1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
);
55 * Structures which describe a path through a btree, and functions to
58 * The idea here is to be as generic as possible with the tree
61 struct ocfs2_path_item
{
62 struct buffer_head
*bh
;
63 struct ocfs2_extent_list
*el
;
66 #define OCFS2_MAX_PATH_DEPTH 5
70 struct ocfs2_path_item p_node
[OCFS2_MAX_PATH_DEPTH
];
73 #define path_root_bh(_path) ((_path)->p_node[0].bh)
74 #define path_root_el(_path) ((_path)->p_node[0].el)
75 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
76 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
77 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80 * Reset the actual path elements so that we can re-use the structure
81 * to build another path. Generally, this involves freeing the buffer
84 static void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
86 int i
, start
= 0, depth
= 0;
87 struct ocfs2_path_item
*node
;
92 for(i
= start
; i
< path_num_items(path
); i
++) {
93 node
= &path
->p_node
[i
];
101 * Tree depth may change during truncate, or insert. If we're
102 * keeping the root extent list, then make sure that our path
103 * structure reflects the proper depth.
106 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
108 path
->p_tree_depth
= depth
;
111 static void ocfs2_free_path(struct ocfs2_path
*path
)
114 ocfs2_reinit_path(path
, 0);
120 * Make the *dest path the same as src and re-initialize src path to
123 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
127 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
129 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
130 brelse(dest
->p_node
[i
].bh
);
132 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
133 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
135 src
->p_node
[i
].bh
= NULL
;
136 src
->p_node
[i
].el
= NULL
;
141 * Insert an extent block at given index.
143 * This will not take an additional reference on eb_bh.
145 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
146 struct buffer_head
*eb_bh
)
148 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
151 * Right now, no root bh is an extent block, so this helps
152 * catch code errors with dinode trees. The assertion can be
153 * safely removed if we ever need to insert extent block
154 * structures at the root.
158 path
->p_node
[index
].bh
= eb_bh
;
159 path
->p_node
[index
].el
= &eb
->h_list
;
162 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
163 struct ocfs2_extent_list
*root_el
)
165 struct ocfs2_path
*path
;
167 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
169 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
171 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
173 path_root_bh(path
) = root_bh
;
174 path_root_el(path
) = root_el
;
181 * Allocate and initialize a new path based on a disk inode tree.
183 static struct ocfs2_path
*ocfs2_new_inode_path(struct buffer_head
*di_bh
)
185 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
186 struct ocfs2_extent_list
*el
= &di
->id2
.i_list
;
188 return ocfs2_new_path(di_bh
, el
);
192 * Convenience function to journal all components in a path.
194 static int ocfs2_journal_access_path(struct inode
*inode
, handle_t
*handle
,
195 struct ocfs2_path
*path
)
202 for(i
= 0; i
< path_num_items(path
); i
++) {
203 ret
= ocfs2_journal_access(handle
, inode
, path
->p_node
[i
].bh
,
204 OCFS2_JOURNAL_ACCESS_WRITE
);
215 enum ocfs2_contig_type
{
223 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
224 * ocfs2_extent_contig only work properly against leaf nodes!
226 static int ocfs2_block_extent_contig(struct super_block
*sb
,
227 struct ocfs2_extent_rec
*ext
,
230 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
232 blk_end
+= ocfs2_clusters_to_blocks(sb
,
233 le16_to_cpu(ext
->e_leaf_clusters
));
235 return blkno
== blk_end
;
238 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
239 struct ocfs2_extent_rec
*right
)
243 left_range
= le32_to_cpu(left
->e_cpos
) +
244 le16_to_cpu(left
->e_leaf_clusters
);
246 return (left_range
== le32_to_cpu(right
->e_cpos
));
249 static enum ocfs2_contig_type
250 ocfs2_extent_contig(struct inode
*inode
,
251 struct ocfs2_extent_rec
*ext
,
252 struct ocfs2_extent_rec
*insert_rec
)
254 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
256 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
257 ocfs2_block_extent_contig(inode
->i_sb
, ext
, blkno
))
260 blkno
= le64_to_cpu(ext
->e_blkno
);
261 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
262 ocfs2_block_extent_contig(inode
->i_sb
, insert_rec
, blkno
))
269 * NOTE: We can have pretty much any combination of contiguousness and
272 * The usefulness of APPEND_TAIL is more in that it lets us know that
273 * we'll have to update the path to that leaf.
275 enum ocfs2_append_type
{
280 struct ocfs2_insert_type
{
281 enum ocfs2_append_type ins_appending
;
282 enum ocfs2_contig_type ins_contig
;
283 int ins_contig_index
;
284 int ins_free_records
;
289 * How many free extents have we got before we need more meta data?
291 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
293 struct ocfs2_dinode
*fe
)
296 struct ocfs2_extent_list
*el
;
297 struct ocfs2_extent_block
*eb
;
298 struct buffer_head
*eb_bh
= NULL
;
302 if (!OCFS2_IS_VALID_DINODE(fe
)) {
303 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
308 if (fe
->i_last_eb_blk
) {
309 retval
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
310 &eb_bh
, OCFS2_BH_CACHED
, inode
);
315 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
318 el
= &fe
->id2
.i_list
;
320 BUG_ON(el
->l_tree_depth
!= 0);
322 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
331 /* expects array to already be allocated
333 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
336 static int ocfs2_create_new_meta_bhs(struct ocfs2_super
*osb
,
340 struct ocfs2_alloc_context
*meta_ac
,
341 struct buffer_head
*bhs
[])
343 int count
, status
, i
;
344 u16 suballoc_bit_start
;
347 struct ocfs2_extent_block
*eb
;
352 while (count
< wanted
) {
353 status
= ocfs2_claim_metadata(osb
,
365 for(i
= count
; i
< (num_got
+ count
); i
++) {
366 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
367 if (bhs
[i
] == NULL
) {
372 ocfs2_set_new_buffer_uptodate(inode
, bhs
[i
]);
374 status
= ocfs2_journal_access(handle
, inode
, bhs
[i
],
375 OCFS2_JOURNAL_ACCESS_CREATE
);
381 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
382 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
383 /* Ok, setup the minimal stuff here. */
384 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
385 eb
->h_blkno
= cpu_to_le64(first_blkno
);
386 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
388 #ifndef OCFS2_USE_ALL_METADATA_SUBALLOCATORS
389 /* we always use slot zero's suballocator */
390 eb
->h_suballoc_slot
= 0;
392 eb
->h_suballoc_slot
= cpu_to_le16(osb
->slot_num
);
394 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
396 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
398 suballoc_bit_start
++;
401 /* We'll also be dirtied by the caller, so
402 * this isn't absolutely necessary. */
403 status
= ocfs2_journal_dirty(handle
, bhs
[i
]);
416 for(i
= 0; i
< wanted
; i
++) {
427 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
429 * Returns the sum of the rightmost extent rec logical offset and
432 * ocfs2_add_branch() uses this to determine what logical cluster
433 * value should be populated into the leftmost new branch records.
435 * ocfs2_shift_tree_depth() uses this to determine the # clusters
436 * value for the new topmost tree record.
438 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
442 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
444 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
445 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
449 * Add an entire tree branch to our inode. eb_bh is the extent block
450 * to start at, if we don't want to start the branch at the dinode
453 * last_eb_bh is required as we have to update it's next_leaf pointer
454 * for the new last extent block.
456 * the new branch will be 'empty' in the sense that every block will
457 * contain a single record with cluster count == 0.
459 static int ocfs2_add_branch(struct ocfs2_super
*osb
,
462 struct buffer_head
*fe_bh
,
463 struct buffer_head
*eb_bh
,
464 struct buffer_head
*last_eb_bh
,
465 struct ocfs2_alloc_context
*meta_ac
)
467 int status
, new_blocks
, i
;
468 u64 next_blkno
, new_last_eb_blk
;
469 struct buffer_head
*bh
;
470 struct buffer_head
**new_eb_bhs
= NULL
;
471 struct ocfs2_dinode
*fe
;
472 struct ocfs2_extent_block
*eb
;
473 struct ocfs2_extent_list
*eb_el
;
474 struct ocfs2_extent_list
*el
;
481 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
484 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
487 el
= &fe
->id2
.i_list
;
489 /* we never add a branch to a leaf. */
490 BUG_ON(!el
->l_tree_depth
);
492 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
494 /* allocate the number of new eb blocks we need */
495 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
503 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, new_blocks
,
504 meta_ac
, new_eb_bhs
);
510 eb
= (struct ocfs2_extent_block
*)last_eb_bh
->b_data
;
511 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
513 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
514 * linked with the rest of the tree.
515 * conversly, new_eb_bhs[0] is the new bottommost leaf.
517 * when we leave the loop, new_last_eb_blk will point to the
518 * newest leaf, and next_blkno will point to the topmost extent
520 next_blkno
= new_last_eb_blk
= 0;
521 for(i
= 0; i
< new_blocks
; i
++) {
523 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
524 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
525 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
531 status
= ocfs2_journal_access(handle
, inode
, bh
,
532 OCFS2_JOURNAL_ACCESS_CREATE
);
538 eb
->h_next_leaf_blk
= 0;
539 eb_el
->l_tree_depth
= cpu_to_le16(i
);
540 eb_el
->l_next_free_rec
= cpu_to_le16(1);
542 * This actually counts as an empty extent as
545 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
546 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
548 * eb_el isn't always an interior node, but even leaf
549 * nodes want a zero'd flags and reserved field so
550 * this gets the whole 32 bits regardless of use.
552 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
553 if (!eb_el
->l_tree_depth
)
554 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
556 status
= ocfs2_journal_dirty(handle
, bh
);
562 next_blkno
= le64_to_cpu(eb
->h_blkno
);
565 /* This is a bit hairy. We want to update up to three blocks
566 * here without leaving any of them in an inconsistent state
567 * in case of error. We don't have to worry about
568 * journal_dirty erroring as it won't unless we've aborted the
569 * handle (in which case we would never be here) so reserving
570 * the write with journal_access is all we need to do. */
571 status
= ocfs2_journal_access(handle
, inode
, last_eb_bh
,
572 OCFS2_JOURNAL_ACCESS_WRITE
);
577 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
578 OCFS2_JOURNAL_ACCESS_WRITE
);
584 status
= ocfs2_journal_access(handle
, inode
, eb_bh
,
585 OCFS2_JOURNAL_ACCESS_WRITE
);
592 /* Link the new branch into the rest of the tree (el will
593 * either be on the fe, or the extent block passed in. */
594 i
= le16_to_cpu(el
->l_next_free_rec
);
595 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
596 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
597 el
->l_recs
[i
].e_int_clusters
= 0;
598 le16_add_cpu(&el
->l_next_free_rec
, 1);
600 /* fe needs a new last extent block pointer, as does the
601 * next_leaf on the previously last-extent-block. */
602 fe
->i_last_eb_blk
= cpu_to_le64(new_last_eb_blk
);
604 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
605 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
607 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
610 status
= ocfs2_journal_dirty(handle
, fe_bh
);
614 status
= ocfs2_journal_dirty(handle
, eb_bh
);
622 for (i
= 0; i
< new_blocks
; i
++)
624 brelse(new_eb_bhs
[i
]);
633 * adds another level to the allocation tree.
