otherwise we have to do the normal free thing to account for
4258 * the case that the free side didn't free up its reserve
4259 * because of this outstanding reservation.
4261 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
)
4262 calc_csum_metadata_size(inode
, num_bytes
, 0);
4264 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4265 spin_unlock(&BTRFS_I(inode
)->lock
);
4267 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4270 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
4274 spin_lock(&BTRFS_I(inode
)->lock
);
4275 if (extra_reserve
) {
4276 BTRFS_I(inode
)->delalloc_meta_reserved
= 1;
4279 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4280 spin_unlock(&BTRFS_I(inode
)->lock
);
4282 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4288 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4289 * @inode: the inode to release the reservation for
4290 * @num_bytes: the number of bytes we're releasing
4292 * This will release the metadata reservation for an inode. This can be called
4293 * once we complete IO for a given set of bytes to release their metadata
4296 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4298 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4302 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4303 spin_lock(&BTRFS_I(inode
)->lock
);
4304 dropped
= drop_outstanding_extent(inode
);
4306 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4307 spin_unlock(&BTRFS_I(inode
)->lock
);
4309 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4311 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4316 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4317 * @inode: inode we're writing to
4318 * @num_bytes: the number of bytes we want to allocate
4320 * This will do the following things
4322 * o reserve space in the data space info for num_bytes
4323 * o reserve space in the metadata space info based on number of outstanding
4324 * extents and how much csums will be needed
4325 * o add to the inodes ->delalloc_bytes
4326 * o add it to the fs_info's delalloc inodes list.
4328 * This will return 0 for success and -ENOSPC if there is no space left.
4330 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4334 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4338 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4340 btrfs_free_reserved_data_space(inode
, num_bytes
);
4348 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4349 * @inode: inode we're releasing space for
4350 * @num_bytes: the number of bytes we want to free up
4352 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4353 * called in the case that we don't need the metadata AND data reservations
4354 * anymore. So if there is an error or we insert an inline extent.
4356 * This function will release the metadata space that was not used and will
4357 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4358 * list if there are no delalloc bytes left.
4360 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4362 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4363 btrfs_free_reserved_data_space(inode
, num_bytes
);
4366 static int update_block_group(struct btrfs_trans_handle
*trans
,
4367 struct btrfs_root
*root
,
4368 u64 bytenr
, u64 num_bytes
, int alloc
)
4370 struct btrfs_block_group_cache
*cache
= NULL
;
4371 struct btrfs_fs_info
*info
= root
->fs_info
;
4372 u64 total
= num_bytes
;
4377 /* block accounting for super block */
4378 spin_lock(&info
->delalloc_lock
);
4379 old_val
= btrfs_super_bytes_used(info
->super_copy
);
4381 old_val
+= num_bytes
;
4383 old_val
-= num_bytes
;
4384 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
4385 spin_unlock(&info
->delalloc_lock
);
4388 cache
= btrfs_lookup_block_group(info
, bytenr
);
4391 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4392 BTRFS_BLOCK_GROUP_RAID1
|
4393 BTRFS_BLOCK_GROUP_RAID10
))
4398 * If this block group has free space cache written out, we
4399 * need to make sure to load it if we are removing space. This
4400 * is because we need the unpinning stage to actually add the
4401 * space back to the block group, otherwise we will leak space.
4403 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4404 cache_block_group(cache
, trans
, NULL
, 1);
4406 byte_in_group
= bytenr
- cache
->key
.objectid
;
4407 WARN_ON(byte_in_group
> cache
->key
.offset
);
4409 spin_lock(&cache
->space_info
->lock
);
4410 spin_lock(&cache
->lock
);
4412 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
4413 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4414 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4417 old_val
= btrfs_block_group_used(&cache
->item
);
4418 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4420 old_val
+= num_bytes
;
4421 btrfs_set_block_group_used(&cache
->item
, old_val
);
4422 cache
->reserved
-= num_bytes
;
4423 cache
->space_info
->bytes_reserved
-= num_bytes
;
4424 cache
->space_info
->bytes_used
+= num_bytes
;
4425 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4426 spin_unlock(&cache
->lock
);
4427 spin_unlock(&cache
->space_info
->lock
);
4429 old_val
-= num_bytes
;
4430 btrfs_set_block_group_used(&cache
->item
, old_val
);
4431 cache
->pinned
+= num_bytes
;
4432 cache
->space_info
->bytes_pinned
+= num_bytes
;
4433 cache
->space_info
->bytes_used
-= num_bytes
;
4434 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4435 spin_unlock(&cache
->lock
);
4436 spin_unlock(&cache
->space_info
->lock
);
4438 set_extent_dirty(info
->pinned_extents
,
4439 bytenr
, bytenr
+ num_bytes
- 1,
4440 GFP_NOFS
| __GFP_NOFAIL
);
4442 btrfs_put_block_group(cache
);
4444 bytenr
+= num_bytes
;
4449 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4451 struct btrfs_block_group_cache
*cache
;
4454 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4458 bytenr
= cache
->key
.objectid
;
4459 btrfs_put_block_group(cache
);
4464 static int pin_down_extent(struct btrfs_root
*root
,
4465 struct btrfs_block_group_cache
*cache
,
4466 u64 bytenr
, u64 num_bytes
, int reserved
)
4468 spin_lock(&cache
->space_info
->lock
);
4469 spin_lock(&cache
->lock
);
4470 cache
->pinned
+= num_bytes
;
4471 cache
->space_info
->bytes_pinned
+= num_bytes
;
4473 cache
->reserved
-= num_bytes
;
4474 cache
->space_info
->bytes_reserved
-= num_bytes
;
4476 spin_unlock(&cache
->lock
);
4477 spin_unlock(&cache
->space_info
->lock
);
4479 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4480 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4485 * this function must be called within transaction
4487 int btrfs_pin_extent(struct btrfs_root
*root
,
4488 u64 bytenr
, u64 num_bytes
, int reserved
)
4490 struct btrfs_block_group_cache
*cache
;
4492 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4495 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4497 btrfs_put_block_group(cache
);
4502 * this function must be called within transaction
4504 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle
*trans
,
4505 struct btrfs_root
*root
,
4506 u64 bytenr
, u64 num_bytes
)
4508 struct btrfs_block_group_cache
*cache
;
4510 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4514 * pull in the free space cache (if any) so that our pin
4515 * removes the free space from the cache. We have load_only set
4516 * to one because the slow code to read in the free extents does check
4517 * the pinned extents.
4519 cache_block_group(cache
, trans
, root
, 1);
4521 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
4523 /* remove us from the free space cache (if we're there at all) */
4524 btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
4525 btrfs_put_block_group(cache
);
4530 * btrfs_update_reserved_bytes - update the block_group and space info counters
4531 * @cache: The cache we are manipulating
4532 * @num_bytes: The number of bytes in question
4533 * @reserve: One of the reservation enums
4535 * This is called by the allocator when it reserves space, or by somebody who is
4536 * freeing space that was never actually used on disk. For example if you
4537 * reserve some space for a new leaf in transaction A and before transaction A
4538 * commits you free that leaf, you call this with reserve set to 0 in order to
4539 * clear the reservation.
4541 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4542 * ENOSPC accounting. For data we handle the reservation through clearing the
4543 * delalloc bits in the io_tree. We have to do this since we could end up
4544 * allocating less disk space for the amount of data we have reserved in the
4545 * case of compression.
