x86-64, NUMA: Unify the rest of memblk registration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / numa_64.c
blob748c6b5bff6d5b484743cef437af2dfd696e1fee
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/memblock.h>
11 #include <linux/mmzone.h>
12 #include <linux/ctype.h>
13 #include <linux/module.h>
14 #include <linux/nodemask.h>
15 #include <linux/sched.h>
16 #include <linux/acpi.h>
18 #include <asm/e820.h>
19 #include <asm/proto.h>
20 #include <asm/dma.h>
21 #include <asm/numa.h>
22 #include <asm/acpi.h>
23 #include <asm/amd_nb.h>
25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
26 EXPORT_SYMBOL(node_data);
28 nodemask_t cpu_nodes_parsed __initdata;
29 nodemask_t mem_nodes_parsed __initdata;
31 struct memnode memnode;
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
36 static int num_node_memblks __initdata;
37 static struct bootnode node_memblk_range[NR_NODE_MEMBLKS] __initdata;
38 static int memblk_nodeid[NR_NODE_MEMBLKS] __initdata;
40 struct bootnode numa_nodes[MAX_NUMNODES] __initdata;
43 * Given a shift value, try to populate memnodemap[]
44 * Returns :
45 * 1 if OK
46 * 0 if memnodmap[] too small (of shift too small)
47 * -1 if node overlap or lost ram (shift too big)
49 static int __init populate_memnodemap(const struct bootnode *nodes,
50 int numnodes, int shift, int *nodeids)
52 unsigned long addr, end;
53 int i, res = -1;
55 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
56 for (i = 0; i < numnodes; i++) {
57 addr = nodes[i].start;
58 end = nodes[i].end;
59 if (addr >= end)
60 continue;
61 if ((end >> shift) >= memnodemapsize)
62 return 0;
63 do {
64 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
65 return -1;
67 if (!nodeids)
68 memnodemap[addr >> shift] = i;
69 else
70 memnodemap[addr >> shift] = nodeids[i];
72 addr += (1UL << shift);
73 } while (addr < end);
74 res = 1;
76 return res;
79 static int __init allocate_cachealigned_memnodemap(void)
81 unsigned long addr;
83 memnodemap = memnode.embedded_map;
84 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
85 return 0;
87 addr = 0x8000;
88 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
89 nodemap_addr = memblock_find_in_range(addr, get_max_mapped(),
90 nodemap_size, L1_CACHE_BYTES);
91 if (nodemap_addr == MEMBLOCK_ERROR) {
92 printk(KERN_ERR
93 "NUMA: Unable to allocate Memory to Node hash map\n");
94 nodemap_addr = nodemap_size = 0;
95 return -1;
97 memnodemap = phys_to_virt(nodemap_addr);
98 memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
100 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
101 nodemap_addr, nodemap_addr + nodemap_size);
102 return 0;
106 * The LSB of all start and end addresses in the node map is the value of the
107 * maximum possible shift.
