intel-iommu: Set a more specific taint flag for invalid BIOS DMAR tables
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / dmar.c
blobf4c51709d132db8fbd0316a257d1d603e3af0277
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
39 #define PREFIX "DMAR: "
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
45 LIST_HEAD(dmar_drhd_units);
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
95 path ++;
96 count --;
97 bus = pdev->subordinate;
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
115 *dev = pdev;
116 return 0;
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
137 start += scope->length;
139 if (*cnt == 0)
140 return 0;
142 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
143 if (!*devices)
144 return -ENOMEM;
146 start = tmp;
147 index = 0;
148 while (start < end) {
149 scope = start;
150 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
151 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
152 ret = dmar_parse_one_dev_scope(scope,
153 &(*devices)[index], segment);
154 if (ret) {
155 kfree(*devices);
156 return ret;
158 index ++;
160 start += scope->length;
163 return 0;
167 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
168 * structure which uniquely represent one DMA remapping hardware unit
169 * present in the platform
171 static int __init
172 dmar_parse_one_drhd(struct acpi_dmar_header *header)
174 struct acpi_dmar_hardware_unit *drhd;
175 struct dmar_drhd_unit *dmaru;
176 int ret = 0;
178 drhd = (struct acpi_dmar_hardware_unit *)header;
179 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
180 if (!dmaru)
181 return -ENOMEM;
183 dmaru->hdr = header;
184 dmaru->reg_base_addr = drhd->address;
185 dmaru->segment = drhd->segment;
186 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
188 ret = alloc_iommu(dmaru);
189 if (ret) {
190 kfree(dmaru);
191 return ret;
193 dmar_register_drhd_unit(dmaru);
194 return 0;
197 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
199 struct acpi_dmar_hardware_unit *drhd;
200 int ret = 0;
202 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
204 if (dmaru->include_all)
205 return 0;
207 ret = dmar_parse_dev_scope((void *)(drhd + 1),
208 ((void *)drhd) + drhd->header.length,
209 &dmaru->devices_cnt, &dmaru->devices,
210 drhd->segment);
211 if (ret) {
212 list_del(&dmaru->list);
213 kfree(dmaru);
215 return ret;
218 #ifdef CONFIG_DMAR
219 LIST_HEAD(dmar_rmrr_units);
221 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
223 list_add(&rmrr->list, &dmar_rmrr_units);
227 static int __init
228 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
230 struct acpi_dmar_reserved_memory *rmrr;
231 struct dmar_rmrr_unit *rmrru;
233 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
234 if (!rmrru)
235 return -ENOMEM;
237 rmrru->hdr = header;
238 rmrr = (struct acpi_dmar_reserved_memory *)header;
239 rmrru->base_address = rmrr->base_address;
240 rmrru->end_address = rmrr->end_address;
242 dmar_register_rmrr_unit(rmrru);
243 return 0;
246 static int __init
247 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
249 struct acpi_dmar_reserved_memory *rmrr;
250 int ret;
252 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
253 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
254 ((void *)rmrr) + rmrr->header.length,
255 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
257 if (ret || (rmrru->devices_cnt == 0)) {
258 list_del(&rmrru->list);
259 kfree(rmrru);
261 return ret;
264 static LIST_HEAD(dmar_atsr_units);
266 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
268 struct acpi_dmar_atsr *atsr;
269 struct dmar_atsr_unit *atsru;
271 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
272 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
273 if (!atsru)
274 return -ENOMEM;
276 atsru->hdr = hdr;
277 atsru->include_all = atsr->flags & 0x1;
279 list_add(&atsru->list, &dmar_atsr_units);
281 return 0;
284 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
286 int rc;
287 struct acpi_dmar_atsr *atsr;