634 * returns back the new extent block so you can add a branch to it
637 static int ocfs2_shift_tree_depth(struct ocfs2_super
*osb
,
640 struct buffer_head
*fe_bh
,
641 struct ocfs2_alloc_context
*meta_ac
,
642 struct buffer_head
**ret_new_eb_bh
)
646 struct buffer_head
*new_eb_bh
= NULL
;
647 struct ocfs2_dinode
*fe
;
648 struct ocfs2_extent_block
*eb
;
649 struct ocfs2_extent_list
*fe_el
;
650 struct ocfs2_extent_list
*eb_el
;
654 status
= ocfs2_create_new_meta_bhs(osb
, handle
, inode
, 1, meta_ac
,
661 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
662 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
663 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
669 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
670 fe_el
= &fe
->id2
.i_list
;
672 status
= ocfs2_journal_access(handle
, inode
, new_eb_bh
,
673 OCFS2_JOURNAL_ACCESS_CREATE
);
679 /* copy the fe data into the new extent block */
680 eb_el
->l_tree_depth
= fe_el
->l_tree_depth
;
681 eb_el
->l_next_free_rec
= fe_el
->l_next_free_rec
;
682 for(i
= 0; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
683 eb_el
->l_recs
[i
] = fe_el
->l_recs
[i
];
685 status
= ocfs2_journal_dirty(handle
, new_eb_bh
);
691 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
692 OCFS2_JOURNAL_ACCESS_WRITE
);
698 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
701 le16_add_cpu(&fe_el
->l_tree_depth
, 1);
702 fe_el
->l_recs
[0].e_cpos
= 0;
703 fe_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
704 fe_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
705 for(i
= 1; i
< le16_to_cpu(fe_el
->l_next_free_rec
); i
++)
706 memset(&fe_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
707 fe_el
->l_next_free_rec
= cpu_to_le16(1);
709 /* If this is our 1st tree depth shift, then last_eb_blk
710 * becomes the allocated extent block */
711 if (fe_el
->l_tree_depth
== cpu_to_le16(1))
712 fe
->i_last_eb_blk
= eb
->h_blkno
;
714 status
= ocfs2_journal_dirty(handle
, fe_bh
);
720 *ret_new_eb_bh
= new_eb_bh
;
732 * Should only be called when there is no space left in any of the
733 * leaf nodes. What we want to do is find the lowest tree depth
734 * non-leaf extent block with room for new records. There are three
735 * valid results of this search:
737 * 1) a lowest extent block is found, then we pass it back in
738 * *lowest_eb_bh and return '0'
740 * 2) the search fails to find anything, but the dinode has room. We
741 * pass NULL back in *lowest_eb_bh, but still return '0'
743 * 3) the search fails to find anything AND the dinode is full, in
744 * which case we return > 0
746 * return status < 0 indicates an error.
748 static int ocfs2_find_branch_target(struct ocfs2_super
*osb
,
750 struct buffer_head
*fe_bh
,
751 struct buffer_head
**target_bh
)
755 struct ocfs2_dinode
*fe
;
756 struct ocfs2_extent_block
*eb
;
757 struct ocfs2_extent_list
*el
;
758 struct buffer_head
*bh
= NULL
;
759 struct buffer_head
*lowest_bh
= NULL
;
765 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
766 el
= &fe
->id2
.i_list
;
768 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
769 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
770 ocfs2_error(inode
->i_sb
, "Dinode %llu has empty "
771 "extent list (next_free_rec == 0)",
772 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
776 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
777 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
779 ocfs2_error(inode
->i_sb
, "Dinode %llu has extent "
780 "list where extent # %d has no physical "
782 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i
);
792 status
= ocfs2_read_block(osb
, blkno
, &bh
, OCFS2_BH_CACHED
,
799 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
800 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
801 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
807 if (le16_to_cpu(el
->l_next_free_rec
) <
808 le16_to_cpu(el
->l_count
)) {
816 /* If we didn't find one and the fe doesn't have any room,
819 && (fe
->id2
.i_list
.l_next_free_rec
== fe
->id2
.i_list
.l_count
))
822 *target_bh
= lowest_bh
;
832 * This is only valid for leaf nodes, which are the only ones that can
833 * have empty extents anyway.
835 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec
*rec
)
837 return !rec
->e_leaf_clusters
;
841 * This function will discard the rightmost extent record.
843 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
845 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
846 int count
= le16_to_cpu(el
->l_count
);
847 unsigned int num_bytes
;
850 /* This will cause us to go off the end of our extent list. */
851 BUG_ON(next_free
>= count
);
853 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
855 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
858 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
859 struct ocfs2_extent_rec
*insert_rec
)
861 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
862 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
863 struct ocfs2_extent_rec
*rec
;
865 next_free
= le16_to_cpu(el
->l_next_free_rec
);
866 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
870 /* The tree code before us didn't allow enough room in the leaf. */
871 if (el
->l_next_free_rec
== el
->l_count
&& !has_empty
)
875 * The easiest way to approach this is to just remove the
876 * empty extent and temporarily decrement next_free.
880 * If next_free was 1 (only an empty extent), this
881 * loop won't execute, which is fine. We still want
882 * the decrement above to happen.
884 for(i
= 0; i
< (next_free
- 1); i
++)
885 el
->l_recs
[i
] = el
->l_recs
[i
+1];
891 * Figure out what the new record index should be.
893 for(i
= 0; i
< next_free
; i
++) {
894 rec
= &el
->l_recs
[i
];
896 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
901 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
902 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
904 BUG_ON(insert_index
< 0);
905 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
906 BUG_ON(insert_index
> next_free
);
909 * No need to memmove if we're just adding to the tail.
911 if (insert_index
!= next_free
) {
912 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
914 num_bytes
= next_free
- insert_index
;
915 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
916 memmove(&el
->l_recs
[insert_index
+ 1],
917 &el
->l_recs
[insert_index
],
922 * Either we had an empty extent, and need to re-increment or
923 * there was no empty extent on a non full rightmost leaf node,
924 * in which case we still need to increment.
927 el
->l_next_free_rec
= cpu_to_le16(next_free
);
929 * Make sure none of the math above just messed up our tree.
931 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
933 el
->l_recs
[insert_index
] = *insert_rec
;
938 * Create an empty extent record .
940 * l_next_free_rec may be updated.
942 * If an empty extent already exists do nothing.
944 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
946 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
948 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
953 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
956 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
957 "Asked to create an empty extent in a full list:\n"
958 "count = %u, tree depth = %u",
959 le16_to_cpu(el
->l_count
),
960 le16_to_cpu(el
->l_tree_depth
));
962 ocfs2_shift_records_right(el
);
965 le16_add_cpu(&el
->l_next_free_rec
, 1);
966 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
970 * For a rotation which involves two leaf nodes, the "root node" is
971 * the lowest level tree node which contains a path to both leafs. This
972 * resulting set of information can be used to form a complete "subtree"
974 * This function is passed two full paths from the dinode down to a
975 * pair of adjacent leaves. It's task is to figure out which path
976 * index contains the subtree root - this can be the root index itself
977 * in a worst-case rotation.
979 * The array index of the subtree root is passed back.
981 static int ocfs2_find_subtree_root(struct inode
*inode
,
982 struct ocfs2_path
*left
,
983 struct ocfs2_path
*right
)
988 * Check that the caller passed in two paths from the same tree.
990 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
996 * The caller didn't pass two adjacent paths.
998 mlog_bug_on_msg(i
> left
->p_tree_depth
,
999 "Inode %lu, left depth %u, right depth %u\n"
1000 "left leaf blk %llu, right leaf blk %llu\n",
1001 inode
->i_ino
, left
->p_tree_depth
,
1002 right
->p_tree_depth
,
1003 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1004 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1005 } while (left
->p_node
[i
].bh
->b_blocknr
==
1006 right
->p_node
[i
].bh
->b_blocknr
);
1011 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1014 * Traverse a btree path in search of cpos, starting at root_el.
1016 * This code can be called with a cpos larger than the tree, in which
1017 * case it will return the rightmost path.
1019 static int __ocfs2_find_path(struct inode
*inode
,
1020 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1021 path_insert_t
*func
, void *data
)
1026 struct buffer_head
*bh
= NULL
;
1027 struct ocfs2_extent_block
*eb
;
1028 struct ocfs2_extent_list
*el
;
1029 struct ocfs2_extent_rec
*rec
;
1030 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1033 while (el
->l_tree_depth
) {
1034 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1035 ocfs2_error(inode
->i_sb
,
1036 "Inode %llu has empty extent list at "
1038 (unsigned long long)oi
->ip_blkno
,
1039 le16_to_cpu(el
->l_tree_depth
));
1045 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1046 rec
= &el
->l_recs
[i
];
1049 * In the case that cpos is off the allocation
1050 * tree, this should just wind up returning the
1053 range
= le32_to_cpu(rec
->e_cpos
) +
1054 ocfs2_rec_clusters(el
, rec
);
1055 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1059 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1061 ocfs2_error(inode
->i_sb
,
1062 "Inode %llu has bad blkno in extent list "
1063 "at depth %u (index %d)\n",
1064 (unsigned long long)oi
->ip_blkno
,
1065 le16_to_cpu(el
->l_tree_depth
), i
);
1072 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
), blkno
,
1073 &bh
, OCFS2_BH_CACHED
, inode
);
1079 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1081 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
1082 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
1087 if (le16_to_cpu(el
->l_next_free_rec
) >
1088 le16_to_cpu(el
->l_count
)) {
1089 ocfs2_error(inode
->i_sb
,
1090 "Inode %llu has bad count in extent list "
1091 "at block %llu (next free=%u, count=%u)\n",
1092 (unsigned long long)oi
->ip_blkno
,
1093 (unsigned long long)bh
->b_blocknr
,
1094 le16_to_cpu(el
->l_next_free_rec
),
1095 le16_to_cpu(el
->l_count
));
1106 * Catch any trailing bh that the loop didn't handle.
1114 * Given an initialized path (that is, it has a valid root extent
1115 * list), this function will traverse the btree in search of the path
1116 * which would contain cpos.