109 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
110 int numnodes)
112 int i, nodes_used = 0;
113 unsigned long start, end;
114 unsigned long bitfield = 0, memtop = 0;
116 for (i = 0; i < numnodes; i++) {
117 start = nodes[i].start;
118 end = nodes[i].end;
119 if (start >= end)
120 continue;
121 bitfield |= start;
122 nodes_used++;
123 if (end > memtop)
124 memtop = end;
126 if (nodes_used <= 1)
127 i = 63;
128 else
129 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
130 memnodemapsize = (memtop >> i)+1;
131 return i;
134 static int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
135 int *nodeids)
137 int shift;
139 shift = extract_lsb_from_nodes(nodes, numnodes);
140 if (allocate_cachealigned_memnodemap())
141 return -1;
142 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
143 shift);
145 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
146 printk(KERN_INFO "Your memory is not aligned you need to "
147 "rebuild your kernel with a bigger NODEMAPSIZE "
148 "shift=%d\n", shift);
149 return -1;
151 return shift;
154 int __meminit __early_pfn_to_nid(unsigned long pfn)
156 return phys_to_nid(pfn << PAGE_SHIFT);
159 static void * __init early_node_mem(int nodeid, unsigned long start,
160 unsigned long end, unsigned long size,
161 unsigned long align)
163 unsigned long mem;
166 * put it on high as possible
167 * something will go with NODE_DATA
169 if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
170 start = MAX_DMA_PFN<<PAGE_SHIFT;
171 if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
172 end > (MAX_DMA32_PFN<<PAGE_SHIFT))
173 start = MAX_DMA32_PFN<<PAGE_SHIFT;
174 mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
175 if (mem != MEMBLOCK_ERROR)
176 return __va(mem);
178 /* extend the search scope */
179 end = max_pfn_mapped << PAGE_SHIFT;
180 start = MAX_DMA_PFN << PAGE_SHIFT;
181 mem = memblock_find_in_range(start, end, size, align);
182 if (mem != MEMBLOCK_ERROR)
183 return __va(mem);
185 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
186 size, nodeid);
188 return NULL;
191 static __init int conflicting_memblks(unsigned long start, unsigned long end)
193 int i;
194 for (i = 0; i < num_node_memblks; i++) {
195 struct bootnode *nd = &node_memblk_range[i];
196 if (nd->start == nd->end)
197 continue;
198 if (nd->end > start && nd->start < end)
199 return memblk_nodeid[i];
200 if (nd->end == end && nd->start == start)
201 return memblk_nodeid[i];
203 return -1;
206 int __init numa_add_memblk(int nid, u64 start, u64 end)
208 int i;
210 i = conflicting_memblks(start, end);
211 if (i == nid) {
212 printk(KERN_WARNING "NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
213 nid, start, end, numa_nodes[i].start, numa_nodes[i].end);
214 } else if (i >= 0) {
215 printk(KERN_ERR "NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
216 nid, start, end, i,
217 numa_nodes[i].start, numa_nodes[i].end);
218 return -EINVAL;
221 node_memblk_range[num_node_memblks].start = start;
222 node_memblk_range[num_node_memblks].end = end;
223 memblk_nodeid[num_node_memblks] = nid;
224 num_node_memblks++;
225 return 0;
228 static __init void cutoff_node(int i, unsigned long start, unsigned long end)
230 struct bootnode *nd = &numa_nodes[i];
232 if (nd->start < start) {
233 nd->start = start;
234 if (nd->end < nd->start)
235 nd->start = nd->end;
237 if (nd->end > end) {
238 nd->end = end;
239 if (nd->start > nd->end)
240 nd->start = nd->end;
244 /* Initialize bootmem allocator for a node */
245 void __init
246 setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
248 unsigned long start_pfn, last_pfn, nodedata_phys;
249 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
250 int nid;
252 if (!end)
253 return;
256 * Don't confuse VM with a node that doesn't have the
257 * minimum amount of memory:
259 if (end && (end - start) < NODE_MIN_SIZE)
260 return;
262 start = roundup(start, ZONE_ALIGN);
264 printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
265 start, end);
267 start_pfn = start >> PAGE_SHIFT;
268 last_pfn = end >> PAGE_SHIFT;
270 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
271 SMP_CACHE_BYTES);
272 if (node_data[nodeid] == NULL)
273 return;
274 nodedata_phys = __pa(node_data[nodeid]);
275 memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
276 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
277 nodedata_phys + pgdat_size - 1);
278 nid = phys_to_nid(nodedata_phys);
279 if (nid != nodeid)
280 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
282 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
283 NODE_DATA(nodeid)->node_id = nodeid;
284 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
285 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
287 node_set_online(nodeid);
291 * Sanity check to catch more bad NUMA configurations (they are amazingly
292 * common). Make sure the nodes cover all memory.