289 if (atsru->include_all)
290 return 0;
292 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
293 rc = dmar_parse_dev_scope((void *)(atsr + 1),
294 (void *)atsr + atsr->header.length,
295 &atsru->devices_cnt, &atsru->devices,
296 atsr->segment);
297 if (rc || !atsru->devices_cnt) {
298 list_del(&atsru->list);
299 kfree(atsru);
302 return rc;
305 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
307 int i;
308 struct pci_bus *bus;
309 struct acpi_dmar_atsr *atsr;
310 struct dmar_atsr_unit *atsru;
312 dev = pci_physfn(dev);
314 list_for_each_entry(atsru, &dmar_atsr_units, list) {
315 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
316 if (atsr->segment == pci_domain_nr(dev->bus))
317 goto found;
320 return 0;
322 found:
323 for (bus = dev->bus; bus; bus = bus->parent) {
324 struct pci_dev *bridge = bus->self;
326 if (!bridge || !pci_is_pcie(bridge) ||
327 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
328 return 0;
330 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
331 for (i = 0; i < atsru->devices_cnt; i++)
332 if (atsru->devices[i] == bridge)
333 return 1;
334 break;
338 if (atsru->include_all)
339 return 1;
341 return 0;
343 #endif
345 #ifdef CONFIG_ACPI_NUMA
346 static int __init
347 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
349 struct acpi_dmar_rhsa *rhsa;
350 struct dmar_drhd_unit *drhd;
352 rhsa = (struct acpi_dmar_rhsa *)header;
353 for_each_drhd_unit(drhd) {
354 if (drhd->reg_base_addr == rhsa->base_address) {
355 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
357 if (!node_online(node))
358 node = -1;
359 drhd->iommu->node = node;
360 return 0;
363 WARN_TAINT(
364 1, TAINT_FIRMWARE_WORKAROUND,
365 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
366 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
367 drhd->reg_base_addr,
368 dmi_get_system_info(DMI_BIOS_VENDOR),
369 dmi_get_system_info(DMI_BIOS_VERSION),
370 dmi_get_system_info(DMI_PRODUCT_VERSION));
372 return 0;
374 #endif
376 static void __init
377 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
379 struct acpi_dmar_hardware_unit *drhd;
380 struct acpi_dmar_reserved_memory *rmrr;
381 struct acpi_dmar_atsr *atsr;
382 struct acpi_dmar_rhsa *rhsa;
384 switch (header->type) {
385 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
386 drhd = container_of(header, struct acpi_dmar_hardware_unit,
387 header);
388 printk (KERN_INFO PREFIX
389 "DRHD base: %#016Lx flags: %#x\n",
390 (unsigned long long)drhd->address, drhd->flags);
391 break;
392 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
393 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
394 header);
395 printk (KERN_INFO PREFIX
396 "RMRR base: %#016Lx end: %#016Lx\n",
397 (unsigned long long)rmrr->base_address,
398 (unsigned long long)rmrr->end_address);
399 break;
400 case ACPI_DMAR_TYPE_ATSR:
401 atsr = container_of(header, struct acpi_dmar_atsr, header);
402 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
403 break;
404 case ACPI_DMAR_HARDWARE_AFFINITY:
405 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
406 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
407 (unsigned long long)rhsa->base_address,
408 rhsa->proximity_domain);
409 break;
414 * dmar_table_detect - checks to see if the platform supports DMAR devices
416 static int __init dmar_table_detect(void)
418 acpi_status status = AE_OK;
420 /* if we could find DMAR table, then there are DMAR devices */
421 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
422 (struct acpi_table_header **)&dmar_tbl,
423 &dmar_tbl_size);
425 if (ACPI_SUCCESS(status) && !dmar_tbl) {
426 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
427 status = AE_NOT_FOUND;
430 return (ACPI_SUCCESS(status) ? 1 : 0);
434 * parse_dmar_table - parses the DMA reporting table
436 static int __init
437 parse_dmar_table(void)
439 struct acpi_table_dmar *dmar;
440 struct acpi_dmar_header *entry_header;
441 int ret = 0;
444 * Do it again, earlier dmar_tbl mapping could be mapped with
445 * fixed map.