4547 * If this is a reservation and the block group has become read only we cannot
4548 * make the reservation and return -EAGAIN, otherwise this function always
4551 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4552 u64 num_bytes
, int reserve
)
4554 struct btrfs_space_info
*space_info
= cache
->space_info
;
4556 spin_lock(&space_info
->lock
);
4557 spin_lock(&cache
->lock
);
4558 if (reserve
!= RESERVE_FREE
) {
4562 cache
->reserved
+= num_bytes
;
4563 space_info
->bytes_reserved
+= num_bytes
;
4564 if (reserve
== RESERVE_ALLOC
) {
4565 BUG_ON(space_info
->bytes_may_use
< num_bytes
);
4566 space_info
->bytes_may_use
-= num_bytes
;
4571 space_info
->bytes_readonly
+= num_bytes
;
4572 cache
->reserved
-= num_bytes
;
4573 space_info
->bytes_reserved
-= num_bytes
;
4574 space_info
->reservation_progress
++;
4576 spin_unlock(&cache
->lock
);
4577 spin_unlock(&space_info
->lock
);
4581 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4582 struct btrfs_root
*root
)
4584 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4585 struct btrfs_caching_control
*next
;
4586 struct btrfs_caching_control
*caching_ctl
;
4587 struct btrfs_block_group_cache
*cache
;
4589 down_write(&fs_info
->extent_commit_sem
);
4591 list_for_each_entry_safe(caching_ctl
, next
,
4592 &fs_info
->caching_block_groups
, list
) {
4593 cache
= caching_ctl
->block_group
;
4594 if (block_group_cache_done(cache
)) {
4595 cache
->last_byte_to_unpin
= (u64
)-1;
4596 list_del_init(&caching_ctl
->list
);
4597 put_caching_control(caching_ctl
);
4599 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4603 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4604 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4606 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4608 up_write(&fs_info
->extent_commit_sem
);
4610 update_global_block_rsv(fs_info
);
4614 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4616 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4617 struct btrfs_block_group_cache
*cache
= NULL
;
4620 while (start
<= end
) {
4622 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4624 btrfs_put_block_group(cache
);
4625 cache
= btrfs_lookup_block_group(fs_info
, start
);
4629 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4630 len
= min(len
, end
+ 1 - start
);
4632 if (start
< cache
->last_byte_to_unpin
) {
4633 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4634 btrfs_add_free_space(cache
, start
, len
);
4639 spin_lock(&cache
->space_info
->lock
);
4640 spin_lock(&cache
->lock
);
4641 cache
->pinned
-= len
;
4642 cache
->space_info
->bytes_pinned
-= len
;
4644 cache
->space_info
->bytes_readonly
+= len
;
4645 spin_unlock(&cache
->lock
);
4646 spin_unlock(&cache
->space_info
->lock
);
4650 btrfs_put_block_group(cache
);
4654 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4655 struct btrfs_root
*root
)
4657 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4658 struct extent_io_tree
*unpin
;
4663 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4664 unpin
= &fs_info
->freed_extents
[1];
4666 unpin
= &fs_info
->freed_extents
[0];
4669 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4674 if (btrfs_test_opt(root
, DISCARD
))
4675 ret
= btrfs_discard_extent(root
, start
,
4676 end
+ 1 - start
, NULL
);
4678 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4679 unpin_extent_range(root
, start
, end
);
4686 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4687 struct btrfs_root
*root
,
4688 u64 bytenr
, u64 num_bytes
, u64 parent
,
4689 u64 root_objectid
, u64 owner_objectid
,
4690 u64 owner_offset
, int refs_to_drop
,
4691 struct btrfs_delayed_extent_op
*extent_op
)
4693 struct btrfs_key key
;
4694 struct btrfs_path
*path
;
4695 struct btrfs_fs_info
*info
= root
->fs_info
;
4696 struct btrfs_root
*extent_root
= info
->extent_root
;
4697 struct extent_buffer
*leaf
;
4698 struct btrfs_extent_item
*ei
;
4699 struct btrfs_extent_inline_ref
*iref
;
4702 int extent_slot
= 0;
4703 int found_extent
= 0;
4708 path
= btrfs_alloc_path();
4713 path
->leave_spinning
= 1;
4715 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4716 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4718 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4719 bytenr
, num_bytes
, parent
,
4720 root_objectid
, owner_objectid
,
4723 extent_slot
= path
->slots
[0];
4724 while (extent_slot
>= 0) {
4725 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4727 if (key
.objectid
!= bytenr
)
4729 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4730 key
.offset
== num_bytes
) {
4734 if (path
->slots
[0] - extent_slot
> 5)
4738 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4739 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4740 if (found_extent
&& item_size
< sizeof(*ei
))
4743 if (!found_extent
) {
4745 ret
= remove_extent_backref(trans
, extent_root
, path
,
4749 btrfs_release_path(path
);
4750 path
->leave_spinning
= 1;
4752 key
.objectid
= bytenr
;
4753 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4754 key
.offset
= num_bytes
;
4756 ret
= btrfs_search_slot(trans
, extent_root
,
4759 printk(KERN_ERR
"umm, got %d back from search"
4760 ", was looking for %llu\n", ret
,
4761 (unsigned long long)bytenr
);
4763 btrfs_print_leaf(extent_root
,
4767 extent_slot
= path
->slots
[0];
4770 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4772 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4773 "parent %llu root %llu owner %llu offset %llu\n",
4774 (unsigned long long)bytenr
,
4775 (unsigned long long)parent
,
4776 (unsigned long long)root_objectid
,
4777 (unsigned long long)owner_objectid
,
4778 (unsigned long long)owner_offset
);
4781 leaf
= path
->nodes
[0];
4782 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4783 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4784 if (item_size
< sizeof(*ei
)) {
4785 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4786 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4790 btrfs_release_path(path
);
4791 path
->leave_spinning
= 1;
4793 key
.objectid
= bytenr
;
4794 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4795 key
.offset
= num_bytes
;
4797 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4800 printk(KERN_ERR
"umm, got %d back from search"
4801 ", was looking for %llu\n", ret
,
4802 (unsigned long long)bytenr
);
4803 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4806 extent_slot
= path
->slots
[0];
4807 leaf
= path
->nodes
[0];
4808 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4811 BUG_ON(item_size
< sizeof(*ei
));
4812 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4813 struct btrfs_extent_item
);
4814 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4815 struct btrfs_tree_block_info
*bi
;
4816 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4817 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4818 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4821 refs
= btrfs_extent_refs(leaf
, ei
);
4822 BUG_ON(refs
< refs_to_drop
);
4823 refs
-= refs_to_drop
;
4827 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4829 * In the case of inline back ref, reference count will
4830 * be updated by remove_extent_backref
4833 BUG_ON(!found_extent
);
4835 btrfs_set_extent_refs(leaf
, ei
, refs
);
4836 btrfs_mark_buffer_dirty(leaf
);
4839 ret
= remove_extent_backref(trans
, extent_root
, path
,
4846 BUG_ON(is_data
&& refs_to_drop
!=
4847 extent_data_ref_count(root
, path
, iref
));
4849 BUG_ON(path
->slots
[0] != extent_slot
);
4851 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4852 path
->slots
[0] = extent_slot
;
4857 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4860 btrfs_release_path(path
);
4863 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4866 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4867 bytenr
>> PAGE_CACHE_SHIFT
,
4868 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4871 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4874 btrfs_free_path(path
);
4879 * when we free an block, it is possible (and likely) that we free the last
4880 * delayed ref for that extent as well. This searches the delayed ref tree for
4881 * a given extent, and if there are no other delayed refs to be processed, it
4882 * removes it from the tree.
4884 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4885 struct btrfs_root
*root
, u64 bytenr
)
4887 struct btrfs_delayed_ref_head
*head
;
4888 struct btrfs_delayed_ref_root
*delayed_refs
;
4889 struct btrfs_delayed_ref_node
*ref
;
4890 struct rb_node
*node
;
4893 delayed_refs
= &trans
->transaction
->delayed_refs
;
4894 spin_lock(&delayed_refs
->lock
);
4895 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4899 node
= rb_prev(&head
->node
.rb_node
);
4903 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4905 /* there are still entries for this ref, we can't drop it */
4906 if (ref
->bytenr
== bytenr
)
4909 if (head
->extent_op
) {
4910 if (!head
->must_insert_reserved
)
4912 kfree(head
->extent_op
);
4913 head
->extent_op
= NULL
;
4917 * waiting for the lock here would deadlock. If someone else has it
4918 * locked they are already in the process of dropping it anyway
4920 if (!mutex_trylock(&head
->mutex
))
4924 * at this point we have a head with no other entries. Go
4925 * ahead and process it.
4927 head
->node
.in_tree
= 0;
4928 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4930 delayed_refs
->num_entries
--;
4933 * we don't take a ref on the node because we're removing it from the
4934 * tree, so we just steal the ref the tree was holding.
4936 delayed_refs
->num_heads
--;
4937 if (list_empty(&head
->cluster
))
4938 delayed_refs
->num_heads_ready
--;
4940 list_del_init(&head
->cluster
);
4941 spin_unlock(&delayed_refs
->lock
);
4943 BUG_ON(head
->extent_op
);
4944 if (head
->must_insert_reserved
)
4947 mutex_unlock(&head
->mutex
);
4948 btrfs_put_delayed_ref(&head
->node
);
4951 spin_unlock(&delayed_refs
->lock
);
4955 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4956 struct btrfs_root
*root
,
4957 struct extent_buffer
*buf
,
4958 u64 parent
, int last_ref
)
4960 struct btrfs_block_group_cache
*cache
= NULL
;
4963 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4964 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4965 parent
, root
->root_key
.objectid
,
4966 btrfs_header_level(buf
),
4967 BTRFS_DROP_DELAYED_REF
, NULL
);
4974 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4976 if (btrfs_header_generation(buf
) == trans
->transid
) {
4977 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4978 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4983 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4984 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4988 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4990 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4991 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
);
4995 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4998 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
4999 btrfs_put_block_group(cache
);
5002 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
5003 struct btrfs_root
*root
,
5004 u64 bytenr
, u64 num_bytes
, u64 parent
,
5005 u64 root_objectid
, u64 owner
, u64 offset
)
5010 * tree log blocks never actually go into the extent allocation
5011 * tree, just update pinning info and exit early.
5013 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5014 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
5015 /* unlocks the pinned mutex */
5016 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
5018 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5019 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
5020 parent
, root_objectid
, (int)owner
,
5021 BTRFS_DROP_DELAYED_REF
, NULL
);
5024 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
5025 parent
, root_objectid
, owner
,
5026 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
5032 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
5034 u64 mask
= ((u64
)root
->stripesize
- 1);
5035 u64 ret
= (val
+ mask
) & ~mask
;
5040 * when we wait for progress in the block group caching, its because
5041 * our allocation attempt failed at least once. So, we must sleep
5042 * and let some progress happen before we try again.
5044 * This function will sleep at least once waiting for new free space to
5045 * show up, and then it will check the block group free space numbers
5046 * for our min num_bytes. Another option is to have it go ahead
5047 * and look in the rbtree for a free extent of a given size, but this
5051 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
5054 struct btrfs_caching_control
*caching_ctl
;
5057 caching_ctl
= get_caching_control(cache
);
5061 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
5062 (cache
->free_space_ctl
->free_space
>= num_bytes
));
5064 put_caching_control(caching_ctl
);
5069 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
5071 struct btrfs_caching_control
*caching_ctl
;
5074 caching_ctl
= get_caching_control(cache
);
5078 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
5080 put_caching_control(caching_ctl
);
5084 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
5087 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
5089 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
5091 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
5093 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
5100 enum btrfs_loop_type
{
5101 LOOP_FIND_IDEAL
= 0,
5102 LOOP_CACHING_NOWAIT
= 1,
5103 LOOP_CACHING_WAIT
= 2,
5104 LOOP_ALLOC_CHUNK
= 3,
5105 LOOP_NO_EMPTY_SIZE
= 4,
5109 * walks the btree of allocated extents and find a hole of a given size.