1118 * The path traveled is recorded in the path structure.
1120 * Note that this will not do any comparisons on leaf node extent
1121 * records, so it will work fine in the case that we just added a tree
1124 struct find_path_data
{
1126 struct ocfs2_path
*path
;
1128 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1130 struct find_path_data
*fp
= data
;
1133 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1136 static int ocfs2_find_path(struct inode
*inode
, struct ocfs2_path
*path
,
1139 struct find_path_data data
;
1143 return __ocfs2_find_path(inode
, path_root_el(path
), cpos
,
1144 find_path_ins
, &data
);
1147 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1149 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1150 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1151 struct buffer_head
**ret
= data
;
1153 /* We want to retain only the leaf block. */
1154 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1160 * Find the leaf block in the tree which would contain cpos. No
1161 * checking of the actual leaf is done.
1163 * Some paths want to call this instead of allocating a path structure
1164 * and calling ocfs2_find_path().
1166 * This function doesn't handle non btree extent lists.
1168 int ocfs2_find_leaf(struct inode
*inode
, struct ocfs2_extent_list
*root_el
,
1169 u32 cpos
, struct buffer_head
**leaf_bh
)
1172 struct buffer_head
*bh
= NULL
;
1174 ret
= __ocfs2_find_path(inode
, root_el
, cpos
, find_leaf_ins
, &bh
);
1186 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1188 * Basically, we've moved stuff around at the bottom of the tree and
1189 * we need to fix up the extent records above the changes to reflect
1192 * left_rec: the record on the left.
1193 * left_child_el: is the child list pointed to by left_rec
1194 * right_rec: the record to the right of left_rec
1195 * right_child_el: is the child list pointed to by right_rec
1197 * By definition, this only works on interior nodes.
1199 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1200 struct ocfs2_extent_list
*left_child_el
,
1201 struct ocfs2_extent_rec
*right_rec
,
1202 struct ocfs2_extent_list
*right_child_el
)
1204 u32 left_clusters
, right_end
;
1207 * Interior nodes never have holes. Their cpos is the cpos of
1208 * the leftmost record in their child list. Their cluster
1209 * count covers the full theoretical range of their child list
1210 * - the range between their cpos and the cpos of the record
1211 * immediately to their right.
1213 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1214 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1215 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1218 * Calculate the rightmost cluster count boundary before
1219 * moving cpos - we will need to adjust clusters after
1220 * updating e_cpos to keep the same highest cluster count.
1222 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1223 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1225 right_rec
->e_cpos
= left_rec
->e_cpos
;
1226 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1228 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1229 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1233 * Adjust the adjacent root node records involved in a
1234 * rotation. left_el_blkno is passed in as a key so that we can easily
1235 * find it's index in the root list.
1237 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1238 struct ocfs2_extent_list
*left_el
,
1239 struct ocfs2_extent_list
*right_el
,
1244 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1245 le16_to_cpu(left_el
->l_tree_depth
));
1247 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1248 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
1253 * The path walking code should have never returned a root and
1254 * two paths which are not adjacent.
1256 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
1258 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
1259 &root_el
->l_recs
[i
+ 1], right_el
);
1263 * We've changed a leaf block (in right_path) and need to reflect that
1264 * change back up the subtree.
1266 * This happens in multiple places:
1267 * - When we've moved an extent record from the left path leaf to the right
1268 * path leaf to make room for an empty extent in the left path leaf.
1269 * - When our insert into the right path leaf is at the leftmost edge
1270 * and requires an update of the path immediately to it's left. This
1271 * can occur at the end of some types of rotation and appending inserts.
1273 static void ocfs2_complete_edge_insert(struct inode
*inode
, handle_t
*handle
,
1274 struct ocfs2_path
*left_path
,
1275 struct ocfs2_path
*right_path
,
1279 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
1280 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
1281 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
1284 * Update the counts and position values within all the
1285 * interior nodes to reflect the leaf rotation we just did.
1287 * The root node is handled below the loop.
1289 * We begin the loop with right_el and left_el pointing to the
1290 * leaf lists and work our way up.
1292 * NOTE: within this loop, left_el and right_el always refer
1293 * to the *child* lists.
1295 left_el
= path_leaf_el(left_path
);
1296 right_el
= path_leaf_el(right_path
);
1297 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
1298 mlog(0, "Adjust records at index %u\n", i
);
1301 * One nice property of knowing that all of these
1302 * nodes are below the root is that we only deal with
1303 * the leftmost right node record and the rightmost
1306 el
= left_path
->p_node
[i
].el
;
1307 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1308 left_rec
= &el
->l_recs
[idx
];
1310 el
= right_path
->p_node
[i
].el
;
1311 right_rec
= &el
->l_recs
[0];
1313 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
1316 ret
= ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
1320 ret
= ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
1325 * Setup our list pointers now so that the current
1326 * parents become children in the next iteration.
1328 left_el
= left_path
->p_node
[i
].el
;
1329 right_el
= right_path
->p_node
[i
].el
;
1333 * At the root node, adjust the two adjacent records which
1334 * begin our path to the leaves.
1337 el
= left_path
->p_node
[subtree_index
].el
;
1338 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
1339 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
1341 ocfs2_adjust_root_records(el
, left_el
, right_el
,
1342 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
1344 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1346 ret
= ocfs2_journal_dirty(handle
, root_bh
);
1351 static int ocfs2_rotate_subtree_right(struct inode
*inode
,
1353 struct ocfs2_path
*left_path
,
1354 struct ocfs2_path
*right_path
,
1358 struct buffer_head
*right_leaf_bh
;
1359 struct buffer_head
*left_leaf_bh
= NULL
;
1360 struct buffer_head
*root_bh
;
1361 struct ocfs2_extent_list
*right_el
, *left_el
;
1362 struct ocfs2_extent_rec move_rec
;
1364 left_leaf_bh
= path_leaf_bh(left_path
);
1365 left_el
= path_leaf_el(left_path
);
1367 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
1368 ocfs2_error(inode
->i_sb
,
1369 "Inode %llu has non-full interior leaf node %llu"
1371 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1372 (unsigned long long)left_leaf_bh
->b_blocknr
,
1373 le16_to_cpu(left_el
->l_next_free_rec
));
1378 * This extent block may already have an empty record, so we
1379 * return early if so.
1381 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
1384 root_bh
= left_path
->p_node
[subtree_index
].bh
;
1385 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
1387 ret
= ocfs2_journal_access(handle
, inode
, root_bh
,
1388 OCFS2_JOURNAL_ACCESS_WRITE
);
1394 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
1395 ret
= ocfs2_journal_access(handle
, inode
,
1396 right_path
->p_node
[i
].bh
,
1397 OCFS2_JOURNAL_ACCESS_WRITE
);
1403 ret
= ocfs2_journal_access(handle
, inode
,
1404 left_path
->p_node
[i
].bh
,
1405 OCFS2_JOURNAL_ACCESS_WRITE
);
1412 right_leaf_bh
= path_leaf_bh(right_path
);
1413 right_el
= path_leaf_el(right_path
);
1415 /* This is a code error, not a disk corruption. */
1416 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
1417 "because rightmost leaf block %llu is empty\n",
1418 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1419 (unsigned long long)right_leaf_bh
->b_blocknr
);
1421 ocfs2_create_empty_extent(right_el
);
1423 ret
= ocfs2_journal_dirty(handle
, right_leaf_bh
);
1429 /* Do the copy now. */
1430 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
1431 move_rec
= left_el
->l_recs
[i
];
1432 right_el
->l_recs
[0] = move_rec
;
1435 * Clear out the record we just copied and shift everything
1436 * over, leaving an empty extent in the left leaf.
1438 * We temporarily subtract from next_free_rec so that the
1439 * shift will lose the tail record (which is now defunct).
1441 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
1442 ocfs2_shift_records_right(left_el
);
1443 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1444 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
1446 ret
= ocfs2_journal_dirty(handle
, left_leaf_bh
);
1452 ocfs2_complete_edge_insert(inode
, handle
, left_path
, right_path
,
1460 * Given a full path, determine what cpos value would return us a path
1461 * containing the leaf immediately to the left of the current one.
1463 * Will return zero if the path passed in is already the leftmost path.
1465 static int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
1466 struct ocfs2_path
*path
, u32
*cpos
)
1470 struct ocfs2_extent_list
*el
;
1472 BUG_ON(path
->p_tree_depth
== 0);
1476 blkno
= path_leaf_bh(path
)->b_blocknr
;
1478 /* Start at the tree node just above the leaf and work our way up. */
1479 i
= path
->p_tree_depth
- 1;
1481 el
= path
->p_node
[i
].el
;
1484 * Find the extent record just before the one in our
1487 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
1488 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
1492 * We've determined that the
1493 * path specified is already
1494 * the leftmost one - return a
1500 * The leftmost record points to our
1501 * leaf - we need to travel up the
1507 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
1508 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
1509 &el
->l_recs
[j
- 1]);
1516 * If we got here, we never found a valid node where
1517 * the tree indicated one should be.
1520 "Invalid extent tree at extent block %llu\n",
1521 (unsigned long long)blkno
);
1526 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
1534 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
1535 struct ocfs2_path
*path
)
1537 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1;
1539 if (handle
->h_buffer_credits
< credits
)
1540 return ocfs2_extend_trans(handle
, credits
);
1546 * Trap the case where we're inserting into the theoretical range past
1547 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1548 * whose cpos is less than ours into the right leaf.
1550 * It's only necessary to look at the rightmost record of the left
1551 * leaf because the logic that calls us should ensure that the
1552 * theoretical ranges in the path components above the leaves are
1555 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
1558 struct ocfs2_extent_list
*left_el
;
1559 struct ocfs2_extent_rec
*rec
;
1562 left_el
= path_leaf_el(left_path
);
1563 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
1564 rec
= &left_el
->l_recs
[next_free
- 1];
1566 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
1572 * Rotate all the records in a btree right one record, starting at insert_cpos.
1574 * The path to the rightmost leaf should be passed in.
1576 * The array is assumed to be large enough to hold an entire path (tree depth).
1578 * Upon succesful return from this function:
1580 * - The 'right_path' array will contain a path to the leaf block
1581 * whose range contains e_cpos.
1582 * - That leaf block will have a single empty extent in list index 0.
1583 * - In the case that the rotation requires a post-insert update,
1584 * *ret_left_path will contain a valid path which can be passed to
1585 * ocfs2_insert_path().
1587 static int ocfs2_rotate_tree_right(struct inode
*inode
,
1590 struct ocfs2_path
*right_path
,
1591 struct ocfs2_path
**ret_left_path
)
1595 struct ocfs2_path
*left_path
= NULL
;
1597 *ret_left_path
= NULL
;
1599 left_path
= ocfs2_new_path(path_root_bh(right_path
),
1600 path_root_el(right_path
));
1607 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
, &cpos
);
1613 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
1616 * What we want to do here is:
1618 * 1) Start with the rightmost path.