447 dmar_table_detect();
450 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
451 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
453 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
455 dmar = (struct acpi_table_dmar *)dmar_tbl;
456 if (!dmar)
457 return -ENODEV;
459 if (dmar->width < PAGE_SHIFT - 1) {
460 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
461 return -EINVAL;
464 printk (KERN_INFO PREFIX "Host address width %d\n",
465 dmar->width + 1);
467 entry_header = (struct acpi_dmar_header *)(dmar + 1);
468 while (((unsigned long)entry_header) <
469 (((unsigned long)dmar) + dmar_tbl->length)) {
470 /* Avoid looping forever on bad ACPI tables */
471 if (entry_header->length == 0) {
472 printk(KERN_WARNING PREFIX
473 "Invalid 0-length structure\n");
474 ret = -EINVAL;
475 break;
478 dmar_table_print_dmar_entry(entry_header);
480 switch (entry_header->type) {
481 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
482 ret = dmar_parse_one_drhd(entry_header);
483 break;
484 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
485 #ifdef CONFIG_DMAR
486 ret = dmar_parse_one_rmrr(entry_header);
487 #endif
488 break;
489 case ACPI_DMAR_TYPE_ATSR:
490 #ifdef CONFIG_DMAR
491 ret = dmar_parse_one_atsr(entry_header);
492 #endif
493 break;
494 case ACPI_DMAR_HARDWARE_AFFINITY:
495 #ifdef CONFIG_ACPI_NUMA
496 ret = dmar_parse_one_rhsa(entry_header);
497 #endif
498 break;
499 default:
500 printk(KERN_WARNING PREFIX
501 "Unknown DMAR structure type %d\n",
502 entry_header->type);
503 ret = 0; /* for forward compatibility */
504 break;
506 if (ret)
507 break;
509 entry_header = ((void *)entry_header + entry_header->length);
511 return ret;
514 static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
515 struct pci_dev *dev)
517 int index;
519 while (dev) {
520 for (index = 0; index < cnt; index++)
521 if (dev == devices[index])
522 return 1;
524 /* Check our parent */
525 dev = dev->bus->self;
528 return 0;
531 struct dmar_drhd_unit *
532 dmar_find_matched_drhd_unit(struct pci_dev *dev)
534 struct dmar_drhd_unit *dmaru = NULL;
535 struct acpi_dmar_hardware_unit *drhd;
537 dev = pci_physfn(dev);
539 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
540 drhd = container_of(dmaru->hdr,
541 struct acpi_dmar_hardware_unit,
542 header);
544 if (dmaru->include_all &&
545 drhd->segment == pci_domain_nr(dev->bus))
546 return dmaru;
548 if (dmar_pci_device_match(dmaru->devices,
549 dmaru->devices_cnt, dev))
550 return dmaru;
553 return NULL;
556 int __init dmar_dev_scope_init(void)
558 struct dmar_drhd_unit *drhd, *drhd_n;
559 int ret = -ENODEV;
561 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
562 ret = dmar_parse_dev(drhd);
563 if (ret)
564 return ret;
567 #ifdef CONFIG_DMAR
569 struct dmar_rmrr_unit *rmrr, *rmrr_n;
570 struct dmar_atsr_unit *atsr, *atsr_n;
572 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
573 ret = rmrr_parse_dev(rmrr);
574 if (ret)
575 return ret;
578 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
579 ret = atsr_parse_dev(atsr);
580 if (ret)
581 return ret;
584 #endif
586 return ret;
590 int __init dmar_table_init(void)
592 static int dmar_table_initialized;
593 int ret;
595 if (dmar_table_initialized)
596 return 0;
598 dmar_table_initialized = 1;
600 ret = parse_dmar_table();
601 if (ret) {
602 if (ret != -ENODEV)
603 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
604 return ret;
607 if (list_empty(&dmar_drhd_units)) {
608 printk(KERN_INFO PREFIX "No DMAR devices found\n");
609 return -ENODEV;
612 #ifdef CONFIG_DMAR
613 if (list_empty(&dmar_rmrr_units))
614 printk(KERN_INFO PREFIX "No RMRR found\n");
616 if (list_empty(&dmar_atsr_units))
617 printk(KERN_INFO PREFIX "No ATSR found\n");
618 #endif
620 return 0;
623 static void warn_invalid_dmar(u64 addr, const char *message)
625 WARN_TAINT_ONCE(
626 1, TAINT_FIRMWARE_WORKAROUND,
627 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
628 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
629 addr, message,
630 dmi_get_system_info(DMI_BIOS_VENDOR),
631 dmi_get_system_info(DMI_BIOS_VERSION),
632 dmi_get_system_info(DMI_PRODUCT_VERSION));
635 int __init check_zero_address(void)
637 struct acpi_table_dmar *dmar;
638 struct acpi_dmar_header *entry_header;
639 struct acpi_dmar_hardware_unit *drhd;
641 dmar = (struct acpi_table_dmar *)dmar_tbl;
642 entry_header = (struct acpi_dmar_header *)(dmar + 1);
644 while (((unsigned long)entry_header) <
