4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/smp_lock.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/module.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
44 * The timezone where the local system is located. Used as a default by some
45 * programs who obtain this value by using gettimeofday.
47 struct timezone sys_tz
;
49 EXPORT_SYMBOL(sys_tz
);
51 #ifdef __ARCH_WANT_SYS_TIME
54 * sys_time() can be implemented in user-level using
55 * sys_gettimeofday(). Is this for backwards compatibility? If so,
56 * why not move it into the appropriate arch directory (for those
57 * architectures that need it).
59 asmlinkage
long sys_time(time_t __user
* tloc
)
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 asmlinkage
long sys_stime(time_t __user
*tptr
)
86 if (get_user(tv
.tv_sec
, tptr
))
91 err
= security_settime(&tv
, NULL
);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 asmlinkage
long sys_gettimeofday(struct timeval __user
*tv
, struct timezone __user
*tz
)
103 if (likely(tv
!= NULL
)) {
105 do_gettimeofday(&ktv
);
106 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
109 if (unlikely(tz
!= NULL
)) {
110 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
117 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
132 static inline void warp_clock(void)
134 write_seqlock_irq(&xtime_lock
);
135 wall_to_monotonic
.tv_sec
-= sys_tz
.tz_minuteswest
* 60;
136 xtime
.tv_sec
+= sys_tz
.tz_minuteswest
* 60;
137 time_interpolator_reset();
138 write_sequnlock_irq(&xtime_lock
);
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(struct timespec
*tv
, struct timezone
*tz
)
155 static int firsttime
= 1;
158 if (!timespec_valid(tv
))
161 error
= security_settime(tv
, tz
);
166 /* SMP safe, global irq locking makes it work. */
176 /* SMP safe, again the code in arch/foo/time.c should
177 * globally block out interrupts when it runs.
179 return do_settimeofday(tv
);
184 asmlinkage
long sys_settimeofday(struct timeval __user
*tv
,
185 struct timezone __user
*tz
)
187 struct timeval user_tv
;
188 struct timespec new_ts
;
189 struct timezone new_tz
;
192 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
194 new_ts
.tv_sec
= user_tv
.tv_sec
;
195 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
198 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
202 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
205 long pps_offset
; /* pps time offset (us) */
206 long pps_jitter
= MAXTIME
; /* time dispersion (jitter) (us) */
208 long pps_freq
; /* frequency offset (scaled ppm) */
209 long pps_stabil
= MAXFREQ
; /* frequency dispersion (scaled ppm) */
211 long pps_valid
= PPS_VALID
; /* pps signal watchdog counter */
213 int pps_shift
= PPS_SHIFT
; /* interval duration (s) (shift) */
215 long pps_jitcnt
; /* jitter limit exceeded */
216 long pps_calcnt
; /* calibration intervals */
217 long pps_errcnt
; /* calibration errors */
218 long pps_stbcnt
; /* stability limit exceeded */
220 /* hook for a loadable hardpps kernel module */
221 void (*hardpps_ptr
)(struct timeval
*);
223 /* we call this to notify the arch when the clock is being
224 * controlled. If no such arch routine, do nothing.
226 void __attribute__ ((weak
)) notify_arch_cmos_timer(void)
231 /* adjtimex mainly allows reading (and writing, if superuser) of
232 * kernel time-keeping variables. used by xntpd.