1620 * 2) Determine a path to the leaf block directly to the left
1623 * 3) Determine the 'subtree root' - the lowest level tree node
1624 * which contains a path to both leaves.
1626 * 4) Rotate the subtree.
1628 * 5) Find the next subtree by considering the left path to be
1629 * the new right path.
1631 * The check at the top of this while loop also accepts
1632 * insert_cpos == cpos because cpos is only a _theoretical_
1633 * value to get us the left path - insert_cpos might very well
1634 * be filling that hole.
1636 * Stop at a cpos of '0' because we either started at the
1637 * leftmost branch (i.e., a tree with one branch and a
1638 * rotation inside of it), or we've gone as far as we can in
1639 * rotating subtrees.
1641 while (cpos
&& insert_cpos
<= cpos
) {
1642 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1645 ret
= ocfs2_find_path(inode
, left_path
, cpos
);
1651 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
1652 path_leaf_bh(right_path
),
1653 "Inode %lu: error during insert of %u "
1654 "(left path cpos %u) results in two identical "
1655 "paths ending at %llu\n",
1656 inode
->i_ino
, insert_cpos
, cpos
,
1657 (unsigned long long)
1658 path_leaf_bh(left_path
)->b_blocknr
);
1660 if (ocfs2_rotate_requires_path_adjustment(left_path
,
1662 mlog(0, "Path adjustment required\n");
1665 * We've rotated the tree as much as we
1666 * should. The rest is up to
1667 * ocfs2_insert_path() to complete, after the
1668 * record insertion. We indicate this
1669 * situation by returning the left path.
1671 * The reason we don't adjust the records here
1672 * before the record insert is that an error
1673 * later might break the rule where a parent
1674 * record e_cpos will reflect the actual
1675 * e_cpos of the 1st nonempty record of the
1678 *ret_left_path
= left_path
;
1682 start
= ocfs2_find_subtree_root(inode
, left_path
, right_path
);
1684 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1686 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
1687 right_path
->p_tree_depth
);
1689 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
1696 ret
= ocfs2_rotate_subtree_right(inode
, handle
, left_path
,
1704 * There is no need to re-read the next right path
1705 * as we know that it'll be our current left
1706 * path. Optimize by copying values instead.
1708 ocfs2_mv_path(right_path
, left_path
);
1710 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
1719 ocfs2_free_path(left_path
);
1726 * Do the final bits of extent record insertion at the target leaf
1727 * list. If this leaf is part of an allocation tree, it is assumed
1728 * that the tree above has been prepared.
1730 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec
*insert_rec
,
1731 struct ocfs2_extent_list
*el
,
1732 struct ocfs2_insert_type
*insert
,
1733 struct inode
*inode
)
1735 int i
= insert
->ins_contig_index
;
1737 struct ocfs2_extent_rec
*rec
;
1739 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1742 * Contiguous insert - either left or right.
1744 if (insert
->ins_contig
!= CONTIG_NONE
) {
1745 rec
= &el
->l_recs
[i
];
1746 if (insert
->ins_contig
== CONTIG_LEFT
) {
1747 rec
->e_blkno
= insert_rec
->e_blkno
;
1748 rec
->e_cpos
= insert_rec
->e_cpos
;
1750 le16_add_cpu(&rec
->e_leaf_clusters
,
1751 le16_to_cpu(insert_rec
->e_leaf_clusters
));
1756 * Handle insert into an empty leaf.
1758 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
1759 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
1760 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
1761 el
->l_recs
[0] = *insert_rec
;
1762 el
->l_next_free_rec
= cpu_to_le16(1);
1769 if (insert
->ins_appending
== APPEND_TAIL
) {
1770 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1771 rec
= &el
->l_recs
[i
];
1772 range
= le32_to_cpu(rec
->e_cpos
)
1773 + le16_to_cpu(rec
->e_leaf_clusters
);
1774 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
1776 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
1777 le16_to_cpu(el
->l_count
),
1778 "inode %lu, depth %u, count %u, next free %u, "
1779 "rec.cpos %u, rec.clusters %u, "
1780 "insert.cpos %u, insert.clusters %u\n",
1782 le16_to_cpu(el
->l_tree_depth
),
1783 le16_to_cpu(el
->l_count
),
1784 le16_to_cpu(el
->l_next_free_rec
),
1785 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
1786 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
1787 le32_to_cpu(insert_rec
->e_cpos
),
1788 le16_to_cpu(insert_rec
->e_leaf_clusters
));
1790 el
->l_recs
[i
] = *insert_rec
;
1791 le16_add_cpu(&el
->l_next_free_rec
, 1);
1796 * Ok, we have to rotate.
1798 * At this point, it is safe to assume that inserting into an
1799 * empty leaf and appending to a leaf have both been handled
1802 * This leaf needs to have space, either by the empty 1st
1803 * extent record, or by virtue of an l_next_rec < l_count.
1805 ocfs2_rotate_leaf(el
, insert_rec
);
1808 static inline void ocfs2_update_dinode_clusters(struct inode
*inode
,
1809 struct ocfs2_dinode
*di
,
1812 le32_add_cpu(&di
->i_clusters
, clusters
);
1813 spin_lock(&OCFS2_I(inode
)->ip_lock
);
1814 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(di
->i_clusters
);
1815 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
1818 static int ocfs2_append_rec_to_path(struct inode
*inode
, handle_t
*handle
,
1819 struct ocfs2_extent_rec
*insert_rec
,
1820 struct ocfs2_path
*right_path
,
1821 struct ocfs2_path
**ret_left_path
)
1823 int ret
, i
, next_free
;
1824 struct buffer_head
*bh
;
1825 struct ocfs2_extent_list
*el
;
1826 struct ocfs2_path
*left_path
= NULL
;
1828 *ret_left_path
= NULL
;
1831 * This shouldn't happen for non-trees. The extent rec cluster
1832 * count manipulation below only works for interior nodes.
1834 BUG_ON(right_path
->p_tree_depth
== 0);
1837 * If our appending insert is at the leftmost edge of a leaf,
1838 * then we might need to update the rightmost records of the
1841 el
= path_leaf_el(right_path
);
1842 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1843 if (next_free
== 0 ||
1844 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
1847 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, right_path
,
1854 mlog(0, "Append may need a left path update. cpos: %u, "
1855 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
1859 * No need to worry if the append is already in the
1863 left_path
= ocfs2_new_path(path_root_bh(right_path
),
1864 path_root_el(right_path
));
1871 ret
= ocfs2_find_path(inode
, left_path
, left_cpos
);
1878 * ocfs2_insert_path() will pass the left_path to the
1884 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
1890 el
= path_root_el(right_path
);
1891 bh
= path_root_bh(right_path
);
1894 struct ocfs2_extent_rec
*rec
;
1896 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1897 if (next_free
== 0) {
1898 ocfs2_error(inode
->i_sb
,
1899 "Dinode %llu has a bad extent list",
1900 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1905 rec
= &el
->l_recs
[next_free
- 1];
1907 rec
->e_int_clusters
= insert_rec
->e_cpos
;
1908 le32_add_cpu(&rec
->e_int_clusters
,
1909 le16_to_cpu(insert_rec
->e_leaf_clusters
));
1910 le32_add_cpu(&rec
->e_int_clusters
,
1911 -le32_to_cpu(rec
->e_cpos
));
1913 ret
= ocfs2_journal_dirty(handle
, bh
);
1917 /* Don't touch the leaf node */
1918 if (++i
>= right_path
->p_tree_depth
)
1921 bh
= right_path
->p_node
[i
].bh
;
1922 el
= right_path
->p_node
[i
].el
;
1925 *ret_left_path
= left_path
;
1929 ocfs2_free_path(left_path
);
1935 * This function only does inserts on an allocation b-tree. For dinode
1936 * lists, ocfs2_insert_at_leaf() is called directly.
1938 * right_path is the path we want to do the actual insert
1939 * in. left_path should only be passed in if we need to update that
1940 * portion of the tree after an edge insert.
1942 static int ocfs2_insert_path(struct inode
*inode
,
1944 struct ocfs2_path
*left_path
,
1945 struct ocfs2_path
*right_path
,
1946 struct ocfs2_extent_rec
*insert_rec
,
1947 struct ocfs2_insert_type
*insert
)
1949 int ret
, subtree_index
;
1950 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
1951 struct ocfs2_extent_list
*el
;
1954 * Pass both paths to the journal. The majority of inserts
1955 * will be touching all components anyway.
1957 ret
= ocfs2_journal_access_path(inode
, handle
, right_path
);
1964 int credits
= handle
->h_buffer_credits
;
1967 * There's a chance that left_path got passed back to
1968 * us without being accounted for in the
1969 * journal. Extend our transaction here to be sure we
1970 * can change those blocks.
1972 credits
+= left_path
->p_tree_depth
;
1974 ret
= ocfs2_extend_trans(handle
, credits
);
1980 ret
= ocfs2_journal_access_path(inode
, handle
, left_path
);
1987 el
= path_leaf_el(right_path
);
1989 ocfs2_insert_at_leaf(insert_rec
, el
, insert
, inode
);
1990 ret
= ocfs2_journal_dirty(handle
, leaf_bh
);
1996 * The rotate code has indicated that we need to fix
1997 * up portions of the tree after the insert.
1999 * XXX: Should we extend the transaction here?
2001 subtree_index
= ocfs2_find_subtree_root(inode
, left_path
,
2003 ocfs2_complete_edge_insert(inode
, handle
, left_path
,
2004 right_path
, subtree_index
);
2012 static int ocfs2_do_insert_extent(struct inode
*inode
,
2014 struct buffer_head
*di_bh
,
2015 struct ocfs2_extent_rec
*insert_rec
,
2016 struct ocfs2_insert_type
*type
)
2018 int ret
, rotate
= 0;
2020 struct ocfs2_path
*right_path
= NULL
;
2021 struct ocfs2_path
*left_path
= NULL
;
2022 struct ocfs2_dinode
*di
;
2023 struct ocfs2_extent_list
*el
;
2025 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2026 el
= &di
->id2
.i_list
;
2028 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
2029 OCFS2_JOURNAL_ACCESS_WRITE
);
2035 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
2036 ocfs2_insert_at_leaf(insert_rec
, el
, type
, inode
);
2037 goto out_update_clusters
;
2040 right_path
= ocfs2_new_inode_path(di_bh
);
2048 * Determine the path to start with. Rotations need the
2049 * rightmost path, everything else can go directly to the
2052 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
2053 if (type
->ins_appending
== APPEND_NONE
&&
2054 type
->ins_contig
== CONTIG_NONE
) {
2059 ret
= ocfs2_find_path(inode
, right_path
, cpos
);
2066 * Rotations and appends need special treatment - they modify
2067 * parts of the tree's above them.
