USB: option: add a bunch of new device ids
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-parisc / pgtable.h
blobc0b61e0d14973d9e4765f4f8528c103a850138b0
1 #ifndef _PARISC_PGTABLE_H
2 #define _PARISC_PGTABLE_H
4 #include <asm-generic/4level-fixup.h>
6 #include <asm/fixmap.h>
8 #ifndef __ASSEMBLY__
9 /*
10 * we simulate an x86-style page table for the linux mm code
13 #include <linux/spinlock.h>
14 #include <linux/mm.h> /* for vm_area_struct */
15 #include <asm/processor.h>
16 #include <asm/cache.h>
17 #include <asm/bitops.h>
20 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
21 * memory. For the return value to be meaningful, ADDR must be >=
22 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
23 * require a hash-, or multi-level tree-lookup or something of that
24 * sort) but it guarantees to return TRUE only if accessing the page
25 * at that address does not cause an error. Note that there may be
26 * addresses for which kern_addr_valid() returns FALSE even though an
27 * access would not cause an error (e.g., this is typically true for
28 * memory mapped I/O regions.
30 * XXX Need to implement this for parisc.
32 #define kern_addr_valid(addr) (1)
34 /* Certain architectures need to do special things when PTEs
35 * within a page table are directly modified. Thus, the following
36 * hook is made available.
38 #define set_pte(pteptr, pteval) \
39 do{ \
40 *(pteptr) = (pteval); \
41 } while(0)
42 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
44 #endif /* !__ASSEMBLY__ */
46 #define pte_ERROR(e) \
47 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
48 #define pmd_ERROR(e) \
49 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
50 #define pgd_ERROR(e) \
51 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
53 /* Note: If you change ISTACK_SIZE, you need to change the corresponding
54 * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also,
55 * the "order" and size need to agree.
58 #define ISTACK_SIZE 32768 /* Interrupt Stack Size */
59 #define ISTACK_ORDER 3
61 /* This is the size of the initially mapped kernel memory */
62 #ifdef CONFIG_64BIT
63 #define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */
64 #else
65 #define KERNEL_INITIAL_ORDER 23 /* 0 to 1<<23 = 8MB */
66 #endif
67 #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
69 #if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB)
70 #define PT_NLEVELS 3
71 #define PGD_ORDER 1 /* Number of pages per pgd */
72 #define PMD_ORDER 1 /* Number of pages per pmd */
73 #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
74 #else
75 #define PT_NLEVELS 2
76 #define PGD_ORDER 1 /* Number of pages per pgd */
77 #define PGD_ALLOC_ORDER PGD_ORDER
78 #endif
80 /* Definitions for 3rd level (we use PLD here for Page Lower directory
81 * because PTE_SHIFT is used lower down to mean shift that has to be
82 * done to get usable bits out of the PTE) */
83 #define PLD_SHIFT PAGE_SHIFT
84 #define PLD_SIZE PAGE_SIZE
85 #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
86 #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
88 /* Definitions for 2nd level */
89 #define pgtable_cache_init() do { } while (0)
91 #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
92 #define PMD_SIZE (1UL << PMD_SHIFT)
93 #define PMD_MASK (~(PMD_SIZE-1))
94 #if PT_NLEVELS == 3
95 #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
96 #else
97 #define BITS_PER_PMD 0
98 #endif
99 #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
101 /* Definitions for 1st level */
102 #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
103 #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
104 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
105 #define PGDIR_MASK (~(PGDIR_SIZE-1))
106 #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
107 #define USER_PTRS_PER_PGD PTRS_PER_PGD
109 #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
110 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
112 #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
114 /* This calculates the number of initial pages we need for the initial
115 * page tables */
116 #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
117 # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
118 #else
119 # define PT_INITIAL (1) /* all initial PTEs fit into one page */
120 #endif
123 * pgd entries used up by user/kernel:
126 #define FIRST_USER_ADDRESS 0
128 #ifndef __ASSEMBLY__
129 extern void *vmalloc_start;
130 #define PCXL_DMA_MAP_SIZE (8*1024*1024)
131 #define VMALLOC_START ((unsigned long)vmalloc_start)
132 /* this is a fixmap remnant, see fixmap.h */
133 #define VMALLOC_END (KERNEL_MAP_END)
134 #endif
136 /* NB: The tlb miss handlers make certain assumptions about the order */
137 /* of the following bits, so be careful (One example, bits 25-31 */
138 /* are moved together in one instruction). */
140 #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
141 #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
142 #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
143 #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
144 #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
145 #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
146 #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */
147 #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
148 #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
149 #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
150 #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
151 #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */
152 /* for cache flushing only */
153 #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
155 /* N.B. The bits are defined in terms of a 32 bit word above, so the */
156 /* following macro is ok for both 32 and 64 bit. */
158 #define xlate_pabit(x) (31 - x)
160 /* this defines the shift to the usable bits in the PTE it is set so
161 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
162 * to zero */
163 #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
165 /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
166 #define PFN_PTE_SHIFT 12
169 /* this is how many bits may be used by the file functions */
170 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