645 (((unsigned long)dmar) + dmar_tbl->length)) {
646 /* Avoid looping forever on bad ACPI tables */
647 if (entry_header->length == 0) {
648 printk(KERN_WARNING PREFIX
649 "Invalid 0-length structure\n");
650 return 0;
653 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
654 void __iomem *addr;
655 u64 cap, ecap;
657 drhd = (void *)entry_header;
658 if (!drhd->address) {
659 warn_invalid_dmar(0, "");
660 goto failed;
663 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
664 if (!addr ) {
665 printk("IOMMU: can't validate: %llx\n", drhd->address);
666 goto failed;
668 cap = dmar_readq(addr + DMAR_CAP_REG);
669 ecap = dmar_readq(addr + DMAR_ECAP_REG);
670 early_iounmap(addr, VTD_PAGE_SIZE);
671 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
672 warn_invalid_dmar(drhd->address,
673 " returns all ones");
674 goto failed;
678 entry_header = ((void *)entry_header + entry_header->length);
680 return 1;
682 failed:
683 #ifdef CONFIG_DMAR
684 dmar_disabled = 1;
685 #endif
686 return 0;
689 void __init detect_intel_iommu(void)
691 int ret;
693 ret = dmar_table_detect();
694 if (ret)
695 ret = check_zero_address();
697 #ifdef CONFIG_INTR_REMAP
698 struct acpi_table_dmar *dmar;
700 * for now we will disable dma-remapping when interrupt
701 * remapping is enabled.
702 * When support for queued invalidation for IOTLB invalidation
703 * is added, we will not need this any more.
705 dmar = (struct acpi_table_dmar *) dmar_tbl;
706 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
707 printk(KERN_INFO
708 "Queued invalidation will be enabled to support "
709 "x2apic and Intr-remapping.\n");
710 #endif
711 #ifdef CONFIG_DMAR
712 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
713 iommu_detected = 1;
714 /* Make sure ACS will be enabled */
715 pci_request_acs();
717 #endif
718 #ifdef CONFIG_X86
719 if (ret)
720 x86_init.iommu.iommu_init = intel_iommu_init;
721 #endif
723 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
724 dmar_tbl = NULL;
728 int alloc_iommu(struct dmar_drhd_unit *drhd)
730 struct intel_iommu *iommu;
731 int map_size;
732 u32 ver;
733 static int iommu_allocated = 0;
734 int agaw = 0;
735 int msagaw = 0;
737 if (!drhd->reg_base_addr) {
738 warn_invalid_dmar(0, "");
739 return -EINVAL;
742 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
743 if (!iommu)
744 return -ENOMEM;
746 iommu->seq_id = iommu_allocated++;
747 sprintf (iommu->name, "dmar%d", iommu->seq_id);
749 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
750 if (!iommu->reg) {
751 printk(KERN_ERR "IOMMU: can't map the region\n");
752 goto error;
754 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
755 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
757 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
758 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
759 goto err_unmap;
762 #ifdef CONFIG_DMAR
763 agaw = iommu_calculate_agaw(iommu);
764 if (agaw < 0) {
765 printk(KERN_ERR
766 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
767 iommu->seq_id);
768 goto err_unmap;
770 msagaw = iommu_calculate_max_sagaw(iommu);
771 if (msagaw < 0) {
772 printk(KERN_ERR
773 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
774 iommu->seq_id);
775 goto err_unmap;
777 #endif
778 iommu->agaw = agaw;
779 iommu->msagaw = msagaw;
781 iommu->node = -1;
783 /* the registers might be more than one page */
784 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
785 cap_max_fault_reg_offset(iommu->cap));
786 map_size = VTD_PAGE_ALIGN(map_size);
787 if (map_size > VTD_PAGE_SIZE) {
788 iounmap(iommu->reg);
789 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
790 if (!iommu->reg) {
791 printk(KERN_ERR "IOMMU: can't map the region\n");
792 goto error;
796 ver = readl(iommu->reg + DMAR_VER_REG);
797 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
798 iommu->seq_id,
799 (unsigned long long)drhd->reg_base_addr,
800 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
801 (unsigned long long)iommu->cap,
802 (unsigned long long)iommu->ecap);
804 spin_lock_init(&iommu->register_lock);
806 drhd->iommu = iommu;
807 return 0;
809 err_unmap:
810 iounmap(iommu->reg);
811 error:
812 kfree(iommu);
813 return -1;
816 void free_iommu(struct intel_iommu *iommu)
818 if (!iommu)
819 return;
821 #ifdef CONFIG_DMAR
822 free_dmar_iommu(iommu);
823 #endif
825 if (iommu->reg)
826 iounmap(iommu->reg);
827 kfree(iommu);
831 * Reclaim all the submitted descriptors which have completed its work.