294 static int __init nodes_cover_memory(const struct bootnode *nodes)
296 unsigned long numaram, e820ram;
297 int i;
299 numaram = 0;
300 for_each_node_mask(i, mem_nodes_parsed) {
301 unsigned long s = nodes[i].start >> PAGE_SHIFT;
302 unsigned long e = nodes[i].end >> PAGE_SHIFT;
303 numaram += e - s;
304 numaram -= __absent_pages_in_range(i, s, e);
305 if ((long)numaram < 0)
306 numaram = 0;
309 e820ram = max_pfn -
310 (memblock_x86_hole_size(0, max_pfn<<PAGE_SHIFT) >> PAGE_SHIFT);
311 /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
312 if ((long)(e820ram - numaram) >= (1<<(20 - PAGE_SHIFT))) {
313 printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n",
314 (numaram << PAGE_SHIFT) >> 20,
315 (e820ram << PAGE_SHIFT) >> 20);
316 return 0;
318 return 1;
321 static int __init numa_register_memblks(void)
323 int i;
326 * Join together blocks on the same node, holes between
327 * which don't overlap with memory on other nodes.
329 for (i = 0; i < num_node_memblks; ++i) {
330 int j, k;
332 for (j = i + 1; j < num_node_memblks; ++j) {
333 unsigned long start, end;
335 if (memblk_nodeid[i] != memblk_nodeid[j])
336 continue;
337 start = min(node_memblk_range[i].end,
338 node_memblk_range[j].end);
339 end = max(node_memblk_range[i].start,
340 node_memblk_range[j].start);
341 for (k = 0; k < num_node_memblks; ++k) {
342 if (memblk_nodeid[i] == memblk_nodeid[k])
343 continue;
344 if (start < node_memblk_range[k].end &&
345 end > node_memblk_range[k].start)
346 break;
348 if (k < num_node_memblks)
349 continue;
350 start = min(node_memblk_range[i].start,
351 node_memblk_range[j].start);
352 end = max(node_memblk_range[i].end,
353 node_memblk_range[j].end);
354 printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n",
355 memblk_nodeid[i],
356 node_memblk_range[i].start,
357 node_memblk_range[i].end,
358 node_memblk_range[j].start,
359 node_memblk_range[j].end,
360 start, end);
361 node_memblk_range[i].start = start;
362 node_memblk_range[i].end = end;
363 k = --num_node_memblks - j;
364 memmove(memblk_nodeid + j, memblk_nodeid + j+1,
365 k * sizeof(*memblk_nodeid));
366 memmove(node_memblk_range + j, node_memblk_range + j+1,
367 k * sizeof(*node_memblk_range));
368 --j;
372 memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks,
373 memblk_nodeid);
374 if (memnode_shift < 0) {
375 printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n");
376 return -EINVAL;
379 for (i = 0; i < num_node_memblks; i++)
380 memblock_x86_register_active_regions(memblk_nodeid[i],
381 node_memblk_range[i].start >> PAGE_SHIFT,
382 node_memblk_range[i].end >> PAGE_SHIFT);
384 /* for out of order entries */
385 sort_node_map();
386 if (!nodes_cover_memory(numa_nodes))
387 return -EINVAL;
389 init_memory_mapping_high();
391 /* Finally register nodes. */
392 for_each_node_mask(i, node_possible_map)
393 setup_node_bootmem(i, numa_nodes[i].start, numa_nodes[i].end);
396 * Try again in case setup_node_bootmem missed one due to missing
397 * bootmem.
399 for_each_node_mask(i, node_possible_map)
400 if (!node_online(i))
401 setup_node_bootmem(i, numa_nodes[i].start,
402 numa_nodes[i].end);
404 return 0;
407 #ifdef CONFIG_NUMA_EMU
408 /* Numa emulation */
409 static struct bootnode nodes[MAX_NUMNODES] __initdata;
410 static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
411 static char *cmdline __initdata;
413 void __init numa_emu_cmdline(char *str)
415 cmdline = str;
418 static int __init setup_physnodes(unsigned long start, unsigned long end)
420 int ret = 0;
421 int i;
423 memset(physnodes, 0, sizeof(physnodes));
425 for_each_node_mask(i, mem_nodes_parsed) {
426 physnodes[i].start = numa_nodes[i].start;
427 physnodes[i].end = numa_nodes[i].end;
431 * Basic sanity checking on the physical node map: there may be errors
432 * if the SRAT or AMD code incorrectly reported the topology or the mem=
433 * kernel parameter is used.
