drivers/platform/x86/thinkpad_acpi.c: delete double assignment
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blob3b7b82a5d13f13672fb47b46a24d6d631c3903f6
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 unsigned long data, text, lib;
20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
29 hiwater_vm = total_vm = mm->total_vm;
30 if (hiwater_vm < mm->hiwater_vm)
31 hiwater_vm = mm->hiwater_vm;
32 hiwater_rss = total_rss = get_mm_rss(mm);
33 if (hiwater_rss < mm->hiwater_rss)
34 hiwater_rss = mm->hiwater_rss;
36 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 seq_printf(m,
40 "VmPeak:\t%8lu kB\n"
41 "VmSize:\t%8lu kB\n"
42 "VmLck:\t%8lu kB\n"
43 "VmHWM:\t%8lu kB\n"
44 "VmRSS:\t%8lu kB\n"
45 "VmData:\t%8lu kB\n"
46 "VmStk:\t%8lu kB\n"
47 "VmExe:\t%8lu kB\n"
48 "VmLib:\t%8lu kB\n"
49 "VmPTE:\t%8lu kB\n",
50 hiwater_vm << (PAGE_SHIFT-10),
51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
52 mm->locked_vm << (PAGE_SHIFT-10),
53 hiwater_rss << (PAGE_SHIFT-10),
54 total_rss << (PAGE_SHIFT-10),
55 data << (PAGE_SHIFT-10),
56 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
60 unsigned long task_vsize(struct mm_struct *mm)
62 return PAGE_SIZE * mm->total_vm;
65 int task_statm(struct mm_struct *mm, int *shared, int *text,
66 int *data, int *resident)
68 *shared = get_mm_counter(mm, file_rss);
69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
70 >> PAGE_SHIFT;
71 *data = mm->total_vm - mm->shared_vm;
72 *resident = *shared + get_mm_counter(mm, anon_rss);
73 return mm->total_vm;
76 static void pad_len_spaces(struct seq_file *m, int len)
78 len = 25 + sizeof(void*) * 6 - len;
79 if (len < 1)
80 len = 1;
81 seq_printf(m, "%*c", len, ' ');
84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
86 if (vma && vma != priv->tail_vma) {
87 struct mm_struct *mm = vma->vm_mm;
88 up_read(&mm->mmap_sem);
89 mmput(mm);
93 static void *m_start(struct seq_file *m, loff_t *pos)
95 struct proc_maps_private *priv = m->private;
96 unsigned long last_addr = m->version;
97 struct mm_struct *mm;
98 struct vm_area_struct *vma, *tail_vma = NULL;
99 loff_t l = *pos;
101 /* Clear the per syscall fields in priv */
102 priv->task = NULL;
103 priv->tail_vma = NULL;
106 * We remember last_addr rather than next_addr to hit with
107 * mmap_cache most of the time. We have zero last_addr at
108 * the beginning and also after lseek. We will have -1 last_addr
109 * after the end of the vmas.
112 if (last_addr == -1UL)
113 return NULL;
115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
116 if (!priv->task)
117 return NULL;
119 mm = mm_for_maps(priv->task);
120 if (!mm)
121 return NULL;
122 down_read(&mm->mmap_sem);
124 tail_vma = get_gate_vma(priv->task);
125 priv->tail_vma = tail_vma;
127 /* Start with last addr hint */
128 vma = find_vma(mm, last_addr);
129 if (last_addr && vma) {
130 vma = vma->vm_next;
131 goto out;
135 * Check the vma index is within the range and do
136 * sequential scan until m_index.