5110 * The key ins is changed to record the hole:
5111 * ins->objectid == block start
5112 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5113 * ins->offset == number of blocks
5114 * Any available blocks before search_start are skipped.
5116 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
5117 struct btrfs_root
*orig_root
,
5118 u64 num_bytes
, u64 empty_size
,
5119 u64 search_start
, u64 search_end
,
5120 u64 hint_byte
, struct btrfs_key
*ins
,
5124 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
5125 struct btrfs_free_cluster
*last_ptr
= NULL
;
5126 struct btrfs_block_group_cache
*block_group
= NULL
;
5127 struct btrfs_block_group_cache
*used_block_group
;
5128 int empty_cluster
= 2 * 1024 * 1024;
5129 int allowed_chunk_alloc
= 0;
5130 int done_chunk_alloc
= 0;
5131 struct btrfs_space_info
*space_info
;
5134 int alloc_type
= (data
& BTRFS_BLOCK_GROUP_DATA
) ?
5135 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
5136 bool found_uncached_bg
= false;
5137 bool failed_cluster_refill
= false;
5138 bool failed_alloc
= false;
5139 bool use_cluster
= true;
5140 bool have_caching_bg
= false;
5141 u64 ideal_cache_percent
= 0;
5142 u64 ideal_cache_offset
= 0;
5144 WARN_ON(num_bytes
< root
->sectorsize
);
5145 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
5149 space_info
= __find_space_info(root
->fs_info
, data
);
5151 printk(KERN_ERR
"No space info for %llu\n", data
);
5156 * If the space info is for both data and metadata it means we have a
5157 * small filesystem and we can't use the clustering stuff.
5159 if (btrfs_mixed_space_info(space_info
))
5160 use_cluster
= false;
5162 if (orig_root
->ref_cows
|| empty_size
)
5163 allowed_chunk_alloc
= 1;
5165 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
5166 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
5167 if (!btrfs_test_opt(root
, SSD
))
5168 empty_cluster
= 64 * 1024;
5171 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
5172 btrfs_test_opt(root
, SSD
)) {
5173 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
5177 spin_lock(&last_ptr
->lock
);
5178 if (last_ptr
->block_group
)
5179 hint_byte
= last_ptr
->window_start
;
5180 spin_unlock(&last_ptr
->lock
);
5183 search_start
= max(search_start
, first_logical_byte(root
, 0));
5184 search_start
= max(search_start
, hint_byte
);
5189 if (search_start
== hint_byte
) {
5191 block_group
= btrfs_lookup_block_group(root
->fs_info
,
5193 used_block_group
= block_group
;
5195 * we don't want to use the block group if it doesn't match our
5196 * allocation bits, or if its not cached.
5198 * However if we are re-searching with an ideal block group
5199 * picked out then we don't care that the block group is cached.
5201 if (block_group
&& block_group_bits(block_group
, data
) &&
5202 (block_group
->cached
!= BTRFS_CACHE_NO
||
5203 search_start
== ideal_cache_offset
)) {
5204 down_read(&space_info
->groups_sem
);
5205 if (list_empty(&block_group
->list
) ||
5208 * someone is removing this block group,
5209 * we can't jump into the have_block_group
5210 * target because our list pointers are not
5213 btrfs_put_block_group(block_group
);
5214 up_read(&space_info
->groups_sem
);
5216 index
= get_block_group_index(block_group
);
5217 goto have_block_group
;
5219 } else if (block_group
) {
5220 btrfs_put_block_group(block_group
);
5224 have_caching_bg
= false;
5225 down_read(&space_info
->groups_sem
);
5226 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
5231 used_block_group
= block_group
;
5232 btrfs_get_block_group(block_group
);
5233 search_start
= block_group
->key
.objectid
;
5236 * this can happen if we end up cycling through all the
5237 * raid types, but we want to make sure we only allocate
5238 * for the proper type.
5240 if (!block_group_bits(block_group
, data
)) {
5241 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
5242 BTRFS_BLOCK_GROUP_RAID1
|
5243 BTRFS_BLOCK_GROUP_RAID10
;
5246 * if they asked for extra copies and this block group
5247 * doesn't provide them, bail. This does allow us to
5248 * fill raid0 from raid1.
5250 if ((data
& extra
) && !(block_group
->flags
& extra
))
5255 cached
= block_group_cache_done(block_group
);
5256 if (unlikely(!cached
)) {
5259 found_uncached_bg
= true;
5260 ret
= cache_block_group(block_group
, trans
,
5262 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
5265 free_percent
= btrfs_block_group_used(&block_group
->item
);
5266 free_percent
*= 100;
5267 free_percent
= div64_u64(free_percent
,
5268 block_group
->key
.offset
);
5269 free_percent
= 100 - free_percent
;
5270 if (free_percent
> ideal_cache_percent
&&
5271 likely(!block_group
->ro
)) {
5272 ideal_cache_offset
= block_group
->key
.objectid
;
5273 ideal_cache_percent
= free_percent
;
5277 * The caching workers are limited to 2 threads, so we
5278 * can queue as much work as we care to.
5280 if (loop
> LOOP_FIND_IDEAL
) {
5281 ret
= cache_block_group(block_group
, trans
,
5287 * If loop is set for cached only, try the next block
5290 if (loop
== LOOP_FIND_IDEAL
)
5295 if (unlikely(block_group
->ro
))
5298 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
5300 block_group
->free_space_ctl
->free_space
<
5301 num_bytes
+ empty_cluster
+ empty_size
) {
5302 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5305 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5308 * Ok we want to try and use the cluster allocator, so
5313 * the refill lock keeps out other
5314 * people trying to start a new cluster
5316 spin_lock(&last_ptr
->refill_lock
);
5317 used_block_group
= last_ptr
->block_group
;
5318 if (used_block_group
!= block_group
&&
5319 (!used_block_group
||
5320 used_block_group
->ro
||
5321 !block_group_bits(used_block_group
, data
))) {
5322 used_block_group
= block_group
;
5323 goto refill_cluster
;
5326 if (used_block_group
!= block_group
)
5327 btrfs_get_block_group(used_block_group
);
5329 offset
= btrfs_alloc_from_cluster(used_block_group
,
5330 last_ptr
, num_bytes
, used_block_group
->key
.objectid
);
5332 /* we have a block, we're done */
5333 spin_unlock(&last_ptr
->refill_lock
);
5337 WARN_ON(last_ptr
->block_group
!= used_block_group
);
5338 if (used_block_group
!= block_group
) {
5339 btrfs_put_block_group(used_block_group
);
5340 used_block_group
= block_group
;
5343 BUG_ON(used_block_group
!= block_group
);
5344 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5345 * set up a new clusters, so lets just skip it
5346 * and let the allocator find whatever block
5347 * it can find. If we reach this point, we
5348 * will have tried the cluster allocator
5349 * plenty of times and not have found
5350 * anything, so we are likely way too
5351 * fragmented for the clustering stuff to find
5353 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
5354 spin_unlock(&last_ptr
->refill_lock
);
5355 goto unclustered_alloc
;
5359 * this cluster didn't work out, free it and
5362 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5364 /* allocate a cluster in this block group */
5365 ret
= btrfs_find_space_cluster(trans
, root
,
5366 block_group
, last_ptr
,
5367 search_start
, num_bytes
,
5368 empty_cluster
+ empty_size
);
5371 * now pull our allocation out of this
5374 offset
= btrfs_alloc_from_cluster(block_group
,
5375 last_ptr
, num_bytes
,
5378 /* we found one, proceed */
5379 spin_unlock(&last_ptr
->refill_lock
);
5382 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5383 && !failed_cluster_refill
) {
5384 spin_unlock(&last_ptr
->refill_lock
);
5386 failed_cluster_refill
= true;
5387 wait_block_group_cache_progress(block_group
,
5388 num_bytes
+ empty_cluster
+ empty_size
);
5389 goto have_block_group
;
5393 * at this point we either didn't find a cluster
5394 * or we weren't able to allocate a block from our
5395 * cluster. Free the cluster we've been trying
5396 * to use, and go to the next block group
5398 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5399 spin_unlock(&last_ptr
->refill_lock
);
5404 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5405 num_bytes
, empty_size
);
5407 * If we didn't find a chunk, and we haven't failed on this
5408 * block group before, and this block group is in the middle of
5409 * caching and we are ok with waiting, then go ahead and wait
5410 * for progress to be made, and set failed_alloc to true.
5412 * If failed_alloc is true then we've already waited on this
5413 * block group once and should move on to the next block group.
5415 if (!offset
&& !failed_alloc
&& !cached
&&
5416 loop
> LOOP_CACHING_NOWAIT
) {
5417 wait_block_group_cache_progress(block_group
,
5418 num_bytes
+ empty_size
);
5419 failed_alloc
= true;
5420 goto have_block_group
;
5421 } else if (!offset
) {
5423 have_caching_bg
= true;
5427 search_start
= stripe_align(root
, offset
);
5428 /* move on to the next group */
5429 if (search_start
+ num_bytes
>= search_end
) {
5430 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5434 /* move on to the next group */
5435 if (search_start
+ num_bytes
>
5436 used_block_group
->key
.objectid
+ used_block_group
->key
.offset
) {
5437 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5441 ins
->objectid
= search_start
;
5442 ins
->offset
= num_bytes
;
5444 if (offset
< search_start
)
5445 btrfs_add_free_space(used_block_group
, offset
,
5446 search_start
- offset
);
5447 BUG_ON(offset
> search_start
);
5449 ret
= btrfs_update_reserved_bytes(used_block_group
, num_bytes
,
5451 if (ret
== -EAGAIN
) {
5452 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5456 /* we are all good, lets return */
5457 ins
->objectid
= search_start
;
5458 ins
->offset
= num_bytes
;
5460 if (offset
< search_start
)
5461 btrfs_add_free_space(used_block_group
, offset
,
5462 search_start
- offset
);
5463 BUG_ON(offset
> search_start
);
5464 if (used_block_group
!= block_group
)
5465 btrfs_put_block_group(used_block_group
);
5466 btrfs_put_block_group(block_group
);
5469 failed_cluster_refill
= false;
5470 failed_alloc
= false;
5471 BUG_ON(index
!= get_block_group_index(block_group
));
5472 if (used_block_group
!= block_group
)
5473 btrfs_put_block_group(used_block_group
);
5474 btrfs_put_block_group(block_group
);
5476 up_read(&space_info
->groups_sem
);
5478 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
5481 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5484 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5485 * for them to make caching progress. Also
5486 * determine the best possible bg to cache
5487 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5488 * caching kthreads as we move along
5489 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5490 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5491 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5494 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5496 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5497 found_uncached_bg
= false;
5499 if (!ideal_cache_percent
)
5503 * 1 of the following 2 things have happened so far
5505 * 1) We found an ideal block group for caching that
5506 * is mostly full and will cache quickly, so we might
5507 * as well wait for it.