435 for (i = 0; i < MAX_NUMNODES; i++) {
436 if (physnodes[i].start == physnodes[i].end)
437 continue;
438 if (physnodes[i].start > end) {
439 physnodes[i].end = physnodes[i].start;
440 continue;
442 if (physnodes[i].end < start) {
443 physnodes[i].start = physnodes[i].end;
444 continue;
446 if (physnodes[i].start < start)
447 physnodes[i].start = start;
448 if (physnodes[i].end > end)
449 physnodes[i].end = end;
450 ret++;
454 * If no physical topology was detected, a single node is faked to cover
455 * the entire address space.
457 if (!ret) {
458 physnodes[ret].start = start;
459 physnodes[ret].end = end;
460 ret = 1;
462 return ret;
465 static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
467 int i;
469 BUG_ON(acpi && amd);
470 #ifdef CONFIG_ACPI_NUMA
471 if (acpi)
472 acpi_fake_nodes(nodes, nr_nodes);
473 #endif
474 #ifdef CONFIG_AMD_NUMA
475 if (amd)
476 amd_fake_nodes(nodes, nr_nodes);
477 #endif
478 if (!acpi && !amd)
479 for (i = 0; i < nr_cpu_ids; i++)
480 numa_set_node(i, 0);
484 * Setups up nid to range from addr to addr + size. If the end
485 * boundary is greater than max_addr, then max_addr is used instead.
486 * The return value is 0 if there is additional memory left for
487 * allocation past addr and -1 otherwise. addr is adjusted to be at
488 * the end of the node.
490 static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
492 int ret = 0;
493 nodes[nid].start = *addr;
494 *addr += size;
495 if (*addr >= max_addr) {
496 *addr = max_addr;
497 ret = -1;
499 nodes[nid].end = *addr;
500 node_set(nid, node_possible_map);
501 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
502 nodes[nid].start, nodes[nid].end,
503 (nodes[nid].end - nodes[nid].start) >> 20);
504 return ret;
508 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
509 * to max_addr. The return value is the number of nodes allocated.
511 static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
513 nodemask_t physnode_mask = NODE_MASK_NONE;
514 u64 size;
515 int big;
516 int ret = 0;
517 int i;
519 if (nr_nodes <= 0)
520 return -1;
521 if (nr_nodes > MAX_NUMNODES) {
522 pr_info("numa=fake=%d too large, reducing to %d\n",
523 nr_nodes, MAX_NUMNODES);
524 nr_nodes = MAX_NUMNODES;
527 size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
529 * Calculate the number of big nodes that can be allocated as a result
530 * of consolidating the remainder.
532 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
533 FAKE_NODE_MIN_SIZE;
535 size &= FAKE_NODE_MIN_HASH_MASK;
536 if (!size) {
537 pr_err("Not enough memory for each node. "
538 "NUMA emulation disabled.\n");
539 return -1;
542 for (i = 0; i < MAX_NUMNODES; i++)
543 if (physnodes[i].start != physnodes[i].end)
544 node_set(i, physnode_mask);
547 * Continue to fill physical nodes with fake nodes until there is no
548 * memory left on any of them.
550 while (nodes_weight(physnode_mask)) {
551 for_each_node_mask(i, physnode_mask) {
552 u64 end = physnodes[i].start + size;
553 u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
555 if (ret < big)
556 end += FAKE_NODE_MIN_SIZE;
559 * Continue to add memory to this fake node if its
560 * non-reserved memory is less than the per-node size.
