[PATCH] ppc64: serialize reports of PCI errors
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ppc64 / kernel / eeh.c
blobe7522f6da69d2bd03dc87318f3fa93328385921e
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/notifier.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/io.h>
31 #include <asm/machdep.h>
32 #include <asm/rtas.h>
33 #include <asm/atomic.h>
34 #include <asm/systemcfg.h>
35 #include <asm/ppc-pci.h>
37 #undef DEBUG
39 /** Overview:
40 * EEH, or "Extended Error Handling" is a PCI bridge technology for
41 * dealing with PCI bus errors that can't be dealt with within the
42 * usual PCI framework, except by check-stopping the CPU. Systems
43 * that are designed for high-availability/reliability cannot afford
44 * to crash due to a "mere" PCI error, thus the need for EEH.
45 * An EEH-capable bridge operates by converting a detected error
46 * into a "slot freeze", taking the PCI adapter off-line, making
47 * the slot behave, from the OS'es point of view, as if the slot
48 * were "empty": all reads return 0xff's and all writes are silently
49 * ignored. EEH slot isolation events can be triggered by parity
50 * errors on the address or data busses (e.g. during posted writes),
51 * which in turn might be caused by low voltage on the bus, dust,
52 * vibration, humidity, radioactivity or plain-old failed hardware.
54 * Note, however, that one of the leading causes of EEH slot
55 * freeze events are buggy device drivers, buggy device microcode,
56 * or buggy device hardware. This is because any attempt by the
57 * device to bus-master data to a memory address that is not
58 * assigned to the device will trigger a slot freeze. (The idea
59 * is to prevent devices-gone-wild from corrupting system memory).
60 * Buggy hardware/drivers will have a miserable time co-existing
61 * with EEH.
63 * Ideally, a PCI device driver, when suspecting that an isolation
64 * event has occured (e.g. by reading 0xff's), will then ask EEH
65 * whether this is the case, and then take appropriate steps to
66 * reset the PCI slot, the PCI device, and then resume operations.
67 * However, until that day, the checking is done here, with the
68 * eeh_check_failure() routine embedded in the MMIO macros. If
69 * the slot is found to be isolated, an "EEH Event" is synthesized
70 * and sent out for processing.
73 /* EEH event workqueue setup. */
74 static DEFINE_SPINLOCK(eeh_eventlist_lock);
75 LIST_HEAD(eeh_eventlist);
76 static void eeh_event_handler(void *);
77 DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
79 static struct notifier_block *eeh_notifier_chain;
82 * If a device driver keeps reading an MMIO register in an interrupt
83 * handler after a slot isolation event has occurred, we assume it
84 * is broken and panic. This sets the threshold for how many read
85 * attempts we allow before panicking.
87 #define EEH_MAX_FAILS 1000
88 static atomic_t eeh_fail_count;
90 /* RTAS tokens */
91 static int ibm_set_eeh_option;
92 static int ibm_set_slot_reset;
93 static int ibm_read_slot_reset_state;
94 static int ibm_read_slot_reset_state2;
95 static int ibm_slot_error_detail;
97 static int eeh_subsystem_enabled;
99 /* Lock to avoid races due to multiple reports of an error */
100 static DEFINE_SPINLOCK(confirm_error_lock);
102 /* Buffer for reporting slot-error-detail rtas calls */
103 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
104 static DEFINE_SPINLOCK(slot_errbuf_lock);
105 static int eeh_error_buf_size;
107 /* System monitoring statistics */
108 static DEFINE_PER_CPU(unsigned long, no_device);
109 static DEFINE_PER_CPU(unsigned long, no_dn);
110 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
111 static DEFINE_PER_CPU(unsigned long, ignored_check);
112 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
113 static DEFINE_PER_CPU(unsigned long, false_positives);
114 static DEFINE_PER_CPU(unsigned long, ignored_failures);
115 static DEFINE_PER_CPU(unsigned long, slot_resets);
118 * The pci address cache subsystem. This subsystem places
119 * PCI device address resources into a red-black tree, sorted
120 * according to the address range, so that given only an i/o
121 * address, the corresponding PCI device can be **quickly**
122 * found. It is safe to perform an address lookup in an interrupt
123 * context; this ability is an important feature.