138 vma = NULL;
139 if ((unsigned long)l < mm->map_count) {
140 vma = mm->mmap;
141 while (l-- && vma)
142 vma = vma->vm_next;
143 goto out;
146 if (l != mm->map_count)
147 tail_vma = NULL; /* After gate vma */
149 out:
150 if (vma)
151 return vma;
153 /* End of vmas has been reached */
154 m->version = (tail_vma != NULL)? 0: -1UL;
155 up_read(&mm->mmap_sem);
156 mmput(mm);
157 return tail_vma;
160 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
162 struct proc_maps_private *priv = m->private;
163 struct vm_area_struct *vma = v;
164 struct vm_area_struct *tail_vma = priv->tail_vma;
166 (*pos)++;
167 if (vma && (vma != tail_vma) && vma->vm_next)
168 return vma->vm_next;
169 vma_stop(priv, vma);
170 return (vma != tail_vma)? tail_vma: NULL;
173 static void m_stop(struct seq_file *m, void *v)
175 struct proc_maps_private *priv = m->private;
176 struct vm_area_struct *vma = v;
178 vma_stop(priv, vma);
179 if (priv->task)
180 put_task_struct(priv->task);
183 static int do_maps_open(struct inode *inode, struct file *file,
184 const struct seq_operations *ops)
186 struct proc_maps_private *priv;
187 int ret = -ENOMEM;
188 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
189 if (priv) {
190 priv->pid = proc_pid(inode);
191 ret = seq_open(file, ops);
192 if (!ret) {
193 struct seq_file *m = file->private_data;
194 m->private = priv;
195 } else {
196 kfree(priv);
199 return ret;
202 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
204 struct mm_struct *mm = vma->vm_mm;
205 struct file *file = vma->vm_file;
206 int flags = vma->vm_flags;
207 unsigned long ino = 0;
208 unsigned long long pgoff = 0;
209 unsigned long start;
210 dev_t dev = 0;
211 int len;
213 if (file) {
214 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
215 dev = inode->i_sb->s_dev;
216 ino = inode->i_ino;
217 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
220 /* We don't show the stack guard page in /proc/maps */
221 start = vma->vm_start;
222 if (vma->vm_flags & VM_GROWSDOWN)
223 if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
224 start += PAGE_SIZE;
226 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
227 start,
228 vma->vm_end,
229 flags & VM_READ ? 'r' : '-',
230 flags & VM_WRITE ? 'w' : '-',
231 flags & VM_EXEC ? 'x' : '-',
232 flags & VM_MAYSHARE ? 's' : 'p',
233 pgoff,
234 MAJOR(dev), MINOR(dev), ino, &len);
237 * Print the dentry name for named mappings, and a
238 * special [heap] marker for the heap:
240 if (file) {
241 pad_len_spaces(m, len);
242 seq_path(m, &file->f_path, "\n");
243 } else {
244 const char *name = arch_vma_name(vma);
245 if (!name) {
246 if (mm) {
247 if (vma->vm_start <= mm->brk &&
248 vma->vm_end >= mm->start_brk) {
249 name = "[heap]";
250 } else if (vma->vm_start <= mm->start_stack &&
251 vma->vm_end >= mm->start_stack) {
252 name = "[stack]";
254 } else {
255 name = "[vdso]";
258 if (name) {
259 pad_len_spaces(m, len);
260 seq_puts(m, name);
263 seq_putc(m, '\n');
266 static int show_map(struct seq_file *m, void *v)
268 struct vm_area_struct *vma = v;
269 struct proc_maps_private *priv = m->private;
270 struct task_struct *task = priv->task;
272 show_map_vma(m, vma);
274 if (m->count < m->size) /* vma is copied successfully */
275 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
276 return 0;
279 static const struct seq_operations proc_pid_maps_op = {
280 .start = m_start,
281 .next = m_next,
282 .stop = m_stop,
283 .show = show_map
286 static int maps_open(struct inode *inode, struct file *file)
288 return do_maps_open(inode, file, &proc_pid_maps_op);
291 const struct file_operations proc_maps_operations = {
292 .open = maps_open,
293 .read = seq_read,
294 .llseek = seq_lseek,
295 .release = seq_release_private,
299 * Proportional Set Size(PSS): my share of RSS.
301 * PSS of a process is the count of pages it has in memory, where each
302 * page is divided by the number of processes sharing it. So if a
303 * process has 1000 pages all to itself, and 1000 shared with one other
304 * process, its PSS will be 1500.
306 * To keep (accumulated) division errors low, we adopt a 64bit
307 * fixed-point pss counter to minimize division errors. So (pss >>
308 * PSS_SHIFT) would be the real byte count.
310 * A shift of 12 before division means (assuming 4K page size):
311 * - 1M 3-user-pages add up to 8KB errors;
312 * - supports mapcount up to 2^24, or 16M;
313 * - supports PSS up to 2^52 bytes, or 4PB.