562 while (end - physnodes[i].start -
563 memblock_x86_hole_size(physnodes[i].start, end) < size) {
564 end += FAKE_NODE_MIN_SIZE;
565 if (end > physnodes[i].end) {
566 end = physnodes[i].end;
567 break;
572 * If there won't be at least FAKE_NODE_MIN_SIZE of
573 * non-reserved memory in ZONE_DMA32 for the next node,
574 * this one must extend to the boundary.
576 if (end < dma32_end && dma32_end - end -
577 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
578 end = dma32_end;
581 * If there won't be enough non-reserved memory for the
582 * next node, this one must extend to the end of the
583 * physical node.
585 if (physnodes[i].end - end -
586 memblock_x86_hole_size(end, physnodes[i].end) < size)
587 end = physnodes[i].end;
590 * Avoid allocating more nodes than requested, which can
591 * happen as a result of rounding down each node's size
592 * to FAKE_NODE_MIN_SIZE.
594 if (nodes_weight(physnode_mask) + ret >= nr_nodes)
595 end = physnodes[i].end;
597 if (setup_node_range(ret++, &physnodes[i].start,
598 end - physnodes[i].start,
599 physnodes[i].end) < 0)
600 node_clear(i, physnode_mask);
603 return ret;
607 * Returns the end address of a node so that there is at least `size' amount of
608 * non-reserved memory or `max_addr' is reached.
610 static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
612 u64 end = start + size;
614 while (end - start - memblock_x86_hole_size(start, end) < size) {
615 end += FAKE_NODE_MIN_SIZE;
616 if (end > max_addr) {
617 end = max_addr;
618 break;
621 return end;
625 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
626 * `addr' to `max_addr'. The return value is the number of nodes allocated.
628 static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
630 nodemask_t physnode_mask = NODE_MASK_NONE;
631 u64 min_size;
632 int ret = 0;
633 int i;
635 if (!size)
636 return -1;
638 * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
639 * increased accordingly if the requested size is too small. This
640 * creates a uniform distribution of node sizes across the entire
641 * machine (but not necessarily over physical nodes).
643 min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
644 MAX_NUMNODES;
645 min_size = max(min_size, FAKE_NODE_MIN_SIZE);
646 if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
647 min_size = (min_size + FAKE_NODE_MIN_SIZE) &
648 FAKE_NODE_MIN_HASH_MASK;
649 if (size < min_size) {
650 pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
651 size >> 20, min_size >> 20);
652 size = min_size;
654 size &= FAKE_NODE_MIN_HASH_MASK;
656 for (i = 0; i < MAX_NUMNODES; i++)
657 if (physnodes[i].start != physnodes[i].end)
658 node_set(i, physnode_mask);
660 * Fill physical nodes with fake nodes of size until there is no memory
661 * left on any of them.
663 while (nodes_weight(physnode_mask)) {
664 for_each_node_mask(i, physnode_mask) {
665 u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
666 u64 end;
668 end = find_end_of_node(physnodes[i].start,
669 physnodes[i].end, size);
671 * If there won't be at least FAKE_NODE_MIN_SIZE of
672 * non-reserved memory in ZONE_DMA32 for the next node,
673 * this one must extend to the boundary.
675 if (end < dma32_end && dma32_end - end -
676 memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
677 end = dma32_end;
680 * If there won't be enough non-reserved memory for the
681 * next node, this one must extend to the end of the
682 * physical node.
684 if (physnodes[i].end - end -
685 memblock_x86_hole_size(end, physnodes[i].end) < size)
686 end = physnodes[i].end;
689 * Setup the fake node that will be allocated as bootmem
690 * later. If setup_node_range() returns non-zero, there
691 * is no more memory available on this physical node.
693 if (setup_node_range(ret++, &physnodes[i].start,
694 end - physnodes[i].start,
695 physnodes[i].end) < 0)
696 node_clear(i, physnode_mask);
699 return ret;
703 * Sets up the system RAM area from start_pfn to last_pfn according to the
704 * numa=fake command-line option.