125 * Currently, the only customer of this code is the EEH subsystem;
126 * thus, this code has been somewhat tailored to suit EEH better.
127 * In particular, the cache does *not* hold the addresses of devices
128 * for which EEH is not enabled.
130 * (Implementation Note: The RB tree seems to be better/faster
131 * than any hash algo I could think of for this problem, even
132 * with the penalty of slow pointer chases for d-cache misses).
134 struct pci_io_addr_range
136 struct rb_node rb_node;
137 unsigned long addr_lo;
138 unsigned long addr_hi;
139 struct pci_dev *pcidev;
140 unsigned int flags;
143 static struct pci_io_addr_cache
145 struct rb_root rb_root;
146 spinlock_t piar_lock;
147 } pci_io_addr_cache_root;
149 static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
151 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
153 while (n) {
154 struct pci_io_addr_range *piar;
155 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
157 if (addr < piar->addr_lo) {
158 n = n->rb_left;
159 } else {
160 if (addr > piar->addr_hi) {
161 n = n->rb_right;
162 } else {
163 pci_dev_get(piar->pcidev);
164 return piar->pcidev;
169 return NULL;
173 * pci_get_device_by_addr - Get device, given only address
174 * @addr: mmio (PIO) phys address or i/o port number
176 * Given an mmio phys address, or a port number, find a pci device
177 * that implements this address. Be sure to pci_dev_put the device
178 * when finished. I/O port numbers are assumed to be offset
179 * from zero (that is, they do *not* have pci_io_addr added in).
180 * It is safe to call this function within an interrupt.
182 static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
184 struct pci_dev *dev;
185 unsigned long flags;
187 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
188 dev = __pci_get_device_by_addr(addr);
189 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
190 return dev;
193 #ifdef DEBUG
195 * Handy-dandy debug print routine, does nothing more
196 * than print out the contents of our addr cache.
198 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
200 struct rb_node *n;
201 int cnt = 0;
203 n = rb_first(&cache->rb_root);
204 while (n) {
205 struct pci_io_addr_range *piar;
206 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
207 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
208 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
209 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
210 cnt++;
211 n = rb_next(n);
214 #endif
216 /* Insert address range into the rb tree. */
217 static struct pci_io_addr_range *
218 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
219 unsigned long ahi, unsigned int flags)
221 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
222 struct rb_node *parent = NULL;
223 struct pci_io_addr_range *piar;
225 /* Walk tree, find a place to insert into tree */
226 while (*p) {
227 parent = *p;
228 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
229 if (ahi < piar->addr_lo) {
230 p = &parent->rb_left;
231 } else if (alo > piar->addr_hi) {
232 p = &parent->rb_right;
233 } else {
234 if (dev != piar->pcidev ||
235 alo != piar->addr_lo || ahi != piar->addr_hi) {
236 printk(KERN_WARNING "PIAR: overlapping address range\n");
238 return piar;
241 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
242 if (!piar)
243 return NULL;
245 piar->addr_lo = alo;
246 piar->addr_hi = ahi;
247 piar->pcidev = dev;
248 piar->flags = flags;
250 #ifdef DEBUG
251 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
252 alo, ahi, pci_name (dev));
253 #endif
255 rb_link_node(&piar->rb_node, parent, p);
256 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
258 return piar;
261 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
263 struct device_node *dn;
264 struct pci_dn *pdn;
265 int i;
266 int inserted = 0;
268 dn = pci_device_to_OF_node(dev);
269 if (!dn) {
270 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
271 return;
274 /* Skip any devices for which EEH is not enabled. */
275 pdn = PCI_DN(dn);
276 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
277 pdn->eeh_mode & EEH_MODE_NOCHECK) {
278 #ifdef DEBUG
279 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
280 pci_name(dev), pdn->node->full_name);
281 #endif
282 return;
285 /* The cache holds a reference to the device... */
286 pci_dev_get(dev);
288 /* Walk resources on this device, poke them into the tree */
289 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
290 unsigned long start = pci_resource_start(dev,i);
291 unsigned long end = pci_resource_end(dev,i);
292 unsigned int flags = pci_resource_flags(dev,i);
294 /* We are interested only bus addresses, not dma or other stuff */
295 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
296 continue;
297 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
298 continue;
299 pci_addr_cache_insert(dev, start, end, flags);
300 inserted = 1;
303 /* If there was nothing to add, the cache has no reference... */
304 if (!inserted)
305 pci_dev_put(dev);
309 * pci_addr_cache_insert_device - Add a device to the address cache
310 * @dev: PCI device whose I/O addresses we are interested in.