5509 * 2) We searched for cached only and we didn't find
5510 * anything, and we didn't start any caching kthreads
5511 * either, so chances are we will loop through and
5512 * start a couple caching kthreads, and then come back
5513 * around and just wait for them. This will be slower
5514 * because we will have 2 caching kthreads reading at
5515 * the same time when we could have just started one
5516 * and waited for it to get far enough to give us an
5517 * allocation, so go ahead and go to the wait caching
5520 loop
= LOOP_CACHING_WAIT
;
5521 search_start
= ideal_cache_offset
;
5522 ideal_cache_percent
= 0;
5524 } else if (loop
== LOOP_FIND_IDEAL
) {
5526 * Didn't find a uncached bg, wait on anything we find
5529 loop
= LOOP_CACHING_WAIT
;
5535 if (loop
== LOOP_ALLOC_CHUNK
) {
5536 if (allowed_chunk_alloc
) {
5537 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5538 2 * 1024 * 1024, data
,
5539 CHUNK_ALLOC_LIMITED
);
5540 allowed_chunk_alloc
= 0;
5542 done_chunk_alloc
= 1;
5543 } else if (!done_chunk_alloc
&&
5544 space_info
->force_alloc
==
5545 CHUNK_ALLOC_NO_FORCE
) {
5546 space_info
->force_alloc
= CHUNK_ALLOC_LIMITED
;
5550 * We didn't allocate a chunk, go ahead and drop the
5551 * empty size and loop again.
5553 if (!done_chunk_alloc
)
5554 loop
= LOOP_NO_EMPTY_SIZE
;
5557 if (loop
== LOOP_NO_EMPTY_SIZE
) {
5563 } else if (!ins
->objectid
) {
5565 } else if (ins
->objectid
) {
5572 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5573 int dump_block_groups
)
5575 struct btrfs_block_group_cache
*cache
;
5578 spin_lock(&info
->lock
);
5579 printk(KERN_INFO
"space_info %llu has %llu free, is %sfull\n",
5580 (unsigned long long)info
->flags
,
5581 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5582 info
->bytes_pinned
- info
->bytes_reserved
-
5583 info
->bytes_readonly
),
5584 (info
->full
) ? "" : "not ");
5585 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5586 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5587 (unsigned long long)info
->total_bytes
,
5588 (unsigned long long)info
->bytes_used
,
5589 (unsigned long long)info
->bytes_pinned
,
5590 (unsigned long long)info
->bytes_reserved
,
5591 (unsigned long long)info
->bytes_may_use
,
5592 (unsigned long long)info
->bytes_readonly
);
5593 spin_unlock(&info
->lock
);
5595 if (!dump_block_groups
)
5598 down_read(&info
->groups_sem
);
5600 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5601 spin_lock(&cache
->lock
);
5602 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5603 "%llu pinned %llu reserved\n",
5604 (unsigned long long)cache
->key
.objectid
,
5605 (unsigned long long)cache
->key
.offset
,
5606 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5607 (unsigned long long)cache
->pinned
,
5608 (unsigned long long)cache
->reserved
);
5609 btrfs_dump_free_space(cache
, bytes
);
5610 spin_unlock(&cache
->lock
);
5612 if (++index
< BTRFS_NR_RAID_TYPES
)
5614 up_read(&info
->groups_sem
);
5617 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5618 struct btrfs_root
*root
,
5619 u64 num_bytes
, u64 min_alloc_size
,
5620 u64 empty_size
, u64 hint_byte
,
5621 u64 search_end
, struct btrfs_key
*ins
,
5625 u64 search_start
= 0;
5627 data
= btrfs_get_alloc_profile(root
, data
);
5630 * the only place that sets empty_size is btrfs_realloc_node, which
5631 * is not called recursively on allocations
5633 if (empty_size
|| root
->ref_cows
)
5634 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5635 num_bytes
+ 2 * 1024 * 1024, data
,
5636 CHUNK_ALLOC_NO_FORCE
);
5638 WARN_ON(num_bytes
< root
->sectorsize
);
5639 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5640 search_start
, search_end
, hint_byte
,
5643 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5644 num_bytes
= num_bytes
>> 1;
5645 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5646 num_bytes
= max(num_bytes
, min_alloc_size
);
5647 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5648 num_bytes
, data
, CHUNK_ALLOC_FORCE
);
5651 if (ret
== -ENOSPC
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5652 struct btrfs_space_info
*sinfo
;
5654 sinfo
= __find_space_info(root
->fs_info
, data
);
5655 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5656 "wanted %llu\n", (unsigned long long)data
,
5657 (unsigned long long)num_bytes
);
5658 dump_space_info(sinfo
, num_bytes
, 1);
5661 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5666 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
5667 u64 start
, u64 len
, int pin
)
5669 struct btrfs_block_group_cache
*cache
;
5672 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5674 printk(KERN_ERR
"Unable to find block group for %llu\n",
5675 (unsigned long long)start
);
5679 if (btrfs_test_opt(root
, DISCARD
))
5680 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5683 pin_down_extent(root
, cache
, start
, len
, 1);
5685 btrfs_add_free_space(cache
, start
, len
);
5686 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
);
5688 btrfs_put_block_group(cache
);
5690 trace_btrfs_reserved_extent_free(root
, start
, len
);
5695 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
5698 return __btrfs_free_reserved_extent(root
, start
, len
, 0);
5701 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
5704 return __btrfs_free_reserved_extent(root
, start
, len
, 1);
5707 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5708 struct btrfs_root
*root
,
5709 u64 parent
, u64 root_objectid
,
5710 u64 flags
, u64 owner
, u64 offset
,
5711 struct btrfs_key
*ins
, int ref_mod
)
5714 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5715 struct btrfs_extent_item
*extent_item
;
5716 struct btrfs_extent_inline_ref
*iref
;
5717 struct btrfs_path
*path
;
5718 struct extent_buffer
*leaf
;
5723 type
= BTRFS_SHARED_DATA_REF_KEY
;
5725 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5727 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5729 path
= btrfs_alloc_path();
5733 path
->leave_spinning
= 1;
5734 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5738 leaf
= path
->nodes
[0];
5739 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5740 struct btrfs_extent_item
);
5741 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5742 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5743 btrfs_set_extent_flags(leaf
, extent_item
,
5744 flags
| BTRFS_EXTENT_FLAG_DATA
);
5746 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5747 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5749 struct btrfs_shared_data_ref
*ref
;
5750 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5751 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5752 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5754 struct btrfs_extent_data_ref
*ref
;
5755 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5756 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5757 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5758 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5759 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5762 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5763 btrfs_free_path(path
);
5765 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5767 printk(KERN_ERR
"btrfs update block group failed for %llu "
5768 "%llu\n", (unsigned long long)ins
->objectid
,
5769 (unsigned long long)ins
->offset
);
5775 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5776 struct btrfs_root
*root
,
5777 u64 parent
, u64 root_objectid
,
5778 u64 flags
, struct btrfs_disk_key
*key
,
5779 int level
, struct btrfs_key
*ins
)
5782 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5783 struct btrfs_extent_item
*extent_item
;
5784 struct btrfs_tree_block_info
*block_info
;
5785 struct btrfs_extent_inline_ref
*iref
;
5786 struct btrfs_path
*path
;
5787 struct extent_buffer
*leaf
;
5788 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5790 path
= btrfs_alloc_path();
5794 path
->leave_spinning
= 1;
5795 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5799 leaf
= path
->nodes
[0];
5800 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5801 struct btrfs_extent_item
);
5802 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5803 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5804 btrfs_set_extent_flags(leaf
, extent_item
,
5805 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5806 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5808 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5809 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5811 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5813 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5814 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5815 BTRFS_SHARED_BLOCK_REF_KEY
);
5816 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5818 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5819 BTRFS_TREE_BLOCK_REF_KEY
);
5820 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5823 btrfs_mark_buffer_dirty(leaf
);
5824 btrfs_free_path(path
);
5826 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5828 printk(KERN_ERR
"btrfs update block group failed for %llu "
5829 "%llu\n", (unsigned long long)ins
->objectid
,
5830 (unsigned long long)ins
->offset
);
5836 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5837 struct btrfs_root
*root
,
5838 u64 root_objectid
, u64 owner
,
5839 u64 offset
, struct btrfs_key
*ins
)
5843 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5845 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5846 0, root_objectid
, owner
, offset
,
5847 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5852 * this is used by the tree logging recovery code. It records that
5853 * an extent has been allocated and makes sure to clear the free
5854 * space cache bits as well
5856 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5857 struct btrfs_root
*root
,
5858 u64 root_objectid
, u64 owner
, u64 offset
,
5859 struct btrfs_key
*ins
)
5862 struct btrfs_block_group_cache
*block_group
;
5863 struct btrfs_caching_control
*caching_ctl
;
5864 u64 start
= ins
->objectid
;
5865 u64 num_bytes
= ins
->offset
;
5867 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5868 cache_block_group(block_group
, trans
, NULL
, 0);
5869 caching_ctl
= get_caching_control(block_group
);
5872 BUG_ON(!block_group_cache_done(block_group
));
5873 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5876 mutex_lock(&caching_ctl
->mutex
);
5878 if (start
>= caching_ctl
->progress
) {
5879 ret
= add_excluded_extent(root
, start
, num_bytes
);
5881 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5882 ret
= btrfs_remove_free_space(block_group
,
5886 num_bytes
= caching_ctl
->progress
- start
;
5887 ret
= btrfs_remove_free_space(block_group
,
5891 start
= caching_ctl
->progress
;
5892 num_bytes
= ins
->objectid
+ ins
->offset
-
5893 caching_ctl
->progress
;
5894 ret
= add_excluded_extent(root
, start
, num_bytes
);
5898 mutex_unlock(&caching_ctl
->mutex
);
5899 put_caching_control(caching_ctl
);
5902 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
5903 RESERVE_ALLOC_NO_ACCOUNT
);
5905 btrfs_put_block_group(block_group
);
5906 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5907 0, owner
, offset
, ins
, 1);
5911 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5912 struct btrfs_root
*root
,
5913 u64 bytenr
, u32 blocksize
,
5916 struct extent_buffer
*buf
;
5918 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5920 return ERR_PTR(-ENOMEM
);
5921 btrfs_set_header_generation(buf
, trans
->transid
);
5922 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
5923 btrfs_tree_lock(buf
);
5924 clean_tree_block(trans
, root
, buf
);
5926 btrfs_set_lock_blocking(buf
);
5927 btrfs_set_buffer_uptodate(buf
);
5929 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5931 * we allow two log transactions at a time, use different
5932 * EXENT bit to differentiate dirty pages.