706 static int __init numa_emulation(unsigned long start_pfn,
707 unsigned long last_pfn, int acpi, int amd)
709 u64 addr = start_pfn << PAGE_SHIFT;
710 u64 max_addr = last_pfn << PAGE_SHIFT;
711 int num_nodes;
712 int i;
715 * If the numa=fake command-line contains a 'M' or 'G', it represents
716 * the fixed node size. Otherwise, if it is just a single number N,
717 * split the system RAM into N fake nodes.
719 if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
720 u64 size;
722 size = memparse(cmdline, &cmdline);
723 num_nodes = split_nodes_size_interleave(addr, max_addr, size);
724 } else {
725 unsigned long n;
727 n = simple_strtoul(cmdline, NULL, 0);
728 num_nodes = split_nodes_interleave(addr, max_addr, n);
731 if (num_nodes < 0)
732 return num_nodes;
733 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
734 if (memnode_shift < 0) {
735 memnode_shift = 0;
736 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
737 "disabled.\n");
738 return -1;
742 * We need to vacate all active ranges that may have been registered for
743 * the e820 memory map.
745 remove_all_active_ranges();
746 for_each_node_mask(i, node_possible_map)
747 memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
748 nodes[i].end >> PAGE_SHIFT);
749 init_memory_mapping_high();
750 for_each_node_mask(i, node_possible_map)
751 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
752 setup_physnodes(addr, max_addr);
753 fake_physnodes(acpi, amd, num_nodes);
754 numa_init_array();
755 return 0;
757 #endif /* CONFIG_NUMA_EMU */
759 static int dummy_numa_init(void)
761 printk(KERN_INFO "%s\n",
762 numa_off ? "NUMA turned off" : "No NUMA configuration found");
763 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
764 0LU, max_pfn << PAGE_SHIFT);
766 node_set(0, cpu_nodes_parsed);
767 node_set(0, mem_nodes_parsed);
768 numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT);
769 numa_nodes[0].start = 0;
770 numa_nodes[0].end = (u64)max_pfn << PAGE_SHIFT;
772 return 0;
775 static int dummy_scan_nodes(void)
777 return 0;
780 void __init initmem_init(void)
782 int (*numa_init[])(void) = { [2] = dummy_numa_init };
783 int (*scan_nodes[])(void) = { [2] = dummy_scan_nodes };
784 int i, j;
786 if (!numa_off) {
787 #ifdef CONFIG_ACPI_NUMA
788 numa_init[0] = x86_acpi_numa_init;
789 scan_nodes[0] = acpi_scan_nodes;
790 #endif
791 #ifdef CONFIG_AMD_NUMA
792 numa_init[1] = amd_numa_init;
793 scan_nodes[1] = amd_scan_nodes;
794 #endif
797 for (i = 0; i < ARRAY_SIZE(numa_init); i++) {
798 if (!numa_init[i])
799 continue;
801 for (j = 0; j < MAX_LOCAL_APIC; j++)
802 set_apicid_to_node(j, NUMA_NO_NODE);
804 nodes_clear(cpu_nodes_parsed);
805 nodes_clear(mem_nodes_parsed);
806 nodes_clear(node_possible_map);
807 nodes_clear(node_online_map);
808 num_node_memblks = 0;
809 memset(node_memblk_range, 0, sizeof(node_memblk_range));
810 memset(memblk_nodeid, 0, sizeof(memblk_nodeid));
811 memset(numa_nodes, 0, sizeof(numa_nodes));
812 remove_all_active_ranges();
814 if (numa_init[i]() < 0)
815 continue;
817 /* clean up the node list */
818 for (j = 0; j < MAX_NUMNODES; j++)
819 cutoff_node(j, 0, max_pfn << PAGE_SHIFT);
821 #ifdef CONFIG_NUMA_EMU
822 setup_physnodes(0, max_pfn << PAGE_SHIFT);
823 if (cmdline && !numa_emulation(0, max_pfn, i == 0, i == 1))
824 return;
825 setup_physnodes(0, max_pfn << PAGE_SHIFT);
826 nodes_clear(node_possible_map);