315 #define PSS_SHIFT 12
317 #ifdef CONFIG_PROC_PAGE_MONITOR
318 struct mem_size_stats {
319 struct vm_area_struct *vma;
320 unsigned long resident;
321 unsigned long shared_clean;
322 unsigned long shared_dirty;
323 unsigned long private_clean;
324 unsigned long private_dirty;
325 unsigned long referenced;
326 unsigned long swap;
327 u64 pss;
330 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
331 struct mm_walk *walk)
333 struct mem_size_stats *mss = walk->private;
334 struct vm_area_struct *vma = mss->vma;
335 pte_t *pte, ptent;
336 spinlock_t *ptl;
337 struct page *page;
338 int mapcount;
340 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
341 for (; addr != end; pte++, addr += PAGE_SIZE) {
342 ptent = *pte;
344 if (is_swap_pte(ptent)) {
345 mss->swap += PAGE_SIZE;
346 continue;
349 if (!pte_present(ptent))
350 continue;
352 mss->resident += PAGE_SIZE;
354 page = vm_normal_page(vma, addr, ptent);
355 if (!page)
356 continue;
358 /* Accumulate the size in pages that have been accessed. */
359 if (pte_young(ptent) || PageReferenced(page))
360 mss->referenced += PAGE_SIZE;
361 mapcount = page_mapcount(page);
362 if (mapcount >= 2) {
363 if (pte_dirty(ptent))
364 mss->shared_dirty += PAGE_SIZE;
365 else
366 mss->shared_clean += PAGE_SIZE;
367 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
368 } else {
369 if (pte_dirty(ptent))
370 mss->private_dirty += PAGE_SIZE;
371 else
372 mss->private_clean += PAGE_SIZE;
373 mss->pss += (PAGE_SIZE << PSS_SHIFT);
376 pte_unmap_unlock(pte - 1, ptl);
377 cond_resched();
378 return 0;
381 static int show_smap(struct seq_file *m, void *v)
383 struct proc_maps_private *priv = m->private;
384 struct task_struct *task = priv->task;
385 struct vm_area_struct *vma = v;
386 struct mem_size_stats mss;
387 struct mm_walk smaps_walk = {
388 .pmd_entry = smaps_pte_range,
389 .mm = vma->vm_mm,
390 .private = &mss,
393 memset(&mss, 0, sizeof mss);
394 mss.vma = vma;
395 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
396 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
398 show_map_vma(m, vma);
400 seq_printf(m,
401 "Size: %8lu kB\n"
402 "Rss: %8lu kB\n"
403 "Pss: %8lu kB\n"
404 "Shared_Clean: %8lu kB\n"
405 "Shared_Dirty: %8lu kB\n"
406 "Private_Clean: %8lu kB\n"
407 "Private_Dirty: %8lu kB\n"
408 "Referenced: %8lu kB\n"
409 "Swap: %8lu kB\n"
410 "KernelPageSize: %8lu kB\n"
411 "MMUPageSize: %8lu kB\n",
412 (vma->vm_end - vma->vm_start) >> 10,
413 mss.resident >> 10,
414 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
415 mss.shared_clean >> 10,
416 mss.shared_dirty >> 10,
417 mss.private_clean >> 10,
418 mss.private_dirty >> 10,
419 mss.referenced >> 10,
420 mss.swap >> 10,
421 vma_kernel_pagesize(vma) >> 10,
422 vma_mmu_pagesize(vma) >> 10);
424 if (m->count < m->size) /* vma is copied successfully */
425 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
426 return 0;
429 static const struct seq_operations proc_pid_smaps_op = {
430 .start = m_start,
431 .next = m_next,
432 .stop = m_stop,
433 .show = show_smap
436 static int smaps_open(struct inode *inode, struct file *file)
438 return do_maps_open(inode, file, &proc_pid_smaps_op);
441 const struct file_operations proc_smaps_operations = {
442 .open = smaps_open,
443 .read = seq_read,
444 .llseek = seq_lseek,
445 .release = seq_release_private,
448 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
449 unsigned long end, struct mm_walk *walk)
451 struct vm_area_struct *vma = walk->private;
452 pte_t *pte, ptent;
453 spinlock_t *ptl;
454 struct page *page;
456 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
457 for (; addr != end; pte++, addr += PAGE_SIZE) {
458 ptent = *pte;
459 if (!pte_present(ptent))
460 continue;
462 page = vm_normal_page(vma, addr, ptent);
463 if (!page)
464 continue;
466 /* Clear accessed and referenced bits. */
467 ptep_test_and_clear_young(vma, addr, pte);
468 ClearPageReferenced(page);
470 pte_unmap_unlock(pte - 1, ptl);
471 cond_resched();
472 return 0;
475 #define CLEAR_REFS_ALL 1
476 #define CLEAR_REFS_ANON 2
477 #define CLEAR_REFS_MAPPED 3
479 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
480 size_t count, loff_t *ppos)
482 struct task_struct *task;
483 char buffer[PROC_NUMBUF];
484 struct mm_struct *mm;
485 struct vm_area_struct *vma;
486 long type;
488 memset(buffer, 0, sizeof(buffer));
489 if (count > sizeof(buffer) - 1)
490 count = sizeof(buffer) - 1;
491 if (copy_from_user(buffer, buf, count))
492 return -EFAULT;
493 if (strict_strtol(strstrip(buffer), 10, &type))
494 return -EINVAL;
495 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
496 return -EINVAL;
497 task = get_proc_task(file->f_path.dentry->d_inode);
498 if (!task)
499 return -ESRCH;
500 mm = get_task_mm(task);
501 if (mm) {
502 struct mm_walk clear_refs_walk = {
503 .pmd_entry = clear_refs_pte_range,
504 .mm = mm,
506 down_read(&mm->mmap_sem);
507 for (vma = mm->mmap; vma; vma = vma->vm_next) {
508 clear_refs_walk.private = vma;
509 if (is_vm_hugetlb_page(vma))
510 continue;
512 * Writing 1 to /proc/pid/clear_refs affects all pages.