2069 * Both might pass back a path immediate to the left of the
2070 * one being inserted to. This will be cause
2071 * ocfs2_insert_path() to modify the rightmost records of
2072 * left_path to account for an edge insert.
2074 * XXX: When modifying this code, keep in mind that an insert
2075 * can wind up skipping both of these two special cases...
2078 ret
= ocfs2_rotate_tree_right(inode
, handle
,
2079 le32_to_cpu(insert_rec
->e_cpos
),
2080 right_path
, &left_path
);
2085 } else if (type
->ins_appending
== APPEND_TAIL
2086 && type
->ins_contig
!= CONTIG_LEFT
) {
2087 ret
= ocfs2_append_rec_to_path(inode
, handle
, insert_rec
,
2088 right_path
, &left_path
);
2095 ret
= ocfs2_insert_path(inode
, handle
, left_path
, right_path
,
2102 out_update_clusters
:
2103 ocfs2_update_dinode_clusters(inode
, di
,
2104 le16_to_cpu(insert_rec
->e_leaf_clusters
));
2106 ret
= ocfs2_journal_dirty(handle
, di_bh
);
2111 ocfs2_free_path(left_path
);
2112 ocfs2_free_path(right_path
);
2117 static void ocfs2_figure_contig_type(struct inode
*inode
,
2118 struct ocfs2_insert_type
*insert
,
2119 struct ocfs2_extent_list
*el
,
2120 struct ocfs2_extent_rec
*insert_rec
)
2123 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
2125 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
2127 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
2128 contig_type
= ocfs2_extent_contig(inode
, &el
->l_recs
[i
],
2130 if (contig_type
!= CONTIG_NONE
) {
2131 insert
->ins_contig_index
= i
;
2135 insert
->ins_contig
= contig_type
;
2139 * This should only be called against the righmost leaf extent list.
2141 * ocfs2_figure_appending_type() will figure out whether we'll have to
2142 * insert at the tail of the rightmost leaf.
2144 * This should also work against the dinode list for tree's with 0
2145 * depth. If we consider the dinode list to be the rightmost leaf node
2146 * then the logic here makes sense.
2148 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
2149 struct ocfs2_extent_list
*el
,
2150 struct ocfs2_extent_rec
*insert_rec
)
2153 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
2154 struct ocfs2_extent_rec
*rec
;
2156 insert
->ins_appending
= APPEND_NONE
;
2158 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
2160 if (!el
->l_next_free_rec
)
2161 goto set_tail_append
;
2163 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
2164 /* Were all records empty? */
2165 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
2166 goto set_tail_append
;
2169 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2170 rec
= &el
->l_recs
[i
];
2173 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
2174 goto set_tail_append
;
2179 insert
->ins_appending
= APPEND_TAIL
;
2183 * Helper function called at the begining of an insert.
2185 * This computes a few things that are commonly used in the process of
2186 * inserting into the btree:
2187 * - Whether the new extent is contiguous with an existing one.
2188 * - The current tree depth.
2189 * - Whether the insert is an appending one.
2190 * - The total # of free records in the tree.
2192 * All of the information is stored on the ocfs2_insert_type
2195 static int ocfs2_figure_insert_type(struct inode
*inode
,
2196 struct buffer_head
*di_bh
,
2197 struct buffer_head
**last_eb_bh
,
2198 struct ocfs2_extent_rec
*insert_rec
,
2199 struct ocfs2_insert_type
*insert
)
2202 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2203 struct ocfs2_extent_block
*eb
;
2204 struct ocfs2_extent_list
*el
;
2205 struct ocfs2_path
*path
= NULL
;
2206 struct buffer_head
*bh
= NULL
;
2208 el
= &di
->id2
.i_list
;
2209 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
2211 if (el
->l_tree_depth
) {
2213 * If we have tree depth, we read in the
2214 * rightmost extent block ahead of time as
2215 * ocfs2_figure_insert_type() and ocfs2_add_branch()
2216 * may want it later.
2218 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
2219 le64_to_cpu(di
->i_last_eb_blk
), &bh
,
2220 OCFS2_BH_CACHED
, inode
);
2225 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
2230 * Unless we have a contiguous insert, we'll need to know if
2231 * there is room left in our allocation tree for another
2234 * XXX: This test is simplistic, we can search for empty
2235 * extent records too.
2237 insert
->ins_free_records
= le16_to_cpu(el
->l_count
) -
2238 le16_to_cpu(el
->l_next_free_rec
);
2240 if (!insert
->ins_tree_depth
) {
2241 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
2242 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
2246 path
= ocfs2_new_inode_path(di_bh
);
2254 * In the case that we're inserting past what the tree
2255 * currently accounts for, ocfs2_find_path() will return for
2256 * us the rightmost tree path. This is accounted for below in
2257 * the appending code.
2259 ret
= ocfs2_find_path(inode
, path
, le32_to_cpu(insert_rec
->e_cpos
));
2265 el
= path_leaf_el(path
);
2268 * Now that we have the path, there's two things we want to determine:
2269 * 1) Contiguousness (also set contig_index if this is so)
2271 * 2) Are we doing an append? We can trivially break this up
2272 * into two types of appends: simple record append, or a
2273 * rotate inside the tail leaf.
2275 ocfs2_figure_contig_type(inode
, insert
, el
, insert_rec
);
2278 * The insert code isn't quite ready to deal with all cases of
2279 * left contiguousness. Specifically, if it's an insert into
2280 * the 1st record in a leaf, it will require the adjustment of
2281 * cluster count on the last record of the path directly to it's
2282 * left. For now, just catch that case and fool the layers
2283 * above us. This works just fine for tree_depth == 0, which
2284 * is why we allow that above.
2286 if (insert
->ins_contig
== CONTIG_LEFT
&&
2287 insert
->ins_contig_index
== 0)
2288 insert
->ins_contig
= CONTIG_NONE
;
2291 * Ok, so we can simply compare against last_eb to figure out
2292 * whether the path doesn't exist. This will only happen in
2293 * the case that we're doing a tail append, so maybe we can
2294 * take advantage of that information somehow.
2296 if (le64_to_cpu(di
->i_last_eb_blk
) == path_leaf_bh(path
)->b_blocknr
) {
2298 * Ok, ocfs2_find_path() returned us the rightmost
2299 * tree path. This might be an appending insert. There are
2301 * 1) We're doing a true append at the tail:
2302 * -This might even be off the end of the leaf
2303 * 2) We're "appending" by rotating in the tail
2305 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
2309 ocfs2_free_path(path
);
2319 * Insert an extent into an inode btree.
2321 * The caller needs to update fe->i_clusters
2323 int ocfs2_insert_extent(struct ocfs2_super
*osb
,
2325 struct inode
*inode
,
2326 struct buffer_head
*fe_bh
,
2330 struct ocfs2_alloc_context
*meta_ac
)
2333 struct buffer_head
*last_eb_bh
= NULL
;
2334 struct buffer_head
*bh
= NULL
;
2335 struct ocfs2_insert_type insert
= {0, };
2336 struct ocfs2_extent_rec rec
;
2338 mlog(0, "add %u clusters at position %u to inode %llu\n",
2339 new_clusters
, cpos
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
2341 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
2342 (OCFS2_I(inode
)->ip_clusters
!= cpos
),
2343 "Device %s, asking for sparse allocation: inode %llu, "
2344 "cpos %u, clusters %u\n",
2346 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
,
2347 OCFS2_I(inode
)->ip_clusters
);
2349 memset(&rec
, 0, sizeof(rec
));
2350 rec
.e_cpos
= cpu_to_le32(cpos
);
2351 rec
.e_blkno
= cpu_to_le64(start_blk
);
2352 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
2354 status
= ocfs2_figure_insert_type(inode
, fe_bh
, &last_eb_bh
, &rec
,
2361 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
2362 "Insert.contig_index: %d, Insert.free_records: %d, "
2363 "Insert.tree_depth: %d\n",
2364 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
2365 insert
.ins_free_records
, insert
.ins_tree_depth
);
2368 * Avoid growing the tree unless we're out of records and the
2369 * insert type requres one.
2371 if (insert
.ins_contig
!= CONTIG_NONE
|| insert
.ins_free_records
)
2374 shift
= ocfs2_find_branch_target(osb
, inode
, fe_bh
, &bh
);
2381 /* We traveled all the way to the bottom of the allocation tree
2382 * and didn't find room for any more extents - we need to add
2383 * another tree level */
2386 mlog(0, "need to shift tree depth "
2387 "(current = %d)\n", insert
.ins_tree_depth
);
2389 /* ocfs2_shift_tree_depth will return us a buffer with
2390 * the new extent block (so we can pass that to
2391 * ocfs2_add_branch). */
2392 status
= ocfs2_shift_tree_depth(osb
, handle
, inode
, fe_bh
,
2398 insert
.ins_tree_depth
++;
2399 /* Special case: we have room now if we shifted from
2401 if (insert
.ins_tree_depth
== 1)
2405 /* call ocfs2_add_branch to add the final part of the tree with
2407 mlog(0, "add branch. bh = %p\n", bh
);
2408 status
= ocfs2_add_branch(osb
, handle
, inode
, fe_bh
, bh
, last_eb_bh
,
2416 /* Finally, we can add clusters. This might rotate the tree for us. */
2417 status
= ocfs2_do_insert_extent(inode
, handle
, fe_bh
, &rec
, &insert
);
2421 ocfs2_extent_map_insert_rec(inode
, &rec
);
2434 static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
2436 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
2437 struct ocfs2_dinode
*di
;
2438 struct ocfs2_truncate_log
*tl
;
2440 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
2441 tl
= &di
->id2
.i_dealloc
;
2443 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
2444 "slot %d, invalid truncate log parameters: used = "
2445 "%u, count = %u\n", osb
->slot_num
,
2446 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
2447 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
2450 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
2451 unsigned int new_start
)
2453 unsigned int tail_index
;
2454 unsigned int current_tail
;
2456 /* No records, nothing to coalesce */
2457 if (!le16_to_cpu(tl
->tl_used
))
2460 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
2461 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
2462 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
2464 return current_tail
== new_start
;
2467 static int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
2470 unsigned int num_clusters
)
2473 unsigned int start_cluster
, tl_count
;
2474 struct inode
*tl_inode
= osb
->osb_tl_inode
;
2475 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
2476 struct ocfs2_dinode
*di
;
2477 struct ocfs2_truncate_log
*tl
;
2479 mlog_entry("start_blk = %llu, num_clusters = %u\n",
2480 (unsigned long long)start_blk
, num_clusters
);
2482 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
2484 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
2486 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
2487 tl
= &di
->id2
.i_dealloc
;
2488 if (!OCFS2_IS_VALID_DINODE(di
)) {
2489 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
2494 tl_count
= le16_to_cpu(tl
->tl_count
);
2495 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
2497 "Truncate record count on #%llu invalid "
2498 "wanted %u, actual %u\n",
2499 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
2500 ocfs2_truncate_recs_per_inode(osb
->sb
),
2501 le16_to_cpu(tl
->tl_count
));
2503 /* Caller should have known to flush before calling us. */
2504 index
= le16_to_cpu(tl
->tl_used
);
2505 if (index
>= tl_count
) {
2511 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
2512 OCFS2_JOURNAL_ACCESS_WRITE
);
2518 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
2519 "%llu (index = %d)\n", num_clusters
, start_cluster
,
2520 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
2522 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
2524 * Move index back to the record we are coalescing with.