312 * In order to support the fast lookup of devices based on addresses,
313 * we maintain a cache of devices that can be quickly searched.
314 * This routine adds a device to that cache.
316 static void pci_addr_cache_insert_device(struct pci_dev *dev)
318 unsigned long flags;
320 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
321 __pci_addr_cache_insert_device(dev);
322 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
325 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
327 struct rb_node *n;
328 int removed = 0;
330 restart:
331 n = rb_first(&pci_io_addr_cache_root.rb_root);
332 while (n) {
333 struct pci_io_addr_range *piar;
334 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
336 if (piar->pcidev == dev) {
337 rb_erase(n, &pci_io_addr_cache_root.rb_root);
338 removed = 1;
339 kfree(piar);
340 goto restart;
342 n = rb_next(n);
345 /* The cache no longer holds its reference to this device... */
346 if (removed)
347 pci_dev_put(dev);
351 * pci_addr_cache_remove_device - remove pci device from addr cache
352 * @dev: device to remove
354 * Remove a device from the addr-cache tree.
355 * This is potentially expensive, since it will walk
356 * the tree multiple times (once per resource).
357 * But so what; device removal doesn't need to be that fast.
359 static void pci_addr_cache_remove_device(struct pci_dev *dev)
361 unsigned long flags;
363 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
364 __pci_addr_cache_remove_device(dev);
365 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
369 * pci_addr_cache_build - Build a cache of I/O addresses
371 * Build a cache of pci i/o addresses. This cache will be used to
372 * find the pci device that corresponds to a given address.
373 * This routine scans all pci busses to build the cache.
374 * Must be run late in boot process, after the pci controllers
375 * have been scaned for devices (after all device resources are known).
377 void __init pci_addr_cache_build(void)
379 struct pci_dev *dev = NULL;
381 if (!eeh_subsystem_enabled)
382 return;
384 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
386 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
387 /* Ignore PCI bridges ( XXX why ??) */
388 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
389 continue;
391 pci_addr_cache_insert_device(dev);
394 #ifdef DEBUG
395 /* Verify tree built up above, echo back the list of addrs. */
396 pci_addr_cache_print(&pci_io_addr_cache_root);
397 #endif
400 /* --------------------------------------------------------------- */
401 /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
403 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
405 unsigned long flags;
406 int rc;
408 /* Log the error with the rtas logger */
409 spin_lock_irqsave(&slot_errbuf_lock, flags);
410 memset(slot_errbuf, 0, eeh_error_buf_size);
412 rc = rtas_call(ibm_slot_error_detail,
413 8, 1, NULL, pdn->eeh_config_addr,
414 BUID_HI(pdn->phb->buid),
415 BUID_LO(pdn->phb->buid), NULL, 0,
416 virt_to_phys(slot_errbuf),
417 eeh_error_buf_size,
418 severity);
420 if (rc == 0)
421 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
422 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
426 * eeh_register_notifier - Register to find out about EEH events.