5934 if (root
->log_transid
% 2 == 0)
5935 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5936 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5938 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5939 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5941 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5942 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5944 trans
->blocks_used
++;
5945 /* this returns a buffer locked for blocking */
5949 static struct btrfs_block_rsv
*
5950 use_block_rsv(struct btrfs_trans_handle
*trans
,
5951 struct btrfs_root
*root
, u32 blocksize
)
5953 struct btrfs_block_rsv
*block_rsv
;
5954 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5957 block_rsv
= get_block_rsv(trans
, root
);
5959 if (block_rsv
->size
== 0) {
5960 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
5962 * If we couldn't reserve metadata bytes try and use some from
5963 * the global reserve.
5965 if (ret
&& block_rsv
!= global_rsv
) {
5966 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5969 return ERR_PTR(ret
);
5971 return ERR_PTR(ret
);
5976 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5980 static DEFINE_RATELIMIT_STATE(_rs
,
5981 DEFAULT_RATELIMIT_INTERVAL
,
5982 /*DEFAULT_RATELIMIT_BURST*/ 2);
5983 if (__ratelimit(&_rs
)) {
5984 printk(KERN_DEBUG
"btrfs: block rsv returned %d\n", ret
);
5987 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
5990 } else if (ret
&& block_rsv
!= global_rsv
) {
5991 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5997 return ERR_PTR(-ENOSPC
);
6000 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
6002 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
6003 block_rsv_release_bytes(block_rsv
, NULL
, 0);
6007 * finds a free extent and does all the dirty work required for allocation
6008 * returns the key for the extent through ins, and a tree buffer for
6009 * the first block of the extent through buf.
6011 * returns the tree buffer or NULL.
6013 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
6014 struct btrfs_root
*root
, u32 blocksize
,
6015 u64 parent
, u64 root_objectid
,
6016 struct btrfs_disk_key
*key
, int level
,
6017 u64 hint
, u64 empty_size
)
6019 struct btrfs_key ins
;
6020 struct btrfs_block_rsv
*block_rsv
;
6021 struct extent_buffer
*buf
;
6026 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
6027 if (IS_ERR(block_rsv
))
6028 return ERR_CAST(block_rsv
);
6030 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
6031 empty_size
, hint
, (u64
)-1, &ins
, 0);
6033 unuse_block_rsv(block_rsv
, blocksize
);
6034 return ERR_PTR(ret
);
6037 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
6039 BUG_ON(IS_ERR(buf
));
6041 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
6043 parent
= ins
.objectid
;
6044 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6048 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6049 struct btrfs_delayed_extent_op
*extent_op
;
6050 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
6053 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
6055 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
6056 extent_op
->flags_to_set
= flags
;
6057 extent_op
->update_key
= 1;
6058 extent_op
->update_flags
= 1;
6059 extent_op
->is_data
= 0;
6061 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
6062 ins
.offset
, parent
, root_objectid
,
6063 level
, BTRFS_ADD_DELAYED_EXTENT
,
6070 struct walk_control
{
6071 u64 refs
[BTRFS_MAX_LEVEL
];
6072 u64 flags
[BTRFS_MAX_LEVEL
];
6073 struct btrfs_key update_progress
;
6083 #define DROP_REFERENCE 1
6084 #define UPDATE_BACKREF 2
6086 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
6087 struct btrfs_root
*root
,
6088 struct walk_control
*wc
,
6089 struct btrfs_path
*path
)
6097 struct btrfs_key key
;
6098 struct extent_buffer
*eb
;
6103 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
6104 wc
->reada_count
= wc
->reada_count
* 2 / 3;
6105 wc
->reada_count
= max(wc
->reada_count
, 2);
6107 wc
->reada_count
= wc
->reada_count
* 3 / 2;
6108 wc
->reada_count
= min_t(int, wc
->reada_count
,
6109 BTRFS_NODEPTRS_PER_BLOCK(root
));
6112 eb
= path
->nodes
[wc
->level
];
6113 nritems
= btrfs_header_nritems(eb
);
6114 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
6116 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
6117 if (nread
>= wc
->reada_count
)
6121 bytenr
= btrfs_node_blockptr(eb
, slot
);
6122 generation
= btrfs_node_ptr_generation(eb
, slot
);
6124 if (slot
== path
->slots
[wc
->level
])
6127 if (wc
->stage
== UPDATE_BACKREF
&&
6128 generation
<= root
->root_key
.offset
)
6131 /* We don't lock the tree block, it's OK to be racy here */
6132 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6137 if (wc
->stage
== DROP_REFERENCE
) {
6141 if (wc
->level
== 1 &&
6142 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6144 if (!wc
->update_ref
||
6145 generation
<= root
->root_key
.offset
)
6147 btrfs_node_key_to_cpu(eb
, &key
, slot
);
6148 ret
= btrfs_comp_cpu_keys(&key
,
6149 &wc
->update_progress
);
6153 if (wc
->level
== 1 &&
6154 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6158 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
6164 wc
->reada_slot
= slot
;
6168 * hepler to process tree block while walking down the tree.
6170 * when wc->stage == UPDATE_BACKREF, this function updates
6171 * back refs for pointers in the block.
6173 * NOTE: return value 1 means we should stop walking down.
6175 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
6176 struct btrfs_root
*root
,
6177 struct btrfs_path
*path
,
6178 struct walk_control
*wc
, int lookup_info
)
6180 int level
= wc
->level
;
6181 struct extent_buffer
*eb
= path
->nodes
[level
];
6182 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6185 if (wc
->stage
== UPDATE_BACKREF
&&
6186 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
6190 * when reference count of tree block is 1, it won't increase
6191 * again. once full backref flag is set, we never clear it.
6194 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
6195 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
6196 BUG_ON(!path
->locks
[level
]);
6197 ret
= btrfs_lookup_extent_info(trans
, root
,
6202 BUG_ON(wc
->refs
[level
] == 0);
6205 if (wc
->stage
== DROP_REFERENCE
) {
6206 if (wc
->refs
[level
] > 1)
6209 if (path
->locks
[level
] && !wc
->keep_locks
) {
6210 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6211 path
->locks
[level
] = 0;
6216 /* wc->stage == UPDATE_BACKREF */
6217 if (!(wc
->flags
[level
] & flag
)) {
6218 BUG_ON(!path
->locks
[level
]);
6219 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
6221 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6223 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
6226 wc
->flags
[level
] |= flag
;
6230 * the block is shared by multiple trees, so it's not good to
6231 * keep the tree lock
6233 if (path
->locks
[level
] && level
> 0) {
6234 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6235 path
->locks
[level
] = 0;
6241 * hepler to process tree block pointer.
6243 * when wc->stage == DROP_REFERENCE, this function checks
6244 * reference count of the block pointed to. if the block
6245 * is shared and we need update back refs for the subtree
6246 * rooted at the block, this function changes wc->stage to
6247 * UPDATE_BACKREF. if the block is shared and there is no
6248 * need to update back, this function drops the reference
6251 * NOTE: return value 1 means we should stop walking down.