2525 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
2529 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
2530 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
2531 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
2534 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
2535 tl
->tl_used
= cpu_to_le16(index
+ 1);
2537 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
2539 status
= ocfs2_journal_dirty(handle
, tl_bh
);
2550 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
2552 struct inode
*data_alloc_inode
,
2553 struct buffer_head
*data_alloc_bh
)
2557 unsigned int num_clusters
;
2559 struct ocfs2_truncate_rec rec
;
2560 struct ocfs2_dinode
*di
;
2561 struct ocfs2_truncate_log
*tl
;
2562 struct inode
*tl_inode
= osb
->osb_tl_inode
;
2563 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
2567 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
2568 tl
= &di
->id2
.i_dealloc
;
2569 i
= le16_to_cpu(tl
->tl_used
) - 1;
2571 /* Caller has given us at least enough credits to
2572 * update the truncate log dinode */
2573 status
= ocfs2_journal_access(handle
, tl_inode
, tl_bh
,
2574 OCFS2_JOURNAL_ACCESS_WRITE
);
2580 tl
->tl_used
= cpu_to_le16(i
);
2582 status
= ocfs2_journal_dirty(handle
, tl_bh
);
2588 /* TODO: Perhaps we can calculate the bulk of the
2589 * credits up front rather than extending like
2591 status
= ocfs2_extend_trans(handle
,
2592 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
2598 rec
= tl
->tl_recs
[i
];
2599 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
2600 le32_to_cpu(rec
.t_start
));
2601 num_clusters
= le32_to_cpu(rec
.t_clusters
);
2603 /* if start_blk is not set, we ignore the record as
2606 mlog(0, "free record %d, start = %u, clusters = %u\n",
2607 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
2609 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
2610 data_alloc_bh
, start_blk
,
2625 /* Expects you to already be holding tl_inode->i_mutex */
2626 static int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
2629 unsigned int num_to_flush
;
2631 struct inode
*tl_inode
= osb
->osb_tl_inode
;
2632 struct inode
*data_alloc_inode
= NULL
;
2633 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
2634 struct buffer_head
*data_alloc_bh
= NULL
;
2635 struct ocfs2_dinode
*di
;
2636 struct ocfs2_truncate_log
*tl
;
2640 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
2642 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
2643 tl
= &di
->id2
.i_dealloc
;
2644 if (!OCFS2_IS_VALID_DINODE(di
)) {
2645 OCFS2_RO_ON_INVALID_DINODE(osb
->sb
, di
);
2650 num_to_flush
= le16_to_cpu(tl
->tl_used
);
2651 mlog(0, "Flush %u records from truncate log #%llu\n",
2652 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
2653 if (!num_to_flush
) {
2658 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
2659 GLOBAL_BITMAP_SYSTEM_INODE
,
2660 OCFS2_INVALID_SLOT
);
2661 if (!data_alloc_inode
) {
2663 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
2667 mutex_lock(&data_alloc_inode
->i_mutex
);
2669 status
= ocfs2_meta_lock(data_alloc_inode
, &data_alloc_bh
, 1);
2675 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
2676 if (IS_ERR(handle
)) {
2677 status
= PTR_ERR(handle
);
2682 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
2687 ocfs2_commit_trans(osb
, handle
);
2690 brelse(data_alloc_bh
);
2691 ocfs2_meta_unlock(data_alloc_inode
, 1);
2694 mutex_unlock(&data_alloc_inode
->i_mutex
);
2695 iput(data_alloc_inode
);
2702 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
2705 struct inode
*tl_inode
= osb
->osb_tl_inode
;
2707 mutex_lock(&tl_inode
->i_mutex
);
2708 status
= __ocfs2_flush_truncate_log(osb
);
2709 mutex_unlock(&tl_inode
->i_mutex
);
2714 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
2717 struct ocfs2_super
*osb
=
2718 container_of(work
, struct ocfs2_super
,
2719 osb_truncate_log_wq
.work
);
2723 status
= ocfs2_flush_truncate_log(osb
);
2730 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
2731 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
2734 if (osb
->osb_tl_inode
) {
2735 /* We want to push off log flushes while truncates are
2738 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
2740 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
2741 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
2745 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
2747 struct inode
**tl_inode
,
2748 struct buffer_head
**tl_bh
)
2751 struct inode
*inode
= NULL
;
2752 struct buffer_head
*bh
= NULL
;
2754 inode
= ocfs2_get_system_file_inode(osb
,
2755 TRUNCATE_LOG_SYSTEM_INODE
,
2759 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
2763 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
2764 OCFS2_BH_CACHED
, inode
);
2778 /* called during the 1st stage of node recovery. we stamp a clean
2779 * truncate log and pass back a copy for processing later. if the
2780 * truncate log does not require processing, a *tl_copy is set to
2782 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
2784 struct ocfs2_dinode
**tl_copy
)
2787 struct inode
*tl_inode
= NULL
;
2788 struct buffer_head
*tl_bh
= NULL
;
2789 struct ocfs2_dinode
*di
;
2790 struct ocfs2_truncate_log
*tl
;
2794 mlog(0, "recover truncate log from slot %d\n", slot_num
);
2796 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
2802 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
2803 tl
= &di
->id2
.i_dealloc
;
2804 if (!OCFS2_IS_VALID_DINODE(di
)) {
2805 OCFS2_RO_ON_INVALID_DINODE(tl_inode
->i_sb
, di
);
2810 if (le16_to_cpu(tl
->tl_used
)) {
2811 mlog(0, "We'll have %u logs to recover\n",
2812 le16_to_cpu(tl
->tl_used
));
2814 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
2821 /* Assuming the write-out below goes well, this copy
2822 * will be passed back to recovery for processing. */
2823 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
2825 /* All we need to do to clear the truncate log is set
2829 status
= ocfs2_write_block(osb
, tl_bh
, tl_inode
);
2842 if (status
< 0 && (*tl_copy
)) {
2851 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
2852 struct ocfs2_dinode
*tl_copy
)
2856 unsigned int clusters
, num_recs
, start_cluster
;
2859 struct inode
*tl_inode
= osb
->osb_tl_inode
;
2860 struct ocfs2_truncate_log
*tl
;
2864 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
2865 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
2869 tl
= &tl_copy
->id2
.i_dealloc
;
2870 num_recs
= le16_to_cpu(tl
->tl_used
);
2871 mlog(0, "cleanup %u records from %llu\n", num_recs
,
2872 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
2874 mutex_lock(&tl_inode
->i_mutex
);
2875 for(i
= 0; i
< num_recs
; i
++) {
2876 if (ocfs2_truncate_log_needs_flush(osb
)) {
2877 status
= __ocfs2_flush_truncate_log(osb
);
2884 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
2885 if (IS_ERR(handle
)) {
2886 status
= PTR_ERR(handle
);
2891 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
2892 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
2893 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
2895 status
= ocfs2_truncate_log_append(osb
, handle
,
2896 start_blk
, clusters
);
2897 ocfs2_commit_trans(osb
, handle
);
2905 mutex_unlock(&tl_inode
->i_mutex
);
2911 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
2914 struct inode
*tl_inode
= osb
->osb_tl_inode
;
2919 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
2920 flush_workqueue(ocfs2_wq
);
2922 status
= ocfs2_flush_truncate_log(osb
);
2926 brelse(osb
->osb_tl_bh
);
2927 iput(osb
->osb_tl_inode
);
2933 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
2936 struct inode
*tl_inode
= NULL
;
2937 struct buffer_head
*tl_bh
= NULL
;
2941 status
= ocfs2_get_truncate_log_info(osb
,
2948 /* ocfs2_truncate_log_shutdown keys on the existence of
2949 * osb->osb_tl_inode so we don't set any of the osb variables
2950 * until we're sure all is well. */
2951 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
2952 ocfs2_truncate_log_worker
);
2953 osb
->osb_tl_bh
= tl_bh
;
2954 osb
->osb_tl_inode
= tl_inode
;
2960 /* This function will figure out whether the currently last extent
2961 * block will be deleted, and if it will, what the new last extent
2962 * block will be so we can update his h_next_leaf_blk field, as well
2963 * as the dinodes i_last_eb_blk */
2964 static int ocfs2_find_new_last_ext_blk(struct inode
*inode
,
2965 unsigned int clusters_to_del
,
2966 struct ocfs2_path
*path
,
2967 struct buffer_head
**new_last_eb
)
2969 int next_free
, ret
= 0;
2971 struct ocfs2_extent_rec
*rec
;
2972 struct ocfs2_extent_block
*eb
;
2973 struct ocfs2_extent_list
*el
;
2974 struct buffer_head
*bh
= NULL
;
2976 *new_last_eb
= NULL
;
2978 /* we have no tree, so of course, no last_eb. */
2979 if (!path
->p_tree_depth
)
2982 /* trunc to zero special case - this makes tree_depth = 0
2983 * regardless of what it is. */
2984 if (OCFS2_I(inode
)->ip_clusters
== clusters_to_del
)
2987 el
= path_leaf_el(path
);
2988 BUG_ON(!el
->l_next_free_rec
);
2991 * Make sure that this extent list will actually be empty
2992 * after we clear away the data. We can shortcut out if
2993 * there's more than one non-empty extent in the
2994 * list. Otherwise, a check of the remaining extent is
2997 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2999 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
3003 /* We may have a valid extent in index 1, check it. */
3005 rec
= &el
->l_recs
[1];
3008 * Fall through - no more nonempty extents, so we want
3009 * to delete this leaf.