827 nodes_clear(node_online_map);
828 #endif
829 /* Account for nodes with cpus and no memory */
830 nodes_or(node_possible_map, mem_nodes_parsed, cpu_nodes_parsed);
831 if (WARN_ON(nodes_empty(node_possible_map)))
832 continue;
834 if (numa_register_memblks() < 0)
835 continue;
837 if (scan_nodes[i]() < 0)
838 continue;
840 for (j = 0; j < nr_cpu_ids; j++) {
841 int nid = early_cpu_to_node(j);
843 if (nid == NUMA_NO_NODE)
844 continue;
845 if (!node_online(nid))
846 numa_clear_node(j);
848 numa_init_array();
849 return;
851 BUG();
854 unsigned long __init numa_free_all_bootmem(void)
856 unsigned long pages = 0;
857 int i;
859 for_each_online_node(i)
860 pages += free_all_bootmem_node(NODE_DATA(i));
862 pages += free_all_memory_core_early(MAX_NUMNODES);
864 return pages;
867 int __cpuinit numa_cpu_node(int cpu)
869 int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
871 if (apicid != BAD_APICID)
872 return __apicid_to_node[apicid];
873 return NUMA_NO_NODE;
877 * UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use
878 * of 64bit specific data structures. The distinction is artificial and
879 * should be removed. numa_{add|remove}_cpu() are implemented in numa.c
880 * for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when
881 * enabled.
883 * NUMA emulation is planned to be made generic and the following and other
884 * related code should be moved to numa.c.
886 #ifdef CONFIG_NUMA_EMU
887 # ifndef CONFIG_DEBUG_PER_CPU_MAPS
888 void __cpuinit numa_add_cpu(int cpu)
890 unsigned long addr;
891 int physnid, nid;
893 nid = numa_cpu_node(cpu);
894 if (nid == NUMA_NO_NODE)
895 nid = early_cpu_to_node(cpu);
896 BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
899 * Use the starting address of the emulated node to find which physical
900 * node it is allocated on.
902 addr = node_start_pfn(nid) << PAGE_SHIFT;
903 for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
904 if (addr >= physnodes[physnid].start &&
905 addr < physnodes[physnid].end)
906 break;
909 * Map the cpu to each emulated node that is allocated on the physical
910 * node of the cpu's apic id.
912 for_each_online_node(nid) {
913 addr = node_start_pfn(nid) << PAGE_SHIFT;
914 if (addr >= physnodes[physnid].start &&
915 addr < physnodes[physnid].end)
916 cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
920 void __cpuinit numa_remove_cpu(int cpu)
922 int i;
924 for_each_online_node(i)
925 cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
927 # else /* !CONFIG_DEBUG_PER_CPU_MAPS */
928 static void __cpuinit numa_set_cpumask(int cpu, int enable)
930 int node = early_cpu_to_node(cpu);
931 struct cpumask *mask;
932 int i;
934 if (node == NUMA_NO_NODE) {
935 /* early_cpu_to_node() already emits a warning and trace */
936 return;
938 for_each_online_node(i) {
939 unsigned long addr;
941 addr = node_start_pfn(i) << PAGE_SHIFT;
942 if (addr < physnodes[node].start ||
943 addr >= physnodes[node].end)
944 continue;
945 mask = debug_cpumask_set_cpu(cpu, enable);
946 if (!mask)
947 return;
949 if (enable)
950 cpumask_set_cpu(cpu, mask);
951 else
952 cpumask_clear_cpu(cpu, mask);
956 void __cpuinit numa_add_cpu(int cpu)
958 numa_set_cpumask(cpu, 1);
961 void __cpuinit numa_remove_cpu(int cpu)
963 numa_set_cpumask(cpu, 0);
965 # endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
966 #endif /* CONFIG_NUMA_EMU */