6253 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
6254 struct btrfs_root
*root
,
6255 struct btrfs_path
*path
,
6256 struct walk_control
*wc
, int *lookup_info
)
6262 struct btrfs_key key
;
6263 struct extent_buffer
*next
;
6264 int level
= wc
->level
;
6268 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
6269 path
->slots
[level
]);
6271 * if the lower level block was created before the snapshot
6272 * was created, we know there is no need to update back refs
6275 if (wc
->stage
== UPDATE_BACKREF
&&
6276 generation
<= root
->root_key
.offset
) {
6281 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
6282 blocksize
= btrfs_level_size(root
, level
- 1);
6284 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
6286 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6291 btrfs_tree_lock(next
);
6292 btrfs_set_lock_blocking(next
);
6294 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6295 &wc
->refs
[level
- 1],
6296 &wc
->flags
[level
- 1]);
6298 BUG_ON(wc
->refs
[level
- 1] == 0);
6301 if (wc
->stage
== DROP_REFERENCE
) {
6302 if (wc
->refs
[level
- 1] > 1) {
6304 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6307 if (!wc
->update_ref
||
6308 generation
<= root
->root_key
.offset
)
6311 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6312 path
->slots
[level
]);
6313 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6317 wc
->stage
= UPDATE_BACKREF
;
6318 wc
->shared_level
= level
- 1;
6322 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6326 if (!btrfs_buffer_uptodate(next
, generation
)) {
6327 btrfs_tree_unlock(next
);
6328 free_extent_buffer(next
);
6334 if (reada
&& level
== 1)
6335 reada_walk_down(trans
, root
, wc
, path
);
6336 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6339 btrfs_tree_lock(next
);
6340 btrfs_set_lock_blocking(next
);
6344 BUG_ON(level
!= btrfs_header_level(next
));
6345 path
->nodes
[level
] = next
;
6346 path
->slots
[level
] = 0;
6347 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6353 wc
->refs
[level
- 1] = 0;
6354 wc
->flags
[level
- 1] = 0;
6355 if (wc
->stage
== DROP_REFERENCE
) {
6356 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6357 parent
= path
->nodes
[level
]->start
;
6359 BUG_ON(root
->root_key
.objectid
!=
6360 btrfs_header_owner(path
->nodes
[level
]));
6364 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6365 root
->root_key
.objectid
, level
- 1, 0);
6368 btrfs_tree_unlock(next
);
6369 free_extent_buffer(next
);
6375 * hepler to process tree block while walking up the tree.
6377 * when wc->stage == DROP_REFERENCE, this function drops
6378 * reference count on the block.
6380 * when wc->stage == UPDATE_BACKREF, this function changes
6381 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6382 * to UPDATE_BACKREF previously while processing the block.
6384 * NOTE: return value 1 means we should stop walking up.
6386 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6387 struct btrfs_root
*root
,
6388 struct btrfs_path
*path
,
6389 struct walk_control
*wc
)
6392 int level
= wc
->level
;
6393 struct extent_buffer
*eb
= path
->nodes
[level
];
6396 if (wc
->stage
== UPDATE_BACKREF
) {
6397 BUG_ON(wc
->shared_level
< level
);
6398 if (level
< wc
->shared_level
)
6401 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6405 wc
->stage
= DROP_REFERENCE
;
6406 wc
->shared_level
= -1;
6407 path
->slots
[level
] = 0;
6410 * check reference count again if the block isn't locked.
6411 * we should start walking down the tree again if reference
6414 if (!path
->locks
[level
]) {
6416 btrfs_tree_lock(eb
);
6417 btrfs_set_lock_blocking(eb
);
6418 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6420 ret
= btrfs_lookup_extent_info(trans
, root
,
6425 BUG_ON(wc
->refs
[level
] == 0);
6426 if (wc
->refs
[level
] == 1) {
6427 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6433 /* wc->stage == DROP_REFERENCE */
6434 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6436 if (wc
->refs
[level
] == 1) {
6438 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6439 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
6441 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6444 /* make block locked assertion in clean_tree_block happy */
6445 if (!path
->locks
[level
] &&
6446 btrfs_header_generation(eb
) == trans
->transid
) {
6447 btrfs_tree_lock(eb
);
6448 btrfs_set_lock_blocking(eb
);
6449 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6451 clean_tree_block(trans
, root
, eb
);
6454 if (eb
== root
->node
) {
6455 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6458 BUG_ON(root
->root_key
.objectid
!=
6459 btrfs_header_owner(eb
));
6461 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6462 parent
= path
->nodes
[level
+ 1]->start
;
6464 BUG_ON(root
->root_key
.objectid
!=
6465 btrfs_header_owner(path
->nodes
[level
+ 1]));
6468 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6470 wc
->refs
[level
] = 0;
6471 wc
->flags
[level
] = 0;
6475 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6476 struct btrfs_root
*root
,
6477 struct btrfs_path
*path
,
6478 struct walk_control
*wc
)
6480 int level
= wc
->level
;
6481 int lookup_info
= 1;
6484 while (level
>= 0) {
6485 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6492 if (path
->slots
[level
] >=
6493 btrfs_header_nritems(path
->nodes
[level
]))
6496 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6498 path
->slots
[level
]++;
6507 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6508 struct btrfs_root
*root
,
6509 struct btrfs_path
*path
,
6510 struct walk_control
*wc
, int max_level
)
6512 int level
= wc
->level
;
6515 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6516 while (level
< max_level
&& path
->nodes
[level
]) {
6518 if (path
->slots
[level
] + 1 <
6519 btrfs_header_nritems(path
->nodes
[level
])) {
6520 path
->slots
[level
]++;
6523 ret
= walk_up_proc(trans
, root
, path
, wc
);
6527 if (path
->locks
[level
]) {
6528 btrfs_tree_unlock_rw(path
->nodes
[level
],
6529 path
->locks
[level
]);
6530 path
->locks
[level
] = 0;
6532 free_extent_buffer(path
->nodes
[level
]);
6533 path
->nodes
[level
] = NULL
;
6541 * drop a subvolume tree.
6543 * this function traverses the tree freeing any blocks that only
6544 * referenced by the tree.
6546 * when a shared tree block is found. this function decreases its
6547 * reference count by one. if update_ref is true, this function
6548 * also make sure backrefs for the shared block and all lower level
6549 * blocks are properly updated.
6551 void btrfs_drop_snapshot(struct btrfs_root
*root
,
6552 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
6554 struct btrfs_path
*path
;
6555 struct btrfs_trans_handle
*trans
;
6556 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6557 struct btrfs_root_item
*root_item
= &root
->root_item
;
6558 struct walk_control
*wc
;
6559 struct btrfs_key key
;
6564 path
= btrfs_alloc_path();
6570 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6572 btrfs_free_path(path
);
6577 trans
= btrfs_start_transaction(tree_root
, 0);
6578 BUG_ON(IS_ERR(trans
));
6581 trans
->block_rsv
= block_rsv
;
6583 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6584 level
= btrfs_header_level(root
->node
);
6585 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6586 btrfs_set_lock_blocking(path
->nodes
[level
]);
6587 path
->slots
[level
] = 0;
6588 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6589 memset(&wc
->update_progress
, 0,
6590 sizeof(wc
->update_progress
));
6592 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6593 memcpy(&wc
->update_progress
, &key
,
6594 sizeof(wc
->update_progress
));
6596 level
= root_item
->drop_level
;
6598 path
->lowest_level
= level
;
6599 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6600 path
->lowest_level
= 0;
6608 * unlock our path, this is safe because only this
6609 * function is allowed to delete this snapshot
6611 btrfs_unlock_up_safe(path
, 0);
6613 level
= btrfs_header_level(root
->node
);
6615 btrfs_tree_lock(path
->nodes
[level
]);
6616 btrfs_set_lock_blocking(path
->nodes
[level
]);
6618 ret
= btrfs_lookup_extent_info(trans
, root
,
6619 path
->nodes
[level
]->start
,
6620 path
->nodes
[level
]->len
,
6624 BUG_ON(wc
->refs
[level
] == 0);
6626 if (level
== root_item
->drop_level
)
6629 btrfs_tree_unlock(path
->nodes
[level
]);
6630 WARN_ON(wc
->refs
[level
] != 1);
6636 wc
->shared_level
= -1;
6637 wc
->stage
= DROP_REFERENCE
;
6638 wc
->update_ref
= update_ref
;
6640 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6643 ret
= walk_down_tree(trans
, root
, path
, wc
);
6649 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6656 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6660 if (wc
->stage
== DROP_REFERENCE
) {
6662 btrfs_node_key(path
->nodes
[level
],
6663 &root_item
->drop_progress
,
6664 path
->slots
[level
]);
6665 root_item
->drop_level
= level
;
6668 BUG_ON(wc
->level
== 0);
6669 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6670 ret
= btrfs_update_root(trans
, tree_root
,
6675 btrfs_end_transaction_throttle(trans
, tree_root
);
6676 trans
= btrfs_start_transaction(tree_root
, 0);
6677 BUG_ON(IS_ERR(trans
));
6679 trans
->block_rsv
= block_rsv
;
6682 btrfs_release_path(path
);
6685 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6688 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6689 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6693 /* if we fail to delete the orphan item this time
6694 * around, it'll get picked up the next time.
6696 * The most common failure here is just -ENOENT.
6698 btrfs_del_orphan_item(trans
, tree_root
,
6699 root
->root_key
.objectid
);
6703 if (root
->in_radix
) {
6704 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6706 free_extent_buffer(root
->node
);
6707 free_extent_buffer(root
->commit_root
);
6711 btrfs_end_transaction_throttle(trans
, tree_root
);
6713 btrfs_free_path(path
);
6716 btrfs_std_error(root
->fs_info
, err
);
6721 * drop subtree rooted at tree block 'node'.