833 static inline void reclaim_free_desc(struct q_inval *qi)
835 while (qi->desc_status[qi->free_tail] == QI_DONE ||
836 qi->desc_status[qi->free_tail] == QI_ABORT) {
837 qi->desc_status[qi->free_tail] = QI_FREE;
838 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
839 qi->free_cnt++;
843 static int qi_check_fault(struct intel_iommu *iommu, int index)
845 u32 fault;
846 int head, tail;
847 struct q_inval *qi = iommu->qi;
848 int wait_index = (index + 1) % QI_LENGTH;
850 if (qi->desc_status[wait_index] == QI_ABORT)
851 return -EAGAIN;
853 fault = readl(iommu->reg + DMAR_FSTS_REG);
856 * If IQE happens, the head points to the descriptor associated
857 * with the error. No new descriptors are fetched until the IQE
858 * is cleared.
860 if (fault & DMA_FSTS_IQE) {
861 head = readl(iommu->reg + DMAR_IQH_REG);
862 if ((head >> DMAR_IQ_SHIFT) == index) {
863 printk(KERN_ERR "VT-d detected invalid descriptor: "
864 "low=%llx, high=%llx\n",
865 (unsigned long long)qi->desc[index].low,
866 (unsigned long long)qi->desc[index].high);
867 memcpy(&qi->desc[index], &qi->desc[wait_index],
868 sizeof(struct qi_desc));
869 __iommu_flush_cache(iommu, &qi->desc[index],
870 sizeof(struct qi_desc));
871 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
872 return -EINVAL;
877 * If ITE happens, all pending wait_desc commands are aborted.
878 * No new descriptors are fetched until the ITE is cleared.
880 if (fault & DMA_FSTS_ITE) {
881 head = readl(iommu->reg + DMAR_IQH_REG);
882 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
883 head |= 1;
884 tail = readl(iommu->reg + DMAR_IQT_REG);
885 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
887 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
889 do {
890 if (qi->desc_status[head] == QI_IN_USE)
891 qi->desc_status[head] = QI_ABORT;
892 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
893 } while (head != tail);
895 if (qi->desc_status[wait_index] == QI_ABORT)
896 return -EAGAIN;
899 if (fault & DMA_FSTS_ICE)
900 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
902 return 0;
906 * Submit the queued invalidation descriptor to the remapping
907 * hardware unit and wait for its completion.
909 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
911 int rc;
912 struct q_inval *qi = iommu->qi;
913 struct qi_desc *hw, wait_desc;
914 int wait_index, index;
915 unsigned long flags;
917 if (!qi)
918 return 0;
920 hw = qi->desc;
922 restart:
923 rc = 0;
925 spin_lock_irqsave(&qi->q_lock, flags);
926 while (qi->free_cnt < 3) {
927 spin_unlock_irqrestore(&qi->q_lock, flags);
928 cpu_relax();
929 spin_lock_irqsave(&qi->q_lock, flags);
932 index = qi->free_head;
933 wait_index = (index + 1) % QI_LENGTH;
935 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
937 hw[index] = *desc;
939 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
940 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
941 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
943 hw[wait_index] = wait_desc;
945 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
946 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
948 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
949 qi->free_cnt -= 2;
952 * update the HW tail register indicating the presence of
953 * new descriptors.
955 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
957 while (qi->desc_status[wait_index] != QI_DONE) {
959 * We will leave the interrupts disabled, to prevent interrupt
960 * context to queue another cmd while a cmd is already submitted
961 * and waiting for completion on this cpu. This is to avoid
962 * a deadlock where the interrupt context can wait indefinitely
963 * for free slots in the queue.