234 int do_adjtimex(struct timex
*txc
)
236 long ltemp
, mtemp
, save_adjust
;
239 /* In order to modify anything, you gotta be super-user! */
240 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
243 /* Now we validate the data before disabling interrupts */
245 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
)
246 /* singleshot must not be used with any other mode bits */
247 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
)
250 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&& (txc
->modes
& ADJ_OFFSET
))
251 /* adjustment Offset limited to +- .512 seconds */
252 if (txc
->offset
<= - MAXPHASE
|| txc
->offset
>= MAXPHASE
)
255 /* if the quartz is off by more than 10% something is VERY wrong ! */
256 if (txc
->modes
& ADJ_TICK
)
257 if (txc
->tick
< 900000/USER_HZ
||
258 txc
->tick
> 1100000/USER_HZ
)
261 write_seqlock_irq(&xtime_lock
);
262 result
= time_state
; /* mostly `TIME_OK' */
264 /* Save for later - semantics of adjtime is to return old value */
265 save_adjust
= time_next_adjust
? time_next_adjust
: time_adjust
;
267 #if 0 /* STA_CLOCKERR is never set yet */
268 time_status
&= ~STA_CLOCKERR
; /* reset STA_CLOCKERR */
270 /* If there are input parameters, then process them */
273 if (txc
->modes
& ADJ_STATUS
) /* only set allowed bits */
274 time_status
= (txc
->status
& ~STA_RONLY
) |
275 (time_status
& STA_RONLY
);
277 if (txc
->modes
& ADJ_FREQUENCY
) { /* p. 22 */
278 if (txc
->freq
> MAXFREQ
|| txc
->freq
< -MAXFREQ
) {
282 time_freq
= txc
->freq
- pps_freq
;
285 if (txc
->modes
& ADJ_MAXERROR
) {
286 if (txc
->maxerror
< 0 || txc
->maxerror
>= NTP_PHASE_LIMIT
) {
290 time_maxerror
= txc
->maxerror
;
293 if (txc
->modes
& ADJ_ESTERROR
) {
294 if (txc
->esterror
< 0 || txc
->esterror
>= NTP_PHASE_LIMIT
) {
298 time_esterror
= txc
->esterror
;
301 if (txc
->modes
& ADJ_TIMECONST
) { /* p. 24 */
302 if (txc
->constant
< 0) { /* NTP v4 uses values > 6 */
306 time_constant
= txc
->constant
;
309 if (txc
->modes
& ADJ_OFFSET
) { /* values checked earlier */
310 if (txc
->modes
== ADJ_OFFSET_SINGLESHOT
) {
311 /* adjtime() is independent from ntp_adjtime() */
312 if ((time_next_adjust
= txc
->offset
) == 0)
315 else if ( time_status
& (STA_PLL
| STA_PPSTIME
) ) {
316 ltemp
= (time_status
& (STA_PPSTIME
| STA_PPSSIGNAL
)) ==
317 (STA_PPSTIME
| STA_PPSSIGNAL
) ?
318 pps_offset
: txc
->offset
;
321 * Scale the phase adjustment and
322 * clamp to the operating range.
324 if (ltemp
> MAXPHASE
)
325 time_offset
= MAXPHASE
<< SHIFT_UPDATE
;
326 else if (ltemp
< -MAXPHASE
)
327 time_offset
= -(MAXPHASE
<< SHIFT_UPDATE
);
329 time_offset
= ltemp
<< SHIFT_UPDATE
;
332 * Select whether the frequency is to be controlled
333 * and in which mode (PLL or FLL). Clamp to the operating
334 * range. Ugly multiply/divide should be replaced someday.
337 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
338 time_reftime
= xtime
.tv_sec
;
339 mtemp
= xtime
.tv_sec
- time_reftime
;
340 time_reftime
= xtime
.tv_sec
;
341 if (time_status
& STA_FLL
) {
342 if (mtemp
>= MINSEC
) {
343 ltemp
= (time_offset
/ mtemp
) << (SHIFT_USEC
-
345 time_freq
+= shift_right(ltemp
, SHIFT_KH
);
346 } else /* calibration interval too short (p. 12) */
348 } else { /* PLL mode */
349 if (mtemp
< MAXSEC
) {
351 time_freq
+= shift_right(ltemp
,(time_constant
+
353 SHIFT_KF
- SHIFT_USEC
));
354 } else /* calibration interval too long (p. 12) */
357 time_freq
= min(time_freq
, time_tolerance
);
358 time_freq
= max(time_freq
, -time_tolerance
);
359 } /* STA_PLL || STA_PPSTIME */
360 } /* txc->modes & ADJ_OFFSET */
361 if (txc
->modes
& ADJ_TICK
) {
362 tick_usec
= txc
->tick
;
363 tick_nsec
= TICK_USEC_TO_NSEC(tick_usec