6723 * NOTE: this function will unlock and release tree block 'node'
6725 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6726 struct btrfs_root
*root
,
6727 struct extent_buffer
*node
,
6728 struct extent_buffer
*parent
)
6730 struct btrfs_path
*path
;
6731 struct walk_control
*wc
;
6737 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6739 path
= btrfs_alloc_path();
6743 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6745 btrfs_free_path(path
);
6749 btrfs_assert_tree_locked(parent
);
6750 parent_level
= btrfs_header_level(parent
);
6751 extent_buffer_get(parent
);
6752 path
->nodes
[parent_level
] = parent
;
6753 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6755 btrfs_assert_tree_locked(node
);
6756 level
= btrfs_header_level(node
);
6757 path
->nodes
[level
] = node
;
6758 path
->slots
[level
] = 0;
6759 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6761 wc
->refs
[parent_level
] = 1;
6762 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6764 wc
->shared_level
= -1;
6765 wc
->stage
= DROP_REFERENCE
;
6768 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6771 wret
= walk_down_tree(trans
, root
, path
, wc
);
6777 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6785 btrfs_free_path(path
);
6789 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
6792 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
6793 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
6796 * we add in the count of missing devices because we want
6797 * to make sure that any RAID levels on a degraded FS
6798 * continue to be honored.
6800 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
6801 root
->fs_info
->fs_devices
->missing_devices
;
6803 if (num_devices
== 1) {
6804 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6805 stripped
= flags
& ~stripped
;
6807 /* turn raid0 into single device chunks */
6808 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6811 /* turn mirroring into duplication */
6812 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6813 BTRFS_BLOCK_GROUP_RAID10
))
6814 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
6817 /* they already had raid on here, just return */
6818 if (flags
& stripped
)
6821 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6822 stripped
= flags
& ~stripped
;
6824 /* switch duplicated blocks with raid1 */
6825 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6826 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
6828 /* turn single device chunks into raid0 */
6829 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
6834 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
6836 struct btrfs_space_info
*sinfo
= cache
->space_info
;
6838 u64 min_allocable_bytes
;
6843 * We need some metadata space and system metadata space for
6844 * allocating chunks in some corner cases until we force to set
6845 * it to be readonly.
6848 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
6850 min_allocable_bytes
= 1 * 1024 * 1024;
6852 min_allocable_bytes
= 0;
6854 spin_lock(&sinfo
->lock
);
6855 spin_lock(&cache
->lock
);
6862 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
6863 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
6865 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
6866 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
6867 min_allocable_bytes
<= sinfo
->total_bytes
) {
6868 sinfo
->bytes_readonly
+= num_bytes
;
6873 spin_unlock(&cache
->lock
);
6874 spin_unlock(&sinfo
->lock
);
6878 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
6879 struct btrfs_block_group_cache
*cache
)
6882 struct btrfs_trans_handle
*trans
;
6888 trans
= btrfs_join_transaction(root
);
6889 BUG_ON(IS_ERR(trans
));
6891 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
6892 if (alloc_flags
!= cache
->flags
)
6893 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6896 ret
= set_block_group_ro(cache
, 0);
6899 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
6900 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6904 ret
= set_block_group_ro(cache
, 0);
6906 btrfs_end_transaction(trans
, root
);
6910 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
6911 struct btrfs_root
*root
, u64 type
)
6913 u64 alloc_flags
= get_alloc_profile(root
, type
);
6914 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6919 * helper to account the unused space of all the readonly block group in the
6920 * list. takes mirrors into account.
6922 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
6924 struct btrfs_block_group_cache
*block_group
;
6928 list_for_each_entry(block_group
, groups_list
, list
) {
6929 spin_lock(&block_group
->lock
);
6931 if (!block_group
->ro
) {
6932 spin_unlock(&block_group
->lock
);
6936 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6937 BTRFS_BLOCK_GROUP_RAID10
|
6938 BTRFS_BLOCK_GROUP_DUP
))
6943 free_bytes
+= (block_group
->key
.offset
-
6944 btrfs_block_group_used(&block_group
->item
)) *
6947 spin_unlock(&block_group
->lock
);
6954 * helper to account the unused space of all the readonly block group in the
6955 * space_info. takes mirrors into account.
6957 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
6962 spin_lock(&sinfo
->lock
);
6964 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
6965 if (!list_empty(&sinfo
->block_groups
[i
]))
6966 free_bytes
+= __btrfs_get_ro_block_group_free_space(
6967 &sinfo
->block_groups
[i
]);
6969 spin_unlock(&sinfo
->lock
);
6974 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
6975 struct btrfs_block_group_cache
*cache
)
6977 struct btrfs_space_info
*sinfo
= cache
->space_info
;
6982 spin_lock(&sinfo
->lock
);
6983 spin_lock(&cache
->lock
);
6984 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
6985 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
6986 sinfo
->bytes_readonly
-= num_bytes
;
6988 spin_unlock(&cache
->lock
);
6989 spin_unlock(&sinfo
->lock
);
6994 * checks to see if its even possible to relocate this block group.
6996 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6997 * ok to go ahead and try.
6999 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7001 struct btrfs_block_group_cache
*block_group
;
7002 struct btrfs_space_info
*space_info
;
7003 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7004 struct btrfs_device
*device
;
7012 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7014 /* odd, couldn't find the block group, leave it alone */
7018 min_free
= btrfs_block_group_used(&block_group
->item
);
7020 /* no bytes used, we're good */
7024 space_info
= block_group
->space_info
;
7025 spin_lock(&space_info
->lock
);
7027 full
= space_info
->full
;
7030 * if this is the last block group we have in this space, we can't
7031 * relocate it unless we're able to allocate a new chunk below.
7033 * Otherwise, we need to make sure we have room in the space to handle
7034 * all of the extents from this block group. If we can, we're good
7036 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7037 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7038 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7039 min_free
< space_info
->total_bytes
)) {
7040 spin_unlock(&space_info
->lock
);
7043 spin_unlock(&space_info
->lock
);
7046 * ok we don't have enough space, but maybe we have free space on our
7047 * devices to allocate new chunks for relocation, so loop through our
7048 * alloc devices and guess if we have enough space. However, if we
7049 * were marked as full, then we know there aren't enough chunks, and we
7064 index
= get_block_group_index(block_group
);
7069 } else if (index
== 1) {
7071 } else if (index
== 2) {
7074 } else if (index
== 3) {
7075 dev_min
= fs_devices
->rw_devices
;
7076 do_div(min_free
, dev_min
);
7079 mutex_lock(&root
->fs_info
->chunk_mutex
);
7080 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7084 * check to make sure we can actually find a chunk with enough
7085 * space to fit our block group in.
7087 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7088 ret
= find_free_dev_extent(NULL
, device
, min_free
,
7093 if (dev_nr
>= dev_min
)
7099 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7101 btrfs_put_block_group(block_group
);
7105 static int find_first_block_group(struct btrfs_root
*root
,
7106 struct btrfs_path
*path
, struct btrfs_key
*key
)
7109 struct btrfs_key found_key
;
7110 struct extent_buffer
*leaf
;
7113 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7118 slot
= path
->slots
[0];
7119 leaf
= path
->nodes
[0];
7120 if (slot
>= btrfs_header_nritems(leaf
)) {
7121 ret
= btrfs_next_leaf(root
, path
);
7128 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7130 if (found_key
.objectid
>= key
->objectid
&&
7131 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7141 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
7143 struct btrfs_block_group_cache
*block_group
;
7147 struct inode
*inode
;
7149 block_group
= btrfs_lookup_first_block_group(info
, last
);
7150 while (block_group
) {
7151 spin_lock(&block_group
->lock
);
7152 if (block_group
->iref
)
7154 spin_unlock(&block_group
->lock
);
7155 block_group
= next_block_group(info
->tree_root
,
7165 inode
= block_group
->inode
;
7166 block_group
->iref
= 0;
7167 block_group
->inode
= NULL
;
7168 spin_unlock(&block_group
->lock
);
7170 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
7171 btrfs_put_block_group(block_group
);
7175 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7177 struct btrfs_block_group_cache
*block_group
;
7178 struct btrfs_space_info
*space_info
;
7179 struct btrfs_caching_control
*caching_ctl
;
7182 down_write(&info
->extent_commit_sem
);
7183 while (!list_empty(&info
->caching_block_groups
)) {
7184 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7185 struct btrfs_caching_control
, list
);
7186 list_del(&caching_ctl
->list
);
7187 put_caching_control(caching_ctl
);
7189 up_write(&info
->extent_commit_sem
);
7191 spin_lock(&info
->block_group_cache_lock
);
7192 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7193 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7195 rb_erase(&block_group
->cache_node
,
7196 &info
->block_group_cache_tree
);
7197 spin_unlock(&info
->block_group_cache_lock
);
7199 down_write(&block_group
->space_info
->groups_sem
);
7200 list_del(&block_group
->list
);
7201 up_write(&block_group
->space_info
->groups_sem
);
7203 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7204 wait_block_group_cache_done(block_group
);
7207 * We haven't cached this block group, which means we could
7208 * possibly have excluded extents on this block group.
7210 if (block_group
->cached
== BTRFS_CACHE_NO
)
7211 free_excluded_extents(info
->extent_root
, block_group
);
7213 btrfs_remove_free_space_cache(block_group
);
7214 btrfs_put_block_group(block_group
);
7216 spin_lock(&info
->block_group_cache_lock
);
7218 spin_unlock(&info
->block_group_cache_lock
);
7220 /* now that all the block groups are freed, go through and
7221 * free all the space_info structs. This is only called during
7222 * the final stages of unmount, and so we know nobody is
7223 * using them. We call synchronize_rcu() once before we start,
7224 * just to be on the safe side.