514 * Writing 2 to /proc/pid/clear_refs only affects
515 * Anonymous pages.
517 * Writing 3 to /proc/pid/clear_refs only affects file
518 * mapped pages.
520 if (type == CLEAR_REFS_ANON && vma->vm_file)
521 continue;
522 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
523 continue;
524 walk_page_range(vma->vm_start, vma->vm_end,
525 &clear_refs_walk);
527 flush_tlb_mm(mm);
528 up_read(&mm->mmap_sem);
529 mmput(mm);
531 put_task_struct(task);
533 return count;
536 const struct file_operations proc_clear_refs_operations = {
537 .write = clear_refs_write,
540 struct pagemapread {
541 u64 __user *out, *end;
544 #define PM_ENTRY_BYTES sizeof(u64)
545 #define PM_STATUS_BITS 3
546 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
547 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
548 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
549 #define PM_PSHIFT_BITS 6
550 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
551 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
552 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
553 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
554 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
556 #define PM_PRESENT PM_STATUS(4LL)
557 #define PM_SWAP PM_STATUS(2LL)
558 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
559 #define PM_END_OF_BUFFER 1
561 static int add_to_pagemap(unsigned long addr, u64 pfn,
562 struct pagemapread *pm)
564 if (put_user(pfn, pm->out))
565 return -EFAULT;
566 pm->out++;
567 if (pm->out >= pm->end)
568 return PM_END_OF_BUFFER;
569 return 0;
572 static int pagemap_pte_hole(unsigned long start, unsigned long end,
573 struct mm_walk *walk)
575 struct pagemapread *pm = walk->private;
576 unsigned long addr;
577 int err = 0;
578 for (addr = start; addr < end; addr += PAGE_SIZE) {
579 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
580 if (err)
581 break;
583 return err;
586 static u64 swap_pte_to_pagemap_entry(pte_t pte)
588 swp_entry_t e = pte_to_swp_entry(pte);
589 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
592 static u64 pte_to_pagemap_entry(pte_t pte)
594 u64 pme = 0;
595 if (is_swap_pte(pte))
596 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
597 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
598 else if (pte_present(pte))
599 pme = PM_PFRAME(pte_pfn(pte))
600 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
601 return pme;
604 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
605 struct mm_walk *walk)
607 struct vm_area_struct *vma;
608 struct pagemapread *pm = walk->private;
609 pte_t *pte;
610 int err = 0;
612 /* find the first VMA at or above 'addr' */
613 vma = find_vma(walk->mm, addr);
614 for (; addr != end; addr += PAGE_SIZE) {
615 u64 pfn = PM_NOT_PRESENT;
617 /* check to see if we've left 'vma' behind
618 * and need a new, higher one */
619 if (vma && (addr >= vma->vm_end))
620 vma = find_vma(walk->mm, addr);
622 /* check that 'vma' actually covers this address,
623 * and that it isn't a huge page vma */
624 if (vma && (vma->vm_start <= addr) &&
625 !is_vm_hugetlb_page(vma)) {
626 pte = pte_offset_map(pmd, addr);
627 pfn = pte_to_pagemap_entry(*pte);
628 /* unmap before userspace copy */
629 pte_unmap(pte);
631 err = add_to_pagemap(addr, pfn, pm);
632 if (err)
633 return err;
636 cond_resched();
638 return err;
642 * /proc/pid/pagemap - an array mapping virtual pages to pfns
644 * For each page in the address space, this file contains one 64-bit entry
645 * consisting of the following:
647 * Bits 0-55 page frame number (PFN) if present
648 * Bits 0-4 swap type if swapped
649 * Bits 5-55 swap offset if swapped
650 * Bits 55-60 page shift (page size = 1<<page shift)
651 * Bit 61 reserved for future use
652 * Bit 62 page swapped
653 * Bit 63 page present
655 * If the page is not present but in swap, then the PFN contains an
656 * encoding of the swap file number and the page's offset into the
657 * swap. Unmapped pages return a null PFN. This allows determining
658 * precisely which pages are mapped (or in swap) and comparing mapped
659 * pages between processes.