);
366 leave
: if ((time_status
& (STA_UNSYNC
|STA_CLOCKERR
)) != 0
367 || ((time_status
& (STA_PPSFREQ
|STA_PPSTIME
)) != 0
368 && (time_status
& STA_PPSSIGNAL
) == 0)
370 || ((time_status
& (STA_PPSTIME
|STA_PPSJITTER
))
371 == (STA_PPSTIME
|STA_PPSJITTER
))
373 || ((time_status
& STA_PPSFREQ
) != 0
374 && (time_status
& (STA_PPSWANDER
|STA_PPSERROR
)) != 0))
378 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
)
379 txc
->offset
= save_adjust
;
381 txc
->offset
= shift_right(time_offset
, SHIFT_UPDATE
);
383 txc
->freq
= time_freq
+ pps_freq
;
384 txc
->maxerror
= time_maxerror
;
385 txc
->esterror
= time_esterror
;
386 txc
->status
= time_status
;
387 txc
->constant
= time_constant
;
388 txc
->precision
= time_precision
;
389 txc
->tolerance
= time_tolerance
;
390 txc
->tick
= tick_usec
;
391 txc
->ppsfreq
= pps_freq
;
392 txc
->jitter
= pps_jitter
>> PPS_AVG
;
393 txc
->shift
= pps_shift
;
394 txc
->stabil
= pps_stabil
;
395 txc
->jitcnt
= pps_jitcnt
;
396 txc
->calcnt
= pps_calcnt
;
397 txc
->errcnt
= pps_errcnt
;
398 txc
->stbcnt
= pps_stbcnt
;
399 write_sequnlock_irq(&xtime_lock
);
400 do_gettimeofday(&txc
->time
);
401 notify_arch_cmos_timer();
405 asmlinkage
long sys_adjtimex(struct timex __user
*txc_p
)
407 struct timex txc
; /* Local copy of parameter */
410 /* Copy the user data space into the kernel copy
411 * structure. But bear in mind that the structures
414 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
416 ret
= do_adjtimex(&txc
);
417 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
420 inline struct timespec
current_kernel_time(void)
426 seq
= read_seqbegin(&xtime_lock
);
429 } while (read_seqretry(&xtime_lock
, seq
));
434 EXPORT_SYMBOL(current_kernel_time
);
437 * current_fs_time - Return FS time
440 * Return the current time truncated to the time granuality supported by
443 struct timespec
current_fs_time(struct super_block
*sb
)
445 struct timespec now
= current_kernel_time();
446 return timespec_trunc(now
, sb
->s_time_gran
);
448 EXPORT_SYMBOL(current_fs_time
);
451 * timespec_trunc - Truncate timespec to a granuality
453 * @gran: Granuality in ns.
455 * Truncate a timespec to a granuality. gran must be smaller than a second.
456 * Always rounds down.
458 * This function should be only used for timestamps returned by
459 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
460 * it doesn't handle the better resolution of the later.
462 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
465 * Division is pretty slow so avoid it for common cases.
466 * Currently current_kernel_time() never returns better than
467 * jiffies resolution. Exploit that.
469 if (gran
<= jiffies_to_usecs(1) * 1000) {
471 } else if (gran
== 1000000000) {
474 t
.tv_nsec
-= t
.tv_nsec
% gran
;
478 EXPORT_SYMBOL(timespec_trunc
);
480 #ifdef CONFIG_TIME_INTERPOLATION
481 void getnstimeofday (struct timespec
*tv
)
483 unsigned long seq
,sec
,nsec
;
486 seq
= read_seqbegin(&xtime_lock
);
488 nsec
= xtime
.tv_nsec
+time_interpolator_get_offset();
489 } while (unlikely(read_seqretry(&xtime_lock
, seq
)));
491 while (unlikely(nsec
>= NSEC_PER_SEC
)) {
492 nsec
-= NSEC_PER_SEC
;
498 EXPORT_SYMBOL_GPL(getnstimeofday
);
500 int do_settimeofday (struct timespec
*tv
)
502 time_t wtm_sec
, sec
= tv
->tv_sec
;
503 long wtm_nsec
, nsec
= tv
->tv_nsec
;
505 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
508 write_seqlock_irq(&xtime_lock
);
510 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
511 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
513 set_normalized_timespec(&xtime
, sec
, nsec
);
514 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
516 time_adjust
= 0; /* stop active adjtime() */