3015 rec
= &el
->l_recs
[0];
3020 * Check it we'll only be trimming off the end of this
3023 if (le16_to_cpu(rec
->e_leaf_clusters
) > clusters_to_del
)
3027 ret
= ocfs2_find_cpos_for_left_leaf(inode
->i_sb
, path
, &cpos
);
3033 ret
= ocfs2_find_leaf(inode
, path_root_el(path
), cpos
, &bh
);
3039 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
3041 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
3042 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
3048 get_bh(*new_last_eb
);
3049 mlog(0, "returning block %llu, (cpos: %u)\n",
3050 (unsigned long long)le64_to_cpu(eb
->h_blkno
), cpos
);
3058 * Trim some clusters off the rightmost edge of a tree. Only called
3061 * The caller needs to:
3062 * - start journaling of each path component.
3063 * - compute and fully set up any new last ext block
3065 static int ocfs2_trim_tree(struct inode
*inode
, struct ocfs2_path
*path
,
3066 handle_t
*handle
, struct ocfs2_truncate_context
*tc
,
3067 u32 clusters_to_del
, u64
*delete_start
)
3069 int ret
, i
, index
= path
->p_tree_depth
;
3072 struct buffer_head
*bh
;
3073 struct ocfs2_extent_list
*el
;
3074 struct ocfs2_extent_rec
*rec
;
3078 while (index
>= 0) {
3079 bh
= path
->p_node
[index
].bh
;
3080 el
= path
->p_node
[index
].el
;
3082 mlog(0, "traveling tree (index = %d, block = %llu)\n",
3083 index
, (unsigned long long)bh
->b_blocknr
);
3085 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
3088 (path
->p_tree_depth
- le16_to_cpu(el
->l_tree_depth
))) {
3089 ocfs2_error(inode
->i_sb
,
3090 "Inode %lu has invalid ext. block %llu",
3092 (unsigned long long)bh
->b_blocknr
);
3098 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3099 rec
= &el
->l_recs
[i
];
3101 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
3102 "next = %u\n", i
, le32_to_cpu(rec
->e_cpos
),
3103 ocfs2_rec_clusters(el
, rec
),
3104 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
3105 le16_to_cpu(el
->l_next_free_rec
));
3107 BUG_ON(ocfs2_rec_clusters(el
, rec
) < clusters_to_del
);
3109 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
3111 * If the leaf block contains a single empty
3112 * extent and no records, we can just remove
3115 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
3117 sizeof(struct ocfs2_extent_rec
));
3118 el
->l_next_free_rec
= cpu_to_le16(0);
3124 * Remove any empty extents by shifting things
3125 * left. That should make life much easier on
3126 * the code below. This condition is rare
3127 * enough that we shouldn't see a performance
3130 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
3131 le16_add_cpu(&el
->l_next_free_rec
, -1);
3134 i
< le16_to_cpu(el
->l_next_free_rec
); i
++)
3135 el
->l_recs
[i
] = el
->l_recs
[i
+ 1];
3137 memset(&el
->l_recs
[i
], 0,
3138 sizeof(struct ocfs2_extent_rec
));
3141 * We've modified our extent list. The
3142 * simplest way to handle this change
3143 * is to being the search from the
3146 goto find_tail_record
;
3149 le16_add_cpu(&rec
->e_leaf_clusters
, -clusters_to_del
);
3152 * We'll use "new_edge" on our way back up the
3153 * tree to know what our rightmost cpos is.
3155 new_edge
= le16_to_cpu(rec
->e_leaf_clusters
);
3156 new_edge
+= le32_to_cpu(rec
->e_cpos
);
3159 * The caller will use this to delete data blocks.
3161 *delete_start
= le64_to_cpu(rec
->e_blkno
)
3162 + ocfs2_clusters_to_blocks(inode
->i_sb
,
3163 le16_to_cpu(rec
->e_leaf_clusters
));
3166 * If it's now empty, remove this record.
3168 if (le16_to_cpu(rec
->e_leaf_clusters
) == 0) {
3170 sizeof(struct ocfs2_extent_rec
));
3171 le16_add_cpu(&el
->l_next_free_rec
, -1);
3174 if (le64_to_cpu(rec
->e_blkno
) == deleted_eb
) {
3176 sizeof(struct ocfs2_extent_rec
));
3177 le16_add_cpu(&el
->l_next_free_rec
, -1);
3182 /* Can this actually happen? */
3183 if (le16_to_cpu(el
->l_next_free_rec
) == 0)
3187 * We never actually deleted any clusters
3188 * because our leaf was empty. There's no
3189 * reason to adjust the rightmost edge then.
3194 rec
->e_int_clusters
= cpu_to_le32(new_edge
);
3195 le32_add_cpu(&rec
->e_int_clusters
,
3196 -le32_to_cpu(rec
->e_cpos
));
3199 * A deleted child record should have been
3202 BUG_ON(le32_to_cpu(rec
->e_int_clusters
) == 0);
3206 ret
= ocfs2_journal_dirty(handle
, bh
);
3212 mlog(0, "extent list container %llu, after: record %d: "
3213 "(%u, %u, %llu), next = %u.\n",
3214 (unsigned long long)bh
->b_blocknr
, i
,
3215 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
),
3216 (unsigned long long)le64_to_cpu(rec
->e_blkno
),
3217 le16_to_cpu(el
->l_next_free_rec
));
3220 * We must be careful to only attempt delete of an
3221 * extent block (and not the root inode block).
3223 if (index
> 0 && le16_to_cpu(el
->l_next_free_rec
) == 0) {
3224 struct ocfs2_extent_block
*eb
=
3225 (struct ocfs2_extent_block
*)bh
->b_data
;
3228 * Save this for use when processing the
3231 deleted_eb
= le64_to_cpu(eb
->h_blkno
);
3233 mlog(0, "deleting this extent block.\n");
3235 ocfs2_remove_from_cache(inode
, bh
);
3237 BUG_ON(ocfs2_rec_clusters(el
, &el
->l_recs
[0]));
3238 BUG_ON(le32_to_cpu(el
->l_recs
[0].e_cpos
));
3239 BUG_ON(le64_to_cpu(el
->l_recs
[0].e_blkno
));
3241 if (le16_to_cpu(eb
->h_suballoc_slot
) == 0) {
3243 * This code only understands how to
3244 * lock the suballocator in slot 0,
3245 * which is fine because allocation is
3246 * only ever done out of that
3247 * suballocator too. A future version
3248 * might change that however, so avoid
3249 * a free if we don't know how to
3250 * handle it. This way an fs incompat
3251 * bit will not be necessary.
3253 ret
= ocfs2_free_extent_block(handle
,
3254 tc
->tc_ext_alloc_inode
,
3255 tc
->tc_ext_alloc_bh
,
3258 /* An error here is not fatal. */
3274 static int ocfs2_do_truncate(struct ocfs2_super
*osb
,
3275 unsigned int clusters_to_del
,
3276 struct inode
*inode
,
3277 struct buffer_head
*fe_bh
,
3279 struct ocfs2_truncate_context
*tc
,
3280 struct ocfs2_path
*path
)
3283 struct ocfs2_dinode
*fe
;
3284 struct ocfs2_extent_block
*last_eb
= NULL
;
3285 struct ocfs2_extent_list
*el
;
3286 struct buffer_head
*last_eb_bh
= NULL
;
3289 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
3291 status
= ocfs2_find_new_last_ext_blk(inode
, clusters_to_del
,
3299 * Each component will be touched, so we might as well journal
3300 * here to avoid having to handle errors later.
3302 status
= ocfs2_journal_access_path(inode
, handle
, path
);
3309 status
= ocfs2_journal_access(handle
, inode
, last_eb_bh
,
3310 OCFS2_JOURNAL_ACCESS_WRITE
);
3316 last_eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
3319 el
= &(fe
->id2
.i_list
);
3322 * Lower levels depend on this never happening, but it's best
3323 * to check it up here before changing the tree.
3325 if (el
->l_tree_depth
&& el
->l_recs
[0].e_int_clusters
== 0) {
3326 ocfs2_error(inode
->i_sb
,
3327 "Inode %lu has an empty extent record, depth %u\n",
3328 inode
->i_ino
, le16_to_cpu(el
->l_tree_depth
));
3333 spin_lock(&OCFS2_I(inode
)->ip_lock
);
3334 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
) -
3336 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
3337 le32_add_cpu(&fe
->i_clusters
, -clusters_to_del
);
3339 status
= ocfs2_trim_tree(inode
, path
, handle
, tc
,
3340 clusters_to_del
, &delete_blk
);
3346 if (le32_to_cpu(fe
->i_clusters
) == 0) {
3347 /* trunc to zero is a special case. */
3348 el
->l_tree_depth
= 0;
3349 fe
->i_last_eb_blk
= 0;
3351 fe
->i_last_eb_blk
= last_eb
->h_blkno
;
3353 status
= ocfs2_journal_dirty(handle
, fe_bh
);
3360 /* If there will be a new last extent block, then by
3361 * definition, there cannot be any leaves to the right of
3363 last_eb
->h_next_leaf_blk
= 0;
3364 status
= ocfs2_journal_dirty(handle
, last_eb_bh
);
3372 status
= ocfs2_truncate_log_append(osb
, handle
, delete_blk
,
3386 static int ocfs2_writeback_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
3388 set_buffer_uptodate(bh
);
3389 mark_buffer_dirty(bh
);
3393 static int ocfs2_ordered_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
3395 set_buffer_uptodate(bh
);
3396 mark_buffer_dirty(bh
);
3397 return ocfs2_journal_dirty_data(handle
, bh
);
3400 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t isize
,
3401 struct page
**pages
, int numpages
,
3402 u64 phys
, handle_t
*handle
)
3404 int i
, ret
, partial
= 0;
3407 unsigned int from
, to
= PAGE_CACHE_SIZE
;
3408 struct super_block
*sb
= inode
->i_sb
;
3410 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
3415 from
= isize
& (PAGE_CACHE_SIZE
- 1); /* 1st page offset */
3416 if (PAGE_CACHE_SHIFT
> OCFS2_SB(sb
)->s_clustersize_bits
) {
3418 * Since 'from' has been capped to a value below page
3419 * size, this calculation won't be able to overflow
3422 to
= ocfs2_align_bytes_to_clusters(sb
, from
);
3425 * The truncate tail in this case should never contain
3426 * more than one page at maximum. The loop below also
3429 BUG_ON(numpages
!= 1);
3432 for(i
= 0; i
< numpages
; i
++) {
3435 BUG_ON(from
> PAGE_CACHE_SIZE
);
3436 BUG_ON(to
> PAGE_CACHE_SIZE
);
3438 ret
= ocfs2_map_page_blocks(page
, &phys
, inode
, from
, to
, 0);
3442 kaddr
= kmap_atomic(page
, KM_USER0
);
3443 memset(kaddr
+ from
, 0, to
- from
);
3444 kunmap_atomic(kaddr
, KM_USER0
);
3447 * Need to set the buffers we zero'd into uptodate
3448 * here if they aren't - ocfs2_map_page_blocks()
3449 * might've skipped some
3451 if (ocfs2_should_order_data(inode
)) {
3452 ret
= walk_page_buffers(handle
,
3455 ocfs2_ordered_zero_func
);
3459 ret
= walk_page_buffers(handle
, page_buffers(page
),
3461 ocfs2_writeback_zero_func
);
3467 SetPageUptodate(page
);
3469 flush_dcache_page(page
);
3472 * Every page after the 1st one should be completely zero'd.