965 rc = qi_check_fault(iommu, index);
966 if (rc)
967 break;
969 spin_unlock(&qi->q_lock);
970 cpu_relax();
971 spin_lock(&qi->q_lock);
974 qi->desc_status[index] = QI_DONE;
976 reclaim_free_desc(qi);
977 spin_unlock_irqrestore(&qi->q_lock, flags);
979 if (rc == -EAGAIN)
980 goto restart;
982 return rc;
986 * Flush the global interrupt entry cache.
988 void qi_global_iec(struct intel_iommu *iommu)
990 struct qi_desc desc;
992 desc.low = QI_IEC_TYPE;
993 desc.high = 0;
995 /* should never fail */
996 qi_submit_sync(&desc, iommu);
999 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1000 u64 type)
1002 struct qi_desc desc;
1004 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1005 | QI_CC_GRAN(type) | QI_CC_TYPE;
1006 desc.high = 0;
1008 qi_submit_sync(&desc, iommu);
1011 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1012 unsigned int size_order, u64 type)
1014 u8 dw = 0, dr = 0;
1016 struct qi_desc desc;
1017 int ih = 0;
1019 if (cap_write_drain(iommu->cap))
1020 dw = 1;
1022 if (cap_read_drain(iommu->cap))
1023 dr = 1;
1025 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1026 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1027 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1028 | QI_IOTLB_AM(size_order);
1030 qi_submit_sync(&desc, iommu);
1033 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1034 u64 addr, unsigned mask)
1036 struct qi_desc desc;
1038 if (mask) {
1039 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1040 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1041 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1042 } else
1043 desc.high = QI_DEV_IOTLB_ADDR(addr);
1045 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1046 qdep = 0;
1048 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1049 QI_DIOTLB_TYPE;
1051 qi_submit_sync(&desc, iommu);
1055 * Disable Queued Invalidation interface.
1057 void dmar_disable_qi(struct intel_iommu *iommu)
1059 unsigned long flags;
1060 u32 sts;
1061 cycles_t start_time = get_cycles();
1063 if (!ecap_qis(iommu->ecap))
1064 return;
1066 spin_lock_irqsave(&iommu->register_lock, flags);
1068 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1069 if (!(sts & DMA_GSTS_QIES))
1070 goto end;
1073 * Give a chance to HW to complete the pending invalidation requests.
1075 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1076 readl(iommu->reg + DMAR_IQH_REG)) &&
1077 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1078 cpu_relax();
1080 iommu->gcmd &= ~DMA_GCMD_QIE;
1081 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1083 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1084 !(sts & DMA_GSTS_QIES), sts);
1085 end:
1086 spin_unlock_irqrestore(&iommu->register_lock, flags);
1090 * Enable queued invalidation.
1092 static void __dmar_enable_qi(struct intel_iommu *iommu)
1094 u32 sts;
1095 unsigned long flags;
1096 struct q_inval *qi = iommu->qi;
1098 qi->free_head = qi->free_tail = 0;
1099 qi->free_cnt = QI_LENGTH;
1101 spin_lock_irqsave(&iommu->register_lock, flags);
1103 /* write zero to the tail reg */
1104 writel(0, iommu->reg + DMAR_IQT_REG);
1106 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1108 iommu->gcmd |= DMA_GCMD_QIE;
1109 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1111 /* Make sure hardware complete it */
1112 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1114 spin_unlock_irqrestore(&iommu->register_lock, flags);
1118 * Enable Queued Invalidation interface. This is a must to support
1119 * interrupt-remapping. Also used by DMA-remapping, which replaces
1120 * register based IOTLB invalidation.
1122 int dmar_enable_qi(struct intel_iommu *iommu)
1124 struct q_inval *qi;
1125 struct page *desc_page;
1127 if (!ecap_qis(iommu->ecap))
1128 return -ENOENT;
1131 * queued invalidation is already setup and enabled.