427 * @nb: notifier block to callback on events
429 int eeh_register_notifier(struct notifier_block *nb)
431 return notifier_chain_register(&eeh_notifier_chain, nb);
435 * eeh_unregister_notifier - Unregister to an EEH event notifier.
436 * @nb: notifier block to callback on events
438 int eeh_unregister_notifier(struct notifier_block *nb)
440 return notifier_chain_unregister(&eeh_notifier_chain, nb);
444 * read_slot_reset_state - Read the reset state of a device node's slot
445 * @dn: device node to read
446 * @rets: array to return results in
448 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
450 int token, outputs;
452 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
453 token = ibm_read_slot_reset_state2;
454 outputs = 4;
455 } else {
456 token = ibm_read_slot_reset_state;
457 rets[2] = 0; /* fake PE Unavailable info */
458 outputs = 3;
461 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
462 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
466 * eeh_panic - call panic() for an eeh event that cannot be handled.
467 * The philosophy of this routine is that it is better to panic and
468 * halt the OS than it is to risk possible data corruption by
469 * oblivious device drivers that don't know better.
471 * @dev pci device that had an eeh event
472 * @reset_state current reset state of the device slot
474 static void eeh_panic(struct pci_dev *dev, int reset_state)
477 * XXX We should create a separate sysctl for this.
479 * Since the panic_on_oops sysctl is used to halt the system
480 * in light of potential corruption, we can use it here.
482 if (panic_on_oops) {
483 struct device_node *dn = pci_device_to_OF_node(dev);
484 eeh_slot_error_detail (PCI_DN(dn), 2 /* Permanent Error */);
485 panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
486 pci_name(dev));
488 else {
489 __get_cpu_var(ignored_failures)++;
490 printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
491 reset_state, pci_name(dev));
496 * eeh_event_handler - dispatch EEH events. The detection of a frozen
497 * slot can occur inside an interrupt, where it can be hard to do
498 * anything about it. The goal of this routine is to pull these
499 * detection events out of the context of the interrupt handler, and
500 * re-dispatch them for processing at a later time in a normal context.
502 * @dummy - unused
504 static void eeh_event_handler(void *dummy)
506 unsigned long flags;
507 struct eeh_event *event;
509 while (1) {
510 spin_lock_irqsave(&eeh_eventlist_lock, flags);
511 event = NULL;
512 if (!list_empty(&eeh_eventlist)) {
513 event = list_entry(eeh_eventlist.next, struct eeh_event, list);
514 list_del(&event->list);
516 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
517 if (event == NULL)
518 break;
520 printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
521 "%s\n", event->reset_state,
522 pci_name(event->dev));
524 atomic_set(&eeh_fail_count, 0);
525 notifier_call_chain (&eeh_notifier_chain,
526 EEH_NOTIFY_FREEZE, event);
528 pci_dev_put(event->dev);
529 kfree(event);
534 * eeh_token_to_phys - convert EEH address token to phys address
535 * @token i/o token, should be address in the form 0xA....
537 static inline unsigned long eeh_token_to_phys(unsigned long token)
539 pte_t *ptep;
540 unsigned long pa;
542 ptep = find_linux_pte(init_mm.pgd, token);
543 if (!ptep)
544 return token;
545 pa = pte_pfn(*ptep) << PAGE_SHIFT;
547 return pa | (token & (PAGE_SIZE-1));
550 /**
551 * Return the "partitionable endpoint" (pe) under which this device lies
553 static struct device_node * find_device_pe(struct device_node *dn)
555 while ((dn->parent) && PCI_DN(dn->parent) &&
556 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
557 dn = dn->parent;
559 return dn;
562 /** Mark all devices that are peers of this device as failed.
563 * Mark the device driver too, so that it can see the failure
564 * immediately; this is critical, since some drivers poll
565 * status registers in interrupts ... If a driver is polling,
566 * and the slot is frozen, then the driver can deadlock in
567 * an interrupt context, which is bad.