3478 for (i
= 0; i
< numpages
; i
++) {
3481 mark_page_accessed(page
);
3482 page_cache_release(page
);
3487 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t isize
, struct page
**pages
,
3488 int *num
, u64
*phys
)
3490 int i
, numpages
= 0, ret
= 0;
3491 unsigned int csize
= OCFS2_SB(inode
->i_sb
)->s_clustersize
;
3492 unsigned int ext_flags
;
3493 struct super_block
*sb
= inode
->i_sb
;
3494 struct address_space
*mapping
= inode
->i_mapping
;
3495 unsigned long index
;
3496 u64 next_cluster_bytes
;
3498 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
3500 /* Cluster boundary, so we don't need to grab any pages. */
3501 if ((isize
& (csize
- 1)) == 0)
3504 ret
= ocfs2_extent_map_get_blocks(inode
, isize
>> sb
->s_blocksize_bits
,
3505 phys
, NULL
, &ext_flags
);
3511 /* Tail is a hole. */
3515 /* Tail is marked as unwritten, we can count on write to zero
3517 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
3520 next_cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, isize
);
3521 index
= isize
>> PAGE_CACHE_SHIFT
;
3523 pages
[numpages
] = grab_cache_page(mapping
, index
);
3524 if (!pages
[numpages
]) {
3532 } while (index
< (next_cluster_bytes
>> PAGE_CACHE_SHIFT
));
3537 for (i
= 0; i
< numpages
; i
++) {
3539 unlock_page(pages
[i
]);
3540 page_cache_release(pages
[i
]);
3553 * Zero the area past i_size but still within an allocated
3554 * cluster. This avoids exposing nonzero data on subsequent file
3557 * We need to call this before i_size is updated on the inode because
3558 * otherwise block_write_full_page() will skip writeout of pages past
3559 * i_size. The new_i_size parameter is passed for this reason.
3561 int ocfs2_zero_tail_for_truncate(struct inode
*inode
, handle_t
*handle
,
3566 struct page
**pages
= NULL
;
3570 * File systems which don't support sparse files zero on every
3573 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
3576 pages
= kcalloc(ocfs2_pages_per_cluster(inode
->i_sb
),
3577 sizeof(struct page
*), GFP_NOFS
);
3578 if (pages
== NULL
) {
3584 ret
= ocfs2_grab_eof_pages(inode
, new_i_size
, pages
, &numpages
, &phys
);
3593 ocfs2_zero_cluster_pages(inode
, new_i_size
, pages
, numpages
, phys
,
3597 * Initiate writeout of the pages we zero'd here. We don't
3598 * wait on them - the truncate_inode_pages() call later will
3601 endbyte
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
3602 ret
= do_sync_mapping_range(inode
->i_mapping
, new_i_size
,
3603 endbyte
- 1, SYNC_FILE_RANGE_WRITE
);
3615 * It is expected, that by the time you call this function,
3616 * inode->i_size and fe->i_size have been adjusted.
3618 * WARNING: This will kfree the truncate context
3620 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
3621 struct inode
*inode
,
3622 struct buffer_head
*fe_bh
,
3623 struct ocfs2_truncate_context
*tc
)
3625 int status
, i
, credits
, tl_sem
= 0;
3626 u32 clusters_to_del
, new_highest_cpos
, range
;
3627 struct ocfs2_extent_list
*el
;
3628 handle_t
*handle
= NULL
;
3629 struct inode
*tl_inode
= osb
->osb_tl_inode
;
3630 struct ocfs2_path
*path
= NULL
;
3634 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
3636 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
3637 i_size_read(inode
));
3639 path
= ocfs2_new_inode_path(fe_bh
);
3646 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
3650 * Check that we still have allocation to delete.
3652 if (OCFS2_I(inode
)->ip_clusters
== 0) {
3658 * Truncate always works against the rightmost tree branch.
3660 status
= ocfs2_find_path(inode
, path
, UINT_MAX
);
3666 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
3667 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
3670 * By now, el will point to the extent list on the bottom most
3671 * portion of this tree. Only the tail record is considered in
3674 * We handle the following cases, in order:
3675 * - empty extent: delete the remaining branch
3676 * - remove the entire record
3677 * - remove a partial record
3678 * - no record needs to be removed (truncate has completed)
3680 el
= path_leaf_el(path
);
3681 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3682 ocfs2_error(inode
->i_sb
,
3683 "Inode %llu has empty extent block at %llu\n",
3684 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
3685 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
3690 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3691 range
= le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
3692 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
3693 if (i
== 0 && ocfs2_is_empty_extent(&el
->l_recs
[i
])) {
3694 clusters_to_del
= 0;
3695 } else if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_highest_cpos
) {
3696 clusters_to_del
= ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
3697 } else if (range
> new_highest_cpos
) {
3698 clusters_to_del
= (ocfs2_rec_clusters(el
, &el
->l_recs
[i
]) +
3699 le32_to_cpu(el
->l_recs
[i
].e_cpos
)) -
3706 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
3707 clusters_to_del
, (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
3709 BUG_ON(clusters_to_del
== 0);
3711 mutex_lock(&tl_inode
->i_mutex
);
3713 /* ocfs2_truncate_log_needs_flush guarantees us at least one
3714 * record is free for use. If there isn't any, we flush to get
3715 * an empty truncate log. */
3716 if (ocfs2_truncate_log_needs_flush(osb
)) {
3717 status
= __ocfs2_flush_truncate_log(osb
);
3724 credits
= ocfs2_calc_tree_trunc_credits(osb
->sb
, clusters_to_del
,
3725 (struct ocfs2_dinode
*)fe_bh
->b_data
,
3727 handle
= ocfs2_start_trans(osb
, credits
);
3728 if (IS_ERR(handle
)) {
3729 status
= PTR_ERR(handle
);
3735 status
= ocfs2_do_truncate(osb
, clusters_to_del
, inode
, fe_bh
, handle
,
3742 mutex_unlock(&tl_inode
->i_mutex
);
3745 ocfs2_commit_trans(osb
, handle
);
3748 ocfs2_reinit_path(path
, 1);
3751 * The check above will catch the case where we've truncated
3752 * away all allocation.
3757 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
3759 ocfs2_schedule_truncate_log_flush(osb
, 1);
3762 mutex_unlock(&tl_inode
->i_mutex
);
3765 ocfs2_commit_trans(osb
, handle
);
3767 ocfs2_free_path(path
);
3769 /* This will drop the ext_alloc cluster lock for us */
3770 ocfs2_free_truncate_context(tc
);
3777 * Expects the inode to already be locked. This will figure out which
3778 * inodes need to be locked and will put them on the returned truncate
3781 int ocfs2_prepare_truncate(struct ocfs2_super
*osb
,
3782 struct inode
*inode
,
3783 struct buffer_head
*fe_bh
,
3784 struct ocfs2_truncate_context
**tc
)
3786 int status
, metadata_delete
, i
;
3787 unsigned int new_i_clusters
;
3788 struct ocfs2_dinode
*fe
;
3789 struct ocfs2_extent_block
*eb
;
3790 struct ocfs2_extent_list
*el
;
3791 struct buffer_head
*last_eb_bh
= NULL
;
3792 struct inode
*ext_alloc_inode
= NULL
;
3793 struct buffer_head
*ext_alloc_bh
= NULL
;
3799 new_i_clusters
= ocfs2_clusters_for_bytes(osb
->sb
,
3800 i_size_read(inode
));
3801 fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
3803 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
3804 "%llu\n", le32_to_cpu(fe
->i_clusters
), new_i_clusters
,
3805 (unsigned long long)le64_to_cpu(fe
->i_size
));
3807 *tc
= kzalloc(sizeof(struct ocfs2_truncate_context
), GFP_KERNEL
);
3814 metadata_delete
= 0;
3815 if (fe
->id2
.i_list
.l_tree_depth
) {
3816 /* If we have a tree, then the truncate may result in
3817 * metadata deletes. Figure this out from the
3818 * rightmost leaf block.*/
3819 status
= ocfs2_read_block(osb
, le64_to_cpu(fe
->i_last_eb_blk
),
3820 &last_eb_bh
, OCFS2_BH_CACHED
, inode
);
3825 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
3826 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
3827 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode
->i_sb
, eb
);
3836 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3839 * XXX: Should we check that next_free_rec contains
3842 if (le32_to_cpu(el
->l_recs
[i
].e_cpos
) >= new_i_clusters
)
3843 metadata_delete
= 1;
3846 (*tc
)->tc_last_eb_bh
= last_eb_bh
;
3848 if (metadata_delete
) {
3849 mlog(0, "Will have to delete metadata for this trunc. "
3850 "locking allocator.\n");
3851 ext_alloc_inode
= ocfs2_get_system_file_inode(osb
, EXTENT_ALLOC_SYSTEM_INODE
, 0);
3852 if (!ext_alloc_inode
) {
3858 mutex_lock(&ext_alloc_inode
->i_mutex
);
3859 (*tc
)->tc_ext_alloc_inode
= ext_alloc_inode
;
3861 status
= ocfs2_meta_lock(ext_alloc_inode
, &ext_alloc_bh
, 1);
3866 (*tc
)->tc_ext_alloc_bh
= ext_alloc_bh
;
3867 (*tc
)->tc_ext_alloc_locked
= 1;
3874 ocfs2_free_truncate_context(*tc
);
3881 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context
*tc
)
3883 if (tc
->tc_ext_alloc_inode
) {
3884 if (tc
->tc_ext_alloc_locked
)
3885 ocfs2_meta_unlock(tc
->tc_ext_alloc_inode
, 1);
3887 mutex_unlock(&tc
->tc_ext_alloc_inode
->i_mutex
);
3888 iput(tc
->tc_ext_alloc_inode
);
3891 if (tc
->tc_ext_alloc_bh
)
3892 brelse(tc
->tc_ext_alloc_bh
);
3894 if (tc
->tc_last_eb_bh
)
3895 brelse(tc
->tc_last_eb_bh
);