172 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
173 #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
175 #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
176 #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
177 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
178 #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
179 #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
180 #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
181 #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
182 #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
183 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
184 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
185 #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
186 #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT))
187 #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
188 #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT))
190 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
191 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
192 #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
194 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
195 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
196 * for a few meta-information bits, so we shift the address to be
197 * able to effectively address 40/42/44-bits of physical address space
198 * depending on 4k/16k/64k PAGE_SIZE */
199 #define _PxD_PRESENT_BIT 31
200 #define _PxD_ATTACHED_BIT 30
201 #define _PxD_VALID_BIT 29
203 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
204 #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
205 #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
206 #define PxD_FLAG_MASK (0xf)
207 #define PxD_FLAG_SHIFT (4)
208 #define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
210 #ifndef __ASSEMBLY__
212 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
213 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
214 /* Others seem to make this executable, I don't know if that's correct
215 or not. The stack is mapped this way though so this is necessary
216 in the short term - dhd@linuxcare.com, 2000-08-08 */
217 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
218 #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
219 #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
220 #define PAGE_COPY PAGE_EXECREAD
221 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
222 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
223 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
224 #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
225 #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
226 #define PAGE_FLUSH __pgprot(_PAGE_FLUSH)
230 * We could have an execute only page using "gateway - promote to priv
231 * level 3", but that is kind of silly. So, the way things are defined
232 * now, we must always have read permission for pages with execute
233 * permission. For the fun of it we'll go ahead and support write only
234 * pages.
237 /*xwr*/
238 #define __P000 PAGE_NONE
239 #define __P001 PAGE_READONLY
240 #define __P010 __P000 /* copy on write */
241 #define __P011 __P001 /* copy on write */
242 #define __P100 PAGE_EXECREAD
243 #define __P101 PAGE_EXECREAD
244 #define __P110 __P100 /* copy on write */
245 #define __P111 __P101 /* copy on write */
247 #define __S000 PAGE_NONE
248 #define __S001 PAGE_READONLY
249 #define __S010 PAGE_WRITEONLY
250 #define __S011 PAGE_SHARED
251 #define __S100 PAGE_EXECREAD
252 #define __S101 PAGE_EXECREAD
253 #define __S110 PAGE_RWX
254 #define __S111 PAGE_RWX
257 extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
259 /* initial page tables for 0-8MB for kernel */
261 extern pte_t pg0[];
263 /* zero page used for uninitialized stuff */
265 extern unsigned long *empty_zero_page;
268 * ZERO_PAGE is a global shared page that is always zero: used
269 * for zero-mapped memory areas etc..
272 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
274 #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH))
275 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
276 #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
278 #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
279 #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
280 #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
281 #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
283 #if PT_NLEVELS == 3
284 /* The first entry of the permanent pmd is not there if it contains
285 * the gateway marker */
286 #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
287 #else
288 #define pmd_none(x) (!pmd_val(x))
289 #endif
290 #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
291 #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
292 static inline void pmd_clear(pmd_t *pmd) {
293 #if PT_NLEVELS == 3
294 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
295 /* This is the entry pointing to the permanent pmd
296 * attached to the pgd; cannot clear it */
297 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
298 else
299 #endif
300 __pmd_val_set(*pmd, 0);
305 #if PT_NLEVELS == 3
306 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
307 #define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd))
309 /* For 64 bit we have three level tables */
311 #define pgd_none(x) (!pgd_val(x))
312 #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
313 #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
314 static inline void pgd_clear(pgd_t *pgd) {
315 #if PT_NLEVELS == 3
316 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
317 /* This is the permanent pmd attached to the pgd; cannot
318 * free it */
319 return;
320 #endif
321 __pgd_val_set(*pgd, 0);
323 #else
325 * The "pgd_xxx()" functions here are trivial for a folded two-level
326 * setup: the pgd is never bad, and a pmd always exists (as it's folded
327 * into the pgd entry)
329 extern inline int pgd_none(pgd_t pgd) { return 0; }
330 extern inline int pgd_bad(pgd_t pgd) { return 0; }
331 extern inline int pgd_present(pgd_t pgd) { return 1; }
332 extern inline void pgd_clear(pgd_t * pgdp) { }
333 #endif
336 * The following only work if pte_present() is true.
337 * Undefined behaviour if not..