570 static inline void __eeh_mark_slot (struct device_node *dn)
572 while (dn) {
573 PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
575 if (dn->child)
576 __eeh_mark_slot (dn->child);
577 dn = dn->sibling;
581 static inline void __eeh_clear_slot (struct device_node *dn)
583 while (dn) {
584 PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
585 if (dn->child)
586 __eeh_clear_slot (dn->child);
587 dn = dn->sibling;
591 static inline void eeh_clear_slot (struct device_node *dn)
593 unsigned long flags;
594 spin_lock_irqsave(&confirm_error_lock, flags);
595 __eeh_clear_slot (dn);
596 spin_unlock_irqrestore(&confirm_error_lock, flags);
600 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
601 * @dn device node
602 * @dev pci device, if known
604 * Check for an EEH failure for the given device node. Call this
605 * routine if the result of a read was all 0xff's and you want to
606 * find out if this is due to an EEH slot freeze. This routine
607 * will query firmware for the EEH status.
609 * Returns 0 if there has not been an EEH error; otherwise returns
610 * a non-zero value and queues up a slot isolation event notification.
612 * It is safe to call this routine in an interrupt context.
614 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
616 int ret;
617 int rets[3];
618 unsigned long flags;
619 int reset_state;
620 struct eeh_event *event;
621 struct pci_dn *pdn;
622 struct device_node *pe_dn;
623 int rc = 0;
625 __get_cpu_var(total_mmio_ffs)++;
627 if (!eeh_subsystem_enabled)
628 return 0;
630 if (!dn) {
631 __get_cpu_var(no_dn)++;
632 return 0;
634 pdn = PCI_DN(dn);
636 /* Access to IO BARs might get this far and still not want checking. */
637 if (!pdn->eeh_capable || !(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
638 pdn->eeh_mode & EEH_MODE_NOCHECK) {
639 __get_cpu_var(ignored_check)++;
640 #ifdef DEBUG
641 printk ("EEH:ignored check for %s %s\n", pci_name (dev), dn->full_name);
642 #endif
643 return 0;
646 if (!pdn->eeh_config_addr) {
647 __get_cpu_var(no_cfg_addr)++;
648 return 0;
651 /* If we already have a pending isolation event for this
652 * slot, we know it's bad already, we don't need to check.
653 * Do this checking under a lock; as multiple PCI devices
654 * in one slot might report errors simultaneously, and we
655 * only want one error recovery routine running.
657 spin_lock_irqsave(&confirm_error_lock, flags);
658 rc = 1;
659 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
660 atomic_inc(&eeh_fail_count);
661 if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
662 /* re-read the slot reset state */
663 if (read_slot_reset_state(pdn, rets) != 0)
664 rets[0] = -1; /* reset state unknown */
665 eeh_panic(dev, rets[0]);
667 goto dn_unlock;
671 * Now test for an EEH failure. This is VERY expensive.
672 * Note that the eeh_config_addr may be a parent device
673 * in the case of a device behind a bridge, or it may be
674 * function zero of a multi-function device.
675 * In any case they must share a common PHB.