661 * Efficient users of this interface will use /proc/pid/maps to
662 * determine which areas of memory are actually mapped and llseek to
663 * skip over unmapped regions.
665 static ssize_t pagemap_read(struct file *file, char __user *buf,
666 size_t count, loff_t *ppos)
668 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
669 struct page **pages, *page;
670 unsigned long uaddr, uend;
671 struct mm_struct *mm;
672 struct pagemapread pm;
673 int pagecount;
674 int ret = -ESRCH;
675 struct mm_walk pagemap_walk = {};
676 unsigned long src;
677 unsigned long svpfn;
678 unsigned long start_vaddr;
679 unsigned long end_vaddr;
681 if (!task)
682 goto out;
684 ret = -EACCES;
685 if (!ptrace_may_access(task, PTRACE_MODE_READ))
686 goto out_task;
688 ret = -EINVAL;
689 /* file position must be aligned */
690 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
691 goto out_task;
693 ret = 0;
695 if (!count)
696 goto out_task;
698 mm = get_task_mm(task);
699 if (!mm)
700 goto out_task;
703 uaddr = (unsigned long)buf & PAGE_MASK;
704 uend = (unsigned long)(buf + count);
705 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
706 ret = 0;
707 if (pagecount == 0)
708 goto out_mm;
709 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
710 ret = -ENOMEM;
711 if (!pages)
712 goto out_mm;
714 down_read(&current->mm->mmap_sem);
715 ret = get_user_pages(current, current->mm, uaddr, pagecount,
716 1, 0, pages, NULL);
717 up_read(&current->mm->mmap_sem);
719 if (ret < 0)
720 goto out_free;
722 if (ret != pagecount) {
723 pagecount = ret;
724 ret = -EFAULT;
725 goto out_pages;
728 pm.out = (u64 __user *)buf;
729 pm.end = (u64 __user *)(buf + count);
731 pagemap_walk.pmd_entry = pagemap_pte_range;
732 pagemap_walk.pte_hole = pagemap_pte_hole;
733 pagemap_walk.mm = mm;
734 pagemap_walk.private = &pm;
736 src = *ppos;
737 svpfn = src / PM_ENTRY_BYTES;
738 start_vaddr = svpfn << PAGE_SHIFT;
739 end_vaddr = TASK_SIZE_OF(task);
741 /* watch out for wraparound */
742 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
743 start_vaddr = end_vaddr;
746 * The odds are that this will stop walking way
747 * before end_vaddr, because the length of the
748 * user buffer is tracked in "pm", and the walk
749 * will stop when we hit the end of the buffer.
751 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk);
752 if (ret == PM_END_OF_BUFFER)
753 ret = 0;
754 /* don't need mmap_sem for these, but this looks cleaner */
755 *ppos += (char __user *)pm.out - buf;
756 if (!ret)
757 ret = (char __user *)pm.out - buf;
759 out_pages:
760 for (; pagecount; pagecount--) {
761 page = pages[pagecount-1];
762 if (!PageReserved(page))
763 SetPageDirty(page);
764 page_cache_release(page);
766 out_free:
767 kfree(pages);
768 out_mm:
769 mmput(mm);
770 out_task:
771 put_task_struct(task);
772 out:
773 return ret;
776 const struct file_operations proc_pagemap_operations = {
777 .llseek = mem_lseek, /* borrow this */
778 .read = pagemap_read,
780 #endif /* CONFIG_PROC_PAGE_MONITOR */
782 #ifdef CONFIG_NUMA
783 extern int show_numa_map(struct seq_file *m, void *v);
785 static const struct seq_operations proc_pid_numa_maps_op = {
786 .start = m_start,
787 .next = m_next,
788 .stop = m_stop,
789 .show = show_numa_map,
792 static int numa_maps_open(struct inode *inode, struct file *file)
794 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
797 const struct file_operations proc_numa_maps_operations = {
798 .open = numa_maps_open,
799 .read = seq_read,
800 .llseek = seq_lseek,
801 .release = seq_release_private,
803 #endif