1133 if (iommu->qi)
1134 return 0;
1136 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1137 if (!iommu->qi)
1138 return -ENOMEM;
1140 qi = iommu->qi;
1143 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1144 if (!desc_page) {
1145 kfree(qi);
1146 iommu->qi = 0;
1147 return -ENOMEM;
1150 qi->desc = page_address(desc_page);
1152 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1153 if (!qi->desc_status) {
1154 free_page((unsigned long) qi->desc);
1155 kfree(qi);
1156 iommu->qi = 0;
1157 return -ENOMEM;
1160 qi->free_head = qi->free_tail = 0;
1161 qi->free_cnt = QI_LENGTH;
1163 spin_lock_init(&qi->q_lock);
1165 __dmar_enable_qi(iommu);
1167 return 0;
1170 /* iommu interrupt handling. Most stuff are MSI-like. */
1172 enum faulttype {
1173 DMA_REMAP,
1174 INTR_REMAP,
1175 UNKNOWN,
1178 static const char *dma_remap_fault_reasons[] =
1180 "Software",
1181 "Present bit in root entry is clear",
1182 "Present bit in context entry is clear",
1183 "Invalid context entry",
1184 "Access beyond MGAW",
1185 "PTE Write access is not set",
1186 "PTE Read access is not set",
1187 "Next page table ptr is invalid",
1188 "Root table address invalid",
1189 "Context table ptr is invalid",
1190 "non-zero reserved fields in RTP",
1191 "non-zero reserved fields in CTP",
1192 "non-zero reserved fields in PTE",
1195 static const char *intr_remap_fault_reasons[] =
1197 "Detected reserved fields in the decoded interrupt-remapped request",
1198 "Interrupt index exceeded the interrupt-remapping table size",
1199 "Present field in the IRTE entry is clear",
1200 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1201 "Detected reserved fields in the IRTE entry",
1202 "Blocked a compatibility format interrupt request",
1203 "Blocked an interrupt request due to source-id verification failure",
1206 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1208 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1210 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1211 ARRAY_SIZE(intr_remap_fault_reasons))) {
1212 *fault_type = INTR_REMAP;
1213 return intr_remap_fault_reasons[fault_reason - 0x20];
1214 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1215 *fault_type = DMA_REMAP;
1216 return dma_remap_fault_reasons[fault_reason];
1217 } else {
1218 *fault_type = UNKNOWN;
1219 return "Unknown";
1223 void dmar_msi_unmask(unsigned int irq)
1225 struct intel_iommu *iommu = get_irq_data(irq);
1226 unsigned long flag;
1228 /* unmask it */
1229 spin_lock_irqsave(&iommu->register_lock, flag);
1230 writel(0, iommu->reg + DMAR_FECTL_REG);
1231 /* Read a reg to force flush the post write */
1232 readl(iommu->reg + DMAR_FECTL_REG);
1233 spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 void dmar_msi_mask(unsigned int irq)
1238 unsigned long flag;
1239 struct intel_iommu *iommu = get_irq_data(irq);
1241 /* mask it */
1242 spin_lock_irqsave(&iommu->register_lock, flag);
1243 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1244 /* Read a reg to force flush the post write */
1245 readl(iommu->reg + DMAR_FECTL_REG);
1246 spin_unlock_irqrestore(&iommu->register_lock, flag);
1249 void dmar_msi_write(int irq, struct msi_msg *msg)
1251 struct intel_iommu *iommu = get_irq_data(irq);
1252 unsigned long flag;
1254 spin_lock_irqsave(&iommu->register_lock, flag);
1255 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1256 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1257 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1258 spin_unlock_irqrestore(&iommu->register_lock, flag);
1261 void dmar_msi_read(int irq, struct msi_msg *msg)
1263 struct intel_iommu *iommu = get_irq_data(irq);
1264 unsigned long flag;
1266 spin_lock_irqsave(&iommu->register_lock, flag);
1267 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1268 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1269 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1270 spin_unlock_irqrestore(&iommu->register_lock, flag);
1273 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1274 u8 fault_reason, u16 source_id, unsigned long long addr)
1276 const char *reason;
1277 int fault_type;
1279 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1281 if (fault_type == INTR_REMAP)
1282 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1283 "fault index %llx\n"