517 time_status
|= STA_UNSYNC
;
518 time_maxerror
= NTP_PHASE_LIMIT
;
519 time_esterror
= NTP_PHASE_LIMIT
;
520 time_interpolator_reset();
522 write_sequnlock_irq(&xtime_lock
);
526 EXPORT_SYMBOL(do_settimeofday
);
528 void do_gettimeofday (struct timeval
*tv
)
530 unsigned long seq
, nsec
, usec
, sec
, offset
;
532 seq
= read_seqbegin(&xtime_lock
);
533 offset
= time_interpolator_get_offset();
535 nsec
= xtime
.tv_nsec
;
536 } while (unlikely(read_seqretry(&xtime_lock
, seq
)));
538 usec
= (nsec
+ offset
) / 1000;
540 while (unlikely(usec
>= USEC_PER_SEC
)) {
541 usec
-= USEC_PER_SEC
;
549 EXPORT_SYMBOL(do_gettimeofday
);
554 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
555 * and therefore only yields usec accuracy
557 void getnstimeofday(struct timespec
*tv
)
562 tv
->tv_sec
= x
.tv_sec
;
563 tv
->tv_nsec
= x
.tv_usec
* NSEC_PER_USEC
;
565 EXPORT_SYMBOL_GPL(getnstimeofday
);
568 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
569 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
570 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
572 * [For the Julian calendar (which was used in Russia before 1917,
573 * Britain & colonies before 1752, anywhere else before 1582,
574 * and is still in use by some communities) leave out the
575 * -year/100+year/400 terms, and add 10.]
577 * This algorithm was first published by Gauss (I think).
579 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
580 * machines were long is 32-bit! (However, as time_t is signed, we
581 * will already get problems at other places on 2038-01-19 03:14:08)
584 mktime(const unsigned int year0
, const unsigned int mon0
,
585 const unsigned int day
, const unsigned int hour
,
586 const unsigned int min
, const unsigned int sec
)
588 unsigned int mon
= mon0
, year
= year0
;
590 /* 1..12 -> 11,12,1..10 */
591 if (0 >= (int) (mon
-= 2)) {
592 mon
+= 12; /* Puts Feb last since it has leap day */
596 return ((((unsigned long)
597 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
599 )*24 + hour
/* now have hours */
600 )*60 + min
/* now have minutes */
601 )*60 + sec
; /* finally seconds */
604 EXPORT_SYMBOL(mktime
);
607 * set_normalized_timespec - set timespec sec and nsec parts and normalize
609 * @ts: pointer to timespec variable to be set
610 * @sec: seconds to set
611 * @nsec: nanoseconds to set
613 * Set seconds and nanoseconds field of a timespec variable and
614 * normalize to the timespec storage format
616 * Note: The tv_nsec part is always in the range of
617 * 0 <= tv_nsec < NSEC_PER_SEC
618 * For negative values only the tv_sec field is negative !
620 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, long nsec
)
622 while (nsec
>= NSEC_PER_SEC
) {
623 nsec
-= NSEC_PER_SEC
;
627 nsec
+= NSEC_PER_SEC
;
635 * ns_to_timespec - Convert nanoseconds to timespec
636 * @nsec: the nanoseconds value to be converted
638 * Returns the timespec representation of the nsec parameter.
640 inline struct timespec
ns_to_timespec(const nsec_t nsec
)
645 ts
.tv_sec
= div_long_long_rem_signed(nsec
, NSEC_PER_SEC
,
648 ts
.tv_sec
= ts
.tv_nsec
= 0;
654 * ns_to_timeval - Convert nanoseconds to timeval
655 * @nsec: the nanoseconds value to be converted
657 * Returns the timeval representation of the nsec parameter.
659 struct timeval
ns_to_timeval(const nsec_t nsec
)
661 struct timespec ts
= ns_to_timespec(nsec
);
664 tv
.tv_sec
= ts
.tv_sec
;
665 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
670 #if (BITS_PER_LONG < 64)
671 u64
get_jiffies_64(void)
677 seq
= read_seqbegin(&xtime_lock
);
679 } while (read_seqretry(&xtime_lock
, seq
));
683 EXPORT_SYMBOL(get_jiffies_64
);
686 EXPORT_SYMBOL(jiffies
);