677 ret = read_slot_reset_state(pdn, rets);
679 /* If the call to firmware failed, punt */
680 if (ret != 0) {
681 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
682 ret, dn->full_name);
683 __get_cpu_var(false_positives)++;
684 rc = 0;
685 goto dn_unlock;
688 /* If EEH is not supported on this device, punt. */
689 if (rets[1] != 1) {
690 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
691 ret, dn->full_name);
692 __get_cpu_var(false_positives)++;
693 rc = 0;
694 goto dn_unlock;
697 /* If not the kind of error we know about, punt. */
698 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
699 __get_cpu_var(false_positives)++;
700 rc = 0;
701 goto dn_unlock;
704 /* Note that config-io to empty slots may fail;
705 * we recognize empty because they don't have children. */
706 if ((rets[0] == 5) && (dn->child == NULL)) {
707 __get_cpu_var(false_positives)++;
708 rc = 0;
709 goto dn_unlock;
712 __get_cpu_var(slot_resets)++;
714 /* Avoid repeated reports of this failure, including problems
715 * with other functions on this device, and functions under
716 * bridges. */
717 pe_dn = find_device_pe (dn);
718 __eeh_mark_slot (pe_dn);
719 spin_unlock_irqrestore(&confirm_error_lock, flags);
721 reset_state = rets[0];
723 eeh_slot_error_detail (pdn, 1 /* Temporary Error */);
725 printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
726 rets[0], dn->name, dn->full_name);
727 event = kmalloc(sizeof(*event), GFP_ATOMIC);
728 if (event == NULL) {
729 eeh_panic(dev, reset_state);
730 return 1;
733 event->dev = dev;
734 event->dn = dn;
735 event->reset_state = reset_state;
737 /* We may or may not be called in an interrupt context */
738 spin_lock_irqsave(&eeh_eventlist_lock, flags);
739 list_add(&event->list, &eeh_eventlist);
740 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
742 /* Most EEH events are due to device driver bugs. Having
743 * a stack trace will help the device-driver authors figure
744 * out what happened. So print that out. */
745 if (rets[0] != 5) dump_stack();
746 schedule_work(&eeh_event_wq);
748 return 1;
750 dn_unlock:
751 spin_unlock_irqrestore(&confirm_error_lock, flags);
752 return rc;
755 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
758 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
759 * @token i/o token, should be address in the form 0xA....
760 * @val value, should be all 1's (XXX why do we need this arg??)
762 * Check for an EEH failure at the given token address. Call this
763 * routine if the result of a read was all 0xff's and you want to
764 * find out if this is due to an EEH slot freeze event. This routine
765 * will query firmware for the EEH status.
767 * Note this routine is safe to call in an interrupt context.
769 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
771 unsigned long addr;
772 struct pci_dev *dev;
773 struct device_node *dn;
775 /* Finding the phys addr + pci device; this is pretty quick. */
776 addr = eeh_token_to_phys((unsigned long __force) token);
777 dev = pci_get_device_by_addr(addr);
778 if (!dev) {
779 __get_cpu_var(no_device)++;
780 return val;
783 dn = pci_device_to_OF_node(dev);
784 eeh_dn_check_failure (dn, dev);
786 pci_dev_put(dev);
787 return val;
790 EXPORT_SYMBOL(eeh_check_failure);
792 struct eeh_early_enable_info {
793 unsigned int buid_hi;
794 unsigned int buid_lo;
797 /* Enable eeh for the given device node. */
798 static void *early_enable_eeh(struct device_node *dn, void *data)
800 struct eeh_early_enable_info *info = data;
801 int ret;
802 char *status = get_property(dn, "status", NULL);
803 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
804 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
805 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
806 u32 *regs;
807 int enable;
808 struct pci_dn *pdn = PCI_DN(dn);
810 pdn->eeh_mode = 0;
812 if (status && strcmp(status, "ok") != 0)
813 return NULL; /* ignore devices with bad status */
815 /* Ignore bad nodes. */
816 if (!class_code || !vendor_id || !device_id)
817 return NULL;
819 /* There is nothing to check on PCI to ISA bridges */
820 if (dn->type && !strcmp(dn->type, "isa")) {
821 pdn->eeh_mode |= EEH_MODE_NOCHECK;
822 return NULL;
826 * Now decide if we are going to "Disable" EEH checking
827 * for this device. We still run with the EEH hardware active,
828 * but we won't be checking for ff's. This means a driver
829 * could return bad data (very bad!), an interrupt handler could
830 * hang waiting on status bits that won't change, etc.
831 * But there are a few cases like display devices that make sense.