1284 "INTR-REMAP:[fault reason %02d] %s\n",
1285 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1286 PCI_FUNC(source_id & 0xFF), addr >> 48,
1287 fault_reason, reason);
1288 else
1289 printk(KERN_ERR
1290 "DMAR:[%s] Request device [%02x:%02x.%d] "
1291 "fault addr %llx \n"
1292 "DMAR:[fault reason %02d] %s\n",
1293 (type ? "DMA Read" : "DMA Write"),
1294 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1295 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1296 return 0;
1299 #define PRIMARY_FAULT_REG_LEN (16)
1300 irqreturn_t dmar_fault(int irq, void *dev_id)
1302 struct intel_iommu *iommu = dev_id;
1303 int reg, fault_index;
1304 u32 fault_status;
1305 unsigned long flag;
1307 spin_lock_irqsave(&iommu->register_lock, flag);
1308 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1309 if (fault_status)
1310 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1311 fault_status);
1313 /* TBD: ignore advanced fault log currently */
1314 if (!(fault_status & DMA_FSTS_PPF))
1315 goto clear_rest;
1317 fault_index = dma_fsts_fault_record_index(fault_status);
1318 reg = cap_fault_reg_offset(iommu->cap);
1319 while (1) {
1320 u8 fault_reason;
1321 u16 source_id;
1322 u64 guest_addr;
1323 int type;
1324 u32 data;
1326 /* highest 32 bits */
1327 data = readl(iommu->reg + reg +
1328 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1329 if (!(data & DMA_FRCD_F))
1330 break;
1332 fault_reason = dma_frcd_fault_reason(data);
1333 type = dma_frcd_type(data);
1335 data = readl(iommu->reg + reg +
1336 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1337 source_id = dma_frcd_source_id(data);
1339 guest_addr = dmar_readq(iommu->reg + reg +
1340 fault_index * PRIMARY_FAULT_REG_LEN);
1341 guest_addr = dma_frcd_page_addr(guest_addr);
1342 /* clear the fault */
1343 writel(DMA_FRCD_F, iommu->reg + reg +
1344 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1346 spin_unlock_irqrestore(&iommu->register_lock, flag);
1348 dmar_fault_do_one(iommu, type, fault_reason,
1349 source_id, guest_addr);
1351 fault_index++;
1352 if (fault_index >= cap_num_fault_regs(iommu->cap))
1353 fault_index = 0;
1354 spin_lock_irqsave(&iommu->register_lock, flag);
1356 clear_rest:
1357 /* clear all the other faults */
1358 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1359 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1361 spin_unlock_irqrestore(&iommu->register_lock, flag);
1362 return IRQ_HANDLED;
1365 int dmar_set_interrupt(struct intel_iommu *iommu)
1367 int irq, ret;
1370 * Check if the fault interrupt is already initialized.
1372 if (iommu->irq)
1373 return 0;
1375 irq = create_irq();
1376 if (!irq) {
1377 printk(KERN_ERR "IOMMU: no free vectors\n");
1378 return -EINVAL;
1381 set_irq_data(irq, iommu);
1382 iommu->irq = irq;
1384 ret = arch_setup_dmar_msi(irq);
1385 if (ret) {
1386 set_irq_data(irq, NULL);
1387 iommu->irq = 0;
1388 destroy_irq(irq);
1389 return ret;
1392 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1393 if (ret)
1394 printk(KERN_ERR "IOMMU: can't request irq\n");
1395 return ret;
1398 int __init enable_drhd_fault_handling(void)
1400 struct dmar_drhd_unit *drhd;
1403 * Enable fault control interrupt.
1405 for_each_drhd_unit(drhd) {
1406 int ret;
1407 struct intel_iommu *iommu = drhd->iommu;
1408 ret = dmar_set_interrupt(iommu);
1410 if (ret) {
1411 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1412 " interrupt, ret %d\n",
1413 (unsigned long long)drhd->reg_base_addr, ret);
1414 return -1;
1418 return 0;
1422 * Re-enable Queued Invalidation interface.
1424 int dmar_reenable_qi(struct intel_iommu *iommu)
1426 if (!ecap_qis(iommu->ecap))
1427 return -ENOENT;
1429 if (!iommu->qi)
1430 return -ENOENT;
1433 * First disable queued invalidation.
1435 dmar_disable_qi(iommu);
1437 * Then enable queued invalidation again. Since there is no pending
1438 * invalidation requests now, it's safe to re-enable queued
1439 * invalidation.
1441 __dmar_enable_qi(iommu);
1443 return 0;
1447 * Check interrupt remapping support in DMAR table description.
1449 int __init dmar_ir_support(void)
1451 struct acpi_table_dmar *dmar;
1452 dmar = (struct acpi_table_dmar *)dmar_tbl;
1453 if (!dmar)
1454 return 0;
1455 return dmar->flags & 0x1;