7228 release_global_block_rsv(info
);
7230 while(!list_empty(&info
->space_info
)) {
7231 space_info
= list_entry(info
->space_info
.next
,
7232 struct btrfs_space_info
,
7234 if (space_info
->bytes_pinned
> 0 ||
7235 space_info
->bytes_reserved
> 0 ||
7236 space_info
->bytes_may_use
> 0) {
7238 dump_space_info(space_info
, 0, 0);
7240 list_del(&space_info
->list
);
7246 static void __link_block_group(struct btrfs_space_info
*space_info
,
7247 struct btrfs_block_group_cache
*cache
)
7249 int index
= get_block_group_index(cache
);
7251 down_write(&space_info
->groups_sem
);
7252 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
7253 up_write(&space_info
->groups_sem
);
7256 int btrfs_read_block_groups(struct btrfs_root
*root
)
7258 struct btrfs_path
*path
;
7260 struct btrfs_block_group_cache
*cache
;
7261 struct btrfs_fs_info
*info
= root
->fs_info
;
7262 struct btrfs_space_info
*space_info
;
7263 struct btrfs_key key
;
7264 struct btrfs_key found_key
;
7265 struct extent_buffer
*leaf
;
7269 root
= info
->extent_root
;
7272 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7273 path
= btrfs_alloc_path();
7278 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
7279 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
7280 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
7282 if (btrfs_test_opt(root
, CLEAR_CACHE
))
7286 ret
= find_first_block_group(root
, path
, &key
);
7291 leaf
= path
->nodes
[0];
7292 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7293 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7298 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7300 if (!cache
->free_space_ctl
) {
7306 atomic_set(&cache
->count
, 1);
7307 spin_lock_init(&cache
->lock
);
7308 cache
->fs_info
= info
;
7309 INIT_LIST_HEAD(&cache
->list
);
7310 INIT_LIST_HEAD(&cache
->cluster_list
);
7313 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
7315 read_extent_buffer(leaf
, &cache
->item
,
7316 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7317 sizeof(cache
->item
));
7318 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7320 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7321 btrfs_release_path(path
);
7322 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7323 cache
->sectorsize
= root
->sectorsize
;
7325 btrfs_init_free_space_ctl(cache
);
7328 * We need to exclude the super stripes now so that the space
7329 * info has super bytes accounted for, otherwise we'll think
7330 * we have more space than we actually do.
7332 exclude_super_stripes(root
, cache
);
7335 * check for two cases, either we are full, and therefore
7336 * don't need to bother with the caching work since we won't
7337 * find any space, or we are empty, and we can just add all
7338 * the space in and be done with it. This saves us _alot_ of
7339 * time, particularly in the full case.
7341 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7342 cache
->last_byte_to_unpin
= (u64
)-1;
7343 cache
->cached
= BTRFS_CACHE_FINISHED
;
7344 free_excluded_extents(root
, cache
);
7345 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7346 cache
->last_byte_to_unpin
= (u64
)-1;
7347 cache
->cached
= BTRFS_CACHE_FINISHED
;
7348 add_new_free_space(cache
, root
->fs_info
,
7350 found_key
.objectid
+
7352 free_excluded_extents(root
, cache
);
7355 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7356 btrfs_block_group_used(&cache
->item
),
7359 cache
->space_info
= space_info
;
7360 spin_lock(&cache
->space_info
->lock
);
7361 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7362 spin_unlock(&cache
->space_info
->lock
);
7364 __link_block_group(space_info
, cache
);
7366 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7369 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7370 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7371 set_block_group_ro(cache
, 1);
7374 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7375 if (!(get_alloc_profile(root
, space_info
->flags
) &
7376 (BTRFS_BLOCK_GROUP_RAID10
|
7377 BTRFS_BLOCK_GROUP_RAID1
|
7378 BTRFS_BLOCK_GROUP_DUP
)))
7381 * avoid allocating from un-mirrored block group if there are
7382 * mirrored block groups.
7384 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
7385 set_block_group_ro(cache
, 1);
7386 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
7387 set_block_group_ro(cache
, 1);
7390 init_global_block_rsv(info
);
7393 btrfs_free_path(path
);
7397 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7398 struct btrfs_root
*root
, u64 bytes_used
,
7399 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7403 struct btrfs_root
*extent_root
;
7404 struct btrfs_block_group_cache
*cache
;
7406 extent_root
= root
->fs_info
->extent_root
;
7408 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7410 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7413 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7415 if (!cache
->free_space_ctl
) {
7420 cache
->key
.objectid
= chunk_offset
;
7421 cache
->key
.offset
= size
;
7422 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7423 cache
->sectorsize
= root
->sectorsize
;
7424 cache
->fs_info
= root
->fs_info
;
7426 atomic_set(&cache
->count
, 1);
7427 spin_lock_init(&cache
->lock
);
7428 INIT_LIST_HEAD(&cache
->list
);
7429 INIT_LIST_HEAD(&cache
->cluster_list
);
7431 btrfs_init_free_space_ctl(cache
);
7433 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7434 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7435 cache
->flags
= type
;
7436 btrfs_set_block_group_flags(&cache
->item
, type
);
7438 cache
->last_byte_to_unpin
= (u64
)-1;
7439 cache
->cached
= BTRFS_CACHE_FINISHED
;
7440 exclude_super_stripes(root
, cache
);
7442 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7443 chunk_offset
+ size
);
7445 free_excluded_extents(root
, cache
);
7447 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7448 &cache
->space_info
);
7451 spin_lock(&cache
->space_info
->lock
);
7452 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7453 spin_unlock(&cache
->space_info
->lock
);
7455 __link_block_group(cache
->space_info
, cache
);
7457 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7460 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7461 sizeof(cache
->item
));
7464 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7469 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7470 struct btrfs_root
*root
, u64 group_start
)
7472 struct btrfs_path
*path
;
7473 struct btrfs_block_group_cache
*block_group
;
7474 struct btrfs_free_cluster
*cluster
;
7475 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7476 struct btrfs_key key
;
7477 struct inode
*inode
;
7481 root
= root
->fs_info
->extent_root
;
7483 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7484 BUG_ON(!block_group
);
7485 BUG_ON(!block_group
->ro
);
7488 * Free the reserved super bytes from this block group before
7491 free_excluded_extents(root
, block_group
);
7493 memcpy(&key
, &block_group
->key
, sizeof(key
));
7494 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
7495 BTRFS_BLOCK_GROUP_RAID1
|
7496 BTRFS_BLOCK_GROUP_RAID10
))
7501 /* make sure this block group isn't part of an allocation cluster */
7502 cluster
= &root
->fs_info
->data_alloc_cluster
;
7503 spin_lock(&cluster
->refill_lock
);
7504 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7505 spin_unlock(&cluster
->refill_lock
);
7508 * make sure this block group isn't part of a metadata
7509 * allocation cluster
7511 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7512 spin_lock(&cluster
->refill_lock
);
7513 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7514 spin_unlock(&cluster
->refill_lock
);
7516 path
= btrfs_alloc_path();
7522 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
7523 if (!IS_ERR(inode
)) {
7524 ret
= btrfs_orphan_add(trans
, inode
);
7527 /* One for the block groups ref */
7528 spin_lock(&block_group
->lock
);
7529 if (block_group
->iref
) {
7530 block_group
->iref
= 0;
7531 block_group
->inode
= NULL
;
7532 spin_unlock(&block_group
->lock
);
7535 spin_unlock(&block_group
->lock
);
7537 /* One for our lookup ref */
7538 btrfs_add_delayed_iput(inode
);
7541 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
7542 key
.offset
= block_group
->key
.objectid
;
7545 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
7549 btrfs_release_path(path
);
7551 ret
= btrfs_del_item(trans
, tree_root
, path
);
7554 btrfs_release_path(path
);
7557 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7558 rb_erase(&block_group
->cache_node
,
7559 &root
->fs_info
->block_group_cache_tree
);
7560 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7562 down_write(&block_group
->space_info
->groups_sem
);
7564 * we must use list_del_init so people can check to see if they
7565 * are still on the list after taking the semaphore
7567 list_del_init(&block_group
->list
);
7568 up_write(&block_group
->space_info
->groups_sem
);
7570 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7571 wait_block_group_cache_done(block_group
);
7573 btrfs_remove_free_space_cache(block_group
);
7575 spin_lock(&block_group
->space_info
->lock
);
7576 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7577 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7578 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
7579 spin_unlock(&block_group
->space_info
->lock
);
7581 memcpy(&key
, &block_group
->key
, sizeof(key
));
7583 btrfs_clear_space_info_full(root
->fs_info
);
7585 btrfs_put_block_group(block_group
);
7586 btrfs_put_block_group(block_group
);
7588 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7594 ret
= btrfs_del_item(trans
, root
, path
);
7596 btrfs_free_path(path
);
7600 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
7602 struct btrfs_space_info
*space_info
;
7603 struct btrfs_super_block
*disk_super
;
7609 disk_super
= fs_info
->super_copy
;
7610 if (!btrfs_super_root(disk_super
))
7613 features
= btrfs_super_incompat_flags(disk_super
);
7614 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
7617 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
7618 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7623 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
7624 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7626 flags
= BTRFS_BLOCK_GROUP_METADATA
;
7627 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7631 flags
= BTRFS_BLOCK_GROUP_DATA
;
7632 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7638 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
7640 return unpin_extent_range(root
, start
, end
);
7643 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
7644 u64 num_bytes
, u64
*actual_bytes
)
7646 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
7649 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
7651 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7652 struct btrfs_block_group_cache
*cache
= NULL
;
7659 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
7662 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
7663 btrfs_put_block_group(cache
);
7667 start
= max(range
->start
, cache
->key
.objectid
);
7668 end
= min(range
->start
+ range
->len
,
7669 cache
->key
.objectid
+ cache
->key
.offset
);
7671 if (end
- start
>= range
->minlen
) {
7672 if (!block_group_cache_done(cache
)) {
7673 ret
= cache_block_group(cache
, NULL
, root
, 0);
7675 wait_block_group_cache_done(cache
);
7677 ret
= btrfs_trim_block_group(cache
,
7683 trimmed
+= group_trimmed
;
7685 btrfs_put_block_group(cache
);
7690 cache
= next_block_group(fs_info
->tree_root
, cache
);
7693 range
->len
= trimmed
;