833 enable = 1; /* i.e. we will do checking */
834 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
835 enable = 0;
837 if (!enable)
838 pdn->eeh_mode |= EEH_MODE_NOCHECK;
840 /* Ok... see if this device supports EEH. Some do, some don't,
841 * and the only way to find out is to check each and every one. */
842 regs = (u32 *)get_property(dn, "reg", NULL);
843 if (regs) {
844 /* First register entry is addr (00BBSS00) */
845 /* Try to enable eeh */
846 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
847 regs[0], info->buid_hi, info->buid_lo,
848 EEH_ENABLE);
849 if (ret == 0) {
850 eeh_subsystem_enabled = 1;
851 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
852 pdn->eeh_config_addr = regs[0];
853 #ifdef DEBUG
854 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
855 #endif
856 } else {
858 /* This device doesn't support EEH, but it may have an
859 * EEH parent, in which case we mark it as supported. */
860 if (dn->parent && PCI_DN(dn->parent)
861 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
862 /* Parent supports EEH. */
863 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
864 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
865 return NULL;
868 } else {
869 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
870 dn->full_name);
873 return NULL;
877 * Initialize EEH by trying to enable it for all of the adapters in the system.
878 * As a side effect we can determine here if eeh is supported at all.
879 * Note that we leave EEH on so failed config cycles won't cause a machine
880 * check. If a user turns off EEH for a particular adapter they are really
881 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
882 * grant access to a slot if EEH isn't enabled, and so we always enable
883 * EEH for all slots/all devices.
885 * The eeh-force-off option disables EEH checking globally, for all slots.
886 * Even if force-off is set, the EEH hardware is still enabled, so that
887 * newer systems can boot.
889 void __init eeh_init(void)
891 struct device_node *phb, *np;
892 struct eeh_early_enable_info info;
894 spin_lock_init(&confirm_error_lock);
895 spin_lock_init(&slot_errbuf_lock);
897 np = of_find_node_by_path("/rtas");
898 if (np == NULL)
899 return;
901 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
902 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
903 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
904 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
905 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
907 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
908 return;
910 eeh_error_buf_size = rtas_token("rtas-error-log-max");
911 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
912 eeh_error_buf_size = 1024;
914 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
915 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
916 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
917 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
920 /* Enable EEH for all adapters. Note that eeh requires buid's */
921 for (phb = of_find_node_by_name(NULL, "pci"); phb;
922 phb = of_find_node_by_name(phb, "pci")) {
923 unsigned long buid;
925 buid = get_phb_buid(phb);
926 if (buid == 0 || PCI_DN(phb) == NULL)
927 continue;
929 info.buid_lo = BUID_LO(buid);
930 info.buid_hi = BUID_HI(buid);
931 traverse_pci_devices(phb, early_enable_eeh, &info);
934 if (eeh_subsystem_enabled)
935 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
936 else
937 printk(KERN_WARNING "EEH: No capable adapters found\n");
941 * eeh_add_device_early - enable EEH for the indicated device_node
942 * @dn: device node for which to set up EEH
944 * This routine must be used to perform EEH initialization for PCI
945 * devices that were added after system boot (e.g. hotplug, dlpar).
946 * This routine must be called before any i/o is performed to the
947 * adapter (inluding any config-space i/o).
948 * Whether this actually enables EEH or not for this device depends
949 * on the CEC architecture, type of the device, on earlier boot
950 * command-line arguments & etc.
952 void eeh_add_device_early(struct device_node *dn)
954 struct pci_controller *phb;
955 struct eeh_early_enable_info info;
957 if (!dn || !PCI_DN(dn))
958 return;
959 phb = PCI_DN(dn)->phb;
960 if (NULL == phb || 0 == phb->buid) {
961 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
962 dn->full_name);
963 dump_stack();
964 return;
967 info.buid_hi = BUID_HI(phb->buid);
968 info.buid_lo = BUID_LO(phb->buid);
969 early_enable_eeh(dn, &info);
971 EXPORT_SYMBOL_GPL(eeh_add_device_early);
974 * eeh_add_device_late - perform EEH initialization for the indicated pci device
975 * @dev: pci device for which to set up EEH
977 * This routine must be used to complete EEH initialization for PCI
978 * devices that were added after system boot (e.g. hotplug, dlpar).