339 extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
340 extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
341 extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
342 extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
343 extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
344 extern inline int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
346 extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; }
347 extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
348 extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
349 extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
350 extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; }
351 extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
352 extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
353 extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
356 * Conversion functions: convert a page and protection to a page entry,
357 * and a page entry and page directory to the page they refer to.
359 #define __mk_pte(addr,pgprot) \
360 ({ \
361 pte_t __pte; \
363 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
365 __pte; \
368 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
370 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
372 pte_t pte;
373 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
374 return pte;
377 extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
378 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
380 /* Permanent address of a page. On parisc we don't have highmem. */
382 #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
384 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
386 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd)))
388 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
389 #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
391 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
393 /* to find an entry in a page-table-directory */
394 #define pgd_offset(mm, address) \
395 ((mm)->pgd + ((address) >> PGDIR_SHIFT))
397 /* to find an entry in a kernel page-table-directory */
398 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
400 /* Find an entry in the second-level page table.. */
402 #if PT_NLEVELS == 3
403 #define pmd_offset(dir,address) \
404 ((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
405 #else
406 #define pmd_offset(dir,addr) ((pmd_t *) dir)
407 #endif
409 /* Find an entry in the third-level page table.. */
410 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
411 #define pte_offset_kernel(pmd, address) \
412 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
413 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
414 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
415 #define pte_unmap(pte) do { } while (0)
416 #define pte_unmap_nested(pte) do { } while (0)
418 #define pte_unmap(pte) do { } while (0)
419 #define pte_unmap_nested(pte) do { } while (0)
421 extern void paging_init (void);
423 /* Used for deferring calls to flush_dcache_page() */
425 #define PG_dcache_dirty PG_arch_1
427 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
429 /* Encode and de-code a swap entry */
431 #define __swp_type(x) ((x).val & 0x1f)
432 #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
433 (((x).val >> 8) & ~0x7) )
434 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
435 ((offset & 0x7) << 6) | \
436 ((offset & ~0x7) << 8) })
437 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
438 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
440 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
442 #ifdef CONFIG_SMP
443 if (!pte_young(*ptep))
444 return 0;
445 return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep));
446 #else
447 pte_t pte = *ptep;
448 if (!pte_young(pte))
449 return 0;
450 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
451 return 1;
452 #endif
455 static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
457 #ifdef CONFIG_SMP
458 if (!pte_dirty(*ptep))
459 return 0;
460 return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep));
461 #else
462 pte_t pte = *ptep;
463 if (!pte_dirty(pte))
464 return 0;
465 set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
466 return 1;
467 #endif
470 extern spinlock_t pa_dbit_lock;
472 struct mm_struct;
473 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
475 pte_t old_pte;
476 pte_t pte;
478 spin_lock(&pa_dbit_lock);
479 pte = old_pte = *ptep;
480 pte_val(pte) &= ~_PAGE_PRESENT;
481 pte_val(pte) |= _PAGE_FLUSH;
482 set_pte_at(mm,addr,ptep,pte);
483 spin_unlock(&pa_dbit_lock);
485 return old_pte;
488 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
490 #ifdef CONFIG_SMP
491 unsigned long new, old;
493 do {
494 old = pte_val(*ptep);
495 new = pte_val(pte_wrprotect(__pte (old)));
496 } while (cmpxchg((unsigned long *) ptep, old, new) != old);
497 #else
498 pte_t old_pte = *ptep;
499 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
500 #endif
503 #define pte_same(A,B) (pte_val(A) == pte_val(B))
505 #endif /* !__ASSEMBLY__ */
508 /* TLB page size encoding - see table 3-1 in parisc20.pdf */
509 #define _PAGE_SIZE_ENCODING_4K 0
510 #define _PAGE_SIZE_ENCODING_16K 1
511 #define _PAGE_SIZE_ENCODING_64K 2
512 #define _PAGE_SIZE_ENCODING_256K 3
513 #define _PAGE_SIZE_ENCODING_1M 4
514 #define _PAGE_SIZE_ENCODING_4M 5
515 #define _PAGE_SIZE_ENCODING_16M 6
516 #define _PAGE_SIZE_ENCODING_64M 7
518 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
519 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
520 #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
521 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
522 #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
523 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
524 #endif
527 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
528 remap_pfn_range(vma, vaddr, pfn, size, prot)
530 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
532 #define MK_IOSPACE_PFN(space, pfn) (pfn)
533 #define GET_IOSPACE(pfn) 0
534 #define GET_PFN(pfn) (pfn)
536 /* We provide our own get_unmapped_area to provide cache coherency */
538 #define HAVE_ARCH_UNMAPPED_AREA
540 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
541 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
542 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
543 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
544 #define __HAVE_ARCH_PTE_SAME
545 #include <asm-generic/pgtable.h>
547 #endif /* _PARISC_PGTABLE_H */