980 void eeh_add_device_late(struct pci_dev *dev)
982 struct device_node *dn;
984 if (!dev || !eeh_subsystem_enabled)
985 return;
987 #ifdef DEBUG
988 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
989 #endif
991 pci_dev_get (dev);
992 dn = pci_device_to_OF_node(dev);
993 PCI_DN(dn)->pcidev = dev;
995 pci_addr_cache_insert_device (dev);
997 EXPORT_SYMBOL_GPL(eeh_add_device_late);
1000 * eeh_remove_device - undo EEH setup for the indicated pci device
1001 * @dev: pci device to be removed
1003 * This routine should be when a device is removed from a running
1004 * system (e.g. by hotplug or dlpar).
1006 void eeh_remove_device(struct pci_dev *dev)
1008 struct device_node *dn;
1009 if (!dev || !eeh_subsystem_enabled)
1010 return;
1012 /* Unregister the device with the EEH/PCI address search system */
1013 #ifdef DEBUG
1014 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1015 #endif
1016 pci_addr_cache_remove_device(dev);
1018 dn = pci_device_to_OF_node(dev);
1019 PCI_DN(dn)->pcidev = NULL;
1020 pci_dev_put (dev);
1022 EXPORT_SYMBOL_GPL(eeh_remove_device);
1024 static int proc_eeh_show(struct seq_file *m, void *v)
1026 unsigned int cpu;
1027 unsigned long ffs = 0, positives = 0, failures = 0;
1028 unsigned long resets = 0;
1029 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
1031 for_each_cpu(cpu) {
1032 ffs += per_cpu(total_mmio_ffs, cpu);
1033 positives += per_cpu(false_positives, cpu);
1034 failures += per_cpu(ignored_failures, cpu);
1035 resets += per_cpu(slot_resets, cpu);
1036 no_dev += per_cpu(no_device, cpu);
1037 no_dn += per_cpu(no_dn, cpu);
1038 no_cfg += per_cpu(no_cfg_addr, cpu);
1039 no_check += per_cpu(ignored_check, cpu);
1042 if (0 == eeh_subsystem_enabled) {
1043 seq_printf(m, "EEH Subsystem is globally disabled\n");
1044 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
1045 } else {
1046 seq_printf(m, "EEH Subsystem is enabled\n");
1047 seq_printf(m,
1048 "no device=%ld\n"
1049 "no device node=%ld\n"
1050 "no config address=%ld\n"
1051 "check not wanted=%ld\n"
1052 "eeh_total_mmio_ffs=%ld\n"
1053 "eeh_false_positives=%ld\n"
1054 "eeh_ignored_failures=%ld\n"
1055 "eeh_slot_resets=%ld\n",
1056 no_dev, no_dn, no_cfg, no_check,
1057 ffs, positives, failures, resets);
1060 return 0;
1063 static int proc_eeh_open(struct inode *inode, struct file *file)
1065 return single_open(file, proc_eeh_show, NULL);
1068 static struct file_operations proc_eeh_operations = {
1069 .open = proc_eeh_open,
1070 .read = seq_read,
1071 .llseek = seq_lseek,
1072 .release = single_release,
1075 static int __init eeh_init_proc(void)
1077 struct proc_dir_entry *e;
1079 if (systemcfg->platform & PLATFORM_PSERIES) {
1080 e = create_proc_entry("ppc64/eeh", 0, NULL);
1081 if (e)
1082 e->proc_fops = &proc_eeh_operations;
1085 return 0;
1087 __initcall(eeh_init_proc);